1
|
Berry N, Mee ET, Almond N, Rose NJ. The Impact and Effects of Host Immunogenetics on Infectious Disease Studies Using Non-Human Primates in Biomedical Research. Microorganisms 2024; 12:155. [PMID: 38257982 PMCID: PMC10818626 DOI: 10.3390/microorganisms12010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Understanding infectious disease pathogenesis and evaluating novel candidate treatment interventions for human use frequently requires prior or parallel analysis in animal model systems. While rodent species are frequently applied in such studies, there are situations where non-human primate (NHP) species are advantageous or required. These include studies of animals that are anatomically more akin to humans, where there is a need to interrogate the complexity of more advanced biological systems or simply reflect susceptibility to a specific infectious agent. The contribution of different arms of the immune response may be addressed in a variety of NHP species or subspecies in specific physiological compartments. Such studies provide insights into immune repertoires not always possible from human studies. However, genetic variation in outbred NHP models may confound, or significantly impact the outcome of a particular study. Thus, host factors need to be considered when undertaking such studies. Considerable knowledge of the impact of host immunogenetics on infection dynamics was elucidated from HIV/SIV research. NHP models are now important for studies of emerging infections. They have contributed to delineating the pathogenesis of SARS-CoV-2/COVID-19, which identified differences in outcomes attributable to the selected NHP host. Moreover, their use was crucial in evaluating the immunogenicity and efficacy of vaccines against COVID-19 and establishing putative correlates of vaccine protection. More broadly, neglected or highly pathogenic emerging or re-emergent viruses may be studied in selected NHPs. These studies characterise protective immune responses following infection or the administration of candidate immunogens which may be central to the accelerated licensing of new vaccines. Here, we review selected aspects of host immunogenetics, specifically MHC background and TRIM5 polymorphism as exemplars of adaptive and innate immunity, in commonly used Old and New World host species. Understanding this variation within and between NHP species will ensure that this valuable laboratory source is used most effectively to combat established and emerging virus infections and improve human health worldwide.
Collapse
Affiliation(s)
- Neil Berry
- Research & Development—Science, Research and Innovation, Medicines and Healthcare products Regulatory Agency, South Mimms, Hertfordshire EN6 3QG, UK; (E.T.M.); (N.A.); (N.J.R.)
| | | | | | | |
Collapse
|
2
|
Baik J, Ortiz-Cordero C, Magli A, Azzag K, Crist SB, Yamashita A, Kiley J, Selvaraj S, Mondragon-Gonzalez R, Perrin E, Maufort JP, Janecek JL, Lee RM, Stone LH, Rangarajan P, Ramachandran S, Graham ML, Perlingeiro RCR. Establishment of Skeletal Myogenic Progenitors from Non-Human Primate Induced Pluripotent Stem Cells. Cells 2023; 12:1147. [PMID: 37190056 PMCID: PMC10137227 DOI: 10.3390/cells12081147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Pluripotent stem (PS) cells enable the scalable production of tissue-specific derivatives with therapeutic potential for various clinical applications, including muscular dystrophies. Given the similarity to human counterparts, the non-human primate (NHP) is an ideal preclinical model to evaluate several questions, including delivery, biodistribution, and immune response. While the generation of human-induced PS (iPS)-cell-derived myogenic progenitors is well established, there have been no data for NHP counterparts, probably due to the lack of an efficient system to differentiate NHP iPS cells towards the skeletal muscle lineage. Here, we report the generation of three independent Macaca fascicularis iPS cell lines and their myogenic differentiation using PAX7 conditional expression. The whole-transcriptome analysis confirmed the successful sequential induction of mesoderm, paraxial mesoderm, and myogenic lineages. NHP myogenic progenitors efficiently gave rise to myotubes under appropriate in vitro differentiation conditions and engrafted in vivo into the TA muscles of NSG and FKRP-NSG mice. Lastly, we explored the preclinical potential of these NHP myogenic progenitors in a single wild-type NHP recipient, demonstrating engraftment and characterizing the interaction with the host immune response. These studies establish an NHP model system through which iPS-cell-derived myogenic progenitors can be studied.
Collapse
Affiliation(s)
- June Baik
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Alessandro Magli
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Karim Azzag
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sarah B. Crist
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Aline Yamashita
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - James Kiley
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sridhar Selvaraj
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Elizabeth Perrin
- Stem Cell Resources and the Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | - John P. Maufort
- Stem Cell Resources and the Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | - Jody L. Janecek
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rachael M. Lee
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laura Hocum Stone
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | - Melanie L. Graham
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
3
|
Interests of the Non-Human Primate Models for HIV Cure Research. Vaccines (Basel) 2021; 9:vaccines9090958. [PMID: 34579195 PMCID: PMC8472852 DOI: 10.3390/vaccines9090958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Non-human primate (NHP) models are important for vaccine development and also contribute to HIV cure research. Although none of the animal models are perfect, NHPs enable the exploration of important questions about tissue viral reservoirs and the development of intervention strategies. In this review, we describe recent advances in the use of these models for HIV cure research and highlight the progress that has been made as well as limitations using these models. The main NHP models used are (i) the macaque, in which simian immunodeficiency virus (SIVmac) infection displays similar replication profiles as to HIV in humans, and (ii) the macaque infected by a recombinant virus (SHIV) consisting of SIVmac expressing the HIV envelope gene serving for studies analyzing the impact of anti-HIV Env broadly neutralizing antibodies. Lessons for HIV cure that can be learned from studying the natural host of SIV are also presented here. An overview of the most promising and less well explored HIV cure strategies tested in NHP models will be given.
Collapse
|
4
|
Sibley L, Daykin-Pont O, Sarfas C, Pascoe J, White AD, Sharpe S. Differences in host immune populations between rhesus macaques and cynomolgus macaque subspecies in relation to susceptibility to Mycobacterium tuberculosis infection. Sci Rep 2021; 11:8810. [PMID: 33893359 PMCID: PMC8065127 DOI: 10.1038/s41598-021-87872-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/01/2021] [Indexed: 12/22/2022] Open
Abstract
Rhesus (Macaca mulatta) and cynomolgus (Macaca fasicularis) macaques of distinct genetic origin are understood to vary in susceptibility to Mycobacterium tuberculosis, and therefore differences in their immune systems may account for the differences in disease control. Monocyte:lymphocyte (M:L) ratio has been identified as a risk factor for M. tuberculosis infection and is known to vary between macaque species. We aimed to characterise the constituent monocyte and lymphocyte populations between macaque species, and profile other major immune cell subsets including: CD4+ and CD8+ T-cells, NK-cells, B-cells, monocyte subsets and myeloid dendritic cells. We found immune cell subsets to vary significantly between macaque species. Frequencies of CD4+ and CD8+ T-cells and the CD4:CD8 ratio showed significant separation between species, while myeloid dendritic cells best associated macaque populations by M. tuberculosis susceptibility. A more comprehensive understanding of the immune parameters between macaque species may contribute to the identification of new biomarkers and correlates of protection.
Collapse
Affiliation(s)
- Laura Sibley
- Public Health England - Porton, National Infections Service, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK.
| | - Owen Daykin-Pont
- Public Health England - Porton, National Infections Service, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Charlotte Sarfas
- Public Health England - Porton, National Infections Service, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Jordan Pascoe
- Public Health England - Porton, National Infections Service, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Andrew D White
- Public Health England - Porton, National Infections Service, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Sally Sharpe
- Public Health England - Porton, National Infections Service, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| |
Collapse
|
5
|
Vaccination of Macaques with DNA Followed by Adenoviral Vectors Encoding Simian Immunodeficiency Virus (SIV) Gag Alone Delays Infection by Repeated Mucosal Challenge with SIV. J Virol 2019; 93:JVI.00606-19. [PMID: 31413132 PMCID: PMC6803269 DOI: 10.1128/jvi.00606-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022] Open
Abstract
The simian immunodeficiency virus (SIV) macaque model represents the best animal model for testing new human immunodeficiency virus type 1 (HIV-1) vaccines. Previous studies employing replication-defective adenovirus (rAd) vectors that transiently express SIV internal proteins induced T cell responses that controlled virus load but did not protect against virus challenge. However, we show for the first time that SIV gag delivered in a DNA prime followed by a boost with an rAd vector confers resistance to SIV intrarectal challenge. Other partially successful SIV/HIV-1 protective vaccines induce antibody to the envelope and neutralize the virus or mediate antibody-dependent cytotoxicity. Induction of CD8 T cells which do not prevent initial infection but eradicate infected cells before infection becomes established has also shown some success. In contrast, the vaccine described here mediates resistance by a different mechanism from that described above, which may reflect CD4 T cell activity. This could indicate an alternative approach for HIV-1 vaccine development. Vaccines aimed at inducing T cell responses to protect against human immunodeficiency virus (HIV) infection have been under development for more than 15 years. Replication-defective adenovirus (rAd) vaccine vectors are at the forefront of this work and have been tested extensively in the simian immunodeficiency virus (SIV) challenge macaque model. Vaccination with rAd vectors coding for SIV Gag or other nonenvelope proteins induces T cell responses that control virus load but disappointingly is unsuccessful so far in preventing infection, and attention has turned to inducing antibodies to the envelope. However, here we report that Mauritian cynomolgus macaques (MCM), Macaca fascicularis, vaccinated with unmodified SIV gag alone in a DNA prime followed by an rAd boost exhibit increased protection from infection by repeated intrarectal challenge with low-dose SIVmac251. There was no evidence of infection followed by eradication. A significant correlation was observed between cytokine expression by CD4 T cells and delayed infection. Vaccination with gag fused to the ubiquitin gene or fragmented, designed to increase CD8 magnitude and breadth, did not confer resistance to challenge or enhance immunity. On infection, a significant reduction in peak virus load was observed in all vaccinated animals, including those vaccinated with modified gag. These findings suggest that a nonpersistent viral vector vaccine coding for internal virus proteins may be able to protect against HIV type 1 (HIV-1) infection. The mechanisms are probably distinct from those of antibody-mediated virus neutralization or cytotoxic CD8 cell killing of virus-infected cells and may be mediated in part by CD4 T cells. IMPORTANCE The simian immunodeficiency virus (SIV) macaque model represents the best animal model for testing new human immunodeficiency virus type 1 (HIV-1) vaccines. Previous studies employing replication-defective adenovirus (rAd) vectors that transiently express SIV internal proteins induced T cell responses that controlled virus load but did not protect against virus challenge. However, we show for the first time that SIV gag delivered in a DNA prime followed by a boost with an rAd vector confers resistance to SIV intrarectal challenge. Other partially successful SIV/HIV-1 protective vaccines induce antibody to the envelope and neutralize the virus or mediate antibody-dependent cytotoxicity. Induction of CD8 T cells which do not prevent initial infection but eradicate infected cells before infection becomes established has also shown some success. In contrast, the vaccine described here mediates resistance by a different mechanism from that described above, which may reflect CD4 T cell activity. This could indicate an alternative approach for HIV-1 vaccine development.
