1
|
Kreling SES, Vance SE, Carlen EJ. Adaptation in the Alleyways: Candidate Genes Under Potential Selection in Urban Coyotes. Genome Biol Evol 2025; 17:evae279. [PMID: 39786569 PMCID: PMC11775663 DOI: 10.1093/gbe/evae279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/02/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025] Open
Abstract
In the context of evolutionary time, cities are an extremely recent development. Although our understanding of how urbanization alters ecosystems is well developed, empirical work examining the consequences of urbanization on adaptive evolution remains limited. To facilitate future work, we offer candidate genes for one of the most prominent urban carnivores across North America. The coyote (Canis latrans) is a highly adaptable carnivore distributed throughout urban and nonurban regions in North America. As such, the coyote can serve as a blueprint for understanding the various pathways by which urbanization can influence the genomes of wildlife via comparisons along urban-rural gradients, as well as between metropolitan areas. Given the close evolutionary relationship between coyotes and domestic dogs, we leverage the well-annotated dog genome and highly conserved mammalian genes from model species to outline how urbanization may alter coyote genotypes and shape coyote phenotypes. We identify variables that may alter selection pressure for urban coyotes and offer suggestions of candidate genes to explore. Specifically, we focus on pathways related to diet, health, behavior, cognition, and reproduction. In a rapidly urbanizing world, understanding how species cope and adapt to anthropogenic change can facilitate the persistence of, and coexistence with, these species.
Collapse
Affiliation(s)
- Samantha E S Kreling
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Summer E Vance
- Department of Environmental Science, Policy, and Management, University of California–Berkeley, Berkeley, CA 94720, USA
| | - Elizabeth J Carlen
- Living Earth Collaborative, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
2
|
Eom T, Ozlu B, Ivanová L, Lee S, Lee H, Krajčovič J, Shim BS. Multifunctional Natural and Synthetic Melanin for Bioelectronic Applications: A Review. Biomacromolecules 2024; 25:5489-5511. [PMID: 39194016 DOI: 10.1021/acs.biomac.4c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Emerging material interest in bioelectronic applications has highlighted natural melanin and its derivatives as promising alternatives to conventional synthetic conductors. These materials, traditionally noted for their adhesive, antioxidant, biocompatible, and biodegradable properties, have barely been used as conductors due to their extremely low electrical activities. However, recent studies have demonstrated good conductive properties in melanin materials that promote electronic-ionic hybrid charge transfer, attributed to the formation of an extended conjugated backbone. This review examines the multifunctional properties of melanin materials, focusing on their chemical and electrochemical synthesis and their resulting structure-property-function relationship. The wide range of bioelectronic applications will also be presented to highlight their importance and potential to expand into new design concepts for high-performance electronic functional materials. The review concludes by addressing the current challenges in utilizing melanin for biodegradable bioelectronics, providing a perspective on future developments.
Collapse
Affiliation(s)
- Taesik Eom
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- KIURI Center for Hydrogen Based Next Generation Mechanical System, Inha University, 36 Gaetbeol-ro, Yeonsu-gu, Incheon 21999, South Korea
| | - Busra Ozlu
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| | - Lucia Ivanová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, CZ-612 00 Brno, Czech Republic
| | - Seunghyeon Lee
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| | - HyeonJeong Lee
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| | - Jozef Krajčovič
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, CZ-612 00 Brno, Czech Republic
| | - Bong Sup Shim
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| |
Collapse
|
3
|
Rossi V, Unitt R, McNamara M. A new non-destructive method to decipher the origin of organic matter in fossils using Raman spectroscopy. RSC Adv 2024; 14:26747-26759. [PMID: 39183999 PMCID: PMC11342070 DOI: 10.1039/d4ra04364b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Ancient biomolecules provide a unique perspective on the past but are underutilized in paleontology because of challenges in interpreting the chemistry of fossils. Most organically preserved soft tissues in fossils have been altered by thermal maturation during the fossilization process, obscuring original chemistry. Here, we use a comprehensive program of thermal maturation experiments on soft tissues from diverse extant organisms to systematically test whether thermally altered biosignatures can be discriminated using Raman spectroscopy. All experimentally matured samples show chemical signatures that are superficially similar. Comparative analysis of Raman spectra following peak deconvolution, however, reveals strong tissue-specific signals. Application of this approach to fossils from the Bolca (49 Ma) and Libros (10 Ma) Konservat-Lagerstätten successfully discriminates fossil vertebrate soft tissue from that of fossil plants. Critically, our data confirm that a robust interrogation of Raman spectra coupled with multivariate analysis is a powerful tool to shed light on the taxonomic origins of thermally matured fossil soft tissues.
Collapse
Affiliation(s)
- Valentina Rossi
- School of Biological, Earth and Environmental Sciences, University College Cork Cork T23 TK30 Ireland
- Environmental Research Institute, University College Cork Lee Road Cork T23 XE10 Ireland
| | - Richard Unitt
- School of Biological, Earth and Environmental Sciences, University College Cork Cork T23 TK30 Ireland
- Environmental Research Institute, University College Cork Lee Road Cork T23 XE10 Ireland
| | - Maria McNamara
- School of Biological, Earth and Environmental Sciences, University College Cork Cork T23 TK30 Ireland
- Environmental Research Institute, University College Cork Lee Road Cork T23 XE10 Ireland
| |
Collapse
|
4
|
Medina-Armijo C, Yousef I, Berná A, Puerta A, Esteve-Núñez A, Viñas M, Prenafeta-Boldú FX. Characterization of melanin from Exophiala mesophila with the prospect of potential biotechnological applications. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1390724. [PMID: 38812984 PMCID: PMC11134573 DOI: 10.3389/ffunb.2024.1390724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024]
Abstract
Introducion Fungal melanin is an underexplored natural biomaterial of great biotechnological interest in different areas. This study investigated the physical, chemical, electrochemical, and metal-binding properties of melanin extracted from the metallotolerant black fungus Exophiala mesophila strain IRTA-M2-F10. Materials and methods Specific inhibitory studies with tricyclazole and biochemical profiling of whole cells by synchrotron radiation-based Fourier-transform infrared spectral microscopy (SR-FTIRM) were performed. An optimized extraction protocol was implemented, and purified fungal melanin was characterized using an array of spectrophotometric techniques (UV-Vis, FTIR, and EPR) and by cyclic voltammetry (CV) experiments. The metal-binding capacity of melanin extracts was also assessed by using Cr(VI) as a model heavy metal. Results Inhibitory studies indicated that 1,8-dihydroxynaphthalene may be the main precursor molecule of E. mesophila melanin (DHN-melanin). The biochemical characterization of fungal melanin extracts were benchmarked against those from two melanins comprising the precursor molecule L-3,4-dihydroxiphenylalanine (DOPA-melanin): extracts from the ink of the cephalopod Sepia officinalis and DOPA-melanin synthesized in the laboratory. The CV results of melanin extracts incubated with and without cell suspensions of the electroconductive bacterium Geobacter sulfurreducens were indicative of novel semiquinone/hydroquinone redox transformations specific for each melanin type. These interactions may play an important role in cation exchange for the adsorption of metals and in microbial interspecies electron transfer processes. Discussion The obtained results provided further evidence for the DHN-nature of E. mesophila melanin. The FTIR profiling of melanin extracts exposed to Cr(VI), compared to unexposed melanin, resulted in useful information on the distinct surface-binding properties of fungal melanin. The parameters of the Langmuir and Freundlicht isotherms for the adsorption of Cr(VI) were determined and compared to bibliographic data. Altogether, the inherent properties of fungal melanin suggest its promising potential as a biomaterial for environmental applications.
Collapse
Affiliation(s)
- Cristy Medina-Armijo
- Program of Sustainability in Biosystems, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Catalonia, Spain
- Faculty of Pharmacy and Food Sciences, University of Barcelona, Catalonia, Spain
| | - Ibraheem Yousef
- MIRAS Beamline, ALBA Synchrotron Light Source, Cerdanyola del Vallés, Catalonia, Spain
| | | | - Anna Puerta
- Program of Sustainability in Biosystems, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Catalonia, Spain
| | - Abraham Esteve-Núñez
- Department of Chemical Engineering, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Marc Viñas
- Program of Sustainability in Biosystems, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Catalonia, Spain
| | - Francesc X. Prenafeta-Boldú
- Program of Sustainability in Biosystems, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Catalonia, Spain
| |
Collapse
|
5
|
Madkhali N, Algessair S. Exploring the optical properties of metal-modified melanin following ultraviolet irradiation: An experimental and theoretical study using density functional theory. Heliyon 2024; 10:e29287. [PMID: 39668937 PMCID: PMC11636865 DOI: 10.1016/j.heliyon.2024.e29287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 12/14/2024] Open
Abstract
Melanin has an important function to protect humans from sunlight because of its broad spectrum of light absorption. This characteristic varies according to the nature of absorption and the amount of melanin manufactured. This study focused on UV-Vis absorption of melanin doped with (Fe, Co, Zn) ions. According to the result, eumelanin exhibits substantial absorption in a broad range between (200-500 nm) corresponding to the extension of the violet to the visible region. In the theoretical section of the results, using density functional theory (DFT) revealed an improvement in the optical reactivity properties of transition metals eumelanin. The presence of transition metals led to semiconductor-like behavior and optical reactivity regions in the energy range of 4.4-4.6 electron volts, clearly indicating enhanced structural properties in the presence of metals. In this study, we aspire to investigate the ability to modify the absorption properties of eumelanin can effectively contribute to the treatment of some skin diseases caused by excessive eumelanin secretion.
