1
|
Wang H, Li Q, Yuan YC, Han XC, Cao YT, Yang JK. KCNH6 channel promotes insulin exocytosis via interaction with Munc18-1 independent of electrophysiological processes. Cell Mol Life Sci 2024; 81:86. [PMID: 38349432 PMCID: PMC10864572 DOI: 10.1007/s00018-024-05134-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/23/2023] [Accepted: 01/19/2024] [Indexed: 02/15/2024]
Abstract
Glucose-stimulated insulin secretion (GSIS) in pancreatic islet β-cells primarily relies on electrophysiological processes. Previous research highlighted the regulatory role of KCNH6, a member of the Kv channel family, in governing GSIS through its influence on β-cell electrophysiology. In this study, we unveil a novel facet of KCNH6's function concerning insulin granule exocytosis, independent of its conventional electrical role. Young mice with β-cell-specific KCNH6 knockout (βKO) exhibited impaired glucose tolerance and reduced insulin secretion, a phenomenon not explained by electrophysiological processes alone. Consistently, islets from KCNH6-βKO mice exhibited reduced insulin secretion, conversely, the overexpression of KCNH6 in murine pancreatic islets significantly enhanced insulin release. Moreover, insulin granules lacking KCNH6 demonstrated compromised docking capabilities and a reduced fusion response upon glucose stimulation. Crucially, our investigation unveiled a significant interaction between KCNH6 and the SNARE protein regulator, Munc18-1, a key mediator of insulin granule exocytosis. These findings underscore the critical role of KCNH6 in the regulation of insulin secretion through its interaction with Munc18-1, providing a promising and novel avenue for enhancing our understanding of the Kv channel in diabetes mechanisms.
Collapse
Affiliation(s)
- Hao Wang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China.
| | - Qi Li
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Ying-Chao Yuan
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xue-Chun Han
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yong-Ting Cao
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- Department of Endocrinology, Beijing Mentougou District Hospital, Beijing, 102399, China
| | - Jin-Kui Yang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
2
|
Chon NL, Tran S, Miller CS, Lin H, Knight JD. A conserved electrostatic membrane-binding surface in synaptotagmin-like proteins revealed using molecular phylogenetic analysis and homology modeling. Protein Sci 2024; 33:e4850. [PMID: 38038838 PMCID: PMC10731544 DOI: 10.1002/pro.4850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/29/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Protein structure prediction has emerged as a core technology for understanding biomolecules and their interactions. Here, we combine homology-based structure prediction with molecular phylogenetic analysis to study the evolution of electrostatic membrane binding among the vertebrate synaptotagmin-like protein (Slp) family. Slp family proteins play key roles in the membrane trafficking of large dense-core secretory vesicles. Our previous experimental and computational study found that the C2A domain of Slp-4 (also called granuphilin) binds with high affinity to anionic phospholipids in the cytoplasmic leaflet of the plasma membrane through a large positively charged protein surface centered on a cluster of phosphoinositide-binding lysine residues. Because this surface contributes greatly to Slp-4 C2A domain membrane binding, we hypothesized that the net charge on the surface might be evolutionarily conserved. To test this hypothesis, the known C2A sequences of Slp-4 among vertebrates were organized by class (from mammalia to pisces) using molecular phylogenetic analysis. Consensus sequences for each class were then identified and used to generate homology structures, from which Poisson-Boltzmann electrostatic potentials were calculated. For comparison, homology structures and electrostatic potentials were also calculated for the five human Slp protein family members. The results demonstrate that the charge on the membrane-binding surface is highly conserved throughout the evolution of Slp-4, and more highly conserved than many individual residues among the human Slp family paralogs. Such molecular phylogenetic-driven computational analysis can help to describe the evolution of electrostatic interactions between proteins and membranes which are crucial for their function.
