1
|
Valizadeh M, Alimohammadi F, Azarm A, Pourtaghi Z, Derakhshan barjoei MM, Sabri H, Jafari A, Arabpour Z, Razavi P, Mokhtari M, Deravi N. Uses of soybean isoflavonoids in dentistry: A literature review. J Dent Sci 2025; 20:741-753. [PMID: 40224091 PMCID: PMC11993060 DOI: 10.1016/j.jds.2021.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 11/29/2021] [Indexed: 10/19/2022] Open
Abstract
Soybean isoflavones including genistein, daidzein and glycitein have excellent therapeutic and health properties. In this article, we reviewed soy isoflavones with a specific focus on the role they play in dentistry. In the present article, we reviewed English published articles up to December 2020 and summarized their effectiveness in inflammation, bone effects, disease prevention, and treatment of periodontal tissue and its related diseases, as well as their anti-microbial activity against oral bacteria, oral, head and neck cancers. This study shows that the anti-inflammatory effect of soy isoflavones in periodontal disease is through its inhibitory effect on the production of inflammatory cytokines and inhibition of mitogen-activated protein kinase (MAPK) activity. It has been observed that isoflavones can stop cell division in Staphylococcus aureus and may be helpful to treat salivary gland disorders caused by estrogen deficiency. Genistein and daidzein increase mineral content in bones and protect against bone loss and genistein may be beneficial as preventive chemical agents for head and neck cancers.
Collapse
Affiliation(s)
- Maryam Valizadeh
- Student Research Committee, Faculty of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnoosh Alimohammadi
- Student Research Committee, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Azarm
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zeynab Pourtaghi
- Student Research Committee, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad moein Derakhshan barjoei
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- USERN Office, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamoun Sabri
- Research Center, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Jafari
- Student Research Committee, Dental Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Arabpour
- Department of Nutrition, School of Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Pouyan Razavi
- Student Research Committee, Dental Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Melika Mokhtari
- Student Research Committee, Dental Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Chervet A, Nehme R, Defois-Fraysse C, Decombat C, Blavignac C, Auxenfans C, Evrard B, Michel S, Filaire E, Berthon JY, Dreux-Zigha A, Delort L, Caldefie-Chézet F. Development and characterization of a chicory extract fermented by Akkermansia muciniphila: An in vitro study on its potential to modulate obesity-related inflammation. Curr Res Food Sci 2025; 10:100974. [PMID: 39906505 PMCID: PMC11791162 DOI: 10.1016/j.crfs.2025.100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
Obesity, the fifth leading cause of death globally and linked to chronic low-grade inflammation and development of numerous severe pathologies, is a major public health problem. Fermented foods, probiotics, and postbiotics emerge as promising avenues for combating obesity and inflammation. The aim of our study was to develop and characterize phyto-postbiotics corresponding to prebiotic compounds fermented by gut bacteria, which could act on obesity and related-inflammation. Chicory extract fermented by Akkermansia muciniphila (C-Akm) was selected as the most antioxidant of 20 fermented extracts. The identification of metabolites derived from C-Akm extract has enabled us to detect mostly amino acids, acids, and some polyphenols (daidzein and genistein). The anti-inflammatory and anti-obesity activities of C-Akm extract were studied by testing the extract (50 μg/mL) on the polarization of THP-1 into macrophages, the secretion of pro-inflammatory cytokines in LPS-stimulated PBMCs, and the secretion of leptin and adiponectin in adipospheroids derived from human adipose stem cells. Finally, the extract was examined in 3D co-culture model mimicking inflamed obese adipose tissue. We found that C-Akm extract decreased ROS generation, TNF-α and Il-6 gene expression in polarized macrophages, INFγ and IL-17A secretion in LPS-stimulated PBMCs stimulated with LPS. It also decreased leptin expression while increasing adiponectin and HSL expression levels in both adipocytes and co-cultures. In addition, C-Akm extract stimulated adiponectin secretion in the co-culture model. Finally, our in vitro investigations demonstrated the potential benefits of C-Akm extract in the prevention and treatment of obesity-related inflammation.
Collapse
Affiliation(s)
- A. Chervet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - R. Nehme
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | | | - C. Decombat
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - C. Blavignac
- Université Clermont-Auvergne, Centre d’Imagerie Cellulaire Santé (CCIS), Clermont-Ferrand, France
| | - C. Auxenfans
- Banque de Tissus et de Cellules, Hôpital Edouard-Herriot, 69000, Lyon, France
| | - B. Evrard
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - S. Michel
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - E. Filaire
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - J.-Y. Berthon
- Greentech, Biopôle Clermont-Limagne, 63360, Saint-Beauzire, France
| | - A. Dreux-Zigha
- Greencell, Biopôle Clermont-Limagne, 63360, Saint-Beauzire, France
| | - L. Delort
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - F. Caldefie-Chézet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| |
Collapse
|
3
|
Goleij P, Sanaye PM, Alam W, Zhang J, Tabari MAK, Filosa R, Jeandet P, Cheang WS, Efferth T, Khan H. Unlocking daidzein's healing power: Present applications and future possibilities in phytomedicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155949. [PMID: 39217652 DOI: 10.1016/j.phymed.2024.155949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Cancer is one of the leading causes of death and a great threat to people around the world. Cancer treatment modalities include surgery, radiotherapy, chemotherapy, radiochemotherapy, hormone therapy, and immunotherapy. The best approach is to use a combination of several types. Among the treatment methods mentioned above, chemotherapy is frequently used, but its activity is hampered by the development of drug resistance and many side effects. In this regard, the use of medicinal plants has been discussed, and in recent decades, the use of isolated phytochemicals came into the focus of interest. By critically evaluating the available evidence and emphasizing the unique perspective offered by this review, we provide insights into the potential of daidzein as a promising therapeutic agent, as well as outline future research directions to optimize its efficacy in clinical settings. PURPOSE To summarized the therapeutic potential of daidzein, an isoflavone phytoestrogen in the management of several human diseases with the focuses on the current status and future prospects as a therapeutic agent. METHODS Several search engines, including PubMed, GoogleScholar, and ScienceDirect, were used, with the search terms "daidzein", "daidzein therapeutic potential", or individual effects. The study included all peer-reviewed articles. However, the most recent publications were given priority. RESULTS Daidzein showed protective effects against malignant diseases such as breast cancer, prostate cancer but also non-malignant diseases such as diabetes, osteoporosis, and cardiovascular diseases. Daidzein activates multiple signaling pathways leading to cell cycle arrest and apoptosis as well as antioxidant and anti-metastatic effects in malignant cells. Moreover, the anticancer effects against different cancer cells were more prominent and discussed in detail. CONCLUSIONS In short, daidzein represents a promising compound for drug development. The comprehensive potential anticancer activities of daidzein through various molecular mechanisms and its therapeutic/clinical status required further detail studies.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran.
| | - Pantea Majma Sanaye
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran; School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Waqas Alam
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Mohammad Amin Khazeei Tabari
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Rosanna Filosa
- Department of Science and Technology, University of Sannio, Benevento 82100, Italy
| | - Philippe Jeandet
- Département de Biologie et Biochimie Faculté des Sciences Exactes et Naturelles Université de Reims BP 1039 51687, Reims CEDEX 02, France
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| |
Collapse
|
4
|
Zhang S, Zhao Y, Lalsiamthara J, Peng Y, Qi L, Deng S, Wang Q. Current research progress on Prevotella intermedia and associated diseases. Crit Rev Microbiol 2024:1-18. [PMID: 39140115 DOI: 10.1080/1040841x.2024.2390594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/29/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Prevotella intermedia is a Gram-negative anaerobic bacterium that is a common pathogen of periodontitis. Recent studies have revealed that P. intermedia is closely associated with a variety of diseases involving multiple systems. Under the action of its virulence factors such as cysteine protease and adhesins, P. intermedia has the ability to bind and invade various host cells including gingival fibroblasts. It can also copolymerize a variety of pathogenic bacteria, leading to interference with the host's immune inflammatory response and causing various diseases. In this article, we review the progress of research on P. intermedia virulence factors and bacterial pathogenesis, and the correlation between P. intermedia and various diseases.
