1
|
McIlvried LA, Del Rosario JS, Pullen MY, Wangzhou A, Sheahan TD, Shepherd AJ, Slivicki RA, Lemen JA, Price TJ, Copits BA, Gereau RW. Intrinsic adaptive plasticity in mouse and human sensory neurons. J Gen Physiol 2025; 157:e202313488. [PMID: 39688836 DOI: 10.1085/jgp.202313488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 06/07/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
In response to changes in activity induced by environmental cues, neurons in the central nervous system undergo homeostatic plasticity to sustain overall network function during abrupt changes in synaptic strengths. Homeostatic plasticity involves changes in synaptic scaling and regulation of intrinsic excitability. Increases in spontaneous firing and excitability of sensory neurons are evident in some forms of chronic pain in animal models and human patients. However, whether mechanisms of homeostatic plasticity are engaged in sensory neurons of the peripheral nervous system (PNS) is unknown. Here, we show that sustained depolarization (induced by 24-h incubation in 30 mM KCl) induces compensatory changes that decrease the excitability of mouse and human sensory neurons without directly opposing membrane depolarization. Voltage-clamp recordings show that sustained depolarization produces no significant alteration in voltage-gated potassium currents, but a robust reduction in voltage-gated sodium currents, likely contributing to the overall decrease in neuronal excitability. The compensatory decrease in neuronal excitability and reduction in voltage-gated sodium currents reversed completely following a 24-h recovery period in a normal medium. Similar adaptive changes were not observed in response to 24 h of sustained action potential firing induced by optogenetic stimulation at 1 Hz, indicating the need for prolonged depolarization to drive engagement of this adaptive mechanism in sensory neurons. Our findings show that mouse and human sensory neurons are capable of engaging adaptive mechanisms to regulate intrinsic excitability in response to sustained depolarization in a manner similar to that described in neurons in the central nervous system.
Collapse
Affiliation(s)
- Lisa A McIlvried
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - John Smith Del Rosario
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Melanie Y Pullen
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andi Wangzhou
- Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Dallas, TX, USA
| | - Tayler D Sheahan
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew J Shepherd
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard A Slivicki
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Dallas, TX, USA
| | - Bryan A Copits
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert W Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience and Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Williams ZJ, Payne LB, Wu X, Gourdie RG. New focus on cardiac voltage-gated sodium channel β1 and β1B: Novel targets for treating and understanding arrhythmias? Heart Rhythm 2025; 22:181-191. [PMID: 38908461 PMCID: PMC11662089 DOI: 10.1016/j.hrthm.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Voltage-gated sodium channels (VGSCs) are transmembrane protein complexes that are vital to the generation and propagation of action potentials in nerve and muscle fibers. The canonical VGSC is generally conceived as a heterotrimeric complex formed by 2 classes of membrane-spanning subunit: an α-subunit (pore forming) and 2 β-subunits (non-pore forming). NaV1.5 is the main sodium channel α-subunit of mammalian ventricle, with lower amounts of other α-subunits, including NaV1.6, being present. There are 4 β-subunits (β1-β4) encoded by 4 genes (SCN1B-SCN4B), each of which is expressed in cardiac tissues. Recent studies suggest that in addition to assignments in channel gating and trafficking, products of Scn1b may have novel roles in conduction of action potential in the heart and intracellular signaling. This includes evidence that the β-subunit extracellular amino-terminal domain facilitates adhesive interactions in intercalated discs and that its carboxyl-terminal region is a substrate for a regulated intramembrane proteolysis (RIP) signaling pathway, with a carboxyl-terminal peptide generated by β1 RIP trafficked to the nucleus and altering transcription of various genes, including NaV1.5. In addition to β1, the Scn1b gene encodes for an alternative splice variant, β1B, which contains an identical extracellular adhesion domain to β1 but has a unique carboxyl-terminus. Although β1B is generally understood to be a secreted variant, evidence indicates that when co-expressed with NaV1.5, it is maintained at the cell membrane, suggesting potential unique roles for this understudied protein. In this review, we focus on what is known of the 2 β-subunit variants encoded by Scn1b in heart, with particular focus on recent findings and the questions raised by this new information. We also explore data that indicate β1 and β1B may be attractive targets for novel antiarrhythmic therapeutics.
Collapse
Affiliation(s)
- Zachary J Williams
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Laura Beth Payne
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Xiaobo Wu
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Robert G Gourdie
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia; School of Medicine, Virgina Polytechnic University, Roanoke, Virginia; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic University, Blacksburg, Virginia.
| |
Collapse
|
3
|
Cortada E, Brugada R, Verges M. Role of protein domains in trafficking and localization of the voltage-gated sodium channel β2 subunit. J Biol Chem 2024; 300:107833. [PMID: 39343005 PMCID: PMC11532958 DOI: 10.1016/j.jbc.2024.107833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 08/25/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
The voltage-gated sodium (NaV) channel is critical for cardiomyocyte function since it is responsible for action potential initiation and its propagation throughout the cell. It consists of a protein complex made of a pore forming α subunit and associated β subunits, which regulate α subunit function and subcellular localization. We previously showed the implication of N-linked glycosylation and S-acylation of β2 in its polarized trafficking. Here, we present evidence of β2 dimerization. Moreover, we demonstrate the implication of the cytoplasmic tail, extracellular loop, and transmembrane domain on proper β2 folding and export to the cell surface of polarized Madin-Darby canine kidney cells. Substantial alteration, or lack of any of these domains, leads to accumulation of β2 in the endoplasmic reticulum, along with impaired complex N-glycosylation, which is needed for its efficient surface delivery. We also show that these alterations to β2 affected to a certain extent NaV1.5 surface localization. Conversely, however, NaV1.5 had little or no influence on β2 trafficking, its localization to the surface, or homodimer formation. Altogether, our data link the architecture of the β2 domains to the establishment of its proper subcellular localization. These findings could provide valuable insights to gain a deeper comprehension of the elusive biology of β subunits in excitable cells, such as neurons and cardiomyocytes.
Collapse
Affiliation(s)
- Eric Cortada
- Cardiovascular Genetics Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Edifici IDIBGI, Salt, Province of Girona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), Salt, Province of Girona, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Edifici IDIBGI, Salt, Province of Girona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), Salt, Province of Girona, Spain; Department of Medical Sciences, University of Girona Medical School, Girona, Spain; Department of Cardiology, Hospital Josep Trueta, University of Girona, Girona, Spain
| | - Marcel Verges
- Cardiovascular Genetics Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Edifici IDIBGI, Salt, Province of Girona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), Salt, Province of Girona, Spain; Department of Medical Sciences, University of Girona Medical School, Girona, Spain.
| |
Collapse
|
4
|
Bøgh N, Sørensen CB, Alstrup AKO, Hansen ESS, Andersen OM, Laustsen C. Mice and minipigs with compromised expression of the Alzheimer's disease gene SORL1 show cerebral metabolic disturbances on hyperpolarized [1- 13C]pyruvate and sodium MRI. Brain Commun 2024; 6:fcae114. [PMID: 38650831 PMCID: PMC11034025 DOI: 10.1093/braincomms/fcae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/24/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024] Open
Abstract
The sortilin-related receptor 1 (SORL1) gene, encoding the cellular endosomal sorting-related receptor with A-type repeats (SORLA), is now established as a causal gene for Alzheimer's disease. As the latest addition to the list of causal genes, the pathophysiological effects and biomarker potential of SORL1 variants remain relatively undiscovered. Metabolic dysfunction is, however, well described in patients with Alzheimer's disease and is used as an imaging biomarker in clinical diagnosis settings. To understand the metabolic consequences of loss-of-function SORL1 mutations, we applied two metabolic MRI technologies, sodium (23Na) MRI and MRI with hyperpolarized [1-13C]pyruvate, in minipigs and mice with compromised expression of SORL1. At the age analysed here, both animal models display no conventional imaging evidence of neurodegeneration but show biochemical signs of elevated amyloid production, thus representing the early preclinical disease. With hyperpolarized MRI, the exchange from [1-13C]pyruvate to [1-13C]lactate and 13C-bicarbonate was decreased by 32 and 23%, respectively, in the cerebrum of SORL1-haploinsufficient minipigs. A robust 11% decrease in the sodium content was observed with 23Na-MRI in the same minipigs. Comparably, the brain sodium concentration gradually decreased from control to SORL1 haploinsufficient (-11%) to SORL1 knockout mice (-23%), suggesting a gene dose dependence in the metabolic dysfunction. The present study highlights that metabolic MRI technologies are sensitive to the functional, metabolic consequences of Alzheimer's disease and Alzheimer's disease-linked genotypes. Further, the study suggests a potential avenue of research into the mechanisms of metabolic alterations by SORL1 mutations and their potential role in neurodegeneration.
Collapse
Affiliation(s)
- Nikolaj Bøgh
- Department of Clinical Medicine, The MR Research Centre, Aarhus University, 8200 Aarhus, Denmark
- A&E, Gødstrup Hospital, 7400 Herning, Denmark
| | | | - Aage K O Alstrup
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Esben S S Hansen
- Department of Clinical Medicine, The MR Research Centre, Aarhus University, 8200 Aarhus, Denmark
| | - Olav M Andersen
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
| | - Christoffer Laustsen
- Department of Clinical Medicine, The MR Research Centre, Aarhus University, 8200 Aarhus, Denmark
| |
Collapse
|
5
|
McIlvried LA, Del Rosario JS, Pullen MY, Wangzhou A, Sheahan TD, Shepherd AJ, Slivicki RA, Lemen JA, Price TJ, Copits BA, Gereau RW. Intrinsic Homeostatic Plasticity in Mouse and Human Sensory Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544829. [PMID: 37398430 PMCID: PMC10312743 DOI: 10.1101/2023.06.13.544829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
In response to changes in activity induced by environmental cues, neurons in the central nervous system undergo homeostatic plasticity to sustain overall network function during abrupt changes in synaptic strengths. Homeostatic plasticity involves changes in synaptic scaling and regulation of intrinsic excitability. Increases in spontaneous firing and excitability of sensory neurons are evident in some forms of chronic pain in animal models and human patients. However, whether mechanisms of homeostatic plasticity are engaged in sensory neurons under normal conditions or altered after chronic pain is unknown. Here, we showed that sustained depolarization induced by 30mM KCl induces a compensatory decrease in the excitability in mouse and human sensory neurons. Moreover, voltage-gated sodium currents are robustly reduced in mouse sensory neurons contributing to the overall decrease in neuronal excitability. Decreased efficacy of these homeostatic mechanisms could potentially contribute to the development of the pathophysiology of chronic pain.
Collapse
Affiliation(s)
- Lisa A. McIlvried
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
- These authors contributed equally
| | - John Smith Del Rosario
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
- These authors contributed equally
| | - Melanie Y. Pullen
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
| | - Andi Wangzhou
- Department of Neuroscience and Center for Advanced Pain Studies; The University of Texas at Dallas; Dallas, TX, 75080; USA
| | - Tayler D. Sheahan
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
| | - Andrew J. Shepherd
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
| | - Richard A. Slivicki
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
| | | | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies; The University of Texas at Dallas; Dallas, TX, 75080; USA
| | - Bryan A. Copits
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
| | - Robert W. Gereau
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
- Department of Neuroscience and Department of Biomedical Engineering; Washington University School of Medicine; St. Louis, MO, 63110; USA
- Lead contact
| |
Collapse
|
6
|
Horváth B, Szentandrássy N, Almássy J, Dienes C, Kovács ZM, Nánási PP, Banyasz T. Late Sodium Current of the Heart: Where Do We Stand and Where Are We Going? Pharmaceuticals (Basel) 2022; 15:ph15020231. [PMID: 35215342 PMCID: PMC8879921 DOI: 10.3390/ph15020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Late sodium current has long been linked to dysrhythmia and contractile malfunction in the heart. Despite the increasing body of accumulating information on the subject, our understanding of its role in normal or pathologic states is not complete. Even though the role of late sodium current in shaping action potential under physiologic circumstances is debated, it’s unquestioned role in arrhythmogenesis keeps it in the focus of research. Transgenic mouse models and isoform-specific pharmacological tools have proved useful in understanding the mechanism of late sodium current in health and disease. This review will outline the mechanism and function of cardiac late sodium current with special focus on the recent advances of the area.
Collapse
Affiliation(s)
- Balázs Horváth
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
| | - Norbert Szentandrássy
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
- Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| | - János Almássy
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
| | - Csaba Dienes
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
| | - Zsigmond Máté Kovács
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
| | - Péter P. Nánási
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
- Department of Dental Physiology and Pharmacology, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamas Banyasz
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
- Correspondence: ; Tel.: +36-(52)-255-575; Fax: +36-(52)-255-116
| |
Collapse
|
7
|
Daimi H, Lozano-Velasco E, Aranega A, Franco D. Genomic and Non-Genomic Regulatory Mechanisms of the Cardiac Sodium Channel in Cardiac Arrhythmias. Int J Mol Sci 2022; 23:1381. [PMID: 35163304 PMCID: PMC8835759 DOI: 10.3390/ijms23031381] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Nav1.5 is the predominant cardiac sodium channel subtype, encoded by the SCN5A gene, which is involved in the initiation and conduction of action potentials throughout the heart. Along its biosynthesis process, Nav1.5 undergoes strict genomic and non-genomic regulatory and quality control steps that allow only newly synthesized channels to reach their final membrane destination and carry out their electrophysiological role. These regulatory pathways are ensured by distinct interacting proteins that accompany the nascent Nav1.5 protein along with different subcellular organelles. Defects on a large number of these pathways have a tremendous impact on Nav1.5 functionality and are thus intimately linked to cardiac arrhythmias. In the present review, we provide current state-of-the-art information on the molecular events that regulate SCN5A/Nav1.5 and the cardiac channelopathies associated with defects in these pathways.
Collapse
Affiliation(s)
- Houria Daimi
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| |
Collapse
|
8
|
Kistamás K, Hézső T, Horváth B, Nánási PP. Late sodium current and calcium homeostasis in arrhythmogenesis. Channels (Austin) 2021; 15:1-19. [PMID: 33258400 PMCID: PMC7757849 DOI: 10.1080/19336950.2020.1854986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/26/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
The cardiac late sodium current (INa,late) is the small sustained component of the sodium current active during the plateau phase of the action potential. Several studies demonstrated that augmentation of the current can lead to cardiac arrhythmias; therefore, INa,late is considered as a promising antiarrhythmic target. Fundamentally, enlarged INa,late increases Na+ influx into the cell, which, in turn, is converted to elevated intracellular Ca2+ concentration through the Na+/Ca2+ exchanger. The excessive Ca2+ load is known to be proarrhythmic. This review describes the behavior of the voltage-gated Na+ channels generating INa,late in health and disease and aims to discuss the physiology and pathophysiology of Na+ and Ca2+ homeostasis in context with the enhanced INa,late demonstrating also the currently accessible antiarrhythmic choices.
