1
|
Lee AH, Tai SH, Huang SY, Chang LD, Chen LY, Chen YN, Hsu HH, Lee EJ. Melatonin Improves Vasogenic Edema via Inhibition to Water Channel Aquaporin-4 (AQP4) and Metalloproteinase-9 (MMP-9) Following Permanent Focal Cerebral Ischemia. Biomedicines 2024; 12:2184. [PMID: 39457496 PMCID: PMC11504272 DOI: 10.3390/biomedicines12102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The efficacy of melatonin in reducing vasogenic and cytotoxic edema was investigated using a model of permanent middle cerebral artery occlusion (pMCAO). Methods: Rats underwent pMCAO, followed by intravenous administration of either melatonin (5 mg/kg) or a vehicle 10 min post-insult. Brain infarction and edema were assessed, and Western blot analyses were conducted to examine the expression levels of aquaporin-4 (AQP4), metalloproteinase-9 (MMP-9), and the neurovascular tight-junction protein ZO-1 upon sacrifice. The permeability of the blood-brain barrier (BBB) was measured using spectrophotometric quantification of Evans blue dye leakage. Results: Compared to controls, melatonin-treated rats exhibited a significant reduction in infarct volume by 26.9% and showed improved neurobehavioral outcomes (p < 0.05 for both). Melatonin treatment also led to decreased Evans blue dye extravasation and brain edema (p < 0.05 for both), along with lower expression levels of AQP4 and MMP-9 proteins and better preservation of ZO-1 protein (p < 0.05 for all). Conclusions: Therefore, melatonin offers neuroprotection against brain swelling induced by ischemia, possibly through its modulation of AQP4 and MMP-9 activities in glial cells and the extracellular matrix (ECM) during the early phase of ischemic injury.
Collapse
Affiliation(s)
- Ai-Hua Lee
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Department of Occupational Safety and Health, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
| | - Shih-Huang Tai
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Sheng-Yang Huang
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Li-Der Chang
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Liang-Yi Chen
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Yu-Ning Chen
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Hao-Hsiang Hsu
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - E-Jian Lee
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| |
Collapse
|
2
|
Sun Z, Zhao T, Bai X, Li H, Gao J, Hao Y, Li Y, Xie Y, Hu A, Huang Q, Liu X, Zhang Y. Berberine Targets PKM2 to Activate the t-PA-Induced Fibrinolytic System and Improves Thrombosis. Pharmaceuticals (Basel) 2024; 17:1219. [PMID: 39338381 PMCID: PMC11434879 DOI: 10.3390/ph17091219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Arterial thrombosis, a condition in which thrombi form in arteries, can lead to various acute cardiovascular diseases and impact the quality of life and survival of patients. Berberine (BBR), a quaternary ammonium alkaloid, has been shown to treat these diseases. However, further exploration is needed to understand underlying mechanisms of BBR. METHODS AND RESULTS Rats were administered BBR via intramuscular injection. Then, an FeCl3-coated filter paper was applied to a carotid artery to induce thrombosis. The size of the thrombus and the blood flow velocity were evaluated by carotid ultrasound. The shape of the thrombus was observed using staining and microscopy. The expression levels of mRNA and proteins were verified. Additionally, mass spectrometry and single-cell RNA sequencing analysis were conducted. The administration of BBR resulted in a significant reduction in the thrombus area and an extension of the thrombus-clogging time. Furthermore, BBR administration effectively reversed the decreasing tissue-plasminogen activator (t-PA) expression and alterations in fibrinolysis system of model group. Additionally, the expression of PKM2 was suppressed following BBR administration, and the overexpression of PKM2 inhibited t-PA expression. CONCLUSIONS BBR ameliorates thrombosis by modulating expression of PKM2, subsequently impacting the expression of t-PA within fibrinolytic system. These preliminary findings suggest that BBR could be a potential preventive and therapeutic strategy for arterial thromboembolic diseases.
Collapse
Affiliation(s)
- Zeqi Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Tong Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Xue Bai
- College of Pharmacy, Hainan University, Haikou 570228, China
| | - Huimin Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Jin Gao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Yutong Hao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Yiyang Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Yanli Xie
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Ange Hu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Qiang Huang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Xin Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Yong Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| |
Collapse
|
3
|
Xie L, He M, Ying C, Chu H. Mechanisms of inflammation after ischemic stroke in brain-peripheral crosstalk. Front Mol Neurosci 2024; 17:1400808. [PMID: 38932932 PMCID: PMC11199882 DOI: 10.3389/fnmol.2024.1400808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke is a devastating disease with high morbidity, disability, and mortality, among which ischemic stroke is more common. However, there is still a lack of effective methods to improve the prognosis and reduce the incidence of its complications. At present, there is evidence that peripheral organs are involved in the inflammatory response after stroke. Moreover, the interaction between central and peripheral inflammation includes the activation of resident and peripheral immune cells, as well as the activation of inflammation-related signaling pathways, which all play an important role in the pathophysiology of stroke. In this review, we discuss the mechanisms of inflammatory response after ischemic stroke, as well as the interactions through circulatory pathways between peripheral organs (such as the gut, heart, lung and spleen) and the brain to mediate and regulate inflammation after ischemic stroke. We also propose the potential role of meningeal lymphatic vessels (MLVs)-cervical lymph nodes (CLNs) as a brain-peripheral crosstalk lymphatic pathway in ischemic stroke. In addition, we also summarize the mechanisms of anti-inflammatory drugs in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ling Xie
- Department of Critical Medicine, First People's Hospital of Linping District, Hangzhou, China
| | - Ming He
- Department of Critical Medicine, First People's Hospital of Linping District, Hangzhou, China
| | - Caidi Ying
- Department of Hepatobiliary and Pancreatic Surgery, The Traditional Chinese Medicine Hospital of Ningbo, Ningbo, China
| | - Haifeng Chu
- Department of Neurosurgery, The Traditional Chinese Medicine Hospital of Linping District, Hangzhou, China
| |
Collapse
|
4
|
Zhang C, Ma Y, Zhao Y, Guo N, Han C, Wu Q, Mu C, Zhang Y, Tan S, Zhang J, Liu X. Systematic review of melatonin in cerebral ischemia-reperfusion injury: critical role and therapeutic opportunities. Front Pharmacol 2024; 15:1356112. [PMID: 38375039 PMCID: PMC10875093 DOI: 10.3389/fphar.2024.1356112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Cerebral ischemia-reperfusion (I/R) injury is the predominant causes for the poor prognosis of ischemic stroke patients after reperfusion therapy. Currently, potent therapeutic interventions for cerebral I/R injury are still very limited. Melatonin, an endogenous hormone, was found to be valid in preventing I/R injury in a variety of organs. However, a systematic review covering all neuroprotective effects of melatonin in cerebral I/R injury has not been reported yet. Thus, we perform a comprehensive overview of the influence of melatonin on cerebral I/R injury by collecting all available literature exploring the latent effect of melatonin on cerebral I/R injury as well as ischemic stroke. In this systematic review, we outline the extensive scientific studies and summarize the beneficial functions of melatonin, including reducing infarct volume, decreasing brain edema, improving neurological functions and attenuating blood-brain barrier breakdown, as well as its key protective mechanisms on almost every aspect of cerebral I/R injury, including inhibiting oxidative stress, neuroinflammation, apoptosis, excessive autophagy, glutamate excitotoxicity and mitochondrial dysfunction. Subsequently, we also review the predictive and therapeutic implications of melatonin on ischemic stroke reported in clinical studies. We hope that our systematic review can provide the most comprehensive introduction of current advancements on melatonin in cerebral I/R injury and new insights into personalized diagnosis and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Chenguang Zhang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yumei Ma
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yating Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Na Guo
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chen Han
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Changqing Mu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Zhang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shutong Tan
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jian Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Shenyang, Liaoning, China
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning, China
| | - Xu Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Li Z, Wei J, Chen B, Wang Y, Yang S, Wu K, Meng X. The Role of MMP-9 and MMP-9 Inhibition in Different Types of Thyroid Carcinoma. Molecules 2023; 28:molecules28093705. [PMID: 37175113 PMCID: PMC10180081 DOI: 10.3390/molecules28093705] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9), one of the most investigated and studied biomarkers of the MMPs family, is a zinc-dependent proteolytic metalloenzyme whose primary function is degrading the extracellular matrix (ECM). It has been proved that MMP-9 expression elevates in multiple pathological conditions, including thyroid carcinoma. MMP-9 has a detectable higher level in malignant or metastatic thyroid tumor tissues than in normal or benign tissues and acts as an additional marker to distinguish different tumor stages because of its close correlations with clinical features, such as lymph node metastasis, TNM stage, tumor size and so on. Natural and non-natural MMP-9 inhibitors suppress its expression, block the progression of diseases, and play a role in therapy consequently. MMP-9 inhibitory molecules also assist in treating thyroid tumors by suppressing the proliferation, invasion, migration, metastasis, viability, adhesion, motility, epithelial-mesenchymal transition (EMT), and other risk factors of different thyroid cancer cells. In a word, discovering and designing MMP-9 inhibitors provide great therapeutic effects and promising clinical values in various types of thyroid carcinoma.
Collapse
Affiliation(s)
- Zhenshengnan Li
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Jia Wei
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Bowen Chen
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Yaoqi Wang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Shuai Yang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Kehui Wu
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Xianying Meng
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
6
|
Wang J, Gao S, Lenahan C, Gu Y, Wang X, Fang Y, Xu W, Wu H, Pan Y, Shao A, Zhang J. Melatonin as an Antioxidant Agent in Stroke: An Updated Review. Aging Dis 2022; 13:1823-1844. [PMID: 36465183 PMCID: PMC9662272 DOI: 10.14336/ad.2022.0405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/05/2022] [Indexed: 08/22/2023] Open
Abstract
Stroke is a devastating disease associated with high mortality and disability worldwide, and is generally classified as ischemic or hemorrhagic, which share certain similar pathophysiological processes. Oxidative stress is a critical factor involved in stroke-induced injury, which not only directly damages brain tissue, but also enhances a series of pathological signaling cascades, contributing to inflammation, brain edema, and neuronal death. To alleviate these serious secondary brain injuries, neuroprotective agents targeting oxidative stress inhibition may serve as a promising treatment strategy. Melatonin is a hormone secreted by the pineal gland, and has various properties, such as antioxidation, anti-inflammation, circadian rhythm modulation, and promotion of tissue regeneration. Numerous animal experiments studying stroke have confirmed that melatonin exerts considerable neuroprotective effects, partially via anti-oxidative stress. In this review, we introduce the possible role of melatonin as an antioxidant in the treatment of stroke based on the latest published studies of animal experiments and clinical research.
Collapse
Affiliation(s)
- Junjie Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Cameron Lenahan
- Department of Biomedical Science, Burrell College of Osteopathic Medicine, Las Cruces, NM, USA.
| | - Yichen Gu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Yuanbo Pan
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Klymenko A, Lutz D. Melatonin signalling in Schwann cells during neuroregeneration. Front Cell Dev Biol 2022; 10:999322. [PMID: 36299487 PMCID: PMC9589221 DOI: 10.3389/fcell.2022.999322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
It has widely been thought that in the process of nerve regeneration Schwann cells populate the injury site with myelinating, non–myelinating, phagocytic, repair, and mesenchyme–like phenotypes. It is now clear that the Schwann cells modify their shape and basal lamina as to accommodate re–growing axons, at the same time clear myelin debris generated upon injury, and regulate expression of extracellular matrix proteins at and around the lesion site. Such a remarkable plasticity may follow an intrinsic functional rhythm or a systemic circadian clock matching the demands of accurate timing and precision of signalling cascades in the regenerating nervous system. Schwann cells react to changes in the external circadian clock clues and to the Zeitgeber hormone melatonin by altering their plasticity. This raises the question of whether melatonin regulates Schwann cell activity during neurorepair and if circadian control and rhythmicity of Schwann cell functions are vital aspects of neuroregeneration. Here, we have focused on different schools of thought and emerging concepts of melatonin–mediated signalling in Schwann cells underlying peripheral nerve regeneration and discuss circadian rhythmicity as a possible component of neurorepair.