Collapse
Affiliation(s)
- Shuyang Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Yuheng Zhao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Jonathan Lalsiamthara
- Molecular Microbiology & Immunology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Yan Peng
- Key Laboratory of Green Cleaning Technology& Detergent of Zhejiang Province, Hangzhou, China
| | - Linlong Qi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Shuli Deng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Qingjing Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Nelson VK, Nuli MV, Ausali S, Gupta S, Sanga V, Mishra R, Jaini PK, Madhuri Kallam SD, Sudhan HH, Mayasa V, Abomughaid MM, Almutary AG, Pullaiah CP, Mitta R, Jha NK. Dietary anti-inflammatory and anti-bacterial medicinal plants and its compounds in bovine mastitis associated impact on human life. Microb Pathog 2024; 192:106687. [PMID: 38750773 DOI: 10.1016/j.micpath.2024.106687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Bovine mastitis (BM) is the most common bacterial mediated inflammatory disease in the dairy cattle that causes huge economic loss to the dairy industry due to decreased milk quality and quantity. Milk is the essential food in the human diet, and rich in crucial nutrients that helps in lowering the risk of diseases like hypertension, cardiovascular diseases and type 2 diabetes. The main causative agents of the disease include various gram negative, and positive bacteria, along with other risk factors such as udder shape, age, genetic, and environmental factors also contributes much for the disease. Currently, antibiotics, immunotherapy, probiotics, dry cow, and lactation therapy are commonly recommended for BM. However, these treatments can only decrease the rise of new cases but can't eliminate the causative agents, and they also exhibit several limitations. Hence, there is an urgent need of a potential source that can generate a typical and ideal treatment to overcome the limitations and eliminate the pathogens. Among the various sources, medicinal plants and its derived products always play a significant role in drug discovery against several diseases. In addition, they are also known for its low toxicity and minimum resistance features. Therefore, plants and its compounds that possess anti-inflammatory and anti-bacterial properties can serve better in bovine mastitis. In addition, the plants that are serving as a food source and possessing pharmacological properties can act even better in bovine mastitis. Hence, in this evidence-based study, we particularly review the dietary medicinal plants and derived products that are proven for anti-inflammatory and anti-bacterial effects. Moreover, the role of each dietary plant and its compounds along with possible role in the management of bovine mastitis are delineated. In this way, this article serves as a standalone source for the researchers working in this area to help in the management of BM.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Center for global health research, saveetha medical college, saveetha institute of medical and technical sciences, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saijyothi Ausali
- College of Pharmacy, MNR higher education and research academy campus, MNR Nagar, Sangareddy, 502294, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Vaishnavi Sanga
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Richa Mishra
- Department of Computer Engineering, Faculty of Engineering and Technology, Parul University, Vadodara, 391760, Gujrat, India
| | - Pavan Kumar Jaini
- Department of Pharmaceutics, Raffles University, Neemrana, Rajasthan, India
| | - Sudha Divya Madhuri Kallam
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur, Vadlamudi, Andhra Pradesh, 522213, India
| | - Hari Hara Sudhan
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Vinyas Mayasa
- GITAM School of Pharmacy, GITAM University Hyderabad Campus, Rudraram, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box, 59911, United Arab Emirates
| | - Chitikela P Pullaiah
- Department of Chemistry, Siddha Central Research Institute, Chennai, Tamil Nadu, 60016, India
| | - Raghavendra Mitta
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, Guntur, 522213, Andhra Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering & Technology (SSET), Sharda University, Greater Noida, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| |
Collapse
|
6
|
Ethier R, Krishnamurthy A, Jeffrey M, Tompkins TA. Profiling of Metabolites in a Fermented Soy Dietary Supplement Reinforces its Role in the Management of Intestinal Inflammation. Mol Nutr Food Res 2024; 68:e2300770. [PMID: 38522032 DOI: 10.1002/mnfr.202300770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/19/2024] [Indexed: 03/25/2024]
Abstract
SCOPE Gastro-AD (GAD) is a soy flour derived product that undergoes an industrial fermentation with Lactobacillus delbrueckii R0187 and has demonstrated clinical effects in gastroesophageal reflux and peptic ulcer symptom resolution. The aim of this study is to describe and link GAD's metabolomic profile to plausible mechanisms that manifest and explain the documented clinical outcomes. METHODS AND RESULTS 1H NMR spectroscopy with multivariate statistical analysis is used to characterize the prefermented soy flour and GAD products. The acquired spectra are screened using various resources and the molecular assignments are confirmed using total correlation spectroscopy (TOCSY). Peaks corresponding to different metabolites are integrated and compared between the two products for relative changes. HPLC and GC are used to quantify some specific molecules. NMR analyses demonstrate significant changes in the composition of various assigned bioactive moieties. HPLC and GC analysis demonstrate deglycation of isoflavones after fermentation, resulting in estrogenically active secondary metabolites that have been previously shown to help to reduce inflammation. CONCLUSION The identification of bioactive molecules, such as genistein and SCFAs, capable of modulating anti-inflammatory signaling cascades in the stomach's gastric and neuroendocrine tissues can explain the reported biological effects in GAD and is supported by in vivo data.
Collapse
Affiliation(s)
- Richard Ethier
- Richard Ethier Consulting, Montreal, Quebec, H4C 2J9, Canada
| | - Arun Krishnamurthy
- Purity-IQ Inc., Suite# 102, 150 Research Lane, Guelph, Ontario, N1G 4T2, Canada
| | - Michael Jeffrey
- Faculty of Science, Engineering & Information Technology, Durham College, Oshawa, Ontario, L1G 0C5, Canada
| | - Thomas A Tompkins
- Lallemand Bio-Ingredients, 1620 rue Prefontaine, Montreal, Quebec, H1W 2N8, Canada
| |
Collapse
|
7
|
Ali SI, Salama A. Natural Immunomodulatory Agents as a Complementary Therapy for Poxviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:337-354. [PMID: 38801589 DOI: 10.1007/978-3-031-57165-7_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poxviruses target innate immunity mediators such as tumor necrosis factors, interleukins, interferons, complement, and chemokines. It also targets adaptive immunity such as CD4+ T cells, CD4+ T cells, and B cells. Emerging of the recent epidemic of monkeypox virus (MPXV), a zoonotic disease native to Central and Western Africa, besides the lack of permitted treatments for poxviruses infections, encouraged researchers to identify effective inhibitors to help in preventing and treating poxviruses infections. Natural bioactive components, particularly polyphenolics, are promising for creating powerful antioxidants, anti-inflammatory, immune-stimulating, and antiviral agents. As a result, they are potentially effective therapies for preventing and treating viral diseases, such as infections caused by poxviruses including the recent pandemic MPXV. Polyphenolics: rosmarinic acid, caffeic acid, resveratrol, quercitrin, myricitrin, gingerol, gallotannin, and propolis-benzofuran A, as well as isoquinoline alkaloids: galanthamine and thalimonine represent prospective antiviral agents against MPXV, they can inhibit MPXV and other poxviruses via targeting different viral elements including DNA Topoisomerase I (TOP1), Thymidine Kinase (TK), serine/threonine protein kinase (Ser/Thr kinase), and protein A48R. The bioactive extracts of different traditional plants including Guiera senegalensis, Larrea tridentata, Sarracenia purpurea, Kalanchoe pinnata (Lam.) Pers., Zingiber officinale Roscoe, Quercus infectoria, Rhus chinensis, Prunella vulgaris L., Salvia rosmarinus, and Origanum vulgare also can inhibit the growth of different poxviruses including MPXV, vaccinia virus (VACV), variola virus, buffalopox virus, fowlpox virus, and cowpox virus. There is an urgent need for additional molecular studies to identify and confirm the anti-poxviruses properties of various natural bioactive components, especially those that showed potent antiviral activity against other viruses.
Collapse
Affiliation(s)
- Sami I Ali
- Plant Biochemistry Department, National Research Centre (NRC), 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622, Egypt.
| | - Abeer Salama
- Pharmacology Department, National Research Centre (NRC), 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622, Egypt
| |
Collapse
|
8
|
Ubaid M, Salauddin, Shadani MA, Kawish SM, Albratty M, Makeen HA, Alhazmi HA, Najmi A, Zoghebi K, Halawi MA, Ali A, Alam MS, Iqbal Z, Mirza MA. Daidzein from Dietary Supplement to a Drug Candidate: An Evaluation of Potential. ACS OMEGA 2023; 8:32271-32293. [PMID: 37780202 PMCID: PMC10538961 DOI: 10.1021/acsomega.3c03741] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/18/2023] [Indexed: 10/03/2023]
Abstract
Daidzein (DDZ) is a well-known nutraceutical supplement belonging to the class of isoflavones. It is isolated from various sources such as alfalfa, soybean, and red clover. It demonstrates a broad array of pharmacological/beneficial properties such as cardiovascular exercise, cholesterol reduction, and anticancer, antifibrotic, and antidiabetic effects, which make it effective in treating a wide range of diseases. Its structure and operation are the same as those of human estrogens, which are important in preventing osteoporosis, cancer, and postmenopausal diseases. It is thus a promising candidate for development as a phytopharmaceutical. Addressing safety, efficacy, and physicochemical properties are the primary prerequisites. DDZ is already ingested every day in varying amounts, so there should not be a significant safety risk; however, each indication requires a different dose to be determined. Some clinical trials are already being conducted globally to confirm its safety, efficacy, and therapeutic potential. Furthermore, as a result of its therapeutic influence on health, in order to establish intellectual property, patents are utilized. In light of the vast potential of eugenol, this review presents a detailed data collection on DDZ to substantiate the claim to develop it in the therapeutic category.
Collapse
Affiliation(s)
- Mohammed Ubaid
- School
of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Salauddin
- School
of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Md Andalib Shadani
- School
of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - S. M. Kawish
- School
of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammed Albratty
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hafiz A. Makeen
- Pharmacy
Practice Research Unit, Department of Clinical Pharmacy, College of
Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hassan A. Alhazmi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Substance
Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia
- Medical
Research Center, Jazan University, Jazan 45142, Saudi Arabia
| | - Asim Najmi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Maryam A. Halawi
- Pharmacy
Practice, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Department
of Haematology, Division of Cancer & Genetics School of Medicine, Cardiff University, Cardiff, Wales CF14 4XN, U.K.
| | - Abuzer Ali
- Department
of Pharmacognosy, College of Pharmacy, Taif
University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Md Shamsher Alam
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Zeenat Iqbal
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd. Aamir Mirza
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
9
|
The Multiple Sclerosis Modulatory Potential of Natural Multi-Targeting Antioxidants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238402. [PMID: 36500494 PMCID: PMC9740750 DOI: 10.3390/molecules27238402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Multiple sclerosis (MS) is a complex neurodegenerative disease. Although its pathogenesis is rather vague in some aspects, it is well known to be an inflammatory process characterized by inflammatory cytokine release and oxidative burden, resulting in demyelination and reduced remyelination and axonal survival together with microglial activation. Antioxidant compounds are gaining interest towards the manipulation of MS, since they offer, in most of the cases, many benefits, due to their pleiotropical activity, that mainly derives from the oxidative stress decrease. This review analyzes research articles, of the last decade, which describe biological in vitro, in vivo and clinical evaluation of various categories of the most therapeutically applied natural antioxidant compounds, and some of their derivatives, with anti-MS activity. It also summarizes some of the main characteristics of MS and the role the reactive oxygen and nitrogen species may have in its progression, as well as their relation with the other mechanistic aspects of the disease, in order for the multi-targeting potential of those antioxidants to be defined and the source of origination of such activity explained. Antioxidant compounds with specific characteristics are expected to affect positively some aspects of the disease, and their potential may render them as effective candidates for neurological impairment reduction in combination with the MS treatment regimen. However, more studies are needed in order such antioxidants to be established as recommended treatment to MS patients.
