1
|
Patel H, Yadav N, Parmar R, Bhurani V, Mathur A, Jagwani D, Ahiya A, Behera DK, Krzych U, Dalai SK. Plasmodium berghei Radiation-Attenuated Sporozoite-Immunized Mice Require Infectious Sporozoite Challenge to Maintain Protective Immunity. Eur J Immunol 2025; 55:e202451542. [PMID: 40285393 DOI: 10.1002/eji.202451542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/23/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025]
Abstract
Plasmodium radiation-attenuated sporozoites (RAS) confer sterile protection in mammalian hosts. The duration of protection is affected by the dose of RAS, the route of immunization, and the timing of primary challenge (PC). Giving PC shortly after the last Plasmodium berghei (Pb) RAS immunization of C75BL/6 mice led to the long-term sterile protection, whereas delaying PC beyond 6 months resulted in parasitemia. The mechanisms responsible for the divergent outcome remain unknown. Because liver effector/memory CD8+T cells are associated with lasting protection, herein we asked if any functions of CD8+T cells would be diminished or lost by delaying PC. Using the Pb protection model, we characterized functional attributes and phenotypes of liver and spleen CD8+T cells following early and delayed PC. Compared with CD8+T cells before the challenge, liver KLRG-1intCD107+ and IFN-γ+IL-2+CD8+T cells increased after early but decreased following delayed PC. Memory CD8+T cells exhibited higher expression of Bcl-2 at early rather than delayed PC. Finally, splenic and liver-draining lymph node CD8+T cells expressed significantly higher CXCR6 and the respective ligands but only following early PC. Collectively, our results show that enhanced proliferation, migration, and elevated effector functions of CD8+T cells are associated with the longevity of sterile protection in the Pb RAS murine model.
Collapse
Affiliation(s)
- Hardik Patel
- Institute of Science, Nirma University, Ahmedabad, India
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Naveen Yadav
- Institute of Science, Nirma University, Ahmedabad, India
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Rajesh Parmar
- Institute of Science, Nirma University, Ahmedabad, India
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | | | - Aditi Mathur
- Institute of Science, Nirma University, Ahmedabad, India
| | - Dolly Jagwani
- Institute of Science, Nirma University, Ahmedabad, India
| | - Avantika Ahiya
- Institute of Science, Nirma University, Ahmedabad, India
| | | | - Urszula Krzych
- Department of Cellular Immunology, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Sarat K Dalai
- Institute of Science, Nirma University, Ahmedabad, India
| |
Collapse
|
2
|
Ganeshan H, Huang J, Belmonte M, Belmonte A, Inoue S, Velasco R, Maiolatesi S, Limbach K, Patterson N, Sklar MJ, Soisson L, Epstein JE, Edgel KA, Peters B, Hollingdale MR, Villasante E, Duplessis CA, Sedegah M. Human responses to the DNA prime/chimpanzee adenovirus (ChAd63) boost vaccine identify CSP, AMA1 and TRAP MHC Class I-restricted epitopes. PLoS One 2025; 20:e0318098. [PMID: 39946433 PMCID: PMC11825025 DOI: 10.1371/journal.pone.0318098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/17/2024] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND A three-antigen DNA-prime/chimpanzee adenovirus 63 (ChAd63) boost vaccine containing pre-erythrocytic Plasmodium falciparum (Pf) circumsporozoite protein (CSP), Pf apical membrane antigen-1 (AMA1) and malaria multiple epitopes (ME) fused to Pf thrombospondin-related adhesion protein (ME-TRAP) elicited higher vaccine efficacy (VE) in an open label, randomized Phase 1 trial against controlled human malaria infection (CHMI) than the two-antigen vaccine DNA/Human Adenovirus 5 (HuAd5) containing CSP and AMA1. The objective of this follow-up study was to determine whether responses to CSP, AMA1 or TRAP MHC Class I-restricted epitopes were associated with VE. METHODOLOGY Protected (n = 6) and non-protected participants (n = 26) were screened in FluoroSpot interferon gamma (IFN-γ) and Granzyme B (GzB) assays using antigen-specific 15mer peptide subpools spanning CSP (n = 9 subpools), AMA1 (n = 12 subpools), and TRAP (n = 11 subpools). Individual antigen-specific 15mers in the subpools with strong responses were then deconvoluted, evaluated for activities, and MHC Class I-restricted epitopes within the active 15mers were predicted using NetMHCpan algorithms. The predicted epitopes were synthesized and evaluated in the FluoroSpot IFN-γ and GzB assays. RESULTS Protected and some non-protected participants had similar responses to individual antigen-specific peptide subpools, which did not distinguish only protected participants. However, deconvoluted antigen-specific positive subpools with high magnitudes of responses revealed individual 15mer peptides containing specific and/or predicted MHC Class I (HLA) epitopes. Responses to epitopes were either IFN-γ-only, IFN-γ and GzB, or GzB-only. Due to limitation of cells, most of the analysis concentrated on the identification of protection associated AMA1 epitopes, since most of the predominant pool specific responses were generated against AMA1 15mer subpools. Furthermore, we previously identified protection associated HLA class I-restricted epitopes in a previous gene-based vaccine trial. Seven predicted minimal epitopes in AMA1 were synthesized and upon testing, five recalled responses from protected participants confirming their possible contribution and association with protection, and two recalled responses from non-protected participants. Two protection-associated epitopes were promiscuous and may have also contributed to protection by recognition of different HLA alleles. In addition, strongly positive antigen-specific 15mers identified within active antigen-specific subpools contained 39 predicted but not tested epitopes were identified in CSP, AMA1 and TRAP. Finally, some non-protected individuals recognized HLA-matched protection-associated minimal epitopes and we discuss possible reasons. Other factors such as HLA allele fine specificity or interaction between other HLA alleles in same individual may also influence protective efficacy. CONCLUSIONS This integrated approach using immunoassays and bioinformatics identified and confirmed AMA1-MHC Class I-restricted epitopes and a list of predicted additional epitopes which could be evaluated in future studies to assess possible association with protection against CHMI in the Phase 1 trial participants. The results suggest that identification of protection-associated epitopes within malaria antigens is feasible and can help design potent next generation multi-antigen, multi-epitope malaria vaccines for a genetically diverse population and to develop robust assays to measure protective cellular immunity against pre-erythrocytic stages of malaria. This approach can be used to develop vaccines for other novel emerging infectious disease pathogens.
Collapse
Affiliation(s)
- Harini Ganeshan
- Naval Medical Research Command, Silver Spring, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Jun Huang
- Naval Medical Research Command, Silver Spring, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Maria Belmonte
- Naval Medical Research Command, Silver Spring, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Arnel Belmonte
- Naval Medical Research Command, Silver Spring, Maryland, United States of America
- General Dynamics Information Technology, Falls Church, Virginia, United States of America
| | - Sandra Inoue
- Naval Medical Research Command, Silver Spring, Maryland, United States of America
- General Dynamics Information Technology, Falls Church, Virginia, United States of America
| | - Rachel Velasco
- Naval Medical Research Command, Silver Spring, Maryland, United States of America
- General Dynamics Information Technology, Falls Church, Virginia, United States of America
| | - Santina Maiolatesi
- Naval Medical Research Command, Silver Spring, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Keith Limbach
- Naval Medical Research Command, Silver Spring, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Noelle Patterson
- Naval Medical Research Command, Silver Spring, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Marvin J. Sklar
- Naval Medical Research Command, Silver Spring, Maryland, United States of America
| | - Lorraine Soisson
- United States Agency for International Development (USAID), Washington, DC, United States of America
| | - Judith E. Epstein
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kimberly A. Edgel
- Naval Medical Research Command, Silver Spring, Maryland, United States of America
| | - Bjoern Peters
- La Jolla Institute of Allergy and Immunology, La Jolla, California, United States of America
| | - Michael R. Hollingdale
- Naval Medical Research Command, Silver Spring, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Eileen Villasante
- Naval Medical Research Command, Silver Spring, Maryland, United States of America
| | | | - Martha Sedegah
- Naval Medical Research Command, Silver Spring, Maryland, United States of America
| |
Collapse
|
3
|
Ghosh A, Mishra A, Devi R, Narwal SK, Nirdosh, Srivastava PN, Mishra S. A Micronemal Protein, Scot1, Is Essential for Apicoplast Biogenesis and Liver Stage Development in Plasmodium berghei. ACS Infect Dis 2024; 10:3013-3025. [PMID: 39037752 DOI: 10.1021/acsinfecdis.4c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Plasmodium sporozoites invade hepatocytes, transform into liver stages, and replicate into thousands of merozoites that infect erythrocytes and cause malaria. Proteins secreted from micronemes play an essential role in hepatocyte invasion, and unneeded micronemes are subsequently discarded for replication. The liver-stage parasites are potent immunogens that prevent malarial infection. Late liver stage-arresting genetically attenuated parasites (GAPs) exhibit greater protective efficacy than early GAP. However, the number of late liver-stage GAPs for generating GAPs with multiple gene deletions is limited. Here, we identified Scot1 (Sporozoite Conserved Orthologous Transcript 1), which was previously shown to be upregulated in sporozoites, and by endogenous tagging with mCherry, we demonstrated that it is expressed in the sporozoite and liver stages in micronemes. Using targeted gene deletion in Plasmodium berghei, we showed that Scot1 is essential for late liver-stage development. Scot1 KO sporozoites grew normally into liver stages but failed to initiate blood-stage infection in mice due to impaired apicoplast biogenesis and merozoite formation. Bioinformatic studies suggested that Scot1 is a metal-small-molecule carrier protein. Remarkably, supplementation with metals in the culture of infected Scot1 KO cells did not rescue their phenotype. Immunization with Scot1 KO sporozoites in C57BL/6 mice confers protection against malaria via infection. These proof-of-concept studies will enable the generation of P. falciparum Scot1 mutants that could be exploited to generate GAP malaria vaccines.
Collapse
Affiliation(s)
- Ankit Ghosh
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Akancha Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raksha Devi
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sunil Kumar Narwal
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Nirdosh
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pratik Narain Srivastava
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Tajudeen YA, Oladipo HJ, Yusuff SI, Abimbola SO, Abdulkadir M, Oladunjoye IO, Omotosho AO, Egbewande OM, Shittu HD, Yusuf RO, Ogundipe O, Muili AO, Afolabi AO, Dahesh SMA, Gameil MAM, El-Sherbini MS. A landscape review of malaria vaccine candidates in the pipeline. Trop Dis Travel Med Vaccines 2024; 10:19. [PMID: 39085983 PMCID: PMC11293096 DOI: 10.1186/s40794-024-00222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/15/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Globally, malaria continues to pose a major health challenge, with approximately 247 million cases of the illness and 627,000 deaths reported in 2021. However, the threat is particularly pronounced in sub-Saharan African countries, where pregnant women and children under the age of five face heightened vulnerability to the disease. As a result, the imperative to develop malaria vaccines especially for these vulnerable populations, remains crucial in the pursuit of malaria eradication. However, despite decades of research, effective vaccine development faces technical challenges, including the rapid spread of drug-resistant parasite strains, the complex parasite lifecycle, the development of liver hypnozoites with potential for relapse, and evasion of the host immune system. This review aims to discuss the different malaria vaccine candidates in the pipeline, highlighting different approaches used for adjuvating these candidates, their benefits, and outcomes, and summarizing the progress of these vaccine candidates under development. METHOD A comprehensive web-based search for peer-reviewed journal articles published in SCOPUS, MEDLINE (via PubMed), Science Direct, WHO, and Advanced Google Scholar databases was conducted from 1990 to May 2022. Context-specific keywords such as "Malaria", "Malaria Vaccine", "Malaria Vaccine Candidates", "Vaccine Development", "Vaccine Safety", "Clinical Trials", "mRNA Vaccines", "Viral Vector Vaccines", "Protein-based Vaccines", "Subunit Vaccines", "Vaccine Adjuvants", "Vaccine-induced Immune Responses", and "Immunogenicity" were emphatically considered. Articles not directly related to malaria vaccine candidates in preclinical and clinical stages of development were excluded. RESULTS Various approaches have been studied for malaria vaccine development, targeting different parasite lifecycle stages, including the pre-erythrocytic, erythrocytic, and sexual stages. The RTS, S/AS01 vaccine, the first human parasite vaccine reaching WHO-listed authority maturity level 4, has demonstrated efficacy in preventing clinical malaria in African children. However, progress was slow in introducing other safe, and feasible malaria vaccines through clinical trials . Recent studies highlight the potential effectiveness of combining pre-erythrocytic and blood-stage vaccines, along with the advantages of mRNA vaccines for prophylaxis and treatment, and nonstructural vaccines for large-scale production. CONCLUSION Malaria vaccine candidates targeting different lifecycle stages of the parasite range from chemoprophylaxis vaccination to cross-species immune protection. The use of a multi-antigen, multi-stage combinational vaccine is therefore essential in the context of global health. This demands careful understanding and critical consideration of the long-term multi-faceted interplay of immune interference, co-dominance, complementary immune response, molecular targets, and adjuvants affecting the overall vaccine-induced immune response. Despite challenges, advancements in clinical trials and vaccination technology offer promising possibilities for novel approaches in malaria vaccine development.