Collapse
Affiliation(s)
- Nawal Madkhali
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia
| | - Saja Algessair
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia
| |
Collapse
|
6
|
Iannitelli AF, Weinshenker D. Riddles in the dark: Decoding the relationship between neuromelanin and neurodegeneration in locus coeruleus neurons. Neurosci Biobehav Rev 2023; 152:105287. [PMID: 37327835 PMCID: PMC10523397 DOI: 10.1016/j.neubiorev.2023.105287] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
The noradrenergic locus coeruleus (LC) is among the first regions of the brain affected by pathology in both Alzheimer's disease (AD) and Parkinson's disease (PD), but the reasons for this selective vulnerability are not completely understood. Several features of LC neurons have been proposed as contributing factors to this dysfunction and degeneration, and this review will focus on the presence of neuromelanin (NM). NM is a dark pigment unique to catecholaminergic cells that is formed of norepinephrine (NE) and dopamine (DA) metabolites, heavy metals, protein aggregates, and oxidated lipids. We cover what is currently known about NM and the limitations of historical approaches, then discuss the new human tyrosinase (hTyr) model of NM production in rodent catecholamine cells in vivo that offers unique opportunities for studying its neurobiology, neurotoxicity, and potential of NM-based therapeutics for treating neurodegenerative disease.
Collapse
Affiliation(s)
- Alexa F Iannitelli
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
7
|
Kola A, Nencioni F, Valensin D. Bioinorganic Chemistry of Micronutrients Related to Alzheimer's and Parkinson's Diseases. Molecules 2023; 28:5467. [PMID: 37513339 PMCID: PMC10385134 DOI: 10.3390/molecules28145467] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Metal ions are fundamental to guarantee the regular physiological activity of the human organism. Similarly, vitamins play a key role in many biological functions of the metabolism, among which are coenzymes, redox mediators, and antioxidants. Due to their importance in the human organism, both metals and vitamins have been extensively studied for their involvement in neurodegenerative diseases (NDs). However, the full potential of the interaction between vitamins and metal ions has not been fully explored by researchers yet, and further investigation on this topic is needed. The aim of this review is to provide an overview of the scientific literature on the implications of vitamins and selected metal ions in two of the most common neurodegenerative diseases, Alzheimer's and Parkinson's disease. Furthermore, vitamin-metal ion interactions are discussed in detail focusing on their bioinorganic chemistry, with the perspective of arousing more interest in this fascinating bioinorganic field.
Collapse
Affiliation(s)
| | | | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.K.); (F.N.)
| |
Collapse
|
8
|
Edge R, Riley PA, Truscott TG. Does iron chelation by eumelanin contribute to the ethnic link with maternal mortality? Eur J Obstet Gynecol Reprod Biol 2022; 278:107-108. [PMID: 36150313 DOI: 10.1016/j.ejogrb.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022]
Affiliation(s)
- R Edge
- Dalton Cumbrian Facility, Westlakes Science Park, The University of Manchester, Cumbria CA24 3HA, UK
| | - P A Riley
- Division of Infection & Immunity, Faculty of Medical Sciences, University College London, London WC1E 6BT, UK.
| | - T G Truscott
- School of Chemical & Physical Sciences, Keele University, Staffordshire ST5 5BG, UK
| |
Collapse
|
9
|
Autophagy: Guardian of Skin Barrier. Biomedicines 2022; 10:biomedicines10081817. [PMID: 36009363 PMCID: PMC9405116 DOI: 10.3390/biomedicines10081817] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Autophagy is a major degradation pathway that removes harmful intracellular substances to maintain homeostasis. Various stressors, such as starvation and oxidative stress, upregulate autophagy, and the dysregulation of autophagy is associated with various human diseases, including cancer and skin diseases. The skin is the first defense barrier against external environmental hazards such as invading pathogens, ultraviolet rays, chemical toxins, and heat. Although the skin is exposed to various stressors that can activate autophagy, the roles of autophagy in the skin have not yet been fully elucidated. Accumulating evidence suggests that autophagy is closely associated with pathogenesis and the treatment of immune-related skin diseases. In this study, we review how autophagy interacts with skin cells, including keratinocytes and immune cells, enabling them to successfully perform their protective functions by eliminating pathogens and maintaining skin homeostasis. Furthermore, we discuss the implications of autophagy in immune-related skin diseases, such as alopecia areata, psoriasis, and atopic dermatitis, and suggest that a combination of autophagy modulators with conventional therapies may be a better strategy for the treatment of these diseases.
Collapse
|
10
|
Mostert AB. The importance of water content on the conductivity of biomaterials and bioelectronic devices. J Mater Chem B 2022; 10:7108-7121. [PMID: 35735112 DOI: 10.1039/d2tb00593j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conductive biocompatible-, bioinspired- and biomaterials are increasing in importance, especially in bioelectronic applications where these materials are used in a variety of devices. Given the intended purpose of many of these devices is to interface with the human body, a pertinent issue is the effect of water from the environment on the electrical properties of the materials and devices. A researcher on biomaterials may currently not be aware, but the conductivity of these materials and device performances can be significantly altered with the presence of hydration in the environment. Examples will be given to highlight the problem that the conductivity of biomaterials can change by orders of magnitude depending on water content. Furthermore, case studies will be discussed in which control of the water content was key to understanding the underlying charge transport mechanism of conductive biomaterials. Examples of various devices and their response to hydration content will also be covered. Finally, this perspective will also mention the various methods of hydration control (including contrast studies) that can be used to perform careful work on conductive biomaterials and devices. Overall, water content should be considered an environmental variable as important as temperature to control for sound scientific investigation and to yield understanding of conductive biomaterials and bioelectronic devices.
Collapse
Affiliation(s)
- A Bernardus Mostert
- Department of Physics, Swansea University, Singleton Park, SA2, 8PP, Wales, UK.
| |
Collapse
|
11
|
Panzella L, Benning K, Nesbeth DN, Setaro B, D'Errico G, Napolitano A, d'Ischia M. Identification of black sturgeon caviar pigment as eumelanin. Food Chem 2022; 373:131474. [PMID: 34731814 DOI: 10.1016/j.foodchem.2021.131474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/15/2021] [Accepted: 10/24/2021] [Indexed: 11/29/2022]
Abstract
Reported herein is the purification of the pigment of black sturgeon caviar and its unambiguous identification as a typical eumelanin by means of chemical degradation coupled with electron paramagnetic resonance (EPR) evidence. HPLC and LC-MS analysis of oxidative degradation mixtures revealed the formation of pyrrole-2,3,5-tricarboxylic acid (PTCA), a specific marker of eumelanin pigments, in yields compatible with a 6.5% w/w pigment content. EPR spectral features and parameters were in close agreement with those reported for a typical natural eumelanin such as Sepia melanin from squid ink. The identification for the first time of eumelanin in a fish roe is expected to provide a novel molecular basis for the valorization of black caviar and production wastes thereof in food chemistry and diet.
Collapse
Affiliation(s)
- Lucia Panzella
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126 Naples, Italy.
| | - Kenneth Benning
- Caviar Biotec, 563-565 Battersea Park Road, London SW11 3BL, United Kingdom
| | - Darren N Nesbeth
- Caviar Biotec, 563-565 Battersea Park Road, London SW11 3BL, United Kingdom; Department of Biochemical Engineering, University College London, Bernard Katz Building, London WC1H 6BT, United Kingdom
| | - Brunella Setaro
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126 Naples, Italy
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126 Naples, Italy
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126 Naples, Italy
| | - Marco d'Ischia
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126 Naples, Italy
| |
Collapse
|
12
|
Wibowo JT, Kellermann MY, Petersen LE, Alfiansah YR, Lattyak C, Schupp PJ. Characterization of an Insoluble and Soluble Form of Melanin Produced by Streptomyces cavourensis SV 21, a Sea Cucumber Associated Bacterium. Mar Drugs 2022; 20:md20010054. [PMID: 35049909 PMCID: PMC8777673 DOI: 10.3390/md20010054] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 01/27/2023] Open
Abstract
Melanin is a widely distributed and striking dark-colored pigment produced by countless living organisms. Although a wide range of bioactivities have been recognized, there are still major constraints in using melanin for biotechnological applications such as its fragmentary known chemical structure and its insolubility in inorganic and organic solvents. In this study, a bacterial culture of Streptomyces cavourensis SV 21 produced two distinct forms of melanin: (1) a particulate, insoluble form as well as (2) a rarely observed water-soluble form. The here presented novel, acid-free purification protocol of purified particulate melanin (PPM) and purified dissolved melanin (PDM) represents the basis for an in-depth comparison of their physicochemical and biological properties, which were compared to the traditional acid-based precipitation of melanin (AM) and to a synthetic melanin standard (SM). Our data show that the differences in solubility between PDM and PPM in aqueous solutions may be a result of different adjoining cation species, since the soluble PDM polymer is largely composed of Mg2+ ions and the insoluble PPM is dominated by Ca2+ ions. Furthermore, AM shared most properties with SM, which is likely attributed to a similar, acid-based production protocol. The here presented gentler approach of purifying melanin facilitates a new perspective of an intact form of soluble and insoluble melanin that is less chemical altered and thus closer to its original biological form.