Collapse
|
10
|
Meng D, Wang Y, Liu T. Protective effects of silibinin on LPS-induced inflammation in human periodontal ligament cells. Front Chem 2022; 10:1019663. [PMID: 36300030 PMCID: PMC9591103 DOI: 10.3389/fchem.2022.1019663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/07/2022] [Indexed: 12/22/2023] Open
Abstract
Clinically, periodontitis is a chronic nonspecific inflammation that leads to damaged teeth and their supporting gum tissues. Although many studies on periodontitis have been conducted, therapy with natural products is still rare. Silibinin has been proven to have anti-inflammatory and antioxidant activities. However, the effects of silibinin on lipopolyssacharide (LPS)-induced inflammation in periodontal ligaments (PDLs) have not yet been investigated. In this study, the PDLs were treated with silibinin (10, 20, and 40 μM) in the presence of LPS. The results showed that silibinin treatment reduced the levels of NO, PGE2, IL-6, TNF-α, MMP-1, and MMP-3 and enhanced the activities of superoxide dismutase (SOD) and glutathione (GSH). Moreover, silibinin treatment downregulated RANKL levels and upregulated OPG and ALP levels. In summary, silibinin protected PDLs against LPS-induced inflammation, oxidative stress, and osteogenic differentiation.
Collapse
Affiliation(s)
- Di Meng
- Department of Stomatology, The Central Hospital Affilliated to Shandong First Medical University, Jinan, China
| | - Yuling Wang
- Department of Stomatology, The Central Hospital Affilliated to Shandong First Medical University, Jinan, China
- Department of Stomatology, Shandong Qianfoshan Hospital, Jinan, China
| | - Tongjun Liu
- Department of Stomatology, The Central Hospital Affilliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
11
|
Tan Y, Zhang X, Cheang WS. Isoflavones daidzin and daidzein inhibit lipopolysaccharide-induced inflammation in RAW264.7 macrophages. Chin Med 2022; 17:95. [PMID: 35974408 PMCID: PMC9380348 DOI: 10.1186/s13020-022-00653-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
Background Inflammation contributes to various diseases and soybeans and legumes are shown to reduce inflammation. However, the bioactive ingredients involved and mechanisms are not completely known. We hypothesized that soy isoflavones daidzin and daidzein exhibit anti-inflammatory effect in lipopolysaccharides (LPS)-stimulated RAW264.7 macrophage cell model and that activation mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways may mediate the effect. Methods Cell viability and nitric oxide (NO) level were determined by 3-(4,5)-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Griess reagent respectively. ELISA kits and Western blotting respectively assessed the generations of pro-inflammatory cytokines and protein expressions of signaling molecules. p65 nuclear translocation was determined by immunofluorescence assay. Results The in vitro results showed that both isoflavones did not affect cell viability at the concentrations being tested and significantly reduced levels of NO, pro-inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor-α (TNF-α), and inflammatory indicators such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in RAW264.7 cells. Daidzin and daidzein partially suppressed MAPK signaling pathways, reducing the phosphorylation of p38 and ERK; whilst phosphorylation of JNK was mildly but not significantly decreased. For the involvement of NF-κB signaling pathways, daidzin only reduced the phosphorylation of p65 whereas daidzein effectively inhibited the phosphorylation of IKKα/β, IκBα and p65. Daidzin and daidzein inhibited p65 nuclear translocation, comparable with dexamethasone (positive control). Conclusion This study supports the anti-inflammatory effects of isoflavones daidzin and daidzein, which were at least partially mediated through inactivation of MAPK and/or NF-κB signaling pathways in macrophages.
Collapse
Affiliation(s)
- Yi Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Xutao Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
12
|
Sharma G, Garg N, Hasan S, Shirodkar S. Prevotella: An insight into its characteristics and associated virulence factors. Microb Pathog 2022; 169:105673. [PMID: 35843443 DOI: 10.1016/j.micpath.2022.105673] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/04/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
Prevotella species, a gram-negative obligate anaerobe, is commonly associated with human infections such as dental caries and periodontitis, as well as other conditions such as chronic osteomyelitis, bite-related infections, rheumatoid arthritis and intestinal diseases like ulcerative colitis. This generally harmless commensal possesses virulence factors such as adhesins, hemolysins, secretion systems exopolysaccharide, LPS, proteases, quorum sensing molecules and antibiotic resistance to evolve into a well-adapted pathogen capable of causing successful infection and proliferation in the host tissue. This review describes several of these virulence factors and their advantage to Prevotella spp. in causing inflammatory diseases like periodontitis. In addition, using genome analysis of Prevotella reference strains, we examined other putative virulence determinants which can provide insights as biomarkers and be the targets for effective interventions in Prevotella related diseases like periodontitis.
Collapse
Affiliation(s)
- Geetika Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida Campus, Noida, 201313, India
| | - Nancy Garg
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida Campus, Noida, 201313, India
| | - Shamimul Hasan
- Department of Oral Medicine and Radiology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sheetal Shirodkar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida Campus, Noida, 201313, India.
| |
Collapse
|
13
|
TOKTAY E, GÜRBÜZ MA, BAL T, ÖZGÜL Ö, ERBAŞ E, UGAN RA, SELLİ J. Protective effect of daidzein on ovarian ischemia‑reperfusion injury in rats. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.993250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
14
|
Mijiti N, Someya A, Nagaoka I. Effects of isoflavone derivatives on the production of inflammatory cytokines by synovial cells. Exp Ther Med 2021; 22:1300. [PMID: 34630655 DOI: 10.3892/etm.2021.10735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/22/2021] [Indexed: 11/05/2022] Open
Abstract
The present study investigated the effects of isoflavone derivatives (daidzein, genistein and glycitein) on the production of inflammatory cytokines (IL-6 and IL-8) by IL-1β-stimulated synovial cells. Synovial MH7A cells were stimulated with IL-1β in the absence or presence of isoflavone derivatives, and IL-6 and IL-8 production was measured by ELISA. The results of the present study indicated that daidzein significantly inhibited the production of IL-6, but not IL-8. Conversely, neither genistein nor glycitein exerted any inhibitory effects on the production of IL-6 or IL-8 by IL-1β-stimulated synovial cells. To elucidate the molecular mechanisms underlying the daidzein-mediated inhibition of IL-6 production, the present study examined the effects of daidzein on the phosphorylation (activation) of NF-κB p65, ERK1/2 and p38 MAPK. Daidzein significantly inhibited the phosphorylation of NF-κB p65 and ERK1/2, but not p38 MAPK in IL-1β-stimulated MH7A cells. The present study revealed that among the isoflavone derivatives examined (daidzein, genistein and glycitein), daidzein inhibited the production of IL-6, but not IL-8, by IL-1β-stimulated synovial MH7A cells via the suppression of NF-κB p65 and ERK1/2 activation. Collectively, these results suggested that daidzein may have potential as a therapeutic agent for the treatment of arthritic disorders through its anti-inflammatory effects via the inhibition of IL-6 production.
Collapse
Affiliation(s)
- Nuerbiyemu Mijiti
- Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Akimasa Someya
- Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Isao Nagaoka
- Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan.,Department of Physical Therapy, Faculty of Health Science, Juntendo University, Tokyo 113-0033, Japan
| |
Collapse
|
15
|
Zhu Y, Yang Z, Xie Y, Yang M, Zhang Y, Deng Z, Cai L. Investigation of inhibition effect of daidzein on osteosarcoma cells based on experimental validation and systematic pharmacology analysis. PeerJ 2021; 9:e12072. [PMID: 34540371 PMCID: PMC8415282 DOI: 10.7717/peerj.12072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/05/2021] [Indexed: 12/20/2022] Open
Abstract
Objective This study aims to explore the effect of daidzein, which is a natural isoflavone compound mainly extracted from soybeans, on osteosarcoma and the potential molecular mechanism. Material and Methods 143B and U2OS osteosarcoma cells were treated with gradient concentrations of daidzein, and MTT assay was used to determine the cell proliferation capacity and IC50. Hoechst 33342 staining and Annexin V-FITC/PI detection were used to determine apoptosis. Cell cycle was analyzed by flow cytometry, and migration ability were detected by transwell assays and scratch wound assay. An osteosarcoma xenograft mice model was applied to investigate the effect of daidzein on osteosarcoma in vivo. Systematic pharmacology and molecular modeling analysis were applied to predict the target of daidzein to osteosarcoma, and the target Src was verified by western blotting. We also observed the effect of daidzein on cell proliferation and apoptosis of Src-overexpressing osteosarcoma cells. Results In vitro, daidzein significantly inhibited 143B and U2OS osteosarcoma cell proliferation and migration, and induced cell cycle arrest. In vivo, daidzein exerts antitumor effects in osteosarcoma xenograft mice. After systematic screening and analysis, Src-MAPK signaling pathway was predicted as the highest-ranked pathway. Western blot demonstrated that daidzein inhibited phosphorylation of the Src-ERK pathway in osteosarcoma cells. Also, overexpression of Src could partially reverse the inhibitory effects of daidzein on osteosarcoma cell proliferation. Conclusion Daidzein exerts an antitumor effect on osteosarcoma, and the mechanism may be through the Src-ERK pathway.
Collapse
Affiliation(s)
- Yufan Zhu
- Department of Spine Surgery & Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhiqiang Yang
- Department of Spine Surgery & Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yuanlong Xie
- Department of Spine Surgery & Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Min Yang
- Department of Spine Surgery & Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yufeng Zhang
- Department of Spine Surgery & Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhouming Deng
- Department of Spine Surgery & Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Lin Cai
- Department of Spine Surgery & Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
16
|
|
17
|
Bayat P, Farshchi M, Yousefian M, Mahmoudi M, Yazdian-Robati R. Flavonoids, the compounds with anti-inflammatory and immunomodulatory properties, as promising tools in multiple sclerosis (MS) therapy: A systematic review of preclinical evidence. Int Immunopharmacol 2021; 95:107562. [PMID: 33770729 DOI: 10.1016/j.intimp.2021.107562] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), an animal model of MS, are diseases resulting in neurological disabilities that are regarded as chronic, inflammatory, and autoimmune diseases of central nervous system (CNS). In this respect, the use of anti-inflammatory compounds including flavonoids, polyphenolic compounds abundantly found in vegetables and fruits, has proposed to combat MS to dampen the inflammation and thereby ameliorating the disease severity. The objective of this study was to clarify the probable therapeutic effect of flavonoids for treatment of MS. Therefore, only English published articles that reported the therapeutic effect of flavonoids alone or in combination with other anti-MS therapeutic agents on MS, were selected by searching scientific electronic databases including PubMed, Scopus and Web of Science. Evaluation of the selected researches (686) showed that a total of 13 studies were suitable to be included in this systematic review. Interestingly, all of the studies (11 studies concerning EAE and 2 studies concerning MS) reported positive outcomes for the therapeutic effect of flavonoids on EAE and MS. All flavonoid compounds which are mentioned herein could successfully decrease the maximum clinical score of EAE, which is particularly connected to the anti-inflammatory property of these compounds. The literature review clearly discloses that flavonoids alone or in combination with other anti-MS therapeutic agents can pave the way for improving MS therapeutic strategies.