Collapse
|
6
|
Sii-Felice K, Castillo Padilla J, Relouzat F, Cheuzeville J, Tantawet S, Maouche L, Le Grand R, Leboulch P, Payen E. Enhanced Transduction of Macaca fascicularis Hematopoietic Cells with Chimeric Lentiviral Vectors. Hum Gene Ther 2019; 30:1306-1323. [DOI: 10.1089/hum.2018.179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Karine Sii-Felice
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
| | - Javier Castillo Padilla
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Francis Relouzat
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
| | - Joëlle Cheuzeville
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
- bluebird bio France, Fontenay aux Roses, France
| | - Siriporn Tantawet
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
| | - Leïla Maouche
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
- INSERM, Paris, France
| | - Roger Le Grand
- Immunology of Viral Infections and Autoimmune Diseases, UMR 1184, IDMIT Department, Institute of Biology François Jacob, INSERM, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
| | - Philippe Leboulch
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
- Ramathibodi Hospital and Mahidol University, Bangkok, Thailand
- Harvard Medical School and Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston Massachusetts
| | - Emmanuel Payen
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
- INSERM, Paris, France
| |
Collapse
|
7
|
Shiina T, Blancher A. The Cynomolgus Macaque MHC Polymorphism in Experimental Medicine. Cells 2019; 8:E978. [PMID: 31455025 PMCID: PMC6770713 DOI: 10.3390/cells8090978] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Among the non-human primates used in experimental medicine, cynomolgus macaques (Macaca fascicularis hereafter referred to as Mafa) are increasingly selected for the ease with which they are maintained and bred in captivity. Macaques belong to Old World monkeys and are phylogenetically much closer to humans than rodents, which are still the most frequently used animal model. Our understanding of the Mafa genome has progressed rapidly in recent years and has greatly benefited from the latest technical advances in molecular genetics. Cynomolgus macaques are widespread in Southeast Asia and numerous studies have shown a distinct genetic differentiation of continental and island populations. The major histocompatibility complex of cynomolgus macaque (Mafa MHC) is organized in the same way as that of human, but it differs from the latter by its high degree of classical class I gene duplication. Human polymorphic MHC regions play a pivotal role in allograft transplantation and have been associated with more than 100 diseases and/or phenotypes. The Mafa MHC polymorphism similarly plays a crucial role in experimental allografts of organs and stem cells. Experimental results show that the Mafa MHC class I and II regions influence the ability to mount an immune response against infectious pathogens and vaccines. MHC also affects cynomolgus macaque reproduction and impacts on numerous biological parameters. This review describes the Mafa MHC polymorphism and the methods currently used to characterize it. We discuss some of the major areas of experimental medicine where an effect induced by MHC polymorphism has been demonstrated.
Collapse
Affiliation(s)
- Takashi Shiina
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Antoine Blancher
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Université Paul Sabatier (UPS), Toulouse 31000, France.
- Laboratoire d'immunologie, CHU de Toulouse, Institut Fédératif de Biologie, hôpital Purpan, 330 Avenue de Grande Bretagne, TSA40031, 31059 Toulouse CEDEX 9, France.
| |
Collapse
|
8
|
Preexisting Simian Immunodeficiency Virus Infection Increases Susceptibility to Tuberculosis in Mauritian Cynomolgus Macaques. Infect Immun 2018; 86:IAI.00565-18. [PMID: 30224552 DOI: 10.1128/iai.00565-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/10/2018] [Indexed: 01/01/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, is the leading cause of death among human immunodeficiency virus (HIV)-positive patients. The precise mechanisms by which HIV impairs host resistance to a subsequent M. tuberculosis infection are unknown. We modeled this coinfection in Mauritian cynomolgus macaques (MCM) using simian immunodeficiency virus (SIV) as an HIV surrogate. We infected seven MCM with SIVmac239 intrarectally and 6 months later coinfected them via bronchoscope with ∼10 CFU of M. tuberculosis Another eight MCM were infected with M. tuberculosis alone. TB progression was monitored by clinical parameters, by culturing bacilli in gastric and bronchoalveolar lavages, and by serial [18F]fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) imaging. The eight MCM infected with M. tuberculosis alone displayed dichotomous susceptibility to TB, with four animals reaching humane endpoint within 13 weeks and four animals surviving >19 weeks after M. tuberculosis infection. In stark contrast, all seven SIV+ animals exhibited rapidly progressive TB following coinfection and all reached humane endpoint by 13 weeks. Serial PET/CT imaging confirmed dichotomous outcomes in MCM infected with M. tuberculosis alone and marked susceptibility to TB in all SIV+ MCM. Notably, imaging revealed a significant increase in TB granulomas between 4 and 8 weeks after M. tuberculosis infection in SIV+ but not in SIV-naive MCM and implies that SIV impairs the ability of animals to contain M. tuberculosis dissemination. At necropsy, animals with preexisting SIV infection had more overall pathology, increased bacterial loads, and a trend towards more extrapulmonary disease than animals infected with M. tuberculosis alone. We thus developed a tractable MCM model in which to study SIV-M. tuberculosis coinfection and demonstrate that preexisting SIV dramatically diminishes the ability to control M. tuberculosis coinfection.
Collapse
|
9
|
Li H, Omange RW, Czarnecki C, Correia-Pinto JF, Crecente-Campo J, Richmond M, Li L, Schultz-Darken N, Alonso MJ, Whitney JB, Plummer FA, Luo M. Mauritian cynomolgus macaques with M3M4 MHC genotype control SIVmac251 infection. J Med Primatol 2018; 46:137-143. [PMID: 28748659 DOI: 10.1111/jmp.12300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Understanding natural HIV control may lead to new preventative or therapeutic strategies. Several protective major histocompatibility complex (MHC) genotypes were found in humans and rhesus macaques. Here, we report a simian immunodeficiency virus (SIV) controller MHC genotype in Mauritian cynomolgus macaques (MCMs). METHODS Twelve MHC-genotyped MCMs were infected with SIVmac251 and monitored for viral loads and CD4+ T-cell counts. RESULTS Two macaques with M3M4 genotype exhibited the lowest peak viral loads (log plasma SIV RNA copies/mL), nearly 3 logs lower than those in most macaques with other MHC haplotype combinations, and set point viral loads below the level of detection limit by RT-qPCR (<2 log RNA copies/mL). They maintained healthy CD4+ T-cell counts of >500 cells/μL blood, while CD4 counts in the vast majority of other macaques were below this level. CONCLUSIONS The M3M4 MHC genotype may confer enhanced control of SIV replication in MCMs.
Collapse
Affiliation(s)
- Hongzhao Li
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Robert W Omange
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Chris Czarnecki
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Jorge F Correia-Pinto
- CIMUS Research Institute, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose Crecente-Campo
- CIMUS Research Institute, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Meika Richmond
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Lin Li
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | | | - Maria J Alonso
- CIMUS Research Institute, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - James B Whitney
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Francis A Plummer
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Ma Luo
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| |
Collapse
|
10
|
Chancellor A, White A, Tocheva AS, Fenn JR, Dennis M, Tezera L, Singhania A, Elliott T, Tebruegge M, Elkington P, Gadola S, Sharpe S, Mansour S. Quantitative and qualitative iNKT repertoire associations with disease susceptibility and outcome in macaque tuberculosis infection. Tuberculosis (Edinb) 2017; 105:86-95. [PMID: 28610792 PMCID: PMC6168056 DOI: 10.1016/j.tube.2017.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 04/11/2017] [Accepted: 04/19/2017] [Indexed: 12/11/2022]
Abstract
Correlates of immune protection that reliably predict vaccine efficacy against Mycobacterium tuberculosis (Mtb) infection are urgently needed. Invariant NKT cells (iNKTs) are CD1d-dependent innate T cells that augment host antimicrobial immunity through production of cytokines, including interferon (IFN)-γ and tumour necrosis factor (TNF)-α. We determined peripheral blood iNKT numbers, their proliferative responses and iNKT subset proportions after in vitro antigen expansion by α-galactosylceramide (αGC) in a large cohort of mycobacteria-naïve non-human primates, and macaques from Bacillus Calmette-Guerin (BCG) vaccine and Mtb challenge studies. Animals studied included four genetically distinct groups of macaques within cynomolgus and rhesus species that differ in their susceptibility to Mtb infection. We demonstrate significant differences in ex vivo iNKT frequency between groups, which trends towards an association with susceptibility to Mtb, but no significant difference in overall iNKT proliferative responses. Susceptible animals exhibited a skewed CD4+/CD8+ iNKT subset ratio in comparison to more Mtb-resistant groups. Correlation of iNKT subsets post BCG vaccination with clinical disease manifestations following Mtb challenge in the Chinese cynomolgus and Indian rhesus macaques identified a consistent trend linking increased CD8+ iNKTs with favourable disease outcome. Finally, a similar iNKT profile was conferred by BCG vaccination in rhesus macaques. Our study provides the first detailed characterisation of iNKT cells in macaque tuberculosis infection, suggesting that iNKT repertoire differences may impact on disease outcome, which warrants further investigation.