Collapse
|
8
|
Liu Y, Bai Q, Yong VW, Xue M. EMMPRIN Promotes the Expression of MMP-9 and Exacerbates Neurological Dysfunction in a Mouse Model of Intracerebral Hemorrhage. Neurochem Res 2022; 47:2383-2395. [PMID: 35608790 DOI: 10.1007/s11064-022-03630-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 04/02/2022] [Accepted: 05/07/2022] [Indexed: 12/23/2022]
Abstract
Extracellular matrix metalloproteinase inducer (EMMPRIN) has been shown to be a vital inflammatory mediator in several neurological and neurodegenerative diseases. However, the role of EMMPRIN in intracerebral hemorrhage (ICH) remains unexplored. In this study, we aimed to exploit a highly selective monoclonal anti-EMMPRIN antibody to functionally inhibit EMMPRIN activity and thus that of MMPs as the downstream effector. To induce ICH pathology, adult C57BL/6 male mice were injected with collagenase type VII or saline as control into the right basal ganglia and were euthanized at different time points. The anti-EMMPRIN monoclonal antibody was intravenously injected once daily for 3 days to block the expression of EMMPRIN initiating at 4 h post-ICH. Western blot and immunofluorescence analysis results revealed that EMMPRIN expression was significantly increased surrounding the hematoma at 3 and 7 d time points after ICH when compared to the saline treated control group. EMMPRIN expression was co-localized with GFAP (astrocytes) and Iba1 (microglia) at 3 d time point post-ICH, but not in the control group mice. The co-localization of EMMPRIN with CD31 in endothelial cells occurred in both groups and was higher in the ICH brain. However, EMMPRIN expression was not detected in neurons from either group. The inhibition of EMMPRIN reduced the expression of MMP-9, the number of infiltrated neutrophils, the degree of brain injury and promoted neurological recovery after ICH. In conclusion, EMMPRIN could mediate the upregulation of MMP-9 and exacerbate neurological dysfunction in a mouse model of experimental ICH. Furthermore, blocking EMMPRIN reduced brain injury and subsequently promoted neurological recovery in ICH mice brains. These outcomes highlight that inhibition of EMMPRIN can be a potential therapeutic intervention strategy to regulate MMP-9's pathological roles during ICH.
Collapse
Affiliation(s)
- Yang Liu
- Departments of Cerebrovascular Diseases and Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, 450001, Henan, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China.,Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Qian Bai
- Departments of Cerebrovascular Diseases and Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, 450001, Henan, China.,Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.
| | - Mengzhou Xue
- Departments of Cerebrovascular Diseases and Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, 450001, Henan, China. .,Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China.
| |
Collapse
|
9
|
Xu C, He Z, Li J. Melatonin as a Potential Neuroprotectant: Mechanisms in Subarachnoid Hemorrhage-Induced Early Brain Injury. Front Aging Neurosci 2022; 14:899678. [PMID: 35572137 PMCID: PMC9098986 DOI: 10.3389/fnagi.2022.899678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/12/2022] [Indexed: 12/21/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a common cerebrovascular disease with high mortality and disability rates. Despite progressive advances in drugs and surgical techniques, neurological dysfunction in surviving SAH patients have not improved significantly. Traditionally, vasospasm has been considered the main cause of death and disability following SAH, but anti-vasospasm therapy has not benefited clinical prognosis. Many studies have proposed that early brain injury (EBI) may be the primary factor influencing the prognosis of SAH. Melatonin is an indole hormone and is the main hormone secreted by the pineal gland, with low daytime secretion levels and high nighttime secretion levels. Melatonin produces a wide range of biological effects through the neuroimmune endocrine network, and participates in various physiological activities in the central nervous system, reproductive system, immune system, and digestive system. Numerous studies have reported that melatonin has extensive physiological and pharmacological effects such as anti-oxidative stress, anti-inflammation, maintaining circadian rhythm, and regulating cellular and humoral immunity. In recent years, more and more studies have been conducted to explore the molecular mechanism underlying melatonin-induced neuroprotection. The studies suggest beneficial effects in the recovery of intracerebral hemorrhage, cerebral ischemia-reperfusion injury, spinal cord injury, Alzheimer’s disease, Parkinson’s disease and meningitis through anti-inflammatory, antioxidant and anti-apoptotic mechanisms. This review summarizes the recent studies on the application and mechanism of melatonin in SAH.
Collapse
Affiliation(s)
- Chengyan Xu
- Department of Neurosurgery, The Children’s Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zixia He
- Department of Outpatient, The Children’s Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiabin Li
- Department of Pharmacy, The Children’s Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Jiabin Li,
| |
Collapse
|
10
|
Liu C, Xie J, Sun S, Li H, Li T, Jiang C, Chen X, Wang J, Le A, Wang J, Li Z, Wang J, Wang W. Hemorrhagic Transformation After Tissue Plasminogen Activator Treatment in Acute Ischemic Stroke. Cell Mol Neurobiol 2022; 42:621-646. [PMID: 33125600 PMCID: PMC11441267 DOI: 10.1007/s10571-020-00985-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022]
Abstract
Hemorrhagic transformation (HT) is a common complication after thrombolysis with recombinant tissue-type plasminogen activator (rt-PA) in ischemic stroke. In this article, recent research progress of HT in vivo and in vitro studies was reviewed. We have discussed new potential mechanisms and possible experimental models of HT development, as well as possible biomarkers and treatment methods. Meanwhile, we compared and analyzed rodent models, large animal models and in vitro BBB models of HT, and the limitations of these models were discussed. The molecular mechanism of HT was investigated in terms of BBB disruption, rt-PA neurotoxicity and the effect of neuroinflammation, matrix metalloproteinases, reactive oxygen species. The clinical features to predict HT were represented including blood biomarkers and clinical factors. Recent progress in neuroprotective strategies to improve HT after stroke treated with rt-PA is outlined. Further efforts need to be made to reduce the risk of HT after rt-PA therapy and improve the clinical prognosis of patients with ischemic stroke.
Collapse
Affiliation(s)
- Chengli Liu
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jie Xie
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Shanshan Sun
- Department of Ultrasound Imaging, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hui Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Tianyu Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China
| | - Junmin Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China
| | - Anh Le
- Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Jiarui Wang
- The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhanfei Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jian Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China.
| | - Wei Wang
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
11
|
Delayed Therapeutic Administration of Melatonin Enhances Neuronal Survival Through AKT and MAPK Signaling Pathways Following Focal Brain Ischemia in Mice. J Mol Neurosci 2022; 72:994-1007. [PMID: 35307786 DOI: 10.1007/s12031-022-01995-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
Melatonin has a role in the cell survival signaling pathways as a candidate for secondary stroke prevention. Therefore, in the present study, the coordination of ipsilateral and contralateral hemispheres to evaluate delayed post-acute effect of melatonin was examined on recovery of the cell survival and apoptosis after stroke. Melatonin was administered (4 mg/kg/day) intraperitoneally for 45 days, starting 3 days after 30 min of middle cerebral artery occlusion. The genes and proteins related to the cell survival and apoptosis were investigated by immunofluorescence, western blotting, and RT-PCR techniques after behavioral experiments. Melatonin produced delayed neurological recovery by improving motor coordination on grip strength and rotarod tests. This neurological recovery was also reflected by high level of NeuN positive cells and low level of TUNEL-positive cells suggesting enhanced neuronal survival and reduced apoptosis at the fifty-fifth day of stroke. The increase of NGF, Nrp1, c-jun; activation of AKT; and dephosphorylation of ERK and JNK at the fifty-fifth day showed that cell survival and apoptosis signaling molecules compete to contribute to the remodeling of brain. Furthermore, an increase in the CREB and Atf-1 expressions suggested the melatonin's strong reformative effect on neuronal regeneration. The contralateral hemisphere was more active at the latter stages of the molecular and functional regeneration which provides a further proof of principle about melatonin's action on the promotion of brain plasticity and recovery after stroke.
Collapse
|
12
|
Navarro-Oviedo M, Marta-Enguita J, Roncal C, Rodriguez JA, Zandio B, Lecumberri R, Hermida J, Oyarzabal J, Pineda-Lucena A, Paramo JA, Muñoz R, Orbe J. CM-352 EFFICACY IN A MOUSE MODEL OF ANTICOAGULANT-ASSOCIATED INTRACRANIAL HAEMORRHAGE. Thromb Haemost 2022; 122:1314-1325. [PMID: 35114692 PMCID: PMC9393087 DOI: 10.1055/a-1759-9962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Intracranial haemorrhage (ICH) is one of the major devastating complications of anticoagulation. Matrix metalloproteinases (MMPs) inhibition has been proposed as a novel pharmacological approach for ICH treatment. OBJECTIVES We evaluated the effects of CM-352 (MMPs-fibrinolysis inhibitor) in an experimental ICH model associated with oral anticoagulants as compared with clinically used prothrombin concentrate complex (PCC). METHODS ICH was induced by collagenase injection into the striatum of WT (C57BL/6J) anticoagulated mice (warfarin or rivaroxaban) and Mmp10 -/- mice. Hematoma volume and neurological deficits were measured 24h later by diaminobenzidine staining and different behavioural test. Circulating plasminogen activator inhibitor-1 (PAI-1) activity and interleukin-6 (IL-6) were measured in plasma samples and local inflammation was assessed by neutrophil infiltration. Finally, fibrinolytic effects of MMP-10 and rivaroxaban were evaluated by thromboelastometry and thrombin-activatable fibrinolysis inhibitor (TAFI) activation assays. RESULTS Only PCC reduced haemorrhage volume and improved functional outcome in warfarin-ICH, but both, PCC and CM-352 treatments, diminished haemorrhage volume (46%, p<0.01 and 64%, p<0.001, respectively) and ameliorated functional outcome in rivaroxaban-ICH. We further demonstrated that CM-352, but not PCC decreased neutrophil infiltration in the haemorrhage area at 24h. The effect of CM-352 could be related to MMP-10 inhibition since Mmp10-/- mice showed lower haemorrhage volume, better neurological score, reduced IL-6 levels and neutrophil infiltration, and increased PAI-1 after experimental ICH. Finally, we found that CM-352 reduced MMP-10 and rivaroxaban-related fibrinolytic effects in thromboelastometry and TAFI activation. CONCLUSIONS CM-352 treatment, by diminishing MMPs and rivaroxaban-associated fibrinolytic effects, might be a novel antihaemorrhagic strategy for rivaroxaban-associated ICH.