Collapse
Affiliation(s)
- Yusuf Amuda Tajudeen
- Department of Microbiology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria
- Department of Epidemiology and Medical Statistics, Faculty of Public Health, College of Medicine, University of Ibadan, P.M.B 5017 G.P.O, Ibadan, Oyo State, Nigeria
| | - Habeebullah Jayeola Oladipo
- Department of Microbiology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria
- Faculty of Pharmaceutical Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria
| | - Sodiq Inaolaji Yusuff
- Department of Medicine, Faculty of Clinical Sciences, Obafemi Awolowo University, Ibadan- Ife Rd, Ife, 220282, Osun State, Nigeria
| | - Samuel O Abimbola
- Cyprus International Institute of Environmental and Public Health, Cyprus University of Technology, Limassol, 3036, Cyprus
| | - Muritala Abdulkadir
- Faculty of Pharmaceutical Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria
| | - Iyiola Olatunji Oladunjoye
- Department of Microbiology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria
| | - Abass Olawale Omotosho
- Department of Microbiology, Faculty of Pure and Applied Sciences, Kwara State University, P.M.B 1530, Malete-Ilorin, Ilorin, Nigeria
| | | | | | - Rashidat Onyinoyi Yusuf
- Faculty of Pharmaceutical Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria
| | - Oluwatosin Ogundipe
- Department of Epidemiology and Medical Statistics, Faculty of Public Health, College of Medicine, University of Ibadan, P.M.B 5017 G.P.O, Ibadan, Oyo State, Nigeria
| | - Abdulbasit Opeyemi Muili
- Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, P.M.B 4000, Ogbomosho, Oyo State, Nigeria
| | - Abdullateef Opeyemi Afolabi
- Faculty of Biomedical Sciences, Department of Microbiology and Immunology, Kampala International University, Bushenyi, Uganda.
| | - Salwa M A Dahesh
- Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes, GOTHI, Damietta, Egypt
| | | | - Mona Said El-Sherbini
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
5
|
Gozalo AS, Robinson CK, Holdridge J, Franco Mahecha OL, Elkins WR. Overview of Plasmodium spp. and Animal Models in Malaria Research. Comp Med 2024; 74:205-230. [PMID: 38902006 PMCID: PMC11373680 DOI: 10.30802/aalas-cm-24-000019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024]
Abstract
Malaria is a parasitic disease caused by protozoan species of the genus Plasmodium and transmitted by female mosquitos of the genus Anopheles and other Culicidae. Most of the parasites of the genus Plasmodium are highly species specific with more than 200 species described affecting different species of mammals, birds, and reptiles. Plasmodium species strictly affecting humans are P. falciparum, P. vivax, P. ovale, and P. malariae. More recently, P. knowlesi and other nonhuman primate plasmodia were found to naturally infect humans. Currently, malaria occurs mostly in poor tropical and subtropical areas of the world, and in many of these countries it is the leading cause of illness and death. For more than 100 y, animal models, have played a major role in our understanding of malaria biology. Avian Plasmodium species were the first to be used as models to study human malaria. Malaria parasite biology and immunity were first studied using mainly P. gallinaceum and P. relictum. Rodent malarias, particularly P. berghei and P. yoelii, have been used extensively as models to study malaria in mammals. Several species of Plasmodium from nonhuman primates have been used as surrogate models to study human malaria immunology, pathogenesis, candidate vaccines, and treatments. Plasmodium cynomolgi, P. simiovale, and P. fieldi are important models for studying malaria produced by P. vivax and P. ovale, while P. coatneyi is used as a model for study- ing severe malaria. Other nonhuman primate malarias used in research are P. fragile, P. inui, P. knowlesi, P. simium, and P. brasilianum. Very few nonhuman primate species can develop an infection with human malarias. Macaques in general are resistant to infection with P. falciparum, P. vivax, P. malariae, and P. ovale. Only apes and a few species of New World monkeys can support infection with human malarias. Herein we review the most common, and some less common, avian, reptile, and mammal plasmodia species used as models to study human malaria.
Collapse
Affiliation(s)
- Alfonso S Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Christen K Robinson
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Julie Holdridge
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Olga L Franco Mahecha
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - William R Elkins
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
6
|
Mouwenda YD, Jochems SP, Van Unen V, Betouke Ongwe ME, de Steenhuijsen Piters WA, Stam KA, Massinga Loembe M, Sim BKL, Esen M, Hoffman SL, Kremsner PG, Fendel R, Mordmüller B, Yazdanbakhsh M. Immune responses associated with protection induced by chemoattenuated PfSPZ vaccine in malaria-naive Europeans. JCI Insight 2024; 9:e170210. [PMID: 38716733 PMCID: PMC11141902 DOI: 10.1172/jci.insight.170210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/14/2024] [Indexed: 06/02/2024] Open
Abstract
Vaccination of malaria-naive volunteers with a high dose of Plasmodium falciparum sporozoites chemoattenuated by chloroquine (CQ) (PfSPZ-CVac [CQ]) has previously demonstrated full protection against controlled human malaria infection (CHMI). However, lower doses of PfSPZ-CVac [CQ] resulted in incomplete protection. This provides the opportunity to understand the immune mechanisms needed for better vaccine-induced protection by comparing individuals who were protected with those not protected. Using mass cytometry, we characterized immune cell composition and responses of malaria-naive European volunteers who received either lower doses of PfSPZ-CVac [CQ], resulting in 50% protection irrespective of the dose, or a placebo vaccination, with everyone becoming infected following CHMI. Clusters of CD4+ and γδ T cells associated with protection were identified, consistent with their known role in malaria immunity. Additionally, EMRA CD8+ T cells and CD56+CD8+ T cell clusters were associated with protection. In a cohort from a malaria-endemic area in Gabon, these CD8+ T cell clusters were also associated with parasitemia control in individuals with lifelong exposure to malaria. Upon stimulation with P. falciparum-infected erythrocytes, CD4+, γδ, and EMRA CD8+ T cells produced IFN-γ and/or TNF, indicating their ability to mediate responses that eliminate malaria parasites.
Collapse
Affiliation(s)
- Yoanne D. Mouwenda
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Department of Parasitology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Simon P. Jochems
- Department of Parasitology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Vincent Van Unen
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Madeleine Eunice Betouke Ongwe
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Department of Parasitology, Leiden University Medical Center (LUMC), Leiden, Netherlands
- Centre National de la Recherche Scientifique et Technologique, Institut De Recherche En Écologie Tropical, Libreville, Gabon
| | | | - Koen A. Stam
- Department of Parasitology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | | | - Betty Kim Lee Sim
- Sanaria Inc., Rockville, Maryland, USA
- Protein Potential LLC, Rockville, Maryland, USA
| | - Meral Esen
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124, Controlling Microbes to Fight Infection, Tübingen, Germany
| | | | - Peter G. Kremsner
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Rolf Fendel
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Benjamin Mordmüller
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Radboud University Medical Center (Radboudumc), Department of Medical Microbiology, Nijmegen, Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| |
Collapse
|
7
|
Narwal SK, Mishra A, Devi R, Ghosh A, Choudhary HH, Mishra S. Stearoyl-CoA desaturase regulates organelle biogenesis and hepatic merozoite formation in Plasmodium berghei. Mol Microbiol 2024; 121:940-953. [PMID: 38419272 DOI: 10.1111/mmi.15246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Plasmodium is an obligate intracellular parasite that requires intense lipid synthesis for membrane biogenesis and survival. One of the principal membrane components is oleic acid, which is needed to maintain the membrane's biophysical properties and fluidity. The malaria parasite can modify fatty acids, and stearoyl-CoA Δ9-desaturase (Scd) is an enzyme that catalyzes the synthesis of oleic acid by desaturation of stearic acid. Scd is dispensable in P. falciparum blood stages; however, its role in mosquito and liver stages remains unknown. We show that P. berghei Scd localizes to the ER in the blood and liver stages. Disruption of Scd in the rodent malaria parasite P. berghei did not affect parasite blood stage propagation, mosquito stage development, or early liver-stage development. However, when Scd KO sporozoites were inoculated intravenously or by mosquito bite into mice, they failed to initiate blood-stage infection. Immunofluorescence analysis revealed that organelle biogenesis was impaired and merozoite formation was abolished, which initiates blood-stage infections. Genetic complementation of the KO parasites restored merozoite formation to a level similar to that of WT parasites. Mice immunized with Scd KO sporozoites confer long-lasting sterile protection against infectious sporozoite challenge. Thus, the Scd KO parasite is an appealing candidate for inducing protective pre-erythrocytic immunity and hence its utility as a GAP.
Collapse
Affiliation(s)
- Sunil Kumar Narwal
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Akancha Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Raksha Devi
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ankit Ghosh
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Hadi Hasan Choudhary
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Yadav N, Parthiban C, Billman ZP, Stone BC, Watson FN, Zhou K, Olsen TM, Cruz Talavera I, Seilie AM, Kalata AC, Matsubara J, Shears MJ, Reynolds RA, Murphy SC. More time to kill: A longer liver stage increases T cell-mediated protection against pre-erythrocytic malaria. iScience 2023; 26:108489. [PMID: 38162031 PMCID: PMC10755051 DOI: 10.1016/j.isci.2023.108489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 10/16/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024] Open
Abstract
Liver stage (LS) Plasmodia mature in 2-2.5 days in rodents compared to 5-6 days in humans. Plasmodium-specific CD8+ T cell expansion differs across these varied timespans. To mimic the kinetics of CD8+ T cells of human Plasmodium infection, a two-dose challenge mouse model that achieved 4-5 days of LS antigen exposure was developed. In this model, mice were inoculated with a non-protective, low dose of late-arresting, genetically attenuated sporozoites to initiate T cell activation and then re-inoculated 2-3 days later with wild-type sporozoites. Vaccines that partially protected against traditional challenge completely protected against two-dose challenge. During the challenge period, CD8+ T cell frequencies increased in the livers of two-dose challenged mice but not in traditionally challenged mice, further suggesting that this model better recapitulates kinetics of CD8+ T cell expansion in humans during the P. falciparum LS. Vaccine development and antigen discovery efforts may be aided by using the two-dose challenge strategy.
Collapse
Affiliation(s)
- Naveen Yadav
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Chaitra Parthiban
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Zachary P. Billman
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Brad C. Stone
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Felicia N. Watson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Kevin Zhou
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Tayla M. Olsen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Irene Cruz Talavera
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Annette Mariko Seilie
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Anya C. Kalata
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Jokichi Matsubara
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Melanie J. Shears
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Rebekah A. Reynolds
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Sean C. Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
- Department of Microbiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Powell TJ, Tang J, Mitchell R, DeRome ME, Jacobs A, Palath N, Cardenas E, Yorke M, Boyd JG, Kaba SA, Nardin E. Immunogenicity, Efficacy, and Safety of a Novel Synthetic Microparticle Pre-Erythrocytic Malaria Vaccine in Multiple Host Species. Vaccines (Basel) 2023; 11:1789. [PMID: 38140193 PMCID: PMC10748200 DOI: 10.3390/vaccines11121789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
We previously reported a protective antibody response in mice immunized with synthetic microparticle vaccines made using layer-by-layer fabrication (LbL-MP) and containing the conserved T1BT* epitopes from the P. falciparum circumsporozoite protein. To further optimize the vaccine candidate, a benchtop tangential flow filtration method (LbL-by-TFF) was developed and utilized to produce vaccine candidates that differed in the status of base layer crosslinking, inclusion of a TLR2 ligand in the antigenic peptide, and substitution of serine or alanine for an unpaired cysteine residue in the T* epitope. Studies in mice revealed consistent superiority of the Pam3Cys-modified candidates and a modest benefit of base layer crosslinking, as evidenced by higher and more persistent antibody titers (up to 18 months post-immunization), a qualitative improvement of T-cell responses toward a Th1 phenotype, and greater protection from live parasite challenges compared to the unmodified prototype candidate. Immunogenicity was also tested in a non-human primate model, the rhesus macaque. Base layer-crosslinked LbL-MP loaded with T1BT* peptide with or without covalently linked Pam3Cys elicited T1B-specific antibody responses and T1BT*-specific T-cell responses dominated by IFNγ secretion with lower levels of IL-5 secretion. The Pam3Cys-modified construct was more potent, generating antibody responses that neutralized wild-type P. falciparum in an in vitro hepatocyte invasion assay. IgG purified from individual macaques immunized with Pam3Cys.T1BT* LbL-MP protected naïve mice from challenges with transgenic P. berghei sporozoites that expressed the full-length PfCS protein, with 50-88% of passively immunized mice parasite-free for ≥15 days. Substitution of serine for an unpaired cysteine in the T* region of the T1BT* subunit did not adversely impact immune potency in the mouse while simplifying the manufacture of the antigenic peptide. In a Good Laboratory Practices compliant rabbit toxicology study, the base layer-crosslinked, Pam3Cys-modified, serine-substituted candidate was shown to be safe and immunogenic, eliciting parasite-neutralizing antibody responses and establishing the dose/route/regimen for a clinical evaluation of this novel synthetic microparticle pre-erythrocytic malaria vaccine candidate.
Collapse
Affiliation(s)
- Thomas J. Powell
- Artificial Cell Technologies, Inc., 5 Science Park, Suite 13, New Haven, CT 06511, USA; (J.T.); (M.E.D.); (A.J.); (N.P.); (E.C.); (M.Y.); (J.G.B.)
| | - Jie Tang
- Artificial Cell Technologies, Inc., 5 Science Park, Suite 13, New Haven, CT 06511, USA; (J.T.); (M.E.D.); (A.J.); (N.P.); (E.C.); (M.Y.); (J.G.B.)
| | - Robert Mitchell
- Department of Microbiology, School of Medicine, New York University, New York, NY 10010, USA; (R.M.); (E.N.)
| | - Mary E. DeRome
- Artificial Cell Technologies, Inc., 5 Science Park, Suite 13, New Haven, CT 06511, USA; (J.T.); (M.E.D.); (A.J.); (N.P.); (E.C.); (M.Y.); (J.G.B.)
- Multiple Myeloma Research Foundation, 383 Main Avenue, 5th Floor, Norwalk, CT 06851, USA
| | - Andrea Jacobs
- Artificial Cell Technologies, Inc., 5 Science Park, Suite 13, New Haven, CT 06511, USA; (J.T.); (M.E.D.); (A.J.); (N.P.); (E.C.); (M.Y.); (J.G.B.)
| | - Naveen Palath
- Artificial Cell Technologies, Inc., 5 Science Park, Suite 13, New Haven, CT 06511, USA; (J.T.); (M.E.D.); (A.J.); (N.P.); (E.C.); (M.Y.); (J.G.B.)