Collapse
Affiliation(s)
- Andrew Chancellor
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Andrew White
- Public Health England, National Infections Service, Porton Down, Salisbury, United Kingdom
| | - Anna S Tocheva
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Joe R Fenn
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Mike Dennis
- Public Health England, National Infections Service, Porton Down, Salisbury, United Kingdom
| | - Liku Tezera
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Akul Singhania
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Tim Elliott
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Marc Tebruegge
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Global Health Research Institute, University of Southampton, Southampton, United Kingdom; NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Paul Elkington
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Global Health Research Institute, University of Southampton, Southampton, United Kingdom; NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Stephan Gadola
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; F.Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Sally Sharpe
- Public Health England, National Infections Service, Porton Down, Salisbury, United Kingdom
| | - Salah Mansour
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
11
|
Sharpe SA, White AD, Sibley L, Gleeson F, Hall GA, Basaraba RJ, McIntyre A, Clark SO, Gooch K, Marsh PD, Williams A, Dennis MJ. An aerosol challenge model of tuberculosis in Mauritian cynomolgus macaques. PLoS One 2017; 12:e0171906. [PMID: 28273087 PMCID: PMC5342172 DOI: 10.1371/journal.pone.0171906] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/27/2017] [Indexed: 11/21/2022] Open
Abstract
Background New interventions for tuberculosis are urgently needed. Non-human primate (NHP) models provide the most relevant pre-clinical models of human disease and play a critical role in vaccine development. Models utilising Asian cynomolgus macaque populations are well established but the restricted genetic diversity of the Mauritian cynomolgus macaques may be of added value. Methods Mauritian cynomolgus macaques were exposed to a range of doses of M. tuberculosis delivered by aerosol, and the outcome was assessed using clinical, imaging and pathology-based measures. Results All macaques developed characteristic clinical signs and disease features of tuberculosis (TB). Disease burden and the ability to control disease were dependent on exposure dose. Mauritian cynomolgus macaques showed less variation in pulmonary disease burden and total gross pathology scores within exposure dose groups than either Indian rhesus macaques or Chinese cynomolgus macaques Conclusions The genetic homogeneity of Mauritian cynomolgus macaques makes them a potentially useful model of human tuberculosis.
Collapse
Affiliation(s)
- S. A. Sharpe
- Public Health England, National Infection Service, Porton Down, Salisbury, SP4 0JG, United Kingdom
- * E-mail:
| | - A. D. White
- Public Health England, National Infection Service, Porton Down, Salisbury, SP4 0JG, United Kingdom
| | - L. Sibley
- Public Health England, National Infection Service, Porton Down, Salisbury, SP4 0JG, United Kingdom
| | - F. Gleeson
- The Churchill Hospital, Headington, Oxford, United Kingdom
| | - G. A. Hall
- Public Health England, National Infection Service, Porton Down, Salisbury, SP4 0JG, United Kingdom
| | - R. J. Basaraba
- Department of Microbiology Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - A. McIntyre
- The Churchill Hospital, Headington, Oxford, United Kingdom
| | - S. O. Clark
- Public Health England, National Infection Service, Porton Down, Salisbury, SP4 0JG, United Kingdom
| | - K. Gooch
- Public Health England, National Infection Service, Porton Down, Salisbury, SP4 0JG, United Kingdom
| | - P. D. Marsh
- Public Health England, National Infection Service, Porton Down, Salisbury, SP4 0JG, United Kingdom
| | - A. Williams
- Public Health England, National Infection Service, Porton Down, Salisbury, SP4 0JG, United Kingdom
| | - M. J. Dennis
- Public Health England, National Infection Service, Porton Down, Salisbury, SP4 0JG, United Kingdom
| |
Collapse
|
12
|
Nonhuman Primate Models for Studies of AIDS Virus Persistence During Suppressive Combination Antiretroviral Therapy. Curr Top Microbiol Immunol 2017; 417:69-109. [PMID: 29026923 DOI: 10.1007/82_2017_73] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Nonhuman primate (NHP) models of AIDS represent a potentially powerful component of the effort to understand in vivo sources of AIDS virus that persist in the setting of suppressive combination antiretroviral therapy (cART) and to develop and evaluate novel strategies for more definitive treatment of HIV infection (i.e., viral eradication "cure", or sustained off-cART remission). Multiple different NHP models are available, each characterized by a particular NHP species, infecting virus, and cART regimen, and each with a distinct capacity to recapitulate different aspects of HIV infection. Given these different biological characteristics, and their associated strengths and limitations, different models may be preferred to address different questions pertaining to virus persistence and cure research, or to evaluate different candidate intervention approaches. Recent developments in improved cART regimens for use in NHPs, new viruses, a wider array of sensitive virologic assay approaches, and a better understanding of pathogenesis should allow even greater contributions from NHP models to this important area of HIV research in the future.
Collapse
|
13
|
Badhan A, Eichstaedt CA, Almond NM, Knapp LA, Rose NJ. Analysis of full-length mitochondrial DNA D-loop sequences from Macaca fascicularis of different geographical origin reveals novel haplotypes. J Med Primatol 2015; 44:125-36. [PMID: 25707924 PMCID: PMC5024038 DOI: 10.1111/jmp.12163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2014] [Indexed: 02/01/2023]
Abstract
BACKGROUND Cynomolgus macaques are indigenous to Asia occupying a range of geographical areas. A non-indigenous population established on Mauritius approximately 500 years ago. Mauritian cynomolgus macaques are recognised as having low genetic diversity compared to Indonesian macaques, from which they originated. As cynomolgus macaques are widely used as a biomedical model, there have been many studies of their genetic relationships. However, population diversity and relationships have only been assessed through analysis of either the hypervariable region I or II separately within the D-loop region of the mitochondrial genome in these macaques. METHODS Using sequencing, we defined haplotypes encompassing the full D-loop sequence for Mauritian and Indonesian cynomolgus macaques. RESULTS We evaluated the haplotype relationships by constructing a median-joining network based on full-length D-loop sequences, which has not been reported previously. CONCLUSION Our data allow a complete D-loop haplotype, including a hereto unreported polymorphic region, to be defined to aid the resolution of populations of cynomolgus macaques and which highlights the value in analysing both D-loop hypervariable regions in concert.
Collapse
Affiliation(s)
- Anjna Badhan
- Division of VirologyNational Institute for Biological Standards and Control, Medicines and Healthcare Products Regulatory AuthoritySouth MimmsHertfordshireUK
- Present address: Public Health England61 Colindale AvenueColindaleLondonNW9 5EQUK
| | - Christina A. Eichstaedt
- Division of Biological AnthropologyDepartment of Archaeology and AnthropologyUniversity of CambridgeCambridgeUK
| | - Neil M. Almond
- Division of VirologyNational Institute for Biological Standards and Control, Medicines and Healthcare Products Regulatory AuthoritySouth MimmsHertfordshireUK
| | - Leslie A. Knapp
- Division of Biological AnthropologyDepartment of Archaeology and AnthropologyUniversity of CambridgeCambridgeUK
- Present address: Department of AnthropologyThe University of UtahSalt Lake CityUT84112USA
| | - Nicola J. Rose
- Division of VirologyNational Institute for Biological Standards and Control, Medicines and Healthcare Products Regulatory AuthoritySouth MimmsHertfordshireUK
| |
Collapse
|
14
|
Osada N, Hettiarachchi N, Adeyemi Babarinde I, Saitou N, Blancher A. Whole-genome sequencing of six Mauritian Cynomolgus macaques (Macaca fascicularis) reveals a genome-wide pattern of polymorphisms under extreme population bottleneck. Genome Biol Evol 2015; 7:821-30. [PMID: 25805843 PMCID: PMC5322541 DOI: 10.1093/gbe/evv033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cynomolgus macaques (Macaca fascicularis) were introduced to the island of Mauritius by humans around the 16th century. The unique demographic history of the Mauritian cynomolgus macaques provides the opportunity to not only examine the genetic background of well-established nonhuman primates for biomedical research but also understand the effect of an extreme population bottleneck on the pattern of polymorphisms in genomes. We sequenced the whole genomes of six Mauritian cynomolgus macaques and obtained an average of 20-fold coverage of the genome sequences for each individual. The overall level of nucleotide diversity was 23% smaller than that of the Malaysian cynomolgus macaques, and a reduction of low-frequency polymorphisms was observed. In addition, we also confirmed that the Mauritian cynomolgus macaques were genetically closer to a representative of the Malaysian population than to a representative of the Indochinese population. Excess of nonsynonymous polymorphisms in low frequency, which has been observed in many other species, was not very strong in the Mauritian samples, and the proportion of heterozygous nonsynonymous polymorphisms relative to synonymous polymorphisms is higher within individuals in Mauritian than Malaysian cynomolgus macaques. Those patterns indicate that the extreme population bottleneck made purifying selection overwhelmed by the power of genetic drift in the population. Finally, we estimated the number of founding individuals by using the genome-wide site frequency spectrum of the six samples. Assuming a simple demographic scenario with a single bottleneck followed by exponential growth, the estimated number of founders (∼20 individuals) is largely consistent with previous estimates.