Collapse
Affiliation(s)
- Kornél Kistamás
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Hézső
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter P Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Dental Physiology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
9
|
Chemometric Models of Differential Amino Acids at the Na vα and Na vβ Interface of Mammalian Sodium Channel Isoforms. Molecules 2020; 25:molecules25153551. [PMID: 32756517 PMCID: PMC7435598 DOI: 10.3390/molecules25153551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
(1) Background: voltage-gated sodium channels (Navs) are integral membrane proteins that allow the sodium ion flux into the excitable cells and initiate the action potential. They comprise an α (Navα) subunit that forms the channel pore and are coupled to one or more auxiliary β (Navβ) subunits that modulate the gating to a variable extent. (2) Methods: after performing homology in silico modeling for all nine isoforms (Nav1.1α to Nav1.9α), the Navα and Navβ protein-protein interaction (PPI) was analyzed chemometrically based on the primary and secondary structures as well as topological or spatial mapping. (3) Results: our findings reveal a unique isoform-specific correspondence between certain segments of the extracellular loops of the Navα subunits. Precisely, loop S5 in domain I forms part of the PPI and assists Navβ1 or Navβ3 on all nine mammalian isoforms. The implied molecular movements resemble macroscopic springs, all of which explains published voltage sensor effects on sodium channel fast inactivation in gating. (4) Conclusions: currently, the specific functions exerted by the Navβ1 or Navβ3 subunits on the modulation of Navα gating remain unknown. Our work determined functional interaction in the extracellular domains on theoretical grounds and we propose a schematic model of the gating mechanism of fast channel sodium current inactivation by educated guessing.
Collapse
|
10
|
Singh AK, Wadsworth PA, Tapia CM, Aceto G, Ali SR, Chen H, D'Ascenzo M, Zhou J, Laezza F. Mapping of the FGF14:Nav1.6 complex interface reveals FLPK as a functionally active peptide modulating excitability. Physiol Rep 2020; 8:e14505. [PMID: 32671946 PMCID: PMC7363588 DOI: 10.14814/phy2.14505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
The voltage-gated sodium (Nav) channel complex is comprised of pore-forming α subunits (Nav1.1-1.9) and accessory regulatory proteins such as the intracellular fibroblast growth factor 14 (FGF14). The cytosolic Nav1.6 C-terminal tail binds directly to FGF14 and this interaction modifies Nav1.6-mediated currents with effects on intrinsic excitability in the brain. Previous studies have identified the FGF14V160 residue within the FGF14 core domain as a hotspot for the FGF14:Nav1.6 complex formation. Here, we used three short amino acid peptides around FGF14V160 to probe for the FGF14 interaction with the Nav1.6 C-terminal tail and to evaluate the activity of the peptide on Nav1.6-mediated currents. In silico docking predicts FLPK to bind to FGF14V160 with the expectation of interfering with the FGF14:Nav1.6 complex formation, a phenotype that was confirmed by the split-luciferase assay (LCA) and surface plasmon resonance (SPR), respectively. Whole-cell patch-clamp electrophysiology studies demonstrate that FLPK is able to prevent previously reported FGF14-dependent phenotypes of Nav1.6 currents, but that its activity requires the FGF14 N-terminal tail, a domain that has been shown to contribute to Nav1.6 inactivation independently from the FGF14 core domain. In medium spiny neurons in the nucleus accumbens, where both FGF14 and Nav1.6 are abundantly expressed, FLPK significantly increased firing frequency by a mechanism consistent with the ability of the tetrapeptide to interfere with Nav1.6 inactivation and potentiate persistent Na+ currents. Taken together, these results indicate that FLPK might serve as a probe for characterizing molecular determinants of neuronal excitability and a peptide scaffold to develop allosteric modulators of Nav channels.
Collapse
Affiliation(s)
- Aditya K. Singh
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
| | - Paul A. Wadsworth
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
- M.D.‐Ph.D. Combined Degree ProgramUniversità Cattolica del Sacro CuoreRomeItaly
- Biochemistry and Molecular Biology Graduate ProgramUniversità Cattolica del Sacro CuoreRomeItaly
| | - Cynthia M. Tapia
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
- NIEHS Environmental Toxicology Training ProgramUniversità Cattolica del Sacro CuoreRomeItaly
| | - Giuseppe Aceto
- Institute of Human PhysiologyUniversità Cattolica del Sacro CuoreRomeItaly
- Department of NeuroscienceUniversità Cattolica del Sacro CuoreRomeItaly
- Fondazione Policlinico Universitario A. GemelliIRCCSRomeItaly
| | - Syed R. Ali
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
| | - Haiying Chen
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
| | - Marcello D'Ascenzo
- Institute of Human PhysiologyUniversità Cattolica del Sacro CuoreRomeItaly
- Department of NeuroscienceUniversità Cattolica del Sacro CuoreRomeItaly
- Fondazione Policlinico Universitario A. GemelliIRCCSRomeItaly
| | - Jia Zhou
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
- Center for Addiction ResearchUniversity of Texas Medical BranchGalvestonTXUSA
| | - Fernanda Laezza
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
- Center for Addiction ResearchUniversity of Texas Medical BranchGalvestonTXUSA
- Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTXUSA
| |
Collapse
|
11
|
Rathour RK, Narayanan R. Degeneracy in hippocampal physiology and plasticity. Hippocampus 2019; 29:980-1022. [PMID: 31301166 PMCID: PMC6771840 DOI: 10.1002/hipo.23139] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/27/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022]
Abstract
Degeneracy, defined as the ability of structurally disparate elements to perform analogous function, has largely been assessed from the perspective of maintaining robustness of physiology or plasticity. How does the framework of degeneracy assimilate into an encoding system where the ability to change is an essential ingredient for storing new incoming information? Could degeneracy maintain the balance between the apparently contradictory goals of the need to change for encoding and the need to resist change towards maintaining homeostasis? In this review, we explore these fundamental questions with the mammalian hippocampus as an example encoding system. We systematically catalog lines of evidence, spanning multiple scales of analysis that point to the expression of degeneracy in hippocampal physiology and plasticity. We assess the potential of degeneracy as a framework to achieve the conjoint goals of encoding and homeostasis without cross-interferences. We postulate that biological complexity, involving interactions among the numerous parameters spanning different scales of analysis, could establish disparate routes towards accomplishing these conjoint goals. These disparate routes then provide several degrees of freedom to the encoding-homeostasis system in accomplishing its tasks in an input- and state-dependent manner. Finally, the expression of degeneracy spanning multiple scales offers an ideal reconciliation to several outstanding controversies, through the recognition that the seemingly contradictory disparate observations are merely alternate routes that the system might recruit towards accomplishment of its goals.
Collapse
Affiliation(s)
- Rahul K. Rathour
- Cellular Neurophysiology LaboratoryMolecular Biophysics Unit, Indian Institute of ScienceBangaloreIndia
| | - Rishikesh Narayanan
- Cellular Neurophysiology LaboratoryMolecular Biophysics Unit, Indian Institute of ScienceBangaloreIndia
| |
Collapse
|
12
|
van Losenoord W, Krause J, Parker-Nance S, Krause R, Stoychev S, Frost CL. Purification and biochemical characterisation of a putative sodium channel agonist secreted from the South African Knobbly sea anemone Bunodosoma capense. Toxicon 2019; 168:147-157. [DOI: 10.1016/j.toxicon.2019.06.222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 01/08/2023]
|
13
|
Salvage SC, Chandrasekharan KH, Jeevaratnam K, Dulhunty AF, Thompson AJ, Jackson AP, Huang CL. Multiple targets for flecainide action: implications for cardiac arrhythmogenesis. Br J Pharmacol 2018; 175:1260-1278. [PMID: 28369767 PMCID: PMC5866987 DOI: 10.1111/bph.13807] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 12/19/2022] Open
Abstract
Flecainide suppresses cardiac tachyarrhythmias including paroxysmal atrial fibrillation, supraventricular tachycardia and arrhythmic long QT syndromes (LQTS), as well as the Ca2+ -mediated, catecholaminergic polymorphic ventricular tachycardia (CPVT). However, flecainide can also exert pro-arrhythmic effects most notably following myocardial infarction and when used to diagnose Brugada syndrome (BrS). These divergent actions result from its physiological and pharmacological actions at multiple, interacting levels of cellular organization. These were studied in murine genetic models with modified Nav channel or intracellular ryanodine receptor (RyR2)-Ca2+ channel function. Flecainide accesses its transmembrane Nav 1.5 channel binding site during activated, open, states producing a use-dependent antagonism. Closing either activation or inactivation gates traps flecainide within the pore. An early peak INa related to activation of Nav channels followed by rapid de-activation, drives action potential (AP) upstrokes and their propagation. This is diminished in pro-arrhythmic conditions reflecting loss of function of Nav 1.5 channels, such as BrS, accordingly exacerbated by flecainide challenge. Contrastingly, pro-arrhythmic effects attributed to prolonged AP recovery by abnormal late INaL following gain-of-function modifications of Nav 1.5 channels in LQTS3 are reduced by flecainide. Anti-arrhythmic effects of flecainide that reduce triggering in CPVT models mediated by sarcoplasmic reticular Ca2+ release could arise from its primary actions on Nav channels indirectly decreasing [Ca2+ ]i through a reduced [Na+ ]i and/or direct open-state RyR2-Ca2+ channel antagonism. The consequent [Ca2+ ]i alterations could also modify AP propagation velocity and therefore arrhythmic substrate through its actions on Nav 1.5 channel function. This is consistent with the paradoxical differences between flecainide actions upon Na+ currents, AP conduction and arrhythmogenesis under circumstances of normal and increased RyR2 function. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Samantha C Salvage
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Physiological LaboratoryUniversity of CambridgeCambridgeUK
| | | | - Kamalan Jeevaratnam
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
- School of MedicinePerdana University – Royal College of Surgeons IrelandSerdangSelangor Darul EhsanMalaysia
| | - Angela F Dulhunty
- Muscle Research Group, Eccles Institute of Neuroscience, John Curtin School of Medical ResearchAustralian National UniversityActonAustralia
| | | | | | - Christopher L‐H Huang
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Physiological LaboratoryUniversity of CambridgeCambridgeUK
| |
Collapse
|
14
|
Kanellopoulos AH, Koenig J, Huang H, Pyrski M, Millet Q, Lolignier S, Morohashi T, Gossage SJ, Jay M, Linley JE, Baskozos G, Kessler BM, Cox JJ, Dolphin AC, Zufall F, Wood JN, Zhao J. Mapping protein interactions of sodium channel Na V1.7 using epitope-tagged gene-targeted mice. EMBO J 2018; 37:427-445. [PMID: 29335280 PMCID: PMC5793798 DOI: 10.15252/embj.201796692] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 11/24/2022] Open
Abstract
The voltage-gated sodium channel NaV1.7 plays a critical role in pain pathways. We generated an epitope-tagged NaV1.7 mouse that showed normal pain behaviours to identify channel-interacting proteins. Analysis of NaV1.7 complexes affinity-purified under native conditions by mass spectrometry revealed 267 proteins associated with Nav1.7 in vivo The sodium channel β3 (Scn3b), rather than the β1 subunit, complexes with Nav1.7, and we demonstrate an interaction between collapsing-response mediator protein (Crmp2) and Nav1.7, through which the analgesic drug lacosamide regulates Nav1.7 current density. Novel NaV1.7 protein interactors including membrane-trafficking protein synaptotagmin-2 (Syt2), L-type amino acid transporter 1 (Lat1) and transmembrane P24-trafficking protein 10 (Tmed10) together with Scn3b and Crmp2 were validated by co-immunoprecipitation (Co-IP) from sensory neuron extract. Nav1.7, known to regulate opioid receptor efficacy, interacts with the G protein-regulated inducer of neurite outgrowth (Gprin1), an opioid receptor-binding protein, demonstrating a physical and functional link between Nav1.7 and opioid signalling. Further information on physiological interactions provided with this normal epitope-tagged mouse should provide useful insights into the many functions now associated with the NaV1.7 channel.
Collapse
Affiliation(s)
| | - Jennifer Koenig
- Molecular Nociception Group, WIBR, University College London, London, UK
| | - Honglei Huang
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Martina Pyrski
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Queensta Millet
- Molecular Nociception Group, WIBR, University College London, London, UK
| | - Stéphane Lolignier
- Molecular Nociception Group, WIBR, University College London, London, UK
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France
| | - Toru Morohashi
- Molecular Nociception Group, WIBR, University College London, London, UK
| | - Samuel J Gossage
- Molecular Nociception Group, WIBR, University College London, London, UK
| | - Maude Jay
- Molecular Nociception Group, WIBR, University College London, London, UK
| | - John E Linley
- Molecular Nociception Group, WIBR, University College London, London, UK
- Neuroscience, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | | | - Benedikt M Kessler
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, Oxford, UK
| | - James J Cox
- Molecular Nociception Group, WIBR, University College London, London, UK
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - John N Wood
- Molecular Nociception Group, WIBR, University College London, London, UK
| | - Jing Zhao
- Molecular Nociception Group, WIBR, University College London, London, UK
| |
Collapse
|
15
|
Han J, Liu Y, Jiang Q, Xiao R. Cysteine-rich buccal gland protein suppressed the proliferation, migration and invasion of hela cells through akt pathway. IUBMB Life 2017; 69:856-866. [PMID: 28945311 DOI: 10.1002/iub.1680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/02/2017] [Indexed: 11/12/2022]
Abstract
Cysteine-rich buccal gland protein (CRBGP) as a member of cysteine-rich secretory proteins (CRISPs) superfamily was isolated from the buccal glands of Lampetra japonica, the blood suckers in the marine. Previous studies showed CRBGP could suppress angiogenesis probably due to its ion channel blocking activity. Whether CRBGP could also affect the activity of tumor cells has not been reported yet. In this study, CRBGP suppressed the proliferation of Hela cells with an IC50 of 6.7 μM by inducing apoptosis. Both microscopic observation and Western blot indicated that CRBGP was able to induce the nuclei shrinking, downregulate the protein level of BCL2 and caspase 3 as well as upregulate the level of BAX in Hela cells, suggested that CRBGP might induce apoptosis of Hela cells in a mitochondrial-dependent pathway. Furthermore, CRBGP could disturb F-actin organization, which would finally cause the Hela cells to lose their shape and to lessen their abilities on adhesion, migration and invasion. Finally, CRBGP was shown to reduce the phosphorylation level of Akt, which indicated that CRBGP might inhibit the proliferation and metastasis of Hela cells through Akt pathway. CRBGP, as a voltage-gated sodium channel blocker, also possesses the anti-tumor abilities which provided information on the effects and action manner of the other CRISPs. © 2017 IUBMB Life, 69(11):856-866, 2017.