Collapse
Affiliation(s)
- Manuel Navarro-Oviedo
- Atherosclerosis Research Laboratory, CIMA, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | - Juan Marta-Enguita
- Atherosclerosis Research Laboratory, CIMA, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain.,Neurology Department, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Carmen Roncal
- Atherosclerosis Research Laboratory, CIMA, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain.,CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose A Rodriguez
- CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Atherosclerosis Research Laboratory, CIMA, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | - Beatriz Zandio
- Neurology Department, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Ramón Lecumberri
- CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Hematology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Jose Hermida
- CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Atherosclerosis Research Laboratory, CIMA, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, PAmplona, Spain
| | - Julen Oyarzabal
- Small Molecules Platform, CIMA, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | - Antonio Pineda-Lucena
- Small Molecules Platform, CIMA, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | - Jose A Paramo
- CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Atherosclerosis Research Laboratory, CIMA, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain.,Hematology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Roberto Muñoz
- Red de Investigación Cooperativa de Enfermedades Vasculares Cerebrales (INVICTUS PLUS), Madrid, Spain.,Neurology Department, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Josune Orbe
- CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Atherosclerosis Research Laboratory, CIMA, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| |
Collapse
|
13
|
Abolhasanpour N, Alihosseini S, Golipourkhalili S, Badalzadeh R, Mahmoudi J, Hosseini L. Insight into the effects of melatonin on endoplasmic reticulum, mitochondrial function, and their cross-talk in the stroke. Arch Med Res 2021; 52:673-682. [PMID: 33926763 DOI: 10.1016/j.arcmed.2021.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/13/2021] [Accepted: 04/07/2021] [Indexed: 12/28/2022]
Abstract
Ischemic stroke has remained a principal cause of mortality and neurological disabilities worldwide. Blood flow resumption, reperfusion, in the cerebral ischemia prompts a cascade in the brain characterized by various cellular mechanisms like mitochondrial dysfunction, oxidative stresses, endoplasmic reticulum (ER) stress, and excitotoxicity, finally resulting in programmed cell death. Any changes in the ER-mitochondria axis are probably responsible for both the onset and progression of central nervous system diseases. Melatonin, a neurohormone secreted by the pineal gland, has antioxidative, anti-inflammatory, and anti-apoptotic properties. Most studies have shown that it exerts neuroprotective effects against ischemic stroke. It was observed that melatonin therapy after the stroke not only leads to reduce mitochondrial dysfunction but also cause to alleviate ER stress and inflammation. This review discusses the impact of melatonin on mitochondrial, ER function, and on the crosstalk between two organelles as a therapeutic target for stroke. Given that the influences of melatonin on each organelle separately, its effects on mechanisms of crosstalk between ER and mitochondria are discussed.
Collapse
Affiliation(s)
- Nasrin Abolhasanpour
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences
| | - Samin Alihosseini
- Student research center, Tabriz university of medical sciences, Tabriz, Iran
| | - Sevda Golipourkhalili
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Badalzadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hosseini
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, IR Iran; Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Melatonin Ameliorates Hemorrhagic Transformation via Suppression of ROS-Induced NLRP3 Activation after Cerebral Ischemia in Hyperglycemic Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6659282. [PMID: 33777317 PMCID: PMC7972845 DOI: 10.1155/2021/6659282] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/26/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Melatonin is a strong antioxidant which beneficially protects against middle cerebral artery occlusion (MCAO) followed by hemorrhagic transformation in rats; protection includes the reduction of neurological deficits, infarction, and hematoma volume. The molecular mechanisms underlying these neuroprotective effects in the MCAO model have not been clearly identified. This study examined the influence and involved mechanism of melatonin on inflammation in hemorrhagic transformation following hyperglycemia MCAO rat model. Compared with the MCAO group, MCAO+dextrose (DX) group showed worse neurological function and higher infarction and hematoma volume. Interestingly, the protein expression of Nod-like receptor protein 3 (NLRP3) inflammasome increased in the MCAO+DX group compared with the MCAO group, which indicated that NLRP3 inflammasome may be involved in the DX-induced hemorrhagic transformation following MCAO. Then, three dosages of melatonin were intraperitoneally injected 2 h after MCAO induction. Melatonin treatment attenuated inflammatory response by inhibiting the reactive oxygen species (ROS) and NLRP3 inflammasome, alleviating neuronal injury, and reducing infarction and hematoma volume, finally improving neurological score. Melatonin also repressed cortical levels of proinflammatory cytokine IL-1β, which were increased 24 h after hyperglycemia MCAO. In order to identify the potential mechanisms, we further revealed that nigericin administration reversed the neuroprotective effect of melatonin by promoting NLRP3 inflammasome activation. In general, this present study reveals that melatonin prevents the occurrence of hyperglycemia-enhanced hemorrhagic transformation, and this effect might be beneficial to attenuate neurological dysfunction via suppressing the inflammatory response after MCAO which possibly associated with the inhibition of the ROS/NLRP3 inflammasome pathway.
Collapse
|
15
|
Potential Role of Melatonin as an Adjuvant for Atherosclerotic Carotid Arterial Stenosis. Molecules 2021; 26:molecules26040811. [PMID: 33557283 PMCID: PMC7914857 DOI: 10.3390/molecules26040811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/23/2022] Open
Abstract
Carotid artery stenosis (CAS) is an atherosclerotic disease characterized by a narrowing of the artery lumen and a high risk of ischemic stroke. Risk factors of atherosclerosis, including smoking, hypertension, hyperglycemia, hyperlipidemia, aging, and disrupted circadian rhythm, may potentiate atherosclerosis in the carotid artery and further reduce the arterial lumen. Ischemic stroke due to severe CAS and cerebral ischemic/reperfusion (I/R) injury after the revascularization of CAS also adversely affect clinical outcomes. Melatonin is a pluripotent agent with potent anti-inflammatory, anti-oxidative, and neuroprotective properties. Although there is a shortage of direct clinical evidence demonstrating the benefits of melatonin in CAS patients, previous studies have shown that melatonin may be beneficial for patients with CAS in terms of reducing endothelial damage, stabilizing arterial plaque, mitigating the harm from CAS-related ischemic stroke and cerebral I/R injury, and alleviating the adverse effects of the related risk factors. Additional pre-clinical and clinical are required to confirm this speculation.
Collapse
|
16
|
Yawoot N, Govitrapong P, Tocharus C, Tocharus J. Ischemic stroke, obesity, and the anti-inflammatory role of melatonin. Biofactors 2021; 47:41-58. [PMID: 33135223 DOI: 10.1002/biof.1690] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
Obesity is a predominant risk factor in ischemic stroke and is commonly comorbid with it. Pathologies following these conditions are associated with systemic and local inflammation. Moreover, there is increasing evidence that the susceptibility for ischemic brain damage increases substantially in experimental models of ischemic stroke with concomitant obesity. Herein, we explore the proinflammatory events that occur during ischemic stroke and obesity, and we discuss the influence of obesity on the inflammatory response and cerebral damage outcomes in experimental models of brain ischemia. In addition, because melatonin is a neurohormone widely reported to exhibit protective effects in various diseases, this study also demonstrates the anti-inflammatory role and possible mechanistic actions of melatonin in both epidemic diseases. A summary of research findings suggests that melatonin administration has great potential to exert an anti-inflammatory role and provide protection against obesity and ischemic stroke conditions. However, the efficacy of this hormonal treatment on ischemic stroke with concomitant obesity, when more serious inflammation is generated, is still lacking.
Collapse
Affiliation(s)
- Nuttapong Yawoot
- Department of Physiology, Chiang Mai University, Chiang Mai, Thailand
- Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Jiraporn Tocharus
- Department of Physiology, Chiang Mai University, Chiang Mai, Thailand
- Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
17
|
Clinical Application of Melatonin in the Treatment of Cardiovascular Diseases: Current Evidence and New Insights into the Cardioprotective and Cardiotherapeutic Properties. Cardiovasc Drugs Ther 2020; 36:131-155. [PMID: 32926271 DOI: 10.1007/s10557-020-07052-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2020] [Indexed: 12/17/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading global cause of mortality and disability, tending to happen in younger individuals in developed countries. Despite improvements in medical treatments, the therapy and long-term prognosis of CVDs such as myocardial ischemia-reperfusion, atherosclerosis, heart failure, cardiac hypertrophy and remodeling, cardiomyopathy, coronary artery disease, myocardial infarction, and other CVDs threatening human life are not satisfactory enough. Therefore, many researchers are attempting to identify novel potential therapeutic methods for the treatment of CVDs. Melatonin is an anti-inflammatory and antioxidant agent with a wide range of therapeutic properties. Recently, several investigations have been carried out to evaluate its effectiveness and efficiency in CVDs therapy, focusing on mechanistic pathways. Herein, this review aims to summarize current findings of melatonin treatment for CVDs.
Collapse
|
18
|
Åkra S, Aksnes TA, Flaa A, Eggesbø HB, Opstad TB, Njerve IU, Seljeflot I. Markers of remodeling in subcutaneous adipose tissue are strongly associated with overweight and insulin sensitivity in healthy non-obese men. Sci Rep 2020; 10:14055. [PMID: 32820223 PMCID: PMC7441176 DOI: 10.1038/s41598-020-71109-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022] Open
Abstract
Alteration in extracellular matrix (ECM) in adipose tissues (AT) has been associated with insulin resistance, diabetes and obesity. We investigated whether selected biomarkers of ECM remodeling in AT in healthy subjects associated with the amount and distribution of AT and with glucometabolic variables. Subcutaneous AT and fasting blood samples from 103 middle-aged healthy non-obese men were used. AT gene expression and circulating levels of the biomarkers were quantified. Distribution of AT was assessed by computed tomography, separated into subcutaneous, deep subcutaneous and visceral AT. Insulin sensitivity was measured by glucose clamp technique. Metalloproteinase (MMP)-9, tissue inhibitor of MMP (TIMP)-1 and plasminogen activator inhibitor (PAI)-1 expression in AT correlated significantly to the amount of AT in all compartments (rs = 0.41-0.53, all p ≤ 0.01), and to insulin sensitivity, insulin, C-peptide, waist circumference and body mass index (BMI) (rs = 0.25-0.57, all p ≤ 0.05). MMP-9 was 5.3 fold higher in subjects with insulin sensitivity below median (p = 0.002) and 3.1 fold higher in subjects with BMI above median level (p = 0.013). In our healthy non-obese middle-aged population AT-expressed genes, central in remodeling of ECM, associated strongly with the amount of abdominal AT, overweight and insulin sensitivity, indicating AT-remodeling to play a role also in non-obese individuals. The remodeling process seems furthermore to associate significantly with glucometabolic disturbances.Trial registration: ClinicalTrials.gov, NCT01412554. Registered 9 August 2011, https://clinicaltrials.gov/ct2/show/NCT01412554?term=NCT01412554 .
Collapse
Affiliation(s)
- Sissel Åkra
- Department of Cardiology, Center for Clinical Heart Research, Oslo University Hospital, Ullevål, Pb 4956 Nydalen, 0424, Oslo, Norway.
| | - Tonje A Aksnes
- Section of Cardiovascular and Renal Research, Oslo University Hospital, Oslo, Norway.,Section for Interventional Cardiology, Department of Cardiology, Heart-, Lung-, and Vascular-Disease Clinic, Oslo University Hospital, Oslo, Norway
| | - Arnljot Flaa
- Section of Cardiovascular and Renal Research, Oslo University Hospital, Oslo, Norway.,Department of Cardiology, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Heidi B Eggesbø
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Trine Baur Opstad
- Department of Cardiology, Center for Clinical Heart Research, Oslo University Hospital, Ullevål, Pb 4956 Nydalen, 0424, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ida U Njerve
- Department of Cardiology, Center for Clinical Heart Research, Oslo University Hospital, Ullevål, Pb 4956 Nydalen, 0424, Oslo, Norway
| | - Ingebjørg Seljeflot
- Department of Cardiology, Center for Clinical Heart Research, Oslo University Hospital, Ullevål, Pb 4956 Nydalen, 0424, Oslo, Norway.,Department of Cardiology, Oslo University Hospital, Ullevål, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Duan L, Li S, Wang L, Jing Y, Li G, Sun Y, Sun W, Li Y, Zhao L, Xin S. Melatonin Plays a Critical Protective Role in Nicotine-Related Abdominal Aortic Aneurysm. Front Physiol 2020; 11:866. [PMID: 32765304 PMCID: PMC7379742 DOI: 10.3389/fphys.2020.00866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/26/2020] [Indexed: 01/10/2023] Open
Abstract
Aim: Smoking is a major risk factor for abdominal aortic aneurysm (AAA). Among the components of smoke, nicotine is known to exert pro-atherosclerotic, prothrombotic, and proangiogenic effects on vascular smooth muscle cells (VSMCs). The current study was designed to investigate the mechanisms through which nicotine induces vascular wall dysfunction and to examine whether melatonin protects against nicotine-related AAA. Methods: In this study, an enzyme-linked immunosorbent assay (ELISA) was used to measure melatonin and TNF-α levels, as well as total antioxidant status (TAS), in patients with AAA. We established a nicotine-related AAA model and explored the mechanisms underlying the therapeutic effects of melatonin. Tissue histopathology was used to assess vascular function, while western blotting (WB) and immunofluorescence staining were performed to detect protein expression. Results: We observed melatonin insufficiency in the serum from patients with AAA, particularly smokers. Moreover, melatonin level was positively correlated with antioxidant capacity. In the in vivo model, nicotine accelerated AAA expansion and destroyed vascular structure. Furthermore, OPN, LC3II, p62, matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), NF-κB p65, TNF-α, phosphorylated AKT, and phosphorylated mTOR levels were increased, in vivo, following nicotine treatment, while SM22α and α-SMA levels were reduced. Additionally, melatonin attenuated the effects of nicotine on AAA and reversed changes in protein expression. Moreover, melatonin lost its protective effects following bafilomycin A1-mediated inhibition of autophagy. Conclusion: Based on our data, melatonin exerts a beneficial effect on rats with nicotine-related AAA by downregulating the AKT-mTOR signaling pathway, improving autophagy dysfunction, and restoring the VSMC phenotype.