Collapse
Affiliation(s)
- Naoki Osada
- Division of Evolutionary Genetics, National Institute of Genetics, Mishima, Japan Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan
| | - Nilmini Hettiarachchi
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan Division of Population Genetics, National Institute of Genetics, Mishima, Japan
| | - Isaac Adeyemi Babarinde
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan Division of Population Genetics, National Institute of Genetics, Mishima, Japan
| | - Naruya Saitou
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan Division of Population Genetics, National Institute of Genetics, Mishima, Japan
| | - Antoine Blancher
- Laboratoire d'Immunogénétique Moléculaire (LIMT, EA3034), Faculté de Médecine Purpan, Université Paul Sabatier, Toulouse III, France
| |
Collapse
|
15
|
Smith GR, Bauer L, Crane MM, Johnson ZP. Immunogenetic characterization of a captive colony of sooty mangabeys (Cercocebus atys) used for SIV research. J Med Primatol 2015; 44:76-88. [PMID: 25645218 DOI: 10.1111/jmp.12161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND African non-human primates are SIV natural hosts and do not develop disease following infection. Understanding disease avoidance mechanisms in these species is important for HIV vaccine development. The largest captive population of sooty mangabeys, a SIV natural host species, resides at the Yerkes National Primate Research Center. METHODS Thirteen primer sets that amplify polymorphic microsatellite loci within the MHC region were used to genotype 144 animals. Immunogenetic Management Software (IMS) was used to identify MHC haplotypes and organize data. RESULTS Seventy-three haplotypes were identified. Limited haplotype diversity was observed in this population with 88.2% of included animals carrying one of 18 haplotypes. Differences in haplotype frequency were observed between SIV (+) and SIV (-) populations. CONCLUSIONS We have developed a novel tool for others to use in the analysis of the role of the MHC in a natural host non-human primate model species used for SIV research.
Collapse
Affiliation(s)
- Geary R Smith
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | | | | |
Collapse
|
16
|
Genome typing of nonhuman primate models: implications for biomedical research. Trends Genet 2014; 30:482-7. [PMID: 24954183 DOI: 10.1016/j.tig.2014.05.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 12/18/2022]
Abstract
The success of personalized medicine rests on understanding the genetic variation between individuals. Thus, as medical practice evolves and variation among individuals becomes a fundamental aspect of clinical medicine, a thorough consideration of the genetic and genomic information concerning the animals used as models in biomedical research also becomes critical. In particular, nonhuman primates (NHPs) offer great promise as models for many aspects of human health and disease. These are outbred species exhibiting substantial levels of genetic variation; however, understanding of the contribution of this variation to phenotypes is lagging behind in NHP species. Thus, there is a pivotal need to address this gap and define strategies for characterizing both genomic content and variability within primate models of human disease. Here, we discuss the current state of genomics of NHP models and offer guidelines for future work to ensure continued improvement and utility of this line of biomedical research.
Collapse
|
17
|
de Groot N, Doxiadis GGM, Otting N, de Vos-Rouweler AJM, Bontrop RE. Differential recombination dynamics within the MHC of macaque species. Immunogenetics 2014; 66:535-44. [PMID: 24934118 PMCID: PMC4156779 DOI: 10.1007/s00251-014-0783-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 05/21/2014] [Indexed: 10/27/2022]
Abstract
A panel of 15 carefully selected microsatellites (short tandem repeats, STRs) has allowed us to study segregation and haplotype stability in various macaque species. The STRs span the major histocompatibility complex (MHC) region and map in more detail from the centromeric part of the Mhc-A to the DR region. Two large panels of Indian rhesus and Indonesian/Indochinese cynomolgus macaques have been subjected to pedigree analysis, allowing the definition of 161 and 36 different haplotypes and the physical mapping of 10 and 5 recombination sites, respectively. Although most recombination sites within the studied section of the Indian rhesus monkey MHC are situated between the Mhc-A and Mhc-B regions, the resulting recombination rate for this genomic segment is low and similar to that in humans. In contrast, in Indonesian/Indochinese macaques, two recombination sites, which appear to be absent in rhesus macaques, map between the class III and II regions. As a result, the mean recombination frequency of the core MHC, Mhc-A to class II, is higher in Indonesian/Indochinese cynomolgus than in Indian rhesus macaques, but as such is comparable to that in humans. The present communication demonstrates that the dynamics of recombination 'hot/cold spots' in the MHC, as well as their frequencies, may differ substantially between highly related macaque species.
Collapse
Affiliation(s)
- Nanine de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | | | | | | | | |
Collapse
|
18
|
MHC polymorphism in Caribbean African green monkeys. Immunogenetics 2014; 66:353-60. [PMID: 24676686 DOI: 10.1007/s00251-014-0770-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/14/2014] [Indexed: 11/27/2022]
Abstract
African green monkeys (AGM) are among the most widely used nonhuman primate models used in various fields of medical research. One species of AGM that originated from West Africa, Chlorocebus sabaeus, was introduced three centuries ago in the Caribbean islands. We present here a systematic study of the major histocompatibility complex (MHC) polymorphism of Caribbean AGM which is currently frequently used as an animal model. We studied 54 animals originated from Barbados (N=25) or Saint Kitts (N=29). The MHC polymorphism was characterized by means of 17 MHC microsatellites spread across MHC and DRB genotyping by DGGE sequencing. We defined nine frequent MHC haplotypes of which two were found in the two insular populations suggesting either past exchanges between the two populations or a common origin of the founders of the two populations. By the analysis of a previously described EST library, we characterized 38 MHC cDNA sequences (17 class I and 21 class II). In conclusion, we characterized for the first time the MHC polymorphism of Barbados and Saint Kitts AGM. We found a restricted polymorphism due to a founding effect, which is responsible for a strong bottleneck. The poorness of MHC polymorphism observed in the Caribbean AGM populations is similar to that observed in the Mauritian cynomolgus macaque population.
Collapse
|
19
|
Mee ET, Stebbings R, Hall J, Giles E, Almond N, Rose NJ. Allogeneic lymphocyte transfer in MHC-identical siblings and MHC-identical unrelated Mauritian cynomolgus macaques. PLoS One 2014; 9:e88670. [PMID: 24523927 PMCID: PMC3921199 DOI: 10.1371/journal.pone.0088670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/15/2014] [Indexed: 11/18/2022] Open
Abstract
The detailed study of immune effector mechanisms in primate models of infectious disease has been limited by the inability to adoptively transfer lymphocytes from vaccinated animals into naïve immunocompetent recipients. Recent advances in our understanding of the Major Histocompatibility Complex diversity of Mauritian cynomolgus macaques enabled the establishment of a breeding program to generate Major Histocompatibility Complex (MHC)-identical animals. The current study utilised this resource to achieve an improved model of adoptive transfer of lymphocytes in macaques. The effect of route of transfusion on persistence kinetics of adoptively transferred lymphocytes was evaluated in an autologous transfer system. Results indicated that peripheral persistence kinetics were comparable following infusion by different routes, and that cells were detectable at equivalent levels in lymphoid tissues six weeks post-infusion. In a pilot-scale experiment, the persistence of adoptively transferred lymphocytes was compared in MHC-identical siblings and MHC-identical unrelated recipients. Lymphocytes transferred intra-peritoneally were detectable in the periphery within one hour of transfer and circulated at detectable levels in the periphery and lymph nodes for 10 days. Donor lymphocytes were detectable at higher levels in MHC-identical siblings compared with unrelated animals, however the total time of persistence did not differ. These results demonstrate a further refinement of the lymphocyte adoptive transfer system in Mauritian cynomolgus macaques and provide a foundation for hitherto impractical experiments to investigate mechanisms of cellular immunity in primate models of infectious disease.