Collapse
Affiliation(s)
- Joko Tri Wibowo
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Schleusenstr. 1, 26382 Wilhelmshaven, Germany;
- Research Center for Biotechnology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor KM 46, Cibinong 16911, Indonesia
- Correspondence: (J.T.W.); (M.Y.K.); (P.J.S.)
| | - Matthias Y. Kellermann
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Schleusenstr. 1, 26382 Wilhelmshaven, Germany;
- Correspondence: (J.T.W.); (M.Y.K.); (P.J.S.)
| | - Lars-Erik Petersen
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Schleusenstr. 1, 26382 Wilhelmshaven, Germany;
| | - Yustian R. Alfiansah
- Research Center for Oceanography, National Research and Innovation Agency (BRIN), Jl. Pasir Putih 1, Ancol Timur, Jakarta Utara 14430, Indonesia;
- Center for Aquaculture Research (ZAF), Alfred Wegener Institute (AWI), Helmholtz Center for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Colleen Lattyak
- DLR Institute of Networked Energy Systems, 26129 Oldenburg, Germany;
| | - Peter J. Schupp
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Schleusenstr. 1, 26382 Wilhelmshaven, Germany;
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstrasse 231, 26129 Oldenburg, Germany
- Correspondence: (J.T.W.); (M.Y.K.); (P.J.S.)
| |
Collapse
|
13
|
Xie W, Allioux FM, Namivandi-Zangeneh R, Ghasemian MB, Han J, Rahim MA, Tang J, Yang J, Mousavi M, Mayyas M, Cao Z, Centurion F, Christoe MJ, Zhang C, Wang Y, Merhebi S, Baharfar M, Ng G, Esrafilzadeh D, Boyer C, Kalantar-Zadeh K. Polydopamine Shell as a Ga 3+ Reservoir for Triggering Gallium-Indium Phase Separation in Eutectic Gallium-Indium Nanoalloys. ACS NANO 2021; 15:16839-16850. [PMID: 34613693 DOI: 10.1021/acsnano.1c07278] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Low melting point eutectic systems, such as the eutectic gallium-indium (EGaIn) alloy, offer great potential in the domain of nanometallurgy; however, many of their interfacial behaviors remain to be explored. Here, a compositional change of EGaIn nanoalloys triggered by polydopamine (PDA) coating is demonstrated. Incorporating PDA on the surface of EGaIn nanoalloys renders core-shell nanostructures that accompany Ga-In phase separation within the nanoalloys. The PDA shell keeps depleting the Ga3+ from the EGaIn nanoalloys when the synthesis proceeds, leading to a Ga3+-coordinated PDA coating and a smaller nanoalloy. During this process, the eutectic nanoalloys turn into non-eutectic systems that ultimately result in the solidification of In when Ga is fully depleted. The reaction of Ga3+-coordinated PDA-coated nanoalloys with nitrogen dioxide gas is presented as an example for demonstrating the functionality of such hybrid composites. The concept of phase-separating systems, with polymeric reservoirs, may lead to tailored materials and can be explored on a variety of post-transition metals.
Collapse
Affiliation(s)
- Wanjie Xie
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Francois-Marie Allioux
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | | | - Mohammad B Ghasemian
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Jialuo Han
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Md Arifur Rahim
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Jiong Yang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Maedehsadat Mousavi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Mohannad Mayyas
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Zhenbang Cao
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Franco Centurion
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Michael J Christoe
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Chengchen Zhang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Yifang Wang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Salma Merhebi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Gervase Ng
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| |
Collapse
|
14
|
Zhou X, Gong X, Cao W, Forman CJ, Oktawiec J, D'Alba L, Sun H, Thompson MP, Hu Z, Kapoor U, McCallum NC, Malliakas CD, Farha OK, Jayaraman A, Shawkey MD, Gianneschi NC. Anisotropic Synthetic Allomelanin Materials via Solid-State Polymerization of Self-Assembled 1,8-Dihydroxynaphthalene Dimers. Angew Chem Int Ed Engl 2021; 60:17464-17471. [PMID: 33913253 DOI: 10.1002/anie.202103447] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/13/2021] [Indexed: 01/15/2023]
Abstract
Melanosomes in nature have diverse morphologies, including spheres, rods, and platelets. By contrast, shapes of synthetic melanins have been almost entirely limited to spherical nanoparticles with few exceptions produced by complex templated synthetic methods. Here, we report a non-templated method to access synthetic melanins with a variety of architectures including spheres, sheets, and platelets. Three 1,8-dihydroxynaphthalene dimers (4-4', 2-4' and 2-2') were used as self-assembling synthons. These dimers pack to form well-defined structures of varying morphologies depending on the isomer. Specifically, distinctive ellipsoidal platelets can be obtained using 4-4' dimers. Solid-state polymerization of the preorganized dimers generates polymeric synthetic melanins while maintaining the initial particle morphologies. This work provides a new route to anisotropic synthetic melanins, where the building blocks are preorganized into specific shapes, followed by solid-state polymerization.
Collapse
Affiliation(s)
- Xuhao Zhou
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Xinyi Gong
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Wei Cao
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Christopher J Forman
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Julia Oktawiec
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Liliana D'Alba
- Department of Biology, Evolution and Optics of Nanostructures Group, University of Ghent, 9000, Ghent, Belgium
| | - Hao Sun
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Matthew P Thompson
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Ziying Hu
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Utkarsh Kapoor
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, Newark, DE, 19716, USA
| | - Naneki C McCallum
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Christos D Malliakas
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Omar K Farha
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Matthew D Shawkey
- Department of Biology, Evolution and Optics of Nanostructures Group, University of Ghent, 9000, Ghent, Belgium
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA.,Department of Materials Science and Engineering, and Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
15
|
Zhou X, Gong X, Cao W, Forman CJ, Oktawiec J, D'Alba L, Sun H, Thompson MP, Hu Z, Kapoor U, McCallum NC, Malliakas CD, Farha OK, Jayaraman A, Shawkey MD, Gianneschi NC. Anisotropic Synthetic Allomelanin Materials via Solid‐State Polymerization of Self‐Assembled 1,8‐Dihydroxynaphthalene Dimers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xuhao Zhou
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Xinyi Gong
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Wei Cao
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Christopher J. Forman
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Julia Oktawiec
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Liliana D'Alba
- Department of Biology Evolution and Optics of Nanostructures Group University of Ghent 9000 Ghent Belgium
| | - Hao Sun
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Matthew P. Thompson
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Ziying Hu
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Utkarsh Kapoor
- Department of Chemical and Biomolecular Engineering Colburn Laboratory University of Delaware Newark DE 19716 USA
| | - Naneki C. McCallum
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Christos D. Malliakas
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Omar K. Farha
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering Colburn Laboratory Department of Materials Science and Engineering University of Delaware Newark DE 19716 USA
| | - Matthew D. Shawkey
- Department of Biology Evolution and Optics of Nanostructures Group University of Ghent 9000 Ghent Belgium
| | - Nathan C. Gianneschi
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
- Department of Materials Science and Engineering, and Department of Biomedical Engineering Northwestern University Evanston IL 60208 USA
| |
Collapse
|
16
|
Martín J, Recio P, Rodríguez-Ruiz G, Barja I, Gutiérrez E, García LV. Relationships between soil pollution by heavy metals and melanin-dependent coloration of a fossorial amphisbaenian reptile. Integr Zool 2021; 17:596-607. [PMID: 34047065 DOI: 10.1111/1749-4877.12562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Melanin is the basis of coloration in many animals, and although it is often used in communication, thermoregulation, or camouflage, melanin has many other physiological functions. For example, in polluted habitats, melanin can have a detoxifying function. Melanic coloration would help to sequester in the skin the heavy metal contaminants from inside the body, which will be expelled to the exterior when the skin is sloughed. Moreover, animals should have evolved more melanic colorations in more polluted habitats ("industrial melanism" hypothesis). We examined whether the fossorial amphisbaenian reptile, Trogonophis wiegmanni, is able to eliminate heavy metals, derived from soil pollution by seagull depositions, through sloughing its skin. Our results suggest a covariation between levels of soil pollution by heavy metals and the concentration of heavy metals in the sloughed skins of amphisbaenians. This suggests that amphisbaenians may expel heavy metals from their bodies when they slough the skins. We also tested whether amphisbaenians inhabiting soils with higher levels of heavy metal pollution had darker (melanin-dependent) body colorations. However, contrary to predictions from the "industrial melanization" hypothesis, we found a negative relationship between soil pollution and proportions of melanic coloration. This contradictory result could, however, be explained because heavy metals have endocrine disruption effects that increase physiological stress, and higher stress levels could result in decreased melanogenesis. We suggest that although amphisbaenians might have some detoxifying mechanism linked to melanin in the skin, this process might be negatively affected by stress and result ineffective under conditions of high soil pollution.
Collapse
Affiliation(s)
- José Martín
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Pablo Recio
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Gonzalo Rodríguez-Ruiz
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Isabel Barja
- Departamento de Zoología, Facultad de Biología, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Eduardo Gutiérrez
- Departamento de Biogeoquímica, Ecología Vegetal y Microbiana, Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Sevilla, Spain
| | - Luis V García
- Departamento de Biogeoquímica, Ecología Vegetal y Microbiana, Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Sevilla, Spain
| |
Collapse
|
17
|
Mostert AB. Melanin, the What, the Why and the How: An Introductory Review for Materials Scientists Interested in Flexible and Versatile Polymers. Polymers (Basel) 2021; 13:1670. [PMID: 34065580 PMCID: PMC8161012 DOI: 10.3390/polym13101670] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 01/13/2023] Open
Abstract
Today, western society is facing challenges to create new medical technologies to service an aging population as well as the ever-increasing e-waste of electronic devices and sensors. A key solution to these challenges will be the use of biomaterials and biomimetic systems. One material that has been receiving serious attention for its biomedical and device applications is eumelanin. Eumelanin, or commonly known as melanin, is nature's brown-black pigment and is a poly-indolequinone biopolymer, which possess unique physical and chemical properties for material applications. Presented here is a review, aimed at polymer and other materials scientists, to introduce eumelanin as a potential material for research. Covered here are the chemical and physical structures of melanin, an overview of its unique physical and chemical properties, as well as a wide array of applications, but with an emphasis on device and sensing applications. The review is then finished by introducing interested readers to novel synthetic protocols and post synthesis fabrication techniques to enable a starting point for polymer research in this intriguing and complex material.