Collapse
Affiliation(s)
- Liren Duan
- Department of Vascular Surgery, The First Hospital of China Medical University, Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, China
| | - Shenli Li
- Department of Anesthesiology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Lei Wang
- Department of Vascular Surgery, The First Hospital of China Medical University, Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, China
| | - Yuchen Jing
- Department of Vascular Surgery, The First Hospital of China Medical University, Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, China
| | - Guangxin Li
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Yaodong Sun
- Department of Vascular Surgery, The First Hospital of China Medical University, Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, China
| | - Weifeng Sun
- Department of Vascular Surgery, The First Hospital of China Medical University, Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, China
| | - Yalun Li
- Department of Anorectal Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, China
| | - Shijie Xin
- Department of Vascular Surgery, The First Hospital of China Medical University, Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, China
| |
Collapse
|
20
|
Qin W, Li J, Zhu R, Gao S, Fan J, Xia M, Zhao RC, Zhang J. Melatonin protects blood-brain barrier integrity and permeability by inhibiting matrix metalloproteinase-9 via the NOTCH3/NF-κB pathway. Aging (Albany NY) 2019; 11:11391-11415. [PMID: 31811815 PMCID: PMC6932927 DOI: 10.18632/aging.102537] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/19/2019] [Indexed: 05/13/2023]
Abstract
The pathophysiological mechanism of white matter hyperintensities of cerebral small vessel disease (CSVD) includes an impaired blood-brain barrier (BBB) with increased permeability. Neuroinflammation likely contributes to the disruption of the BBB in CSVD. Therefore, understanding the molecular mechanism of how neuroinflammation causes BBB damage is essential to preventing BBB disruption in CSVD. Matrix metalloproteinase 9 (MMP-9) contributes to BBB damage in neuroinflammatory diseases. In this study, we observed that interleukin-1β (IL-1β)-induced MMP-9 secretion in pericytes increased BBB permeability to sodium fluorescein (Na-F) by damaging the disruption of VE-cadherin, occludin, claudin-5, and zonula occludin-1 (ZO-1). Melatonin reduced BBB permeability to Na-F and inhibited the disruption of the adherens and tight junction proteins. Melatonin also downregulated MMP-9 and upregulated tissue inhibitor of metalloproteinases 1 (TIMP-1) gene expression, which decreased the MMP-9/TIMP-1 ratio. In addition, nuclear translocation of NF-κB/p65 induced by IL-1β in pericytes upregulated MMP-9 expression, which was inhibited by the NF-κB inhibitor PDTC. However, the NOTCH3 inhibitor DAPT significantly inhibited NF-κB/p65 translocation to the nucleus, while melatonin in combination with DAPT significantly prevented NF-κB/p65 translocation than DAPT alone. Our results suggest that melatonin reduced MMP-9-induced permeability of the BBB. Melatonin reduced MMP-9 expression and activity, which was induced by IL-1β through the regulation of the NOTCH3/NF-κB signaling pathway in pericytes, suggesting that pericytes regulate BBB integrity and function.
Collapse
Affiliation(s)
- Weiwei Qin
- Department of Neurology, State Key Clinical Specialty of the Ministry of Health for Neurology, Henan Provincial People’s Hospital, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Jing Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing 100005, China
| | - Rongjia Zhu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing 100005, China
| | - Suhua Gao
- Department of Scientific Research and Discipline Construction, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Junfen Fan
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing 100005, China
| | - Mingrong Xia
- Department of Neurology, State Key Clinical Specialty of the Ministry of Health for Neurology, Henan Provincial People’s Hospital, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing 100005, China
| | - Jiewen Zhang
- Department of Neurology, State Key Clinical Specialty of the Ministry of Health for Neurology, Henan Provincial People’s Hospital, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| |
Collapse
|
21
|
Hu Y, Dong X, Zhang T, Ma H, Yang W, Wang Y, Liu P, Chen Y. Kai‑Xin‑San suppresses matrix metalloproteinases and myocardial apoptosis in rats with myocardial infarction and depression. Mol Med Rep 2019; 21:508-516. [PMID: 31746394 DOI: 10.3892/mmr.2019.10807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/10/2019] [Indexed: 11/06/2022] Open
Abstract
Depression is often triggered by prolonged exposure to psychosocial stressors and associated with coronary heart disease (CHD). Matrix metalloproteinases (MMPs) are involved in the pathogenesis of various emotional and cardiovascular disorders. The purpose of this study was to investigate whether Kai‑Xin‑San (KXS), which may terminate the signaling of MMPs, exerts antidepressant‑like and cardioprotective effects in a myocardial infarction (MI) plus depression rat model. Rats were randomly assigned to five groups: A normal control (control group), a celisc‑injection of isopropyl adrenaline group (ISO group), depression (depression group), an ISO + depression (depression + ISO group), and an ISO + depression group treated with intragastric administration of 1,785 mg/kg KXS (KXS group). Behavioral changes, echocardiography, biochemical index, matrix metalloproteinase (MMP) and apoptosis‑related proteins were assessed. Compared with the depression + ISO group, KXS significantly improved stress‑induced alterations of behavioral parameters and protected the heart by enlarging the left ventricular (LV) fractional shortening (FS) and LV ejection fraction (EF). Moreover, KXS significantly attenuated ISO + depression‑induced MMP‑2 and MMP‑9 expression at the mRNA and protein level and decreased TIMP in the heart compared to the complex model group. Myocardial apoptosis was significantly attenuated by KXS by regulating the Bcl‑2/Bax axis. These results indicated that MI comorbid with depression may damage the MMP balance in the central and peripheral system, and KXS may have a direct anti‑depressive and cardio‑protective effect by regulating the level of MMPs and associated myocardial apoptosis. It is promising to further explore the clinical potential of KXS for the therapy or prevention of MI plus depression comorbidity disease.
Collapse
Affiliation(s)
- Yuan Hu
- Department of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xianzhe Dong
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100053, P.R. China
| | - Tianyi Zhang
- Department of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Hongming Ma
- Department of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Wenshan Yang
- Department of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yichen Wang
- Department of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Ping Liu
- Department of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yibang Chen
- Department of Pharmacology and System Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
22
|
Wu Q, Qin M, Zhang K. Synthesis of sevoflurane loaded reduced graphene oxide nanoparticles system for neuroprotective effects for preconditioning against focal cerebral ischaemia. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3517-3523. [PMID: 31452399 DOI: 10.1080/21691401.2019.1624557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Qinjuan Wu
- Department of Anesthesiology, The Second People’s Hospital of Chengdu, Chengdu, Sichuan, P. R. China
| | - Mingfeng Qin
- Department of Anesthesiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi, P. R. China
| | - Kun Zhang
- Department of Anesthesiology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei, P. R. China
| |
Collapse
|
23
|
Lochner A, Marais E, Huisamen B. Melatonin and cardioprotection against ischaemia/reperfusion injury: What's new? A review. J Pineal Res 2018; 65:e12490. [PMID: 29570845 DOI: 10.1111/jpi.12490] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/01/2018] [Indexed: 12/20/2022]
Abstract
Melatonin is a pleiotropic hormone with several functions. It binds to specific receptors and to a number of cytosolic proteins, activating a vast array of signalling pathways. Its potential to protect the heart against ischaemia/reperfusion damage has attracted much attention, particularly in view of its possible clinical applications. This review will focus mainly on the possible signalling pathways involved in melatonin-induced cardioprotection. In particular, the role of the melatonin receptors and events downstream of receptor activation, for example, the reperfusion injury salvage kinase (RISK), survivor activating factor enhancement (SAFE) and Notch pathways, the sirtuins, nuclear factor E2-related factor 2 (Nrf2) and translocases in the outer membrane (TOM70) will be discussed. Particular attention is given to the role of the mitochondrion in melatonin-induced cardioprotection. In addition, a brief overview will be given regarding the status quo of the clinical application of melatonin in humans.
Collapse
Affiliation(s)
- Amanda Lochner
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Erna Marais
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Barbara Huisamen
- Biomedical Research and Innovation Platform, SA Medical Research Council, Tygerberg, South Africa
| |
Collapse
|
24
|
Lee WT, Tai SH, Lin YW, Wu TS, Lee EJ. YC‑1 reduces inflammatory responses by inhibiting nuclear factor‑κB translocation in mice subjected to transient focal cerebral ischemia. Mol Med Rep 2018; 18:2043-2051. [PMID: 29916544 PMCID: PMC6072174 DOI: 10.3892/mmr.2018.9178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/12/2017] [Indexed: 11/06/2022] Open
Abstract
3‑(5‑hydroxymethyl‑2‑furyl)‑1‑benzyl‑indazole (YC‑1) is understood to protect against ischemic stroke, but the molecular basis for its neuroprotection remains to be fully characterized. The present study investigated the influence of YC‑1 on inflammatory responses following experimental stroke. Previous studies indicated that nuclear factor (NF)‑κB‑driven signals serve a pivotal role in mediating inflammatory responses following stroke. Ischemic stroke results in activation of NF‑κB to induce gene expression of factors including inducible nitric oxide synthase, interleukin (IL)‑1β, IL‑6 and matrix metalloproteinases (MMPs). The results of the present study demonstrated that YC‑1 effectively reduced brain infarction and brain edema, and improved blood‑brain barrier leakage. Additionally, animals treated with YC‑1 exhibited significant reductions in neutrophil and macrophage infiltration into the ischemic brain. Furthermore, YC‑1 effectively inhibited NF‑κB translocation and binding activity, and the activity and expression of MMP‑9 following ischemic stroke. In conclusion, YC‑1 may effectively attenuate NF‑κB‑induced inflammatory damage following cerebral ischemia‑reperfusion.