Collapse
Affiliation(s)
- Edward T Mee
- Division of Virology, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, South Mimms, Hertfordshire, United Kingdom
| | - Richard Stebbings
- Division of Biotherapeutics, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, South Mimms, Hertfordshire, United Kingdom
| | - Joanna Hall
- Division of Virology, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, South Mimms, Hertfordshire, United Kingdom ; Division of Biological Services, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, South Mimms, Hertfordshire, United Kingdom
| | - Elaine Giles
- Division of Biological Services, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, South Mimms, Hertfordshire, United Kingdom
| | - Neil Almond
- Division of Virology, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, South Mimms, Hertfordshire, United Kingdom
| | - Nicola J Rose
- Division of Virology, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, South Mimms, Hertfordshire, United Kingdom
| |
Collapse
|
20
|
Deleterious impact of feto-maternal MHC compatibility on the success of pregnancy in a macaque model. Immunogenetics 2013; 66:105-13. [PMID: 24374979 DOI: 10.1007/s00251-013-0752-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/07/2013] [Indexed: 12/21/2022]
Abstract
The impact of feto-maternal histocompatibility on reproduction has inspired long-lasting debates. However, after the review of numerous articles, the impact of HLA allele sharing within couples on fecundity remains questionable. We decided to explore the impact of major histocompatibility complex (MHC) feto-maternal compatibility on reproduction in a cynomolgus macaque facility composed of animals of Mauritian descent. The Mauritian-derived macaque population presents a very restricted MHC polymorphism (only seven founding haplotypes) due to a strong founding bottleneck effect. The MHC polymorphism was investigated in 237 trios (male, female and offspring) using 17 microsatellite markers distributed across the MHC. Haplotypes were confirmed by segregation analysis. We evaluated the relative frequencies of MHC-compatible and MHC-semi-compatible offspring with the mothers. Among the 237 trios, we selected 42 trios for which the identity of the father is certain and for which the theoretical probabilities of fully compatible and semi-compatible offspring were equal. We found 11 offspring fully compatible and 31 offspring semi-compatible with their respective mother. The observed proportions were clearly outside the interval of confidence of 99 % and therefore most probably resulted from a selection of the semi-compatible offspring during pregnancy. We concluded that MHC fully compatible cynomolgus macaque offspring have a selective survival disadvantage in comparison with offspring inheriting a paternal MHC haplotype differing from maternal haplotypes.
Collapse
|
21
|
Stebbings R, Li B, Lorin C, Koutsoukos M, Février M, Mee ET, Page M, Almond N, Tangy F, Voss G. Immunogenicity of a recombinant measles HIV-1 subtype C vaccine. Vaccine 2013; 31:6079-86. [PMID: 24161574 DOI: 10.1016/j.vaccine.2013.09.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/09/2013] [Accepted: 09/30/2013] [Indexed: 12/21/2022]
Abstract
The HIV epidemic is greatest in Sub-Saharan Africa and India where HIV-1 subtype C is predominant. To control the spread of HIV in these parts of the world a preventive HIV-1 subtype C vaccine is urgently required. Here we report the immunogenicity of a candidate HIV-1 subtype C vaccine delivered by a recombinant measles vector carrying an insert encoding HIV-1 subtype C Gag, RT and Nef (MV1-F4), in MHC-typed non-human primates. HIV-1 specific cytokine secreting CD4+ and CD8+ T cell responses were detected in 15 out of 16 vaccinees. These HIV-specific T cell responses persisted in lymphoid tissues. Anti-HIV-1 antibody responses were detected in 15 out of 16 vaccinees and titres were boosted by a second immunisation carried out 84 days later. These findings support further exploration of the MV1-F4 vector as a candidate HIV-1 subtype C vaccine or as part of a wider vaccine strategy.
Collapse
Affiliation(s)
- Richard Stebbings
- Division of Biotherapeutics, NIBSC, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Seekatz AM, Panda A, Rasko DA, Toapanta FR, Eloe-Fadrosh EA, Khan AQ, Liu Z, Shipley ST, DeTolla LJ, Sztein MB, Fraser CM. Differential response of the cynomolgus macaque gut microbiota to Shigella infection. PLoS One 2013; 8:e64212. [PMID: 23755118 PMCID: PMC3673915 DOI: 10.1371/journal.pone.0064212] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/08/2013] [Indexed: 02/01/2023] Open
Abstract
Little is known about the role of gut microbiota in response to live oral vaccines against enteric pathogens. We examined the effect of immunization with an oral live-attenuated Shigella dysenteriae 1 vaccine and challenge with wild-type S. dysenteriae 1 on the fecal microbiota of cynomolgus macaques using 16 S rRNA analysis of fecal samples. Multi-dimensional cluster analysis identified different bacterial community types within macaques from geographically distinct locations. The fecal microbiota of Mauritian macaques, observed to be genetically distinct, harbored a high-diversity community and responded differently to Shigella immunization, as well as challenge compared to the microbiota in non-Mauritian macaques. While both macaque populations exhibited anti-Shigella antibody responses, clinical shigellosis was observed only among non-Mauritian macaques. These studies highlight the importance of further investigation into the possible protective role of the microbiota against enteric pathogens and consideration of host genetic backgrounds in conducting vaccine studies.
Collapse
Affiliation(s)
- Anna M. Seekatz
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Aruna Panda
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - David A. Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Franklin R. Toapanta
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Emiley A. Eloe-Fadrosh
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Abdul Q. Khan
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Zhenqiu Liu
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Steven T. Shipley
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Louis J. DeTolla
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Marcelo B. Sztein
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Claire M. Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
23
|
Haplotype diversity generated by ancient recombination-like events in the MHC of Indian rhesus macaques. Immunogenetics 2013; 65:569-84. [PMID: 23715823 PMCID: PMC3710572 DOI: 10.1007/s00251-013-0707-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/23/2013] [Indexed: 12/11/2022]
Abstract
The Mamu-A, Mamu-B, and Mamu-DRB genes of the rhesus macaque show several levels of complexity such as allelic heterogeneity (polymorphism), copy number variation, differential segregation of genes/alleles present on a haplotype (diversity) and transcription level differences. A combination of techniques was implemented to screen a large panel of pedigreed Indian rhesus macaques (1,384 individuals representing the offspring of 137 founding animals) for haplotype diversity in an efficient and inexpensive manner. This approach allowed the definition of 140 haplotypes that display a relatively low degree of region variation as reflected by the presence of only 17 A, 18 B and 22 DRB types, respectively, exhibiting a global linkage disequilibrium comparable to that in humans. This finding contrasts with the situation observed in rhesus macaques from other geographic origins and in cynomolgus monkeys from Indonesia. In these latter populations, nearly every haplotype appears to be characterised by a unique A, B and DRB region. In the Indian population, however, a reshuffling of existing segments generated “new” haplotypes. Since the recombination frequency within the core MHC of the Indian rhesus macaques is relatively low, the various haplotypes were most probably produced by recombination events that accumulated over a long evolutionary time span. This idea is in accord with the notion that Indian rhesus macaques experienced a severe reduction in population during the Pleistocene due to a bottleneck caused by geographic changes. Thus, recombination-like processes appear to be a way to expand a diminished genetic repertoire in an isolated and relatively small founder population.
Collapse
|
24
|
Immunogenicity of a recombinant measles-HIV-1 clade B candidate vaccine. PLoS One 2012; 7:e50397. [PMID: 23226275 PMCID: PMC3511521 DOI: 10.1371/journal.pone.0050397] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/19/2012] [Indexed: 01/08/2023] Open
Abstract
Live attenuated measles virus is one of the most efficient and safest vaccines available, making it an attractive candidate vector for a HIV/AIDS vaccine aimed at eliciting cell-mediated immune responses (CMI). Here we have characterized the potency of CMI responses generated in mice and non-human primates after intramuscular immunisation with a candidate recombinant measles vaccine carrying an HIV-1 insert encoding Clade B Gag, RT and Nef (MV1-F4). Eight Mauritian derived, MHC-typed cynomolgus macaques were immunised with 105 TCID50 of MV1-F4, four of which were boosted 28 days later with the same vaccine. F4 and measles virus (MV)-specific cytokine producing T cell responses were detected in 6 and 7 out of 8 vaccinees, respectively. Vaccinees with either M6 or recombinant MHC haplotypes demonstrated the strongest cytokine responses to F4 peptides. Polyfunctional analysis revealed a pattern of TNFα and IL-2 responses by CD4+ T cells and TNFα and IFNγ responses by CD8+ T cells to F4 peptides. HIV-specific CD4+ and CD8+ T cells expressing cytokines waned in peripheral blood lymphocytes by day 84, but CD8+ T cell responses to F4 peptides could still be detected in lymphoid tissues more than 3 months after vaccination. Anti-F4 and anti-MV antibody responses were detected in 6 and 8 out of 8 vaccinees, respectively. Titres of anti-F4 and MV antibodies were boosted in vaccinees that received a second immunisation. MV1-F4 carrying HIV-1 Clade B inserts induces robust boostable immunity in non-human primates. These results support further exploration of the MV1-F4 vector modality in vaccination strategies that may limit HIV-1 infectivity.
Collapse
|
25
|
Budde ML, Greene JM, Chin EN, Ericsen AJ, Scarlotta M, Cain BT, Pham NH, Becker EA, Harris M, Weinfurter JT, O'Connor SL, Piatak M, Lifson JD, Gostick E, Price DA, Friedrich TC, O'Connor DH. Specific CD8+ T cell responses correlate with control of simian immunodeficiency virus replication in Mauritian cynomolgus macaques. J Virol 2012; 86:7596-604. [PMID: 22573864 PMCID: PMC3416303 DOI: 10.1128/jvi.00716-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 04/30/2012] [Indexed: 11/20/2022] Open
Abstract
Specific major histocompatibility complex (MHC) class I alleles are associated with an increased frequency of spontaneous control of human and simian immunodeficiency viruses (HIV and SIV). The mechanism of control is thought to involve MHC class I-restricted CD8(+) T cells, but it is not clear whether particular CD8(+) T cell responses or a broad repertoire of epitope-specific CD8(+) T cell populations (termed T cell breadth) are principally responsible for mediating immunologic control. To test the hypothesis that heterozygous macaques control SIV replication as a function of superior T cell breadth, we infected MHC-homozygous and MHC-heterozygous cynomolgus macaques with the pathogenic virus SIVmac239. As measured by a gamma interferon enzyme-linked immunosorbent spot assay (IFN-γ ELISPOT) using blood, T cell breadth did not differ significantly between homozygotes and heterozygotes. Surprisingly, macaques that controlled SIV replication, regardless of their MHC zygosity, shared durable T cell responses against similar regions of Nef. While the limited genetic variability in these animals prevents us from making generalizations about the importance of Nef-specific T cell responses in controlling HIV, these results suggest that the T cell-mediated control of virus replication that we observed is more likely the consequence of targeting specificity rather than T cell breadth.