Collapse
Affiliation(s)
- A Bernardus Mostert
- Department of Chemistry, Swansea University, Singleton Park, Wales SA2 8PP, UK
| |
Collapse
|
18
|
Siwicka ZE, Son FA, Battistella C, Moore MH, Korpanty J, McCallum NC, Wang Z, Johnson BJ, Farha OK, Gianneschi NC. Synthetic Porous Melanin. J Am Chem Soc 2021; 143:3094-3103. [PMID: 33600146 DOI: 10.1021/jacs.0c10465] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Commonly known as a skin pigment, melanin has a vital role in UV radiation protection, primarily acting as a radical scavenger. However, a lesser known natural property of melanin, observed in some melanized organisms, is its capacity to adsorb toxins, including metals and organic molecules. Inspired by this, we set out to generate a synthetic porous melanin that would pave the way to enhancing the natural adsorbent properties of melanin and melanin-like materials. Here, we developed a method for the synthesis of porous polydopamine-based melanin utilizing a mesoporous silica (MS) nanoparticle template and characterized its physical properties. Through the oxidative polymerization of dopamine, followed by the etching of silica, we generated synthetic porous melanin (SPM) with the highest measured surface area of any known polydopamine-based material. The prepared SPM was effective for the uptake of various gases and organophosphate toxins, with the material exhibiting high selectivity for CO2 over CH4 and high potential for ammonia capture. Given the demonstrated advantages provided by synthetic porous melanin and melanin's role as an adsorbent in nature, we anticipate the discovery of porous analogues in biological systems.
Collapse
Affiliation(s)
| | | | | | - Martin H Moore
- Center for Bio/Molecular Science & Engineering, US Naval Research Laboratory, Washington, D.C. 20375, United States
| | | | | | - Zheng Wang
- Center for Bio/Molecular Science & Engineering, US Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Brandy J Johnson
- Center for Bio/Molecular Science & Engineering, US Naval Research Laboratory, Washington, D.C. 20375, United States
| | | | | |
Collapse
|
19
|
Galeb HA, Wilkinson EL, Stowell AF, Lin H, Murphy ST, Martin‐Hirsch PL, Mort RL, Taylor AM, Hardy JG. Melanins as Sustainable Resources for Advanced Biotechnological Applications. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000102. [PMID: 33552556 PMCID: PMC7857133 DOI: 10.1002/gch2.202000102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/04/2020] [Indexed: 05/17/2023]
Abstract
Melanins are a class of biopolymers that are widespread in nature and have diverse origins, chemical compositions, and functions. Their chemical, electrical, optical, and paramagnetic properties offer opportunities for applications in materials science, particularly for medical and technical uses. This review focuses on the application of analytical techniques to study melanins in multidisciplinary contexts with a view to their use as sustainable resources for advanced biotechnological applications, and how these may facilitate the achievement of the United Nations Sustainable Development Goals.
Collapse
Affiliation(s)
- Hanaa A. Galeb
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Department of ChemistryScience and Arts CollegeRabigh CampusKing Abdulaziz UniversityJeddah21577Saudi Arabia
| | - Emma L. Wilkinson
- Department of Biomedical and Life SciencesLancaster UniversityLancasterLA1 4YGUK
| | - Alison F. Stowell
- Department of Organisation, Work and TechnologyLancaster University Management SchoolLancaster UniversityLancasterLA1 4YXUK
| | - Hungyen Lin
- Department of EngineeringLancaster UniversityLancasterLA1 4YWUK
| | - Samuel T. Murphy
- Department of EngineeringLancaster UniversityLancasterLA1 4YWUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| | - Pierre L. Martin‐Hirsch
- Lancashire Teaching Hospitals NHS TrustRoyal Preston HospitalSharoe Green LanePrestonPR2 9HTUK
| | - Richard L. Mort
- Department of Biomedical and Life SciencesLancaster UniversityLancasterLA1 4YGUK
| | - Adam M. Taylor
- Lancaster Medical SchoolLancaster UniversityLancasterLA1 4YWUK
| | - John G. Hardy
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| |
Collapse
|
20
|
Edge R, Truscott TG. COVID-19 and the ethnicity link - is there a photochemical link? Photochem Photobiol Sci 2021; 20:183-188. [PMID: 33721239 PMCID: PMC7791943 DOI: 10.1007/s43630-020-00004-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 11/23/2022]
Abstract
A hypothesis is proposed to explain the increased detrimental effect of COVID-19 for Black, Asian and Minority Ethnic (BAME) men and women compared to Caucasian individuals. This is based on the differing photochemistry of phaeomelanin in fair skin and eumelanin in dark/black skin. It is suggested that a range of reactive oxygen species, including, singlet oxygen and the superoxide radical anion, derived via direct photolysis of phaeomelanin, may escape the melanocyte and cause subsequent damage to the SARS-CoV-2 virus. It is further suggested that (large) carbon and sulphur peroxy radicals, from oxygen addition to radicals formed by carbon–sulphur bond cleavage, may assist via damage to the cell membranes. It is also speculated that light absorption by phaeomelanin and the subsequent C-S bond cleavage, leads to release of pre-absorbed reactive oxygen species, such as singlet oxygen and free radicals, which may also contribute to an enhanced protective effect for fair-skinned people.
Collapse
Affiliation(s)
- Ruth Edge
- Dalton Cumbrian Facility, Westlakes Science Park, The University of Manchester, Cumbria, CA24 3HA, UK
| | - T George Truscott
- School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
21
|
Applications of Natural and Synthetic Melanins as Biosorbents and Adhesive Coatings. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0077-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Zhou H, Zhang Q, Cheng Y, Xiang L, Shen G, Wu X, Cai H, Li D, Zhu H, Zhang R, Li L, Cheng Z. 64Cu-labeled melanin nanoparticles for PET/CT and radionuclide therapy of tumor. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102248. [PMID: 32574686 DOI: 10.1016/j.nano.2020.102248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
Melanin is a group of natural pigments found in living organism. It can be used for positron emission tomography (PET) imaging due to its inherent chelating ability to radioactive cupric ion. This study was to prepare 64Cu-labeled PEGylated melanin nanoparticles (64Cu-PEG-MNPs), and to further take advantage of the enhanced permeability and retention (EPR) effect of radiolabeled nanoparticles to realize the integration of tumor diagnosis and treatment. We successfully synthesized PEG-MNPs. Saline and serum stability experiments demonstrated good stability. PET/CT showed high tumor aggregation. Moreover, 64Cu-PEG-MNPs resulted in a therapeutic effect on the A431 tumor-bearing mice in the treatment group. The pathological results further confirmed that the therapeutic doses of 64Cu-PEG-MNPs cause pathological changes of tumor tissues while showing minimal toxicity to normal tissues. Our data successfully demonstrate the good imaging performance of 64Cu-PEG-MNPs on A431 tumors and further proved its therapeutic effect, highlighting a great potential in targeted radionuclide therapy.
Collapse
Affiliation(s)
- Huijun Zhou
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Qing Zhang
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University School of Medicine, Stanford, CA, USA; Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yan Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Lili Xiang
- Department of Gastrointestinal Surgery, West China Forth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guohua Shen
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huawei Cai
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Daifeng Li
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University School of Medicine, Stanford, CA, USA; Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hua Zhu
- Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ruiping Zhang
- The Affiliated Shanxi Bethune Hospital of Shanxi Medical University; The Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, China.
| | - Lin Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
23
|
Hierarchical biota-level and taxonomic controls on the chemistry of fossil melanosomes revealed using synchrotron X-ray fluorescence. Sci Rep 2020; 10:8970. [PMID: 32488139 PMCID: PMC7265528 DOI: 10.1038/s41598-020-65868-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/12/2020] [Indexed: 12/22/2022] Open
Abstract
Fossil melanosomes, micron-sized granules rich in melanin in vivo, provide key information for investigations of the original coloration, taxonomy and internal anatomy of fossil vertebrates. Such studies rely, in part, on analysis of the inorganic chemistry of preserved melanosomes and an understanding of melanosome chemical taphonomy. The extent to which the preserved chemistry of fossil melanosomes is biased by biotic and abiotic factors is, however, unknown. Here we report the discovery of hierarchical controls on the inorganic chemistry of melanosomes from fossil vertebrates from nine biotas. The chemical data are dominated by a strong biota-level signal, indicating that the primary taphonomic control is the diagenetic history of the host sediment. This extrinsic control is superimposed by a biological, tissue-level control; tissue-specific chemical variation is most likely to survive in fossils where the inorganic chemistry of preserved melanosomes is distinct from that of the host sediment. Comparative analysis of our data for fossil and modern amphibians reveals that most fossil specimens show tissue-specific melanosome chemistries that differ from those of extant analogues, strongly suggesting alteration of original melanosome chemistry. Collectively, these findings form a predictive tool for the identification of fossil deposits with well-preserved melanosomes amenable to studies of fossil colour and anatomy.
Collapse
|
24
|
Maher S, Mahmoud M, Rizk M, Kalil H. Synthetic melanin nanoparticles as peroxynitrite scavengers, photothermal anticancer and heavy metals removal platforms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19115-19126. [PMID: 30982188 DOI: 10.1007/s11356-019-05111-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Melanin is a ubiquitous natural polyphenolic pigment with versatile applications including physiological functions. This polymeric material is found in a diversity of living organisms from bacteria to mammals. The biocompatibility and thermal stability of melanin nanoparticles make them good candidates to work as free radical scavengers and photothermal anticancer substrates. Research studies have identified melanin as an antioxidative therapeutic agent and/or reactive oxygen species (ROS) scavenger that includes neutralization of peroxynitrite. In addition, melanin nanoparticles have emerged as an anticancer photothermal platform that has the capability to kill cancer cells. Recently, melanin nanoparticles have been successfully used as chelating agents to purify water from heavy metals, such as hexavalent chromium. This review article highlights some selected aspects of cutting-edge melanin applications. Herein, we will refer to the recent literature that addresses melanin nanoparticles and its useful physicochemical properties as a hot topic in biomaterial science. It is expected that the techniques of Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and time-resolved Electron Paramagnetic Resonance (EPR) will have a strong impact on the full characterization of melanin nanoparticles and the subsequent exploration of their physiological and chemical mechanisms.
