1
|
Sohn EH, Kim SN, Lee SR. Melatonin's Impact on Wound Healing. Antioxidants (Basel) 2024; 13:1197. [PMID: 39456451 PMCID: PMC11504849 DOI: 10.3390/antiox13101197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Melatonin (5-methoxy-N-acetyltryptamine) is an indoleamine compound that plays a critical role in the regulation of circadian rhythms. While melatonin is primarily synthesized from the amino acid tryptophan in the pineal gland of the brain, it can also be produced locally in various tissues, such as the skin and intestines. Melatonin's effects in target tissues can be mediated through receptor-dependent mechanisms. Additionally, melatonin exerts various actions via receptor-independent pathways. In biological systems, melatonin and its endogenous metabolites often produce similar effects. While injuries are common in daily life, promoting optimal wound healing is essential for patient well-being and healthcare outcomes. Beyond regulating circadian rhythms as a neuroendocrine hormone, melatonin may enhance wound healing through (1) potent antioxidant properties, (2) anti-inflammatory actions, (3) infection control, (4) regulation of vascular reactivity and angiogenesis, (5) analgesic (pain-relieving) effects, and (6) anti-pruritic (anti-itch) effects. This review aims to provide a comprehensive overview of scientific studies that demonstrate melatonin's potential roles in supporting effective wound healing.
Collapse
Affiliation(s)
- Eun-Hwa Sohn
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Sung-Ryul Lee
- Department of Convergence Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan 47392, Republic of Korea
| |
Collapse
|
2
|
Lee AH, Tai SH, Huang SY, Chang LD, Chen LY, Chen YN, Hsu HH, Lee EJ. Melatonin Improves Vasogenic Edema via Inhibition to Water Channel Aquaporin-4 (AQP4) and Metalloproteinase-9 (MMP-9) Following Permanent Focal Cerebral Ischemia. Biomedicines 2024; 12:2184. [PMID: 39457496 PMCID: PMC11504272 DOI: 10.3390/biomedicines12102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The efficacy of melatonin in reducing vasogenic and cytotoxic edema was investigated using a model of permanent middle cerebral artery occlusion (pMCAO). Methods: Rats underwent pMCAO, followed by intravenous administration of either melatonin (5 mg/kg) or a vehicle 10 min post-insult. Brain infarction and edema were assessed, and Western blot analyses were conducted to examine the expression levels of aquaporin-4 (AQP4), metalloproteinase-9 (MMP-9), and the neurovascular tight-junction protein ZO-1 upon sacrifice. The permeability of the blood-brain barrier (BBB) was measured using spectrophotometric quantification of Evans blue dye leakage. Results: Compared to controls, melatonin-treated rats exhibited a significant reduction in infarct volume by 26.9% and showed improved neurobehavioral outcomes (p < 0.05 for both). Melatonin treatment also led to decreased Evans blue dye extravasation and brain edema (p < 0.05 for both), along with lower expression levels of AQP4 and MMP-9 proteins and better preservation of ZO-1 protein (p < 0.05 for all). Conclusions: Therefore, melatonin offers neuroprotection against brain swelling induced by ischemia, possibly through its modulation of AQP4 and MMP-9 activities in glial cells and the extracellular matrix (ECM) during the early phase of ischemic injury.
Collapse
Affiliation(s)
- Ai-Hua Lee
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Department of Occupational Safety and Health, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
| | - Shih-Huang Tai
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Sheng-Yang Huang
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Li-Der Chang
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Liang-Yi Chen
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Yu-Ning Chen
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Hao-Hsiang Hsu
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - E-Jian Lee
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| |
Collapse
|
3
|
Liu H, Yan R, Li Y, Wang J, Deng Y, Li Y. Dragon's blood attenuates LPS-induced intestinal epithelial barrier dysfunction via upregulation of FAK-DOCK180-Rac1-WAVE2-Arp3 and downregulation of TLR4/NF-κB signaling pathways. J Nat Med 2024; 78:1013-1028. [PMID: 39014275 DOI: 10.1007/s11418-024-01824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/13/2024] [Indexed: 07/18/2024]
Abstract
Inflammation-induced intestinal epithelial barrier (IEB) dysfunction is one of the important reasons for the occurrence and development of intestinal inflammatory-related diseases, including ulcerative colitis (UC), Crohn's disease and necrotizing enterocolitis (NEC). Dragon's blood (DB) is a traditional Chinese medicine and has been clinically used to treat UC. However, the protective mechanism of DB on intestinal inflammatory-related diseases has still not been elucidated. The present study aimed to explore the protection mechanism of DB on IEB dysfunction in rat ileum and human colorectal adenocarcinoma cells (Caco-2)/human umbilical vein endothelial cells (HUVECs) coculture system induced by lipopolysaccharide (LPS). DB could ameliorate rat ileum mucosa morphological injury, reduce the accumulation of lipid-peroxidation products and increase the expression of junction proteins. DB also alleviated LPS-induced Caco-2 cells barrier integrity destruction in Caco-2/ HUVECs coculture system, leading to increased trans-endothelial electrical resistance (TEER), reduced cell permeability, and upregulation of expressions of F-actin and junction proteins. DB contributed to the assembly of actin cytoskeleton by upregulating the FAK-DOCK180-Rac1-WAVE2-Arp3 pathway and contributed to the formation of intercellular junctions by downregulating TLR4-MyD88-NF-κB pathway, thus reversing LPS-induced IEB dysfunction. These novel findings illustrated the potential protective mechanism of DB on intestinal inflammatory-related diseases and might be useful for further clinical application of DB.
Collapse
Affiliation(s)
- Huayan Liu
- School of Life Science, Beijing Institute of Technology, Haidian, Beijing, 100081, China
| | - Ranran Yan
- School of Life Science, Beijing Institute of Technology, Haidian, Beijing, 100081, China
| | - Yongzhi Li
- China Astronaut Research and Training Center, Haidian, Beijing, 100094, China
| | - Jiaping Wang
- China Astronaut Research and Training Center, Haidian, Beijing, 100094, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Haidian, Beijing, 100081, China
| | - Yujuan Li
- School of Life Science, Beijing Institute of Technology, Haidian, Beijing, 100081, China.
| |
Collapse
|
4
|
Moghadam Fard A, Goodarzi P, Mottahedi M, Garousi S, Zadabhari H, Kalantari Shahijan M, Esmaeili S, Nabi-Afjadi M, Yousefi B. Therapeutic applications of melatonin in disorders related to the gastrointestinal tract and control of appetite. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5335-5362. [PMID: 38358468 DOI: 10.1007/s00210-024-02972-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
Most animals have large amounts of the special substance melatonin, which is controlled by the light/dark cycle in the suprachiasmatic nucleus. According to what is now understood, the gastrointestinal tract (GIT) and other areas of the body are sites of melatonin production. According to recent studies, the GIT and adjacent organs depend critically on a massive amount of melatonin. Not unexpectedly, melatonin's many biological properties, such as its antioxidant, anti-inflammatory, pro-apoptotic, anti-proliferative, anti-metastasis, and antiangiogenic properties, have drawn the attention of researchers more and more. Because melatonin is an antioxidant, it produces a lot of secretions in the GIT's mucus and saliva, which shields cells from damage and promotes the development of certain GIT-related disorders. Melatonin's ability to alter cellular behavior in the GIT and other associated organs, such as the liver and pancreas, is another way that it functions. This behavior alters the secretory and metabolic activities of these cells. In this review, we attempted to shed fresh light on the many roles that melatonin plays in the various regions of the gastrointestinal tract by focusing on its activities for the first time.
Collapse
Affiliation(s)
| | - Pardis Goodarzi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Zadabhari
- Physiotherapy and Rehabilitation Faculty, Medipol University Health of Science, Istanbul, Turkey
| | | | - Saeedeh Esmaeili
- Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Bahman Yousefi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Eiro N, Barreiro-Alonso E, Fraile M, González LO, Altadill A, Vizoso FJ. Expression of MMP-2, MMP-7, MMP-9, and TIMP-1 by Inflamed Mucosa in the Initial Diagnosis of Ulcerative Colitis as a Response Marker for Conventional Medical Treatment. Pathobiology 2022; 90:81-93. [PMID: 35797965 DOI: 10.1159/000524978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/07/2022] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Experimental and clinical data involve matrix metalloproteases (MMPs) and their tissue inhibitors (TIMPs) in the pathogenesis of inflammatory bowel diseases. However, the impact of MMPs/TIMPs expression by inflamed mucosa on medical response therapy has scarcely been investigated. METHODS The expression of MMP-2, MMP-7, MMP-9, and TIMP-1 was determined by immunohistochemical analysis in inflamed mucosa samples at diagnosis in 82 patients with ulcerative colitis (UC; 22 never-treated with corticosteroids, 28 nonresponders, and 32 responders to corticosteroid therapy) and 15 patients with acute diverticulitis (AD). The global expression (score value) of each factor was analyzed by computer-generated image analysis. RESULTS UC samples showed higher MMP-2 and MMP-9 expression but lower TIMP-1 expression than the AD samples (p < 0.0001, for all). High MMP-9 and TIMP-1 scores were significantly associated with no need for corticosteroid treatment (p < 0.001 and p = 0.017, respectively); whereas higher score in the MMP-7 expression was significantly associated with nonresponse to corticosteroid therapy (p = 0.037). In addition, in this latter UC subgroup, MMP-7 correlated positively with the younger age of the patients and with the extension of the disease (p = 0.030 and p = 0.010, respectively). CONCLUSION Our results suggest the relevance of MMPs and TIMPs for predicting treatment response to both 5-aminosalicylates and corticosteroids in UC.