Collapse
Affiliation(s)
- Melisa L. Budde
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - Justin M. Greene
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Emily N. Chin
- Department of Cellular and Molecular Biology, University of Wisconsin, Madison, Wisconsin, USA
| | - Adam J. Ericsen
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - Matthew Scarlotta
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Brian T. Cain
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Ngoc H. Pham
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Ericka A. Becker
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - Max Harris
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Jason T. Weinfurter
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Shelby L. O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Science Applications International Corporation-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Science Applications International Corporation-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Emma Gostick
- Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, United Kingdom
| | - David A. Price
- Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, United Kingdom
| | - Thomas C. Friedrich
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - David H. O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| |
Collapse
|
26
|
Borsetti A, Maggiorella MT, Sernicola L, Bellino S, Ferrantelli F, Belli R, Fulgenzi D, Mee ET, Rose NJ, Cafaro A, Ensoli B, Titti F. Influence of MHC class I and II haplotypes on the experimental infection of Mauritian cynomolgus macaques with SHIVSF162P4cy. ACTA ACUST UNITED AC 2012; 80:36-45. [DOI: 10.1111/j.1399-0039.2012.01875.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Berry NJ, Marzetta F, Towers GJ, Rose NJ. Diversity of TRIM5α and TRIMCyp sequences in cynomolgus macaques from different geographical origins. Immunogenetics 2012; 64:267-78. [PMID: 22124667 DOI: 10.1007/s00251-011-0585-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 10/17/2011] [Indexed: 12/01/2022]
Abstract
The TRIM5α restriction factor can protect some species of monkeys, but not humans, from HIV infection. It has also emerged that some monkeys have a cyclophilin A domain retrotransposed into the TRIM5 locus resulting in the expression of a TRIMCyp protein with anti-retroviral activity. A high degree of sequence variation in the primate TRIM5 gene has been reported that varies between populations of rhesus macaques, a widely used non-human primate model of HIV/AIDS, and recently shown to correlate with susceptibility to simian immunodeficiency viruses in this species. Cynomolgus macaques are also used widely in HIV research. A non-indigenous population on Mauritius has highly restricted genetic diversity compared with macaques from Indonesia. The relative allelic diversity of TRIM5α and TRIMCyp within these two sub-populations may impact on the susceptibility of the macaques to simian immunodeficiency virus thereby influencing the outcome of studies using these monkeys. We sought to establish the genetic diversity of these alleles in cynomolgus macaques. We identified seven TRIM5α alleles in Indonesian macaques, three of which are novel, but only three in the Mauritian-origin macaques. Strikingly, 87% of Indonesian, but none of the Mauritian macaques, possessed a retrotransposed Cyp domain. A splice acceptor site single-nucleotide polymorphism that allows formation of a TRIMCyp protein was absent for the TRIM5α alleles found in the Mauritian macaques. The level of allelic diversity reported here is greater than previously proposed for cynomolgus macaque species.
Collapse
Affiliation(s)
- Neil J Berry
- Division of Retrovirology, National Institute for Biological Standards and Control, A Centre of the Health Protection Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | | | | | | |
Collapse
|
28
|
Mitchell JL, Mee ET, Almond NM, Cutler K, Rose NJ. Characterisation of MHC haplotypes in a breeding colony of Indonesian cynomolgus macaques reveals a high level of diversity. Immunogenetics 2012; 64:123-9. [PMID: 21881952 DOI: 10.1007/s00251-011-0567-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/16/2011] [Indexed: 12/13/2022]
Abstract
Recent reports have revealed that cynomolgus macaques obtained from different geographic origins may be more or less suitable for particular studies depending on the specific question(s) being addressed, e.g. Mauritian cynomolgus macaques are particularly suitable for detailed immunological studies against a limited genetic background while less conserved populations may be more appropriate to predict breadth of vaccine coverage in the genetically diverse human population. We have characterised MHC haplotypes in 90 Indonesian cynomolgus macaques using microsatellite and reference strand conformational analysis. Thirty unique haplotypes were defined in the cohort, emphasising the high degree of diversity in this population of cynomolgus macaques. The majority of haplotypes were present at a frequency of ≤ 6%. Transcription profiles indicated that each haplotype was associated with two to eight transcribed class I alleles. The results corroborate previous reports of the extensive MHC diversity of Indonesian cynomolgus macaques and provide additional data to inform colony management decisions. Further, definition of the MHC diversity of the population satisfies one of the prerequisites to MHC association studies and detailed immunological investigations in this outbred non-human primate species.
Collapse
Affiliation(s)
- Jane L Mitchell
- Division of Retrovirology, National Institute for Biological Standards and Control, Health Protection Agency, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | | | | | | | | |
Collapse
|
29
|
Blancher A, Aarnink A, Savy N, Takahata N. Use of Cumulative Poisson Probability Distribution as an Estimator of the Recombination Rate in an Expanding Population: Example of the Macaca fascicularis Major Histocompatibility Complex. G3 (BETHESDA, MD.) 2012; 2:123-30. [PMID: 22384389 PMCID: PMC3276188 DOI: 10.1534/g3.111.001248] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 11/20/2011] [Indexed: 11/18/2022]
Abstract
We describe a method to estimate the rate of recombination per generation from the genotypes of a large individual sample of an expanding population, for which the founding event is dated. The approach is illustrated with an application to estimating the major histocompatibility complex (MHC) recombination rate in the Mauritian macaque population. We genotyped 750 macaques by means of 17 microsatellites across the MHC region and reconstructed the seven most frequent haplotypes assumed to represent the founding haplotypes (H(rec(0))) as well as the 31% recombinant haplotypes (H(rec(h))) resulting from a variable number "h" of recombinations between the founding haplotypes. The relative frequencies of the various classes of haplotypes (H(rec(0)) and H(rec(h))) follow a Poisson distribution. By using a maximum likelihood method, we calculated the mean of the Poisson distribution that best fits the data. By dividing this mean by the number of generations (50-100) from the date of the population founding, we deduced that rate of recombination in the MHC is approximately 0.004 to 0.008 in the Mauritian macaque population. When the founding date of the population is precisely known, our method presents a useful alternative to the coalescent method.
Collapse
Affiliation(s)
- Antoine Blancher
- Laboratoire d'Immunogénétique Moléculaire, EA 3034, Faculté de Médecine Purpan, Université Paul Sabatier, Toulouse 3, CHU de Toulouse, 31059 Toulouse cedex 9, France
| | - Alice Aarnink
- Laboratoire d'Immunogénétique Moléculaire, EA 3034, Faculté de Médecine Purpan, Université Paul Sabatier, Toulouse 3, CHU de Toulouse, 31059 Toulouse cedex 9, France
| | - Nicolas Savy
- Institut de Mathématiques, Université Paul Sabatier, Toulouse 3, 31059 Toulouse cedex 9, France
| | - Naoyuki Takahata
- Graduate University for Advanced Studies (Sokendai), Hayama, Japan
| |
Collapse
|
30
|
Deleidi M, Hargus G, Hallett P, Osborn T, Isacson O. Development of histocompatible primate-induced pluripotent stem cells for neural transplantation. Stem Cells 2011; 29:1052-63. [PMID: 21608081 DOI: 10.1002/stem.662] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Immune rejection and risk of tumor formation are perhaps the greatest hurdles in the field of stem cell transplantation. Here, we report the generation of several lines of induced pluripotent stem cells (iPSCs) from cynomolgus macaque (CM) skin fibroblasts carrying specific major histocompatibility complex (MHC) haplotypes. To develop a collection of MHC-matched iPSCs, we genotyped the MHC locus of 25 CMs by microsatellite polymerase chain reaction analysis. Using retroviral infection of dermal skin fibroblasts, we generated several CM-iPSC lines carrying different haplotypes. We characterized the immunological properties of CM-iPSCs and demonstrated that CM-iPSCs can be induced to differentiate in vitro along specific neuronal populations, such as midbrain dopaminergic (DA) neurons. Midbrain-like DA neurons generated from CM-iPSCs integrated into the striatum of a rodent model of Parkinson's disease and promoted behavioral recovery. Importantly, neither tumor formation nor inflammatory reactions were observed in the transplanted animals up to 6 months after transplantation. We believe that the generation and characterization of such histocompatible iPSCs will allow the preclinical validation of safety and efficacy of iPSCs for neurodegenerative diseases and several other human conditions in the field of regenerative medicine.