Collapse
Affiliation(s)
- Shaimaa Maher
- Department of Chemistry, College of Science, Cleveland State University, Cleveland, OH, 44115, USA
| | - Marwa Mahmoud
- Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez, Egypt
| | - Moustafa Rizk
- Department of Chemistry, Faculty of Science and Arts, Najran University, Sharourah, Najran, Saudi Arabia
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Haitham Kalil
- Department of Chemistry, College of Science, Cleveland State University, Cleveland, OH, 44115, USA.
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt.
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, OH, 44601, USA.
| |
Collapse
|
25
|
Kapoor U, Jayaraman A. Self-Assembly of Allomelanin Dimers and the Impact of Poly(ethylene glycol) on the Assembly: A Molecular Dynamics Simulation Study. J Phys Chem B 2020; 124:2702-2714. [DOI: 10.1021/acs.jpcb.0c00226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Utkarsh Kapoor
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
26
|
Caldas M, Santos AC, Veiga F, Rebelo R, Reis RL, Correlo VM. Melanin nanoparticles as a promising tool for biomedical applications - a review. Acta Biomater 2020; 105:26-43. [PMID: 32014585 DOI: 10.1016/j.actbio.2020.01.044] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 01/06/2023]
Abstract
Melanin is a biopolymer of easy and cheap availability that can be found among the living organisms and excels for its biocompatibility and biodegradability properties, along with scavenging abilities, metal chelation and electronic conductance. This biomaterial can act as a nanocarrier or agent itself to be used in diverse biomedical applications, such as imaging, controlled drug release, bioengineering and bioelectronics, antioxidant applications and theranostics. In this review, the melanin source and structure, its physicochemical properties, melanin-like polymers as well as the differences among those will be elucidated. The focus will be the discussion of the current approaches that apply melanin nanoparticles (MNPs) and melanin-like nanoparticles (MLNPs) in the biomedical field, to which promising capabilities have been attributed, regarding optoelectronic, photoconductivity and photoacoustic. The use of these nanoparticles, in the last 10 years, in topics as drug delivery or theranostics will be detailed and the major achievements will be discussed. Overall, we anticipate that melanin can drive us toward a new paradigm in medical diagnostics and treatments, since applying melanin features possibly its use as a theranostics nanocarrier agent, not only for diagnostics, but also for photothermal therapy and controlled drug release through chemotherapy. STATEMENT OF SIGNIFICANCE: We present here a timely and opportune review article focusing the significant potential of melanin nanoparticles in biomedical applications, which will be discussed thoroughly. This biomaterial presents multiple capabilities that may be taken into consideration towards cancer theranostics, expecting a high future impact in the nanosized-platforms design and performance.
Collapse
|
27
|
|
28
|
Xie W, Pakdel E, Liang Y, Kim YJ, Liu D, Sun L, Wang X. Natural Eumelanin and Its Derivatives as Multifunctional Materials for Bioinspired Applications: A Review. Biomacromolecules 2019; 20:4312-4331. [DOI: 10.1021/acs.biomac.9b01413] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Wanjie Xie
- Institute for Frontier Materials, Australian Future Fibers Research and Innovation Center, Deakin University, Geelong, Victoria 3220, Australia
| | - Esfandiar Pakdel
- Institute for Frontier Materials, Australian Future Fibers Research and Innovation Center, Deakin University, Geelong, Victoria 3220, Australia
| | - Yujia Liang
- Institute for Frontier Materials, Australian Future Fibers Research and Innovation Center, Deakin University, Geelong, Victoria 3220, Australia
| | - Young Jo Kim
- Department of Chemical Engineering, University of New Hampshire, 33 Academic Way, Kingsbury Hall W301, Durham, New Hampshire 03824, United States
| | - Dan Liu
- Institute for Frontier Materials, Australian Future Fibers Research and Innovation Center, Deakin University, Geelong, Victoria 3220, Australia
| | - Lu Sun
- Institute for Frontier Materials, Australian Future Fibers Research and Innovation Center, Deakin University, Geelong, Victoria 3220, Australia
| | - Xungai Wang
- Institute for Frontier Materials, Australian Future Fibers Research and Innovation Center, Deakin University, Geelong, Victoria 3220, Australia
| |
Collapse
|
29
|
Xu R, Soavi F, Santato C. An Electrochemical Study on the Effect of Metal Chelation and Reactive Oxygen Species on a Synthetic Neuromelanin Model. Front Bioeng Biotechnol 2019; 7:227. [PMID: 31681735 PMCID: PMC6813213 DOI: 10.3389/fbioe.2019.00227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/05/2019] [Indexed: 11/13/2022] Open
Abstract
Neuromelanin is present in the cathecolaminergic neuron cells of the substantia nigra and locus coeruleus of the midbrain of primates. Neuromelanin plays a role in Parkinson's disease (PD). Literature reports that neuromelanin features, among others, antioxidant properties by metal ion chelation and free radical scavenging. The pigment has been reported to have prooxidant properties too, in certain experimental conditions. We propose an explorative electrochemical study of the effect of the presence of metal ions and reactive oxygen species (ROS) on the cyclic voltammograms of a synthetic model of neuromelanin. Our work improves the current understanding on experimental conditions where neuromelanin plays an antioxidant or prooxidant behavior, thus possibly contributing to shed light on factors promoting the appearance of PD.
Collapse
Affiliation(s)
- Ri Xu
- Department of Engineering Physics, Polytechnique Montréal, Montréal, QC, Canada
| | - Francesca Soavi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Clara Santato
- Department of Engineering Physics, Polytechnique Montréal, Montréal, QC, Canada
| |
Collapse
|
30
|
Zhou X, McCallum NC, Hu Z, Cao W, Gnanasekaran K, Feng Y, Stoddart JF, Wang Z, Gianneschi NC. Artificial Allomelanin Nanoparticles. ACS NANO 2019; 13:10980-10990. [PMID: 31524373 DOI: 10.1021/acsnano.9b02160] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Allomelanin is a type of nitrogen-free melanin most commonly found in fungi. Its existence enhances resistance of the organisms to environmental damage and helps fungi survive harsh radiation conditions such as those found on spacecraft and inside contaminated nuclear power plants. We report the preparation and characterization of artificial allomelanin nanoparticles (AMNPs) via oxidative oligomerization of 1,8-dihydroxynaphthalene (1,8-DHN). We describe the resulting morphological and size control of AMNPs and demonstrate that they are radical scavengers. Finally, we show that AMNPs are taken up by neonatal human epidermal keratinocytes and packaged into perinuclear caps where they quench reactive oxygen species generated following UV exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhao Wang
- Department of Chemistry & Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Nathan C Gianneschi
- Department of Chemistry & Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
31
|
The doping effect of Fe, Cu and Zn ions on the structural and electrochemical properties and the thermostability of natural melanin extracted from Nigella sativa L. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Maddah M, Delavari H. H, Mehravi B. Preparation of Bio‐Inspired Melanin Nanoplatforms Chelated with Manganese Ions as a Potential T1 MRI Contrast Agent. ChemistrySelect 2019. [DOI: 10.1002/slct.201802926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mahsa Maddah
- Department of Higher TechnologiesTarbiat Modares University, Tehran Iran
| | - Hamid Delavari H.
- Department of Materials EngineeringTarbiat Modares University P.O. Box 14115–143, Tehran Iran
| | - Bita Mehravi
- Department of Medical NanotechnologyIran University of Medical Science, Tehran Iran
| |
Collapse
|
33
|
D'Alba L, Shawkey MD. Melanosomes: Biogenesis, Properties, and Evolution of an Ancient Organelle. Physiol Rev 2019; 99:1-19. [PMID: 30255724 DOI: 10.1152/physrev.00059.2017] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Melanosomes are organelles that produce and store melanin, a widespread biological pigment with a unique suite of properties including high refractive index, semiconducting capabilities, material stiffness, and high fossilization potential. They are involved in numerous critical biological functions in organisms across the tree of life. Individual components such as melanin chemistry and melanosome development have recently been addressed, but a broad synthesis is needed. Here, we review the hierarchical structure, development, functions, and evolution of melanosomes. We highlight variation in melanin chemistry and melanosome morphology and how these may relate to function. For example, we review what is known of the chemical differences between different melanin types (eumelanin, pheomelanin, allomelanin) and whether/how melanosome morphology relates to chemistry and color. We integrate the distribution of melanin across living organisms with what is known from the fossil record and produce hypotheses on its evolution. We suggest that melanin was present in life forms early in evolutionary history and that melanosomes evolved at the origin of organelles. Throughout, we discuss the (sometimes gaping) holes in our knowledge and suggest areas that need particular attention as we move forward in our understanding of these still-mysterious organelles and the materials that they contain.