Collapse
Affiliation(s)
- Payam Bayat
- Immunology Research Center, BuAli Research Institute, Department of Immunology and Allergy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maral Farshchi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mozhdeh Yousefian
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, BuAli Research Institute, Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Rezvan Yazdian-Robati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
18
|
Euodia pasteuriana Methanol Extract Exerts Anti-Inflammatory Effects by Targeting TAK1 in the AP-1 Signaling Pathway. Molecules 2020; 25:molecules25235760. [PMID: 33297427 PMCID: PMC7730574 DOI: 10.3390/molecules25235760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/29/2020] [Accepted: 12/05/2020] [Indexed: 12/14/2022] Open
Abstract
Euodia pasteuriana A. Chev. ex Guillaumin, also known as Melicope accedens (Blume) T.G. Hartley, is a herbal medicinal plant native to Vietnam. Although Euodia pasteuriana is used as a traditional medicine to treat a variety of inflammatory diseases, the pharmacological mechanisms related to this plant are unclear. This study aimed to investigate the anti-inflammatory effects of a methanol extract of Euodia pasteuriana leaves (Ep-ME) on the production of inflammatory mediators, the mRNA expression of proinflammatory genes, and inflammatory signaling activities in macrophage cell lines. The results showed that Ep-ME strongly suppressed the release of nitric oxide (NO) in RAW264.7 cells induced with lipopolysaccharide (LPS), pam3CysSerLys4 (Pam3CSK), and polyinosinic-polycytidylic acid (poly I:C) without cytotoxicity. A reverse transcription-polymerase chain reaction further confirmed that Ep-ME suppressed the expression of interleukin 6 (IL-6), matrix metalloproteinase-1 (MMP1), matrix metalloproteinase-2 (MMP2), matrix metalloproteinase-3 (MMP3), tumor necrosis factor-α (TNF-α), and matrix metalloproteinase-9 (MMP9) at the transcriptional level and reduced the luciferase activities of activator protein 1 (AP-1) reporter promoters. In addition, immunoblotting analyses of the whole lysate and nuclear fraction, as well as overexpression assays demonstrated that Ep-ME decreased the translocation of c-Jun and suppressed the activation of transforming growth factor beta-activated kinase 1 (TAK1) in the AP-1 signaling pathways. These results imply that Ep-ME could be developed as an anti-inflammatory agent that targets TAK1 in the AP-1 signaling pathway.
Collapse
|
19
|
Kim MJ, You YO, Kang JY, Kim HJ, Kang MS. Weissella cibaria CMU exerts an anti‑inflammatory effect by inhibiting Aggregatibacter actinomycetemcomitans‑induced NF‑κB activation in macrophages. Mol Med Rep 2020; 22:4143-4150. [PMID: 33000248 PMCID: PMC7533440 DOI: 10.3892/mmr.2020.11512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/15/2020] [Indexed: 12/25/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease caused by various periodontal pathogens. Weissella cibaria CMU (oraCMU) is a probiotic that promotes oral health. However, its anti‑inflammatory effects against periodontal pathogens have not yet been investigated. The present study evaluated the anti‑inflammatory effects of live oraCMU against stimulation with the formalin‑inactivated periodontal pathogen Aggregatibacter actinomycetemcomitans in RAW 264.7 macrophages. Cell viability was analyzed by the MTS assay in a dose‑dependent manner (at multiplicities of infection of 0.1, 1, 10, 100 and 1,000). Nitric oxide (NO) was monitored using the Griess test. The mRNA expression of proinflammatory cytokines such as interleukin (IL)1β and IL6 was assessed by reverse transcription‑quantitative PCR. Western blotting was used to examine the effects of oraCMU on the phosphorylation of NF‑κB inhibitor α (IκBα) and IκBα kinase (IKK), the nuclear translocation of the NF‑κB subunit p65 and the expression of inducible NO synthase (iNOS). Live oraCMU had no cytotoxic effects on RAW 264.7 macrophages. In A. actinomycetemcomitans‑stimulated RAW 264.7 macrophages, oraCMU reduced NO production by suppressing iNOS expression and downregulating the mRNA expression of proinflammatory cytokines in a dose‑dependent manner. IKK phosphorylation and IκBα degradation were dose‑dependently inhibited by oraCMU and the nuclear translocation of p65 via the canonical NF‑κB pathway was simultaneously reduced. The results indicated that oraCMU possessed anti‑inflammatory activity associated with the inhibition of NF‑κB signal activation in response to periodontal pathogens. This suggests that oraCMU is a beneficial anti‑inflammatory probiotic that can aid in the maintenance of oral health.
Collapse
Affiliation(s)
- Min-Jeong Kim
- Department of Convergence Technology for Food Industry and Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, Jellabukdo 54538, Republic of Korea
| | - Yong-Ouk You
- Department of Oral Biochemistry, School of Dentistry, Wonkwang University, Iksan, Jellabukdo 54538, Republic of Korea
| | - Joo-Yi Kang
- Department of Oral Biochemistry, School of Dentistry, Wonkwang University, Iksan, Jellabukdo 54538, Republic of Korea
| | - Hyun-Jin Kim
- Department of Oral Anatomy and Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, Jellabukdo 54538, Republic of Korea
| | - Mi-Sun Kang
- Research and Development Department, Research Institute, OraPharm Inc., Seoul 04782, Republic of Korea
| |
Collapse
|
20
|
Petrine JCP, Del Bianco-Borges B. The influence of phytoestrogens on different physiological and pathological processes: An overview. Phytother Res 2020; 35:180-197. [PMID: 32780464 DOI: 10.1002/ptr.6816] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Functional foods have nutritional properties and organic functions, which are beneficial to health. Certain types of functional food components are so-called phytoestrogens, non-steroidal compounds derived from the metabolism of precursors contained in plants, which originate secondary metabotypes known to induce biological responses and by mimicry or modulating the action of endogenous estrogen. These molecules are involved in several physiological and pathological processes related to reproduction, bone remodeling, skin, cardiovascular, nervous, immune systems, and metabolism. This review aimed to present an overview of phytoestrogens regarding their chemical structure, actions, and effects in the organism given several pathologies. Several studies have demonstrated beneficial phytoestrogen actions, such as lipid profile improvement, cognitive function, menopause, oxidative stress, among others. Phytoestrogens effects are not completely elucidated, being necessary future research to understand the exact action mechanisms, whether they are via estrogen receptor or whether other hidden mechanisms produce these effects. Thus, this review makes a general approach to the phytoestrogen actions, beneficial effects, risk and limitations. However, the complexities of biological effects after ingestion of phytoestrogens and the differences in their metabolism and bioavailability indicate that interpretation of either risk or benefits needs to be made with caution.
Collapse
Affiliation(s)
- Jéssica C P Petrine
- Departamento de Ciências da Saúde, Universidade Federal de Lavras, Lavras, Brasil
| | | |
Collapse
|
21
|
Simões MAM, Pinto DCGA, Neves BMR, Silva AMS. Flavonoid Profile of the Genista tridentata L., a Species Used Traditionally to Treat Inflammatory Processes. Molecules 2020; 25:molecules25040812. [PMID: 32069907 PMCID: PMC7070917 DOI: 10.3390/molecules25040812] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 11/16/2022] Open
Abstract
Ethnopharmacological surveys on Portuguese flora reveal that Genista tridentata L. is a shrub used in traditional medicine for the treatment of various inflammation-related health problems, although scientific support of its benefits is still necessary. In order to establish the anti-inflammatory potential of G. tridentata and support its traditional use, ethanolic extracts of three sections of the plant (root, stem, and leaves) were subjected to in vitro evaluation of anti-inflammatory activity using lipopolysaccharide (LPS)-stimulates macrophages as an inflammation model. Simultaneously, we also aimed to establish the extracts' flavonoids profile. The ethanolic extracts, obtained by Soxhlet extraction, profile of the three sections confirmed their richness in flavonoids, being three prenylated flavonoids isolated and characterized in the root, including a new natural compound, the 3-methoxymundulin. The extracts from the three plant sections showed strong antioxidant activity at the cellular level and significantly inhibit the LPS-triggered NO production by downregulating Nos2 gene transcription and consequently iNOS expression. Additionally, root and stem extracts also decreased the LPS-induced transcription of the pro-inflammatory genes Il1b, Il6, and Ptgs2. Thus, the results support the anti-inflammatory properties attributed to G. tridentate preparations. Relevantly, the roots of the shrub, plant part not used, is an unexplored source of compounds with pharmacological and nutraceutical value.