Collapse
Affiliation(s)
- Noemi Eiro
- Research Unit, Fundación Hospital de Jove, Gijón, Spain
| | - Eva Barreiro-Alonso
- Department of Gastroenterology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Maria Fraile
- Research Unit, Fundación Hospital de Jove, Gijón, Spain
| | - Luis O González
- Department of Anatomical Pathology, Fundación Hospital de Jove, Gijón, Spain
| | - Antonio Altadill
- Department of Internal Medicine, Fundación Hospital de Jove, Gijón, Spain
| | - Francisco J Vizoso
- Research Unit, Fundación Hospital de Jove, Gijón, Spain.,Department of Surgery, Fundación Hospital de Jove, Gijón, Spain
| |
Collapse
|
6
|
Ortíz GG, Briones-Torres AL, Benitez-King G, González-Ortíz LJ, Palacios-Magaña CV, Pacheco-Moisés FP. Beneficial Effect of Melatonin Alone or in Combination with Glatiramer Acetate and Interferon β-1b on Experimental Autoimmune Encephalomyelitis. Molecules 2022; 27:molecules27134217. [PMID: 35807462 PMCID: PMC9268121 DOI: 10.3390/molecules27134217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a relevant animal model of multiple sclerosis (MS). Oxidative stress and chronic inflammation play a major role in the pathogenesis of MS and EAE. Melatonin, a neurohormone, has potent anti-inflammatory properties. The aim of our study was to assess the therapeutic properties of melatonin alone or in combination with interferon β-1b (IFNβ-1b) or glatiramer acetate (GA) on EAE. EAE was induced in male Sprague-Dawley rats with an intraperitoneal injection of a homogenate of spinal cord and pig brain. At day 10 post immunization, rats were euthanized, and their brains were immediately excised and processed to measure oxidative stress markers and membrane fluidity. In addition, proinflammatory cytokines were quantified in plasma. Melatonin alone or in combination with GA and IFNβ-1b inhibited the disease process of EAE and the synthesis of proinflammatory cytokines, caused a significant decrement in oxidative stress markers, and preserved the membrane fluidity in the motor cortex, midbrain, and spinal cord. The cumulative index score was significantly reduced in EAE rats treated with melatonin alone or in combination with GA and IFNβ-1b. In conclusion, our findings provide preclinical evidence for the use of melatonin as an adjuvant therapeutic treatment for MS.
Collapse
Affiliation(s)
- Genaro Gabriel Ortíz
- Department of Philosophical and Methodological Disciplines, University Health Sciences Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Ana Laura Briones-Torres
- Department of Chemistry, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Jalisco, Mexico; (L.J.G.-O.); (C.V.P.-M.)
| | - Gloria Benitez-King
- National Institute of Psychiatry Ramón de la Fuente Muñíz, Mexico City 14370, Mexico;
| | - Luis Javier González-Ortíz
- Department of Chemistry, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Jalisco, Mexico; (L.J.G.-O.); (C.V.P.-M.)
| | - Claudia Verónica Palacios-Magaña
- Department of Chemistry, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Jalisco, Mexico; (L.J.G.-O.); (C.V.P.-M.)
| | - Fermín Paul Pacheco-Moisés
- Department of Chemistry, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Jalisco, Mexico; (L.J.G.-O.); (C.V.P.-M.)
- Correspondence:
| |
Collapse
|
7
|
Ahmed O, Farid A, Elamir A. Dual role of melatonin as an anti-colitis and anti-extra intestinal alterations against acetic acid-induced colitis model in rats. Sci Rep 2022; 12:6344. [PMID: 35428860 PMCID: PMC9012815 DOI: 10.1038/s41598-022-10400-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/06/2022] [Indexed: 12/14/2022] Open
Abstract
The available ulcerative colitis drugs exhibit limited outcomes and adverse side effects. Therefore, our study aimed to investigate the therapeutic efficacy of melatonin in acetic acid (AA)-induced colitis to establish a possible treatment for colitis and its impacts on vital organs. Following colitis induction (2 ml 5% AA, rectally), rats were orally received melatonin (5 mg/kg) once per day for 6 days after colitis induction. Then, histopathological examination of colon, kidney, liver, and spleen was conducted, interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), myeloperoxidase (MPO), malondialdehyde (MDA), glutathione (GSH), and total antioxidant capacity (TAC) levels were assessed in colon tissue. Colitis induction in untreated rats caused necrotic effects in colon tissues, a significant increase in colonic IL-1β, TNF-α, MPO, and MDA levels, and a remarkable decrease in GSH and TAC levels in colon tissue in comparison to the control group. Meanwhile, melatonin treatment reversed these parameters by improving the microscopic and macroscopic colitis features and extra-intestinal (kidney, liver, and spleen) changes in all treated rats compared to the colitis control group. These results denote a reduction in colitis severity due to the anti-inflammatory and anti-oxidative effects of melatonin and its positive impact on the vital organs.
Collapse
Affiliation(s)
- Osama Ahmed
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Alyaa Farid
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Azza Elamir
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
8
|
Anti-Inflammatory Effects of Melatonin and 5-Methoxytryptophol on Lipopolysaccharide-Induced Acute Pulpitis in Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8884041. [PMID: 33628825 PMCID: PMC7895566 DOI: 10.1155/2021/8884041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/26/2020] [Accepted: 02/06/2021] [Indexed: 02/07/2023]
Abstract
Aim The aim of this study was to investigate the possible therapeutic impacts of two pineal hormones, melatonin and 5-methoxytryptophol (5-MTX), in a rat model of acute pulpitis by analyzing biochemical and histopathological parameters. Methods This research was done using 32 male and female Wistar albino rats with weight between 200 and 250 g. The rats were randomly divided into four groups: a control group (rats without any treatment), acute pulpitis (AP) group, AP+melatonin group, and AP+5-MTX group. In the AP-induced groups, the crowns of the upper left incisors were removed horizontally. Lipopolysaccharide solution was applied to the exposed pulp tissue before the canal orifices were sealed with a temporary filling material. Melatonin (10 mg/kg) and 5-MTX (5 mg/kg) were administered intraperitoneally. The rats were sacrificed 24 hours after pulp injury, and trunk blood and pulp samples were collected. The concentrations of TNF-α, IL-1β, MMP-1, and MMP-2 in sera and pulp samples were determined using ELISA assay kits. Results TNF-α, IL-1β, MMP-1, and MMP-2 levels in the serum and pulp tissues were considerably higher in the AP group than the control group (p < 0.01‐0.001). In the AP+melatonin and AP+5-MTX groups, TNF-α, IL-1β, MMP-1, and MMP-2 levels in the serum and pulp tissues were significantly lower than in the AP group (p < 0.05‐0.001). Conclusions Both melatonin and 5-MTX provided protective effects on acute pulpitis, which indicates they may be promising as a therapeutic strategy for oral disease.
Collapse
|
9
|
Zefferino R, Di Gioia S, Conese M. Molecular links between endocrine, nervous and immune system during chronic stress. Brain Behav 2021; 11:e01960. [PMID: 33295155 PMCID: PMC7882157 DOI: 10.1002/brb3.1960] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/17/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The stress response is different in various individuals, however, the mechanisms that could explain these distinct effects are not well known and the molecular correlates have been considered one at the time. Particular harmful conditions occur if the subject, instead to cope the stressful events, succumb to them, in this case, a cascade reaction happens that through different signaling causes a specific reaction named "sickness behaviour." The aim of this article is to review the complex relations among important molecules belonging to Central nervous system (CNS), immune system (IS), and endocrine system (ES) during the chronic stress response. METHODS After having verified the state of art concerning the function of cortisol, norepinephrine (NE), interleukin (IL)-1β and melatonin, we describe as they work together. RESULTS We propose a speculative hypothesis concerning the complex interplay of these signaling molecules during chronic stress, highlighting the role of IL-1β as main biomarker of this effects, indeed, during chronic stress its increment transforms this inflammatory signal into a nervous signal (NE), in turn, this uses the ES (melatonin and cortisol) to counterbalance again IL-1β. During cortisol resistance, a vicious loop occurs that increments all mediators, unbalancing IS, ES, and CNS networks. This IL-1β increase would occur above all when the individual succumbs to stressful events, showing the Sickness Behaviour Symptoms. IL-1β might, through melatonin and vice versa, determine sleep disorders too. CONCLUSION The molecular links here outlined could explain how stress plays a role in etiopathogenesis of several diseases through this complex interplay.
Collapse
Affiliation(s)
- Roberto Zefferino
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
10
|
Liu L, Labani N, Cecon E, Jockers R. Melatonin Target Proteins: Too Many or Not Enough? Front Endocrinol (Lausanne) 2019; 10:791. [PMID: 31803142 PMCID: PMC6872631 DOI: 10.3389/fendo.2019.00791] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022] Open
Abstract
The neurohormone N-acetyl-5-methoxytryptamine, better known as melatonin, is a tryptophan derivative with a wide range of biological effects that is present in many organisms. These effects are believed to rely either on the chemical properties of melatonin itself as scavenger of free radicals or on the binding of melatonin to protein targets. More than 15 proteins, including receptors (MT1, MT2, Mel1c, CAND2, ROR, VDR), enzymes (QR2, MMP-9, pepsin, PP2A, PR-10 proteins), pores (mtPTP), transporters (PEPT1/2, Glut1), and other proteins (HBS, CaM, tubulin, calreticuline), have been suggested to interact with melatonin at sub-nanomolar to millimolar melatonin concentrations. In this review we assemble for the first time the available information on proposed melatonin targets and discuss them in a comprehensive manner to evaluate the robustness of these findings in terms of methodology, physiological relevance, and independent replication.
Collapse
Affiliation(s)
- Lei Liu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Nedjma Labani
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Erika Cecon
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Ralf Jockers
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| |
Collapse
|
11
|
Kourkoulis P, Kapizioni C, Michalopoulos G, Andreou NP, Papaconstantinou I, Karamanolis G, Gazouli M. Novel potential biomarkers for the diagnosis and monitoring of patients with ulcerative colitis. Eur J Gastroenterol Hepatol 2019; 31:1173-1183. [PMID: 31498278 DOI: 10.1097/meg.0000000000001490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Unambiguously, great progress has been achieved in the unraveling of more pathological pathways implicated in the development and progression of ulcerative colitis during the last decades. Novel effective drugs that have augmented the management armamentarium have been developed alongside this growing comprehension of the disease, rendering mucosal healing not only a feasible but the optimal goal of every therapy. Clinical evaluation, colonoscopy and biomarkers are the tools used by practitioners for the diagnosis and assessment of the status of the disease in order to achieve clinical remission and mucosal healing for their patients. Among these tools, colonoscopy is the gold method for the cause but is still an invasive, high-cost procedure with possible adverse events such as perforation. While clinical evaluation entails much subjectivity, biomarkers are objective, easily reproducible, non-invasive, cheap and potent surrogate tools of mucosal inflammation. Unfortunately, the well-established, currently in use serum biomarkers, such as C-reactive protein, erythrocyte sedimentation rate and others, do not display sufficiently acceptable sensitivity and specificity rates for the diagnosis of ulcerative colitis and, most importantly, do not represent precisely the mucosal inflammation status of the disease. Therefore, the discovery of new serum biomarkers has been the cause of several studies attempting to discover an "optimal" serum biomarker during the recent years. After thorough research, collection and examination of current data, this review focuses on and selectively presents promising, potential, novel serum biomarkers of ulcerative colitis as they are indicated by studies on the patient over the last years.