Collapse
Affiliation(s)
- Liliana D'Alba
- Evolution and Optics of Nanostructures Group, Department of Biology, University of Ghent , Ghent , Belgium
| | - Matthew D Shawkey
- Evolution and Optics of Nanostructures Group, Department of Biology, University of Ghent , Ghent , Belgium
| |
Collapse
|
34
|
Collins W, Rouleau N, Bonzanni M, Kapner K, Jeremiah A, Du C, Pothos EN, Kaplan DL. Functional Effects of a Neuromelanin Analogue on Dopaminergic Neurons in 3D Cell Culture. ACS Biomater Sci Eng 2018; 5:308-317. [PMID: 33405867 DOI: 10.1021/acsbiomaterials.8b00976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The substantia nigra pars compacta (SNpc) is a discrete region of the brain that exhibits a dark pigment, neuromelanin (NM), a biomaterial with unique properties and the subject of ongoing research pertaining to neurodegenerative conditions like Parkinson's disease (PD). Obtaining human tissue to isolate this pigment is costly and labor intensive, making it necessary to find alternatives to model the biochemical interaction of NM and its implications on PD. To address this limitation, we modified our established silk 3D brain tissue model to emulate key characteristics of the SNpc by using a structural analogue of NM to examine the effects of the material on dopaminergic neurons using Lund's human mesencephalon (LUHMES) cells. We utilized a sepia-melanin, squid ink, derived NM analogue (NM-sim) to chelate ferric iron, and this iron-neuromelanin precipitate (Fe-NM) was purified and characterized. We then exposed LUHMES dopaminergic cells to the NM-sim, Fe-NM-sim, and control vehicle within 3D silk protein scaffolds. The presence of both NM-sim and Fe-NM-sim in the scaffolds negatively impacted spontaneous electrical activity from the LUMES networks, as evidenced by changes in local field potential (LFP) electrophysiological recordings. Furthermore, the Fe-NM-sim precipitate generated peroxides, depleted nutrients/antioxidants, and increased protein oxidation by carbonylation in sustained (>2 weeks) 3D cultures, thereby contributing to cell dysfunction. The results suggest that this 3D tissue engineered brain-like model may provide useful readouts related to PD neuro-toxicology research.
Collapse
Affiliation(s)
- Will Collins
- Department of Pharmacology & Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Tufts University, Boston, Massachusetts 02111, United States.,Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Nicolas Rouleau
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States.,Tufts Allen Discovery Center, Tufts University, 200 College Avenue, Medford, Massachusetts 02155, United States
| | - Mattia Bonzanni
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States.,Tufts Allen Discovery Center, Tufts University, 200 College Avenue, Medford, Massachusetts 02155, United States
| | - Kevin Kapner
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Alex Jeremiah
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Chuang Du
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Emmanuel N Pothos
- Department of Pharmacology & Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Tufts University, Boston, Massachusetts 02111, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States.,Tufts Allen Discovery Center, Tufts University, 200 College Avenue, Medford, Massachusetts 02155, United States
| |
Collapse
|
35
|
Ilnicka A, Lukaszewicz JP. Marine and Freshwater Feedstocks as a Precursor for Nitrogen-Containing Carbons: A Review. Mar Drugs 2018; 16:E142. [PMID: 29701697 PMCID: PMC5983274 DOI: 10.3390/md16050142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 01/21/2023] Open
Abstract
Marine-derived as well as freshwater feedstock offers important benefits, such as abundance, morphological and structural variety, and the presence of multiple elements, including nitrogen and carbon. Therefore, these renewal resources may be useful for obtaining N- and C-containing materials that can be manufactured by various methods, such as pyrolysis and hydrothermal processes supported by means of chemical and physical activators. However, every synthesis concept relies on an efficient transfer of nitrogen and carbon from marine/freshwater feedstock to the final product. This paper reviews the advantages of marine feedstock over synthetic and natural but non-marine resources as precursors for the manufacturing of N-doped activated carbons. The manufacturing procedure influences some crucial properties of nitrogen-doped carbon materials, such as pore structure and the chemical composition of the surface. An extensive review is given on the relationship between carbon materials manufacturing from marine feedstock and the elemental content of nitrogen, together with a description of the chemical bonding of nitrogen atoms at the surface. N-doped carbons may serve as effective adsorbents for the removal of pollutants from the gas or liquid phase. Non-recognized areas of adsorption-based applications for nitrogen-doped carbons are presented, too. The paper proves that nitrogen-doped carbon materials belong to most of the prospective electrode materials for electrochemical energy conversion and storage technologies such as fuel cells, air⁻metal batteries, and supercapacitors, as well as for bioimaging. The reviewed material belongs to the widely understood field of marine biotechnology in relation to marine natural products.
Collapse
Affiliation(s)
- Anna Ilnicka
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland.
| | - Jerzy P Lukaszewicz
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland.
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland.
| |
Collapse
|
36
|
Vega MA, Nieto C, Marcelo G, Martín Del Valle EM. Cytotoxicity of paramagnetic cations-Loaded polydopamine nanoparticles. Colloids Surf B Biointerfaces 2018; 167:284-290. [PMID: 29679804 DOI: 10.1016/j.colsurfb.2018.04.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/26/2018] [Accepted: 04/10/2018] [Indexed: 01/21/2023]
Abstract
Polydopamine (PD) is a synthetic melanin pigment of great importance in biomedicine, where its affinity for metallic cations, especially paramagnetic ions, has sparked interest in its use in the development of magnetic resonance imaging (MRI) contrast agents. In this work, we report the cytotoxicity of metal-enriched PD nanoparticles on NIH3T3, a healthy cell line and BT474, a breast cancer cell line. Remarkably, it was found that the metal- enriched PD particles (Mn+ = Fe3+, Fe2+ and Cu2+) were highly cytotoxic to the breast cancer cells, even after 24 h of treatment. Although, this effect was not selective systems, since an acute cytotoxic effect was also observed on the healthy cell line, this system can be considered as starting point for designing advanced antineoplastic agents.
Collapse
Affiliation(s)
- Milena A Vega
- Department of Chemical Engineering, Pl/La Merced s/n 37008, Universidad de Salamanca, Salamanca, Spain
| | - Celia Nieto
- Department of Chemical Engineering, Pl/La Merced s/n 37008, Universidad de Salamanca, Salamanca, Spain
| | - Gema Marcelo
- Department of Chemical Engineering, Pl/La Merced s/n 37008, Universidad de Salamanca, Salamanca, Spain.
| | - Eva M Martín Del Valle
- Department of Chemical Engineering, Pl/La Merced s/n 37008, Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
37
|
Knörle R. Neuromelanin in Parkinson's Disease: from Fenton Reaction to Calcium Signaling. Neurotox Res 2017; 33:515-522. [PMID: 28879408 DOI: 10.1007/s12640-017-9804-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/14/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Neuromelanin is supposed to play a key role in the pathogenesis of Parkinson's disease. A common theory is the formation of reactive oxygen species through the Fenton reaction catalyzed by neuromelanin-bound iron ions and subsequent death of the dopaminergic cells in the substantia nigra. From a physicochemical point of view, this pathway is rather implausible: a highly reactive radical built within a powerful radical scavenger would more promptly be inactivated before it might diffuse within the cell to reach a target to exert its deleterious potential. This review of the literature provides evidence for an interaction of neuromelanin with the calcium signaling pathway in Parkinson's disease and expands the view of the pathophysiological contribution of neuromelanin towards a cytoprotective involvement of this macromolecule in the calcium signaling system. More probably than being directly involved in the production of reactive oxygen species, neuromelanin may act as a calcium reservoir and thus protect dopaminergic cells from cell death. A loss of neuromelanin, as observed in the substantia nigra of Parkinson patients, would lead to enhanced calcium messaging through the loss of an important calcium reservoir and thus finally via the formation of reactive oxygen species to cell death within the substantia nigra.
Collapse
Affiliation(s)
- Rainer Knörle
- IBAM GbR Dr. Rainer Knörle Dr. Peter Schnierle, Ferdinand-Porsche-Str. 5, 79211, Denzlingen, Germany.
| |
Collapse
|
38
|
Zucca FA, Segura-Aguilar J, Ferrari E, Muñoz P, Paris I, Sulzer D, Sarna T, Casella L, Zecca L. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease. Prog Neurobiol 2017; 155:96-119. [PMID: 26455458 PMCID: PMC4826627 DOI: 10.1016/j.pneurobio.2015.09.012] [Citation(s) in RCA: 449] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/14/2015] [Accepted: 09/17/2015] [Indexed: 12/11/2022]
Abstract
There are several interrelated mechanisms involving iron, dopamine, and neuromelanin in neurons. Neuromelanin accumulates during aging and is the catecholamine-derived pigment of the dopamine neurons of the substantia nigra and norepinephrine neurons of the locus coeruleus, the two neuronal populations most targeted in Parkinson's disease. Many cellular redox reactions rely on iron, however an altered distribution of reactive iron is cytotoxic. In fact, increased levels of iron in the brain of Parkinson's disease patients are present. Dopamine accumulation can induce neuronal death; however, excess dopamine can be removed by converting it into a stable compound like neuromelanin, and this process rescues the cell. Interestingly, the main iron compound in dopamine and norepinephrine neurons is the neuromelanin-iron complex, since neuromelanin is an effective metal chelator. Neuromelanin serves to trap iron and provide neuronal protection from oxidative stress. This equilibrium between iron, dopamine, and neuromelanin is crucial for cell homeostasis and in some cellular circumstances can be disrupted. Indeed, when neuromelanin-containing organelles accumulate high load of toxins and iron during aging a neurodegenerative process can be triggered. In addition, neuromelanin released by degenerating neurons activates microglia and the latter cause neurons death with further release of neuromelanin, then starting a self-propelling mechanism of neuroinflammation and neurodegeneration. Considering the above issues, age-related accumulation of neuromelanin in dopamine neurons shows an interesting link between aging and neurodegeneration.