- Pfizer, Inc., Andover, MA 01810, USA
| | - Edwin Cardenas
- Artificial Cell Technologies, Inc., 5 Science Park, Suite 13, New Haven, CT 06511, USA; (J.T.); (M.E.D.); (A.J.); (N.P.); (E.C.); (M.Y.); (J.G.B.)
| | - Michelle Yorke
- Artificial Cell Technologies, Inc., 5 Science Park, Suite 13, New Haven, CT 06511, USA; (J.T.); (M.E.D.); (A.J.); (N.P.); (E.C.); (M.Y.); (J.G.B.)
| | - James G. Boyd
- Artificial Cell Technologies, Inc., 5 Science Park, Suite 13, New Haven, CT 06511, USA; (J.T.); (M.E.D.); (A.J.); (N.P.); (E.C.); (M.Y.); (J.G.B.)
| | - Stephen A. Kaba
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
- GreenLight Biosciences, Inc., Lexington, MA 02421, USA
| | - Elizabeth Nardin
- Department of Microbiology, School of Medicine, New York University, New York, NY 10010, USA; (R.M.); (E.N.)
| |
Collapse
|
10
|
Furtado R, Paul M, Zhang J, Sung J, Karell P, Kim RS, Caillat-Zucman S, Liang L, Felgner P, Bauleni A, Gama S, Buchwald A, Taylor T, Seydel K, Laufer M, Delahaye F, Daily JP, Lauvau G. Cytolytic circumsporozoite-specific memory CD4 + T cell clones are expanded during Plasmodium falciparum infection. Nat Commun 2023; 14:7726. [PMID: 38001069 PMCID: PMC10673885 DOI: 10.1038/s41467-023-43376-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Clinical immunity against Plasmodium falciparum infection develops in residents of malaria endemic regions, manifesting in reduced clinical symptoms during infection and in protection against severe disease but the mechanisms are not fully understood. Here, we compare the cellular and humoral immune response of clinically immune (0-1 episode over 18 months) and susceptible (at least 3 episodes) during a mild episode of Pf malaria infection in a malaria endemic region of Malawi, by analysing peripheral blood samples using high dimensional mass cytometry (CyTOF), spectral flow cytometry and single-cell transcriptomic analyses. In the clinically immune, we find increased proportions of circulating follicular helper T cells and classical monocytes, while the humoral immune response shows characteristic age-related differences in the protected. Presence of memory CD4+ T cell clones with a strong cytolytic ZEB2+ T helper 1 effector signature, sharing identical T cell receptor clonotypes and recognizing the Pf-derived circumsporozoite protein (CSP) antigen are found in the blood of the Pf-infected participants gaining protection. Moreover, in clinically protected participants, ZEB2+ memory CD4+ T cells express lower level of inhibitory and chemotactic receptors. We thus propose that clonally expanded ZEB2+ CSP-specific cytolytic memory CD4+ Th1 cells may contribute to clinical immunity against the sporozoite and liver-stage Pf malaria.
Collapse
Affiliation(s)
- Raquel Furtado
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
- RF: BioNTech US, 40 Erie Street, Cambridge, MA, 02139, USA
| | - Mahinder Paul
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Jinghang Zhang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Joowhan Sung
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Paul Karell
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Ryung S Kim
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Sophie Caillat-Zucman
- Université de Paris, AP-HP, Hôpital Saint-Louis, Laboratoire d'Immunologie et Histocompatiblité, INSERM UMR976, 75010, Paris, France
| | - Li Liang
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Philip Felgner
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Andy Bauleni
- Malaria Alert Centre, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Syze Gama
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Andrea Buchwald
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Terrie Taylor
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI, 48824, USA
| | - Karl Seydel
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI, 48824, USA
| | - Miriam Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Fabien Delahaye
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
- FD: Precision Oncology, Sanofi, Vitry sur Seine, France
| | - Johanna P Daily
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, 10461, USA.
| | - Grégoire Lauvau
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA.
| |
Collapse
|
11
|
Khowawisetsut L, Vimonpatranon S, Lekmanee K, Sawasdipokin H, Srimark N, Chotivanich K, Pattanapanyasat K. Differential Effect of Extracellular Vesicles Derived from Plasmodium falciparum-Infected Red Blood Cells on Monocyte Polarization. Int J Mol Sci 2023; 24:2631. [PMID: 36768950 PMCID: PMC9916780 DOI: 10.3390/ijms24032631] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Malaria is a life-threatening tropical arthropod-borne disease caused by Plasmodium spp. Monocytes are the primary immune cells to eliminate malaria-infected red blood cells. Thus, the monocyte's functions are one of the crucial factors in controlling parasite growth. It is reasoned that the activation or modulation of monocyte function by parasite products might dictate the rate of disease progression. Extracellular vesicles (EVs), microvesicles, and exosomes, released from infected red blood cells, mediate intercellular communication and control the recipient cell function. This study aimed to investigate the physical characteristics of EVs derived from culture-adapted P. falciparum isolates (Pf-EVs) from different clinical malaria outcomes and their impact on monocyte polarization. The results showed that all P. falciparum strains released similar amounts of EVs with some variation in size characteristics. The effect of Pf-EV stimulation on M1/M2 monocyte polarization revealed a more pronounced effect on CD14+CD16+ intermediate monocytes than the CD14+CD16- classical monocytes with a marked induction of Pf-EVs from a severe malaria strain. However, no difference in the levels of microRNAs (miR), miR-451a, miR-486, and miR-92a among Pf-EVs derived from virulent and nonvirulent strains was found, suggesting that miR in Pf-EVs might not be a significant factor in driving M2-like monocyte polarization. Future studies on other biomolecules in Pf-EVs derived from the P. falciparum strain with high virulence that induce M2-like polarization are therefore recommended.
Collapse
Affiliation(s)
- Ladawan Khowawisetsut
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Research Excellence for Microparticle and Exosome in Diseases, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sinmanus Vimonpatranon
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kittima Lekmanee
- Siriraj Center of Research Excellence for Microparticle and Exosome in Diseases, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Hathai Sawasdipokin
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Narinee Srimark
- Siriraj Center of Research Excellence for Microparticle and Exosome in Diseases, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kesinee Chotivanich
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Kovit Pattanapanyasat
- Siriraj Center of Research Excellence for Microparticle and Exosome in Diseases, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
12
|
Infection and Immunity. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Brandi J, Riehn M, Hadjilaou A, Jacobs T. Increased Expression of Multiple Co-Inhibitory Molecules on Malaria-Induced CD8 + T Cells Are Associated With Increased Function Instead of Exhaustion. Front Immunol 2022; 13:878320. [PMID: 35874786 PMCID: PMC9301332 DOI: 10.3389/fimmu.2022.878320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/10/2022] [Indexed: 11/21/2022] Open
Abstract
Activated cytotoxic CD8+ T cells can selectively kill target cells in an antigen-specific manner. However, their prolonged activation often has detrimental effects on tissue homeostasis and function. Indeed, overwhelming cytotoxic activity of CD8+ T cells can drive immunopathology, and therefore, the extent and duration of CD8+ T cell effector function needs to be tightly regulated. One way to regulate CD8+ T cell function is their suppression through engagement of co-inhibitory molecules to their cognate ligands (e.g., LAG-3, PD-1, TIM-3, TIGIT and CTLA-4). During chronic antigen exposure, the expression of co-inhibitory molecules is associated with a loss of T cell function, termed T cell exhaustion and blockade of co-inhibitory pathways often restores T cell function. We addressed the effect of co-inhibitory molecule expression on CD8+ T cell function during acute antigen exposure using experimental malaria. To this end, we infected OT-I mice with a transgenic P. berghei ANKA strain that expresses ovalbumin (PbTG), which enables the characterization of antigen-specific CD8+ T cell responses. We then compared antigen-specific CD8+ T cell populations expressing different levels of the co-inhibitory molecules. High expression of LAG-3 correlated with high expression of PD-1, TIGIT, TIM-3 and CTLA-4. Contrary to what has been described during chronic antigen exposure, antigen-specific CD8+ T cells with the highest expression of LAG-3 appeared to be fully functional during acute malaria. We evaluated this by measuring IFN-γ, Granzyme B and Perforin production and confirmed the results by employing a newly developed T cell cytotoxicity assay. We found that LAG-3high CD8+ T cells are more cytotoxic than LAG-3low or activated but LAG-3neg CD8+ T cells. In conclusion, our data imply that expression of co-inhibitory molecules in acute malaria is not necessarily associated with functional exhaustion but may be associated with an overwhelming T cell activation. Taken together, our findings shed new light on the induction of co-inhibitory molecules during acute T cell activation with ramifications for immunomodulatory therapies targeting these molecules in acute infectious diseases.
Collapse
Affiliation(s)
- Johannes Brandi
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Mathias Riehn
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Alexandros Hadjilaou
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
14
|
Lefebvre MN, Drewry LL, Pewe LL, Hancox LS, Reyes-Sandoval A, Harty JT. Cutting Edge: Subunit Booster Vaccination Confers Sterilizing Immunity against Liver-Stage Malaria in Mice Initially Primed with a Weight-Normalized Dose of Radiation-Attenuated Sporozoites. THE JOURNAL OF IMMUNOLOGY 2021; 207:2631-2635. [PMID: 34716185 DOI: 10.4049/jimmunol.2100818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/25/2021] [Indexed: 11/19/2022]
Abstract
Radiation-attenuated sporozoite (RAS) vaccination offers hope for global malaria control through induction of protective liver-stage-specific memory CD8 T cells. Effective RAS vaccination regimens exist; however, widespread implementation remains unfeasible. A key difficulty resides in the need to administer three or more doses i.v. to achieve sufficient immunity. Strategies to reduce the number of RAS doses are therefore desirable. Here we used mice to model human immune responses to a single, suboptimal weight-normalized RAS dose administered i.v. followed by subunit vaccination to amplify liver-stage-specific memory CD8 T cells. RAS+subunit prime-boost regimens increased the numbers of liver-stage-specific memory CD8 T cells to a level greater than is present after one RAS vaccination. Both i.v. and i.m. subunit vaccine delivery induced immunity in mice, and many vaccinated mice completely cleared liver infection. These findings are particularly relevant to human vaccine development because RAS+subunit prime-boost vaccination would reduce the logistical challenges of multiple RAS-only immunizations.
Collapse
Affiliation(s)
- Mitchell N Lefebvre
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA; and
| | - Lisa L Drewry
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lecia L Pewe
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lisa S Hancox
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - John T Harty
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; .,Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA; and
| |
Collapse
|
15
|
Lefebvre MN, Surette FA, Anthony SM, Vijay R, Jensen IJ, Pewe LL, Hancox LS, Van Braeckel-Budimir N, van de Wall S, Urban SL, Mix MR, Kurup SP, Badovinac VP, Butler NS, Harty JT. Expeditious recruitment of circulating memory CD8 T cells to the liver facilitates control of malaria. Cell Rep 2021; 37:109956. [PMID: 34731605 PMCID: PMC8628427 DOI: 10.1016/j.celrep.2021.109956] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/08/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Circulating memory CD8 T cell trafficking and protective capacity during liver-stage malaria infection remains undefined. We find that effector memory CD8 T cells (Tem) infiltrate the liver within 6 hours after malarial or bacterial infections and mediate pathogen clearance. Tem recruitment coincides with rapid transcriptional upregulation of inflammatory genes in Plasmodium-infected livers. Recruitment requires CD8 T cell-intrinsic LFA-1 expression and the presence of liver phagocytes. Rapid Tem liver infiltration is distinct from recruitment to other non-lymphoid tissues in that it occurs both in the absence of liver tissue resident memory "sensing-and-alarm" function and ∼42 hours earlier than in lung infection by influenza virus. These data demonstrate relevance for Tem in protection against malaria and provide generalizable mechanistic insights germane to control of liver infections.
Collapse
Affiliation(s)
- Mitchell N Lefebvre
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Medical Scientist Training Program, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA
| | - Fionna A Surette
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA; Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Scott M Anthony
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Rahul Vijay
- Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Isaac J Jensen
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA
| | - Lecia L Pewe
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Lisa S Hancox
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | | | - Stephanie van de Wall
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Stina L Urban
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Madison R Mix
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Medical Scientist Training Program, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA
| | - Samarchith P Kurup
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA; Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Noah S Butler
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA; Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - John T Harty
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA.
| |
Collapse
|
16
|
Mandala WL, Harawa V, Dzinjalamala F, Tembo D. The role of different components of the immune system against Plasmodium falciparum malaria: Possible contribution towards malaria vaccine development. Mol Biochem Parasitol 2021; 246:111425. [PMID: 34666102 PMCID: PMC8655617 DOI: 10.1016/j.molbiopara.2021.111425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/10/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022]
Abstract
Plasmodium falciparum malaria still remains a major global public health challenge with over 220 million new cases and well over 400,000 deaths annually. Most of the deaths occur in sub-Saharan Africa which bears 90 % of the malaria cases. Such high P. falciparum malaria-related morbidity and mortality rates pose a huge burden on the health and economic wellbeing of the countries affected. Lately, substantial gains have been made in reducing malaria morbidity and mortality through intense malaria control initiatives such as use of effective antimalarials, intensive distribution and use of insecticide-treated nets (ITNs), and implementation of massive indoor residual spraying (IRS) campaigns. However, these gains are being threatened by widespread resistance of the parasite to antimalarials, and the vector to insecticides. Over the years the use of vaccines has proven to be the most reliable, cost-effective and efficient method for controlling the burden and spread of many infectious diseases, especially in resource poor settings with limited public health infrastructure. Nonetheless, this had not been the case with malaria until the most promising malaria vaccine candidate, RTS,S/AS01, was approved for pilot implementation programme in three African countries in 2015. This was regarded as the most important breakthrough in the fight against malaria. However, RTS,S/AS01 has been found to have some limitations, the main ones being low efficacy in certain age groups, poor immunogenicity and need for almost three boosters to attain a reasonable efficacy. Thus, the search for a more robust and effective malaria vaccine still continues and a better understanding of naturally acquired immune responses to the various stages, including the transmissible stages of the parasite, could be crucial in rational vaccine design. This review therefore compiles what is currently known about the basic biology of P. falciparum and the natural malaria immune response against malaria and progress made towards vaccine development.
Collapse
Affiliation(s)
- Wilson L Mandala
- Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo, Malawi; Malawi Liverpool Wellcome Trust, Blantyre, Malawi.
| | | | - Fraction Dzinjalamala
- Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo, Malawi
| | | |
Collapse
|
17
|
Immunosuppression in Malaria: Do Plasmodium falciparum Parasites Hijack the Host? Pathogens 2021; 10:pathogens10101277. [PMID: 34684226 PMCID: PMC8536967 DOI: 10.3390/pathogens10101277] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Malaria reflects not only a state of immune activation, but also a state of general immune defect or immunosuppression, of complex etiology that can last longer than the actual episode. Inhabitants of malaria-endemic regions with lifelong exposure to the parasite show an exhausted or immune regulatory profile compared to non- or minimally exposed subjects. Several studies and experiments to identify and characterize the cause of this malaria-related immunosuppression have shown that malaria suppresses humoral and cellular responses to both homologous (Plasmodium) and heterologous antigens (e.g., vaccines). However, neither the underlying mechanisms nor the relative involvement of different types of immune cells in immunosuppression during malaria is well understood. Moreover, the implication of the parasite during the different stages of the modulation of immunity has not been addressed in detail. There is growing evidence of a role of immune regulators and cellular components in malaria that may lead to immunosuppression that needs further research. In this review, we summarize the current evidence on how malaria parasites may directly and indirectly induce immunosuppression and investigate the potential role of specific cell types, effector molecules and other immunoregulatory factors.