Collapse
Affiliation(s)
- P Kourkoulis
- Gastroenterology Department, Tzaneion General Hospital of Piraeus, Piraeus
| | - C Kapizioni
- Gastroenterology Department, Tzaneion General Hospital of Piraeus, Piraeus
| | - G Michalopoulos
- Gastroenterology Department, Tzaneion General Hospital of Piraeus, Piraeus
| | - N P Andreou
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens
| | - I Papaconstantinou
- 2nd Department of Surgery, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - G Karamanolis
- 2nd Department of Surgery, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - M Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens
| |
Collapse
|
12
|
Mirza-Aghazadeh-Attari M, Mohammadzadeh A, Mostavafi S, Mihanfar A, Ghazizadeh S, Sadighparvar S, Gholamzadeh S, Majidinia M, Yousefi B. Melatonin: An important anticancer agent in colorectal cancer. J Cell Physiol 2019; 235:804-817. [PMID: 31276205 DOI: 10.1002/jcp.29049] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022]
Abstract
Colorectal cancer is one of the most common cancers among the elderly, which is also seen in the forms of hereditary syndromes occurring in younger individuals. Numerous studies have been conducted to understand the molecular and cellular pathobiology underlying colorectal cancer. These studies have found that cellular signaling pathways are at the core of colorectal cancer pathology. Because of this, new agents have been proposed as possible candidates to accompany routine therapy regimens. One of these agents is melatonin, a neuro-hormone known best for its essential role in upholding the circadian rhythm and orchestrating the many physiologic changes it accompanies. Melatonin is shown to be able to modulate many signaling pathways involved in many essential cell functions, which if deregulated cause an accelerated pace towards cancer. More so, melatonin is involved in the regulation of immune function, tumor microenvironment, and acts as an antioxidant agent. Many studies have focused on the beneficial effects of melatonin in colorectal cancers, such as induction of apoptosis, increased sensitivity to chemotherapy agents and radiotherapy, limiting cellular proliferation, migration, and invasion. The present review aims to illustrate the known significance of melatonin in colorectal cancer and to address possible clinical use.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mohammadzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soroush Mostavafi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aynaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Saber Ghazizadeh
- Danesh Pey Hadi Co., Health Technology Development Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Kernbach ME, Hall RJ, Burkett-Cadena ND, Unnasch TR, Martin LB. Dim light at night: physiological effects and ecological consequences for infectious disease. Integr Comp Biol 2019; 58:995-1007. [PMID: 29939262 DOI: 10.1093/icb/icy080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Light pollution has emerged as a pervasive component of land development over the past century. Several detrimental impacts of this anthropogenic influence have been identified in night shift workers, laboratory rodents, and a plethora of wildlife species. Circadian, or daily, patterns are interrupted by the presence of light at night and have the capacity to alter rhythmic physiological or behavioral characteristics. Indeed, biorhythm disruption can lead to metabolic, reproductive, and immunological dysfunction depending on the intensity, timing, duration, and wavelength of light exposure. Light pollution, in many forms and by many pathways, is thus apt to affect the nature of host-pathogen interactions. However, no research has yet investigated this possibility. The goal of this manuscript is to outline how dim light at night, a relevant and common form of light pollution, may affect disease dynamics by interrupting circadian rhythms and regulation of immune responses as well as opportunities for host-parasite interactions and subsequent transmission risk including spillover into humans. We close by proposing some promising interventions including alternative lighting methods or vector control efforts.
Collapse
Affiliation(s)
| | - Richard J Hall
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | - Thomas R Unnasch
- Department of Global Health, University of South Florida, Tampa, FL, USA
| | - Lynn B Martin
- Department of Global Health, University of South Florida, Tampa, FL, USA
| |
Collapse
|
14
|
Burke KE, Boumitri C, Ananthakrishnan AN. Modifiable Environmental Factors in Inflammatory Bowel Disease. Curr Gastroenterol Rep 2017; 19:21. [PMID: 28397132 PMCID: PMC5651146 DOI: 10.1007/s11894-017-0562-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
PURPOSE OF REVIEW Environmental factors may influence predisposition to develop inflammatory bowel diseases (Crohn's disease, ulcerative colitis) or alter its natural history by modification of both the host immune response and intestinal microbial composition. The purpose of this review is to translate such evidence into clinical practice by a focus on interventional studies that have modified such environmental influences to improve disease outcomes. RECENT FINDINGS Several environmental influences have been identified in the recent literature including tobacco use, diet, antibiotics, vitamin D deficiency, stress, appendectomy, and oral contraceptive use. Some risk factors have similar influences on both Crohn's disease and ulcerative colitis while others are disease-specific or have divergent effects. Emerging epidemiologic evidence has confirmed the association of many of these factors with incident disease using prospective data. In addition, laboratory data has supported their mechanistic plausibility and relevance to intestinal inflammation.
Collapse
Affiliation(s)
- Kristin E Burke
- Division of Gastroenterology, Massachusetts General Hospital, Boston, USA
| | - Christine Boumitri
- Division of Gastroenterology, University of Missouri-Columbia, Columbia, USA
| | - Ashwin N Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, USA.
- Massachusetts General Hospital Crohn's and Colitis Center, 165 Cambridge Street, 9th Floor, Boston, MA, 02114, USA.
| |
Collapse
|
15
|
Melatonin Inhibits CXCL10 and MMP-1 Production in IL-1β-Stimulated Human Periodontal Ligament Cells. Inflammation 2017; 39:1520-6. [PMID: 27271323 DOI: 10.1007/s10753-016-0386-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Melatonin is a hormone that is mainly secreted by the pineal gland and exhibits a wide spectrum of activities, including antioxidant functions. Melatonin has been detected in gingival crevicular fluid. However, the role of melatonin in periodontal tissue is still uncertain. The aim of this study was to examine the effects of melatonin on inflammatory mediator expression in human periodontal ligament cells (HPDLC). Interleukin (IL)-1β induced CXC chemokine ligand (CXCL)10, matrix metalloproteinase (MMP)-1, and tissue inhibitors of metalloproteinase (TIMP)-1 production in HPDLC. Melatonin decreased CXCL10 and MMP-1 production and increased TIMP-1 production in IL-1β-stimulated HPDLC. Western blot analysis showed that melatonin inhibited p38 mitogen-activated protein kinase (MAPK) and c-jun N-terminal kinase (JNK) phosphorylation, and IkB-α degradation and phosphorylation in IL-1β-stimulated HPDLC. These results suggest that melatonin might inhibit Th1 cell migration by reducing CXCL10 production. Moreover, melatonin might inhibit soft tissue destruction by decreasing MMP-1 production in periodontal lesions.
Collapse
|
16
|
Esteban-Zubero E, López-Pingarrón L, Alatorre-Jiménez MA, Ochoa-Moneo P, Buisac-Ramón C, Rivas-Jiménez M, Castán-Ruiz S, Antoñanzas-Lombarte Á, Tan DX, García JJ, Reiter RJ. Melatonin's role as a co-adjuvant treatment in colonic diseases: A review. Life Sci 2017; 170:72-81. [PMID: 27919824 DOI: 10.1016/j.lfs.2016.11.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/17/2016] [Accepted: 11/30/2016] [Indexed: 02/07/2023]
Abstract
Melatonin is produced in the pineal gland as well as many other organs, including the enterochromaffin cells of the digestive mucosa. Melatonin is a powerful antioxidant that resists oxidative stress due to its capacity to directly scavenge reactive species, to modulate the antioxidant defense system by increasing the activities of antioxidant enzymes, and to stimulate the innate immune response through its direct and indirect actions. In addition, the dysregulation of the circadian system is observed to be related with alterations in colonic motility and cell disruptions due to the modifications of clock genes expression. In the gastrointestinal tract, the activities of melatonin are mediated by melatonin receptors (MT2), serotonin (5-HT), and cholecystokinin B (CCK2) receptors and via receptor-independent processes. The levels of melatonin in the gastrointestinal tract exceed by 10-100 times the blood concentrations. Also, there is an estimated 400 times more melatonin in the gut than in the pineal gland. Gut melatonin secretion is suggested to be influenced by the food intake. Low dose melatonin treatment accelerates intestinal transit time whereas high doses may decrease gut motility. Melatonin has been studied as a co-adjuvant treatment in several gastrointestinal diseases including irritable bowel syndrome (IBS), constipation-predominant IBS (IBS-C), diarrhea-predominant IBS (IBS-D), Crohn's disease, ulcerative colitis, and necrotizing enterocolitis. The purpose of this review is to provide information regarding the potential benefits of melatonin as a co-adjuvant treatment in gastrointestinal diseases, especially IBS, Crohn's disease, ulcerative colitis, and necrotizing enterocolitis.