Collapse
Affiliation(s)
- Mark A. M. Simões
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal;
| | - Diana C. G. A. Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal;
- Correspondence: (D.C.G.A.P.); (A.M.S.S.); Tel.: +351-234-401-407 (D.C.G.A.P.); +351-234-370-714 (A.M.S.S.)
| | - Bruno M. R. Neves
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal;
- Correspondence: (D.C.G.A.P.); (A.M.S.S.); Tel.: +351-234-401-407 (D.C.G.A.P.); +351-234-370-714 (A.M.S.S.)
| |
Collapse
|
22
|
Harms LM, Scalbert A, Zamora-Ros R, Rinaldi S, Jenab M, Murphy N, Achaintre D, Tjønneland A, Olsen A, Overvad K, Romana Mancini F, Mahamat-Saleh Y, Boutron-Ruault MC, Kühn T, Katzke V, Trichopoulou A, Martimianaki G, Karakatsani A, Palli D, Panico S, Sieri S, Tumino R, Sacerdote C, Bueno-de-Mesquita B, Vermeulen RCH, Weiderpass E, Nøst TH, Lasheras C, Rodríguez-Barranco M, Huerta JM, Barricarte A, Dorronsoro M, Hultdin J, Schmidt JA, Gunter M, Riboli E, Aleksandrova K. Plasma polyphenols associated with lower high-sensitivity C-reactive protein concentrations: a cross-sectional study within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Br J Nutr 2020; 123:198-208. [PMID: 31583990 PMCID: PMC7015881 DOI: 10.1017/s0007114519002538] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/30/2019] [Accepted: 09/23/2019] [Indexed: 12/16/2022]
Abstract
Experimental studies have reported on the anti-inflammatory properties of polyphenols. However, results from epidemiological investigations have been inconsistent and especially studies using biomarkers for assessment of polyphenol intake have been scant. We aimed to characterise the association between plasma concentrations of thirty-five polyphenol compounds and low-grade systemic inflammation state as measured by high-sensitivity C-reactive protein (hsCRP). A cross-sectional data analysis was performed based on 315 participants in the European Prospective Investigation into Cancer and Nutrition cohort with available measurements of plasma polyphenols and hsCRP. In logistic regression analysis, the OR and 95 % CI of elevated serum hsCRP (>3 mg/l) were calculated within quartiles and per standard deviation higher level of plasma polyphenol concentrations. In a multivariable-adjusted model, the sum of plasma concentrations of all polyphenols measured (per standard deviation) was associated with 29 (95 % CI 50, 1) % lower odds of elevated hsCRP. In the class of flavonoids, daidzein was inversely associated with elevated hsCRP (OR 0·66, 95 % CI 0·46, 0·96). Among phenolic acids, statistically significant associations were observed for 3,5-dihydroxyphenylpropionic acid (OR 0·58, 95 % CI 0·39, 0·86), 3,4-dihydroxyphenylpropionic acid (OR 0·63, 95 % CI 0·46, 0·87), ferulic acid (OR 0·65, 95 % CI 0·44, 0·96) and caffeic acid (OR 0·69, 95 % CI 0·51, 0·93). The odds of elevated hsCRP were significantly reduced for hydroxytyrosol (OR 0·67, 95 % CI 0·48, 0·93). The present study showed that polyphenol biomarkers are associated with lower odds of elevated hsCRP. Whether diet rich in bioactive polyphenol compounds could be an effective strategy to prevent or modulate deleterious health effects of inflammation should be addressed by further well-powered longitudinal studies.
Collapse
Affiliation(s)
- Laura M. Harms
- Nutrition, Immunity and Metabolism Senior Scientist Group, Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
| | - Augustin Scalbert
- International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France
| | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| | - Sabina Rinaldi
- International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France
| | - Mazda Jenab
- International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France
| | - Neil Murphy
- International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France
| | - David Achaintre
- International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France
| | - Anne Tjønneland
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anja Olsen
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Kim Overvad
- Department of Public Health, Aarhus University, DK-8000 Aarhus C, Denmark
- Department of Cardiology, Aalborg University Hospital, 9100 Aalborg, Denmark
| | - Francesca Romana Mancini
- CESP, faculté de médecine, université Paris-Sud, 75006 Paris, France
- UVSQ, INSERM, Université Paris-Saclay, 94805 Villejuif, France
| | - Yahya Mahamat-Saleh
- CESP, faculté de médecine, université Paris-Sud, 75006 Paris, France
- UVSQ, INSERM, Université Paris-Saclay, 94805 Villejuif, France
| | - Marie-Christine Boutron-Ruault
- CESP, faculté de médecine, université Paris-Sud, 75006 Paris, France
- UVSQ, INSERM, Université Paris-Saclay, 94805 Villejuif, France
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Antonia Trichopoulou
- Hellenic Health Foundation, 11527 Athens, Greece
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | | | - Anna Karakatsani
- Hellenic Health Foundation, 11527 Athens, Greece
- 2nd Pulmonary Medicine Department, School of Medicine, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, 12462 Chaidari, Greece
| | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute– ISPO, 50139 Firenze, Italy
| | - Salvatore Panico
- EPIC Centre of Naples, Dipartimento di Medicina Clinica e Chirurgia Federico II University, 80131 Napoli, Italy
| | - Sabina Sieri
- Epidemiology and Prevention UnitFondazione Istituto Nazionale dei Tumori di Milano, 20133 Milano, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, “Civic–M.P. Arezzo” Hospital, 97100 Ragusa, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), 10126 Turin, Italy
| | - Bas Bueno-de-Mesquita
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London SW7 2AZ, UK
- National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre, 3584 CX Utrecht, The Netherlands
- Department of Social and Preventative Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Roel C. H. Vermeulen
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London SW7 2AZ, UK
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, 3584 CX Utrecht, The Netherlands
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France
| | - Therese Haugdahl Nøst
- Department of Community Medicine, University of Tromsø, The Arctic University of Norway, 9019 Tromsø, Norway
| | - Cristina Lasheras
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Miguel Rodríguez-Barranco
- Andalusian School of Public Health (EASP), Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Universidad de Granada, 18011 Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - José María Huerta
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, 30008 Murcia, Spain
| | - Aurelio Barricarte
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Navarra Public Health Institute, 31002 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Miren Dorronsoro
- Public Health Direction and Biodonostia-Ciberesp, Basque Regional Health Department, 20014 Donostia-San Sebastián, Spain
| | - Johan Hultdin
- Umeå University, Medical Biosciences, Clinical Chemistry, 901 87 Umeå, Sweden
| | - Julie A. Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Marc Gunter
- International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London SW7 2AZ, UK
| | - Krasimira Aleksandrova
- Nutrition, Immunity and Metabolism Senior Scientist Group, Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- University of Potsdam, Institute of Nutritional Science, 14558 Nuthetal, Germany
| |
Collapse
|
23
|
Fan H, Lv Z, Gan L, Ning C, Li Z, Yang M, Zhang B, Song B, Li G, Tang D, Gao J, Yan S, Wang Y, Liu J, Guo Y. A Novel lncRNA Regulates the Toll-Like Receptor Signaling Pathway and Related Immune Function by Stabilizing FOS mRNA as a Competitive Endogenous RNA. Front Immunol 2019; 10:838. [PMID: 31057556 PMCID: PMC6478817 DOI: 10.3389/fimmu.2019.00838] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/01/2019] [Indexed: 01/01/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have recently emerged as new regulatory molecules with diverse functions in regulating gene expression and significant roles in the immune response. However, the function of many unknown lncRNAs is still unclear. By studying the regulatory effect of daidzein (DA) on immunity, we identified a novel lncRNA with an immune regulatory function: lncRNA- XLOC_098131. In vivo, DA treatment upregulated the expression of lncRNA- XLOC_098131, FOS, and JUN in chickens and affected the expression of activator protein 1 (AP-1) to regulate MAPK signaling, Toll-like receptor signaling, and related mRNA expression. It also enhanced macrophage activity and increased the numbers of blood neutrophils and mononuclear cells, which can improve the body's ability to respond to stress and bacterial and viral infections. Furthermore, DA treatment also reduced B lymphocyte apoptosis and promoted the differentiation of B lymphocytes into plasma cells, which in turn resulted in the production of more immunoglobulins and the promotion of antigen presentation. In vitro, using HEK293FT cells, we demonstrated that mir-548s could bind to and decrease the expression of both FOS and lncRNA- XLOC_098131. LncRNA- XLOC_098131 served as a competitive endogenous RNA to stabilize FOS by competitively binding to miR-548s and thereby reducing its inhibitory effect of FOS expression. Therefore, we concluded that the novel lncRNA XLOC_098131 acts as a key regulatory molecule that can regulate the Toll-like receptor signaling pathway and related immune function by serving as a competitive endogenous RNA to stabilize FOS mRNA expression.
Collapse
Affiliation(s)
- Hao Fan
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zengpeng Lv
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Liping Gan
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chao Ning
- Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Ministry of Agriculture, Beijing, China
| | - Zhui Li
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Minghui Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Ministry of Agriculture, Beijing, China
| | - Beibei Zhang
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bochen Song
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guang Li
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dazhi Tang
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinxin Gao
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shaojia Yan
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Youli Wang
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianfeng Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Ministry of Agriculture, Beijing, China
| | - Yuming Guo
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Kim JE, Takanche JS, Yun BS, Yi HK. Anti-inflammatory character of Phelligridin D modulates periodontal regeneration in lipopolysaccharide-induced human periodontal ligament cells. J Periodontal Res 2018; 53:816-824. [PMID: 29851069 DOI: 10.1111/jre.12570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Phelligridin D is a hispidin analogue from the mushroom Phellinus baumii that is widely used as a food source in East Asia. This study tested phelligridin D for the anti-inflammatory effect and mechanism in lipopolysaccharide (LPS)-induced human periodontal ligament cells (HPDLCs). The objective of this study was to clarify whether the anti-inflammatory function of phelligridin D affects periodontal regeneration for supporting the HPDLCs of teeth. MATERIAL AND METHODS Primary HPDLCs were isolated from healthy teeth and then cultured. The anti-inflammatory function, mechanism and differentiation molecules were verified with reactive oxygen species generation and western blot analysis in LPS-induced HPDLCs. RESULTS HPDLCs showed increased inflammatory molecules (intracellular adhesion molecule-1 and vascular cell adhesion molecule-1) and decreased osteogenic proteins (bone morphogenetic protein-7, Osterix and runt-related transcription factor 2) by LPS treatment. Phelligridin D decreased inflammatory molecules and increased osteogenic molecules via downregulation of the extracellular signal-regulated kinase and c-jun N-terminal kinases pathway among the mitogen-activated protein kinase, followed by blocking of nuclear factor kappa-B translocation from cytosol to nucleus. In addition, phelligridin D showed antioxidant properties by reducing reactive oxygen species activity. Finally, the anti-inflammatory and antioxidant function of phelligridin D promoted the periodontal differentiation of HPDLCs. CONCLUSION These results suggest that phelligridin D supports teeth on the alveolar bone against outside stress, and may be used as an anti-inflammatory compound for the prevention of periodontitis or periodontal regenerative related disease.