Collapse
Affiliation(s)
- Wei-Ting Lee
- Institute of Biotechnology and Clinical Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Shih-Huang Tai
- Institute of Biotechnology and Clinical Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Yu-Wen Lin
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Medical Center and Medical School, Tainan 70428, Taiwan, R.O.C
| | - Tian-Shung Wu
- Institute of Biotechnology and Clinical Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - E-Jian Lee
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Medical Center and Medical School, Tainan 70428, Taiwan, R.O.C
| |
Collapse
|
25
|
Tai SH, Lee WT, Lee AC, Lin YW, Hung HY, Huang SY, Wu TS, Lee EJ. Therapeutic window for YC‑1 following glutamate‑induced neuronal damage and transient focal cerebral ischemia. Mol Med Rep 2018; 17:6490-6496. [PMID: 29512783 PMCID: PMC5928635 DOI: 10.3892/mmr.2018.8660] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/24/2017] [Indexed: 01/19/2023] Open
Abstract
3-(5′-Hydroxymethyl-2′-furyl)-1-benzylindazole (YC-1), has been demonstrated to inhibit platelet aggregation, vascular contraction and hypoxia-inducible factor 1 activity in vitro and in vivo. The present study investigated the neuroprotective efficacy of YC-1 in cultured neurons exposed to glutamate-induced excitotoxicity and in an animal model of stroke. In a cortical neuronal culture model, YC-1 demonstrated neurotoxicity at a concentration >100 µM, and YC-1 (10–30 µM) achieved potent cytoprotection against glutamate-induced neuronal damage. Additionally, YC-1 (30 µM) effectively attenuated the increase in intracellular Ca2+ levels. Delayed treatment of YC-1 (30 µM) also protected against glutamate-induced neuronal damage and cell swelling in cultured neurons, though only at 4 h post-treatment. In addition, immediate treatment of YC-1 (30 µM) following the exposure of cortical neurons to glutamate (300 µM) produced a marked reduction in intracellular pH. Delayed treatment of YC-1 (25 mg/kg) protected against ischemic brain damage in vivo, though only when administered at 3 h post-insult. Thus, YC-1 exhibited neuroprotection against glutamate-induced neuronal damage and in mice subjected to transient focal cerebral ischemia. This neuroprotection may be mediated via its ability to limit the glutamate-induced excitotoxicity. However, the neuroprotective therapeutic window of YC-1 is only at 3 h in vivo and 4 h in vitro, which may, at least in part, be attributed to its ability to reduce the intracellular pH in the early phase of ischemic stroke. Although YC-1 provided the potential for clinical therapy, the treatment time point must be carefully evaluated following ischemia.
Collapse
Affiliation(s)
- Shih-Huang Tai
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Medical Center and Medical School, Tainan 70428, Taiwan, R.O.C
| | - Wei-Ting Lee
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Medical Center and Medical School, Tainan 70428, Taiwan, R.O.C
| | - Ai-Chiang Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Yu-Wen Lin
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Medical Center and Medical School, Tainan 70428, Taiwan, R.O.C
| | - Hsin-Yi Hung
- School of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Sheng-Yang Huang
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Medical Center and Medical School, Tainan 70428, Taiwan, R.O.C
| | - Tian-Shung Wu
- Institute of Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - E-Jian Lee
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Medical Center and Medical School, Tainan 70428, Taiwan, R.O.C
| |
Collapse
|
26
|
Wu HJ, Wu C, Niu HJ, Wang K, Mo LJ, Shao AW, Dixon BJ, Zhang JM, Yang SX, Wang YR. Neuroprotective Mechanisms of Melatonin in Hemorrhagic Stroke. Cell Mol Neurobiol 2017; 37:1173-1185. [PMID: 28132129 PMCID: PMC11482116 DOI: 10.1007/s10571-017-0461-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/05/2017] [Indexed: 12/30/2022]
Abstract
Hemorrhagic stroke which consists of subarachnoid hemorrhage and intracerebral hemorrhage is a dominant cause of death and disability worldwide. Although great efforts have been made, the physiological mechanisms of these diseases are not fully understood and effective pharmacological interventions are still lacking. Melatonin (N-acetyl-5-methoxytryptamine), a neurohormone produced by the pineal gland, is a broad-spectrum antioxidant and potent free radical scavenger. More importantly, there is extensive evidence demonstrating that melatonin confers neuroprotective effects in experimental models of hemorrhagic stroke. Multiple molecular mechanisms such as antioxidant, anti-apoptosis, and anti-inflammation, contribute to melatonin-mediated neuroprotection against brain injury after hemorrhagic stroke. This review article aims to summarize current knowledge regarding the beneficial effects of melatonin in experimental models of hemorrhagic stroke and explores the underlying mechanisms. We propose that melatonin is a promising neuroprotective candidate that is worthy of further evaluation for its potential therapeutic applications in hemorrhagic stroke.
Collapse
Affiliation(s)
- Hai-Jian Wu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Cheng Wu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Huan-Jiang Niu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Kun Wang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Lian-Jie Mo
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - An-Wen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Brandon J Dixon
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jian-Min Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shu-Xu Yang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
| | - Yi-Rong Wang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
27
|
Hong Y, Kim H, Lee S, Jin Y, Choi J, Lee SR, Chang KT, Hong Y. Role of melatonin combined with exercise as a switch-like regulator for circadian behavior in advanced osteoarthritic knee. Oncotarget 2017; 8:97633-97647. [PMID: 29228639 PMCID: PMC5722591 DOI: 10.18632/oncotarget.19276] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 05/12/2017] [Indexed: 01/17/2023] Open
Abstract
Here, we show the role of melatonin combined with or without exercise as a determinant of multicellular behavior in osteoarthritis. We address the relationship between the molecular components governing local circadian clock and changes in the osteoarthritic musculoskeletal axis. Melatonin was injected subcutaneously in animals with advanced knee osteoarthritis (OA) for 4 weeks. Concurrently, moderate treadmill exercise was applied for 30 min/day. Morphometric, histological, and gene/protein-level analyses were performed in the cartilage, synovium, bone, and gastrocnemius muscle. Primary cultured chondrocytes repeatedly exposed to TNF-α were used in an in vitro study. The symptoms of OA include gait disturbance, osteophyte formation, and abnormal metabolism of the extracellular matrix (ECM) of the cartilage. Low-level expression of clock genes was accompanied by aberrant changes in cartilage specimens. Nanomolar doses of melatonin restored the expression of clock-controlled genes and corrected the abnormal chondrocyte phenotype. Melatonin combined with or without exercise prevented periarticular muscle damage as well as cartilage degeneration. But prolonged melatonin administration promoted the proteolytic cleavage of RANKL protein in the synovium, leading to severe subchondral bone erosion. These musculoskeletal changes apparently occurred via the regulation of molecular clock components, suggesting a role of melatonin as a switch-like regulator for the OA phenotype.
Collapse
Affiliation(s)
- Yunkyung Hong
- Department of Physical Therapy, College of Biomedical Science & Engineering, Inje University, Gimhae, Korea.,Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea.,Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea.,Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea
| | - Hyunsoo Kim
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea
| | - Seunghoon Lee
- Department of Physical Therapy, College of Biomedical Science & Engineering, Inje University, Gimhae, Korea.,Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea.,Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea.,Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea
| | - Yunho Jin
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea.,Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea.,Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea
| | - Jeonghyun Choi
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea.,Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea.,Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea
| | - Sang-Rae Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Korea
| | - Kyu-Tae Chang
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Korea
| | - Yonggeun Hong
- Department of Physical Therapy, College of Biomedical Science & Engineering, Inje University, Gimhae, Korea.,Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea.,Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea.,Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea
| |
Collapse
|
28
|
Feng D, Wang B, Wang L, Abraham N, Tao K, Huang L, Shi W, Dong Y, Qu Y. Pre-ischemia melatonin treatment alleviated acute neuronal injury after ischemic stroke by inhibiting endoplasmic reticulum stress-dependent autophagy via PERK and IRE1 signalings. J Pineal Res 2017; 62. [PMID: 28178380 DOI: 10.1111/jpi.12395] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023]
Abstract
Melatonin has demonstrated a potential protective effect in central nervous system. Thus, it is interesting to determine whether pre-ischemia melatonin administration could protect against cerebral ischemia/reperfusion (IR)-related injury and the underlying molecular mechanisms. In this study, we revealed that IR injury significantly activated endoplasmic reticulum (ER) stress and autophagy in a middle cerebral artery occlusion mouse model. Pre-ischemia melatonin treatment was able to attenuate IR-induced ER stress and autophagy. In addition, with tandem RFP-GFP-LC3 adeno-associated virus, we demonstrated pre-ischemic melatonin significantly alleviated IR-induced autophagic flux. Furthermore, we showed that IR induced neuronal apoptosis through ER stress related signalings. Moreover, IR-induced autophagy was significantly blocked by ER stress inhibitor (4-PBA), as well as ER-related signaling inhibitors (PERK inhibitor, GSK; IRE1 inhibitor, 3,5-dibromosalicylaldehyde). Finally, we revealed that melatonin significantly alleviated cerebral infarction, brain edema, neuronal apoptosis, and neurological deficiency, which were remarkably abolished by tunicamycin (ER stress activator) and rapamycin (autophagy activator), respectively. In summary, our study provides strong evidence that pre-ischemia melatonin administration significantly protects against cerebral IR injury through inhibiting ER stress-dependent autophagy. Our findings shed light on the novel preventive and therapeutic strategy of daily administration of melatonin, especially among the population with high risk of cerebral ischemic stroke.
Collapse
Affiliation(s)
- Dayun Feng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Bao Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard medical school, Boston, MA, USA
| | - Lei Wang
- Department of Neurosurgery, The 463rd Hospital of PLA, Shenyang, China
| | - Neeta Abraham
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard medical school, Boston, MA, USA
| | - Kai Tao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lu Huang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Shi
- Department of Urology surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yushu Dong
- Department of Neurosurgery, General Hospital of Shenyang Military Area Command, Shenyang, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
29
|
Wang H, Song Y, Hao D, Du L. Molecular mechanisms for N G-nitro-L-arginine methyl ester action against cerebral ischemia–reperfusion injury-induced blood–brain barrier dysfunction. ASIAN BIOMED 2017. [DOI: 10.5372/1905-7415.0802.277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Background: Ischemic stroke, an acute neurological injury lacking an effective therapy, is a leading cause of death worldwide. The unmet need in stroke research is to identify viable therapeutic targets and to understand their interplay during cerebral ischemia-reperfusion (I/R) injury.
Objective: To explore the protective effects and molecular mechanism of NG-nitro-L-arginine methyl ester (L-NAME) in cerebral ischemia-reperfusion injury-induced blood-brain barrier (BBB) dysfunction.
Methods: Two hundred fifty-six rats were randomly assigned to a sham operation group, I/R group, and I/R with L-NAME treatment group. Brain water content was determined by calculating dry/wet weight. The permeability of the BBB was observed using an electron microscope and by determining the Evans Blue leakage from brain tissue on the ischemic side. The expression of brain MMP-9 and GFAP was determined using an immunohistochemical method. The expression of ZO-1 protein was determined by western blotting.
Results: We found that L-NAME remarkably attenuated the permeability of the BBB after I/R as assessed by Evans Blue leakage and brain water content (p < 0.05). This was further confirmed by examination of the ultrastructural morphology of the BBB using a transmission electron microscope. Furthermore, we found that expression of the zonae occludens-1 (ZO-1) was decreased in endothelial cells, and expression of MMP-9 and GFAP was increased in the basement membrane and astrocyte end-feet in vehicle control groups, respectively, but these changes could be prevented by L-NAME pretreatment.
Conclusion: These results suggested that the neuroprotective effects of L-NAME against BBB damage induced by I/R might be related to the upregulation of tight junction proteins and inhibition of MMP-9 and GFAP expression. L-NAME can be used as a potential MMP-9-based multiple targeting therapeutic strategy in cerebral I/R injury.