Collapse
|
18
|
Subdominance in Antibody Responses: Implications for Vaccine Development. Microbiol Mol Biol Rev 2020; 85:85/1/e00078-20. [PMID: 33239435 DOI: 10.1128/mmbr.00078-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vaccines work primarily by eliciting antibodies, even when recovery from natural infection depends on cellular immunity. Large efforts have therefore been made to identify microbial antigens that elicit protective antibodies, but these endeavors have encountered major difficulties, as witnessed by the lack of vaccines against many pathogens. This review summarizes accumulating evidence that subdominant protein regions, i.e., surface-exposed regions that elicit relatively weak antibody responses, are of particular interest for vaccine development. This concept may seem counterintuitive, but subdominance may represent an immune evasion mechanism, implying that the corresponding region potentially is a key target for protective immunity. Following a presentation of the concepts of immunodominance and subdominance, the review will present work on subdominant regions in several major human pathogens: the protozoan Plasmodium falciparum, two species of pathogenic streptococci, and the dengue and influenza viruses. Later sections are devoted to the molecular basis of subdominance, its potential role in immune evasion, and general implications for vaccine development. Special emphasis will be placed on the fact that a whole surface-exposed protein domain can be subdominant, as demonstrated for all of the pathogens described here. Overall, the available data indicate that subdominant protein regions are of much interest for vaccine development, not least in bacterial and protozoal systems, for which antibody subdominance remains largely unexplored.
Collapse
|
19
|
RAGE modulatory effects on cytokines network and histopathological conditions in malarial mice. Exp Parasitol 2020; 216:107946. [PMID: 32622941 DOI: 10.1016/j.exppara.2020.107946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 11/23/2022]
Abstract
This study was aimed at investigating the involvement of Receptor for Advanced Glycation End Products (RAGE) during malaria infection and the effects of modulating RAGE on the inflammatory cytokines release and histopathological conditions of affected organs in malarial animal model. Plasmodium berghei (P. berghei) ANKA-infected ICR mice were treated with mRAGE/pAb and rmRAGE/Fc Chimera drugs from day 1 to day 4 post infection. Survival and parasitaemia levels were monitored daily. On day 5 post infection, mice were sacrificed, blood were drawn for cytokines analysis and major organs including kidney, spleen, liver, brain and lungs were extracted for histopathological analysis. RAGE levels were increased systemically during malaria infection. Positive correlation between RAGE plasma concentration and parasitaemia development was observed. Treatment with RAGE related drugs did not improve survival of malaria-infected mice. However, significant reduction on the parasitaemia levels were recorded. On the other hand, inhibition and neutralization of RAGE production during the infection significantly increased the plasma levels of interleukin (IL-4, IL-17A, IL-10 and IL-2) and reduced interferon (IFN)-γ secretion. Histopathological analysis revealed that all treated malarial mice showed a better outcome in histological assessment of affected organs (brain, liver, spleen, lungs and kidney). RAGE is involved in malaria pathogenesis and targeting RAGE could be beneficial in malaria infected host in which RAGE inhibition or neutralization increased the release of anti-inflammatory cytokines (IL-10 and IL-4) and reduce pro-inflammatory cytokine (IFNγ) which may help alleviate tissue injury and improve histopathological conditions of affected organs during the infection.
Collapse
|
20
|
Moncunill G, Scholzen A, Mpina M, Nhabomba A, Hounkpatin AB, Osaba L, Valls R, Campo JJ, Sanz H, Jairoce C, Williams NA, Pasini EM, Arteta D, Maynou J, Palacios L, Duran-Frigola M, Aponte JJ, Kocken CHM, Agnandji ST, Mas JM, Mordmüller B, Daubenberger C, Sauerwein R, Dobaño C. Antigen-stimulated PBMC transcriptional protective signatures for malaria immunization. Sci Transl Med 2020; 12:eaay8924. [PMID: 32404508 DOI: 10.1126/scitranslmed.aay8924] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/26/2019] [Accepted: 04/15/2020] [Indexed: 01/03/2025]
Abstract
Identifying immune correlates of protection and mechanisms of immunity accelerates and streamlines the development of vaccines. RTS,S/AS01E, the most clinically advanced malaria vaccine, has moderate efficacy in African children. In contrast, immunization with sporozoites under antimalarial chemoprophylaxis (CPS immunization) can provide 100% sterile protection in naïve adults. We used systems biology approaches to identifying correlates of vaccine-induced immunity based on transcriptomes of peripheral blood mononuclear cells from individuals immunized with RTS,S/AS01E or chemoattenuated sporozoites stimulated with parasite antigens in vitro. Specifically, we used samples of individuals from two age cohorts and three African countries participating in an RTS,S/AS01E pediatric phase 3 trial and malaria-naïve individuals participating in a CPS trial. We identified both preimmunization and postimmunization transcriptomic signatures correlating with protection. Signatures were validated in independent children and infants from the RTS,S/AS01E phase 3 trial and individuals from an independent CPS trial with high accuracies (>70%). Transcription modules revealed interferon, NF-κB, Toll-like receptor (TLR), and monocyte-related signatures associated with protection. Preimmunization signatures suggest that priming the immune system before vaccination could potentially improve vaccine immunogenicity and efficacy. Last, signatures of protection could be useful to determine efficacy in clinical trials, accelerating vaccine candidate testing. Nevertheless, signatures should be tested more extensively across multiple cohorts and trials to demonstrate their universal predictive capacity.
Collapse
Affiliation(s)
- Gemma Moncunill
- ISGlobal, Hospital Clínic-Universitat de Barcelona, E-08036 Barcelona, Catalonia, Spain.
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique
| | - Anja Scholzen
- Department of Medical Microbiology, Radboud University Medical Center, 6500 HB Nijmegen, Netherlands
| | - Maximillian Mpina
- Ifakara Health Institute, Bagamoyo Research and Training Centre. P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Augusto Nhabomba
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique
| | - Aurore Bouyoukou Hounkpatin
- Centre de Recherches Médicales de Lambaréné (CERMEL), BP 242 Lambaréné, Gabon
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Wilhelmstraße 27, D-72074 Tübingen, Germany
| | - Lourdes Osaba
- Progenika Biopharma. A Grifols Company, S.A., 48160 Derio, Vizcaya, Spain
| | | | - Joseph J Campo
- ISGlobal, Hospital Clínic-Universitat de Barcelona, E-08036 Barcelona, Catalonia, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique
| | - Hèctor Sanz
- ISGlobal, Hospital Clínic-Universitat de Barcelona, E-08036 Barcelona, Catalonia, Spain
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique
| | - Nana Aba Williams
- ISGlobal, Hospital Clínic-Universitat de Barcelona, E-08036 Barcelona, Catalonia, Spain
| | - Erica M Pasini
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - David Arteta
- Progenika Biopharma. A Grifols Company, S.A., 48160 Derio, Vizcaya, Spain
| | - Joan Maynou
- Progenika Biopharma. A Grifols Company, S.A., 48160 Derio, Vizcaya, Spain
| | - Lourdes Palacios
- Progenika Biopharma. A Grifols Company, S.A., 48160 Derio, Vizcaya, Spain
| | - Miquel Duran-Frigola
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, 08028 Barcelona, Catalonia, Spain
| | - John J Aponte
- ISGlobal, Hospital Clínic-Universitat de Barcelona, E-08036 Barcelona, Catalonia, Spain
| | - Clemens H M Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Selidji Todagbe Agnandji
- Centre de Recherches Médicales de Lambaréné (CERMEL), BP 242 Lambaréné, Gabon
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Wilhelmstraße 27, D-72074 Tübingen, Germany
| | | | - Benjamin Mordmüller
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Wilhelmstraße 27, D-72074 Tübingen, Germany
| | - Claudia Daubenberger
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Robert Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, 6500 HB Nijmegen, Netherlands
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic-Universitat de Barcelona, E-08036 Barcelona, Catalonia, Spain.
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique
| |
Collapse
|
21
|
Singh SK, Plieskatt J, Chourasia BK, Singh V, Bolscher JM, Dechering KJ, Adu B, López-Méndez B, Kaviraj S, Locke E, King CR, Theisen M. The Plasmodium falciparum circumsporozoite protein produced in Lactococcus lactis is pure and stable. J Biol Chem 2019; 295:403-414. [PMID: 31792057 DOI: 10.1074/jbc.ra119.011268] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/03/2019] [Indexed: 12/20/2022] Open
Abstract
The Plasmodium falciparum circumsporozoite protein (PfCSP) is a sporozoite surface protein whose role in sporozoite motility and cell invasion has made it the leading candidate for a pre-erythrocytic malaria vaccine. However, production of high yields of soluble recombinant PfCSP, including its extensive NANP and NVDP repeats, has proven problematic. Here, we report on the development and characterization of a secreted, soluble, and stable full-length PfCSP (containing 4 NVDP and 38 NANP repeats) produced in the Lactococcus lactis expression system. The recombinant full-length PfCSP, denoted PfCSP4/38, was produced initially with a histidine tag and purified by a simple two-step procedure. Importantly, the recombinant PfCSP4/38 retained a conformational epitope for antibodies as confirmed by both in vivo and in vitro characterizations. We characterized this complex protein by HPLC, light scattering, MS analysis, differential scanning fluorimetry, CD, SDS-PAGE, and immunoblotting with conformation-dependent and -independent mAbs, which confirmed it to be both pure and soluble. Moreover, we found that the recombinant protein is stable at both frozen and elevated-temperature storage conditions. When we used L. lactis-derived PfCSP4/38 to immunize mice, it elicited high levels of functional antibodies that had the capacity to modify sporozoite motility in vitro We concluded that the reported yield, purity, results of biophysical analyses, and stability of PfCSP4/38 warrant further consideration of using the L. lactis system for the production of circumsporozoite proteins for preclinical and clinical applications in malaria vaccine development.
Collapse
Affiliation(s)
- Susheel K Singh
- Department for Congenital Disorders, Statens Serum Institut, 2300 Copenhagen, Denmark; Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | | | - Bishwanath Kumar Chourasia
- Department for Congenital Disorders, Statens Serum Institut, 2300 Copenhagen, Denmark; Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Vandana Singh
- Department for Congenital Disorders, Statens Serum Institut, 2300 Copenhagen, Denmark; Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | | | | | - Bright Adu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Blanca López-Méndez
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Emily Locke
- PATH's Malaria Vaccine Initiative, Washington, D. C. 20001
| | - C Richter King
- PATH's Malaria Vaccine Initiative, Washington, D. C. 20001
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, 2300 Copenhagen, Denmark; Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark.
| |
Collapse
|
22
|
Immunogenic Evaluation of Ribosomal P-Protein Antigen P0, P1, and P2 and Pentameric Protein Complex P0-(P1-P2) 2 of Plasmodium falciparum in a Mouse Model. J Immunol Res 2019; 2019:9264217. [PMID: 31612155 PMCID: PMC6757288 DOI: 10.1155/2019/9264217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 08/14/2019] [Indexed: 12/26/2022] Open
Abstract
Malaria remains one the most infectious and destructive protozoan diseases worldwide. Plasmodium falciparum, a protozoan parasite with a complex life cycle and high genetic variability responsible for the difficulties in vaccine development, is implicated in most malaria-related deaths. In the course of study, we prepared a set of antigens based on P-proteins from P. falciparum and determined their immunogenicity in an in vivo assay on a mouse model. The pentameric complex P0-(P1-P2)2 was prepared along with individual P1, P2, and P0 antigens. We determined the level of cellular- and humoral-type immunological response followed by development of specific immunological memory. We have shown that the number of Tc cells increased significantly after the first immunization with P2 and after the second immunization with P1 and P0-(P1-P2)2, which highly correlated with the number of Th1 cells. P0 appeared as a poor inducer of cellular response. After the third boost with P1, P2, or P0-(P1-P2)2, the initially high cellular response dropped to the control level accompanied by elevation of the number of activated Treg cells and a high level of suppressive TGF-β. Subsequently, the humoral response against the examined antigens was activated. Although the titers of specific IgG were increasing during the course of immunization for all antigens used, P2 and P0-(P1-P2)2 were found to be significantly stronger than P1 and P0. A positive correlation between the Th2 cell abundance and the level of IL-10 was observed exclusively after immunization with P0-(P1-P2)2. An in vitro exposure of spleen lymphocytes from the immunized mice especially to the P1, P2, and P0-(P1-P2)2 protein caused 2-3-fold higher cell proliferation than that in the case of lymphocytes from the nonimmunized animals, suggesting development of immune memory. Our results demonstrate for the first time that the native-like P-protein pentameric complex represents much stronger immune potential than individual P-antigens.
Collapse
|
23
|
A Plasmodium Parasite with Complete Late Liver Stage Arrest Protects against Preerythrocytic and Erythrocytic Stage Infection in Mice. Infect Immun 2018; 86:IAI.00088-18. [PMID: 29440367 DOI: 10.1128/iai.00088-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 02/05/2018] [Indexed: 01/28/2023] Open
Abstract
Genetically attenuated malaria parasites (GAP) that arrest during liver stage development are powerful immunogens and afford complete and durable protection against sporozoite infection. Late liver stage-arresting GAP provide superior protection against sporozoite challenge in mice compared to early live stage-arresting attenuated parasites. However, very few late liver stage-arresting GAP have been generated to date. Therefore, identification of additional loci that are critical for late liver stage development and can be used to generate novel late liver stage-arresting GAPs is of importance. We further explored genetic attenuation in Plasmodium yoelii by combining two gene deletions, PlasMei2 and liver-specific protein 2 (LISP2), that each cause late liver stage arrest with various degrees of infrequent breakthrough to blood stage infection. The dual gene deletion resulted in a synthetic lethal phenotype that caused complete attenuation in a highly susceptible mouse strain. P. yoeliiplasmei2-lisp2- arrested late in liver stage development and did not persist in livers beyond 3 days after infection. Immunization with this GAP elicited robust protective antibody responses in outbred and inbred mice against sporozoites, liver stages, and blood stages as well as eliciting protective liver-resident T cells. The immunization afforded protection against both sporozoite challenge and blood stage challenge. These findings provide evidence that completely attenuated late liver stage-arresting GAP are achievable via the synthetic lethal approach and might enable a path forward for the creation of a completely attenuated late liver stage-arresting P. falciparum GAP.