Collapse
Affiliation(s)
- Jianmei Han
- School of Life Sciences, Liaoning Normal University, Dalian, People's Republic of China
| | - Yu Liu
- School of Life Sciences, Liaoning Normal University, Dalian, People's Republic of China
| | - Qi Jiang
- School of Life Sciences, Liaoning Normal University, Dalian, People's Republic of China
| | - Rong Xiao
- School of Life Sciences, Liaoning Normal University, Dalian, People's Republic of China
| |
Collapse
|
16
|
Dulsat G, Palomeras S, Cortada E, Riuró H, Brugada R, Vergés M. Trafficking and localisation to the plasma membrane of Nav1.5 promoted by the β2 subunit is defective due to a β2 mutation associated with Brugada syndrome. Biol Cell 2017; 109:273-291. [DOI: 10.1111/boc.201600085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 05/14/2017] [Accepted: 05/31/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Gemma Dulsat
- Cardiovascular Genetics Group; Girona Biomedical Research Institute (IDIBGI); Salt Girona 17190 Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV); ISCIII Madrid 28029 Spain
| | - Sonia Palomeras
- Cardiovascular Genetics Group; Girona Biomedical Research Institute (IDIBGI); Salt Girona 17190 Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV); ISCIII Madrid 28029 Spain
| | - Eric Cortada
- Cardiovascular Genetics Group; Girona Biomedical Research Institute (IDIBGI); Salt Girona 17190 Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV); ISCIII Madrid 28029 Spain
| | - Helena Riuró
- Cardiovascular Genetics Group; Girona Biomedical Research Institute (IDIBGI); Salt Girona 17190 Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV); ISCIII Madrid 28029 Spain
| | - Ramon Brugada
- Cardiovascular Genetics Group; Girona Biomedical Research Institute (IDIBGI); Salt Girona 17190 Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV); ISCIII Madrid 28029 Spain
- Medical Sciences Department; University of Girona Medical School; Girona 17003 Spain
| | - Marcel Vergés
- Cardiovascular Genetics Group; Girona Biomedical Research Institute (IDIBGI); Salt Girona 17190 Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV); ISCIII Madrid 28029 Spain
- Medical Sciences Department; University of Girona Medical School; Girona 17003 Spain
| |
Collapse
|
17
|
Zhang X, Priest BT, Belfer I, Gold MS. Voltage-gated Na + currents in human dorsal root ganglion neurons. eLife 2017; 6. [PMID: 28508747 PMCID: PMC5433841 DOI: 10.7554/elife.23235] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 04/11/2017] [Indexed: 12/15/2022] Open
Abstract
Available evidence indicates voltage-gated Na+ channels (VGSCs) in peripheral sensory neurons are essential for the pain and hypersensitivity associated with tissue injury. However, our understanding of the biophysical and pharmacological properties of the channels in sensory neurons is largely based on the study of heterologous systems or rodent tissue, despite evidence that both expression systems and species differences influence these properties. Therefore, we sought to determine the extent to which the biophysical and pharmacological properties of VGSCs were comparable in rat and human sensory neurons. Whole cell patch clamp techniques were used to study Na+ currents in acutely dissociated neurons from human and rat. Our results indicate that while the two major current types, generally referred to as tetrodotoxin (TTX)-sensitive and TTX-resistant were qualitatively similar in neurons from rats and humans, there were several differences that have important implications for drug development as well as our understanding of pain mechanisms. DOI:http://dx.doi.org/10.7554/eLife.23235.001
Collapse
Affiliation(s)
- Xiulin Zhang
- Department of Urology, The Second Hospital of Shandong University, Jinan Shi, China
| | | | - Inna Belfer
- Office of Research on Women's Health, National Institutes of Health, Bethesda, United States
| | - Michael S Gold
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| |
Collapse
|
18
|
James TF, Nenov MN, Tapia CM, Lecchi M, Koshy S, Green TA, Laezza F. Consequences of acute Na v1.1 exposure to deltamethrin. Neurotoxicology 2017; 60:150-160. [PMID: 28007400 PMCID: PMC5447465 DOI: 10.1016/j.neuro.2016.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 12/02/2016] [Accepted: 12/14/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Pyrethroid insecticides are the most popular class of insecticides in the world, despite their near-ubiquity, their effects of delaying the onset of inactivation of voltage-gated sodium (Nav) channels have not been well-evaluated in all the mammalian Nav isoforms. OBJECTIVE Here we compare the well-studied Nav1.6 isoforms to the less-understood Nav1.1 in their responses to acute deltamethrin exposure. METHODS We used patch-clamp electrophysiology to record sodium currents encoded by either Nav1.1 or Nav1.6 channels stably expressed in HEK293 cells. Protocols evaluating both resting and use-dependent modification were employed. RESULTS We found that exposure of both isoforms to 10μM deltamethrin significantly potentiated persistent and tail current densities without affecting peak transient current densities, and only Nav1.1 maintained these significant effects at 1μM deltamethrin. Window currents increased for both as well, and while only Nav1.6 displayed changes in activation slope and V1/2 of steady-state inactivation for peak currents, V1/2 of persistent current activation was hyperpolarized of ∼10mV by deltamethrin in Nav1.1 cells. Evaluating use-dependence, we found that deltamethrin again potentiated persistent and tail current densities in both isoforms, but only Nav1.6 demonstrated use-dependent enhancement, indicating the primary deltamethrin-induced effects on Nav1.1 channels are not use-dependent. CONCLUSION Collectively, these data provide evidence that Nav1.1 is indeed vulnerable to deltamethrin modification at lower concentrations than Nav1.6, and this effect is primarily mediated during the resting state. GENERAL SIGNIFICANCE These findings identify Nav1.1 as a novel target of pyrethroid exposure, which has major implications for the etiology of neuropsychiatric disorders associated with loss of Nav1.1-expressing inhibitory neurons.
Collapse
Affiliation(s)
- T F James
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, USA; Neuroscience Graduate Program, University of Texas Medical Branch, USA
| | - Miroslav N Nenov
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, USA
| | - Cynthia M Tapia
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, USA
| | - Marzia Lecchi
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Italy
| | - Shyny Koshy
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, USA; Center for Addiction Research, University of Texas Medical Branch, USA
| | - Thomas A Green
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, USA; Center for Addiction Research, University of Texas Medical Branch, USA
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, USA; Mitchell Center for Neurodegenerative Diseases, USA; Center for Environmental Toxicology, University of Texas Medical Branch, USA; Center for Addiction Research, University of Texas Medical Branch, USA.
| |
Collapse
|
19
|
Sparling BA, Yi S, Able J, Bregman H, DiMauro EF, Foti RS, Gao H, Guzman-Perez A, Huang H, Jarosh M, Kornecook T, Ligutti J, Milgram BC, Moyer BD, Youngblood B, Yu VL, Weiss MM. Discovery and hit-to-lead evaluation of piperazine amides as selective, state-dependent Na V1.7 inhibitors. MEDCHEMCOMM 2017; 8:744-754. [PMID: 30108793 PMCID: PMC6072352 DOI: 10.1039/c6md00578k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/30/2016] [Indexed: 11/21/2022]
Abstract
NaV1.7 is a particularly compelling target for the treatment of pain. Herein, we report the discovery and evaluation of a series of piperazine amides that exhibit state-dependent inhibition of NaV1.7. After demonstrating significant pharmacodynamic activity with early lead compound 14 in a NaV1.7-dependent behavioural mouse model, we systematically established SAR trends throughout each sector of the scaffold. The information gleaned from this modular analysis was then applied additively to quickly access analogues that encompass an optimal balance of properties, including NaV1.7 potency, selectivity over NaV1.5, aqueous solubility, and microsomal stability.
Collapse
Affiliation(s)
- Brian A Sparling
- Department of Medicinal Chemistry , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA .
| | - S Yi
- Department of Medicinal Chemistry , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA .
| | - J Able
- Department of Neuroscience , Amgen Inc. , One Amgen Center Drive , Thousand Oaks , CA 91320 , USA
| | - H Bregman
- Department of Medicinal Chemistry , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA .
| | - Erin F DiMauro
- Department of Medicinal Chemistry , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA .
| | - R S Foti
- Department of Pharmacokinetics and Drug Metabolism , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA
| | - H Gao
- Department of Molecular Engineering, Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA
| | - A Guzman-Perez
- Department of Medicinal Chemistry , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA .
| | - H Huang
- Department of Medicinal Chemistry , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA .
| | - M Jarosh
- Department of Neuroscience , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA
| | - T Kornecook
- Department of Neuroscience , Amgen Inc. , One Amgen Center Drive , Thousand Oaks , CA 91320 , USA
| | - J Ligutti
- Department of Neuroscience , Amgen Inc. , One Amgen Center Drive , Thousand Oaks , CA 91320 , USA
| | - B C Milgram
- Department of Medicinal Chemistry , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA .
| | - B D Moyer
- Department of Neuroscience , Amgen Inc. , One Amgen Center Drive , Thousand Oaks , CA 91320 , USA
| | - B Youngblood
- Department of Neuroscience , Amgen Inc. , One Amgen Center Drive , Thousand Oaks , CA 91320 , USA
| | - V L Yu
- Department of Neuroscience , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA
| | - M M Weiss
- Department of Medicinal Chemistry , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA .
| |
Collapse
|
20
|
Aromolaran AS, Chahine M, Boutjdir M. Regulation of Cardiac Voltage-Gated Sodium Channel by Kinases: Roles of Protein Kinases A and C. Handb Exp Pharmacol 2017; 246:161-184. [PMID: 29032483 DOI: 10.1007/164_2017_53] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the heart, voltage-gated sodium (Nav) channel (Nav1.5) is defined by its pore-forming α-subunit and its auxiliary β-subunits, both of which are important for its critical contribution to the initiation and maintenance of the cardiac action potential (AP) that underlie normal heart rhythm. The physiological relevance of Nav1.5 is further marked by the fact that inherited or congenital mutations in Nav1.5 channel gene SCN5A lead to altered functional expression (including expression, trafficking, and current density), and are generally manifested in the form of distinct cardiac arrhythmic events, epilepsy, neuropathic pain, migraine, and neuromuscular disorders. However, despite significant advances in defining the pathophysiology of Nav1.5, the molecular mechanisms that underlie its regulation and contribution to cardiac disorders are poorly understood. It is rapidly becoming evident that the functional expression (localization, trafficking and gating) of Nav1.5 may be under modulation by post-translational modifications that are associated with phosphorylation. We review here the molecular basis of cardiac Na channel regulation by kinases (PKA and PKC) and the resulting functional consequences. Specifically, we discuss: (1) recent literature on the structural, molecular, and functional properties of cardiac Nav1.5 channels; (2) how these properties may be altered by phosphorylation in disease states underlain by congenital mutations in Nav1.5 channel and/or subunits such as long QT and Brugada syndromes. Our expectation is that understanding the roles of these distinct and complex phosphorylation processes on the functional expression of Nav1.5 is likely to provide crucial mechanistic insights into Na channel associated arrhythmogenic events and will facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Ademuyiwa S Aromolaran
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, USA
- Departments of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Mohamed Chahine
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC, Canada
- Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, USA.
- Departments of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, USA.
- Department of Medicine, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
21
|
DeMarco KR, Clancy CE. Cardiac Na Channels: Structure to Function. CURRENT TOPICS IN MEMBRANES 2016; 78:287-311. [PMID: 27586288 DOI: 10.1016/bs.ctm.2016.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heart rhythms arise from electrical activity generated by precisely timed opening and closing of ion channels in individual cardiac myocytes. Opening of the primary cardiac voltage-gated sodium (NaV1.5) channel initiates cellular depolarization and the propagation of an electrical action potential that promotes coordinated contraction of the heart. The regularity of these contractile waves is critically important since it drives the primary function of the heart: to act as a pump that delivers blood to the brain and vital organs. When electrical activity goes awry during a cardiac arrhythmia, the pump does not function, the brain does not receive oxygenated blood, and death ensues. Perturbations to NaV1.5 may alter the structure, and hence the function, of the ion channel and are associated downstream with a wide variety of cardiac conduction pathologies, such as arrhythmias.
Collapse
Affiliation(s)
- K R DeMarco
- University of California, Davis, Davis, CA, United States
| | - C E Clancy
- University of California, Davis, Davis, CA, United States
| |
Collapse
|
22
|
Shimizu H, Miyazaki H, Ohsawa N, Shoji S, Ishizuka-Katsura Y, Tosaki A, Oyama F, Terada T, Sakamoto K, Shirouzu M, Sekine SI, Nukina N, Yokoyama S. Structure-based site-directed photo-crosslinking analyses of multimeric cell-adhesive interactions of voltage-gated sodium channel β subunits. Sci Rep 2016; 6:26618. [PMID: 27216889 PMCID: PMC4877568 DOI: 10.1038/srep26618] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/04/2016] [Indexed: 11/09/2022] Open
Abstract
The β1, β2, and β4 subunits of voltage-gated sodium channels reportedly function as cell adhesion molecules. The present crystallographic analysis of the β4 extracellular domain revealed an antiparallel arrangement of the β4 molecules in the crystal lattice. The interface between the two antiparallel β4 molecules is asymmetric, and results in a multimeric assembly. Structure-based mutagenesis and site-directed photo-crosslinking analyses of the β4-mediated cell-cell adhesion revealed that the interface between the antiparallel β4 molecules corresponds to that in the trans homophilic interaction for the multimeric assembly of β4 in cell-cell adhesion. This trans interaction mode is also employed in the β1-mediated cell-cell adhesion. Moreover, the β1 gene mutations associated with generalized epilepsy with febrile seizures plus (GEFS+) impaired the β1-mediated cell-cell adhesion, which should underlie the GEFS+ pathogenesis. Thus, the structural basis for the β-subunit-mediated cell-cell adhesion has been established.