Collapse
Affiliation(s)
- Nara L. Chon
- Department of ChemistryUniversity of Colorado DenverDenverColoradoUSA
| | - Sherleen Tran
- Department of ChemistryUniversity of Colorado DenverDenverColoradoUSA
| | | | - Hai Lin
- Department of ChemistryUniversity of Colorado DenverDenverColoradoUSA
| | | |
Collapse
|
3
|
Chon NL, Tran S, Miller CS, Lin H, Knight JD. A Conserved Electrostatic Membrane-Binding Surface in Synaptotagmin-Like Proteins Revealed Using Molecular Phylogenetic Analysis and Homology Modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548768. [PMID: 37502952 PMCID: PMC10369986 DOI: 10.1101/2023.07.13.548768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Protein structure prediction has emerged as a core technology for understanding biomolecules and their interactions. Here, we combine homology-based structure prediction with molecular phylogenetic analysis to study the evolution of electrostatic membrane binding among vertebrate synaptotagmin-like proteins (Slps). Slp family proteins play key roles in the membrane trafficking of large dense-core secretory vesicles. Our previous experimental and computational study found that the C2A domain of Slp-4 (also called granuphilin) binds with high affinity to anionic phospholipids in the cytoplasmic leaflet of the plasma membrane through a large positively charged protein surface centered on a cluster of phosphoinositide-binding lysine residues. Because this surface contributes greatly to Slp-4 C2A domain membrane binding, we hypothesized that the net charge on the surface might be evolutionarily conserved. To test this hypothesis, the known C2A sequences of Slp-4 among vertebrates were organized by class (from mammalia to pisces) using molecular phylogenetic analysis. Consensus sequences for each class were then identified and used to generate homology structures, from which Poisson-Boltzmann electrostatic potentials were calculated. For comparison, homology structures and electrostatic potentials were also calculated for the five human Slp protein family members. The results demonstrate that the charge on the membrane-binding surface is highly conserved throughout the evolution of Slp-4, and more highly conserved than many individual residues among the human Slp family paralogs. Such molecular phylogenetic-driven computational analysis can help to describe the evolution of electrostatic interactions between proteins and membranes which are crucial for their function.
Collapse
Affiliation(s)
- Nara L. Chon
- Department of Chemistry, University of Colorado Denver
| | - Sherleen Tran
- Department of Chemistry, University of Colorado Denver
| | | | - Hai Lin
- Department of Chemistry, University of Colorado Denver
| | | |
Collapse
|
4
|
Nagao M, Lagerstedt JO, Eliasson L. Secretory granule exocytosis and its amplification by cAMP in pancreatic β-cells. Diabetol Int 2022; 13:471-479. [PMID: 35694000 PMCID: PMC9174382 DOI: 10.1007/s13340-022-00580-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
Abstract
The sequence of events for secreting insulin in response to glucose in pancreatic β-cells is termed "stimulus-secretion coupling". The core of stimulus-secretion coupling is a process which generates electrical activity in response to glucose uptake and causes Ca2+ oscillation for triggering exocytosis of insulin-containing secretory granules. Prior to exocytosis, the secretory granules are mobilized and docked to the plasma membrane and primed for fusion with the plasma membrane. Together with the final fusion with the plasma membrane, these steps are named the exocytosis process of insulin secretion. The steps involved in the exocytosis process are crucial for insulin release from β-cells and considered indispensable for glucose homeostasis. We recently confirmed a signature of defective exocytosis process in human islets and β-cells of obese donors with type 2 diabetes (T2D). Furthermore, cyclic AMP (cAMP) potentiates glucose-stimulated insulin secretion through mechanisms including accelerating the exocytosis process. In this mini-review, we aimed to organize essential knowledge of the secretory granule exocytosis and its amplification by cAMP. Then, we suggest the fatty acid translocase CD36 as a predisposition in β-cells for causing defective exocytosis, which is considered a pathogenesis of T2D in relation to obesity. Finally, we propose potential therapeutics of the defective exocytosis based on a CD36-neutralizing antibody and on Apolipoprotein A-I (ApoA-I), for improving β-cell function in T2D.