Collapse
Affiliation(s)
- J-E Kim
- Departments of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | - J-S Takanche
- Departments of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | - B-S Yun
- Division of Biotechnology, College of Environmental & Biosource Science, Chonbuk National University, Jeonju, South Korea
| | - H-K Yi
- Departments of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| |
Collapse
|
25
|
Abstract
As skin ages, there is a decline in physiologic function. These changes are induced by both intrinsic (chronologic) and extrinsic (predominately UV-induced) factors. Botanicals offer potential benefits to combat some of the signs of aging. Here, we review select botanicals and the scientific evidence behind their anti-aging claims. Botanicals may offer anti-inflammatory, antioxidant, moisturizing, UV-protective, and other effects. A multitude of botanicals are listed as ingredients in popular cosmetics and cosmeceuticals, but only a select few are discussed here. These were chosen based on the availability of scientific data, personal interest of the authors, and perceived “popularity” of current cosmetic and cosmeceutical products. The botanicals reviewed here include argan oil, coconut oil, crocin, feverfew, green tea, marigold, pomegranate, and soy.
Collapse
|
26
|
Kim JY, Kwon YM, Kim IS, Kim JA, Yu DY, Adhikari B, Lee SS, Choi IS, Cho KK. Effects of the Brown Seaweed Laminaria japonica Supplementation on Serum Concentrations of IgG, Triglycerides, and Cholesterol, and Intestinal Microbiota Composition in Rats. Front Nutr 2018; 5:23. [PMID: 29707542 PMCID: PMC5906548 DOI: 10.3389/fnut.2018.00023] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/22/2018] [Indexed: 12/13/2022] Open
Abstract
The intestinal microbial communities play critical roles in various aspects of body function of the host. Prebiotics, such as dietary fiber, can affect health of the host by altering the composition of intestinal microbiota. Although brown seaweed Laminaria japonica is rich in dietary fiber, studies on its prebiotic potential are quite rare. In this study, basal diet (control), basal diet supplemented with dried L. japonica (DLJ), heat-treated dried L. japonica (HLJ), or heated dried L. japonica with added fructooligosaccharide (FHLJ) was fed to rats for 16 weeks. Serum concentrations of IgG, triglyceride, and cholesterol were measured. In addition, the intestinal microbiota composition was analyzed by high-throughput sequencing of 16S rRNA gene. As compared to the control group, DLJ, HLJ, and FHLJ groups showed significantly higher serum IgG concentration, but had lower weight gain and serum triglyceride concentration. Moreover, DLJ, HLJ, and FHLJ groups showed lower Fimicutes to Bacteroidetes ratio when compared with the control group. As compared with the control group, obesity-associated bacterial genera (Allobaculum, Turicibacter, Coprobacillus, Mollicute, and Oscilibacter), and the genera with pathogenic potentials (Mollicute, Bacteroides, Clostridium, Escherichia, and Prevotella) decreased while leanness-associated genera (Alistipes, Bacteroides, and Prevotella), and lactic acid bacterial genera (Subdoligranulum, Streptococcus, Lactobacillus, Enterococcus, and Bifidobacterium) increased in all treatment groups. On the contrary, butyric acid producing genera including Subdoligranulum, Roseburia, Eubacterium, Butyrivibrio, and Anaerotruncus increased significantly only in FHLJ group. The overall results support multiple prebiotic effects of seaweed L. japonica on rats as determined by body weight reduction, enhanced immune response, and desirable changes in intestinal microbiota composition, suggesting the great potential of L. japonica as an effective prebiotic for promotion of host metabolism and reduction of obesity in humans.
Collapse
Affiliation(s)
- Jae-Young Kim
- Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju, South Korea
| | - Young Min Kwon
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States.,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| | - In-Sung Kim
- Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju, South Korea
| | - Jeong-A Kim
- Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju, South Korea
| | - Da-Yoon Yu
- Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju, South Korea
| | - Bishnu Adhikari
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sang-Suk Lee
- Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - In-Soon Choi
- Department of Biological Sciences, Silla University, Busan, South Korea
| | - Kwang-Keun Cho
- Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju, South Korea
| |
Collapse
|
27
|
Fan H, Lv Z, Gan L, Guo Y. Transcriptomics-Related Mechanisms of Supplementing Laying Broiler Breeder Hens with Dietary Daidzein to Improve the Immune Function and Growth Performance of Offspring. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2049-2060. [PMID: 29420022 DOI: 10.1021/acs.jafc.7b06069] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Daidzein (DA) is an isoflavone that is primarily extracted from soy plants. This study evaluated the effects of supplementing laying broiler breeder hens with dietary DA on the immune function and growth performance of their offspring and the underlying mechanism. A total of 720 breeders were divided into three treatment groups that were fed either a control diet (CON), a DA-low-supplemented diet (DLS, CON+20 mg/kg DA), or a DA-high-supplemented diet (DHS, CON+100 mg/kg DA) for 8 weeks, and eggs were collected for hatching during the final week. The broiler offspring received a basal diet for 42 days, and blood, livers, and immune organs were collected at 21 and 42 days of age. DLS treatment promoted embryonic development and increased growth hormone levels, body weight, feed intake, and carcass traits on days 21 and 42 of broilers. Additionally, the IgA and IgG concentrations, antibody titers, and antioxidant capacity of broilers were increased at 21 days of age, and B lymphocyte differentiation was increased at 42 days. Besides, DLS treatment upregulated the expression of genes related to embryonic and muscle development in offspring and regulated mitogen-activated protein kinase (MAPK), transforming growth factor beta (TGF-β), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and Toll-like receptor signaling. DHS treatment decreased the percentage of abdominal fat in the broilers at 42 days, but it did not significantly affect embryonic development, growth performance, or IgA and IgG concentrations. In summary, providing dietary DA supplementation at 20 mg/kg to broiler breeders can improve their immune function and growth performance.
Collapse
Affiliation(s)
- Hao Fan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Liping Gan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| |
Collapse
|
28
|
Ameliorative Effect of Daidzein on Cisplatin-Induced Nephrotoxicity in Mice via Modulation of Inflammation, Oxidative Stress, and Cell Death. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3140680. [PMID: 28831294 PMCID: PMC5558675 DOI: 10.1155/2017/3140680] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/14/2017] [Accepted: 06/20/2017] [Indexed: 12/21/2022]
Abstract
Oxidative stress and inflammation are part and parcel of cisplatin-induced nephrotoxicity. The purpose of this work is to study the role of soy isoflavone constituent, daidzein, in cisplatin-induced renal damage. Cisplatin-induced nephrotoxicity was evident by the histological damage in proximal tubular cells and by the increase in serum neutrophil gelatinase-associated lipocalin (NGAL), blood urea nitrogen (BUN), creatinine, and urinary kidney injury molecule-1 (KIM-1). Cisplatin-induced cell death was shown by TUNEL staining and caspase-3/7 activity. Daidzin treatment reduced all kidney injury markers (NGAL, BUN, creatinine, and KIM-1) and attenuated cell death (apoptotic markers). In cisplatin-induced kidney injury, renal oxidative/nitrative stress was manifested by the increase in lipid peroxidation and protein nitration. Cisplatin induced the reactive oxygen species-generating enzyme NOX-2 and impaired antioxidant defense enzyme activities such as glutathione peroxidase (GPX) and superoxide dismutase (SOD) activities. Cisplatin-induced oxidative/nitrative stress was attenuated by daidzein treatment. Cisplatin induced CD11b-positive macrophages in kidneys and daidzein attenuated CD11b-positive cells. Daidzein attenuated cisplatin-induced inflammatory cytokines tumor necrosis factor α (TNFα), interleukin 10 (IL-10), interleukin 18 (IL-18), and monocyte chemoattractant protein-1 (MCP-1). Daidzein attenuated cell death in vitro. Our data suggested that daidzein attenuated cisplatin-induced kidney injury through the downregulation of oxidative/nitrative stress, immune cells, inflammatory cytokines, and apoptotic cell death, thus improving kidney regeneration.
Collapse
|
29
|
Mangiferin inhibits lipopolysaccharide-induced production of interleukin-6 in human oral epithelial cells by suppressing toll-like receptor signaling. Arch Oral Biol 2016; 71:155-161. [PMID: 27517515 DOI: 10.1016/j.archoralbio.2016.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 07/27/2016] [Accepted: 08/03/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Oral epithelial cells have currently been found to play an important role in inflammatory modulation in periodontitis. Mangiferin is a natural glucosylxanthone with anti-inflammatory activity. The aim of this study was to investigate the regulatory effect of mangiferin on lipopolysaccharide (LPS)-induced production of proinflammatory cytokine interleukin-6 (IL-6) in oral epithelial cells and the underlying mechanisms. DESIGN The levels of LPS-induced IL-6 production in OKF6/TERT-2 oral keratinocytes were detected using enzyme-linked immunosorbent assay (ELISA). The expression of Toll-like receptor (TLR) 2 and TLR4 was determined using western blot analysis. And the phosphorylation of TLR downstream nuclear factor-κB (NF-κB), p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK) was examined using cell-based protein phosphorylation ELISA kits. RESULTS We found that mangiferin reduced LPS-upregulated IL-6 production in OKF6/TERT-2 cells. Additionally, mangiferin inhibited LPS-induced TLR2 and TLR4 overexpression, and suppressed the phosphorylation of NF-κB, p38 MAPK and JNK. Moreover, mangiferin repressed IL-6 production and TLR signaling activation in a dose-dependent manner after 24h treatment. CONCLUSIONS Mangiferin decreases LPS-induced production of IL-6 in human oral epithelial cells by suppressing TLR signaling, and this glucosylxanthone may have potential for the treatment of periodontitis.