Collapse
Affiliation(s)
- Hideaki Shimizu
- RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan.,RIKEN Center for Life Science Technologies, Tsurumi, Yokohama 230-0045, Japan.,Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Haruko Miyazaki
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.,Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.,Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto 610-0394, Japan
| | - Noboru Ohsawa
- RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan.,RIKEN Center for Life Science Technologies, Tsurumi, Yokohama 230-0045, Japan
| | - Shisako Shoji
- RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan.,RIKEN Center for Life Science Technologies, Tsurumi, Yokohama 230-0045, Japan
| | - Yoshiko Ishizuka-Katsura
- RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan.,RIKEN Center for Life Science Technologies, Tsurumi, Yokohama 230-0045, Japan
| | - Asako Tosaki
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Fumitaka Oyama
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.,Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
| | - Takaho Terada
- RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan.,RIKEN Structural Biology Laboratory, Tsurumi, Yokohama 230-0045, Japan
| | - Kensaku Sakamoto
- RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan.,RIKEN Center for Life Science Technologies, Tsurumi, Yokohama 230-0045, Japan
| | - Mikako Shirouzu
- RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan.,RIKEN Center for Life Science Technologies, Tsurumi, Yokohama 230-0045, Japan
| | - Shun-Ichi Sekine
- RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan.,RIKEN Center for Life Science Technologies, Tsurumi, Yokohama 230-0045, Japan
| | - Nobuyuki Nukina
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.,Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.,Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto 610-0394, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan.,RIKEN Structural Biology Laboratory, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
23
|
Ali SR, Singh AK, Laezza F. Identification of Amino Acid Residues in Fibroblast Growth Factor 14 (FGF14) Required for Structure-Function Interactions with Voltage-gated Sodium Channel Nav1.6. J Biol Chem 2016; 291:11268-84. [PMID: 26994141 DOI: 10.1074/jbc.m115.703868] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Indexed: 12/19/2022] Open
Abstract
The voltage-gated Na(+) (Nav) channel provides the basis for electrical excitability in the brain. This channel is regulated by a number of accessory proteins including fibroblast growth factor 14 (FGF14), a member of the intracellular FGF family. In addition to forming homodimers, FGF14 binds directly to the Nav1.6 channel C-tail, regulating channel gating and expression, properties that are required for intrinsic excitability in neurons. Seeking amino acid residues with unique roles at the protein-protein interaction interface (PPI) of FGF14·Nav1.6, we engineered model-guided mutations of FGF14 and validated their impact on the FGF14·Nav1.6 complex and the FGF14:FGF14 dimer formation using a luciferase assay. Divergence was found in the β-9 sheet of FGF14 where an alanine (Ala) mutation of Val-160 impaired binding to Nav1.6 but had no effect on FGF14:FGF14 dimer formation. Additional analysis revealed also a key role of residues Lys-74/Ile-76 at the N-terminal of FGF14 in the FGF14·Nav1.6 complex and FGF14:FGF14 dimer formation. Using whole-cell patch clamp electrophysiology, we demonstrated that either the FGF14(V160A) or the FGF14(K74A/I76A) mutation was sufficient to abolish the FGF14-dependent regulation of peak transient Na(+) currents and the voltage-dependent activation and steady-state inactivation of Nav1.6; but only V160A with a concomitant alanine mutation at Tyr-158 could impede FGF14-dependent modulation of the channel fast inactivation. Intrinsic fluorescence spectroscopy of purified proteins confirmed a stronger binding reduction of FGF14(V160A) to the Nav1.6 C-tail compared with FGF14(K74A/I76A) Altogether these studies indicate that the β-9 sheet and the N terminus of FGF14 are well positioned targets for drug development of PPI-based allosteric modulators of Nav channels.
Collapse
Affiliation(s)
- Syed R Ali
- From the Department of Pharmacology and Toxicology, the Pharmacology and Toxicology Graduate Program
| | | | - Fernanda Laezza
- From the Department of Pharmacology and Toxicology, the Mitchell Center for Neurodegenerative Diseases, the Center for Addiction Research, the Center for Environmental Toxicology, and the Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, Texas 77555
| |
Collapse
|
24
|
Liu M, Yang KC, Dudley SC. Cardiac Sodium Channel Mutations: Why so Many Phenotypes? CURRENT TOPICS IN MEMBRANES 2016; 78:513-59. [PMID: 27586294 DOI: 10.1016/bs.ctm.2015.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cardiac Na(+) channel (Nav1.5) conducts a depolarizing inward Na(+) current that is responsible for the generation of the upstroke Phase 0 of the action potential. In heart tissue, changes in Na(+) currents can affect conduction velocity and impulse propagation. The cardiac Nav1.5 is also involved in determination of the action potential duration, since some channels may reopen during the plateau phase, generating a persistent or late inward current. Mutations of cardiac Nav1.5 can induce gain or loss of channel function because of an increased late current or a decrease of peak current, respectively. Gain-of-function mutations cause Long QT syndrome type 3 and possibly atrial fibrillation, while loss-of-function channel mutations are associated with a wider variety of phenotypes, such as Brugada syndrome, cardiac conduction disease, dilated cardiomyopathy, and sick sinus node syndrome. The penetrance and phenotypes resulting from Nav1.5 mutations also vary with age, gender, body temperature, circadian rhythm, and between regions of the heart. This phenotypic variability makes it difficult to correlate genotype-phenotype. We propose that mutations are only one contributor to the phenotype and additional modifications on Nav1.5 lead to the phenotypic variability. Possible modifiers include other genetic variations and alterations in the life cycle of Nav1.5 such as gene transcription, RNA processing, translation, posttranslational modifications, trafficking, complex assembly, and degradation. In this chapter, we summarize potential modifiers of cardiac Nav1.5 that could help explain the clinically observed phenotypic variability. Consideration of these modifiers could help improve genotype-phenotype correlations and lead to new therapeutic strategies.
Collapse
Affiliation(s)
- M Liu
- The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - K-C Yang
- The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - S C Dudley
- The Warren Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
25
|
Habbout K, Poulin H, Rivier F, Giuliano S, Sternberg D, Fontaine B, Eymard B, Morales RJ, Echenne B, King L, Hanna MG, Männikkö R, Chahine M, Nicole S, Bendahhou S. A recessive Nav1.4 mutation underlies congenital myasthenic syndrome with periodic paralysis. Neurology 2015; 86:161-9. [PMID: 26659129 DOI: 10.1212/wnl.0000000000002264] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/08/2015] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE To determine the molecular basis of a complex phenotype of congenital muscle weakness observed in an isolated but consanguineous patient. METHODS The proband was evaluated clinically and neurophysiologically over a period of 15 years. Genetic testing of candidate genes was performed. Functional characterization of the candidate mutation was done in mammalian cell background using whole cell patch clamp technique. RESULTS The proband had fatigable muscle weakness characteristic of congenital myasthenic syndrome with acute and reversible attacks of most severe muscle weakness as observed in periodic paralysis. We identified a novel homozygous SCN4A mutation (p.R1454W) linked to this recessively inherited phenotype. The p.R1454W substitution induced an important enhancement of fast and slow inactivation, a slower recovery for these inactivated states, and a frequency-dependent regulation of Nav1.4 channels in the heterologous expression system. CONCLUSION We identified a novel loss-of-function mutation of Nav1.4 that leads to a recessive phenotype combining clinical symptoms and signs of congenital myasthenic syndrome and periodic paralysis, probably by decreasing channel availability for muscle action potential genesis at the neuromuscular junction and propagation along the sarcolemma.
Collapse
Affiliation(s)
- Karima Habbout
- From UMR7370 CNRS (K.H., S.G., S.B.), LP2M, Labex ICST, University Nice Sophia-Antipolis, Faculté de Médecine, Nice, France; Centre de Recherche (H.P., M.C.), Institut Universitaire en Santé Mentale de Québec; Department of Medicine (H.P., M.C.), Université Laval, Québec City, Canada; CHRU Montpellier (F.R., R.J.M., B.E.), Neuropédiatrie & Centre de Référence Maladies Neuromusculaires, Montpellier; Université de Montpellier (F.R., B.E.); INSERM (F.R.), U1046, CNRS, UMR9214, Montpellier; INSERM (D.S., B.F., B.E., S.N.), U1127, Paris; Sorbonne Universités (D.S., B.F., B.E., S.N.), UPMC University Paris 6, UMR S1127; CNRS (D.S., B.F., B.E., S.N.), UMR 7225, Paris; Institut du Cerveau et de la Moelle Épinière (D.S., B.F., B.E., S.N.), ICM, Paris; AP-HP (D.S., B.F., B.E.), Centres de Référence des Canalopathies Musculaires et des Maladies Neuro-musculaires Paris-Est, Service de Biochimie Métabolique, Hôpital de la Pitié Salpêtrière, France; and MRC Centre for Neuromuscular Diseases (L.K., M.G.H., R.M.), UCL Institute of Neurology, London, UK
| | - Hugo Poulin
- From UMR7370 CNRS (K.H., S.G., S.B.), LP2M, Labex ICST, University Nice Sophia-Antipolis, Faculté de Médecine, Nice, France; Centre de Recherche (H.P., M.C.), Institut Universitaire en Santé Mentale de Québec; Department of Medicine (H.P., M.C.), Université Laval, Québec City, Canada; CHRU Montpellier (F.R., R.J.M., B.E.), Neuropédiatrie & Centre de Référence Maladies Neuromusculaires, Montpellier; Université de Montpellier (F.R., B.E.); INSERM (F.R.), U1046, CNRS, UMR9214, Montpellier; INSERM (D.S., B.F., B.E., S.N.), U1127, Paris; Sorbonne Universités (D.S., B.F., B.E., S.N.), UPMC University Paris 6, UMR S1127; CNRS (D.S., B.F., B.E., S.N.), UMR 7225, Paris; Institut du Cerveau et de la Moelle Épinière (D.S., B.F., B.E., S.N.), ICM, Paris; AP-HP (D.S., B.F., B.E.), Centres de Référence des Canalopathies Musculaires et des Maladies Neuro-musculaires Paris-Est, Service de Biochimie Métabolique, Hôpital de la Pitié Salpêtrière, France; and MRC Centre for Neuromuscular Diseases (L.K., M.G.H., R.M.), UCL Institute of Neurology, London, UK
| | - François Rivier
- From UMR7370 CNRS (K.H., S.G., S.B.), LP2M, Labex ICST, University Nice Sophia-Antipolis, Faculté de Médecine, Nice, France; Centre de Recherche (H.P., M.C.), Institut Universitaire en Santé Mentale de Québec; Department of Medicine (H.P., M.C.), Université Laval, Québec City, Canada; CHRU Montpellier (F.R., R.J.M., B.E.), Neuropédiatrie & Centre de Référence Maladies Neuromusculaires, Montpellier; Université de Montpellier (F.R., B.E.); INSERM (F.R.), U1046, CNRS, UMR9214, Montpellier; INSERM (D.S., B.F., B.E., S.N.), U1127, Paris; Sorbonne Universités (D.S., B.F., B.E., S.N.), UPMC University Paris 6, UMR S1127; CNRS (D.S., B.F., B.E., S.N.), UMR 7225, Paris; Institut du Cerveau et de la Moelle Épinière (D.S., B.F., B.E., S.N.), ICM, Paris; AP-HP (D.S., B.F., B.E.), Centres de Référence des Canalopathies Musculaires et des Maladies Neuro-musculaires Paris-Est, Service de Biochimie Métabolique, Hôpital de la Pitié Salpêtrière, France; and MRC Centre for Neuromuscular Diseases (L.K., M.G.H., R.M.), UCL Institute of Neurology, London, UK
| | - Serena Giuliano
- From UMR7370 CNRS (K.H., S.G., S.B.), LP2M, Labex ICST, University Nice Sophia-Antipolis, Faculté de Médecine, Nice, France; Centre de Recherche (H.P., M.C.), Institut Universitaire en Santé Mentale de Québec; Department of Medicine (H.P., M.C.), Université Laval, Québec City, Canada; CHRU Montpellier (F.R., R.J.M., B.E.), Neuropédiatrie & Centre de Référence Maladies Neuromusculaires, Montpellier; Université de Montpellier (F.R., B.E.); INSERM (F.R.), U1046, CNRS, UMR9214, Montpellier; INSERM (D.S., B.F., B.E., S.N.), U1127, Paris; Sorbonne Universités (D.S., B.F., B.E., S.N.), UPMC University Paris 6, UMR S1127; CNRS (D.S., B.F., B.E., S.N.), UMR 7225, Paris; Institut du Cerveau et de la Moelle Épinière (D.S., B.F., B.E., S.N.), ICM, Paris; AP-HP (D.S., B.F., B.E.), Centres de Référence des Canalopathies Musculaires et des Maladies Neuro-musculaires Paris-Est, Service de Biochimie Métabolique, Hôpital de la Pitié Salpêtrière, France; and MRC Centre for Neuromuscular Diseases (L.K., M.G.H., R.M.), UCL Institute of Neurology, London, UK
| | - Damien Sternberg
- From UMR7370 CNRS (K.H., S.G., S.B.), LP2M, Labex ICST, University Nice Sophia-Antipolis, Faculté de Médecine, Nice, France; Centre de Recherche (H.P., M.C.), Institut Universitaire en Santé Mentale de Québec; Department of Medicine (H.P., M.C.), Université Laval, Québec City, Canada; CHRU Montpellier (F.R., R.J.M., B.E.), Neuropédiatrie & Centre de Référence Maladies Neuromusculaires, Montpellier; Université de Montpellier (F.R., B.E.); INSERM (F.R.), U1046, CNRS, UMR9214, Montpellier; INSERM (D.S., B.F., B.E., S.N.), U1127, Paris; Sorbonne Universités (D.S., B.F., B.E., S.N.), UPMC University Paris 6, UMR S1127; CNRS (D.S., B.F., B.E., S.N.), UMR 7225, Paris; Institut du Cerveau et de la Moelle Épinière (D.S., B.F., B.E., S.N.), ICM, Paris; AP-HP (D.S., B.F., B.E.), Centres de Référence des Canalopathies Musculaires et des Maladies Neuro-musculaires Paris-Est, Service de Biochimie Métabolique, Hôpital de la Pitié Salpêtrière, France; and MRC Centre for Neuromuscular Diseases (L.K., M.G.H., R.M.), UCL Institute of Neurology, London, UK