Collapse
Affiliation(s)
- Michela Deleidi
- Center for Neuroregeneration Research, Harvard Medical School/McLean Hospital, Belmont, Massachusetts 02478, USA
| | | | | | | | | |
Collapse
|
31
|
DR haplotype diversity of the cynomolgus macaque as defined by its transcriptome. Immunogenetics 2011; 64:31-7. [PMID: 21805219 PMCID: PMC3249155 DOI: 10.1007/s00251-011-0561-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/18/2011] [Indexed: 11/25/2022]
Abstract
The DR region of particular primate species may display allelic polymorphism and gene copy number variation (region configuration polymorphism). The sum of these distinct types of polymorphism is defined as complexity. To date, however, the DR region of cynomolgus macaques (Macaca fascicularis) has been poorly defined. Transcriptome analysis of a pedigreed colony, comprising animals from Indonesia and Indochina, revealed a total of 15 Mafa-DRA and 57 DRB alleles, specifying 28 different region configurations. The DRA alleles can be divided into two distinct lineages. One lineage is polymorphic, but the majority of the amino acid replacements map to the leader peptide. The second lineage is at best oligomorphic, and segregates with one specific Mafa-DRB allele. The number of Mafa-DRB genes ranges from two to five per haplotype. Due to the presence of pseudogenes, however, each haplotype encodes only one to three bona fide DRB transcripts. Depending on the region configuration in which the Mafa-DRB gene is embedded, identical alleles may display differential transcription levels. Region configurations appear to have been generated by recombination-like events. When genes or gene segments are relocated, it seems plausible that they may be placed in the context of distinct transcription control elements. As such, DRB region-related transcription level differences may add an extra layer of polymorphism to this section of the adaptive immune system.
Collapse
|
32
|
Aarnink A, Apoil PA, Takahashi I, Osada N, Blancher A. Characterization of MHC class I transcripts of a Malaysian cynomolgus macaque by high-throughput pyrosequencing and EST libraries. Immunogenetics 2011; 63:703-13. [PMID: 21710345 DOI: 10.1007/s00251-011-0550-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 06/10/2011] [Indexed: 01/21/2023]
Abstract
We characterized the repertoire of MHC class I transcripts of a Malaysian cynomolgus macaque by the study of EST libraries derived from the mRNA extracted from six tissues (thymus, spleen, bone marrow, liver, heart and pancreas). The MHC class I transcripts present in a lymph node of the same animal were characterized by pyrosequencing of amplified cDNA fragments (515 bp from exon 2 to the beginning of exon 4). All pyrosequence consensus sequences, but three corresponding to rare transcripts, were identical to those obtained from EST libraries. In total, we characterized 19 classical class I transcripts in the Malaysian macaque studied here. By means of high-throughput sequencing of exon 2 amplified from the genomic DNA (190 bp), we characterized 38 classical class I genes in the genome of this animal. By comparison, using the same method, we found 23 classical class I genes in the genome of a MHC homozygous Mauritian animal (H2/H2). All these results suggested that the Malaysian animal was most probably heterozygous. This study reveals that the high-throughput pyrosequencing allows not only to characterize the MHC class I transcripts but also to estimate the number of MHC class I genes in the genome of cynomolgus macaque.
Collapse
Affiliation(s)
- Alice Aarnink
- Laboratoire d'Immunogénétique moléculaire, EA 3034, Faculté de Médecine Purpan, Université Paul Sabatier, Toulouse 3, France
| | | | | | | | | |
Collapse
|
33
|
Transcriptionally abundant major histocompatibility complex class I alleles are fundamental to nonhuman primate simian immunodeficiency virus-specific CD8+ T cell responses. J Virol 2011; 85:3250-61. [PMID: 21270169 DOI: 10.1128/jvi.02355-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian immunodeficiency virus (SIV)-infected macaques are the preferred animal model for human immunodeficiency virus (HIV) vaccines that elicit CD8(+) T cell responses. Unlike humans, whose CD8(+) T cell responses are restricted by a maximum of six HLA class I alleles, macaques express up to 20 distinct major histocompatibility complex class I (MHC-I) sequences. Interestingly, only a subset of macaque MHC-I sequences are transcriptionally abundant in peripheral blood lymphocytes. We hypothesized that highly transcribed MHC-I sequences are principally responsible for restricting SIV-specific CD8(+) T cell responses. To examine this hypothesis, we measured SIV-specific CD8(+) T cell responses in MHC-I homozygous Mauritian cynomolgus macaques. Each of eight CD8(+) T cell responses defined by full-proteome gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assay were restricted by four of the five transcripts that are transcriptionally abundant (>1% of total MHC-I transcripts in peripheral blood lymphocytes). The five transcriptionally rare transcripts shared by these animals did not restrict any detectable CD8(+) T cell responses. Further, seven CD8(+) T cell responses were defined by identifying peptide binding motifs of the three most frequent MHC-I transcripts on the M3 haplotype. Combined, these results suggest that transcriptionally abundant MHC-I transcripts are principally responsible for restricting SIV-specific CD8(+) T cell responses. Thus, only a subset of the thousands of known MHC-I alleles in macaques should be prioritized for CD8(+) T cell epitope characterization.
Collapse
|
34
|
Aarnink A, Dereuddre-Bosquet N, Vaslin B, Le Grand R, Winterton P, Apoil PA, Blancher A. Influence of the MHC genotype on the progression of experimental SIV infection in the Mauritian cynomolgus macaque. Immunogenetics 2011; 63:267-74. [DOI: 10.1007/s00251-010-0504-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 12/15/2010] [Indexed: 11/30/2022]
|
35
|
Selective breeding of primates for use in research: consequences and challenges. Anim Welf 2010. [DOI: 10.1017/s0962728600002244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AbstractPrimates are bred in captivity for a number of purposes, from zoo-based captive breeding programmes for conservation to breeding for biomedical research. In each case, breeding animals that are fit for purpose, either as viable candidates for reintroduction or as valid research models, has presented challenges and resulted in steep learning curves. The breeding of animals for biomedical research has become increasingly focused on the production of animals that are less stressed by captive (specifically laboratory) environments. This is because elevated, particularly chronic, stress responses can result in altered physiological, neurological and behavioural states that have the potential to compromise the validity of scientific results. Selective breeding in captivity to, for example, maximise production, select for docile temperament or specific genotypes for biomedical research, is likely to be counter to natural selective pressures for evolutionary fitness. Given that many natural selective pressures active in the wild are absent in captivity, this paper reviews the selective breeding of primates (especially Old World monkeys) in captivity, its potential negative effects, and options that exist for ameliorating these negative effects.
Collapse
|
36
|
Mee ET, Berry N, Ham C, Aubertin A, Lines J, Hall J, Stebbings R, Page M, Almond N, Rose NJ. Mhc haplotype M3 is associated with early control of SHIVsbg infection in Mauritian cynomolgus macaques. ACTA ACUST UNITED AC 2010; 76:223-9. [DOI: 10.1111/j.1399-0039.2010.01500.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
O'Connor SL, Lhost JJ, Becker EA, Detmer AM, Johnson RC, MacNair CE, Wiseman RW, Karl JA, Greene JM, Burwitz BJ, Bimber BN, Lank SM, Tuscher JJ, Mee ET, Rose NJ, Desrosiers RC, Hughes AL, Friedrich TC, Carrington M, O'Connor DH. MHC heterozygote advantage in simian immunodeficiency virus-infected Mauritian cynomolgus macaques. Sci Transl Med 2010; 2:22ra18. [PMID: 20375000 PMCID: PMC2865159 DOI: 10.1126/scitranslmed.3000524] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The importance of a broad CD8 T lymphocyte (CD8-TL) immune response to HIV is unknown. Ex vivo measurements of immunological activity directed at a limited number of defined epitopes provide an incomplete portrait of the actual immune response. We examined viral loads in simian immunodeficiency virus (SIV)-infected major histocompatibility complex (MHC)-homozygous and MHC-heterozygous Mauritian cynomolgus macaques. Chronic viremia in MHC-homozygous macaques was 80 times that in MHC-heterozygous macaques. Virus from MHC-homozygous macaques accumulated 11 to 14 variants, consistent with escape from CD8-TL responses after 1 year of SIV infection. The pattern of mutations detected in MHC-heterozygous macaques suggests that their epitope-specific CD8-TL responses are a composite of those present in their MHC-homozygous counterparts. These results provide the clearest example of MHC heterozygote advantage among individuals infected with the same immunodeficiency virus strain, suggesting that broad recognition of multiple CD8-TL epitopes should be a key feature of HIV vaccines.