Collapse
Affiliation(s)
- Mototsugu Nagao
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603 Japan
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, CRC 91-11, Jan Waldenströms Gata 35, 214 28 Malmö, Sweden
| | - Jens O. Lagerstedt
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, CRC 91-11, Jan Waldenströms Gata 35, 214 28 Malmö, Sweden
- Novo Nordisk A/S, Copenhagen, Denmark
| | - Lena Eliasson
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, CRC 91-11, Jan Waldenströms Gata 35, 214 28 Malmö, Sweden
| |
Collapse
|
5
|
Munc18-dependent and -independent clustering of syntaxin in the plasma membrane of cultured endocrine cells. Proc Natl Acad Sci U S A 2021; 118:2025748118. [PMID: 34857632 DOI: 10.1073/pnas.2025748118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 11/18/2022] Open
Abstract
Syntaxin helps in catalyzing membrane fusion during exocytosis. It also forms clusters in the plasma membrane, where both its transmembrane and SNARE domains are thought to homo-oligomerize. To study syntaxin clustering in live PC12 cells, we labeled granules with neuropeptide-Y-mCherry and syntaxin clusters with syntaxin-1a green fluorescent protein (GFP). Abundant clusters appeared under total internal reflection (TIRF) illumination, and some of them associated with granules ("on-granule clusters"). Syntaxin-1a-GFP or its mutants were expressed at low levels and competed with an excess of endogenous syntaxin for inclusion into clusters. On-granule inclusion was diminished by mutations known to inhibit binding to Munc18-1 in vitro. Knock-down of Munc18-1 revealed Munc18-dependent and -independent on-granule clustering. Clustering was inhibited by mutations expected to break salt bridges between syntaxin's Hb and SNARE domains and was rescued by additional mutations expected to restore them. Most likely, syntaxin is in a closed conformation when it clusters on granules, and its SNARE and Hb domains approach to within atomic distances. Pairwise replacements of Munc18-contacting residues with alanines had only modest effects, except that the pair R114A/I115A essentially abolished on-granule clustering. In summary, an on-granule cluster arises from the specific interaction between a granule and a dense cluster of syntaxin-Munc18-1 complexes. Off-granule clusters, by contrast, were resistant to even the strongest mutations we tried and required neither Munc18-1 nor the presence of a SNARE domain. They may well form through the nonstoichiometric interactions with membrane lipids that others have observed in cell-free systems.
Collapse
|
6
|
Yau B, Hocking S, Andrikopoulos S, Kebede MA. Targeting the insulin granule for modulation of insulin exocytosis. Biochem Pharmacol 2021; 194:114821. [PMID: 34748819 DOI: 10.1016/j.bcp.2021.114821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023]
Abstract
The pancreatic β-cells control insulin secretion in the body to regulate glucose homeostasis, and β-cell stress and dysfunction is characteristic of Type 2 Diabetes. Pharmacological targeting of the β-cell to increase insulin secretion is typically utilised, however, extended use of common drugs such as sulfonylureas are known to result in secondary failure. Moreover, there is evidence they may induce β-cell failure in the long term. Within β-cells, insulin secretory granules (ISG) serve as compartments to store, process and traffic insulin for exocytosis. There is now growing evidence that ISG exist in multiple populations, distinct in their protein composition, motility, age, and capacity for secretion. In this review, we discuss the implications of a heterogenous ISG population in β-cells and highlight the need for more understanding into how unique ISG populations may be targeted in anti-diabetic therapies.
Collapse
Affiliation(s)
- Belinda Yau
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia.