Collapse
|
24
|
Soon MSF, Haque A. Recent Insights into CD4+Th Cell Differentiation in Malaria. THE JOURNAL OF IMMUNOLOGY 2018; 200:1965-1975. [DOI: 10.4049/jimmunol.1701316] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/08/2018] [Indexed: 02/06/2023]
|
25
|
Yoshida K, Iyori M, Blagborough AM, Salman AM, Dulal P, Sala KA, Yamamoto DS, Khan SM, Janse CJ, Biswas S, Yoshii T, Yusuf Y, Tokoro M, Hill AVS, Yoshida S. Adenovirus-prime and baculovirus-boost heterologous immunization achieves sterile protection against malaria sporozoite challenge in a murine model. Sci Rep 2018; 8:3896. [PMID: 29497047 PMCID: PMC5832798 DOI: 10.1038/s41598-018-21369-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/02/2018] [Indexed: 12/16/2022] Open
Abstract
With the increasing prevalence of artemisinin-resistant malaria parasites, a highly efficacious and durable vaccine for malaria is urgently required. We have developed an experimental virus-vectored vaccine platform based on an envelope-modified baculovirus dual-expression system (emBDES). Here, we show a conceptually new vaccine platform based on an adenovirus-prime/emBDES-boost heterologous immunization regimen expressing the Plasmodium falciparum circumsporozoite protein (PfCSP). A human adenovirus 5-prime/emBDES-boost heterologous immunization regimen consistently achieved higher sterile protection against transgenic P. berghei sporozoites expressing PfCSP after a mosquito-bite challenge than reverse-ordered or homologous immunization. This high protective efficacy was also achieved with a chimpanzee adenovirus 63-prime/emBDES-boost heterologous immunization regimen against an intravenous sporozoite challenge. Thus, we show that the adenovirus-prime/emBDES-boost heterologous immunization regimen confers sterile protection against sporozoite challenge by two individual routes, providing a promising new malaria vaccine platform for future clinical use.
Collapse
Affiliation(s)
- Kunitaka Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kakuma-machi, Kanazawa, 920-1192, Japan.,Kanazawa University Graduate School of Medical Sciences, 13 Takara-machi, Kanazawa, 920-0934, Japan
| | - Mitsuhiro Iyori
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Andrew M Blagborough
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, South Kensington, London, SW7 2AZ, UK
| | - Ahmed M Salman
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.,Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, (LUMC, L4-Q), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Pawan Dulal
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Katarzyna A Sala
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, South Kensington, London, SW7 2AZ, UK
| | - Daisuke S Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, 329-0431, Tochigi, Japan
| | - Shahid M Khan
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, (LUMC, L4-Q), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, (LUMC, L4-Q), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Sumi Biswas
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Tatsuya Yoshii
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yenni Yusuf
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Masaharu Tokoro
- Kanazawa University Graduate School of Medical Sciences, 13 Takara-machi, Kanazawa, 920-0934, Japan
| | - Adrian V S Hill
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
26
|
Shiratsuchi T, Rai U, Kaneko I, Zhang M, Iwanaga S, Yuda M, Tsuji M. A potent malaria vaccine based on adenovirus with dual modifications at Hexon and pVII. Vaccine 2017; 35:6990-7000. [PMID: 29089194 DOI: 10.1016/j.vaccine.2017.10.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 09/23/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
Adenovirus (Ad) is thought to be one of the most promising platforms for a malaria vaccine targeted against its liver stages, because of its ability to induce a strong T-cell response against a transgene. However, a further improvement of this platform is needed in order to elicit another arm of the immunity, i.e. humoral response, against malaria. In order to augment immunogenicity and protective efficacy of Ad-based malaria vaccine, we inserted B-cell, as well as CD4+ T-cell, epitopes of Plasmodium falciparum circumsporozoite protein (PfCSP) into the capsid protein, Hexon, and the core protein, VII (pVII), of Ad, respectively, in addition to the PfCSP transgene. Insertion of PfCSP-derived B cell epitope to Hexon significantly enhanced the epitope-specific antibody response compared to AdPfCSP, an Ad vaccine expressing only PfCSP transgene. PfCSP-derived CD4+ T-cell epitope insertion into pVII augmented not only PfCSP-specific CD4+ T-cell response but also anti-PfCSP antibody response. Finally, mice immunized with AdPfCSP having both Hexon and pVII modifications were more protected than AdPfCSP or Hexon-modified AdPfCSP against challenge with transgenic rodent malaria parasites expressing the PfCSP. Overall, this study has demonstrated that Hexon and pVII-modified AdPfCSP vaccine is a promising malaria vaccine which induces strong PfCSP-specific humoral, CD4+ T-cell, and CD8+ T-cell responses and protects against infection with transgenic malaria parasites expressing the PfCSP.
Collapse
Affiliation(s)
- Takayuki Shiratsuchi
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue, New York, NY 10016, USA; Otsuka Maryland Medicinal Laboratories, Inc., 9900 Medical Center Drive, Rockville, MD 20850, USA
| | - Urvashi Rai
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue, New York, NY 10016, USA
| | - Izumi Kaneko
- Department of Medical Zoology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Min Zhang
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue, New York, NY 10016, USA; Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Shiroh Iwanaga
- Department of Medical Zoology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Masao Yuda
- Department of Medical Zoology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Moriya Tsuji
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
27
|
Bruder JT, Chen P, Ekberg G, Smith EC, Lazarski CA, Myers BA, Bolton J, Sedegah M, Villasante E, Richie TL, King CR, Aguiar JC, Doolan DL, Brough DE. Profiling the Targets of Protective CD8 + T Cell Responses to Infection. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 7:20-31. [PMID: 28948187 PMCID: PMC5602877 DOI: 10.1016/j.omtm.2017.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 11/22/2022]
Abstract
T cells are critical effectors of host immunity that target intracellular pathogens, such as the causative agents of HIV, tuberculosis, and malaria. The development of vaccines that induce effective cell-mediated immunity against such pathogens has proved challenging; for tuberculosis and malaria, many of the antigens targeted by protective T cells are not known. Here, we report a novel approach for screening large numbers of antigens as potential targets of T cells. Malaria provides an excellent model to test this antigen discovery platform because T cells are critical mediators of protection following immunization with live sporozoite vaccines and the specific antigen targets are unknown. We generated an adenovirus array by cloning 312 highly expressed pre-erythrocytic Plasmodium yoelii antigens into adenovirus vectors using high-throughput methodologies. The array was screened to identify antigen-specific CD8+ T cells induced by a live sporozoite vaccine regimen known to provide high levels of sterile protection mediated by CD8+ T cells. We identified 69 antigens that were targeted by CD8+ T cells induced by this vaccine regimen. The antigen that recalled the highest frequency of CD8+ T cells, PY02605, induced protective responses in mice, demonstrating proof of principle for this approach in identifying antigens for vaccine development.
Collapse
Affiliation(s)
- Joseph T. Bruder
- GenVec, Inc., 910 Clopper Road, Suite 220N, Gaithersburg, MD 20878, USA
- Corresponding author: Joseph T. Bruder, Summit Consulting, 567 Chestertown Street, Gaithersburg, MD 20878, USA.
| | - Ping Chen
- GenVec, Inc., 910 Clopper Road, Suite 220N, Gaithersburg, MD 20878, USA
| | - Greg Ekberg
- GenVec, Inc., 910 Clopper Road, Suite 220N, Gaithersburg, MD 20878, USA
| | - Emily C. Smith
- Malaria Department, Naval Medical Research Center (NMRC), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | | | - Bennett A. Myers
- GenVec, Inc., 910 Clopper Road, Suite 220N, Gaithersburg, MD 20878, USA
| | - Jessica Bolton
- Malaria Department, Naval Medical Research Center (NMRC), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Martha Sedegah
- Malaria Department, Naval Medical Research Center (NMRC), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Eileen Villasante
- Malaria Department, Naval Medical Research Center (NMRC), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Thomas L. Richie
- Malaria Department, Naval Medical Research Center (NMRC), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - C. Richter King
- GenVec, Inc., 910 Clopper Road, Suite 220N, Gaithersburg, MD 20878, USA
| | - Joao C. Aguiar
- Malaria Department, Naval Medical Research Center (NMRC), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
- Camris International, 3 Bethesda Metro Center, 16th Floor, Bethesda, MD 20814, USA
| | - Denise L. Doolan
- Australian Institute of Tropical Health and Medicine, James Cook University, McGregor Road, Cairns, QLD 4870, Australia
| | - Douglas E. Brough
- GenVec, Inc., 910 Clopper Road, Suite 220N, Gaithersburg, MD 20878, USA
| |
Collapse
|
28
|
Limbach K, Stefaniak M, Chen P, Patterson NB, Liao G, Weng S, Krepkiy S, Ekberg G, Torano H, Ettyreddy D, Gowda K, Sonawane S, Belmonte A, Abot E, Sedegah M, Hollingdale MR, Moormann A, Vulule J, Villasante E, Richie TL, Brough DE, Bruder JT. New gorilla adenovirus vaccine vectors induce potent immune responses and protection in a mouse malaria model. Malar J 2017; 16:263. [PMID: 28673287 PMCID: PMC5496260 DOI: 10.1186/s12936-017-1911-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/26/2017] [Indexed: 11/23/2022] Open
Abstract
Background A DNA-human Ad5 (HuAd5) prime-boost malaria vaccine has been shown to protect volunteers against a controlled human malaria infection. The potency of this vaccine, however, appeared to be affected by the presence of pre-existing immunity against the HuAd5 vector. Since HuAd5 seroprevalence is very high in malaria-endemic areas of the world, HuAd5 may not be the most appropriate malaria vaccine vector. This report describes the evaluation of the seroprevalence, immunogenicity and efficacy of three newly identified gorilla adenoviruses, GC44, GC45 and GC46, as potential malaria vaccine vectors. Results The seroprevalence of GC44, GC45 and GC46 is very low, and the three vectors are not efficiently neutralized by human sera from Kenya and Ghana, two countries where malaria is endemic. In mice, a single administration of GC44, GC45 and GC46 vectors expressing a murine malaria gene, Plasmodium yoelii circumsporozoite protein (PyCSP), induced robust PyCSP-specific T cell and antibody responses that were at least as high as a comparable HuAd5-PyCSP vector. Efficacy studies in a murine malaria model indicated that a prime-boost regimen with DNA-PyCSP and GC-PyCSP vectors can protect mice against a malaria challenge. Moreover, these studies indicated that a DNA-GC46-PyCSP vaccine regimen was significantly more efficacious than a DNA-HuAd5-PyCSP regimen. Conclusion These data suggest that these gorilla-based adenovectors have key performance characteristics for an effective malaria vaccine. The superior performance of GC46 over HuAd5 highlights its potential for clinical development. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1911-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keith Limbach
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Maureen Stefaniak
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Ping Chen
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Noelle B Patterson
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Grant Liao
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Shaojie Weng
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Svetlana Krepkiy
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Greg Ekberg
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Holly Torano
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Damodar Ettyreddy
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Kalpana Gowda
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Sharvari Sonawane
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Arnel Belmonte
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Esteban Abot
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Martha Sedegah
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Michael R Hollingdale
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Ann Moormann
- University of Massachusetts Medical School, Worcester, MA, USA
| | - John Vulule
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Eileen Villasante
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Thomas L Richie
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Douglas E Brough
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Joseph T Bruder
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA.
| |
Collapse
|
29
|
Sacci JB, Hollingdale MR, Sedegah M. Cellular immune response to DNA and vaccinia prime-boost immunization kills Plasmodium yoelii-infected hepatocytes in vitro. Pathog Dis 2017; 75:3798571. [PMID: 28475711 DOI: 10.1093/femspd/ftx051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/03/2017] [Indexed: 11/13/2022] Open
Abstract
Background Plasmid DNA encoding Plasmodium yoelii circumsporozoite protein (PyCSP) followed by boosting with recombinant vaccinia virus containing the PyCSP elicited significant protective immunity in mice that was primarily mediated by CD8+ T-cell responses directed to P. yoelii -infected hepatocytes. This study was to further explore protection using in vitro cultures of P. yoelii parasites in mouse hepatocytes. Spleen cells from DNA/vaccinia virus-immunized mice were co-cultured in vitro with mouse hepatocytes containing developing P. yoelii liver stage parasites. A semipermeable membrane separating spleen cells and hepatocytes was used to demonstrate if cell-to-cell contact was required. Inhibitors of mediators likely involved in spleen cell killing were added to these co-cultures. Spleen cells from immunized mice inhibited in vitro P. yoelii parasite development, and inhibition was eliminated by separating effectors and targets with the semipermeable membrane. Additionally, inhibitors of inducible nitric oxide synthase, caspase activation, NF-κB activation as well as antibodies against interferon-gamma (IFN-γ) and ICAM-1 reduced parasite inhibition. These findings suggest that direct contact between spleen cells from immunized mice and P. yoelii-infected hepatocytes is required for eliminating liver stage parasites and provide more insight into CD8+ T-cell-mediated inhibition of malaria liver stage development.
Collapse
Affiliation(s)
- John B Sacci
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | - Martha Sedegah
- Malaria Program, Naval Medical Research Center, Silver Spring, MD 20910, USA
| |
Collapse
|
30
|
Fonseca JA, McCaffery JN, Kashentseva E, Singh B, Dmitriev IP, Curiel DT, Moreno A. A prime-boost immunization regimen based on a simian adenovirus 36 vectored multi-stage malaria vaccine induces protective immunity in mice. Vaccine 2017; 35:3239-3248. [PMID: 28483199 PMCID: PMC5522619 DOI: 10.1016/j.vaccine.2017.04.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/22/2022]
Abstract
Malaria remains a considerable burden on public health. In 2015, the WHO estimates there were 212 million malaria cases causing nearly 429,000 deaths globally. A highly effective malaria vaccine is needed to reduce the burden of this disease. We have developed an experimental vaccine candidate (PyCMP) based on pre-erythrocytic (CSP) and erythrocytic (MSP1) stage antigens derived from the rodent malaria parasite P. yoelii. Our protein-based vaccine construct induces protective antibodies and CD4+ T cell responses. Based on evidence that viral vectors increase CD8+ T cell-mediated immunity, we also have tested heterologous prime-boost immunization regimens that included human adenovirus serotype 5 vector (Ad5), obtaining protective CD8+ T cell responses. While Ad5 is commonly used for vaccine studies, the high prevalence of pre-existing immunity to Ad5 severely compromises its utility. Here, we report the use of the novel simian adenovirus 36 (SAd36) as a candidate for a vectored malaria vaccine since this virus is not known to infect humans, and it is not neutralized by anti-Ad5 antibodies. Our study shows that the recombinant SAd36PyCMP can enhance specific CD8+ T cell response and elicit similar antibody titers when compared to an immunization regimen including the recombinant Ad5PyCMP. The robust immune responses induced by SAd36PyCMP are translated into a lower parasite load following P. yoelii infectious challenge when compared to mice immunized with Ad5PyCMP.