Collapse
Affiliation(s)
- Eduardo Esteban-Zubero
- Department of Pharmacology and Physiology, University of Zaragoza. Calle Domingo Miral s/n, 50009 Zaragoza, Spain.
| | - Laura López-Pingarrón
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza. Calle Domingo Miral s/n, 50009 Zaragoza, Spain
| | - Moisés Alejandro Alatorre-Jiménez
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Purificación Ochoa-Moneo
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza. Calle Domingo Miral s/n, 50009 Zaragoza, Spain
| | - Celia Buisac-Ramón
- Primary Care Unit, Sector Zaragoza III, Avenida San Juan Bosco 5, 50009 Zaragoza, Spain
| | - Miguel Rivas-Jiménez
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza. Calle Domingo Miral s/n, 50009 Zaragoza, Spain
| | - Silvia Castán-Ruiz
- Primary Care Unit, Sector Zaragoza III, Avenida San Juan Bosco 5, 50009 Zaragoza, Spain
| | - Ángel Antoñanzas-Lombarte
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza. Calle Domingo Miral s/n, 50009 Zaragoza, Spain
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - José Joaquín García
- Department of Pharmacology and Physiology, University of Zaragoza. Calle Domingo Miral s/n, 50009 Zaragoza, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
17
|
Farez MF, Calandri IL, Correale J, Quintana FJ. Anti-inflammatory effects of melatonin in multiple sclerosis. Bioessays 2016; 38:1016-26. [DOI: 10.1002/bies.201600018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Mauricio F. Farez
- Center for Research on Neuroimmunological Diseases (CIEN); Raúl Carrea Institute for Neurological Research (FLENI); Buenos Aires Argentina
- Department of Neurology; Raúl Carrea Institute for Neurological Research (FLENI); Buenos Aires Argentina
| | - Ismael L. Calandri
- Department of Neurology; Raúl Carrea Institute for Neurological Research (FLENI); Buenos Aires Argentina
| | - Jorge Correale
- Center for Research on Neuroimmunological Diseases (CIEN); Raúl Carrea Institute for Neurological Research (FLENI); Buenos Aires Argentina
- Department of Neurology; Raúl Carrea Institute for Neurological Research (FLENI); Buenos Aires Argentina
| | - Francisco J. Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital; Harvard Medical School; Boston MA USA
- The Broad Institute; Cambridge MA USA
| |
Collapse
|
18
|
de Bruyn M, Vandooren J, Ugarte-Berzal E, Arijs I, Vermeire S, Opdenakker G. The molecular biology of matrix metalloproteinases and tissue inhibitors of metalloproteinases in inflammatory bowel diseases. Crit Rev Biochem Mol Biol 2016; 51:295-358. [PMID: 27362691 DOI: 10.1080/10409238.2016.1199535] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Zielińska M, Jarmuż A, Sałaga M, Kordek R, Laudon M, Storr M, Fichna J. Melatonin, but not melatonin receptor agonists Neu-P11 and Neu-P67, attenuates TNBS-induced colitis in mice. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:511-9. [PMID: 26899972 PMCID: PMC4823353 DOI: 10.1007/s00210-016-1214-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/25/2016] [Indexed: 12/28/2022]
Abstract
Melatonin is known as a strong antioxidant and possesses anti-inflammatory properties. Recently, melatonin was shown to improve colitis in animal models of inflammatory bowel diseases. The aim of the present study was to characterize the role of melatonin receptors (MT) in the anti-inflammatory effect of melatonin and to assess the anti-inflammatory potential of two novel MT receptor agonists, Neu-P11 and Neu-P67, in the mouse model of trinitrobenzenesulfonic acid (TNBS)-induced colitis. Colitis was induced on day 1 by intracolonic (i.c.) administration of TNBS in 30 % ethanol in saline. Melatonin (4 mg/kg, per os (p.o.)), Neu-P11 (20 mg/kg, p.o.; 50 mg/kg, intraperitoneally (i.p.), 50 mg/kg, i.c.), and Neu-P67 (20 mg/kg, p.o.) were given twice daily for 3 days. Luzindole (5 mg/kg, i.p.) was injected 15 min prior to melatonin administration. On day 4, macroscopic and microscopic damage scores were assessed and myeloperoxidase (MPO) activity quantified using O-dianisidine-based assay. Melatonin significantly attenuated colitis in mice, as indicated by the macroscopic score (1.90 ± 0.34 vs. 3.82 ± 0.62 for melatonin- and TNBS-treated mice, respectively), ulcer score (0.87 ± 0.18 vs. 1.31 ± 0.19, respectively), and MPO activity (4.68 ± 0.70 vs.6.26 ± 0.94, respectively). Luzindole, a MT receptor antagonist, did not inhibit the anti-inflammatory effect of melatonin (macroscopic score 1.12 ± 0.22, ulcer score 0.50 ± 0.16); however, luzindole increased MPO activity (7.57 ± 1.05). MT receptor agonists Neu-P11 and Neu-P67 did not improve inflammation induced by TNBS. Melatonin, but not MT receptor agonists, exerts potent anti-inflammatory action in acute TNBS-induced colitis. Our data suggests that melatonin attenuates colitis by additional, MT receptor-independent pathways.
Collapse
Affiliation(s)
- Marta Zielińska
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Agata Jarmuż
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Maciej Sałaga
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Radzisław Kordek
- Department of Pathology, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | | | - Martin Storr
- Walter Brendel Center of Experimental Medicine, University of Munich, Munich, Germany
- Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of Munich, Munich, Germany
| | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
20
|
Calvo J, Maldonado M. The role of melatonin in autoimmune and atopic diseases. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.2.158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
21
|
Myrelid P, Salim SY, Darby T, Almer S, Melgar S, Andersson P, Söderholm JD. Effects of anti-inflammatory therapy on bursting pressure of colonic anastomosis in murine dextran sulfate sodium induced colitis. Scand J Gastroenterol 2015; 50:991-1001. [PMID: 25861827 DOI: 10.3109/00365521.2014.964760] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The aim of this study was to examine the effect of colitis and anti-inflammatory therapies on the healing of colonic anastomoses in mice. METHODS Female C57BL/6 mice were randomized into eight groups; four groups receiving plain tap-water and four groups receiving dextran sulfate sodium. Intra-peritoneal treatment was given therapeutically for 14 days with placebo, prednisolone, azathioprine, or infliximab (IFX). Colonic anastomoses were performed and bursting pressure (BP) measurements were recorded and the inflammation evaluated with histology and zymography. RESULTS The mice with colitis had a more active inflammation based on histology and bowel weight compared with the tap water group, 8.3 (7.6-9.5) mg/mm and 5.5 (4.8-6.2) mg/mm respectively (p < 0.0001). Similarly mice with colitis receiving placebo had a more active inflammation, 12.8 (10.6-15.0) mg/mm, which differed significantly from all the other therapy arms among the colitic mice; prednisolone 8.1 (7.5-9.1) mg/mm (p = 0.014), azathioprine 8.2 (7.0-8.5) mg/mm (p = 0.0046), IFX 6.7 (6.4-7.9) mg/mm (p = 0.0055). BP for the placebo group was 90.0 (71.5-102.8) mmHg and did not differ from azathioprine or IFX groups, 84.4 (70.5-112.5) and 92.3 (75.8-122.3) mmHg respectively. In contrast BP for the prednisolone group was significantly decreased compared to placebo, 55.5 (42.8-73.0) mmHg (p = 0.0004). CONCLUSIONS All therapies had a beneficial effect on the colitis. An impaired BP of colonic anastomoses was noted after preoperative steroids but not after azathioprine or IFX in this model.
Collapse
Affiliation(s)
- Pär Myrelid
- Department of Surgery and Department of Clinical and Experimental Medicine, Linköping University , Linköping , Sweden
| | | | | | | | | | | | | |
Collapse
|
22
|
Matrix metalloproteinases in inflammatory bowel disease: an update. Mediators Inflamm 2015; 2015:964131. [PMID: 25948887 PMCID: PMC4408746 DOI: 10.1155/2015/964131] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/07/2014] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are known to be upregulated in inflammatory bowel disease (IBD) and other inflammatory conditions, but while their involvement is clear, their role in many settings has yet to be determined. Studies of the involvement of MMPs in IBD since 2006 have revealed an array of immune and stromal cells which release the proteases in response to inflammatory cytokines and growth factors. Through digestion of the extracellular matrix and cleavage of bioactive proteins, a huge diversity of roles have been revealed for the MMPs in IBD, where they have been shown to regulate epithelial barrier function, immune response, angiogenesis, fibrosis, and wound healing. For this reason, MMPs have been recognised as potential biomarkers for disease activity in IBD and inhibition remains a huge area of interest. This review describes new roles of MMPs in the pathophysiology of IBD and suggests future directions for the development of treatment strategies in this condition.
Collapse
|
23
|
Utrilla MP, Peinado MJ, Ruiz R, Rodriguez-Nogales A, Algieri F, Rodriguez-Cabezas ME, Clemente A, Galvez J, Rubio LA. Pea (Pisum sativum L.) seed albumin extracts show anti-inflammatory effect in the DSS model of mouse colitis. Mol Nutr Food Res 2015; 59:807-19. [PMID: 25626675 DOI: 10.1002/mnfr.201400630] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 01/10/2023]
Abstract
SCOPE This study investigates the preventive effects of two pea (Pisum sativum) seed albumin extracts, either in the presence (pea seed extract [PSE]) or absence (albumin fraction from PSE [AF-PSE]) of soluble polysaccharides, in the dextran sodium sulfate (DSS) induced colitis in mice. METHODS AND RESULTS Male C57BL/6J mice were assigned to five groups: one noncolitic and four colitic. Colitis was induced by incorporating DSS (3.5%) in the drinking water for 4 days, after which DSS was removed. Treated groups received orally PSE (15 g/kg⋅day), or AF-PSE (1.5 g/kg⋅day), or pure soy Bowman-Birk inhibitor (BBI; 50 mg/kg⋅day), starting 2 wk before colitis induction, and maintained for 9 days after. All treated groups showed intestinal anti-inflammatory effect, evidenced by reduced microscopic histological damage in comparison with untreated colitic mice. The treatments ameliorated the colonic mRNA expression of different proinflammatory markers: cytokines, inducible enzymes, metalloproteinases, adhesion molecules, and toll-like receptors, as well as proteins involved in maintaining the epithelial barrier function. Furthermore, the administration of PSE, AF-PSE, or soy BBI restored bacterial counts, partially or totally, to values in healthy mice. CONCLUSION PSE and AF-PSE ameliorated DSS-induced damage to mice, their effects being due, at least partially, to the presence of active BBI.