| | - Samantha Hocking
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia; Central Clinical School, Faculty of Medicine and Health and Department of Endocrinology Royal Prince Alfred Hospital, NSW, Australia
| | | | - Melkam A Kebede
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
7
|
Liu X, Sun P, Yuan Q, Xie J, Xiao T, Zhang K, Chen X, Wang Y, Yuan L, Han X. Specific Deletion of CASK in Pancreatic β Cells Affects Glucose Homeostasis and Improves Insulin Sensitivity in Obese Mice by Reducing Hyperinsulinemia Running Title: β Cell CASK Deletion Reduces Hyperinsulinemia. Diabetes 2021; 71:db201208. [PMID: 34957476 DOI: 10.2337/db20-1208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022]
Abstract
Calcium/calmodulin-dependent serine protein kinase (CASK) is involved in the secretion of insulin vesicles in pancreatic β-cells. The present study revealed a new in vivo role of CASK in glucose homeostasis during the progression of type 2 diabetes mellitus (T2DM). A Cre-loxP system was used to specifically delete the Cask gene in mouse β-cells (βCASKKO), and the glucose metabolism was evaluated in βCASKKO mice fed a normal chow diet (ND) or a high-fat diet (HFD). ND-fed mice exhibited impaired insulin secretion in response to glucose stimulation. Transmission electron microscopy showed significantly reduced numbers of insulin granules at or near the cell membrane in the islets of βCASKKO mice. By contrast, HFD-fed βCASKKO mice showed reduced blood glucose and a partial relief of hyperinsulinemia and insulin resistance when compared to HFD-fed wildtype mice. The IRS1/PI3K/AKT signaling pathway was upregulated in the adipose tissue of HFD-βCASKKO mice. These results indicated that knockout of the Cask gene in β cells had a diverse effect on glucose homeostasis: reduced insulin secretion in ND-fed mice, but improves insulin sensitivity in HFD-fed mice. Therefore, CASK appears to function in the insulin secretion and contributes to hyperinsulinemia and insulin resistance during the development of obesity-related T2DM.
Collapse
Affiliation(s)
- Xingjing Liu
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing 210009, China
| | - Peng Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China
| | - Qingzhao Yuan
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing 210009, China
| | - Jinyang Xie
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing 210009, China
| | - Ting Xiao
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing 210009, China
| | - Kai Zhang
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing 210009, China
| | - Xiu Chen
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing 210009, China
| | - Yao Wang
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing 210009, China
| | - Li Yuan
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Chatterjee Bhowmick D, Ahn M, Oh E, Veluthakal R, Thurmond DC. Conventional and Unconventional Mechanisms by which Exocytosis Proteins Oversee β-cell Function and Protection. Int J Mol Sci 2021; 22:1833. [PMID: 33673206 PMCID: PMC7918544 DOI: 10.3390/ijms22041833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes (T2D) is one of the prominent causes of morbidity and mortality in the United States and beyond, reaching global pandemic proportions. One hallmark of T2D is dysfunctional glucose-stimulated insulin secretion from the pancreatic β-cell. Insulin is secreted via the recruitment of insulin secretory granules to the plasma membrane, where the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and SNARE regulators work together to dock the secretory granules and release insulin into the circulation. SNARE proteins and their regulators include the Syntaxins, SNAPs, Sec1/Munc18, VAMPs, and double C2-domain proteins. Recent studies using genomics, proteomics, and biochemical approaches have linked deficiencies of exocytosis proteins with the onset and progression of T2D. Promising results are also emerging wherein restoration or enhancement of certain exocytosis proteins to β-cells improves whole-body glucose homeostasis, enhances β-cell function, and surprisingly, protection of β-cell mass. Intriguingly, overexpression and knockout studies have revealed novel functions of certain exocytosis proteins, like Syntaxin 4, suggesting that exocytosis proteins can impact a variety of pathways, including inflammatory signaling and aging. In this review, we present the conventional and unconventional functions of β-cell exocytosis proteins in normal physiology and T2D and describe how these insights might improve clinical care for T2D.
Collapse
Affiliation(s)
| | | | | | | | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (D.C.B.); (M.A.); (E.O.); (R.V.)
| |
Collapse
|
9
|
Bowling FZ, Frohman MA, Airola MV. Structure and regulation of human phospholipase D. Adv Biol Regul 2021; 79:100783. [PMID: 33495125 DOI: 10.1016/j.jbior.2020.100783] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
Mammalian phospholipase D (PLD) generates phosphatidic acid, a dynamic lipid secondary messenger involved with a broad spectrum of cellular functions including but not limited to metabolism, migration, and exocytosis. As a promising pharmaceutical target, the biochemical properties of PLD have been well characterized. This has led to the recent crystal structures of human PLD1 and PLD2, the development of PLD specific pharmacological inhibitors, and the identification of cellular regulators of PLD. In this review, we discuss the PLD1 and PLD2 structures, PLD inhibition by small molecules, and the regulation of PLD activity by effector proteins and lipids.