Collapse
Affiliation(s)
- Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Juan Segura-Aguilar
- Faculty of Medicine, Molecular and Clinical Pharmacology, ICBM, University of Chile, Santiago, Chile
| | - Emanuele Ferrari
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Patricia Muñoz
- Faculty of Medicine, Molecular and Clinical Pharmacology, ICBM, University of Chile, Santiago, Chile
| | - Irmgard Paris
- Faculty of Medicine, Molecular and Clinical Pharmacology, ICBM, University of Chile, Santiago, Chile; Department of Basic Sciences, Faculty of Sciences, Santo Tomás University, Viña del Mar, Chile
| | - David Sulzer
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Department of Neurology, Columbia University Medical Center, New York, NY, USA; Department of Pharmacology, Columbia University Medical Center, New York, NY, USA
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Luigi Casella
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy.
| |
Collapse
|
39
|
Araújo M, Viveiros R, Philippart A, Miola M, Doumett S, Baldi G, Perez J, Boccaccini A, Aguiar-Ricardo A, Verné E. Bioactivity, mechanical properties and drug delivery ability of bioactive glass-ceramic scaffolds coated with a natural-derived polymer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:342-351. [DOI: 10.1016/j.msec.2017.03.169] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 03/07/2017] [Accepted: 03/20/2017] [Indexed: 11/30/2022]
|
40
|
Smith RAW, Garrett B, Naqvi KR, Fülöp A, Godfrey SP, Marsh JM, Chechik V. Mechanistic insights into the bleaching of melanin by alkaline hydrogen peroxide. Free Radic Biol Med 2017; 108:110-117. [PMID: 28323131 DOI: 10.1016/j.freeradbiomed.2017.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/14/2017] [Accepted: 03/14/2017] [Indexed: 11/25/2022]
Abstract
This work aims to determine the roles of reactive oxygen species HO∙ and HO2- in the bleaching of melanins by alkaline hydrogen peroxide. Experiments using melanosomes isolated from human hair indicated that the HO∙ radical generated in the outside solution does not contribute significantly to bleaching. However, studies using soluble Sepia melanin demonstrated that both HO2- and HO∙ will individually bleach melanin. Additionally, when both oxidants are present, bleaching is increased dramatically in both rate and extent. Careful experimental design enabled the separation of the roles and effects of these key reactive species, HO∙ and HO2-. Rationalisation of the results presented, and review of previous literature, allowed the postulation of a simplified general scheme whereby the strong oxidant HO∙ is able to pre-oxidise melanin units to o-quinones enabling more facile ring opening by the more nucleophilic HO2-. In this manner the efficiency of the roles of both species is maximised.
Collapse
Affiliation(s)
- R A W Smith
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - B Garrett
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - K R Naqvi
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - A Fülöp
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - S P Godfrey
- Procter & Gamble Service GmbH, Sulzbacher Str. 40, 65824 Schwalbach am Taunus, Germany
| | - J M Marsh
- The Procter & Gamble Company, Mason Business Center, 8700 Mason Montgomery Road, Mason, OH 45040, United States
| | - V Chechik
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom.
| |
Collapse
|
41
|
Xiao C, Chen X, Tang Y. Surface-rough Fe-N/C composite wrapped on carbon nanotubes as efficient electrocatalyst for oxygen reduction reaction. NANOTECHNOLOGY 2017; 28:225401. [PMID: 28497772 DOI: 10.1088/1361-6528/aa6ec3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fe-N/C composites are considered one of the most promising non-precious-metal electrocatalysts for oxygen reduction reaction (ORR). In this paper, we fabricate a novel and efficient carbon nanotube (CNT)-supported Fe-N/C composite catalyst, via the surface-self-polymerization of polydopamine and then the incorporation with Fe species on CNTs, followed by the pyrolysis process. The obtained catalyst demonstrates excellent electrocatalytic performance towards ORR in alkaline media. The modification of Fe-incorporated nitrogen-rich-carbons (Fe-CNx) on CNTs lowers the ORR half-wave-potential by ∼190 mV, giving this catalyst with an onset ORR potential of 0.95 V (versus reversible hydrogen electrode (RHE)), a half-wave potential of 0.82 V (versus RHE), and the limiting current density of 5.39 mA cm-2 in 0.1 M KOH. The performance of the as-prepared catalyst is comparatively better than the commercially available Pt/C in terms of positive half-wave potential and larger limiting current, superior durability, and higher tolerance to the methanol.
Collapse
Affiliation(s)
- Chunhui Xiao
- Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | | | | |
Collapse
|
42
|
Kim YO, You JM, Jang HS, Choi SK, Jung BY, Kang O, Kim JW, Lee YS. Eumelanin as a support for efficient palladium nanoparticle catalyst for Suzuki coupling reaction of aryl chlorides in water. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.04.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Liu YY, Su XR, Liu SS, Yang SS, Jiang CY, Zhang Y, Zhang S. Zebrafish phosvitin-derived peptide Pt5 inhibits melanogenesis via cAMP pathway. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:517-525. [PMID: 28130732 DOI: 10.1007/s10695-016-0306-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Zebrafish phosvitin-derived peptide Pt5, consisting of the C-terminal 55 residues of phosvitin, has been shown to have an antimicrobial-immunomodulatory activity comparable to phosvitin. Here, we showed clearly that Pt5 had the capacity to inhibit tyrosinase (TYR) activity and melanin biosynthesis, and this inhibition was independent of cell proliferation and cytotoxic effects. Incubation of fluorescein isothiocyanate (FITC)-labeled Pt5 with B16F10 melanoma cells revealed that Pt5 was localized in the cytoplasm of the cells. In addition, Pt5 inhibited the expression of TYR, tyrosinase-related protein-1 (TRP-1), tyrosinase-related protein-2 (TRP-2), and microphthalmia-associated transcription factor (MITF) in B16F10 melanoma cells and reduced the intracellular cyclic adenosine monophosphate (cAMP) concentration in the cells, but it did not affect the cellular contents of pERK1/2 and β-catenin, suggesting that Pt5 regulates melanin biosynthesis via cAMP signaling pathway rather than Wnt and MAPK pathways. Collectively, these data indicate that Pt5 has the potential to be used as a melanogenesis inhibitor in medical and cosmetic industry, a novel role ever reported.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- Department of Medical Laboratory, Shaoyang University, Shaoyang, Hunan, 422000, China
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Department of Marine Biology, Ocean University of China, Room 205, Ke Xue Guan, 5 Yushan Road, Qingdao, 266003, China
| | - Xiu-Rong Su
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Shou-Sheng Liu
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Department of Marine Biology, Ocean University of China, Room 205, Ke Xue Guan, 5 Yushan Road, Qingdao, 266003, China
| | - Shuang-Shuang Yang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Department of Marine Biology, Ocean University of China, Room 205, Ke Xue Guan, 5 Yushan Road, Qingdao, 266003, China
| | - Cheng-Yan Jiang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Department of Marine Biology, Ocean University of China, Room 205, Ke Xue Guan, 5 Yushan Road, Qingdao, 266003, China
- College of Life Science and Technology, Honghe University, Mengzi, Yunnan, 661100, China
| | - Yu Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Department of Marine Biology, Ocean University of China, Room 205, Ke Xue Guan, 5 Yushan Road, Qingdao, 266003, China.
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Department of Marine Biology, Ocean University of China, Room 205, Ke Xue Guan, 5 Yushan Road, Qingdao, 266003, China.
| |
Collapse
|
44
|
Lee JJ, Moon Y, Han JH, Jeong S. Analysis of major elements in pigmented melanocytic chicken skin using laser-induced breakdown spectroscopy. JOURNAL OF BIOPHOTONICS 2017; 10:523-531. [PMID: 26996394 DOI: 10.1002/jbio.201500343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/05/2016] [Accepted: 03/01/2016] [Indexed: 06/05/2023]
Abstract
The concentration difference of major elements in melanocytic skin with respect to pigmentation level is analysed by laser-induced breakdown spectroscopy (LIBS) to investigate the applicability of LIBS as an in situ feedback tool for selective and complete laser removal of melanocytic skin tissue like nevus. The skin of black silkie chicken which had a characteristic darkly pigmented perifollicular skin surrounded by lightly pigmented extrafollicular skin was used as the sample. The results showed higher LIBS signal intensities of Ca2+ and Mg2+ but lower intensities of Na+ , Cl- and K+ in the perifollicular skin than in the extrafollicular skin, which demonstrated the feasibility to use LIBS as a reliable method to distinguish skin tissues with difference in pigmentation level. Plasma emission of biochemical elements generated with a laser irradiation on melanocytic skin lesion.
Collapse
Affiliation(s)
- Jong Jin Lee
- Department of Medical System Engineering, Gwangju Institute of Science and Technology, 1 Oryong-dong Buk-gu, Gwangju, 500-712, Republic of Korea
| | - Youngmin Moon
- Department of Medical System Engineering, Gwangju Institute of Science and Technology, 1 Oryong-dong Buk-gu, Gwangju, 500-712, Republic of Korea
| | - Jung Hyun Han
- Department of Medical System Engineering, Gwangju Institute of Science and Technology, 1 Oryong-dong Buk-gu, Gwangju, 500-712, Republic of Korea
| | - Sungho Jeong
- School of Mechatronics, Gwangju Institute of Science and Technology, 1 Oryong-dong Buk-gu, Gwangju, 500-712, Republic of Korea
| |
Collapse
|
45
|
Abstract
Melanins are ancient biological pigments found in all kingdoms of life. In fungi, their role in microbial pathogenesis is well established; however, these complex biomolecules also confer upon fungal microorganisms the faculty to tolerate extreme environments such as the Earth's poles, the International Space Station and places contaminated by toxic metals and ionizing radiation. A remarkable property of melanin is its capacity to interact with a wide range of electromagnetic radiation frequencies, functioning as a protecting and energy harvesting pigment. Other roles of fungal melanin include scavenging of free radical, thermo-tolerance, metal ion sequestration, cell development, and mechanical-chemical cellular strength. In this review, we explore the various functions ascribed to this biological pigment in fungi and its remarkable physicochemical properties.