| | - Bertrand Fontaine
- From UMR7370 CNRS (K.H., S.G., S.B.), LP2M, Labex ICST, University Nice Sophia-Antipolis, Faculté de Médecine, Nice, France; Centre de Recherche (H.P., M.C.), Institut Universitaire en Santé Mentale de Québec; Department of Medicine (H.P., M.C.), Université Laval, Québec City, Canada; CHRU Montpellier (F.R., R.J.M., B.E.), Neuropédiatrie & Centre de Référence Maladies Neuromusculaires, Montpellier; Université de Montpellier (F.R., B.E.); INSERM (F.R.), U1046, CNRS, UMR9214, Montpellier; INSERM (D.S., B.F., B.E., S.N.), U1127, Paris; Sorbonne Universités (D.S., B.F., B.E., S.N.), UPMC University Paris 6, UMR S1127; CNRS (D.S., B.F., B.E., S.N.), UMR 7225, Paris; Institut du Cerveau et de la Moelle Épinière (D.S., B.F., B.E., S.N.), ICM, Paris; AP-HP (D.S., B.F., B.E.), Centres de Référence des Canalopathies Musculaires et des Maladies Neuro-musculaires Paris-Est, Service de Biochimie Métabolique, Hôpital de la Pitié Salpêtrière, France; and MRC Centre for Neuromuscular Diseases (L.K., M.G.H., R.M.), UCL Institute of Neurology, London, UK
| | - Bruno Eymard
- From UMR7370 CNRS (K.H., S.G., S.B.), LP2M, Labex ICST, University Nice Sophia-Antipolis, Faculté de Médecine, Nice, France; Centre de Recherche (H.P., M.C.), Institut Universitaire en Santé Mentale de Québec; Department of Medicine (H.P., M.C.), Université Laval, Québec City, Canada; CHRU Montpellier (F.R., R.J.M., B.E.), Neuropédiatrie & Centre de Référence Maladies Neuromusculaires, Montpellier; Université de Montpellier (F.R., B.E.); INSERM (F.R.), U1046, CNRS, UMR9214, Montpellier; INSERM (D.S., B.F., B.E., S.N.), U1127, Paris; Sorbonne Universités (D.S., B.F., B.E., S.N.), UPMC University Paris 6, UMR S1127; CNRS (D.S., B.F., B.E., S.N.), UMR 7225, Paris; Institut du Cerveau et de la Moelle Épinière (D.S., B.F., B.E., S.N.), ICM, Paris; AP-HP (D.S., B.F., B.E.), Centres de Référence des Canalopathies Musculaires et des Maladies Neuro-musculaires Paris-Est, Service de Biochimie Métabolique, Hôpital de la Pitié Salpêtrière, France; and MRC Centre for Neuromuscular Diseases (L.K., M.G.H., R.M.), UCL Institute of Neurology, London, UK
| | - Raul Juntas Morales
- From UMR7370 CNRS (K.H., S.G., S.B.), LP2M, Labex ICST, University Nice Sophia-Antipolis, Faculté de Médecine, Nice, France; Centre de Recherche (H.P., M.C.), Institut Universitaire en Santé Mentale de Québec; Department of Medicine (H.P., M.C.), Université Laval, Québec City, Canada; CHRU Montpellier (F.R., R.J.M., B.E.), Neuropédiatrie & Centre de Référence Maladies Neuromusculaires, Montpellier; Université de Montpellier (F.R., B.E.); INSERM (F.R.), U1046, CNRS, UMR9214, Montpellier; INSERM (D.S., B.F., B.E., S.N.), U1127, Paris; Sorbonne Universités (D.S., B.F., B.E., S.N.), UPMC University Paris 6, UMR S1127; CNRS (D.S., B.F., B.E., S.N.), UMR 7225, Paris; Institut du Cerveau et de la Moelle Épinière (D.S., B.F., B.E., S.N.), ICM, Paris; AP-HP (D.S., B.F., B.E.), Centres de Référence des Canalopathies Musculaires et des Maladies Neuro-musculaires Paris-Est, Service de Biochimie Métabolique, Hôpital de la Pitié Salpêtrière, France; and MRC Centre for Neuromuscular Diseases (L.K., M.G.H., R.M.), UCL Institute of Neurology, London, UK
| | - Bernard Echenne
- From UMR7370 CNRS (K.H., S.G., S.B.), LP2M, Labex ICST, University Nice Sophia-Antipolis, Faculté de Médecine, Nice, France; Centre de Recherche (H.P., M.C.), Institut Universitaire en Santé Mentale de Québec; Department of Medicine (H.P., M.C.), Université Laval, Québec City, Canada; CHRU Montpellier (F.R., R.J.M., B.E.), Neuropédiatrie & Centre de Référence Maladies Neuromusculaires, Montpellier; Université de Montpellier (F.R., B.E.); INSERM (F.R.), U1046, CNRS, UMR9214, Montpellier; INSERM (D.S., B.F., B.E., S.N.), U1127, Paris; Sorbonne Universités (D.S., B.F., B.E., S.N.), UPMC University Paris 6, UMR S1127; CNRS (D.S., B.F., B.E., S.N.), UMR 7225, Paris; Institut du Cerveau et de la Moelle Épinière (D.S., B.F., B.E., S.N.), ICM, Paris; AP-HP (D.S., B.F., B.E.), Centres de Référence des Canalopathies Musculaires et des Maladies Neuro-musculaires Paris-Est, Service de Biochimie Métabolique, Hôpital de la Pitié Salpêtrière, France; and MRC Centre for Neuromuscular Diseases (L.K., M.G.H., R.M.), UCL Institute of Neurology, London, UK
| | - Louise King
- From UMR7370 CNRS (K.H., S.G., S.B.), LP2M, Labex ICST, University Nice Sophia-Antipolis, Faculté de Médecine, Nice, France; Centre de Recherche (H.P., M.C.), Institut Universitaire en Santé Mentale de Québec; Department of Medicine (H.P., M.C.), Université Laval, Québec City, Canada; CHRU Montpellier (F.R., R.J.M., B.E.), Neuropédiatrie & Centre de Référence Maladies Neuromusculaires, Montpellier; Université de Montpellier (F.R., B.E.); INSERM (F.R.), U1046, CNRS, UMR9214, Montpellier; INSERM (D.S., B.F., B.E., S.N.), U1127, Paris; Sorbonne Universités (D.S., B.F., B.E., S.N.), UPMC University Paris 6, UMR S1127; CNRS (D.S., B.F., B.E., S.N.), UMR 7225, Paris; Institut du Cerveau et de la Moelle Épinière (D.S., B.F., B.E., S.N.), ICM, Paris; AP-HP (D.S., B.F., B.E.), Centres de Référence des Canalopathies Musculaires et des Maladies Neuro-musculaires Paris-Est, Service de Biochimie Métabolique, Hôpital de la Pitié Salpêtrière, France; and MRC Centre for Neuromuscular Diseases (L.K., M.G.H., R.M.), UCL Institute of Neurology, London, UK
| | - Michael G Hanna
- From UMR7370 CNRS (K.H., S.G., S.B.), LP2M, Labex ICST, University Nice Sophia-Antipolis, Faculté de Médecine, Nice, France; Centre de Recherche (H.P., M.C.), Institut Universitaire en Santé Mentale de Québec; Department of Medicine (H.P., M.C.), Université Laval, Québec City, Canada; CHRU Montpellier (F.R., R.J.M., B.E.), Neuropédiatrie & Centre de Référence Maladies Neuromusculaires, Montpellier; Université de Montpellier (F.R., B.E.); INSERM (F.R.), U1046, CNRS, UMR9214, Montpellier; INSERM (D.S., B.F., B.E., S.N.), U1127, Paris; Sorbonne Universités (D.S., B.F., B.E., S.N.), UPMC University Paris 6, UMR S1127; CNRS (D.S., B.F., B.E., S.N.), UMR 7225, Paris; Institut du Cerveau et de la Moelle Épinière (D.S., B.F., B.E., S.N.), ICM, Paris; AP-HP (D.S., B.F., B.E.), Centres de Référence des Canalopathies Musculaires et des Maladies Neuro-musculaires Paris-Est, Service de Biochimie Métabolique, Hôpital de la Pitié Salpêtrière, France; and MRC Centre for Neuromuscular Diseases (L.K., M.G.H., R.M.), UCL Institute of Neurology, London, UK
| | - Roope Männikkö
- From UMR7370 CNRS (K.H., S.G., S.B.), LP2M, Labex ICST, University Nice Sophia-Antipolis, Faculté de Médecine, Nice, France; Centre de Recherche (H.P., M.C.), Institut Universitaire en Santé Mentale de Québec; Department of Medicine (H.P., M.C.), Université Laval, Québec City, Canada; CHRU Montpellier (F.R., R.J.M., B.E.), Neuropédiatrie & Centre de Référence Maladies Neuromusculaires, Montpellier; Université de Montpellier (F.R., B.E.); INSERM (F.R.), U1046, CNRS, UMR9214, Montpellier; INSERM (D.S., B.F., B.E., S.N.), U1127, Paris; Sorbonne Universités (D.S., B.F., B.E., S.N.), UPMC University Paris 6, UMR S1127; CNRS (D.S., B.F., B.E., S.N.), UMR 7225, Paris; Institut du Cerveau et de la Moelle Épinière (D.S., B.F., B.E., S.N.), ICM, Paris; AP-HP (D.S., B.F., B.E.), Centres de Référence des Canalopathies Musculaires et des Maladies Neuro-musculaires Paris-Est, Service de Biochimie Métabolique, Hôpital de la Pitié Salpêtrière, France; and MRC Centre for Neuromuscular Diseases (L.K., M.G.H., R.M.), UCL Institute of Neurology, London, UK
| | - Mohamed Chahine
- From UMR7370 CNRS (K.H., S.G., S.B.), LP2M, Labex ICST, University Nice Sophia-Antipolis, Faculté de Médecine, Nice, France; Centre de Recherche (H.P., M.C.), Institut Universitaire en Santé Mentale de Québec; Department of Medicine (H.P., M.C.), Université Laval, Québec City, Canada; CHRU Montpellier (F.R., R.J.M., B.E.), Neuropédiatrie & Centre de Référence Maladies Neuromusculaires, Montpellier; Université de Montpellier (F.R., B.E.); INSERM (F.R.), U1046, CNRS, UMR9214, Montpellier; INSERM (D.S., B.F., B.E., S.N.), U1127, Paris; Sorbonne Universités (D.S., B.F., B.E., S.N.), UPMC University Paris 6, UMR S1127; CNRS (D.S., B.F., B.E., S.N.), UMR 7225, Paris; Institut du Cerveau et de la Moelle Épinière (D.S., B.F., B.E., S.N.), ICM, Paris; AP-HP (D.S., B.F., B.E.), Centres de Référence des Canalopathies Musculaires et des Maladies Neuro-musculaires Paris-Est, Service de Biochimie Métabolique, Hôpital de la Pitié Salpêtrière, France; and MRC Centre for Neuromuscular Diseases (L.K., M.G.H., R.M.), UCL Institute of Neurology, London, UK
| | - Sophie Nicole
- From UMR7370 CNRS (K.H., S.G., S.B.), LP2M, Labex ICST, University Nice Sophia-Antipolis, Faculté de Médecine, Nice, France; Centre de Recherche (H.P., M.C.), Institut Universitaire en Santé Mentale de Québec; Department of Medicine (H.P., M.C.), Université Laval, Québec City, Canada; CHRU Montpellier (F.R., R.J.M., B.E.), Neuropédiatrie & Centre de Référence Maladies Neuromusculaires, Montpellier; Université de Montpellier (F.R., B.E.); INSERM (F.R.), U1046, CNRS, UMR9214, Montpellier; INSERM (D.S., B.F., B.E., S.N.), U1127, Paris; Sorbonne Universités (D.S., B.F., B.E., S.N.), UPMC University Paris 6, UMR S1127; CNRS (D.S., B.F., B.E., S.N.), UMR 7225, Paris; Institut du Cerveau et de la Moelle Épinière (D.S., B.F., B.E., S.N.), ICM, Paris; AP-HP (D.S., B.F., B.E.), Centres de Référence des Canalopathies Musculaires et des Maladies Neuro-musculaires Paris-Est, Service de Biochimie Métabolique, Hôpital de la Pitié Salpêtrière, France; and MRC Centre for Neuromuscular Diseases (L.K., M.G.H., R.M.), UCL Institute of Neurology, London, UK
| | - Said Bendahhou
- From UMR7370 CNRS (K.H., S.G., S.B.), LP2M, Labex ICST, University Nice Sophia-Antipolis, Faculté de Médecine, Nice, France; Centre de Recherche (H.P., M.C.), Institut Universitaire en Santé Mentale de Québec; Department of Medicine (H.P., M.C.), Université Laval, Québec City, Canada; CHRU Montpellier (F.R., R.J.M., B.E.), Neuropédiatrie & Centre de Référence Maladies Neuromusculaires, Montpellier; Université de Montpellier (F.R., B.E.); INSERM (F.R.), U1046, CNRS, UMR9214, Montpellier; INSERM (D.S., B.F., B.E., S.N.), U1127, Paris; Sorbonne Universités (D.S., B.F., B.E., S.N.), UPMC University Paris 6, UMR S1127; CNRS (D.S., B.F., B.E., S.N.), UMR 7225, Paris; Institut du Cerveau et de la Moelle Épinière (D.S., B.F., B.E., S.N.), ICM, Paris; AP-HP (D.S., B.F., B.E.), Centres de Référence des Canalopathies Musculaires et des Maladies Neuro-musculaires Paris-Est, Service de Biochimie Métabolique, Hôpital de la Pitié Salpêtrière, France; and MRC Centre for Neuromuscular Diseases (L.K., M.G.H., R.M.), UCL Institute of Neurology, London, UK.
| |
Collapse
|
26
|
Laedermann CJ, Abriel H, Decosterd I. Post-translational modifications of voltage-gated sodium channels in chronic pain syndromes. Front Pharmacol 2015; 6:263. [PMID: 26594175 PMCID: PMC4633509 DOI: 10.3389/fphar.2015.00263] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/23/2015] [Indexed: 02/06/2023] Open
Abstract
In the peripheral sensory nervous system the neuronal expression of voltage-gated sodium channels (Navs) is very important for the transmission of nociceptive information since they give rise to the upstroke of the action potential (AP). Navs are composed of nine different isoforms with distinct biophysical properties. Studying the mutations associated with the increase or absence of pain sensitivity in humans, as well as other expression studies, have highlighted Nav1.7, Nav1.8, and Nav1.9 as being the most important contributors to the control of nociceptive neuronal electrogenesis. Modulating their expression and/or function can impact the shape of the AP and consequently modify nociceptive transmission, a process that is observed in persistent pain conditions. Post-translational modification (PTM) of Navs is a well-known process that modifies their expression and function. In chronic pain syndromes, the release of inflammatory molecules into the direct environment of dorsal root ganglia (DRG) sensory neurons leads to an abnormal activation of enzymes that induce Navs PTM. The addition of small molecules, i.e., peptides, phosphoryl groups, ubiquitin moieties and/or carbohydrates, can modify the function of Navs in two different ways: via direct physical interference with Nav gating, or via the control of Nav trafficking. Both mechanisms have a profound impact on neuronal excitability. In this review we will discuss the role of Protein Kinase A, B, and C, Mitogen Activated Protein Kinases and Ca++/Calmodulin-dependent Kinase II in peripheral chronic pain syndromes. We will also discuss more recent findings that the ubiquitination of Nav1.7 by Nedd4-2 and the effect of methylglyoxal on Nav1.8 are also implicated in the development of experimental neuropathic pain. We will address the potential roles of other PTMs in chronic pain and highlight the need for further investigation of PTMs of Navs in order to develop new pharmacological tools to alleviate pain.