Collapse
Affiliation(s)
- Forrest Z Bowling
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Michael A Frohman
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Michael V Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
10
|
Lee YI, Kim YG, Pyeon HJ, Ahn JC, Logan S, Orock A, Joo KM, Lőrincz A, Deák F. Dysregulation of the SNARE-binding protein Munc18-1 impairs BDNF secretion and synaptic neurotransmission: a novel interventional target to protect the aging brain. GeroScience 2019; 41:109-123. [PMID: 31041658 PMCID: PMC6544690 DOI: 10.1007/s11357-019-00067-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/15/2019] [Indexed: 12/19/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has a central role in maintaining and strengthening neuronal connections and to stimulate neurogenesis in the adult brain. Decreased levels of BDNF in the aging brain are thought to usher cognitive impairment. BDNF is stored in dense core vesicles and released through exocytosis from the neurites. The exact mechanism for the regulation of BDNF secretion is not well understood. Munc18-1 (STXBP1) was found to be essential for the exocytosis of synaptic vesicles, but its involvement in BDNF secretion is not known. Interestingly, neurons lacking munc18-1 undergo severe degeneration in knock-out mice. Here, we report the effects of BDNF treatment on the presynaptic terminal using munc18-1-deficient neurons. Reduced expression of munc18-1 in heterozygous (+/-) neurons diminishes synaptic transmitter release, as tested here on individual synaptic connections with FM1-43 fluorescence imaging. Transduction of cultured neurons with BDNF markedly increased BDNF secretion in wild-type but was less effective in munc18-1 +/- cells. In turn, BDNF enhanced synaptic functions and restored the severe synaptic dysfunction induced by munc18-1 deficiency. The role of munc18-1 in the synaptic effect of BDNF is highlighted by the finding that BDNF upregulated the expression of munc18-1 in neurons, consistent with enhanced synaptic functions. Accordingly, this is the first evidence showing the functional effect of BDNF in munc18-1 deficient synapses and about the direct role of munc18-1 in the regulation of BDNF secretion. We propose a molecular model of BDNF secretion and discuss its potential as therapeutic target to prevent cognitive decline in the elderly.
Collapse
Affiliation(s)
- Young Il Lee
- Department of Anatomy, College of Medicine, Dankook University, Cheonan, 330-714, South Korea
| | - Yun Gi Kim
- Department of Anatomy, College of Medicine, Dankook University, Cheonan, 330-714, South Korea
- Department of Nanobiomedical Science and WCU Research Center, Dankook University, Cheonan, 330-714, South Korea
| | - Hee Jang Pyeon
- Department of Nanobiomedical Science and WCU Research Center, Dankook University, Cheonan, 330-714, South Korea
- Department of Anatomy and Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jin Chul Ahn
- Department of Biomedical Science, Dankook University, Cheonan, 330-714, South Korea
- Biomedical Translational Research Institute, Dankook University, Cheonan, 330-714, South Korea
| | - Sreemathi Logan
- Departments of Geriatric Medicine and Physiology, University Oklahoma HSC, Oklahoma City, OK, USA
- Reynolds Oklahoma Center on Aging, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, Oklahoma City, OK, USA
| | - Albert Orock
- Departments of Geriatric Medicine and Physiology, University Oklahoma HSC, Oklahoma City, OK, USA
- Reynolds Oklahoma Center on Aging, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, Oklahoma City, OK, USA
| | - Kyeung Min Joo
- Department of Anatomy and Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Andrea Lőrincz
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Florida State College at Jacksonville, 4500 Capper Rd, Jacksonville, FL, 32218, USA
| | - Ferenc Deák
- Departments of Geriatric Medicine and Physiology, University Oklahoma HSC, Oklahoma City, OK, USA.
- Reynolds Oklahoma Center on Aging, Oklahoma City, OK, USA.
- Oklahoma Center for Neuroscience, Oklahoma City, OK, USA.