Collapse
Affiliation(s)
- Jairo A Fonseca
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307, United States
| | - Jessica N McCaffery
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States
| | - Elena Kashentseva
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave., 4511 Forest Park Blvd, St. Louis, MO 63108, United States
| | - Balwan Singh
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States
| | - Igor P Dmitriev
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave., 4511 Forest Park Blvd, St. Louis, MO 63108, United States
| | - David T Curiel
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave., 4511 Forest Park Blvd, St. Louis, MO 63108, United States
| | - Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307, United States.
| |
Collapse
|
31
|
Espinosa DA, Christensen D, Muñoz C, Singh S, Locke E, Andersen P, Zavala F. Robust antibody and CD8 + T-cell responses induced by P. falciparum CSP adsorbed to cationic liposomal adjuvant CAF09 confer sterilizing immunity against experimental rodent malaria infection. NPJ Vaccines 2017; 2. [PMID: 28936360 PMCID: PMC5603302 DOI: 10.1038/s41541-017-0011-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite several decades of extensive research, the development of a highly efficacious malaria vaccine has yet to be accomplished. While the RTS,S malaria vaccine candidate shows the potential to prevent a substantial number of clinical malaria cases, significant improvements in protective efficacy are still needed. Multiple studies have shown that RTS,S induces protective antibody and CD4+ T-cell responses, but limited or negligible CD8+ T cells. In this study, we evaluated the immunogenicity and protective capacity of full-length recombinant Plasmodium falciparum circumsporozoite protein administered with the novel cationic liposomal adjuvant system CAF09. Using newly developed transgenic rodent malaria parasites expressing the full-length Plasmodium falciparum circumsporozoite protein, we demonstrate that this liposome-based protein-in-adjuvant formulation is capable of inducing robust antibody and CD8+ T-cell responses that strongly inhibit parasite infection and development of liver stages, conferring durable sterilizing immunity. These findings underscore the potential of liposome-based adjuvants for inducing robust humoral and CD8+ T-cell responses and warrant further studies toward the development of novel subunit vaccine formulations with this adjuvant system. A vaccine consisting of parasitic proteins enveloped by fatty molecules provides comprehensive protection against malaria in a rodent model, Previous and current malaria vaccines concentrate on priming antibodies to recognize malarial infection, despite evidence that, by activating ‘killer’ CD8+ T cells, greater protection is conferred against the disease. Fidel Zavala, of the Johns Hopkins University, United States, and an international group of researchers developed their vaccine by encapsulating proteins from the malaria-causing parasite Plasmodium falciparum in fat-based carriers called liposomes. In past experiments, killer T cells recruited via this vaccine-type have effectively protected against other diseases. In this study, the vaccine induced both CD8+ T cell and antibody responses and provided significant immunity against P. falciparum-instigated malaria. As a highly efficacious vaccine against malaria is not yet available, this research will likely prove invaluable in guiding further studies.
Collapse
Affiliation(s)
- Diego A Espinosa
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Christian Muñoz
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Emily Locke
- PATH Malaria Vaccine Initiative, Washington DC, USA
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
32
|
Pichyangkul S, Spring MD, Yongvanitchit K, Kum-Arb U, Limsalakpetch A, Im-Erbsin R, Ubalee R, Vanachayangkul P, Remarque EJ, Angov E, Smith PL, Saunders DL. Chemoprophylaxis with sporozoite immunization in P. knowlesi rhesus monkeys confers protection and elicits sporozoite-specific memory T cells in the liver. PLoS One 2017; 12:e0171826. [PMID: 28182750 PMCID: PMC5300246 DOI: 10.1371/journal.pone.0171826] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/26/2017] [Indexed: 12/11/2022] Open
Abstract
Whole malaria sporozoite vaccine regimens are promising new strategies, and some candidates have demonstrated high rates of durable clinical protection associated with memory T cell responses. Little is known about the anatomical distribution of memory T cells following whole sporozoite vaccines, and immunization of nonhuman primates can be used as a relevant model for humans. We conducted a chemoprophylaxis with sporozoite (CPS) immunization in P. knowlesi rhesus monkeys and challenged via mosquito bites. Half of CPS immunized animals developed complete protection, with a marked delay in parasitemia demonstrated in the other half. Antibody responses to whole sporozoites, CSP, and AMA1, but not CelTOS were detected. Peripheral blood T cell responses to whole sporozoites, but not CSP and AMA1 peptides were observed. Unlike peripheral blood, there was a high frequency of sporozoite-specific memory T cells observed in the liver and bone marrow. Interestingly, sporozoite-specific CD4+ and CD8+ memory T cells in the liver highly expressed chemokine receptors CCR5 and CXCR6, both of which are known for liver sinusoid homing. The majority of liver sporozoite-specific memory T cells expressed CD69, a phenotypic marker of tissue-resident memory (TRM) cells, which are well positioned to rapidly control liver-stage infection. Vaccine strategies that aim to elicit large number of liver TRM cells may efficiently increase the efficacy and durability of response against pre-erythrocytic parasites.
Collapse
Affiliation(s)
- Sathit Pichyangkul
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
- * E-mail:
| | - Michele D. Spring
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Kosol Yongvanitchit
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Utaiwan Kum-Arb
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | | | - Rawiwan Im-Erbsin
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Ratawan Ubalee
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | | | | | - Evelina Angov
- Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Philip L. Smith
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - David L. Saunders
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| |
Collapse
|
33
|
Angiotensin II type-1 receptor (AT 1R) regulates expansion, differentiation, and functional capacity of antigen-specific CD8 + T cells. Sci Rep 2016; 6:35997. [PMID: 27782175 PMCID: PMC5080615 DOI: 10.1038/srep35997] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/10/2016] [Indexed: 12/25/2022] Open
Abstract
Angiotensin II (Ang II) and its receptor AT1 (AT1R), an important effector axis of renin-angiotensin system (RAS), have been demonstrated to regulate T-cell responses. However, these studies characterized Ang II and AT1R effects using pharmacological tools, which do not target only Ang II/AT1R axis. The specific role of AT1R expressed by antigen-specific CD8+ T cells is unknown. Then we immunized transgenic mice expressing a T-cell receptor specific for SIINFEKL epitope (OT-I mice) with sporozoites of the rodent malaria parasite Plasmodium berghei expressing the cytotoxic epitope SIINFEKL. Early priming events after immunization were not affected but the expansion and contraction of AT1R-deficient (AT1R-/-) OT-I cells was decreased. Moreover, they seemed more activated, express higher levels of CTLA-4, PD-1, LAG-3, and have decreased functional capacity during the effector phase. Memory AT1R-/- OT-I cells exhibited higher IL-7Rα expression, activation, and exhaustion phenotypes but less cytotoxic capacity. Importantly, AT1R-/- OT-I cells show better control of blood parasitemia burden and ameliorate mice survival during lethal disease induced by blood-stage malaria. Our study reveals that AT1R in antigen-specific CD8+ T cells regulates expansion, differentiation, and function during effector and memory phases of the response against Plasmodium, which could apply to different infectious agents.
Collapse
|
34
|
Van Braeckel-Budimir N, Kurup SP, Harty JT. Regulatory issues in immunity to liver and blood-stage malaria. Curr Opin Immunol 2016; 42:91-97. [PMID: 27351448 DOI: 10.1016/j.coi.2016.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/10/2016] [Accepted: 06/15/2016] [Indexed: 02/01/2023]
Abstract
T cells play a major role in control of both blood and liver stage of plasmodium infection. While immunization with certain attenuated whole-parasite vaccines that are attenuated at the liver stage of the infection induces protective T cell responses, even multiple exposures to natural infection in endemic areas do not lead to stable T cell memory or humoral immunity and sterilizing protection. One of the key differences between vaccination and natural exposure is the absence of blood stage during vaccination. Here we will discuss possible immunoregulatory strategies employed by blood stage of malaria leading to generation of severely compromised T cell and humoral immune responses and subsequent lack of sterilizing immunity.
Collapse
Affiliation(s)
| | - Samarchith P Kurup
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | - John T Harty
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA; Department of Pathology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
35
|
Vainieri ML, Blagborough AM, MacLean AL, Haltalli MLR, Ruivo N, Fletcher HA, Stumpf MPH, Sinden RE, Celso CL. Systematic tracking of altered haematopoiesis during sporozoite-mediated malaria development reveals multiple response points. Open Biol 2016; 6:160038. [PMID: 27335321 PMCID: PMC4929935 DOI: 10.1098/rsob.160038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/27/2016] [Indexed: 12/21/2022] Open
Abstract
Haematopoiesis is the complex developmental process that maintains the turnover of all blood cell lineages. It critically depends on the correct functioning of rare, quiescent haematopoietic stem cells (HSCs) and more numerous, HSC-derived, highly proliferative and differentiating haematopoietic progenitor cells (HPCs). Infection is known to affect HSCs, with severe and chronic inflammatory stimuli leading to stem cell pool depletion, while acute, non-lethal infections exert transient and even potentiating effects. Both whether this paradigm applies to all infections and whether the HSC response is the dominant driver of the changes observed during stressed haematopoiesis remain open questions. We use a mouse model of malaria, based on natural, sporozoite-driven Plasmodium berghei infection, as an experimental platform to gain a global view of haematopoietic perturbations during infection progression. We observe coordinated responses by the most primitive HSCs and multiple HPCs, some starting before blood parasitaemia is detected. We show that, despite highly variable inter-host responses, primitive HSCs become highly proliferative, but mathematical modelling suggests that this alone is not sufficient to significantly impact the whole haematopoietic cascade. We observe that the dramatic expansion of Sca-1(+) progenitors results from combined proliferation of direct HSC progeny and phenotypic changes in downstream populations. We observe that the simultaneous perturbation of HSC/HPC population dynamics is coupled with early signs of anaemia onset. Our data uncover a complex relationship between Plasmodium and its host's haematopoiesis and raise the question whether the variable responses observed may affect the outcome of the infection itself and its long-term consequences on the host.
Collapse
Affiliation(s)
- Maria L Vainieri
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Andrew M Blagborough
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Adam L MacLean
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Myriam L R Haltalli
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Nicola Ruivo
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | - Michael P H Stumpf
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Robert E Sinden
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK Jenner Institute, Oxford OX3 7DQ, UK
| | - Cristina Lo Celso
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
36
|
Longwe H, Phiri KS, Mbeye NM, Gondwe T, Mandala WL, Jambo KC. Delayed acquisition of Plasmodium falciparum antigen-specific CD4(+) T cell responses in HIV-exposed uninfected Malawian children receiving daily cotrimoxazole prophylaxis. Malar J 2016; 15:264. [PMID: 27165269 PMCID: PMC4862093 DOI: 10.1186/s12936-016-1318-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/28/2016] [Indexed: 11/16/2022] Open
Abstract
Background Cotrimoxazole (CTX) prophylaxis, recommended in HIV-exposed uninfected (HEU) children primarily against HIV-related opportunistic infections, has been shown to have some efficacy against Plasmodium falciparum malaria. The effects of CTX prophylaxis on the acquisition of P. falciparum antigen specific CD4+ T cells-mediated immunity in HEU children is still not fully understood. Methods Peripheral blood was collected from HEU and HIV-unexposed uninfected (HUU) children at 6, 12 and 18 months of age. Proportion of CD4+ T cells subsets were determined by immunophenotyping. P. falciparum antigen-specific CD4+ T cells responses were measured by intracellular cytokine staining assay. Results There were no differences in the proportions of naïve, effector and memory CD4+ T cell subsets between HEU and HUU children at all ages. There was a trend showing acquisition of P. falciparum-specific IFN-γ and TNF-producing CD4+ T cells with age in both HUU and HEU children. There was, however, lower frequency of P. falciparum-specific IFN-γ-producing CD4+ T cells in HEU compared to HUU at 6 and 12 months, which normalized 6 months after stopping CTX prophylaxis. Conclusion The results demonstrate that there is delayed acquisition of P. falciparum-specific IFN-γ-producing CD4+ T cells in HEU children on daily cotrimoxazole prophylaxis, which is evident at 6 and 12 months of age in comparison to HUU age-matched controls. However, whether this delayed acquisition of P. falciparum-specific IFN-γ-producing CD4+ T cells leads to higher risk to malaria disease remains unknown and warrants further investigation.