Collapse
Affiliation(s)
- Cedric J. Laedermann
- F.M. Kirby Neurobiology Research Center, Boston Children’s Hospital, Harvard Medical School, BostonMA, USA
| | - Hugues Abriel
- Department of Clinical Research, University of BernBern, Switzerland
| | - Isabelle Decosterd
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV) and University of LausanneLausanne, Switzerland
- Department of Fundamental Neurosciences, University of LausanneLausanne, Switzerland
| |
Collapse
|
27
|
Rees JS, Li XW, Perrett S, Lilley KS, Jackson AP. Protein Neighbors and Proximity Proteomics. Mol Cell Proteomics 2015; 14:2848-56. [PMID: 26355100 PMCID: PMC4638030 DOI: 10.1074/mcp.r115.052902] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Indexed: 12/31/2022] Open
Abstract
Within cells, proteins can co-assemble into functionally integrated and spatially restricted multicomponent complexes. Often, the affinities between individual proteins are relatively weak, and proteins within such clusters may interact only indirectly with many of their other protein neighbors. This makes proteomic characterization difficult using methods such as immunoprecipitation or cross-linking. Recently, several groups have described the use of enzyme-catalyzed proximity labeling reagents that covalently tag the neighbors of a targeted protein with a small molecule such as fluorescein or biotin. The modified proteins can then be isolated by standard pulldown methods and identified by mass spectrometry. Here we will describe the techniques as well as their similarities and differences. We discuss their applications both to study protein assemblies and to provide a new way for characterizing organelle proteomes. We stress the importance of proteomic quantitation and independent target validation in such experiments. Furthermore, we suggest that there are biophysical and cell-biological principles that dictate the appropriateness of enzyme-catalyzed proximity labeling methods to address particular biological questions of interest.
Collapse
Affiliation(s)
- Johanna S Rees
- From the ‡Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom CB2 1QW, the §Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom CB2 1QR, and
| | - Xue-Wen Li
- the ‖National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Sarah Perrett
- the ‖National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Kathryn S Lilley
- the §Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom CB2 1QR, and
| | - Antony P Jackson
- From the ‡Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom CB2 1QW,
| |
Collapse
|
28
|
Namadurai S, Yereddi NR, Cusdin FS, Huang CLH, Chirgadze DY, Jackson AP. A new look at sodium channel β subunits. Open Biol 2015; 5:140192. [PMID: 25567098 PMCID: PMC4313373 DOI: 10.1098/rsob.140192] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Voltage-gated sodium (Nav) channels are intrinsic plasma membrane proteins that initiate the action potential in electrically excitable cells. They are a major focus of research in neurobiology, structural biology, membrane biology and pharmacology. Mutations in Nav channels are implicated in a wide variety of inherited pathologies, including cardiac conduction diseases, myotonic conditions, epilepsy and chronic pain syndromes. Drugs active against Nav channels are used as local anaesthetics, anti-arrhythmics, analgesics and anti-convulsants. The Nav channels are composed of a pore-forming α subunit and associated β subunits. The β subunits are members of the immunoglobulin (Ig) domain family of cell-adhesion molecules. They modulate multiple aspects of Nav channel behaviour and play critical roles in controlling neuronal excitability. The recently published atomic resolution structures of the human β3 and β4 subunit Ig domains open a new chapter in the study of these molecules. In particular, the discovery that β3 subunits form trimers suggests that Nav channel oligomerization may contribute to the functional properties of some β subunits.
Collapse
Affiliation(s)
- Sivakumar Namadurai
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Nikitha R Yereddi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Fiona S Cusdin
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | | | - Dimitri Y Chirgadze
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Antony P Jackson
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
29
|
Allegue C, Coll M, Mates J, Campuzano O, Iglesias A, Sobrino B, Brion M, Amigo J, Carracedo A, Brugada P, Brugada J, Brugada R. Genetic Analysis of Arrhythmogenic Diseases in the Era of NGS: The Complexity of Clinical Decision-Making in Brugada Syndrome. PLoS One 2015; 10:e0133037. [PMID: 26230511 PMCID: PMC4521779 DOI: 10.1371/journal.pone.0133037] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/23/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The use of next-generation sequencing enables a rapid analysis of many genes associated with sudden cardiac death in diseases like Brugada Syndrome. Genetic variation is identified and associated with 30-35% of cases of Brugada Syndrome, with nearly 20-25% attributable to variants in SCN5A, meaning many cases remain undiagnosed genetically. To evaluate the role of genetic variants in arrhythmogenic diseases and the utility of next-generation sequencing, we applied this technology to resequence 28 main genes associated with arrhythmogenic disorders. MATERIALS AND METHODS A cohort of 45 clinically diagnosed Brugada Syndrome patients classified as SCN5A-negative was analyzed using next generation sequencing. Twenty-eight genes were resequenced: AKAP9, ANK2, CACNA1C, CACNB2, CASQ2, CAV3, DSC2, DSG2, DSP, GPD1L, HCN4, JUP, KCNE1, KCNE2, KCNE3, KCNH2, KCNJ2, KCNJ5, KCNQ1, NOS1AP, PKP2, RYR2, SCN1B, SCN3B, SCN4B, SCN5A, SNTA1, and TMEM43. A total of 85 clinically evaluated relatives were also genetically analyzed to ascertain familial segregation. RESULTS AND DISCUSSION Twenty-two patients carried 30 rare genetic variants in 12 genes, only 4 of which were previously associated with Brugada Syndrome. Neither insertion/deletion nor copy number variation were detected. We identified genetic variants in novel candidate genes potentially associated to Brugada Syndrome. These include: 4 genetic variations in AKAP9 including a de novo genetic variation in 3 positive cases; 5 genetic variations in ANK2 detected in 4 cases; variations in KCNJ2 together with CASQ2 in 1 case; genetic variations in RYR2, including a de novo genetic variation and desmosomal proteins encoding genes including DSG2, DSP and JUP, detected in 3 of the cases. Larger gene panels or whole exome sequencing should be considered to identify novel genes associated to Brugada Syndrome. However, application of approaches such as whole exome sequencing would difficult the interpretation for clinical purposes due to the large amount of data generated. The identification of these genetic variants opens new perspectives on the implications of genetic background in the arrhythmogenic substrate for research purposes. CONCLUSIONS As a paradigm for other arrhythmogenic diseases and for unexplained sudden death, our data show that clinical genetic diagnosis is justified in a family perspective for confirmation of genetic causality. In the era of personalized medicine using high-throughput tools, clinical decision-making is increasingly complex.
Collapse
Affiliation(s)
- Catarina Allegue
- Cardiovascular Genetics Center, IdIBGi-Universitat de Girona, Girona, Spain
| | - Mònica Coll
- Cardiovascular Genetics Center, IdIBGi-Universitat de Girona, Girona, Spain
| | - Jesus Mates
- Cardiovascular Genetics Center, IdIBGi-Universitat de Girona, Girona, Spain
| | - Oscar Campuzano
- Cardiovascular Genetics Center, IdIBGi-Universitat de Girona, Girona, Spain
| | - Anna Iglesias
- Cardiovascular Genetics Center, IdIBGi-Universitat de Girona, Girona, Spain
| | - Beatriz Sobrino
- Grupo Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Santiago de Compostela, Spain
| | - Maria Brion
- Grupo Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Santiago de Compostela, Spain
| | - Jorge Amigo
- Grupo Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Santiago de Compostela, Spain
| | - Angel Carracedo
- Grupo Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Santiago de Compostela, Spain
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Pedro Brugada
- Heart Rhythm Management Center, UZ Brussel-VUB, Brussels, Belgium
| | - Josep Brugada
- Cardiology Unit, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Center, IdIBGi-Universitat de Girona, Girona, Spain
| |
Collapse
|
30
|
James TF, Nenov MN, Wildburger NC, Lichti CF, Luisi J, Vergara F, Panova-Electronova NI, Nilsson CL, Rudra JS, Green TA, Labate D, Laezza F. The Nav1.2 channel is regulated by GSK3. Biochim Biophys Acta Gen Subj 2015; 1850:832-44. [PMID: 25615535 DOI: 10.1016/j.bbagen.2015.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/17/2014] [Accepted: 01/14/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Phosphorylation plays an essential role in regulating voltage-gated sodium (Na(v)) channels and excitability. Yet, a surprisingly limited number of kinases have been identified as regulators of Na(v) channels. We posited that glycogen synthase kinase 3 (GSK3), a critical kinase found associated with numerous brain disorders, might directly regulate neuronal Na(v) channels. METHODS We used patch-clamp electrophysiology to record sodium currents from Na(v)1.2 channels stably expressed in HEK-293 cells. mRNA and protein levels were quantified with RT-PCR, Western blot, or confocal microscopy, and in vitro phosphorylation and mass spectrometry to identify phosphorylated residues. RESULTS We found that exposure of cells to GSK3 inhibitor XIII significantly potentiates the peak current density of Na(v)1.2, a phenotype reproduced by silencing GSK3 with siRNA. Contrarily, overexpression of GSK3β suppressed Na(v)1.2-encoded currents. Neither mRNA nor total protein expression was changed upon GSK3 inhibition. Cell surface labeling of CD4-chimeric constructs expressing intracellular domains of the Na(v)1.2 channel indicates that cell surface expression of CD4-Na(v)1.2 C-tail was up-regulated upon pharmacological inhibition of GSK3, resulting in an increase of surface puncta at the plasma membrane. Finally, using in vitro phosphorylation in combination with high resolution mass spectrometry, we further demonstrate that GSK3β phosphorylates T(1966) at the C-terminal tail of Na(v)1.2. CONCLUSION These findings provide evidence for a new mechanism by which GSK3 modulates Na(v) channel function via its C-terminal tail. GENERAL SIGNIFICANCE These findings provide fundamental knowledge in understanding signaling dysfunction common in several neuropsychiatric disorders.
Collapse
Affiliation(s)
- Thomas F James
- Department of Pharmacology & Toxicology, USA; Neuroscience Graduate Program, USA
| | | | - Norelle C Wildburger
- Department of Pharmacology & Toxicology, USA; Neuroscience Graduate Program, USA
| | | | | | | | | | | | - Jai S Rudra
- Department of Pharmacology & Toxicology, USA
| | - Thomas A Green
- Department of Pharmacology & Toxicology, USA; Center for Addiction Research, USA
| | | | - Fernanda Laezza
- Department of Pharmacology & Toxicology, USA; Center for Addiction Research, USA; Center for Biomedical Engineering, USA; Mitchell Center for Neurodegenerative Diseases, USA.
| |
Collapse
|
31
|
Abstract
Mutations of the cardiac sodium channel (Nav1.5) can induce gain or loss of channel function. Gain-of-function mutations can cause long QT syndrome type 3 and possibly atrial fibrillation, whereas loss-of-function mutations are associated with a variety of phenotypes, such as Brugada syndrome, cardiac conduction disease, sick sinus syndrome, and possibly dilated cardiomyopathy. The phenotypes produced by Nav1.5 mutations vary according to the direct effect of the mutation on channel biophysics, but also with age, sex, body temperature, and between regions of the heart. This phenotypic variability makes genotype-phenotype correlations difficult. In this Perspectives article, we propose that phenotypic variability not ascribed to mutation-dependent changes in channel function might be the result of additional modifiers of channel behaviour, such as other genetic variation and alterations in transcription, RNA processing, translation, post-translational modifications, and protein degradation. Consideration of these modifiers might help to improve genotype-phenotype correlations and lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Man Liu
- Warren Alpert Medical School, Brown University, 593 Eddy Street, APC730, Providence, RI 02903, USA
| | - Kai-Chien Yang
- Warren Alpert Medical School, Brown University, 593 Eddy Street, APC730, Providence, RI 02903, USA
| | - Samuel C Dudley
- Warren Alpert Medical School, Brown University, 593 Eddy Street, APC730, Providence, RI 02903, USA
| |
Collapse
|
32
|
Namadurai S, Balasuriya D, Rajappa R, Wiemhöfer M, Stott K, Klingauf J, Edwardson JM, Chirgadze DY, Jackson AP. Crystal structure and molecular imaging of the Nav channel β3 subunit indicates a trimeric assembly. J Biol Chem 2014; 289:10797-10811. [PMID: 24567321 PMCID: PMC4036194 DOI: 10.1074/jbc.m113.527994] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The vertebrate sodium (Nav) channel is composed of an ion-conducting α subunit and associated β subunits. Here, we report the crystal structure of the human β3 subunit immunoglobulin (Ig) domain, a functionally important component of Nav channels in neurons and cardiomyocytes. Surprisingly, we found that the β3 subunit Ig domain assembles as a trimer in the crystal asymmetric unit. Analytical ultracentrifugation confirmed the presence of Ig domain monomers, dimers, and trimers in free solution, and atomic force microscopy imaging also detected full-length β3 subunit monomers, dimers, and trimers. Mutation of a cysteine residue critical for maintaining the trimer interface destabilized both dimers and trimers. Using fluorescence photoactivated localization microscopy, we detected full-length β3 subunit trimers on the plasma membrane of transfected HEK293 cells. We further show that β3 subunits can bind to more than one site on the Nav 1.5 α subunit and induce the formation of α subunit oligomers, including trimers. Our results suggest a new and unexpected role for the β3 subunits in Nav channel cross-linking and provide new structural insights into some pathological Nav channel mutations.