Collapse
Affiliation(s)
- Hanghui Wang
- Department of Ultrasound, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China China
- Hong Hui Hospital, Xi’an Jiaotong University College of Medicine, Shaanxi 710054, China
| | - Yixin Song
- Department of Ultrasound, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China China
- Hong Hui Hospital, Xi’an Jiaotong University College of Medicine, Shaanxi 710054, China
| | - Dingjun Hao
- Department of Ultrasound, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China China
- Correspondence to: Hong Hui Hospital, Xi’an Jiaotong University College of Medicine, Shaanxi, 710054, China
| | - Lianfang Du
- Department of Ultrasound, Shanghai First People’s Hospital Afiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200080, China China
- Hong Hui Hospital, Xi’an Jiaotong University College of Medicine, Shaanxi 710054, China
| |
Collapse
|
30
|
Beker MC, Caglayan AB, Kelestemur T, Caglayan B, Yalcin E, Yulug B, Kilic U, Hermann DM, Kilic E. Effects of normobaric oxygen and melatonin on reperfusion injury: role of cerebral microcirculation. Oncotarget 2016; 6:30604-14. [PMID: 26416428 PMCID: PMC4741555 DOI: 10.18632/oncotarget.5773] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/13/2015] [Indexed: 11/25/2022] Open
Abstract
In order to protect the brain before an irreversible injury occurs, penumbral oxygenation is the primary goal of current acute ischemic stroke treatment. However, hyperoxia treatment remains controversial due to the risk of free radical generation and vasoconstriction. Melatonin is a highly potent free radical scavenger that protects against ischemic stroke. Considering its anti-oxidant activity, we hypothesized that melatonin may augment the survival-promoting action of normobaric oxygen (NBO) and prevent brain infarction. Herein, we exposed mice to 30 or 90 min of intraluminal middle cerebral artery occlusion (MCAo) and evaluated the effects of NBO (70% or 100% over 90 min), administered either alone or in combination with melatonin (4 mg/kg, i.p.), on disseminate neuronal injury, neurological deficits, infarct volume, blood-brain barrier (BBB) permeability, cerebral blood flow (CBF) and cell signaling. Both NBO and particularly melatonin alone reduced neuronal injury, neurological deficits, infarct volume and BBB permeability, and increased post-ischemic CBF, evaluated by laser speckle imaging (LSI). They also improved CBF significantly in the ischemic- core and penumbra, which was associated with reduced IgG extravasation, DNA fragmentation, infarct volume, brain swelling and neurological scores. Levels of phosphorylated Akt, anti-apoptotic Bcl-xL, pro-apoptotic Bax and endothelial nitric oxide synthase (NOS) were re-regulated after combined oxygen and melatonin delivery, whereas neuronal and inducible NOS, which were increased by oxygen treatment, were not influenced by melatonin. Our present data suggest that melatonin and NBO are promising approaches for the treatment of acute-ischemic stroke, which encourage proof-of-concept studies in human stroke patients.
Collapse
Affiliation(s)
- Mustafa C Beker
- Department of Physiology and Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Ahmet B Caglayan
- Department of Physiology and Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Taha Kelestemur
- Department of Physiology and Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Berrak Caglayan
- Department of Physiology and Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Esra Yalcin
- Department of Physiology and Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Burak Yulug
- Department of Neurology, Istanbul Medipol University, Istanbul, Turkey
| | - Ulkan Kilic
- Department of Physiology and Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Ertugrul Kilic
- Department of Physiology and Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
31
|
Liang LJ, Yang JM, Jin XC. Cocktail treatment, a promising strategy to treat acute cerebral ischemic stroke? Med Gas Res 2016; 6:33-38. [PMID: 27826421 PMCID: PMC5075681 DOI: 10.4103/2045-9912.179343] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Up to now, over 1,000 experimental treatments found in cells and rodents have been difficult to translate to human ischemic stroke. Since ischemia and reperfusion, two separate stages of ischemic stroke, have different pathophysiological mechanisms leading to brain injury, a combination of protective agents targeting ischemia and reperfusion respectively may obtain substantially better results than a single agent. Normobaric hyperoxia (NBO) has been shown to exhibit neuro- and vaso-protective effects by improving tissue oxygenation when it is given during ischemia, however the effect of NBO would diminish when the duration of ischemia and reperfusion was extended. Therefore, during reperfusion drug treatment targeting inflammation, oxidative stress and free radical scavenger would be a useful adjuvant to extend the therapeutic window of tissue plasminogen activator, the only United States Food and Drug Administration (FDA) approved treatment for acute ischemic stroke. In this review, we discussed the neuro- and vaso-protective effects of NBO and recent finding of combining NBO with other drugs.
Collapse
Affiliation(s)
- Li-Jun Liang
- Children's Hospital of Shanxi Province, Taiyuan, Shanxi Province, China
| | - Jin-Ming Yang
- Children's Hospital of Shanxi Province, Taiyuan, Shanxi Province, China
| | - Xin-Chun Jin
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
32
|
Ingberg E, Dock H, Theodorsson E, Theodorsson A, Ström JO. Method parameters' impact on mortality and variability in mouse stroke experiments: a meta-analysis. Sci Rep 2016; 6:21086. [PMID: 26876353 PMCID: PMC4753409 DOI: 10.1038/srep21086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/13/2016] [Indexed: 12/17/2022] Open
Abstract
Although hundreds of promising substances have been tested in clinical trials,
thrombolysis currently remains the only specific pharmacological treatment for
ischemic stroke. Poor quality, e.g. low statistical power, in the preclinical
studies has been suggested to play an important role in these failures. Therefore,
it would be attractive to use animal models optimized to minimize unnecessary
mortality and outcome variability, or at least to be able to power studies more
exactly by predicting variability and mortality given a certain experimental setup.
The possible combinations of methodological parameters are innumerous, and an
experimental comparison of them all is therefore not feasible. As an alternative
approach, we extracted data from 334 experimental mouse stroke articles and, using a
hypothesis-driven meta-analysis, investigated the method parameters’
impact on infarct size variability and mortality. The use of Swiss and C57BL6 mice
as well as permanent occlusion of the middle cerebral artery rendered the lowest
variability of the infarct size while the emboli methods increased variability. The
use of Swiss mice increased mortality. Our study offers guidance for researchers
striving to optimize mouse stroke models.
Collapse
Affiliation(s)
- Edvin Ingberg
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Hua Dock
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Elvar Theodorsson
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Annette Theodorsson
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden.,Division of Neuro and Inflammation Science, Department of Clinical and Experimental Medicine, Linköping University, Department of Neurosurgery, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland, Sweden
| | - Jakob O Ström
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden.,Vårdvetenskapligt Forskningscentrum/Centre for Health Sciences, Örebro University Hospital, County Council of Örebro, Örebro, Sweden.,School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
33
|
Wiera G, Mozrzymas JW. Extracellular proteolysis in structural and functional plasticity of mossy fiber synapses in hippocampus. Front Cell Neurosci 2015; 9:427. [PMID: 26582976 PMCID: PMC4631828 DOI: 10.3389/fncel.2015.00427] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/09/2015] [Indexed: 02/04/2023] Open
Abstract
Brain is continuously altered in response to experience and environmental changes. One of the underlying mechanisms is synaptic plasticity, which is manifested by modification of synapse structure and function. It is becoming clear that regulated extracellular proteolysis plays a pivotal role in the structural and functional remodeling of synapses during brain development, learning and memory formation. Clearly, plasticity mechanisms may substantially differ between projections. Mossy fiber synapses onto CA3 pyramidal cells display several unique functional features, including pronounced short-term facilitation, a presynaptically expressed long-term potentiation (LTP) that is independent of NMDAR activation, and NMDA-dependent metaplasticity. Moreover, structural plasticity at mossy fiber synapses ranges from the reorganization of projection topology after hippocampus-dependent learning, through intrinsically different dynamic properties of synaptic boutons to pre- and postsynaptic structural changes accompanying LTP induction. Although concomitant functional and structural plasticity in this pathway strongly suggests a role of extracellular proteolysis, its impact only starts to be investigated in this projection. In the present report, we review the role of extracellular proteolysis in various aspects of synaptic plasticity in hippocampal mossy fiber synapses. A growing body of evidence demonstrates that among perisynaptic proteases, tissue plasminogen activator (tPA)/plasmin system, β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) and metalloproteinases play a crucial role in shaping plastic changes in this projection. We discuss recent advances and emerging hypotheses on the roles of proteases in mechanisms underlying mossy fiber target specific synaptic plasticity and memory formation.
Collapse
Affiliation(s)
- Grzegorz Wiera
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University Wroclaw, Poland ; Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University Wroclaw, Poland
| | - Jerzy W Mozrzymas
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University Wroclaw, Poland ; Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University Wroclaw, Poland
| |
Collapse
|
34
|
Moretti R, Zanin A, Pansiot J, Spiri D, Manganozzi L, Kratzer I, Favero G, Vasiljevic A, Rinaldi VE, Pic I, Massano D, D'Agostino I, Baburamani A, La Rocca MA, Rodella LF, Rezzani R, Ek J, Strazielle N, Ghersi-Egea JF, Gressens P, Titomanlio L. Melatonin reduces excitotoxic blood-brain barrier breakdown in neonatal rats. Neuroscience 2015; 311:382-97. [PMID: 26542996 DOI: 10.1016/j.neuroscience.2015.10.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/14/2015] [Accepted: 10/23/2015] [Indexed: 12/30/2022]
Abstract
The blood-brain barrier (BBB) is a complex structure that protects the central nervous system from peripheral insults. Understanding the molecular basis of BBB function and dysfunction holds significant potential for future strategies to prevent and treat neurological damage. The aim of our study was (1) to investigate BBB alterations following excitotoxicity and (2) to test the protective properties of melatonin. Ibotenate, a glutamate analog, was injected intracerebrally in postnatal day 5 (P5) rat pups to mimic excitotoxic injury. Animals were than randomly divided into two groups, one receiving intraperitoneal (i.p.) melatonin injections (5mg/kg), and the other phosphate buffer saline (PBS) injections. Pups were sacrificed 2, 4 and 18 h after ibotenate injection. We determined lesion size at 5 days by histology, the location and organization of tight junction (TJ) proteins by immunohistochemical studies, and BBB leakage by dextran extravasation. Expression levels of BBB genes (TJs, efflux transporters and detoxification enzymes) were determined in the cortex and choroid plexus by quantitative PCR. Dextran extravasation was seen 2h after the insult, suggesting a rapid BBB breakdown that was resolved by 4h. Extravasation was significantly reduced in melatonin-treated pups. Gene expression and immunohistochemical assays showed dynamic BBB modifications during the first 4h, partially prevented by melatonin. Lesion-size measurements confirmed white matter neuroprotection by melatonin. Our study is the first to evaluate BBB structure and function at a very early time point following excitotoxicity in neonates. Melatonin neuroprotects by preventing TJ modifications and BBB disruption at this early phase, before its previously demonstrated anti-inflammatory, antioxidant and axonal regrowth-promoting effects.
Collapse
Affiliation(s)
- R Moretti
- Pediatric Emergency Department, APHP, Robert Debré Hospital, Paris, France; Inserm, U1141, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; PremUP, Paris, France; Università degli studi di Udine, 33100 Udine, Italy
| | - A Zanin
- Inserm, U1141, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; PremUP, Paris, France
| | - J Pansiot
- Inserm, U1141, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; PremUP, Paris, France
| | - D Spiri
- Inserm, U1141, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; PremUP, Paris, France
| | - L Manganozzi
- Inserm, U1141, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; PremUP, Paris, France
| | - I Kratzer
- Lyon Neurosciences Research Center, Inserm U1028, CNRS UMR5292 - Lyon University, Lyon, France
| | - G Favero
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - A Vasiljevic
- Lyon Neurosciences Research Center, Inserm U1028, CNRS UMR5292 - Lyon University, Lyon, France
| | - V E Rinaldi
- Inserm, U1141, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; PremUP, Paris, France
| | - I Pic
- Inserm, U1141, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; PremUP, Paris, France
| | - D Massano
- Inserm, U1141, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; PremUP, Paris, France
| | - I D'Agostino
- Inserm, U1141, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; PremUP, Paris, France
| | - A Baburamani
- Perinatal Center, Dept Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - M A La Rocca
- Inserm, U1141, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; PremUP, Paris, France
| | - L F Rodella
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - R Rezzani
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - J Ek
- Perinatal Center, Dept Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - N Strazielle
- Lyon Neurosciences Research Center, Inserm U1028, CNRS UMR5292 - Lyon University, Lyon, France; Brain-i, Lyon, France
| | - J-F Ghersi-Egea
- Lyon Neurosciences Research Center, Inserm U1028, CNRS UMR5292 - Lyon University, Lyon, France
| | - P Gressens
- Inserm, U1141, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; PremUP, Paris, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, St. Thomas' Hospital, London, United Kingdom
| | - L Titomanlio
- Pediatric Emergency Department, APHP, Robert Debré Hospital, Paris, France; Inserm, U1141, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; PremUP, Paris, France.
| |
Collapse
|
35
|
Andrabi SS, Parvez S, Tabassum H. Melatonin and Ischemic Stroke: Mechanistic Roles and Action. Adv Pharmacol Sci 2015; 2015:384750. [PMID: 26435711 PMCID: PMC4575994 DOI: 10.1155/2015/384750] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/09/2015] [Accepted: 08/19/2015] [Indexed: 11/21/2022] Open
Abstract
Stroke is one of the most devastating neurological disabilities and brain's vulnerability towards it proves to be fatal and socio-economic loss of millions of people worldwide. Ischemic stroke remains at the center stage of it, because of its prevalence amongst the several other types attacking the brain. The various cascades of events that have been associated with stroke involve oxidative stress, excitotoxicity, mitochondrial dysfunction, upregulation of Ca(2+) level, and so forth. Melatonin is a neurohormone secreted by pineal and extra pineal tissues responsible for various physiological processes like sleep and mood behaviour. Melatonin has been implicated in various neurological diseases because of its antioxidative, antiapoptotic, and anti-inflammatory properties. We have previously reviewed the neuroprotective effect of melatonin in various models of brain injury like traumatic brain injury and spinal cord injury. In this review, we have put together the various causes and consequence of stroke and protective role of melatonin in ischemic stroke.