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma HSC, 975 N. E. 10th Street/SLY-BRC 1309-B, Oklahoma City, OK, 73104-5419, USA.
| |
Collapse
|
11
|
Salunkhe VA, Ofori JK, Gandasi NR, Salö SA, Hansson S, Andersson ME, Wendt A, Barg S, Esguerra JLS, Eliasson L. MiR-335 overexpression impairs insulin secretion through defective priming of insulin vesicles. Physiol Rep 2018; 5:5/21/e13493. [PMID: 29122960 PMCID: PMC5688784 DOI: 10.14814/phy2.13493] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs contribute to the maintenance of optimal cellular functions by fine‐tuning protein expression levels. In the pancreatic β‐cells, imbalances in the exocytotic machinery components lead to impaired insulin secretion and type 2 diabetes (T2D). We hypothesize that dysregulated miRNA expression exacerbates β‐cell dysfunction, and have earlier shown that islets from the diabetic GK‐rat model have increased expression of miRNAs, including miR‐335‐5p (miR‐335). Here, we aim to determine the specific role of miR‐335 during development of T2D, and the influence of this miRNA on glucose‐stimulated insulin secretion and Ca2+‐dependent exocytosis. We found that the expression of miR‐335 negatively correlated with secretion index in human islets of individuals with prediabetes. Overexpression of miR‐335 in human EndoC‐βH1 and in rat INS‐1 832/13 cells (OE335) resulted in decreased glucose‐stimulated insulin secretion, and OE335 cells showed concomitant reduction in three exocytotic proteins: SNAP25, Syntaxin‐binding protein 1 (STXBP1), and synaptotagmin 11 (SYT11). Single‐cell capacitance measurements, complemented with TIRF microscopy of the granule marker NPY‐mEGFP demonstrated a significant reduction in exocytosis in OE335 cells. The reduction was not associated with defective docking or decreased Ca2+ current. More likely, it is a direct consequence of impaired priming of already docked granules. Earlier reports have proposed reduced granular priming as the cause of reduced first‐phase insulin secretion during prediabetes. Here, we show a specific role of miR‐335 in regulating insulin secretion during this transition period. Moreover, we can conclude that miR‐335 has the capacity to modulate insulin secretion and Ca2+‐dependent exocytosis through effects on granular priming.
Collapse
Affiliation(s)
- Vishal A Salunkhe
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| | - Jones K Ofori
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| | - Nikhil R Gandasi
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Sofia A Salö
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| | - Sofia Hansson
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| | - Markus E Andersson
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| | - Anna Wendt
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Jonathan L S Esguerra
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| | - Lena Eliasson
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| |
Collapse
|
12
|
Molecular regulation of insulin granule biogenesis and exocytosis. Biochem J 2017; 473:2737-56. [PMID: 27621482 DOI: 10.1042/bcj20160291] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/19/2016] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by hyperglycemia, insulin resistance and hyperinsulinemia in early disease stages but a relative insulin insufficiency in later stages. Insulin, a peptide hormone, is produced in and secreted from pancreatic β-cells following elevated blood glucose levels. Upon its release, insulin induces the removal of excessive exogenous glucose from the bloodstream primarily by stimulating glucose uptake into insulin-dependent tissues as well as promoting hepatic glycogenesis. Given the increasing prevalence of T2DM worldwide, elucidating the underlying mechanisms and identifying the various players involved in the synthesis and exocytosis of insulin from β-cells is of utmost importance. This review summarizes our current understanding of the route insulin takes through the cell after its synthesis in the endoplasmic reticulum as well as our knowledge of the highly elaborate network that controls insulin release from the β-cell. This network harbors potential targets for anti-diabetic drugs and is regulated by signaling cascades from several endocrine systems.