Collapse
Affiliation(s)
- Sivakumar Namadurai
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, United Kingdom
| | - Dilshan Balasuriya
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Rajit Rajappa
- Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch Strasse, 31 48149 Münster, Germany
| | - Martin Wiemhöfer
- Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch Strasse, 31 48149 Münster, Germany
| | - Katherine Stott
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, United Kingdom
| | - Jurgen Klingauf
- Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch Strasse, 31 48149 Münster, Germany
| | - J Michael Edwardson
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Dimitri Y Chirgadze
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, United Kingdom.
| | - Antony P Jackson
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, United Kingdom.
| |
Collapse
|
33
|
Dallas ML, Deuchars SA, Deuchars J. Immunopharmacology: utilizing antibodies as ion channel modulators. Expert Rev Clin Pharmacol 2014; 3:281-9. [DOI: 10.1586/ecp.10.18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Toward an understanding of the complete NCX1 lifetime in the cardiac sarcolemma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:345-52. [PMID: 23224893 DOI: 10.1007/978-1-4614-4756-6_29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The density of Na/Ca exchangers (NCX1) in the cardiac sarcolemma, like all plasma membrane proteins, will be influenced by (and ultimately determined by) the function of membrane insertion and retrieval processes (i.e., exo- and endocytic mechanisms). Progress in understanding these processes in cardiac muscle faces many biological and methodological complexities and hurdles. As described here, we are attempting to overcome these hurdles to study more adequately the assembly and disassembly of the cardiac sarcolemma, in general, and the control of NCX1 by membrane trafficking processes in particular. First, we have developed improved noninvasive methods to monitor the cellular capacitance of cardiac tissue (NIC) over periods of hours. Thus, we can study long-term changes of total membrane area. Second, we have developed mice that express fusion proteins of NCX1 with the pHluorin green protein. Thus, we can determine the membrane disposition of NCX1, and changes thereof, on-line in intact cardiac muscle.
Collapse
|
35
|
Yereddi NR, Cusdin FS, Namadurai S, Packman LC, Monie TP, Slavny P, Clare JJ, Powell AJ, Jackson AP. The immunoglobulin domain of the sodium channel β3 subunit contains a surface-localized disulfide bond that is required for homophilic binding. FASEB J 2012; 27:568-80. [PMID: 23118027 PMCID: PMC3583845 DOI: 10.1096/fj.12-209445] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The β subunits of voltage-gated sodium (Nav) channels possess an extracellular immunoglobulin (Ig) domain that is related to the L1 family of cell-adhesion molecules (CAMs). Here we show that in HEK293 cells, secretion of the free Ig domain of the β3 subunit is reduced significantly when it is coexpressed with the full-length β3 and β1 subunits but not with the β2 subunit. Using immunoprecipitation, we show that the β3 subunit can mediate trans homophilic-binding via its Ig domain and that the β3-Ig domain can associate heterophilically with the β1 subunit. Evolutionary tracing analysis and structural modeling identified a cluster of surface-localized amino acids fully conserved between the Ig domains of all known β3 and β1 sequences. A notable feature of this conserved surface cluster is the presence of two adjacent cysteine residues that previously we have suggested may form a disulfide bond. We now confirm the presence of the disulfide bond in β3 using mass spectrometry, and we show that its integrity is essential for the association of the full-length, membrane-anchored β3 subunit with itself. However, selective reduction of this surface disulfide bond did not inhibit homophilic binding of the purified β3-Ig domain in free solution. Hence, the disulfide bond itself is unlikely to be part of the homophilic binding site. Rather, we suggest that its integrity ensures the Ig domain of the membrane-tethered β3 subunit adopts the correct orientation for productive association to occur in vivo.—Yereddi, N. R., Cusdin, F. S., Namadurai, S., Packman, L. C., Monie, T. P., Slavny, P., Clare, J. C., Powell, A. J., Jackson, A. P. The immunoglobulin domain of the sodium channel β3 subunit contains a surface-localized disulfide bond that is required for homophilic binding.
Collapse
|
36
|
Song W, Shou W. Cardiac sodium channel Nav1.5 mutations and cardiac arrhythmia. Pediatr Cardiol 2012; 33:943-9. [PMID: 22460359 PMCID: PMC3393812 DOI: 10.1007/s00246-012-0303-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 03/09/2012] [Indexed: 12/19/2022]
Abstract
As a major cardiac voltage-gated sodium channel isoform in the heart, the Nav1.5 channel is essential for cardiac action potential initiation and subsequent propagation throughout the heart. Mutations of Nav1.5 have been linked to a variety of cardiac diseases such as long QT syndrome (LQTs), Brugada syndrome, cardiac conduction defect, atrial fibrillation, and dilated cardiomyopathy. The mutagenesis approach and heterologous expression systems are most frequently used to study the function of this channel. This review focuses primarily on recent findings of Nav1.5 mutations associated with type 3 long QT syndrome (LQT3) in particular. Understanding the functional changes of the Nav1.5 mutation may offer critical insight into the mechanism of long QT3 syndrome. In addition, this review provides the updated information on the current progress of using various experimental model systems to study primarily the long QT3 syndrome.
Collapse
Affiliation(s)
- Weihua Song
- Department of Pediatrics, Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, Indianapolis, IN 46202, USA
| | | |
Collapse
|
37
|
Pristerà A, Baker MD, Okuse K. Association between tetrodotoxin resistant channels and lipid rafts regulates sensory neuron excitability. PLoS One 2012; 7:e40079. [PMID: 22870192 PMCID: PMC3411591 DOI: 10.1371/journal.pone.0040079] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/05/2012] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) play a key role in the initiation and propagation of action potentials in neurons. NaV1.8 is a tetrodotoxin (TTX) resistant VGSC expressed in nociceptors, peripheral small-diameter neurons able to detect noxious stimuli. NaV1.8 underlies the vast majority of sodium currents during action potentials. Many studies have highlighted a key role for NaV1.8 in inflammatory and chronic pain models. Lipid rafts are microdomains of the plasma membrane highly enriched in cholesterol and sphingolipids. Lipid rafts tune the spatial and temporal organisation of proteins and lipids on the plasma membrane. They are thought to act as platforms on the membrane where proteins and lipids can be trafficked, compartmentalised and functionally clustered. In the present study we investigated NaV1.8 sub-cellular localisation and explored the idea that it is associated with lipid rafts in nociceptors. We found that NaV1.8 is distributed in clusters along the axons of DRG neurons in vitro and ex vivo. We also demonstrated, by biochemical and imaging studies, that NaV1.8 is associated with lipid rafts along the sciatic nerve ex vivo and in DRG neurons in vitro. Moreover, treatments with methyl-β-cyclodextrin (MβCD) and 7-ketocholesterol (7KC) led to the dissociation between rafts and NaV1.8. By calcium imaging we demonstrated that the lack of association between rafts and NaV1.8 correlated with impaired neuronal excitability, highlighted by a reduction in the number of neurons able to conduct mechanically- and chemically-evoked depolarisations. These findings reveal the sub-cellular localisation of NaV1.8 in nociceptors and highlight the importance of the association between NaV1.8 and lipid rafts in the control of nociceptor excitability.
Collapse
Affiliation(s)
- Alessandro Pristerà
- Division of Cell and Molecular Biology, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Mark D. Baker
- Neuroscience and Trauma Centre, Blizard Institute, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Kenji Okuse
- Division of Cell and Molecular Biology, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Ondrus AE, Lee HLD, Iwanaga S, Parsons WH, Andresen BM, Moerner W, Bois JD. Fluorescent saxitoxins for live cell imaging of single voltage-gated sodium ion channels beyond the optical diffraction limit. CHEMISTRY & BIOLOGY 2012; 19:902-12. [PMID: 22840778 PMCID: PMC3731772 DOI: 10.1016/j.chembiol.2012.05.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/24/2012] [Accepted: 05/25/2012] [Indexed: 12/19/2022]
Abstract
A desire to better understand the role of voltage-gated sodium channels (Na(V)s) in signal conduction and their dysregulation in specific disease states motivates the development of high precision tools for their study. Nature has evolved a collection of small molecule agents, including the shellfish poison (+)-saxitoxin, that bind to the extracellular pore of select Na(V) isoforms. As described in this report, de novo chemical synthesis has enabled the preparation of fluorescently labeled derivatives of (+)-saxitoxin, STX-Cy5, and STX-DCDHF, which display reversible binding to Na(V)s in live cells. Electrophysiology and confocal fluorescence microscopy studies confirm that these STX-based dyes function as potent and selective Na(V) labels. The utility of these probes is underscored in single-molecule and super-resolution imaging experiments, which reveal Na(V) distributions well beyond the optical diffraction limit in subcellular features such as neuritic spines and filopodia.
Collapse
Affiliation(s)
- Alison E. Ondrus
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305-5080, USA
| | - Hsiao-lu D. Lee
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305-5080, USA
| | - Shigeki Iwanaga
- SYSMEX Corporation, Central Research Laboratories, 4-4-4, Takatsukadai, Nishi-ku, Kobe 651-2271, Japan
| | - William H. Parsons
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305-5080, USA
| | - Brian M. Andresen
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305-5080, USA
| | - W.E. Moerner
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305-5080, USA
| | - J. Du Bois
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305-5080, USA
| |
Collapse
|
39
|
Shavkunov A, Panova N, Prasai A, Veselenak R, Bourne N, Stoilova-McPhie S, Laezza F. Bioluminescence methodology for the detection of protein-protein interactions within the voltage-gated sodium channel macromolecular complex. Assay Drug Dev Technol 2012; 10:148-60. [PMID: 22364545 DOI: 10.1089/adt.2011.413] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein-protein interactions are critical molecular determinants of ion channel function and emerging targets for pharmacological interventions. Yet, current methodologies for the rapid detection of ion channel macromolecular complexes are still lacking. In this study we have adapted a split-luciferase complementation assay (LCA) for detecting the assembly of the voltage-gated Na+ (Nav) channel C-tail and the intracellular fibroblast growth factor 14 (FGF14), a functionally relevant component of the Nav channelosome that controls gating and targeting of Nav channels through direct interaction with the channel C-tail. In the LCA, two complementary N-terminus and C-terminus fragments of the firefly luciferase were fused, respectively, to a chimera of the CD4 transmembrane segment and the C-tail of Nav1.6 channel (CD4-Nav1.6-NLuc) or FGF14 (CLuc-FGF14). Co-expression of CLuc-FGF14 and CD4-Nav1.6-NLuc in live cells led to a robust assembly of the FGF14:Nav1.6 C-tail complex, which was attenuated by introducing single-point mutations at the predicted FGF14:Nav channel interface. To evaluate the dynamic regulation of the FGF14:Nav1.6 C-tail complex by signaling pathways, we investigated the effect of kinase inhibitors on the complex formation. Through a platform of counter screenings, we show that the p38/MAPK inhibitor, PD169316, and the IκB kinase inhibitor, BAY 11-7082, reduce the FGF14:Nav1.6 C-tail complementation, highlighting a potential role of the p38MAPK and the IκB/NFκB pathways in controlling neuronal excitability through protein-protein interactions. We envision the methodology presented here as a new valuable tool to allow functional evaluations of protein-channel complexes toward probe development and drug discovery targeting ion channels implicated in human disorders.
Collapse
Affiliation(s)
- Alexander Shavkunov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Cusdin FS, Nietlispach D, Maman J, Dale TJ, Powell AJ, Clare JJ, Jackson AP. The sodium channel {beta}3-subunit induces multiphasic gating in NaV1.3 and affects fast inactivation via distinct intracellular regions. J Biol Chem 2010; 285:33404-33412. [PMID: 20675377 PMCID: PMC2963402 DOI: 10.1074/jbc.m110.114058] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 07/07/2010] [Indexed: 01/19/2023] Open
Abstract
Electrical excitability in neurons depends on the activity of membrane-bound voltage gated sodium channels (Na(v)) that are assembled from an ion conducting α-subunit and often auxiliary β-subunits. The α-subunit isoform Na(v)1.3 occurs in peripheral neurons together with the Na(v) β3-subunit, both of which are coordinately up-regulated in rat dorsal root ganglion neurons after nerve injury. Here we examine the effect of the β3-subunit on the gating behavior of Na(v)1.3 using whole cell patch clamp electrophysiology in HEK-293 cells. We show that β3 depolarizes the voltage sensitivity of Na(v)1.3 activation and inactivation and induces biphasic components of the inactivation curve. We detect both a fast and a novel slower component of inactivation, and we show that the β3-subunit increases the fraction of channels inactivating by the slower component. Using CD and NMR spectroscopy, we report the first structural analysis of the intracellular domain of any Na(v) β-subunit. We infer the presence of a region within the β3-subunit intracellular domain that has a propensity to form a short amphipathic α-helix followed by a structurally disordered sequence, and we demonstrate a role for both of these regions in the selective stabilization of fast inactivation. The complex gating behavior induced by β3 may contribute to the known hyperexcitability of peripheral neurons under those physiological conditions where expression of β3 and Na(v)1.3 are both enhanced.
Collapse
Affiliation(s)
- Fiona S Cusdin
- From the Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW; GlaxoSmithKline, Stevenage SG1 2NY, United Kingdom
| | - Daniel Nietlispach
- From the Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW
| | - Joseph Maman
- From the Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW
| | | | | | | | - Antony P Jackson
- From the Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW.
| |
Collapse
|
41
|
Roura-Ferrer M, Solé L, Oliveras A, Dahan R, Bielanska J, Villarroel A, Comes N, Felipe A. Impact of KCNE subunits on KCNQ1 (Kv7.1) channel membrane surface targeting. J Cell Physiol 2010; 225:692-700. [PMID: 20533308 DOI: 10.1002/jcp.22265] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The KCNQ1 (Kv7.1) channel plays an important role in cardiovascular physiology. Cardiomyocytes co-express KCNQ1 with KCNE1-5 proteins. KCNQ1 may co-associate with multiple KCNE regulatory subunits to generate different biophysically and pharmacologically distinct channels. Increasing evidence indicates that the location and targeting of channels are important determinants of their function. In this context, the presence of K(+) channels in sphingolipid-cholesterol-enriched membrane microdomains (lipid rafts) is under investigation. Lipid rafts are important for cardiovascular functioning. We aimed to determine whether KCNE subunits modify the localization and targeting of KCNQ1 channels in lipid rafts microdomains. HEK-293 cells were transiently transfected with KCNQ1 and KCNE1-5, and their traffic and presence in lipid rafts were analyzed. Only KCNQ1 and KCNE3, when expressed alone, co-localized in raft fractions. In addition, while KCNE2 and KCNE5 notably stained the cell surface, KCNQ1 and the rest of the KCNEs showed strong intracellular retention. KCNQ1 targets multiple membrane surface microdomains upon association with KCNE peptides. Thus, while KCNQ1/KCNE1 and KCNQ1/KCNE2 channels target lipid rafts, KCNQ1 associated with KCNE3-5 did not. Channel membrane dynamics, analyzed by fluorescence recovery after photobleaching (FRAP) experiments, further supported these results. In conclusion, the trafficking and targeting pattern of KCNQ1 can be influenced by its association with KCNEs. Since KCNQ1 is crucial for cardiovascular physiology, the temporal and spatial regulations that different KCNE subunits may confer to the channels could have a dramatic impact on membrane electrical activity and putative endocrine regulation.