Collapse
Affiliation(s)
- Syed Suhail Andrabi
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Heena Tabassum
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| |
Collapse
|
36
|
Pan J, Lei X, Wang J, Huang S, Wang Y, Zhang Y, Chen W, Li D, Zheng J, Cui H, Liu Q. Effects of Kaixinjieyu, a Chinese herbal medicine preparation, on neurovascular unit dysfunction in rats with vascular depression. Altern Ther Health Med 2015; 15:291. [PMID: 26286041 PMCID: PMC4545710 DOI: 10.1186/s12906-015-0808-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 08/07/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Kaixinjieyu (KJ), derived from Kaixin and Sini powder, is an effective Chinese herbal medicine preparation used in the treatment of vascular depression (VD). We hypothesize that broad antidepressant effect of KJ results from the improved neurovascular unit (NVU) function via neurogenesis, permeability of blood-brain barrier (BBB) and balance of the fibrinolytic system. METHODS A VD model of rat was established by chronic unpredictable mild stress and separation after ligation of the bilateral common carotid arteries. The rats were treated with KJ and fluoxetine hydrochloride (FLU) for 21 days, respectively. The behavior and cerebral perfusion were investigated and then NVU functions including neurogenesis, permeability of BBB and balance of the fibrinolytic system were studied using a number of biomarkers and TUNEL assay. RESULTS KJ significantly increased sucrose preference, moving distance, number of rearing and cortical blood flow. NVU functions measured by brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB) and tissue plasminogen activator (t-PA) proteins and mRNA, zona occludens protein-1 (ZO-1), occludin and claudin-5 proteins increased significantly, whereas, plasminogen activator inhibitor-1 (PAI-1), matrix metalloproteinase-2 (MMP-2) proteins, mRNA and apoptotic rates of neurons decreased significantly with treatment of KJ. FLU has a function similar to KJ in behavior, regulation of BDNF, TrkB, MMP-2, occludin and apoptotic rates of cells. CONCLUSIONS KJ has function of reducing depression-like behavior and improving cerebral hypoperfusion, which might be mediated by the up-regulation of neurogenesis and tight junction of BBB, and balance of the fibrinolytic system. The results imply that KJ is better than FLU in improving cerebral hypoperfusion and the fibrinolytic system.
Collapse
|
37
|
Anderson G, Rodriguez M. Multiple sclerosis: the role of melatonin and N-acetylserotonin. Mult Scler Relat Disord 2014; 4:112-23. [PMID: 25787187 DOI: 10.1016/j.msard.2014.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/06/2014] [Accepted: 12/09/2014] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis (MS) is an immune mediated disorder that is under intensive investigation in an attempt to improve on available treatments. Many of the changes occurring in MS, including increased mitochondrial dysfunction, pain reporting and depression may be partly mediated by increased indoleamine 2,3-dioxygenase, which drives tryptophan to the production of neuroregulatory tryptophan catabolites and away from serotonin, N-acetylserotonin and melatonin production. The consequences of decreased melatonin have classically been attributed to circadian changes following its release from the pineal gland. However, recent data shows that melatonin may be produced by all mitochondria containing cells to some degree, including astrocytes and immune cells, thereby providing another important MS treatment target. As well as being a powerful antioxidant, anti-inflammatory and antinociceptive, melatonin improves mitochondrial functioning, partly via increased oxidative phosphorylation. Melatonin also inhibits demyelination and increases remyelination, suggesting that its local regulation in white matter astrocytes by serotonin availability and apolipoprotein E4, among other potential factors, will be important in the etiology, course and treatment of MS. Here we review the role of local melatonin and its precursors, N-acetylserotonin and serotonin, in MS.
Collapse
|
38
|
Melatonin inhibits thermal injury–induced hyperpermeability in microvascular endothelial cells. J Trauma Acute Care Surg 2014; 77:899-905; discussion 905. [DOI: 10.1097/ta.0000000000000346] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
Yang Y, Sun Y, Yi W, Li Y, Fan C, Xin Z, Jiang S, Di S, Qu Y, Reiter RJ, Yi D. A review of melatonin as a suitable antioxidant against myocardial ischemia-reperfusion injury and clinical heart diseases. J Pineal Res 2014; 57:357-66. [PMID: 25230580 DOI: 10.1111/jpi.12175] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 09/12/2014] [Indexed: 12/16/2022]
Abstract
Cardiac tissue loss is one of the most important factors leading to the unsatisfactory recovery even after treatment of ischemic heart disease. Melatonin, a circadian molecule with marked antioxidant properties, protects against ischemia-reperfusion (IR) injury. In particular, the myocardial protection of melatonin is substantial. We initially focus on the cardioprotective effects of melatonin in myocardial IR. These studies showed how melatonin preserves the microstructure of the cardiomyocyte and reduces myocardial IR injury. Thereafter, downstream signaling pathways of melatonin were summarized including Janus kinase 2/signal transducers and activators of transcription 3, nitric oxide-synthase, and nuclear factor erythroid 2 related factor 2. Herein, we propose the clinical applications of melatonin in several ischemic heart diseases. Collectively, the information summarized in this review (based on in vitro, animal, and human studies) should serve as a comprehensive reference for the action of melatonin in cardioprotection and hopefully will contribute to the design of future experimental research.
Collapse
Affiliation(s)
- Yang Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China; Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Juan WS, Huang SY, Chang CC, Hung YC, Lin YW, Chen TY, Lee AH, Lee AC, Wu TS, Lee EJ. Melatonin improves neuroplasticity by upregulating the growth-associated protein-43 (GAP-43) and NMDAR postsynaptic density-95 (PSD-95) proteins in cultured neurons exposed to glutamate excitotoxicity and in rats subjected to transient focal cerebral ischemia even during a long-term recovery period. J Pineal Res 2014; 56:213-23. [PMID: 24350898 DOI: 10.1111/jpi.12114] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/13/2013] [Indexed: 01/22/2023]
Abstract
Recent evidence shows that the NMDAR postsynaptic density-95 (PSD-95), growth-associated protein-43 (GAP-43), and matrix metalloproteinase-9 (MMP-9) protein enhance neuroplasticity at the subacute stage of stroke. Here, we evaluated whether melatonin would modulate the PSD-95, GAP-43, and MMP-9 proteins in cultured neurons exposed to glutamate excitotoxicity and in rats subjected to experimental stroke. Adult male Sprague-Dawley rats were treated with melatonin (5 mg/kg) or vehicle at reperfusion onset after transient occlusion of the right middle cerebral artery (tMCAO) for 90 min. Animals were euthanized for Western immunoblot analyses for the PSD-95 and GAP-43 proteins and gelatin zymography for the MMP-9 activity at 7 days postinsult. Another set of animals was sacrificed for histologic and Golgi-Cox-impregnated sections at 28 days postinsult. In cultured neurons exposed to glutamate excitotoxicity, melatonin significantly upregulated the GAP-43 and PSD-95 expressions and improved dendritic aborizations (P<0.05, respectively). Relative to controls, melatonin-treated stroke animals caused a significant improvement in GAP-43 and PSD-95 expressions as well as the MMP-9 activity in the ischemic brain (P<0.05). Consequently, melatonin also significantly promoted the dendritic spine density and reduced infarction in the ischemic brain, and improved neurobehaviors as well at 28 days postinsult (P<0.05, respectively). Together, melatonin upregulates GAP-43, PSD-95, and MMP-9 proteins, which likely accounts for its actions to improve neuroplasticity in cultured neurons exposed to glutamate excitotoxicity and to enhance long-term neuroprotection, neuroplasticity, and brain remodeling in stroke rats.
Collapse
Affiliation(s)
- Wei-Sheng Juan
- Neurophysiology Laboratory, Institute of Biomedical Engineering & Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ordoñez R, Carbajo-Pescador S, Prieto-Dominguez N, García-Palomo A, González-Gallego J, Mauriz JL. Inhibition of matrix metalloproteinase-9 and nuclear factor kappa B contribute to melatonin prevention of motility and invasiveness in HepG2 liver cancer cells. J Pineal Res 2014; 56:20-30. [PMID: 24117795 DOI: 10.1111/jpi.12092] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 08/30/2013] [Indexed: 12/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal human cancers worldwide because of its high incidence and its metastatic potential. Extracellular matrix degradation by matrix metalloproteinases (MMPs) has been connected with cancer cell invasion, and it has been suggested that inhibition of MMPs by synthetic and natural inhibitors may be of great importance in the HCC therapies. Melatonin, the main product of the pineal gland, exerts antiproliferative, proapoptotic, and antiangiogenic properties in HepG2 human hepatocellular cells, and exhibits anti-invasive and antimetastatic activities by suppressing the enzymatic activity of MMP-9 in different tumor types. However, the underlying mechanism of anti-invasive activity in HCC models has not been fully elucidated. Here, we demonstrate that 1 mm melatonin dosage reduced in IL-1β-induced HepG2 cells MMP-9 gelatinase activity and inhibited cell invasion and motility through downregulation of MMP-9 gene expression and upregulation of the MMP-9-specific inhibitor tissue inhibitor of metalloproteinases (TIMP)-1. No significant changes were observed in the expression and activity of MMP-2, the other proteinase implicated in matrix collagen degradation, and its tissue inhibitor, TIMP-2. Also, melatonin significantly suppressed IL-1β-induced nuclear factor-kappaB (NF-κB) translocation and transcriptional activity. In summary, we demonstrate that melatonin modulates motility and invasiveness of HepG2 cell in vitro through a molecular mechanism that involves TIMP-1 upregulation and attenuation of MMP-9 expression and activity via NF-κB signal pathway inhibition.