Collapse
|
13
|
Critical role of β1 integrin in postnatal beta-cell function and expansion. Oncotarget 2017; 8:62939-62952. [PMID: 28968961 PMCID: PMC5609893 DOI: 10.18632/oncotarget.17969] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/21/2017] [Indexed: 12/29/2022] Open
Abstract
β1 integrin is essential for pancreatic beta-cell development and maintenance in rodents and humans. However, the effects of a temporal beta-cell specific β1 integrin knockout on adult islet function are unknown. We utilized a mouse insulin 1 promoter driven tamoxifen-inducible Cre-recombinase β1 integrin knockout mouse model (MIPβ1KO) to investigate β1 integrin function in adult pancreatic beta-cells. Adult male MIPβ1KO mice were significantly glucose intolerant due to impaired glucose-stimulated insulin secretion in vivo and ex vivo at 8 weeks post-tamoxifen. The expression of Insulin and Pancreatic and duodenal homeobox-1 mRNA was significantly reduced in MIPβ1KO islets, along with reductions in insulin exocytotic proteins. Morphological analyses demonstrated that beta-cell mass, islet density, and the number of large-sized islets was significantly reduced in male MIPβ1KO mice. Significant reductions in the phosphorylation of signaling molecules focal adhesion kinase, extracellular signal-regulated kinases 1 and 2, and v-Akt murine thymoma viral oncogene were observed in male MIPβ1KO islets when compared to controls. MIPβ1KO islets displayed a significant increase in protein levels of the apoptotic marker cleaved-Poly (ADP-ribose) polymerase and a reduction of the cell cycle marker cyclin D1. Female MIPβ1KO mice did not develop glucose intolerance or reduced beta-cell mass until 16 weeks post-tamoxifen. Glucose intolerance remained in both genders of aged MIPβ1KO mice. This data demonstrates that β1 integrin is required for the maintenance of glucose homeostasis through postnatal beta-cell function and expansion.
Collapse
|
14
|
Shcherbina L, Edlund A, Esguerra JLS, Abels M, Zhou Y, Ottosson-Laakso E, Wollheim CB, Hansson O, Eliasson L, Wierup N. Endogenous beta-cell CART regulates insulin secretion and transcription of beta-cell genes. Mol Cell Endocrinol 2017; 447:52-60. [PMID: 28237718 DOI: 10.1016/j.mce.2017.02.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 01/20/2023]
Abstract
Impaired beta-cell function is key to the development of type 2 diabetes. Cocaine- and amphetamine-regulated transcript (CART) is an islet peptide with insulinotropic and glucagonostatic properties. Here we studied the role of endogenous CART in beta-cell function. CART silencing in INS-1 (832/13) beta-cells reduced insulin secretion and production, ATP levels and beta-cell exocytosis. This was substantiated by reduced expression of several exocytosis genes, as well as reduced expression of genes important for insulin secretion and processing. In addition, CART silencing reduced the expression of a network of transcription factors essential for beta-cell function. Moreover, in RNAseq data from human islet donors, CARTPT expression levels correlated with insulin, exocytosis genes and key beta-cell transcription factors. Thus, endogenous beta-cell CART regulates insulin expression and secretion in INS-1 (832/13) cells, via actions on the exocytotic machinery and a network of beta-cell transcription factors. We conclude that CART is important for maintaining the beta-cell phenotype.
Collapse
Affiliation(s)
- L Shcherbina
- Lund University Diabetes Centre, Skåne University Hospital, Jan Waldenströms Gata 35, 214 28 Malmö, Sweden
| | - A Edlund
- Lund University Diabetes Centre, Skåne University Hospital, Jan Waldenströms Gata 35, 214 28 Malmö, Sweden
| | - J L S Esguerra
- Lund University Diabetes Centre, Skåne University Hospital, Jan Waldenströms Gata 35, 214 28 Malmö, Sweden
| | - M Abels
- Lund University Diabetes Centre, Skåne University Hospital, Jan Waldenströms Gata 35, 214 28 Malmö, Sweden
| | - Y Zhou
- Lund University Diabetes Centre, Skåne University Hospital, Jan Waldenströms Gata 35, 214 28 Malmö, Sweden
| | - E Ottosson-Laakso
- Lund University Diabetes Centre, Skåne University Hospital, Jan Waldenströms Gata 35, 214 28 Malmö, Sweden
| | - C B Wollheim
- Lund University Diabetes Centre, Skåne University Hospital, Jan Waldenströms Gata 35, 214 28 Malmö, Sweden; Department of Cell Physiology and Metabolism, University Medical Center, 1 Rue Michel-Servet, CH-1211 Genève 4, Switzerland
| | - O Hansson
- Lund University Diabetes Centre, Skåne University Hospital, Jan Waldenströms Gata 35, 214 28 Malmö, Sweden
| | - L Eliasson
- Lund University Diabetes Centre, Skåne University Hospital, Jan Waldenströms Gata 35, 214 28 Malmö, Sweden
| | - N Wierup
- Lund University Diabetes Centre, Skåne University Hospital, Jan Waldenströms Gata 35, 214 28 Malmö, Sweden.