Collapse
Affiliation(s)
- Radames JB Cordero
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| |
Collapse
|
46
|
Gujrati V, Mishra A, Ntziachristos V. Molecular imaging probes for multi-spectral optoacoustic tomography. Chem Commun (Camb) 2017; 53:4653-4672. [DOI: 10.1039/c6cc09421j] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this review, we discuss recent progress in emerging optoacoustic probes, their mechanisms, applications and challenges for biological imaging using MSOT.
Collapse
Affiliation(s)
- Vipul Gujrati
- Institute for Biological and Medical Imaging
- Helmholtz Zentrum München
- Neuherberg 85764
- Germany
- Chair for Biological Imaging
| | - Anurag Mishra
- Institute for Biological and Medical Imaging
- Helmholtz Zentrum München
- Neuherberg 85764
- Germany
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging
- Helmholtz Zentrum München
- Neuherberg 85764
- Germany
- Chair for Biological Imaging
| |
Collapse
|
47
|
Klosterman L, Bettinger CJ. Calcium-Mediated Control of Polydopamine Film Oxidation and Iron Chelation. Int J Mol Sci 2016; 18:E14. [PMID: 28025498 PMCID: PMC5297649 DOI: 10.3390/ijms18010014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 11/17/2022] Open
Abstract
The facile preparation of conformal polydopamine (PDA) films on broad classes of materials has prompted extensive research into a wide variety of potential applications for PDA. The constituent molecular species in PDA exhibit diverse chemical moieties, and therefore highly variable properties of PDA-based devices may evolve with post-processing conditions. Here we report the use of redox-inactive cations for oxidative post-processing of deposited PDA films. PDA films incubated in alkaline CaCl₂ solutions exhibit accelerated oxidative evolution in a dose-dependent manner. PDA films incubated in CaCl₂ solutions exhibit 53% of the oxidative charge transfer compared to pristine PDA films. Carboxylic acid groups generated from the oxidation process lower the isoelectric point of PDA films from pH = 4.0 ± 0.2 to pH = 3.1 ± 0.3. PDA films exposed to CaCl₂ solutions during post-processing also enhance Fe2+/Fe3+ chelation compared to pristine PDA films. These data illustrate that the molecular heterogeneity and non-equilibrium character of as-deposited PDA films afford control over the final composition by choosing post-processing conditions, but also demands forethought into how the performance of PDA-incorporated devices may change over time in salt solutions.
Collapse
Affiliation(s)
- Luke Klosterman
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Christopher J Bettinger
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
48
|
Edwards NP, van Veelen A, Anné J, Manning PL, Bergmann U, Sellers WI, Egerton VM, Sokaras D, Alonso-Mori R, Wakamatsu K, Ito S, Wogelius RA. Elemental characterisation of melanin in feathers via synchrotron X-ray imaging and absorption spectroscopy. Sci Rep 2016; 6:34002. [PMID: 27658854 PMCID: PMC5034265 DOI: 10.1038/srep34002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/02/2016] [Indexed: 11/29/2022] Open
Abstract
Melanin is a critical component of biological systems, but the exact chemistry of melanin is still imprecisely known. This is partly due to melanin’s complex heterogeneous nature and partly because many studies use synthetic analogues and/or pigments extracted from their natural biological setting, which may display important differences from endogenous pigments. Here we demonstrate how synchrotron X-ray analyses can non-destructively characterise the elements associated with melanin pigment in situ within extant feathers. Elemental imaging shows that the distributions of Ca, Cu and Zn are almost exclusively controlled by melanin pigment distribution. X-ray absorption spectroscopy demonstrates that the atomic coordination of zinc and sulfur is different within eumelanised regions compared to pheomelanised regions. This not only impacts our fundamental understanding of pigmentation in extant organisms but also provides a significant contribution to the evidence-based colour palette available for reconstructing the appearance of fossil organisms.
Collapse
Affiliation(s)
- Nicholas P Edwards
- University of Manchester, School of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, M13 9PL, UK.,University of Manchester, School of Earth and Environmental Sciences, Interdisciplinary Centre for Ancient Life, Manchester M13 9PL, UK
| | - Arjen van Veelen
- University of Manchester, School of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, M13 9PL, UK.,University of Manchester, School of Earth and Environmental Sciences, Interdisciplinary Centre for Ancient Life, Manchester M13 9PL, UK
| | - Jennifer Anné
- University of Manchester, School of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, M13 9PL, UK.,University of Manchester, School of Earth and Environmental Sciences, Interdisciplinary Centre for Ancient Life, Manchester M13 9PL, UK
| | - Phillip L Manning
- University of Manchester, School of Earth and Environmental Sciences, Interdisciplinary Centre for Ancient Life, Manchester M13 9PL, UK.,College of Charleston, Department of Geology and Environmental Geosciences, Charleston, SC, 29424, USA
| | - Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - William I Sellers
- University of Manchester, School of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, M13 9PL, UK.,University of Manchester, School of Earth and Environmental Sciences, Interdisciplinary Centre for Ancient Life, Manchester M13 9PL, UK
| | - Victoria M Egerton
- University of Manchester, School of Earth and Environmental Sciences, Interdisciplinary Centre for Ancient Life, Manchester M13 9PL, UK.,College of Charleston, Department of Geology and Environmental Geosciences, Charleston, SC, 29424, USA
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Roberto Alonso-Mori
- Linac Coherent Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University, School of Health Sciences, Toyoake, Aichi 470-1192, Japan
| | - Shosuke Ito
- Department of Chemistry, Fujita Health University, School of Health Sciences, Toyoake, Aichi 470-1192, Japan
| | - Roy A Wogelius
- University of Manchester, School of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, M13 9PL, UK.,University of Manchester, School of Earth and Environmental Sciences, Interdisciplinary Centre for Ancient Life, Manchester M13 9PL, UK
| |
Collapse
|
49
|
Kim E, Leverage WT, Liu Y, Panzella L, Alfieri ML, Napolitano A, Bentley WE, Payne GF. Paraquat-Melanin Redox-Cycling: Evidence from Electrochemical Reverse Engineering. ACS Chem Neurosci 2016; 7:1057-67. [PMID: 27246915 DOI: 10.1021/acschemneuro.6b00007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease is a neurodegenerative disorder associated with oxidative stress and the death of melanin-containing neurons of the substantia nigra. Epidemiological evidence links exposure to the pesticide paraquat (PQ) to Parkinson's disease, and this link has been explained by a redox cycling mechanism that induces oxidative stress. Here, we used a novel electrochemistry-based reverse engineering methodology to test the hypothesis that PQ can undergo reductive redox cycling with melanin. In this method, (i) an insoluble natural melanin (from Sepia melanin) and a synthetic model melanin (having a cysteinyldopamine-melanin core and dopamine-melanin shell) were entrapped in a nonconducting hydrogel film adjacent to an electrode, (ii) the film-coated electrode was immersed in solutions containing PQ (putative redox cycling reductant) and a redox cycling oxidant (ferrocene dimethanol), (iii) sequences of input potentials (i.e., voltages) were imposed to the underlying electrode to systematically engage reductive and oxidative redox cycling, and (iv) output response currents were analyzed for signatures of redox cycling. The response characteristics of the PQ-melanin systems to various input potential sequences support the hypothesis that PQ can directly donate electrons to melanin. This observation of PQ-melanin redox interactions demonstrates an association between two components that have been individually linked to oxidative stress and Parkinson's disease. Potentially, melanin's redox activity could be an important component in understanding the etiology of neurological disorders such as Parkinson's disease.
Collapse
Affiliation(s)
- Eunkyoung Kim
- Institute
for Bioscience and Biotechnology Research, University of Maryland 5115 Plant Sciences Building College Park, Maryland 20742, United States
- Fischell
Department of Bioengineering University of Maryland, College Park, Maryland 20742, United States
| | - W. Taylor Leverage
- Institute
for Bioscience and Biotechnology Research, University of Maryland 5115 Plant Sciences Building College Park, Maryland 20742, United States
- Fischell
Department of Bioengineering University of Maryland, College Park, Maryland 20742, United States
| | - Yi Liu
- Institute
for Bioscience and Biotechnology Research, University of Maryland 5115 Plant Sciences Building College Park, Maryland 20742, United States
- Fischell
Department of Bioengineering University of Maryland, College Park, Maryland 20742, United States
| | - Lucia Panzella
- Department
of Chemical Sciences, University of Naples Federico II Via Cintia
4, I-80126 Naples, Italy
| | - Maria Laura Alfieri
- Department
of Chemical Sciences, University of Naples Federico II Via Cintia
4, I-80126 Naples, Italy
| | - Alessandra Napolitano
- Department
of Chemical Sciences, University of Naples Federico II Via Cintia
4, I-80126 Naples, Italy
| | - William E. Bentley
- Institute
for Bioscience and Biotechnology Research, University of Maryland 5115 Plant Sciences Building College Park, Maryland 20742, United States
- Fischell
Department of Bioengineering University of Maryland, College Park, Maryland 20742, United States
| | - Gregory F. Payne
- Institute
for Bioscience and Biotechnology Research, University of Maryland 5115 Plant Sciences Building College Park, Maryland 20742, United States
- Fischell
Department of Bioengineering University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
50
|
Affiliation(s)
- Julian M Menter
- Department of Microbiology, Biochemistry, and Immunology Morehouse School of Medicine 720 Westview Drive SW Atlanta GA 30310 USA
| |
Collapse
|