Collapse
Affiliation(s)
- Raquel Ordoñez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain; Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Kim SJ, Lee SR. Protective effect of melatonin against transient global cerebral ischemia-induced neuronal cell damage via inhibition of matrix metalloproteinase-9. Life Sci 2013; 94:8-16. [PMID: 24269215 DOI: 10.1016/j.lfs.2013.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 11/09/2013] [Accepted: 11/09/2013] [Indexed: 11/26/2022]
Abstract
AIMS Melatonin possesses various pharmacological effects including neuroprotective effects against brain ischemia. Post-ischemic increases in matrix metalloproteinase-9 (MMP-9) expression and activity mainly contribute to neuronal damage by degradation of the extracellular matrix. This study was designed to examine whether melatonin has a neuroprotective effect and an influence on MMP-9 in transient global brain ischemia. MAIN METHODS Mice were subjected to 20 min of global brain ischemia and sacrificed 72h later. Melatonin (30 mg/kg) was administered 30 min before and 2h after ischemia as well as once daily until sacrifice. KEY FINDINGS Hippocampal pyramidal cell damage after ischemia was significantly decreased by melatonin. As observed by zymography, melatonin inhibited the increase of MMP-9 activity after ischemia. In the brain sections, the increased gelatinase activity was mainly observed in the hippocampus after ischemia and melatonin also reduced gelatinase activity. The laminin and NeuN expression levels were reduced in the hippocampal CA1 and CA2 regions after ischemia, and melatonin reduced laminin degradation and neuronal loss. A TUNEL assay demonstrated that there were TUNEL-positive cells in the hippocampus and the number of TUNEL-positive cells was significantly decreased by melatonin. There was no difference in the ischemia-induced hippocampal neuronal damage between the vehicle- and melatonin-treated groups of MMP-9 knock-out mice. SIGNIFICANCE These data demonstrate that melatonin suppressed the occurrence of neuronal injury, which might be partly due to its inhibitory effects on MMP-9 in addition to its anti-oxidative effects. MMP-9 may be an important key target of melatonin in neuroprotection against global ischemia.
Collapse
Affiliation(s)
- Su-Jin Kim
- Department of Anesthesiology, College of Medicine, Dongguk University, Gyeongju, South Korea; Department of Pharmacology, School of Medicine and Brain Research Institute, Keimyung University, Daegu 704-701, South Korea
| | - Seong-Ryong Lee
- Department of Pharmacology, School of Medicine and Brain Research Institute, Keimyung University, Daegu 704-701, South Korea.
| |
Collapse
|
43
|
Wu Y, Wang L, Dai C, Ma G, Zhang Y, Zhang X, Wu Z. Neuroprotection by platelet-activating factor acetylhydrolase in a mouse model of transient cerebral ischemia. Neurosci Lett 2013; 558:26-30. [PMID: 24189491 DOI: 10.1016/j.neulet.2013.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/02/2013] [Accepted: 09/03/2013] [Indexed: 11/30/2022]
Abstract
Neuronal damage after transient cerebral ischemia is exacerbated by signaling pathways involving activated platelet-activating factor (PAF) and ameliorated by PAF-acetylhydrolase (PAF-AH); but whether cerebral neurons can be rescued by human recombinant PAF-AH (rPAF-AH) remains unknown. Adult male mice underwent a 60 min middle cerebral artery occlusion (MCAO) and reperfusion for 24h. Then, the mice received intravenous tail injections with different drugs. Neurological behavioral function was evaluated by Bederson's test, and cerebral infarction volume was assessed with tetrazolium chloride (TTC) staining. mRNA and protein expression levels of matrix metalloproteinase-2 (MMP-2, collagenase-1), MMP-9 (gelatinase-B), and vascular endothelial growth factor (VEGF) were determined by quantitative real-time PCR (RT-PCR) and western blot analysis, respectively. Compared with the vehicle group, rPAF-AH significantly improved sensorimotor function (42%, P=0.0001). The volume of non-infarcted brain tissue was increased by the rPAF-AH treatment (16.3±4.6% vs. 46.0±10.3%, respectively). rPAF-AH significantly reduced mRNA and protein levels of MMP-2 and MMP-9, but increased the mRNA (P<0.001) and protein levels (P<0.01) of VEGF. These results demonstrate that rPAF-AH provides neuroprotection against ischemic injury. Neuroprotection might be induced not only by decrease in MMP-2 and MMP-9 expression, but also by increased VEGF expression.
Collapse
Affiliation(s)
- Yijuan Wu
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, 510120 Guangzhou, Guangdong, China; Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, 510080 Guangzhou, China
| | - Lijuan Wang
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, 510080 Guangzhou, China
| | - Chengbo Dai
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, 510080 Guangzhou, China
| | - Guixian Ma
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, 510080 Guangzhou, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, 510080 Guangzhou, China
| | - Xiong Zhang
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, 510080 Guangzhou, China.
| | - Zhuohua Wu
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, 510120 Guangzhou, Guangdong, China
| |
Collapse
|
44
|
Targeted therapy of brain ischaemia using Fas ligand antibody conjugated PEG-lipid nanoparticles. Biomaterials 2013; 35:530-7. [PMID: 24120040 DOI: 10.1016/j.biomaterials.2013.09.093] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/24/2013] [Indexed: 12/27/2022]
Abstract
The translation of experimental stroke research from the laboratory to successful clinical practice remains a formidable challenge. We previously reported that PEGylated-lipid nanoparticles (PLNs) effectively transport across the blood-brain barrier along with less inflammatory responses. In the present study, PLNs conjugated to Fas ligand antibody that selectively present on brain ischaemic region were used for therapeutic targeting. Fluorescent analysis of the mice brain show that encapsulated 3-n-Butylphthalide (dl-NBP) in PLNs conjugated with Fas ligand antibody effectively delivered to ipsilateral region of ischaemic brain. Furthermore, the confocal immunohistochemical study demonstrated that brain-targeted nanocontainers specifically accumulated on OX42 positive microglia cells in ischaemic region of mice model. Finally, dl-NBP encapsulated nano-drug delivery system is resulted in significant improvements in brain injury and in neurological deficit after ischaemia, with the significantly reduced dosages versus regular dl-NBP. Overall, these data suggests that PLNs conjugated to an antibody specific to the Fas ligand constituted an ideal brain targeting drug delivery system for brain ischaemia.
Collapse
|
45
|
Kilic U, Yilmaz B, Reiter R, Yüksel A, Kilic E. Effects of memantine and melatonin on signal transduction pathways vascular leakage and brain injury after focal cerebral ischemia in mice. Neuroscience 2013; 237:268-76. [DOI: 10.1016/j.neuroscience.2013.01.059] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 12/09/2022]
|
46
|
Melatonin reduced the elevated matrix metalloproteinase-9 level in a rat photothrombotic stroke model. J Neurol Sci 2012; 323:221-7. [DOI: 10.1016/j.jns.2012.09.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 08/19/2012] [Accepted: 09/17/2012] [Indexed: 11/18/2022]
|
47
|
Chang CC, Tien CH, Lee EJ, Juan WS, Chen YH, Hung YC, Chen TY, Chen HY, Wu TS. Melatonin inhibits matrix metalloproteinase-9 (MMP-9) activation in the lipopolysaccharide (LPS)-stimulated RAW 264.7 and BV2 cells and a mouse model of meningitis. J Pineal Res 2012; 53:188-97. [PMID: 22404666 DOI: 10.1111/j.1600-079x.2012.00986.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We explored anti-inflammatory potential of melatonin against the lipopolysaccharide (LPS)-induced inflammation in vivo and in vitro. RAW 264.7 and BV2 cells were stimulated by LPS, followed by the treatment with melatonin or vehicle at various time intervals. In a mouse model of meningitis induced by LPS, melatonin (5mg/kg) or vehicle was intravenously injected at 30min postinsult. The activity of matrix metalloproteinase-2 (MMP-2) and metalloproteinase-9 (MMP-9) was determined by gelatin zymography. Nuclear factor-kappa B (NFκB) translocation and binding activity were determined by immunocytochemistry and electrophoretic mobility shift assay (EMSA). Our results showed that either pretreatment or cotreatment with melatonin at 50-500 μm effectively inhibited the LPS-induced proMMP-9 activation in the RAW 264.7 and BV2 cells, respectively (P<0.05). This melatonin-induced proMMP-9 inhibition remained effective when treatment was delayed up to 2 and 6hr postinsult for RAW 264.7 and BV2 cells, respectively (P<0.05 for both groups). Additionally, melatonin significantly attenuated the rises of circulatory and cerebral MMP-9 activity, respectively (P<0.05) and reduced the loss of body weight (P<0.05) in mice with meningitis. Moreover, melatonin (50μm) effectively inhibited nuclear factor-kappa B (NFκB) translocation and binding activity in the LPS-treated RAW 264.7 and BV2 cells, respectively (P<0.05). These results demonstrate direct inhibitory actions of melatonin against postinflammatory NFκB translocation and MMP-9 activation and highlight its ability to inhibit systemic and cerebral MMP-9 activation following brain inflammation.
Collapse
Affiliation(s)
- Che-Chao Chang
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Combined tissue plasminogen activator and an NK1 tachykinin receptor antagonist: An effective treatment for reperfusion injury following acute ischemic stroke in rats. Neuroscience 2012; 220:1-10. [DOI: 10.1016/j.neuroscience.2012.06.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/18/2012] [Accepted: 06/20/2012] [Indexed: 11/22/2022]
|
49
|
Simard JM, Geng Z, Silver FL, Sheth KN, Kimberly WT, Stern BJ, Colucci M, Gerzanich V. Does inhibiting Sur1 complement rt-PA in cerebral ischemia? Ann N Y Acad Sci 2012; 1268:95-107. [PMID: 22994227 PMCID: PMC3507518 DOI: 10.1111/j.1749-6632.2012.06705.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hemorrhagic transformation (HT) associated with recombinant tissue plasminogen activator (rt-PA) complicates and limits its use in stroke. Here, we provide a focused review on the involvement of matrix metalloproteinase 9 (MMP-9) in rt-PA-associated HT in cerebral ischemia, and we review emerging evidence that the selective inhibitor of the sulfonylurea receptor 1 (Sur1), glibenclamide (U.S. adopted name, glyburide), may provide protection against rt-PA-associated HT in cerebral ischemia. Glyburide inhibits activation of MMP-9, ameliorates edema formation, swelling, and symptomatic hemorrhagic transformation, and improves preclinical outcomes in several clinically relevant models of stroke, both without and with rt-PA treatment. A retrospective clinical study comparing outcomes in diabetic patients with stroke treated with rt-PA showed that those who were previously on and were maintained on a sulfonylurea fared significantly better than those whose diabetes was managed without sulfonylureas. Inhibition of Sur1 with injectable glyburide holds promise for ameliorating rt-PA-associated HT in stroke.
Collapse
Affiliation(s)
- J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Qin W, Lu W, Li H, Yuan X, Li B, Zhang Q, Xiu R. Melatonin inhibits IL1β-induced MMP9 expression and activity in human umbilical vein endothelial cells by suppressing NF-κB activation. J Endocrinol 2012; 214:145-53. [PMID: 22619232 DOI: 10.1530/joe-12-0147] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs) have been involved in inflammatory and degradative processes in pathologic conditions. The purpose of this study was to investigate the protective effect of melatonin in human umbilical vein endothelial cell (HUVEC) monolayer permeability and the regulation of MMP9 induced by interleukin 1β (IL1β (IL1B)) in HUVECs. Protection studies were carried out with melatonin, a well-known antioxidant and antiinflammatory molecule. MMP9 expression was increased with IL1β induction in HUVECs. Melatonin showed a barrier-protective role by downregulation of MMP9 and upregulation of tissue inhibitor of metalloproteinase-1 expression in HUVECs. Meanwhile, melatonin also decreased sodium fluorescein permeability and counteracted the downregulation of vascular endothelial cadherin and occludin expression in HUVECs. During inflammatory stimulus, nuclear factor-κB (NF-κB) plays a significant role in regulating MMP genes expression, thus the function of NF-κB in HUVECs' barrier disruption was investigated. IL1β induced nuclear translocation of NF-κB in HUVECs and regulated MMP9 expression. However, NF-κB translocation into the nucleus was inhibited significantly by melatonin. Our results show that melatonin decreases the permeability of monolayer endothelial cell induced by IL1β. At the same time, melatonin decreased the expression and activity of MMP9 by a NF-κB-dependent pathway in HUVECs induced by IL1β.
Collapse
Affiliation(s)
- Weiwei Qin
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | | | | | | | | | | | | |
Collapse
|