Collapse
Affiliation(s)
- Meritxell Roura-Ferrer
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Li Q, Su YY, Wang H, Li L, Wang Q, Bao L. Transmembrane segments prevent surface expression of sodium channel Nav1.8 and promote calnexin-dependent channel degradation. J Biol Chem 2010; 285:32977-32987. [PMID: 20720009 DOI: 10.1074/jbc.m110.143024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The voltage-gated sodium channel (Na(v)) 1.8 contributes substantially to the rising phase of action potential in small dorsal root ganglion neurons. Na(v)1.8 is majorly localized intracellularly and its expression on the plasma membrane is regulated by exit from the endoplasmic reticulum (ER). Previous work has identified an ER-retention/retrieval motif in the first intracellular loop of Na(v)1.8, which prevents its surface expression. Here we report that the transmembrane segments of Na(v)1.8 also cause this channel retained in the ER. Using transferrin receptor and CD8α as model molecules, immunocytochemistry showed that the first, second, and third transmembrane segments in each domain of Na(v)1.8 reduced their surface expression. Alanine-scanning analysis revealed acidic amino acids as critical factors in the odd transmembrane segments. Furthermore, co-immunoprecipitation experiments showed that calnexin interacted with acidic amino acid-containing sequences through its transmembrane segment. Overexpression of calnexin resulted in increased degradation of those proteins through the ER-associated degradation pathway, whereas down-regulation of calnexin reversed the phenotype. Thus our results reveal a critical role and mechanism of transmembrane segments in surface expression and degradation of Na(v)1.8.
Collapse
Affiliation(s)
- Qian Li
- From the Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuan-Yuan Su
- From the Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hao Wang
- From the Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Li
- From the Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiong Wang
- From the Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lan Bao
- From the Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
43
|
Fraser SP, Ozerlat-Gunduz I, Onkal R, Diss JKJ, Latchman DS, Djamgoz MBA. Estrogen and non-genomic upregulation of voltage-gated Na(+) channel activity in MDA-MB-231 human breast cancer cells: role in adhesion. J Cell Physiol 2010; 224:527-39. [PMID: 20432453 DOI: 10.1002/jcp.22154] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
External (but not internal) application of beta-estradiol (E2) increased the current amplitude of voltage-gated Na(+) channels (VGSCs) in MDA-MB-231 human breast cancer (BCa) cells. The G-protein activator GTP-gamma-S, by itself, also increased the VGSC current whilst the G-protein inhibitor GDP-beta-S decreased the effect of E2. Expression of GPR30 (a G-protein-coupled estrogen receptor) in MDA-MB-231 cells was confirmed by PCR, Western blot and immunocytochemistry. Importantly, G-1, a specific agonist for GPR30, also increased the VGSC current amplitude in a dose-dependent manner. Transfection and siRNA-silencing of GPR30 expression resulted in corresponding changes in GPR30 protein expression but only internally, and the response to E2 was not affected. The protein kinase A inhibitor, PKI, abolished the effect of E2, whilst forskolin, an adenylate cyclase activator, by itself, increased VGSC activity. On the other hand, pre-incubation of the MDA-MB-231 cells with brefeldin A (a trans-Golgi protein trafficking inhibitor) had no effect on the E2-induced increase in VGSC amplitude, indicating that such trafficking ('externalisation') of VGSC was not involved. Finally, acute application of E2 decreased cell adhesion whilst the specific VGSC blocker tetrodotoxin increased it. Co-application of E2 and tetrodotoxin inhibited the effect of E2 on cell adhesion, suggesting that the effect of E2 was mainly through VGSC activity. Pre-treatment of the cells with PKI abolished the effect of E2 on adhesion, consistent with the proposed role of PKA. Potential implications of the E2-induced non-genomic upregulation of VGSC activity for BCa progression are discussed.
Collapse
Affiliation(s)
- Scott P Fraser
- Division of Cell and Molecular Biology, Neuroscience Solutions to Cancer Research Group, Imperial College London, South Kensington Campus, London, UK.
| | | | | | | | | | | |
Collapse
|
44
|
Smyth JW, Shaw RM. Forward trafficking of ion channels: what the clinician needs to know. Heart Rhythm 2010; 7:1135-40. [PMID: 20621620 DOI: 10.1016/j.hrthm.2010.05.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 05/20/2010] [Indexed: 11/25/2022]
Abstract
Each heartbeat requires precisely orchestrated action potential propagation through the myocardium, achieved by coordination of about a million ion channels on the surface of each cardiomyocyte. Specific ion channels must occur within discrete subdomains of the sarcolemma to exert their electrophysiological effects with highest efficiency (e.g., voltage-gated Ca(2+) channels at T-tubules and gap junctions at intercalated discs). Regulation of ion channel movement to their appropriate membrane subdomain is an exciting research frontier with opportunity for novel therapeutic manipulation of ion channels in the treatment of heart disease. Although much research has generally focused on internalization and subsequent degradation of ion channels, the field of forward trafficking of de novo ion channels from the cell interior to the sarcolemma has now emerged as a key regulatory step in cardiac electrophysiological function. In this brief review, we provide an overview of the current understanding of the cellular biology governing the forward trafficking of ion channels.
Collapse
Affiliation(s)
- James W Smyth
- Cardiovascular Research Institute and Department of Medicine, University of California San Francisco, San Francisco, California, USA.
| | | |
Collapse
|
45
|
Perisomatic voltage-gated sodium channels actively maintain linear synaptic integration in principal neurons of the medial superior olive. J Neurosci 2010; 30:2039-50. [PMID: 20147532 DOI: 10.1523/jneurosci.2385-09.2010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Principal neurons of the medial superior olive (MSO) compute azimuthal sound location by integrating phase-locked inputs from each ear. While previous experimental and modeling studies have proposed that voltage-gated sodium channels (VGSCs) play an important role in synaptic integration in the MSO, these studies appear at odds with the unusually weak active backpropagation of action potentials into the soma and dendrites. To understand the spatial localization and biophysical properties of VGSCs, we isolated sodium currents in MSO principal neurons in gerbil brainstem slices. Nucleated and cell-attached patches revealed that VGSC density at the soma is comparable to that of many other neuron types, but channel expression is largely absent from the dendrites. Further, while somatic VGSCs activated with conventional voltage dependence (V(1/2) = -30 mV), they exhibited an unusually negative range of steady-state inactivation (V(1/2) = -77 mV), leaving approximately 92% of VGSCs inactivated at the resting potential (approximately -58 mV). In current-clamp experiments, non-inactivated VGSCs were sufficient to amplify subthreshold EPSPs near action potential threshold, counterbalancing the suppression of EPSP peaks by low voltage-activated potassium channels. EPSP amplification was restricted to the perisomatic region of the neuron, and relatively insensitive to preceding inhibition. Finally, computational modeling showed that the exclusion of VGSCs from the dendrites equalizes somatic EPSP amplification across synaptic locations and lowered the threshold for bilateral versus unilateral excitatory synaptic inputs. Together, these findings suggest that the pattern of sodium channel expression in MSO neurons contributes to these neurons' selectivity for coincident binaural inputs.
Collapse
|
46
|
Onkal R, Djamgoz MB. Molecular pharmacology of voltage-gated sodium channel expression in metastatic disease: Clinical potential of neonatal Nav1.5 in breast cancer. Eur J Pharmacol 2009; 625:206-19. [DOI: 10.1016/j.ejphar.2009.08.040] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 08/04/2009] [Accepted: 08/19/2009] [Indexed: 10/20/2022]
|
47
|
Abstract
Voltage-gated sodium channels are key to the initiation and propagation of action potentials in electrically excitable cells. Molecular characterization has shown there to be nine functional members of the family, with a high degree of sequence homology between the channels. This homology translates into similar biophysical and pharmacological properties. Confidence in some of the channels as drug targets has been boosted by the discovery of human mutations in the genes encoding a number of them, which give rise to clinical conditions commensurate with the changes predicted from the altered channel biophysics. As a result, they have received much attention for their therapeutic potential. Sodium channels represent well-precedented drug targets as antidysrhythmics, anticonvulsants and local anaesthetics provide good clinical efficacy, driven through pharmacology at these channels. However, electrophysiological characterization of clinically useful compounds in recombinant expression systems shows them to be weak, with poor selectivity between channel types. This has led to the search for subtype-selective modulators, which offer the promise of treatments with improved clinical efficacy and better toleration. Despite developments in high-throughput electrophysiology platforms, this has proven very challenging. Structural biology is beginning to offer us a greater understanding of the three-dimensional structure of voltage-gated ion channels, bringing with it the opportunity to do real structure-based drug design in the future. This discipline is still in its infancy, but developments with the expression and purification of prokaryotic sodium channels offer the promise of structure-based drug design in the not too distant future.
Collapse
Affiliation(s)
- Steve England
- Pfizer Global Research and Development, Sandwich Laboratories, Kent, UK.
| | | |
Collapse
|
48
|
Merrick EC, Kalmar CL, Snyder SL, Cusdin FS, Yu EJ, Sando JJ, Isakson BE, Jackson AP, Patel MK. The importance of serine 161 in the sodium channel beta3 subunit for modulation of Na(V)1.2 gating. Pflugers Arch 2009; 460:743-53. [PMID: 19806359 DOI: 10.1007/s00424-009-0739-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 09/03/2009] [Accepted: 09/20/2009] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium (Na) channels contribute to the regulation of cellular excitability due to their role in the generation and propagation of action potentials. They are composed of a pore-forming alpha subunit and are modulated by at least two of four distinct beta subunits (beta1-4). Recent studies have implicated a role for the intracellular domain of beta subunits in modulating Na channel gating and trafficking. In beta3, the intracellular domain contains a serine residue at position 161 that is replaced by an alanine in beta1. In this study, we have probed the functional importance of beta3S161 for modulating Na channel gating. Wild-type beta3 and point mutations beta3S161A or beta3S161E were individually co-expressed in HEK 293 cells stably expressing human Na(v)1.2. WTbeta3 expression increased Na current density, shifted steady-state inactivation in a depolarized direction, and accelerated the kinetics of recovery from inactivation of the Na current. Analogous effects were observed with beta3S161E co-expression. In contrast, beta3S161A abolished the shifts in steady-state inactivation and recovery from inactivation of the Na current, but did increase Na current density. Immunocytochemistry and Western blot experiments demonstrate membrane expression of WTbeta3, beta3S161E, and beta3S161A, suggesting that the differences in Na channel gating were not due to disruptions in beta subunit trafficking. These studies suggest that modification of beta3S161 may be important in modulating Na-channel gating.
Collapse
Affiliation(s)
- Ellen C Merrick
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, 22908-0710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Eric S. Fortune
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Maurice J. Chacron
- Department of Physiology, Center for Nonlinear Dynamics, McGill University, Montreal, Canada
- Department of Physics, McGill University, Montreal, Canada
- * E-mail:
| |
Collapse
|
50
|
Markham MR, McAnelly ML, Stoddard PK, Zakon HH. Circadian and social cues regulate ion channel trafficking. PLoS Biol 2009; 7:e1000203. [PMID: 19787026 PMCID: PMC2741594 DOI: 10.1371/journal.pbio.1000203] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 08/13/2009] [Indexed: 12/25/2022] Open
Abstract
Electric fish strengthen their communication signals nightly and during social encounters by rapidly trafficking ion channels into cell membranes, demonstrating a direct relationship between environmental stimuli, channel trafficking, and behavior. Electric fish generate and sense electric fields for navigation and communication. These signals can be energetically costly to produce and can attract electroreceptive predators. To minimize costs, some nocturnally active electric fish rapidly boost the power of their signals only at times of high social activity, either as night approaches or in response to social encounters. Here we show that the gymnotiform electric fish Sternopygus macrurus rapidly boosts signal amplitude by 40% at night and during social encounters. S. macrurus increases signal magnitude through the rapid and selective trafficking of voltage-gated sodium channels into the excitable membranes of its electrogenic cells, a process under the control of pituitary peptide hormones and intracellular second-messenger pathways. S. macrurus thus maintains a circadian rhythm in signal amplitude and adapts within minutes to environmental events by increasing signal amplitude through the rapid trafficking of ion channels, a process that directly modifies an ongoing behavior in real time. Excitable cells, such as neurons and muscle cells, control behavior by generating action potentials, electrical signals that propagate along the cell membrane. Action potentials are generated when the cell allows charged molecules (ions) such as sodium and potassium to move across the membrane through specialized proteins called ion channels. By changing the number of ion channels in the plasma membrane, excitable cells can rapidly remodel their functional characteristics, potentially causing changes in behavior. To gain an understanding of how environmental events cause the remodeling of excitable cell membranes and the resulting behavioral adaptations, we studied the electric communication/navigation signals of an electric fish, Sternopygus macrurus. High amplitude signals facilitate communication and electrolocation, but are energetically costly and more detectable by those predators that can detect electrical signals. We found that Sternopygus increase signal amplitude at night, when they are active, and increase signal amplitude rapidly during social encounters. Electrocytes, the cells that produce the signal, rapidly boost the signal amplitude when they allow more sodium to cross the cell membrane, thereby generating larger action potentials. To increase sodium currents during the action potential, electrocytes rapidly insert additional sodium channels into the cell membrane in response to hormones released into circulation by the pituitary. By adding new ion channels to the electrocyte membrane only during periods of activity or social encounters and removing these channels during inactive periods, these animals can save energy and reduce predation risks associated with communication.
Collapse
Affiliation(s)
- Michael R Markham
- Section of Neurobiology, Patterson Laboratory, The University of Texas at Austin, Austin, Texas, United States of America.
| | | | | | | |
Collapse
|