Collapse
Affiliation(s)
- Ma Pilar Utrilla
- CIBER-EHD, Department of Pharmacology, ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Parekh PJ, Oldfield Iv EC, Challapallisri V, Ware JC, Johnson DA. Sleep disorders and inflammatory disease activity: chicken or the egg? Am J Gastroenterol 2015; 110:484-488. [PMID: 25155226 DOI: 10.1038/ajg.2014.247] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/30/2014] [Indexed: 02/07/2023]
Abstract
Sleep dysfunction is a highly prevalent condition that has long been implicated in accelerating disease states characterized by having an inflammatory component such as systemic lupus erythematosus, HIV, and multiple sclerosis. Inflammatory bowel disease (IBD) is a chronic, debilitating disease that is characterized by waxing and waning symptoms, which are a direct result of increased circulating inflammatory cytokines. Recent studies have demonstrated sleep dysfunction and the disruption of the circadian rhythm to result in an upregulation of inflammatory cytokines. Not only does this pose a potential trigger for disease flares but also an increased risk of malignancy in this subset of patients. This begs to question whether or not there is a therapeutic role of sleep cycle and circadian rhythm optimization in the prevention of IBD flares. Further research is needed to clarify the role of sleep dysfunction and alterations of the circadian rhythm in modifying disease activity and also in reducing the risk of malignancy in patients suffering from IBD.
Collapse
Affiliation(s)
- Parth J Parekh
- Department ofInternal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | | | | | - J Catsby Ware
- Department of Sleep Medicine, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - David A Johnson
- Gastroenterology Division, Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, USA
| |
Collapse
|
25
|
Park YS, Chung SH, Lee SK, Kim JH, Kim JB, Kim TK, Kim DS, Baik HW. Melatonin improves experimental colitis with sleep deprivation. Int J Mol Med 2015; 35:979-86. [PMID: 25625560 PMCID: PMC4735700 DOI: 10.3892/ijmm.2015.2080] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/22/2014] [Indexed: 12/28/2022] Open
Abstract
Sleep deprivation (SD) is an epidemic phenomenon in modern countries, and its harmful effects are well known. SD acts as an aggravating factor in inflammatory bowel disease. Melatonin is a sleep-related neurohormone, also known to have antioxidant and anti-inflammatory effects in the gastrointestinal tract; however, the effects of melatonin on colitis have been poorly characterized. Thus, in this study, we assessed the measurable effects of SD on experimental colitis and the protective effects of melatonin. For this purpose, male imprinting control region (ICR) mice (n=24) were used; the mice were divided into 4 experimental groups as follows: the control, colitis, colitis with SD and colitis with SD and melatonin groups. Colitis was induced by the administration of 5% dextran sulfate sodium (DSS) in the drinking water for 6 days. The mice were sleep-deprived for 3 days. Changes in body weight, histological analyses of colon tissues and the expression levels of pro-inflammatory cytokines and genes were evaluated. SD aggravated inflammation and these effects were reversed by melatonin in the mice with colitis. In addition, weight loss in the mice with colitis with SD was significantly reduced by the injection of melatonin. Treatment with melatonin led to high survival rates in the mice, in spite of colitis with SD. The levels of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, IL-17, interferon-γ and tumor necrosis factor-α, in the serum of mice were significantly increased by SD and reduced by melatonin treatment. The melatonin-treated group showed a histological improvement of inflammation. Upon gene analysis, the expression of the inflammatory genes, protein kinase Cζ (PKCζ) and calmodulin 3 (CALM3), was increased by SD, and the levels decreased following treatment with melatonin. The expression levels of the apoptosis-related inducible nitric oxide synthase (iNOS) and wingless-type MMTV integration site family, member 5A (Wnt5a) genes was decreased by SD, but increased following treatment with melatonin. Treatment with melatonin reduced weight loss and prolonged survival in mice with colitis with SD. Melatonin exerted systemic anti-inflammatory effects. Gene analysis revealed a possible mechanism of action of melatonin in inflammation and sleep disturbance. Thus, melatonin may be clinically applicable for patients with inflammatory bowel disease, particulary those suffering from sleep disturbances.
Collapse
Affiliation(s)
- Young-Sook Park
- Department of Gastroenterology, School of Medicine, Eulji University, Daejeon 301-746, Republic of Korea
| | - Sook-Hee Chung
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 443-721, Republic of Korea
| | - Seong-Kyu Lee
- Department of Biochemistry and Molecular Biology, School of Medicine, Eulji University, Daejeon 301-746, Republic of Korea
| | - Ja-Hyun Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Eulji University, Daejeon 301-746, Republic of Korea
| | - Jun-Bong Kim
- Department of Gastroenterology, School of Medicine, Eulji University, Daejeon 301-746, Republic of Korea
| | - Tae-Kyun Kim
- Department of Gastroenterology, School of Medicine, Eulji University, Daejeon 301-746, Republic of Korea
| | - Dong-Shin Kim
- Department of Gastroenterology, School of Medicine, Eulji University, Daejeon 301-746, Republic of Korea
| | - Haing-Woon Baik
- Department of Biochemistry and Molecular Biology, School of Medicine, Eulji University, Daejeon 301-746, Republic of Korea
| |
Collapse
|
26
|
Role of MMP-2 and MMP-9 and their natural inhibitors in liver fibrosis, chronic pancreatitis and non-specific inflammatory bowel diseases. Hepatobiliary Pancreat Dis Int 2014; 13:570-9. [PMID: 25475858 DOI: 10.1016/s1499-3872(14)60261-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND There is a growing evidence that matrix metalloproteinase (MMP)-2 and MMP-9 (gelatinases) play an important role in the pathogenesis of numerous disorders, especially with inflammatory etiology and extracellular matrix (ECM) remodeling. Despite the fact that gelatinases involve in liver cirrhosis is provided in the literature, their role in the pathogenesis of chronic pancreatitis and non-specific inflammatory bowel diseases is still under investigation. DATA SOURCES We carried out a PubMed search of English-language articles relevant to the involvement of gelatinases in the pathogenesis of liver fibrosis, pancreatitis, and non-specific inflammatory bowel diseases. RESULTS The decreased activity of gelatinases, especially MMP-2, is related to the development of liver fibrosis, probably due to the decrease of capability for ECM remodeling. Similar situation can be found in chronic pancreatitis; however, reports on this matter are rare. The presence of non-specific inflammatory bowel diseases results in MMP-9 activity elevation. CONCLUSION The fluctuation of gelatinases activity during liver fibrosis, chronic pancreatitis and non-specific inflammatory bowel diseases is observed, but the exact role of these enzymes demands further studies.
Collapse
|
27
|
Wiechmann AF, Ceresa BP, Howard EW. Diurnal variation of tight junction integrity associates inversely with matrix metalloproteinase expression in Xenopus laevis corneal epithelium: implications for circadian regulation of homeostatic surface cell desquamation. PLoS One 2014; 9:e113810. [PMID: 25412440 PMCID: PMC4239109 DOI: 10.1371/journal.pone.0113810] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/31/2014] [Indexed: 01/08/2023] Open
Abstract
Background and Objectives The corneal epithelium provides a protective barrier against pathogen entrance and abrasive forces, largely due to the intercellular junctional complexes between neighboring cells. After a prescribed duration at the corneal surface, tight junctions between squamous surface cells must be disrupted to enable them to desquamate as a component of the tissue homeostatic renewal. We hypothesize that matrix metalloproteinase (MMPs) are secreted by corneal epithelial cells and cleave intercellular junctional proteins extracellularly at the epithelial surface. The purpose of this study was to examine the expression of specific MMPs and tight junction proteins during both the light and dark phases of the circadian cycle, and to assess their temporal and spatial relationships in the Xenopus laevis corneal epithelium. Methodology/Principal Findings Expression of MMP-2, tissue inhibitor of MMP-2 (TIMP-2), membrane type 1-MMP (MT1-MMP) and the tight junction proteins occludin and claudin-4 were examined by confocal double-label immunohistochemistry on corneas obtained from Xenopus frogs at different circadian times. Occludin and claudin-4 expression was generally uniformly intact on the surface corneal epithelial cell lateral membranes during the daytime, but was frequently disrupted in small clusters of cells at night. Concomitantly, MMP-2 expression was often elevated in a mosaic pattern at nighttime and associated with clusters of desquamating surface cells. The MMP-2 binding partners, TIMP-2 and MT1-MMP were also localized to surface corneal epithelial cells during both the light and dark phases, with TIMP-2 tending to be elevated during the daytime. Conclusions/Significance MMP-2 protein expression is elevated in a mosaic pattern in surface corneal epithelial cells during the nighttime in Xenopus laevis, and may play a role in homeostatic surface cell desquamation by disrupting intercellular junctional proteins. The sequence of MMP secretion and activation, tight junction protein cleavage, and subsequent surface cell desquamation and renewal may be orchestrated by nocturnal circadian signals.
Collapse
Affiliation(s)
- Allan F. Wiechmann
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| | - Brian P. Ceresa
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Eric W. Howard
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
28
|
Shin IS, Park JW, Shin NR, Jeon CM, Kwon OK, Kim JS, Kim JC, Oh SR, Ahn KS. Melatonin reduces airway inflammation in ovalbumin-induced asthma. Immunobiology 2014; 219:901-8. [PMID: 25161126 DOI: 10.1016/j.imbio.2014.08.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/30/2014] [Accepted: 08/03/2014] [Indexed: 01/15/2023]
Abstract
Asthma is a common chronic inflammatory airway disease that is recognized as a major public health problem. In this study, we evaluated the effects of melatonin on allergic asthma using a murine model of ovalbumin (OVA)-induced allergic asthma and BEAS-2B cells. To induce allergic asthma, the mice were sensitized and airway-challenged with OVA. Melatonin was administered by intraperitoneal injection once per day at doses of 10 and 15 mg/kg from days 21 to 23 after the initial OVA sensitization. We investigated the effects of melatonin on proinflammatory cytokines and matrix metalloproteinase-9 (MMP-9) activity and expression in tumor necrosis factor (TNF)-α-stimulated BEAS-2B cells. The administration of melatonin significantly decreased the number of inflammatory cells, airway hyperresponsiveness, and immunoglobulin (Ig) E with reductions in interleukin (IL)-4, IL-5, and IL-13. Melatonin attenuated the airway inflammation and the mucus production in lung tissue and significantly suppressed elevated MMP-9 expression and activity induced by an OVA challenge. In TNF-α-stimulated BEAS-2B cells, treatment with melatonin significantly reduced the levels of proinflammatory cytokines and lowered the expression and activity of MMP-9. These results indicate that melatonin effectively suppressed allergic asthma induced by an OVA challenge. The results suggest a potential role for melatonin in treating asthma.