Collapse
|
30
|
Choi EY, Lee SS, Hyeon JY, Choe SH, Keum BR, Lim JM, Park DC, Choi IS, Cho KK. Effects of β-Glucan on the Release of Nitric Oxide by Macrophages Stimulated with Lipopolysaccharide. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:1664-1674. [PMID: 27488844 PMCID: PMC5088388 DOI: 10.5713/ajas.16.0418] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/20/2016] [Accepted: 07/19/2016] [Indexed: 01/14/2023]
Abstract
This research analyzed the effect of β-glucan that is expected to alleviate the production of the inflammatory mediator in macrophagocytes, which are processed by the lipopolysaccharide (LPS) of Escherichia. The incubated layer was used for a nitric oxide (NO) analysis. The DNA-binding activation of the small unit of nuclear factor-κB was measured using the enzyme-linked immunosorbent assay-based kit. In the RAW264.7 cells that were vitalized by Escherichia coli (E. coli) LPS, the β-glucan inhibited both the combatant and rendering phases of the inducible NO synthase (iNOS)-derived NO. β-Glucan increased the expression of the heme oxygenase-1 (HO-1) in the cells that were stimulated by E. coli LPS, and the HO-1 activation was inhibited by the tin protoporphyrin IX (SnPP). This shows that the NO production induced by LPS is related to the inhibition effect of β-glucan. The phosphorylation of c-Jun N-terminal kinases (JNK) and the p38 induced by the LPS were not influenced by the β-glucan, and the inhibitory κB-α (IκB-α) decomposition was not influenced either. Instead, β-glucan remarkably inhibited the phosphorylation of the signal transducer and activator of transcription-1 (STAT1) that was induced by the E. coli LPS. Overall, the β-glucan inhibited the production of NO in macrophagocytes that was vitalized by the E .coli LPS through the HO-1 induction and the STAT1 pathways inhibition in this research. As the host immune response control by β-glucan weakens the progress of the inflammatory disease, β-glucan can be used as an effective immunomodulator.
Collapse
Affiliation(s)
- E Y Choi
- Department of Life Science, Silla University, Busan 617-736, Korea
| | - S S Lee
- Division of Applied Life Science, Graduate School of Gyeongsang National University, IALS, Jinju 660-701, Korea
| | - J Y Hyeon
- Department of Life Science, Silla University, Busan 617-736, Korea
| | - S H Choe
- Department of Life Science, Silla University, Busan 617-736, Korea
| | - B R Keum
- Department of Life Science, Silla University, Busan 617-736, Korea
| | - J M Lim
- Glucan Corporation, Gijang-gun, Busan 46048, Korea
| | - D C Park
- Glucan Corporation, Gijang-gun, Busan 46048, Korea
| | - I S Choi
- Department of Life Science, Silla University, Busan 617-736, Korea
| | - K K Cho
- Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju 52725, Korea
| |
Collapse
|
31
|
Altenhofen D, da Luz G, Frederico MJS, Venzke D, Brich M, Vigil S, Fröde TS, Linares CEB, Pizzolatti MG, Silva FRMB. Bis-Pyrano Prenyl Isoflavone Improves Glucose Homeostasis by Inhibiting Dipeptidyl Peptidase-4 in Hyperglycemic Rats. J Cell Biochem 2016; 118:92-103. [PMID: 27238050 DOI: 10.1002/jcb.25614] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/26/2016] [Indexed: 12/25/2022]
Abstract
Isoflavones widely distributed in plants prevent diabetes. This study investigated the in vivo and in vitro effect of 3',4'-dihydroxy-6″,6″,6″',6″'-tetramethylbis(pyrano[2″,3″:5,6::2″',3″':7,8]isoflavone (bis-pyrano prenyl isoflavone) on glucose homeostasis in hyperglycemic rats. The ethyl acetate fraction from aerial parts of Polygala molluginifolia that contain isoflavones was assayed on glucose tolerance, on in vitro maltase activity and on protein glycation. The isoflavone bis-pyrano prenyl isolated from this fraction was investigated on glucose homeostasis. The in vivo action of the isoflavone exhibits an anti-hyperglycemic effect by improving glucose tolerance, augmenting the liver glycogen, inhibiting maltase activity, and stimulating glucagon-like peptide-1 (GLP-1) and insulin secretion. The in vitro isoflavone inhibits dipeptidyl peptidase-4 (DPP-4) activity since the glucose tolerance was improved in the presence of the isoflavone as much as sitagliptin, an inhibitor of DPP-4. However, the co-incubation with isoflavone and sitagliptin exhibited an additive anti-hyperglycemic action. The isoflavone increased the GLP-1 faster than the positive hyperglycemic group, which shows that the intestine is a potential target. Thus, to clarify the main site of action in which isoflavone improves glucose balance, the in vitro mechanism of action of this compound was tested in intestine using calcium influx as a trigger for the signal pathways for GLP-1 secretion. The isoflavone stimulates calcium influx in intestine and its mechanism involves voltage-dependent calcium channels, phospholipase C, protein kinase C, and stored calcium contributing for GLP-1 secretion. In conclusion, the isoflavone regulates glycaemia by acting mainly in a serum target, the DPP-4 inhibitor. Furthermore, the long-term effect of isoflavone prevents protein glycation. J. Cell. Biochem. 118: 92-103, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Delsi Altenhofen
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Cx. Postal 5069, CEP: 88040-970, Florianópolis, Santa Catarina, Brazil
| | - Gabrielle da Luz
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Cx. Postal 5069, CEP: 88040-970, Florianópolis, Santa Catarina, Brazil
| | - Marisa Jádna Silva Frederico
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Cx. Postal 5069, CEP: 88040-970, Florianópolis, Santa Catarina, Brazil
| | - Dalila Venzke
- Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Mayara Brich
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Cx. Postal 5069, CEP: 88040-970, Florianópolis, Santa Catarina, Brazil
| | - Silvana Vigil
- Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Tania Silvia Fröde
- Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Carlos Eduardo Blanco Linares
- Departamento de Ciências da Saúde, Centro de Ciências da Saúde, Universidade Regional Integrada do Alto Uruguai e da Missões, Campus Frederico Westphalen, Frederico Westphalen, Rio Grande do Sul, Brazil
| | - Moacir Geraldo Pizzolatti
- Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Cx. Postal 5069, CEP: 88040-970, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
32
|
Liu YF, Bai YQ, Qi M. Daidzein attenuates abdominal aortic aneurysm through NF-κB, p38MAPK and TGF-β1 pathways. Mol Med Rep 2016; 14:955-62. [PMID: 27222119 DOI: 10.3892/mmr.2016.5304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 02/01/2016] [Indexed: 11/05/2022] Open
Abstract
The current study focuses on the protection of daidzein on nerves, as daidzein was demonstrated to have a protective effect on neurons of the central nervous system in a glutamate excitotoxicity and oxygen/glucose deprivation model. However, the effect of daidzein on the abdominal aortic aneurysm (AAA) remains unclear. The angiotensin II-induced AAA mouse model was utilized in the present study to determine the effect of daidzein on AAA. The results demonstrated that daidzein significantly attenuated incidence of AAA, max aortic aneurysm and mortality in the angiotensin II‑induced AAA mice. Daidzein had an anti‑inflammatory effect by inhibiting tumor necrosis factor α (TNF-α), interleukin 1β (IL‑1β) and nuclear factor κB (NF‑κB) protein expression. In addition, daidzein strongly suppressed the gene expression of cyclooxygenase (COX)‑2, matrix metalloproteinase 2 (MMP‑2), tissue inhibitor of metalloproteinase 1 (TIMP-1), transforming growth factor β1 (TGF‑β1), and inhibited inducible nitric oxide synthase (iNOS) protein expression in angiotensin II‑induced AAA mice. It also inhibited phosphorylation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway. These results demonstrate, to the best of our knowledge for the first time, that the anti‑inflammatory effects and inhibitory mechanism of daidzein attenuates AAA in angiotensin II‑induced mice. Daidzein contains strong anti‑inflammatory activity and affects various mechanism pathways including the NF‑κB, p38MAPK and TGF-β1 pathway.
Collapse
Affiliation(s)
- Yan-Feng Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yun-Qing Bai
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Ming Qi
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
33
|
Pasupuleti MK, Molahally SS, Salwaji S. Ethical guidelines, animal profile, various animal models used in periodontal research with alternatives and future perspectives. J Indian Soc Periodontol 2016; 20:360-368. [PMID: 28298815 PMCID: PMC5341308 DOI: 10.4103/0972-124x.186931] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Laboratory animal models serve as a facilitator to investigate the etiopathogenesis of periodontal disease, are used to know the efficacy of reconstructive and regenerative procedures, and are also helpful in evaluation of newer therapeutic techniques including laser and implant therapies prior to application in the human beings. The aim of this review is to know the different animal models used in various specialties of dental research and to know the ethical guidelines prior to the usage of experimental models with main emphasis on how to refine, replace, and reduce the number of animal models usage in the laboratory. An online search for experimental animal models used in dental research was performed using MEDLINE/PubMed database. Publications from 2009 to May 2013 in the specialty of periodontics were included in writing this review. A total of 652 references were published in PubMed/MEDLINE databases based on the search terms used. Out of 245 studies, 241 were related to the periodontal research published in English from 2009 to 2013. Relevant papers were chosen according to the inclusion and exclusion criteria. After extensive electronic and hand search on animal models, it has been observed that various animal models were used in dental research. Search on animal models used for dental research purpose revealed that various animals such as rats, mice, guinea pigs, rabbit, beagle dogs, goats, and nonhuman primates were extensively used. However, with the new advancement of ex vivo animal models, it has become easy to investigate disease pathogenesis and to test the efficacy of newer therapeutic modalities with the reduced usage of animal models. This review summarized the large amount of literature on animal models used in periodontal research with main emphasis on ethical guidelines and on reducing the animal model usage in future perspective.