Collapse
Affiliation(s)
- Herbert Longwe
- Department of Basic Medical Sciences, College of Medicine, University of Malawi, Blantyre, Malawi. .,Tropical Haematology Research Unit, College of Medicine, University of Malawi, Blantyre, Malawi.
| | - Kamija S Phiri
- Tropical Haematology Research Unit, College of Medicine, University of Malawi, Blantyre, Malawi.,Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Nyanyiwe M Mbeye
- Tropical Haematology Research Unit, College of Medicine, University of Malawi, Blantyre, Malawi.,Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Thandile Gondwe
- Tropical Haematology Research Unit, College of Medicine, University of Malawi, Blantyre, Malawi.,Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Wilson L Mandala
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Kondwani C Jambo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi. .,Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
37
|
Ganeshan H, Kusi KA, Anum D, Hollingdale MR, Peters B, Kim Y, Tetteh JKA, Ofori MF, Gyan BA, Koram KA, Huang J, Belmonte M, Banania JG, Dodoo D, Villasante E, Sedegah M. Measurement of ex vivo ELISpot interferon-gamma recall responses to Plasmodium falciparum AMA1 and CSP in Ghanaian adults with natural exposure to malaria. Malar J 2016; 15:55. [PMID: 26830334 PMCID: PMC4736649 DOI: 10.1186/s12936-016-1098-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 01/12/2016] [Indexed: 12/17/2022] Open
Abstract
Background Malaria eradication requires a concerted approach involving all available control tools, and an effective vaccine would complement these efforts. An effective malaria vaccine should be able to induce protective immune responses in a genetically diverse population. Identification of immunodominant T cell epitopes will assist in determining if candidate vaccines will be immunogenic in malaria-endemic areas. This study therefore investigated whether class I-restricted T cell epitopes of two leading malaria vaccine antigens, Plasmodium falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1), could recall T cell interferon-γ responses from naturally exposed subjects using ex vivo ELISpot assays. Methods Thirty-five subjects aged between 24 and 43 years were recruited from a malaria-endemic urban community of Ghana in 2011, and their peripheral blood mononuclear cells (PBMCs) were tested in ELISpot IFN-γ assays against overlapping 15mer peptide pools spanning the entire CSP and AMA1 antigens, and 9–10mer peptide epitope mixtures that included previously identified and/or predicted human leukocyte antigen (HLA) class 1-restricted epitopes from same two antigens. Results For CSP, 26 % of subjects responded to at least one of the nine 15mer peptide pools whilst 17 % responded to at least one of the five 9–10mer HLA-restricted epitope mixtures. For AMA1, 63 % of subjects responded to at least one of the 12 AMA1 15mer peptide pools and 51 % responded to at least one of the six 9–10mer HLA-restricted epitope mixtures. Following analysis of data from the two sets of peptide pools, along with bioinformatics predictions of class I-restricted epitopes and the HLA supertypes expressed by a subset of study subjects, peptide pools that may contain epitopes recognized by multiple HLA supertypes were identified. Collectively, these results suggest that natural transmission elicits ELISpot IFN-γ activities to class 1-restricted epitopes that are largely HLA-promiscuous. Conclusions These results generally demonstrate that CSP and AMA1 peptides recalled ELISpot IFN-γ responses from naturally exposed individuals and that both CSP and AMA1 contain diverse class 1-restricted epitopes that are HLA-promiscuous and are widely recognized in this population. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1098-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Harini Ganeshan
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, USA.
| | - Kwadwo A Kusi
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
| | - Dorothy Anum
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
| | | | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, San Diego, CA, USA.
| | - Yohan Kim
- La Jolla Institute for Allergy and Immunology, La Jolla, San Diego, CA, USA.
| | - John K A Tetteh
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
| | - Michael F Ofori
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
| | - Ben A Gyan
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
| | - Kwadwo A Koram
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
| | - Jun Huang
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, USA.
| | - Maria Belmonte
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, USA.
| | - Jo Glenna Banania
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, USA.
| | - Daniel Dodoo
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
| | - Eileen Villasante
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, USA.
| | - Martha Sedegah
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, USA.
| |
Collapse
|
38
|
Killer lymphocytes use granulysin, perforin and granzymes to kill intracellular parasites. Nat Med 2016; 22:210-6. [PMID: 26752517 DOI: 10.1038/nm.4023] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023]
Abstract
Protozoan infections are a serious global health problem. Natural killer (NK) cells and cytolytic T lymphocytes (CTLs) eliminate pathogen-infected cells by releasing cytolytic granule contents--granzyme (Gzm) proteases and the pore-forming perforin (PFN)--into the infected cell. However, these cytotoxic molecules do not kill intracellular parasites. CD8(+) CTLs protect against parasite infections in mice primarily by secreting interferon (IFN)-γ. However, human, but not rodent, cytotoxic granules contain the antimicrobial peptide granulysin (GNLY), which selectively destroys cholesterol-poor microbial membranes, and GNLY, PFN and Gzms rapidly kill intracellular bacteria. Here we show that GNLY delivers Gzms into three protozoan parasites (Trypanosoma cruzi, Toxoplasma gondii and Leishmania major), in which the Gzms generate superoxide and inactivate oxidative defense enzymes to kill the parasite. PFN delivers GNLY and Gzms into infected cells, and GNLY then delivers Gzms to the intracellular parasites. Killer cell-mediated parasite death, which we term 'microbe-programmed cell death' or 'microptosis', is caspase independent but resembles mammalian apoptosis, causing mitochondrial swelling, transmembrane potential dissipation, membrane blebbing, phosphatidylserine exposure, DNA damage and chromatin condensation. GNLY-transgenic mice are protected against infection by T. cruzi and T. gondii, and survive infections that are lethal to wild-type mice. Thus, GNLY-, PFN- and Gzm-mediated elimination of intracellular protozoan parasites is an unappreciated immune defense mechanism.
Collapse
|
39
|
Mendonça VRD, Barral-Netto M. Immunoregulation in human malaria: the challenge of understanding asymptomatic infection. Mem Inst Oswaldo Cruz 2015; 110:945-55. [PMID: 26676319 PMCID: PMC4708013 DOI: 10.1590/0074-02760150241] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/23/2015] [Indexed: 12/21/2022] Open
Abstract
Asymptomatic Plasmodium infection carriers represent a major threat
to malaria control worldwide as they are silent natural reservoirs and do not seek
medical care. There are no standard criteria for
asymptomaticPlasmodium infection; therefore, its diagnosis relies
on the presence of the parasite during a specific period of symptomless infection.
The antiparasitic immune response can result in reducedPlasmodium
sp. load with control of disease manifestations, which leads to asymptomatic
infection. Both the innate and adaptive immune responses seem to play major roles in
asymptomatic Plasmodiuminfection; T regulatory cell activity
(through the production of interleukin-10 and transforming growth factor-β) and
B-cells (with a broad antibody response) both play prominent roles. Furthermore,
molecules involved in the haem detoxification pathway (such as haptoglobin and haeme
oxygenase-1) and iron metabolism (ferritin and activated c-Jun N-terminal kinase)
have emerged in recent years as potential biomarkers and thus are helping to unravel
the immune response underlying asymptomatic Plasmodium infection.
The acquisition of large data sets and the use of robust statistical tools, including
network analysis, associated with well-designed malaria studies will likely help
elucidate the immune mechanisms responsible for asymptomatic infection.
Collapse
Affiliation(s)
- Vitor R de Mendonça
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brasil
| | - Manoel Barral-Netto
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brasil
| |
Collapse
|
40
|
Lin L, Finak G, Ushey K, Seshadri C, Hawn TR, Frahm N, Scriba TJ, Mahomed H, Hanekom W, Bart PA, Pantaleo G, Tomaras GD, Rerks-Ngarm S, Kaewkungwal J, Nitayaphan S, Pitisuttithum P, Michael NL, Kim JH, Robb ML, O'Connell RJ, Karasavvas N, Gilbert P, C De Rosa S, McElrath MJ, Gottardo R. COMPASS identifies T-cell subsets correlated with clinical outcomes. Nat Biotechnol 2015; 33:610-6. [PMID: 26006008 PMCID: PMC4569006 DOI: 10.1038/nbt.3187] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 03/04/2015] [Indexed: 11/09/2022]
Abstract
Advances in flow cytometry and other single-cell technologies have enabled high-dimensional, high-throughput measurements of individual cells as well as the interrogation of cell population heterogeneity. However, in many instances, computational tools to analyze the wealth of data generated by these technologies are lacking. Here, we present a computational framework for unbiased combinatorial polyfunctionality analysis of antigen-specific T-cell subsets (COMPASS). COMPASS uses a Bayesian hierarchical framework to model all observed cell subsets and select those most likely to have antigen-specific responses. Cell-subset responses are quantified by posterior probabilities, and human subject-level responses are quantified by two summary statistics that describe the quality of an individual's polyfunctional response and can be correlated directly with clinical outcome. Using three clinical data sets of cytokine production, we demonstrate how COMPASS improves characterization of antigen-specific T cells and reveals cellular 'correlates of protection/immunity' in the RV144 HIV vaccine efficacy trial that are missed by other methods. COMPASS is available as open-source software.
Collapse
Affiliation(s)
- Lin Lin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Greg Finak
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Kevin Ushey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Chetan Seshadri
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Thomas R Hawn
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Nicole Frahm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Hassan Mahomed
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Willem Hanekom
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | | | | | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Jaranit Kaewkungwal
- Data Management Unit, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Sorachai Nitayaphan
- Thai Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Ratchathewi, Bangkok, Thailand
| | - Punnee Pitisuttithum
- Vaccine Trials Center, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Nelson L Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Jerome H Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Merlin L Robb
- US Army Military HIV Research Program, Walter Reed Army Institute of Research; Henry M. Jackson Foundation, Bethesda, Maryland, USA
| | - Robert J O'Connell
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Ratchathewi, Bangkok, Thailand
| | - Nicos Karasavvas
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Ratchathewi, Bangkok, Thailand
| | - Peter Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Stephen C De Rosa
- 1] Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA. [2] Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - M Juliana McElrath
- 1] Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA. [2] Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA. [3] Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
41
|
Frevert U, Krzych U. Plasmodium cellular effector mechanisms and the hepatic microenvironment. Front Microbiol 2015; 6:482. [PMID: 26074888 PMCID: PMC4445044 DOI: 10.3389/fmicb.2015.00482] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/01/2015] [Indexed: 12/23/2022] Open
Abstract
Plasmodium falciparum malaria remains one of the most serious health problems globally. Immunization with attenuated parasites elicits multiple cellular effector mechanisms capable of eliminating Plasmodium liver stages. However, malaria liver stage (LS) immunity is complex and the mechanisms effector T cells use to locate the few infected hepatocytes in the large liver in order to kill the intracellular LS parasites remain a mystery to date. Here, we review our current knowledge on the behavior of CD8 effector T cells in the hepatic microvasculature, in malaria and other hepatic infections. Taking into account the unique immunological and lymphogenic properties of the liver, we discuss whether classical granule-mediated cytotoxicity might eliminate infected hepatocytes via direct cell contact or whether cytokines might operate without cell–cell contact and kill Plasmodium LSs at a distance. A thorough understanding of the cellular effector mechanisms that lead to parasite death hence sterile protection is a prerequisite for the development of a successful malaria vaccine to protect the 40% of the world’s population currently at risk of Plasmodium infection.
Collapse
Affiliation(s)
- Ute Frevert
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine , New York, NY, USA
| | - Urszula Krzych
- Division of Malaria Vaccine Development, Department of Cellular Immunology, Walter Reed Army Institute of Research , Silver Spring, MD, USA
| |
Collapse
|
42
|
Bertolino P, Bowen DG. Malaria and the liver: immunological hide-and-seek or subversion of immunity from within? Front Microbiol 2015; 6:41. [PMID: 25741320 PMCID: PMC4332352 DOI: 10.3389/fmicb.2015.00041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/12/2015] [Indexed: 12/28/2022] Open
Abstract
During the pre-erythrocytic asymptomatic phase of malarial infection, sporozoites develop transiently inside less than 100 hepatocytes that subsequently release thousands of merozoites. Killing of these hepatocytes by cytotoxic T cells (CTLs) confers protection to subsequent malarial infection, suggesting that this bottleneck phase in the parasite life cycle can be targeted by vaccination. During natural transmission, although some CTLs are generated in the skin draining lymph nodes, they are unable to eliminate the parasite, suggesting that the liver is important for the sporozoite to escape immune surveillance. The contribution of the organ to this process is unclear. Based on the known ability of several hepatic antigen-presenting cells (APCs) to induce primary activation of CD8 T cells and tolerance, malarial antigens presented by both infected hepatocytes and/or hepatic cross-presenting APCs should result in tolerance. However, our latest model predicts that due to the low frequency of infected hepatocytes, some T cells recognizing sporozoite epitopes with high affinity should differentiate into CTLs. In this review, we discuss two possible models to explain why CTLs generated in the liver and skin draining lymph nodes are unable to eliminate the parasite: (1) sporozoites harness the tolerogenic property of the liver; (2) CTLs are not tolerized but fail to detect infected cells due to sparse infection of hepatocytes and the very short liver stage. We propose that while malaria sporozoites might use the ability of the liver to tolerize both naive and effector cells, they have also developed strategies to decrease the probability of encounter between CTLs and infected liver cells. Thus, we predict that to achieve protection, vaccination strategies should aim to boost intrahepatic activation and/or increase the chance of encounter between sporozoite-specific CTLs and infected hepatocytes.
Collapse
Affiliation(s)
- Patrick Bertolino
- Liver Immunology Group, Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital Sydney, NSW, Australia
| | - David G Bowen
- Liver Immunology Group, Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital Sydney, NSW, Australia
| |
Collapse
|
43
|
Malaria induces anemia through CD8+ T cell-dependent parasite clearance and erythrocyte removal in the spleen. mBio 2015; 6:mBio.02493-14. [PMID: 25604792 PMCID: PMC4324318 DOI: 10.1128/mbio.02493-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Severe malarial anemia (SMA) in semi-immune individuals eliminates both infected and uninfected erythrocytes and is a frequent fatal complication. It is proportional not to circulating parasitemia but total parasite mass (sequestered) in the organs. Thus, immune responses that clear parasites in organs may trigger changes leading to anemia. Here, we use an outbred-rat model where increasing parasite removal in the spleen escalated uninfected-erythrocyte removal. Splenic parasite clearance was associated with activated CD8(+) T cells, immunodepletion of which prevented parasite clearance. CD8(+) T cell repletion and concomitant reduction of the parasite load was associated with exacerbated (40 to 60%) hemoglobin loss and changes in properties of uninfected erythrocytes. Together, these data suggest that CD8(+) T cell-dependent parasite clearance causes erythrocyte removal in the spleen and thus anemia. In children infected with the human malaria parasite Plasmodium falciparum, elevation of parasite biomass (not the number of circulating parasites) increased the odds ratio for SMA by 3.5-fold (95% confidence intervals [CI95%], 1.8- to 7.5-fold). CD8(+) T cell expansion/activation independently increased the odds ratio by 2.4-fold (CI95%, 1.0- to 5.7-fold). Concomitant increases in both conferred a 7-fold (CI95%, 1.9- to 27.4-fold)-greater risk for SMA. Together, these data suggest that CD8(+)-dependent parasite clearance may predispose individuals to uninfected-erythrocyte loss and SMA, thus informing severe disease diagnosis and strategies for vaccine development. IMPORTANCE Malaria is a major global health problem. Severe malaria anemia (SMA) is a complex disease associated with partial immunity. Rapid hemoglobin reductions of 20 to 50% are commonly observed and must be rescued by transfusion (which can carry a risk of HIV acquisition). The causes and risk factors of SMA remain poorly understood. Recent studies suggest that SMA is linked to parasite biomass sequestered in organs. This led us to investigate whether immune mechanisms that clear parasites in organs trigger anemia. In rats, erythropoiesis is largely restricted to the bone marrow, and critical aspects of the spleen expected to be important in anemia are similar to those in humans. Therefore, using a rat model, we show that severe anemia is caused through CD8(+) T cell-dependent parasite clearance and erythrocyte removal in the spleen. CD8 activation may also be a new risk factor for SMA in African children.