Collapse
Affiliation(s)
- In-Sik Shin
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk 363-883, Republic of Korea; College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Ji-Won Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk 363-883, Republic of Korea; College of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea
| | - Na-Rae Shin
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk 363-883, Republic of Korea
| | - Chan-Mi Jeon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk 363-883, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk 363-883, Republic of Korea
| | - Joong-Sun Kim
- Research Center, Dongnam Institute of Radiological and Medical Sciences, 40 Jwagong-gil, Gijang-gun, Busan 619-953, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk 363-883, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk 363-883, Republic of Korea.
| |
Collapse
|
29
|
Robertson BD, Hasstedt MR, Vandermeer CL, MacDougall-Shackleton SA. Sex steroid-independent effects of photostimulation on the song-control system of white-throated sparrows (Zonotrichia albicollis). Gen Comp Endocrinol 2014; 204:166-72. [PMID: 24818971 DOI: 10.1016/j.ygcen.2014.04.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 04/15/2014] [Accepted: 04/21/2014] [Indexed: 11/27/2022]
Abstract
Brain nuclei within the song-control system of songbirds are seasonally plastic during adulthood. These nuclei are larger in birds exposed to long, spring-like days than short, winter-like days. There is overwhelming evidence that this effect is mediated by testosterone (T). However, castration studies have also demonstrated that photostimulation has gonad-independent effects on song-control system plasticity, but these studies rarely control for extra-gonadal sources of T. In this study, we used anti-androgen and anti-estrogen treatments in combination with castration to determine the sex steroid-independent effects of photostimulation on HVC size and doublecortin immunoreactivity in white-throated sparrows (Zonotrichia albicollis). Birds were kept on short days or photostimulated for 1 month. Photostimulated birds were intact, castrated and treated with anti-androgens and anti-estrogens, or castrated and treated with T. HVC volumes of photostimulated birds were significantly larger than short-day birds. HVC volume of castrated birds given anti-androgens/-estrogens was significantly larger than short-day birds, indicating a sex steroid-independent effect of photostimulation. Similar results were observed for RA. The number of migrating neurons (immunoreactive for doublecortin) in HVC did not differ between treatment groups. Our data support the view that photostimulation alone can drive song-control system nuclei growth, and that concurrent exposure to T potentiates this growth. Moreover, these effects do not appear dependent on modulation of neuron migration.
Collapse
Affiliation(s)
- Brian D Robertson
- Department of Psychology, Advanced Facility for Avian Research, University of Western Ontario, London, ON N6A 5C2, Canada
| | - Michael R Hasstedt
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Caitlin L Vandermeer
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Scott A MacDougall-Shackleton
- Department of Psychology, Advanced Facility for Avian Research, University of Western Ontario, London, ON N6A 5C2, Canada; Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, ON N6A 5B7, Canada.
| |
Collapse
|
30
|
Abstract
: Ulcerative colitis (UC), an inflammatory bowel disease, affects many people across the globe, and its prevalence is increasing steadily. Inflammation and oxidative stress play a vital role in the perpetuation of inflammatory process and the subsequent DNA damage associated with the development of UC. UC induces not only local but also systemic damage, which involves the perturbation of multiple molecular pathways. Furthermore, UC leads to an increased risk of colorectal cancer, the third most common malignancy in humans. Most of the drugs used for the treatment of UC are unsatisfactory because they are generally mono-targeted, relatively ineffective and unaffordable for many people. Thus, agents that can target multiple molecular pathways and are less expensive have enormous potential to treat UC. Melatonin has beneficial effects against UC in experimental and clinical studies because of its ability to modulate several molecular pathways of inflammation, oxidative stress, fibrosis, and cellular injury. However, many novel targets are yet to be explored on which melatonin may act to exert its favorable effects in UC. It is time to explore improved intervention strategies with melatonin in UC on the basis of studies investigating different molecular targets using proteomic and genomic approaches. This review identifies various molecular targets for melatonin with the intent of providing novel strategies for combating UC and the associated extraintestinal manifestations of this debilitating disease.
Collapse
Affiliation(s)
- Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | | |
Collapse
|
31
|
Trivedi PP, Jena GB. Melatonin reduces ulcerative colitis-associated local and systemic damage in mice: investigation on possible mechanisms. Dig Dis Sci 2013; 58:3460-74. [PMID: 23975342 DOI: 10.1007/s10620-013-2831-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 07/27/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Ulcerative colitis (UC) is a chronic gastrointestinal disorder. Substantial research reveals that melatonin has beneficial effects in ulcerative colitis both experimentally and clinically. We have previously reported that ulcerative colitis was associated with local and systemic damage in mice. The purpose of this study was to reveal the novel targets of melatonin in its protective mechanism against ulcerative colitis in mice. We also wished to determine whether or not melatonin protected against ulcerative colitis-induced systemic damage in mice. METHODS Ulcerative colitis was induced in mice by use of 3% (w/v) dextran sulfate sodium for two cycles. One cycle comprised 7 days of DSS-treated water followed by 14 days of normal drinking water. Melatonin was administered at doses of 2, 4, or 8 mg/kg bw/day, po throughout. The effect of melatonin in mice with UC was evaluated by use of biochemical data, histological evaluation, comet and micronucleus assays, immunohistochemistry, and western blot analysis. RESULTS The results indicated that melatonin treatment ameliorated the severity of ulcerative colitis by modulating a variety of molecular targets, for example nuclear factor kappa B, cyclooxygenase-2, interleukin 17, signal transducer and activator of transcription 3, nuclear erythroid 2-related factor 2, matrix metalloproteinase-9, and connective tissue growth factor. Further, ulcerative colitis increased gut permeability, plasma lipopolysaccharide level, systemic inflammation, and genotoxicity. Melatonin treatment led to mucosal healing and reduced ulcerative colitis-induced elevated gut permeability and reduced the plasma LPS level, systemic inflammation, and genotoxicity. CONCLUSION Melatonin ameliorated ulcerative colitis-associated local and systemic damage in mice.
Collapse
Affiliation(s)
- P P Trivedi
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, 160062, India,
| | | |
Collapse
|
32
|
Kim SJ, Lee SR. Protective effect of melatonin against transient global cerebral ischemia-induced neuronal cell damage via inhibition of matrix metalloproteinase-9. Life Sci 2013; 94:8-16. [PMID: 24269215 DOI: 10.1016/j.lfs.2013.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 11/09/2013] [Accepted: 11/09/2013] [Indexed: 11/26/2022]
Abstract
AIMS Melatonin possesses various pharmacological effects including neuroprotective effects against brain ischemia. Post-ischemic increases in matrix metalloproteinase-9 (MMP-9) expression and activity mainly contribute to neuronal damage by degradation of the extracellular matrix. This study was designed to examine whether melatonin has a neuroprotective effect and an influence on MMP-9 in transient global brain ischemia. MAIN METHODS Mice were subjected to 20 min of global brain ischemia and sacrificed 72h later. Melatonin (30 mg/kg) was administered 30 min before and 2h after ischemia as well as once daily until sacrifice. KEY FINDINGS Hippocampal pyramidal cell damage after ischemia was significantly decreased by melatonin. As observed by zymography, melatonin inhibited the increase of MMP-9 activity after ischemia. In the brain sections, the increased gelatinase activity was mainly observed in the hippocampus after ischemia and melatonin also reduced gelatinase activity. The laminin and NeuN expression levels were reduced in the hippocampal CA1 and CA2 regions after ischemia, and melatonin reduced laminin degradation and neuronal loss. A TUNEL assay demonstrated that there were TUNEL-positive cells in the hippocampus and the number of TUNEL-positive cells was significantly decreased by melatonin. There was no difference in the ischemia-induced hippocampal neuronal damage between the vehicle- and melatonin-treated groups of MMP-9 knock-out mice. SIGNIFICANCE These data demonstrate that melatonin suppressed the occurrence of neuronal injury, which might be partly due to its inhibitory effects on MMP-9 in addition to its anti-oxidative effects. MMP-9 may be an important key target of melatonin in neuroprotection against global ischemia.
Collapse
Affiliation(s)
- Su-Jin Kim
- Department of Anesthesiology, College of Medicine, Dongguk University, Gyeongju, South Korea; Department of Pharmacology, School of Medicine and Brain Research Institute, Keimyung University, Daegu 704-701, South Korea
| | - Seong-Ryong Lee
- Department of Pharmacology, School of Medicine and Brain Research Institute, Keimyung University, Daegu 704-701, South Korea.
| |
Collapse
|
33
|
Lin GJ, Huang SH, Chen SJ, Wang CH, Chang DM, Sytwu HK. Modulation by melatonin of the pathogenesis of inflammatory autoimmune diseases. Int J Mol Sci 2013; 14:11742-66. [PMID: 23727938 PMCID: PMC3709754 DOI: 10.3390/ijms140611742] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/14/2022] Open
Abstract
Melatonin is the major secretory product of the pineal gland during the night and has multiple activities including the regulation of circadian and seasonal rhythms, and antioxidant and anti-inflammatory effects. It also possesses the ability to modulate immune responses by regulation of the T helper 1/2 balance and cytokine production. Autoimmune diseases, which result from the activation of immune cells by autoantigens released from normal tissues, affect around 5% of the population. Activation of autoantigen-specific immune cells leads to subsequent damage of target tissues by these activated cells. Melatonin therapy has been investigated in several animal models of autoimmune disease, where it has a beneficial effect in a number of models excepting rheumatoid arthritis, and has been evaluated in clinical autoimmune diseases including rheumatoid arthritis and ulcerative colitis. This review summarizes and highlights the role and the modulatory effects of melatonin in several inflammatory autoimmune diseases including multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes mellitus, and inflammatory bowel disease.
Collapse
Affiliation(s)
- Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan; E-Mail:
| | - Shing-Hwa Huang
- Department of General Surgery, Tri-Service General Hospital, No.325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan; E-Mail:
| | - Shyi-Jou Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan; E-Mails: (S.-J.C.); (C.-H.W.)
- Department of Pediatrics, Tri-Service General Hospital, No.325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan
| | - Chih-Hung Wang
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan; E-Mails: (S.-J.C.); (C.-H.W.)