Collapse
Affiliation(s)
- Mohan Kumar Pasupuleti
- Department of Periodontics, St. Joseph Dental College, Duggirala, Eluru, West Godavari, Andhra Pradesh, India
| | | | - Supraja Salwaji
- Department of Oral and Maxillofacial Pathology, St. Joseph Dental College, Duggirala, Eluru, West Godavari, Andhra Pradesh, India
| |
Collapse
|
34
|
Bae SH, Ha MH, Choi EY, Choi JI, Choi IS, Kim SJ. Effects of daidzein on alveolar bone loss and internal microstructures of bone in a rat model of experimental periodontitis: a study using micro-computed tomography. J Periodontal Res 2015; 51:250-6. [DOI: 10.1111/jre.12304] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2015] [Indexed: 12/31/2022]
Affiliation(s)
- S. H. Bae
- Department of Periodontology; School of Dentistry; Pusan National University; Yangsan Gyeongsangnam-do Korea
| | - M. H. Ha
- Department of Periodontology; School of Dentistry; Pusan National University; Yangsan Gyeongsangnam-do Korea
| | - E.-Y. Choi
- Department of Biological Science; College of Medical and Life Sciences; Silla University; Busan Korea
| | - J.-I. Choi
- Department of Periodontology; School of Dentistry; Pusan National University; Yangsan Gyeongsangnam-do Korea
- Dental Research Institute; Pusan National University Dental Hospital; Yangsan Gyeongsangnam-do Korea
| | - I. S. Choi
- Department of Biological Science; College of Medical and Life Sciences; Silla University; Busan Korea
| | - S.-J. Kim
- Department of Periodontology; School of Dentistry; Pusan National University; Yangsan Gyeongsangnam-do Korea
- Dental Research Institute; Pusan National University Dental Hospital; Yangsan Gyeongsangnam-do Korea
- Institute of Translational Dental Sciences; Pusan National University; Yangsan Gyeongsangnam-do Korea
| |
Collapse
|
35
|
Feng G, Sun B, Li TZ. Daidzein attenuates lipopolysaccharide-induced acute lung injury via toll-like receptor 4/NF-kappaB pathway. Int Immunopharmacol 2015; 26:392-400. [DOI: 10.1016/j.intimp.2015.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 12/19/2022]
|
36
|
Arruda-Silva F, Nascimento MVP, Luz AB, Venzke D, Queiroz GS, Fröde TS, Pizzolatti MG, Dalmarco EM. Polygala molluginifolia A. St.-Hil. and Moq. prevent inflammation in the mouse pleurisy model by inhibiting NF-κB activation. Int Immunopharmacol 2014; 19:334-41. [DOI: 10.1016/j.intimp.2014.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/05/2014] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
|
37
|
Li HY, Pan L, Ke YS, Batnasan E, Jin XQ, Liu ZY, Ba XQ. Daidzein suppresses pro-inflammatory chemokine Cxcl2 transcription in TNF-α-stimulated murine lung epithelial cells via depressing PARP-1 activity. Acta Pharmacol Sin 2014; 35:496-503. [PMID: 24632845 DOI: 10.1038/aps.2013.191] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 12/08/2013] [Indexed: 12/13/2022]
Abstract
AIM Daidzein (4',7-dihydroxyisoflavone) is an isoflavone exiting in many herbs that has shown anti-inflammation activity. The aim of this study was to investigate the mechanism underlying its anti-inflammatory action in murine lung epithelial cells. METHODS C57BL/6 mice were intranasally exposed to TNF-α to induce lung inflammation. The mice were injected with daidzein (400 mg/kg, ip) before TNF-α challenge, and sacrificed 12 h after TNF-α challenge, and lung tissues were collected for analyisis. In in vitro studies, murine MLE-12 epithelial cells were treated with TNF-α (20 ng/mL). The expression of pro-inflammatory chemokine Cxcl2 mRNA and NF-κB transcriptional activity were examined using real-time PCR and a dual reporter assay. Protein poly-adenosine diphosphate-ribosylation (PARylation) was detecyed using Western blotting and immunoprecipitation assays. RESULTS Pretreatment of the mice with daidzein markedly attenuated TNF-α-induced lung inflammation, and inhibited Cxcl2 expression in lung tissues. Furthermore, daidzein (10 μmol/L) prevented TNF-α-induced increases in Cxcl2 expression and activity and NF-κB transcriptional activity, and markedly inhibited TNF-α-induced protein PARylation in MLE-12 cells in vitro. In MLE-12 cells co-transfected with the PARP-1 expression plasmid and NF-κB-luc (or Cxcl2-luc) reporter plasmid, TNF-α markedly increased NF-κB (or Cxcl2) activation, which were significantly attenuated in the presence of daidzein (or the protein PARylation inhibitor PJ 34). PARP-1 activity assay showed that daidzein (10 μmol/L) reduced the activity of PARP-1 by ∼75%. CONCLUSION The anti-inflammatory action of daidzein in murine lung epithelial cells seems to be mediated via a direct interaction with PARP-1, which inhibits RelA/p65 protein PARylation required for the transcriptional modulation of pro-inflammatory chemokines such as Cxcl2.
Collapse
|
38
|
Hou YY, Zhen YH, Wang D, Zhu J, Sun DX, Liu XT, Wang HX, Liu Y, Long YY, Shu XH. Protective effect of an egg yolk-derived immunoglobulin (IgY) against Prevotella intermedia-mediated gingivitis. J Appl Microbiol 2014; 116:1020-7. [PMID: 24320204 DOI: 10.1111/jam.12419] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/26/2013] [Accepted: 12/03/2013] [Indexed: 11/26/2022]
Abstract
AIMS To investigate the effects of an egg yolk-derived immunoglobulin (IgY) specific to Prevotella intermedia in vitro and in vivo. METHODS AND RESULTS An IgY specific to P. intermedia was produced by immunizing hens with formaldehyde-inactivated P. intermedia and showed high titres when subjected to an ELISA. The obtained IgY inhibited the growth of P. intermedia in a dose-dependent manner at concentrations from 1 to 20 mg ml(-1) in Center for Disease Control and Prevention liquid medium. Forty rats were challenged with P. intermedia on gingivae and then randomly divided into four groups, which were syringed respectively with phosphate-buffered saline, 1 mg ml(-1) of tinidazole, 20 mg ml(-1) of nonspecific IgY and 20 mg ml(-1) of the IgY specific to P. intermedia at a dosage of 300 μl per day. Gingival index (GI), plaque index (PI), bleeding on probing (BOP), counts of white blood cell (WBC) and histopathological slide of the gums were measured after treatment for 15 days. The gingivitis rats treated with the IgY specific to P. intermedia showed significantly decreased GI, PI, BOP and WBC (P < 0·05). Gum histopathology of the treated rats demonstrated a superior protective effect of the specific IgY on P. intermedia-mediated gingivitis. CONCLUSIONS A new immunoglobulin specific to P. intermedia was developed from egg yolk. This specific IgY can dose-dependently inhibit the growth of P. intermedia and protect rats from gingivitis induced by P. intermedia. SIGNIFICANCE AND IMPACT OF THE STUDY The new IgY has potential for the treatment of P. intermedia-mediated gingivitis.
Collapse
Affiliation(s)
- Y-Y Hou
- Clinical Medicine of Seven-year-program, Dalian Medical University, Dalian, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Choi IS, Choi EY, Jin JY, Park HR, Choi JI, Kim SJ. Kaempferol InhibitsP. intermediaLipopolysaccharide-Induced Production of Nitric Oxide Through Translational Regulation in Murine Macrophages: Critical Role of Heme Oxygenase-1-Mediated ROS Reduction. J Periodontol 2013; 84:545-55. [DOI: 10.1902/jop.2012.120180] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
40
|
Jin JY, Choi EY, Park HR, Choi JI, Choi IS, Kim SJ. Isorhamnetin inhibits Prevotella intermedia lipopolysaccharide-induced production of interleukin-6 in murine macrophages via anti-inflammatory heme oxygenase-1 induction and inhibition of nuclear factor-κB and signal transducer and activator of transcription 1 activation. J Periodontal Res 2013; 48:687-95. [PMID: 23441850 DOI: 10.1111/jre.12054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Interleukin-6 (IL-6) is a key proinflammatory cytokine that has been considered to be important in the pathogenesis of periodontal disease. Therefore, host-modulatory agents directed at inhibiting IL-6 appear to be beneficial in terms of attenuating periodontal disease progression and potentially improving disease susceptibility. In the current study, we investigated the effect of the flavonoid isorhamnetin on the production of IL-6 in murine macrophages stimulated with lipopolysaccharide (LPS) from Prevotella intermedia, a pathogen implicated in inflammatory periodontal disease, and its mechanisms of action. MATERIAL AND METHODS Lipopolysaccharide from P. intermedia ATCC 25611 was isolated using the standard hot phenol-water method. Culture supernatants were collected and assayed for IL-6. We used real-time PCR to quantify IL-6 and heme oxygenase-1 (HO-1) mRNA expression. The expression of HO-1 protein and the levels of signaling proteins were monitored using immunoblot analyses. The DNA-binding activity of nuclear factor-κB (NF-κB) was analyzed using ELISA-based assay kits. RESULTS Isorhamnetin significantly down-regulated P. intermedia LPS-induced production of IL-6 as well as its mRNA expression in RAW264.7 cells. Isorhamnetin up-regulated the expression of HO-1 at both gene transcription and translation levels in cells stimulated with P. intermedia LPS. In addition, inhibition of HO-1 activity by tin protoporphyrin IX blocked the inhibitory effect of isorhamnetin on IL-6 production. Isorhamnetin failed to prevent LPS from activating either c-Jun N-terminal kinase or p38 pathways. Isorhamnetin did not inhibit NF-κB transcriptional activity at the level of inhibitory κB-α degradation. Isorhamnetin suppressed NF-κB signaling through inhibition of nuclear translocation and DNA binding activity of NF-κB p50 subunit and attenuated signal transducer and activator of transcription 1 signaling. CONCLUSION Although further research is required to clarify the detailed mechanism of action, we propose that isorhamnetin may contribute to blockade of the host-destructive processes mediated by IL-6 and could be a highly efficient modulator of the host response in the treatment of inflammatory periodontal disease. Further research in animal models of periodontitis is required to better evaluate, the potential of isorhamnetin as a novel agent for treating periodontal disease.
Collapse
Affiliation(s)
- J Y Jin
- Department of Biological Science, College of Medical and Life Sciences, Silla University, Busan, Korea
| | | | | | | | | | | |
Collapse
|