Collapse
Affiliation(s)
- Shelby L. O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Jennifer J. Lhost
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Ericka A. Becker
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Ann M. Detmer
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Randall C. Johnson
- Laboratory of Genomic Diversity, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702
- Chaire de Bioinformatique, Conservatoire National des Arts et Metiers, 75003, Paris, France
| | - Caitlin E. MacNair
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Roger W. Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Julie A. Karl
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Justin M. Greene
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Benjamin J. Burwitz
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Benjamin N. Bimber
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Simon M. Lank
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Jennifer J. Tuscher
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Edward T. Mee
- Division of Retrovirology, National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Nicola J. Rose
- Division of Retrovirology, National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Ronald C. Desrosiers
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772
| | - Austin L. Hughes
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208
| | - Thomas C. Friedrich
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Mary Carrington
- Cancer and Inflammation Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702 and Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts 02114
| | - David H. O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
38
|
Aarnink A, Estrade L, Apoil PA, Kita YF, Saitou N, Shiina T, Blancher A. Study of cynomolgus monkey (Macaca fascicularis) DRA polymorphism in four populations. Immunogenetics 2010; 62:123-36. [PMID: 20094710 DOI: 10.1007/s00251-009-0421-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 12/21/2009] [Indexed: 12/11/2022]
Abstract
To describe the polymorphism of the DRA gene in Macaca fascicularis, we have studied 141 animals either at cDNA level (78 animals from Mauritius, the Philippines, and Vietnam) or genomic level (63 animals from the Philippines, Indonesia, and Vietnam). In total, we characterized 22 cDNA DRA alleles, 13 of which had not been described until now. In the Mauritius population, we confirmed the presence of three DRA alleles. In the Philippine and Vietnam populations, we observed 11 and 14 DRA alleles, respectively. Only two alleles were present in all three populations. All DRA alleles but one differ from the consensus sequence by one to three mutations, most being synonymous; so, only seven DR alpha proteins were deduced from the 22 cDNA alleles. One DRA cDNA allele, Mafa-DRA*02010101, differs from all other alleles by 11 to 14 mutations of which only four are non-synonymous. The two amino acid changes inside the peptide groove of Mafa-DRA*02010101 are highly conservative. The very low proportion of non-synonymous/synonymous mutations is compatible with a purifying selection which is comparable to all previous observations concerning the evolution of the DRA gene in mammals. Homologues of the allele Mafa-DRA*02010101 are also found in two other Asian macaques (Macaca mulatta and Macaca nemestrina). The forces able to maintain this highly divergent allele in three different macaque species remain hypothetical.
Collapse
Affiliation(s)
- Alice Aarnink
- Laboratoire d'immunogénétique moléculaire, EA3034, Faculté de Médecine Purpan, Toulouse 3, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Lentiviral vector-based prime/boost vaccination against AIDS: pilot study shows protection against Simian immunodeficiency virus SIVmac251 challenge in macaques. J Virol 2009; 83:10963-74. [PMID: 19706700 DOI: 10.1128/jvi.01284-09] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AIDS vaccination has a pressing need for more potent vaccination vectors capable of eliciting strong, diversified, and long-lasting cellular immune responses against human immunodeficiency virus (HIV). Lentiviral vectors have demonstrated efficiency not only as gene delivery vehicles for gene therapy applications but also as vaccination tools. This is likely due to their ability to transduce nondividing cells, including dendritic cells, enabling sustained endogenous antigen presentation and thus the induction of high proportions of specific cytotoxic T cells and long-lasting memory T cells. We show in a first proof-of-concept pilot study that a prime/boost vaccination strategy using lentiviral vectors pseudotyped with a glycoprotein G from two non-cross-reactive vesicular stomatitis virus serotypes elicited robust and broad cellular immune responses against the vector-encoded antigen, simian immunodeficiency virus (SIV) GAG, in cynomolgus macaques. Vaccination conferred strong protection against a massive intrarectal challenge with SIVmac251, as evidenced both by the reduction of viremia at the peak of acute infection (a mean of over 2 log(10) fold reduction) and by the full preservation of the CD28(+) CD95(+) memory CD4(+) T cells during the acute phase, a strong correlate of protection against pathogenesis. Although vaccinees continued to display lower viremia than control macaques during the early chronic phase, these differences were not statistically significant by day 50 postchallenge. A not-optimized SIV GAG antigen was chosen to show the strong potential of the lentiviral vector system for vaccination. Given that a stronger protection can be anticipated from a modern HIV-1 antigen design, gene transfer vectors derived from HIV-1 appear as promising candidates for vaccination against HIV-1 infection.
Collapse
|
40
|
Burwitz BJ, Pendley CJ, Greene JM, Detmer AM, Lhost JJ, Karl JA, Piaskowski SM, Rudersdorf RA, Wallace LT, Bimber BN, Loffredo JT, Cox DG, Bardet W, Hildebrand W, Wiseman RW, O'Connor SL, O'Connor DH. Mauritian cynomolgus macaques share two exceptionally common major histocompatibility complex class I alleles that restrict simian immunodeficiency virus-specific CD8+ T cells. J Virol 2009; 83:6011-9. [PMID: 19339351 PMCID: PMC2687399 DOI: 10.1128/jvi.00199-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 03/25/2009] [Indexed: 12/15/2022] Open
Abstract
Vaccines that elicit CD8(+) T-cell responses are routinely tested for immunogenicity in nonhuman primates before advancement to clinical trials. Unfortunately, the magnitude and specificity of vaccine-elicited T-cell responses are variable in currently utilized nonhuman primate populations, owing to heterogeneity in major histocompatibility (MHC) class I genetics. We recently showed that Mauritian cynomolgus macaques (MCM) have unusually simple MHC genetics, with three common haplotypes encoding a shared pair of MHC class IA alleles, Mafa-A*25 and Mafa-A*29. Based on haplotype frequency, we hypothesized that CD8(+) T-cell responses restricted by these MHC class I alleles would be detected in nearly all MCM. We examine here the frequency and functionality of these two alleles, showing that 88% of MCM express Mafa-A*25 and Mafa-A*29 and that animals carrying these alleles mount three newly defined simian immunodeficiency virus-specific CD8(+) T-cell responses. The epitopes recognized by each of these responses accumulated substitutions consistent with immunologic escape, suggesting these responses exert antiviral selective pressure. The demonstration that Mafa-A*25 and Mafa-A*29 restrict CD8(+) T-cell responses that are shared among nearly all MCM indicates that these animals are an advantageous nonhuman primate model for comparing the immunogenicity of vaccines that elicit CD8(+) T-cell responses.
Collapse
Affiliation(s)
- Benjamin J Burwitz
- Department of Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mee ET, Berry N, Ham C, Sauermann U, Maggiorella MT, Martinon F, Verschoor EJ, Heeney JL, Le Grand R, Titti F, Almond N, Rose NJ. Mhc haplotype H6 is associated with sustained control of SIVmac251 infection in Mauritian cynomolgus macaques. Immunogenetics 2009; 61:327-39. [PMID: 19337730 DOI: 10.1007/s00251-009-0369-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 03/16/2009] [Indexed: 10/20/2022]
Abstract
The restricted diversity of the major histocompatibility complex (MHC) of Mauritian cynomolgus macaques provides powerful opportunities for insight into host-viral interactions and cellular immune responses that restrict lentiviral infections. However, little is known about the effects of Mhc haplotypes on control of SIV in this species. Using microsatellite-based genotyping and allele-specific PCR, Mhc haplotypes were deduced for 35 macaques infected with the same stock of SIVmac251. Class I haplotype H6 was associated with a reduction in chronic phase viraemia (p = 0.0145) while a similar association was observed for H6 class II (p = 0.0063). An increase in chronic phase viraemia, albeit an insignificant trend, was observed in haplotype H5-positive animals. These results further emphasise the value of genetically defined populations of non-human primates in AIDS research and provide a foundation for detailed characterisation of MHC restricted cellular immune responses and the effects of host genetics on SIV replication in cynomolgus macaques.
Collapse
Affiliation(s)
- Edward T Mee
- Division of Retrovirology, National Institute for Biological Standards and Control, Hertfordshire, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mee ET, Murrell CK, Sauermann U, Wilkinson RC, Cutler K, North D, Heath A, Ladhani K, Almond N, Rose NJ. TheMhcclass IIDRBgenotype ofMacaca fascicularisdoes not influence infection by simian retrovirus type 2. ACTA ACUST UNITED AC 2008; 72:369-78. [DOI: 10.1111/j.1399-0039.2008.01114.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Blasky AJ, Karl JA, Wiseman RW, Read DS, O’Connor DH. Rapid high-resolution MHC class I genotyping of Chinese rhesus macaques by capillary reference strand-mediated conformational analysis. Immunogenetics 2008; 60:575-84. [PMID: 18629489 PMCID: PMC2561256 DOI: 10.1007/s00251-008-0315-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 06/16/2008] [Indexed: 12/19/2022]
Abstract
Rhesus macaques (Macaca mulatta) provide well-established models for studying human disease pathogenesis and vaccine development. When challenged with infectious agents, macaques exhibit individual differences in susceptibility. An important determinant of these differences is the complement of major histocompatability complex (MHC) class I sequences expressed by each animal. Although previous studies have reported strong associations between MHC expression and disease outcome, a rapid, cost-effective method for high-resolution MHC genotyping in macaques is lacking. In this study, we adapted a modified heteroduplex assay, reference strand-mediated conformational analysis (RSCA) to an ABI 3130xl capillary electrophoresis genetic analyzer for macaque MHC class I genotyping. For validation, we investigated the concordance of RSCA genotyping for 14 MHC class I sequences in 12 Chinese rhesus macaques whose genotypes were established through complementary DNA cloning and sequencing of MHC class I sequences. We observed a concordance greater than 98% between RSCA and the cloning and sequencing data. Furthermore, RSCA confirmed the presence of MHC haplotype sharing between three macaques as predicted previously by microsatellite analysis. RSCA genotyping of an additional 25 Chinese rhesus macaques demonstrated that the frequency of these 14 MHC class I sequences ranged from 5% to 32%, with the Mamu-A1*2601 sequence being most common in this cohort. Capillary RSCA genotyping has the potential to enable researchers to rapidly evaluate MHC class I genotypes in rhesus macaques and associate specific MHC sequences with disease susceptibility.
Collapse
Affiliation(s)
- Alex J. Blasky
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53706
| | - Julie A. Karl
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53706
| | - Roger W. Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53706
| | - Daniel S. Read
- Battelle Biomedical Research Center, Columbus, OH 43201-2693
| | - David H. O’Connor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53706
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|