- Department of Otolaryngology—Head and Neck Surgery, Tri-Service General Hospital, No.325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan
- Institute of Undersea and Hyperbaric Medicine, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan
- Department of Microbiology and Immunology, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan
| | - Deh-Ming Chang
- Rheumatology/Immunology/Allergy, Tri-Service General Hospital, No.325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan; E-Mail:
| | - Huey-Kang Sytwu
- Department of Microbiology and Immunology, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-2-8792-3100 (ext. 18540); Fax: +886-2-8792-1774
| |
Collapse
|
34
|
Rudra DS, Pal U, Maiti NC, Reiter RJ, Swarnakar S. Melatonin inhibits matrix metalloproteinase-9 activity by binding to its active site. J Pineal Res 2013; 54:398-405. [PMID: 23330737 DOI: 10.1111/jpi.12034] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/03/2012] [Indexed: 12/21/2022]
Abstract
The zinc-dependent matrix metalloproteinases (MMPs) are key enzymes associated with extracellular matrix (ECM) remodeling; they play critical roles under both physiological and pathological conditions. MMP-9 activity is linked to many pathological processes, including rheumatoid arthritis, atherosclerosis, gastric ulcer, tumor growth, and cancer metastasis. Specific inhibition of MMP-9 activity may be a promising target for therapy for diseases characterized by dysregulated ECM turnover. Potent MMP-9 inhibitors including an indole scaffold were recently reported in an X-ray crystallographic study. Herein, we addressed whether melatonin, a secretory product of pineal gland, has an inhibitory effect on MMP-9 function. Gelatin zymographic analysis showed a significant reduction in pro- and active MMP-9 activity in vitro in a dose- and time-dependent manner. In addition, a human gastric adenocarcinoma cell line (AGS) exhibited a reduced (~50%) MMP-9 expression when incubated with melatonin, supporting an inhibitory effect of melatonin on MMP-9. Atomic-level interaction between melatonin and MMP-9 was probed with computational chemistry tools. Melatonin docked into the active site cleft of MMP-9 and interacted with key catalytic site residues including the three histidines that form the coordination complex with the catalytic zinc as well as proline 421 and alanine 191. We hypothesize that under physiological conditions, tight binding of melatonin in the active site might be involved in reducing the catalytic activity of MMP-9. This finding could provide a novel approach to physical docking of biomolecules to the catalytic site of MMPs, which inhibits this protease, to arrest MMP-9-mediated inflammatory signals.
Collapse
Affiliation(s)
- Deep Sankar Rudra
- Drug Development Diagnostics and Biotechnology Division, Department of Physiology, Indian Institute of Chemical Biology, Kolkata, India
| | | | | | | | | |
Collapse
|
35
|
Melatonin: buffering the immune system. Int J Mol Sci 2013; 14:8638-83. [PMID: 23609496 PMCID: PMC3645767 DOI: 10.3390/ijms14048638] [Citation(s) in RCA: 456] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/06/2013] [Accepted: 04/07/2013] [Indexed: 12/29/2022] Open
Abstract
Melatonin modulates a wide range of physiological functions with pleiotropic effects on the immune system. Despite the large number of reports implicating melatonin as an immunomodulatory compound, it still remains unclear how melatonin regulates immunity. While some authors argue that melatonin is an immunostimulant, many studies have also described anti-inflammatory properties. The data reviewed in this paper support the idea of melatonin as an immune buffer, acting as a stimulant under basal or immunosuppressive conditions or as an anti-inflammatory compound in the presence of exacerbated immune responses, such as acute inflammation. The clinical relevance of the multiple functions of melatonin under different immune conditions, such as infection, autoimmunity, vaccination and immunosenescence, is also reviewed.
Collapse
|
36
|
Chang CC, Tien CH, Lee EJ, Juan WS, Chen YH, Hung YC, Chen TY, Chen HY, Wu TS. Melatonin inhibits matrix metalloproteinase-9 (MMP-9) activation in the lipopolysaccharide (LPS)-stimulated RAW 264.7 and BV2 cells and a mouse model of meningitis. J Pineal Res 2012; 53:188-97. [PMID: 22404666 DOI: 10.1111/j.1600-079x.2012.00986.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We explored anti-inflammatory potential of melatonin against the lipopolysaccharide (LPS)-induced inflammation in vivo and in vitro. RAW 264.7 and BV2 cells were stimulated by LPS, followed by the treatment with melatonin or vehicle at various time intervals. In a mouse model of meningitis induced by LPS, melatonin (5mg/kg) or vehicle was intravenously injected at 30min postinsult. The activity of matrix metalloproteinase-2 (MMP-2) and metalloproteinase-9 (MMP-9) was determined by gelatin zymography. Nuclear factor-kappa B (NFκB) translocation and binding activity were determined by immunocytochemistry and electrophoretic mobility shift assay (EMSA). Our results showed that either pretreatment or cotreatment with melatonin at 50-500 μm effectively inhibited the LPS-induced proMMP-9 activation in the RAW 264.7 and BV2 cells, respectively (P<0.05). This melatonin-induced proMMP-9 inhibition remained effective when treatment was delayed up to 2 and 6hr postinsult for RAW 264.7 and BV2 cells, respectively (P<0.05 for both groups). Additionally, melatonin significantly attenuated the rises of circulatory and cerebral MMP-9 activity, respectively (P<0.05) and reduced the loss of body weight (P<0.05) in mice with meningitis. Moreover, melatonin (50μm) effectively inhibited nuclear factor-kappa B (NFκB) translocation and binding activity in the LPS-treated RAW 264.7 and BV2 cells, respectively (P<0.05). These results demonstrate direct inhibitory actions of melatonin against postinflammatory NFκB translocation and MMP-9 activation and highlight its ability to inhibit systemic and cerebral MMP-9 activation following brain inflammation.
Collapse
Affiliation(s)
- Che-Chao Chang
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Qin W, Lu W, Li H, Yuan X, Li B, Zhang Q, Xiu R. Melatonin inhibits IL1β-induced MMP9 expression and activity in human umbilical vein endothelial cells by suppressing NF-κB activation. J Endocrinol 2012; 214:145-53. [PMID: 22619232 DOI: 10.1530/joe-12-0147] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs) have been involved in inflammatory and degradative processes in pathologic conditions. The purpose of this study was to investigate the protective effect of melatonin in human umbilical vein endothelial cell (HUVEC) monolayer permeability and the regulation of MMP9 induced by interleukin 1β (IL1β (IL1B)) in HUVECs. Protection studies were carried out with melatonin, a well-known antioxidant and antiinflammatory molecule. MMP9 expression was increased with IL1β induction in HUVECs. Melatonin showed a barrier-protective role by downregulation of MMP9 and upregulation of tissue inhibitor of metalloproteinase-1 expression in HUVECs. Meanwhile, melatonin also decreased sodium fluorescein permeability and counteracted the downregulation of vascular endothelial cadherin and occludin expression in HUVECs. During inflammatory stimulus, nuclear factor-κB (NF-κB) plays a significant role in regulating MMP genes expression, thus the function of NF-κB in HUVECs' barrier disruption was investigated. IL1β induced nuclear translocation of NF-κB in HUVECs and regulated MMP9 expression. However, NF-κB translocation into the nucleus was inhibited significantly by melatonin. Our results show that melatonin decreases the permeability of monolayer endothelial cell induced by IL1β. At the same time, melatonin decreased the expression and activity of MMP9 by a NF-κB-dependent pathway in HUVECs induced by IL1β.
Collapse
Affiliation(s)
- Weiwei Qin
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Gene regulation by melatonin linked to epigenetic phenomena. Gene 2012; 503:1-11. [DOI: 10.1016/j.gene.2012.04.040] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/29/2012] [Accepted: 04/17/2012] [Indexed: 12/13/2022]
|
39
|
Korkmaz A, Ma S, Topal T, Rosales-Corral S, Tan DX, Reiter RJ. Glucose: a vital toxin and potential utility of melatonin in protecting against the diabetic state. Mol Cell Endocrinol 2012; 349:128-37. [PMID: 22079284 DOI: 10.1016/j.mce.2011.10.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/14/2011] [Indexed: 12/29/2022]
Abstract
The molecular mechanisms including elevated oxidative and nitrosative reactants, activation of pro-inflammatory transcription factors and subsequent inflammation appear as a unified pathway leading to metabolic deterioration resulting from hyperglycemia, dyslipidemia, and insulin resistance. Consistent evidence reveals that chronically-elevated blood glucose initiates a harmful series of processes in which toxic reactive species play crucial roles. As a consequence, the resulting nitro-oxidative stress harms virtually all biomolecules including lipids, proteins and DNA leading to severely compromised metabolic activity. Melatonin is a multifunctional indoleamine which counteracts several pathophysiologic steps and displays significant beneficial effects against hyperglycemia-induced cellular toxicity. Melatonin has the capability of scavenging both oxygen and nitrogen-based reactants and blocking transcriptional factors which induce pro-inflammatory cytokines. These functions contribute to melatonin's antioxidative, anti-inflammatory and possibly epigenetic regulatory properties. Additionally, melatonin restores adipocyte glucose transporter-4 loss and eases the effects of insulin resistance associated with the type 2 diabetic state and may also assist in the regulation of body weight in these patients. Current knowledge suggests the clinical use of this non-toxic indoleamine in conjunction with other treatments for inhibition of the negative consequences of hyperglycemia for reducing insulin resistance and for regulating the diabetic state.
Collapse
Affiliation(s)
- Ahmet Korkmaz
- Department of Physiology, School of Medicine, Gulhane Military Medical Academy, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
40
|
Chen CQ, Fichna J, Bashashati M, Li YY, Storr M. Distribution, function and physiological role of melatonin in the lower gut. World J Gastroenterol 2011; 17:3888-98. [PMID: 22025877 PMCID: PMC3198018 DOI: 10.3748/wjg.v17.i34.3888] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/18/2011] [Accepted: 03/25/2011] [Indexed: 02/06/2023] Open
Abstract
Melatonin is a hormone with endocrine, paracrine and autocrine actions. It is involved in the regulation of multiple functions, including the control of the gastrointestinal (GI) system under physiological and pathophysiological conditions. Since the gut contains at least 400 times more melatonin than the pineal gland, a review of the functional importance of melatonin in the gut seems useful, especially in the context of recent clinical trials. Melatonin exerts its physiological effects through specific membrane receptors, named melatonin-1 receptor (MT1), MT2 and MT3. These receptors can be found in the gut and their involvement in the regulation of GI motility, inflammation and pain has been reported in numerous basic and clinical studies. Stable levels of melatonin in the lower gut that are unchanged following a pinealectomy suggest local synthesis and, furthermore, implicate physiological importance of endogenous melatonin in the GI tract. Presently, only a small number of human studies report possible beneficial and also possible harmful effects of melatonin in case reports and clinical trials. These human studies include patients with lower GI diseases, especially patients with irritable bowel syndrome, inflammatory bowel disease and colorectal cancer. In this review, we summarize the presently available information on melatonin effects in the lower gut and discuss available in vitro and in vivo data. We furthermore aim to evaluate whether melatonin may be useful in future treatment of symptoms or diseases involving the lower gut.