Collapse
|
44
|
Jagannathan P, Nankya F, Stoyanov C, Eccles-James I, Sikyomu E, Naluwu K, Wamala S, Nalubega M, Briggs J, Bowen K, Bigira V, Kapisi J, Kamya MR, Dorsey G, Feeney ME. IFNγ Responses to Pre-erythrocytic and Blood-stage Malaria Antigens Exhibit Differential Associations With Past Exposure and Subsequent Protection. J Infect Dis 2014; 211:1987-96. [PMID: 25520427 DOI: 10.1093/infdis/jiu814] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/10/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The malaria-specific T-cell response is believed to be important for protective immunity. Antimalarial chemoprevention may affect this response by altering exposure to malaria antigens. METHODS We performed interferon γ (IFNγ) ELISpot assays to assess the cellular immune response to blood-stage and pre-erythrocytic antigens longitudinally from 1 to 3 years of age in 196 children enrolled in a randomized trial of antimalarial chemoprevention in Tororo, Uganda, an area of high transmission intensity. RESULTS IFNγ responses to blood-stage antigens, particularly MSP1, were frequently detected, strongly associated with recent malaria exposure, and lower in those adherent to chemoprevention compared to nonadherent children and those randomized to no chemoprevention. IFNγ responses to pre-erythrocytic antigens were infrequent and similar between children randomized to chemoprevention or no chemoprevention. Responses to blood-stage antigens were not associated with subsequent protection from malaria (aHR 0.96, P = .83), but responses to pre-erythrocytic antigens were associated with protection after adjusting for prior malaria exposure (aHR 0.52, P = .009). CONCLUSIONS In this high transmission setting, IFNγ responses to blood-stage antigens were common and associated with recent exposure to malaria but not protection from subsequent malaria. Responses to pre-erythrocytic antigens were uncommon, not associated with exposure but were associated with protection from subsequent malaria.
Collapse
Affiliation(s)
- Prasanna Jagannathan
- Department of Medicine, San Francisco General Hospital, University of California
| | | | - Cristina Stoyanov
- Department of Medicine, San Francisco General Hospital, University of California
| | - Ijeoma Eccles-James
- Department of Medicine, San Francisco General Hospital, University of California
| | | | | | | | | | - Jessica Briggs
- Department of Medicine, San Francisco General Hospital, University of California
| | - Katherine Bowen
- Department of Medicine, San Francisco General Hospital, University of California
| | | | | | - Moses R Kamya
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, San Francisco General Hospital, University of California
| | - Margaret E Feeney
- Department of Medicine, San Francisco General Hospital, University of California Department of Pediatrics, University of California, San Francisco
| |
Collapse
|
45
|
Crompton PD, Moebius J, Portugal S, Waisberg M, Hart G, Garver LS, Miller LH, Barillas-Mury C, Pierce SK. Malaria immunity in man and mosquito: insights into unsolved mysteries of a deadly infectious disease. Annu Rev Immunol 2014; 32:157-87. [PMID: 24655294 DOI: 10.1146/annurev-immunol-032713-120220] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Malaria is a mosquito-borne disease caused by parasites of the obligate intracellular Apicomplexa phylum the most deadly of which, Plasmodium falciparum, prevails in Africa. Malaria imposes a huge health burden on the world's most vulnerable populations, claiming the lives of nearly one million children and pregnant women each year. Although there is keen interest in eradicating malaria, we do not yet have the necessary tools to meet this challenge, including an effective malaria vaccine and adequate vector control strategies. Here we review what is known about the mechanisms at play in immune resistance to malaria in both the human and mosquito hosts at each step in the parasite's complex life cycle with a view toward developing the tools that will contribute to the prevention of disease and death and, ultimately, to the goal of malaria eradication. In so doing, we hope to inspire immunologists to participate in defeating this devastating disease.
Collapse
|
46
|
Chia WN, Goh YS, Rénia L. Novel approaches to identify protective malaria vaccine candidates. Front Microbiol 2014; 5:586. [PMID: 25452745 PMCID: PMC4233905 DOI: 10.3389/fmicb.2014.00586] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/17/2014] [Indexed: 12/17/2022] Open
Abstract
Efforts to develop vaccines against malaria have been the focus of substantial research activities for decades. Several categories of candidate vaccines are currently being developed for protection against malaria, based on antigens corresponding to the pre-erythrocytic, blood stage, or sexual stages of the parasite. Long lasting sterile protection from Plasmodium falciparum sporozoite challenge has been observed in human following vaccination with whole parasite formulations, clearly demonstrating that a protective immune response targeting predominantly the pre-erythrocytic stages can develop against malaria. However, most of vaccine candidates currently being investigated, which are mostly subunits vaccines, have not been able to induce substantial (>50%) protection thus far. This is due to the fact that the antigens responsible for protection against the different parasite stages are still yet to be known and relevant correlates of protection have remained elusive. For a vaccine to be developed in a timely manner, novel approaches are required. In this article, we review the novel approaches that have been developed to identify the antigens for the development of an effective malaria vaccine.
Collapse
Affiliation(s)
- Wan Ni Chia
- Singapore Immunology Network, Agency for Science, Technology and Research Singapore, Singapore ; Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Yun Shan Goh
- Singapore Immunology Network, Agency for Science, Technology and Research Singapore, Singapore
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research Singapore, Singapore ; Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| |
Collapse
|
47
|
Sedegah M, Hollingdale MR, Farooq F, Ganeshan H, Belmonte M, Kim Y, Peters B, Sette A, Huang J, McGrath S, Abot E, Limbach K, Shi M, Soisson L, Diggs C, Chuang I, Tamminga C, Epstein JE, Villasante E, Richie TL. Sterile immunity to malaria after DNA prime/adenovirus boost immunization is associated with effector memory CD8+T cells targeting AMA1 class I epitopes. PLoS One 2014; 9:e106241. [PMID: 25211344 PMCID: PMC4161338 DOI: 10.1371/journal.pone.0106241] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/29/2014] [Indexed: 11/24/2022] Open
Abstract
Background Fifteen volunteers were immunized with three doses of plasmid DNA encoding P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1) and boosted with human adenovirus-5 (Ad) expressing the same antigens (DNA/Ad). Four volunteers (27%) demonstrated sterile immunity to controlled human malaria infection and, overall, protection was statistically significantly associated with ELISpot and CD8+ T cell IFN-γ activities to AMA1 but not CSP. DNA priming was required for protection, as 18 additional subjects immunized with Ad alone (AdCA) did not develop sterile protection. Methodology/Principal Findings We sought to identify correlates of protection, recognizing that DNA-priming may induce different responses than AdCA alone. Among protected volunteers, two and three had higher ELISpot and CD8+ T cell IFN-γ responses to CSP and AMA1, respectively, than non-protected volunteers. Unexpectedly, non-protected volunteers in the AdCA trial showed ELISpot and CD8+ T cell IFN-γ responses to AMA1 equal to or higher than the protected volunteers. T cell functionality assessed by intracellular cytokine staining for IFN-γ, TNF-α and IL-2 likewise did not distinguish protected from non-protected volunteers across both trials. However, three of the four protected volunteers showed higher effector to central memory CD8+ T cell ratios to AMA1, and one of these to CSP, than non-protected volunteers for both antigens. These responses were focused on discrete regions of CSP and AMA1. Class I epitopes restricted by A*03 or B*58 supertypes within these regions of AMA1 strongly recalled responses in three of four protected volunteers. We hypothesize that vaccine-induced effector memory CD8+ T cells recognizing a single class I epitope can confer sterile immunity to P. falciparum in humans. Conclusions/Significance We suggest that better understanding of which epitopes within malaria antigens can confer sterile immunity and design of vaccine approaches that elicit responses to these epitopes will increase the potency of next generation gene-based vaccines.
Collapse
Affiliation(s)
- Martha Sedegah
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- * E-mail:
| | - Michael R. Hollingdale
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Fouzia Farooq
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Harini Ganeshan
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Maria Belmonte
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Yohan Kim
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Jun Huang
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Shannon McGrath
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Esteban Abot
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Keith Limbach
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Meng Shi
- Division of Medical, Audio, Visual, Library and Statistical Services, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | | | | | - Ilin Chuang
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Cindy Tamminga
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Judith E. Epstein
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Eileen Villasante
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Thomas L. Richie
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| |
Collapse
|
48
|
Abstract
Protective immunity against preerythrocytic malaria parasite infection is difficult to achieve. Intracellular Plasmodium parasites likely minimize antigen presentation by surface-expressed major histocompatibility complex class I (MHC-I) molecules on infected cells, yet they actively remodel their host cells by export of parasite factors. Whether exported liver-stage proteins constitute better candidates for MHC-I antigen presentation to CD8+ T lymphocytes remains unknown. Here, we systematically characterized the contribution of protein export to the magnitude of antigen-specific T-cell responses against Plasmodium berghei liver-stage parasites in C57BL/6 mice. We generated transgenic sporozoites that secrete a truncated ovalbumin (OVA) surrogate antigen only in the presence of an amino-terminal protein export element. Immunization with live attenuated transgenic sporozoites revealed that antigen export was not critical for CD8+ T-cell priming but enhanced CD8+ T-cell proliferation in the liver. Upon transfer of antigen-specific CD8+ T cells, liver-stage parasites secreting the target protein were eliminated more efficiently. We conclude that Plasmodium parasites strictly control protein export during liver infection to minimize immune recognition. Strategies that enhance the discharge of parasite proteins into infected hepatocytes could improve the efficacy of candidate preerythrocytic malaria vaccines. Vaccine development against Plasmodium parasites remains a priority in malaria research. The most advanced malaria subunit vaccine candidates contain Plasmodium surface proteins with important roles for parasite vital functions. A fundamental question is whether recognition by effector CD8+ T cells is restricted to sporozoite surface antigens or extends to parasite proteins that are synthesized during the extensive parasite expansion phase in the liver. Using a surrogate model antigen, we found that a cytoplasmic antigen is able to induce robust protective CD8+ T-cell responses, but protein export further enhances immunogenicity and protection. Our results show that a cytoplasmic localization does not exclude a protein’s candidacy for malaria subunit vaccines and that protein secretion can enhance protective immunity.
Collapse
|
49
|
Bijker EM, Teirlinck AC, Schats R, van Gemert GJ, van de Vegte-Bolmer M, van Lieshout L, IntHout J, Hermsen CC, Scholzen A, Visser LG, Sauerwein RW. Cytotoxic markers associate with protection against malaria in human volunteers immunized with Plasmodium falciparum sporozoites. J Infect Dis 2014; 210:1605-15. [PMID: 24872326 PMCID: PMC4208622 DOI: 10.1093/infdis/jiu293] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Immunization of healthy volunteers by bites from Plasmodium falciparum-infected mosquitoes during chloroquine chemoprophylaxis (hereafter, chemoprophylaxis and sporozoites [CPS] immunization) induces sterile protection against malaria. CPS-induced protection is mediated by immunity against pre-erythrocytic stages, presumably at least partially by cytotoxic cellular responses. We therefore aimed to investigate the association of CPS-induced cytotoxic T-cell markers with protection. METHODS In a double-blind randomized controlled trial, we performed dose titration of CPS immunization followed by homologous challenge infection in 29 subjects. Immune responses were assessed by in vitro restimulation of peripheral blood mononuclear cells and flow cytometry. RESULTS Dose-dependent complete protection was obtained in 4 of 5 volunteers after immunization with bites from 45 P. falciparum-infected mosquitoes, in 8 of 9 volunteers with bites from 30, and in 5 of 10 volunteers with bites from 15 (odds ratio [OR], 5.0; 95% confidence interval [CI], 1.5-17). Completely protected subjects had significantly higher proportions of CD4 T cells expressing the degranulation marker CD107a (OR, 8.4; 95% CI, 1.5-123; P = .011) and CD8 cells producing granzyme B (OR, 11; 95% CI, 1.9-212; P = .004) after P. falciparum restimulation. CONCLUSIONS These data underline the efficiency of CPS immunization to induce sterile protection and support a possible role for cytotoxic CD4 and CD8 T-cell responses in pre-erythrocytic immunity. CLINICAL TRIALS REGISTRATION NCT01218893.
Collapse
Affiliation(s)
| | | | | | | | | | - Lisette van Lieshout
- Department of Medical Microbiology, Department of Parasitology, Leiden University Medical Center, The Netherlands
| | - Joanna IntHout
- Department for Health Evidence, Section Biostatistics, Radboud university medical center, Nijmegen
| | | | | | | | | |
Collapse
|
50
|
Tse SW, Radtke AJ, Espinosa DA, Cockburn IA, Zavala F. The chemokine receptor CXCR6 is required for the maintenance of liver memory CD8⁺ T cells specific for infectious pathogens. J Infect Dis 2014; 210:1508-16. [PMID: 24823625 DOI: 10.1093/infdis/jiu281] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is well established that immunization with attenuated malaria sporozoites induces CD8(+) T cells that eliminate parasite-infected hepatocytes. Liver memory CD8(+) T cells induced by immunization with parasites undergo a unique differentiation program and have enhanced expression of CXCR6. Following immunization with malaria parasites, CXCR6-deficient memory CD8(+) T cells recovered from the liver display altered cell-surface expression markers as compared to their wild-type counterparts, but they exhibit normal cytokine secretion and expression of cytotoxic mediators on a per-cell basis. Most importantly, CXCR6-deficient CD8(+) T cells migrate to the liver normally after immunization with Plasmodium sporozoites or vaccinia virus, but a few weeks later their numbers severely decrease in this organ, losing their capacity to inhibit malaria parasite development in the liver. These studies are the first to show that CXCR6 is critical for the development and maintenance of protective memory CD8(+) T cells in the liver.
Collapse
Affiliation(s)
- Sze-Wah Tse
- Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Andrea J Radtke
- Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Diego A Espinosa
- Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Ian A Cockburn
- Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland Department of Pathogens and Immunity, John Curtin School of Medical Research, Australian National University, Canberra
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|