Collapse
|
41
|
Motilva V, García-Mauriño S, Talero E, Illanes M. New paradigms in chronic intestinal inflammation and colon cancer: role of melatonin. J Pineal Res 2011; 51:44-60. [PMID: 21752096 DOI: 10.1111/j.1600-079x.2011.00915.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In intestinal bowel disease (IBD), immune-mediated conditions exert their effects through various cells and proinflammatory mediators. Recent data support a participation of the endoplasmic reticulum stress and mitochondrial dysfunctions in IBD. Moreover, it is evident that chronic degenerative pathologies, including IBD, share comparable disease mechanisms with alteration in the autophagy mechanisms. Chronic inflammation in IBD exposes these patients to a number of signals known to have tumorigenic effects. This circuitry of inflammation and cancer modifies apoptosis and autophagy, and promotes cellular cycle progression, invasion, and angiogenesis. Melatonin has been shown as a specific antioxidant reducing oxidative damage in both lipid and aqueous cell environments. However, several studies provide further insight into the molecular mechanisms of melatonin action in the colon. In this line, recent data suggest that melatonin modulates autophagy and sirtuin activity. An anti-autophagic property of melatonin has been demonstrated, and it could contribute to its anti-oncogenic activity. Nevertheless, there is no information about whether antitumoral effects of melatonin on colon cancer are dependent on autophagy. Sirtuins have pleiotropic effects on cancer development, being reported both as facilitator and as suppressor of colon cancer development. Sirtuins and melatonin are connected through the circadian clock machinery, and melatonin seems able to correct the alterations in sirtuin activity associated with several pathological conditions. Autophagy and sirtuin activities are linked through 5'AMP-activated protein kinase (AMPK) activation, which switches on autophagy and increases sirtuin. The effect of melatonin on AMPK and the impact of this effect on IBD and colon cancer remain an open question.
Collapse
Affiliation(s)
- Virginia Motilva
- Department of Pharmacology, University of Seville, Seville, Spain.
| | | | | | | |
Collapse
|
42
|
Downregulation of matrix metalloproteinase-9 by melatonin during prevention of alcohol-induced liver injury in mice. Biochimie 2011; 93:854-66. [PMID: 21354255 DOI: 10.1016/j.biochi.2011.02.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 02/14/2011] [Indexed: 01/18/2023]
Abstract
Matrix metalloproteinases (MMPs) have been implicated in inflammatory and degradative processes in several diseases. The study aims to explore the mechanism of MMP-9 regulation in alcohol-induced acute liver injury and its protection by melatonin in mice. Alcohol-induced acute liver injury was induced in female Balb/C mice by ethanol administration and protection studies were carried out with a well-known antioxidant molecule, melatonin. Degree of liver injury was monitored by histological and biochemical analysis of liver tissues. Oral administration of ethanol in mouse caused significant increase in alanine amino transferase (ALT) activity in serum. Depletion of glutathione and enhancement of lipid peroxidation as well as protein oxidation was observed in liver tissues following ethanol treatment. However, melatonin exhibited potent hepatoprotective activity by inhibiting ALT activity and oxidative stress. Additionally, MMP-9 expression was increased by ethanol in a dose and time dependent manner in liver tissue and serum. Increased secretion of proMMP-9 was strongly correlated with the expression of proinflammatory cytokines e.g., tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL6. Melatonin showed hepatoprotective role by downregulation of MMP-9 and upregulation of tissue inhibitor of metalloproteases (TIMP-1) expression in liver tissue. Nuclear factor (NF)-κB, plays an important role in inducing inflammatory genes during oxidative stress, thus the role of NF-κB in ethanol-induced liver injury was investigated. Ethanol induced nuclear translocation of NF-κB and increased degradation of inhibitor of NF-κB (IκBα) in liver tissues. Moreover, ethanol-induced NF-κB translocation into nucleus was inhibited significantly by melatonin. This is the first study to elucidate the induction of MMP-9 expression by NF-κB-dependent pathway in ethanol-induced acute liver injury in mice. This study also identifies the novel role of melatonin in hepatoprotection via MMP-9 down regulation.
Collapse
|
43
|
Tai SH, Chen HY, Lee EJ, Chen TY, Lin HW, Hung YC, Huang SY, Chen YH, Lee WT, Wu TS. Melatonin inhibits postischemic matrix metalloproteinase-9 (MMP-9) activation via dual modulation of plasminogen/plasmin system and endogenous MMP inhibitor in mice subjected to transient focal cerebral ischemia. J Pineal Res 2010; 49:332-41. [PMID: 20663046 DOI: 10.1111/j.1600-079x.2010.00797.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have shown that melatonin attenuated matrix metalloproteinase-9 (MMP-9) activation and decreased the risk of hemorrhagic transformation following cerebral ischemia-reperfusion. Herein, we investigate the possible involvement of the plasminogen/plasmin system and endogenous MMPs inhibitor underlying the melatonin-mediated MMP-9 inhibition. Mice were subjected to 1-hr ischemia and 48-hr reperfusion of the right middle cerebral artery. Melatonin (5 mg/kg) or vehicle was intravenously injected upon reperfusion. Brain infarction and hemorrhagic transformation were measured. Extracellular matrix damage was determined by Western immunoblot analysis for laminin protein. The activity and expression of MMP-2 and MMP-9 were determined by gelatin zymography, in situ zymography, and Western immunoblot analysis. In addition, the activities of tissue and urokinase plasminogen activators (tPA and uPA) were evaluated by plasminogen-dependent casein zymography. Endogenous plasminogen activator inhibitor (PAI) and tissue inhibitors of MMP (TIMP-1) were investigated using enzyme-linked immunosorbent assay (ELISA) and Western immunoblot analysis, respectively. Cerebral ischemia-reperfusion induced increased MMP-9 activity and expression at 12-48 hr after reperfusion onset. Relative to controls, melatonin-treated animals had significantly decreased MMP-9 activity and expression (P<0.05), in addition to reduced brain infarction and hemorrhagic transformation as well as improved laminin protein preservation. This melatonin-mediated MMP-9 inhibition was accompanied by reduced uPA activity (P<0.05), as well as increased TIMP-1 expression and PAI activity (P<0.05, respectively). These results demonstrate the melatonin's pluripotent mechanisms for attenuating postischemic MMP-9 activation and neurovascular damage, and further support it as an add-on to thrombolytic therapy for ischemic stroke patients.
Collapse
Affiliation(s)
- Shih-Huang Tai
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Medical Center and Medical School, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Abstract
The perception of pain is altered by inflammatory processes. Anti-inflammatory drugs block this by raising the pain threshold and by reducing the inflammatory process. Melatonin is claimed to have anti-inflammatory activity in animal models of acute and chronic inflammation. However, little is known whether melatonin can reverse the hyperalgesia that is secondary to the inflammation. This study assessed the effect of melatonin on in a well-established model of hyperalgesia associated with inflammation in rats. Peroxynitrite, as generated by the interaction between superoxide anion radical exogenously supplied (O(2)(˙-) ) and endogenous nitric oxide (NO), led to the development of hyperalgesia. This subplantar injection of O(2)(˙-) into the right hindpaw evoked potent thermal hyperalgesia measured by changes in withdrawal latency. Melatonin (25-100 mg/kg, given ip 30 min prior to O(2)(˙-) ) dose dependently attenuated the hyperalgesic responses to O(2)(˙-) . Moreover, melatonin (100 mg/kg) significantly improved tissue damage and inflammation, blocked protein nitration affecting cyclooxygenase-2 and inducible nitric oxide synthase expression in paw tissue. To investigate the antinociceptive activity of melatonin and characterize the underlying mechanisms involved in this action, mitogen-activated protein kinase and NF-κB pathways were explored. Moreover, antihyperalgesic effect of melatonin derived partly from the inhibition of superoxide-driven PARP activation. These results suggest that melatonin has ameliorative potential in attenuating the hyperalgesia associated with inflammation.
Collapse
|
46
|
Zhao W, Shi Z, Yuan F, Li G, Sun Y, Zhang Y, Wang Z. Melatonin modulates the effects of diethylstilbestrol (DES) on the anterior pituitary of the female Wistar rat. Folia Histochem Cytobiol 2010; 48:278-83. [PMID: 20675286 DOI: 10.2478/v10042-010-0023-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We studied the anti-tumorigenic effect of melatonin in diethylstilbestrol (DES)-treated anterior pituitaries in rats. Twenty-one female Wistar rats were randomly allocated into three groups: vehicle control rats, DES-treated rats, and DES-treated rats co-administrated with melatonin beginning at week 13. At the end of 16 weeks, rats were weighed and decapitated for morphological studies, including an H+E staining-based score evaluation in regard to cell proliferation, angiogenesis, immunostaining for VEGF, MMP-9, and AQP-1, and electron microscopy. Compared with vehicle, long-term treatment of DES significantly reduced rat body weight and increased H+E score, both of which were counteracted by melatonin. Administration of melatonin also reduced the expression of VEGF and MMP-9, although no changes were detected in AQP-1 expression. In rats cotreated with melatonin, the RER loosened and accumulated more secretion granules. We thus concluded that melatonin can modulate the effects of DES on the rat anterior pituitary by downregulating expression of VEGF and MMP-9 and suppressing the release of secretion granules, suggesting a therapeutic potential in estrogen-induced pituitary malfunctions.
Collapse
Affiliation(s)
- Weijiang Zhao
- Neuroscience Center, Shantou University Medical College, Shantou, Guangdong Province 515041, China Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | | | | | | | | | | | | |
Collapse
|