| |
Collapse
|
15
|
Eliasson L, Esguerra JLS, Wendt A. Lessons from basic pancreatic beta cell research in type-2 diabetes and vascular complications. Diabetol Int 2017; 8:139-152. [PMID: 30603317 DOI: 10.1007/s13340-017-0304-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/08/2017] [Indexed: 12/14/2022]
Abstract
The changes in life-style with increased access of food and reduced physical activity have resulted in the global epidemic of obesity. Consequently, individuals with type 2 diabetes and cardiovascular disease have also escalated. A central organ in the development of diabetes is the pancreas, and more specifically the pancreatic beta cells within the islets of Langerhans. Beta cells have been assigned the important task of secreting insulin when blood glucose is increased to lower the glucose level. An early sign of diabetes pathogenesis is lack of first phase insulin response and reduced second phase secretion. In this review, which is based on the foreign investigator award lecture given at the JSDC meeting in Sendai in October 2016, we discuss a possible cellular explanation for the reduced first phase insulin response and how this can be influenced by lipids. Moreover, since patients with cardiovascular disease and high levels of cholesterol are often treated with statins, we summarize recent data regarding effects on statins on glucose homeostasis and insulin secretion. Finally, we suggest microRNAs (miRNAs) as central players in the adjustment of beta cell function during the development of diabetes. We specifically discuss miRNAs regarding their involvement in insulin secretion regulation, differential expression in type 2 diabetes, and potential as biomarkers for prediction of diabetes and cardiovascular complications.
Collapse
Affiliation(s)
- Lena Eliasson
- Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Clinical Research Centre, SUS 91-11, Box 50332, 202 13 Malmö, Sweden
| | - Jonathan Lou S Esguerra
- Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Clinical Research Centre, SUS 91-11, Box 50332, 202 13 Malmö, Sweden
| | - Anna Wendt
- Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Clinical Research Centre, SUS 91-11, Box 50332, 202 13 Malmö, Sweden
| |
Collapse
|
16
|
Abstract
Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells target infected or transformed cells with perforin-containing cytotoxic granules through immune synapses, while platelets secrete several types of granules which contents are essential for thrombosis and hemostasis. Recent work has culminated in the notion that an exocytic SNARE complex, based on a very similar set of components, is primarily responsible for exocytosis of the diverse granules in these different cell types. Granule exocytosis is, in particular, uniquely dependent on the atypical Q-SNARE syntaxin 11, its interacting partners of the Sec/Munc (SM) family, and is regulated by Rab27a. Mutations in these exocytic components underlie disease manifestations of familial hemophagocytic lymphohistiocytosis (FHL) subtypes, characterized by hyperactivation of the immune system, as well as platelet granule secretion defects. Here we discuss the key discoveries that led to the converging notion of the syntaxin 11-based exocytosis machinery for cytotoxic granules and platelet-derived granules.
Collapse
Affiliation(s)
- Bor Luen Tang
- a Department of Biochemistry , Yong Loo Lin School of Medicine, National University of Singapore , Singapore and.,b NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore
| |
Collapse
|
17
|
Zhang C, Caldwell TA, Mirbolooki MR, Duong D, Park EJ, Chi NW, Chessler SD. Extracellular CADM1 interactions influence insulin secretion by rat and human islet β-cells and promote clustering of syntaxin-1. Am J Physiol Endocrinol Metab 2016; 310:E874-85. [PMID: 27072493 PMCID: PMC4935136 DOI: 10.1152/ajpendo.00318.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 04/08/2016] [Indexed: 11/22/2022]
Abstract
Contact between β-cells is necessary for their normal function. Identification of the proteins mediating the effects of β-cell-to-β-cell contact is a necessary step toward gaining a full understanding of the determinants of β-cell function and insulin secretion. The secretory machinery of the β-cells is nearly identical to that of central nervous system (CNS) synapses, and we hypothesize that the transcellular protein interactions that drive maturation of the two secretory machineries upon contact of one cell (or neural process) with another are also highly similar. Two such transcellular interactions, important for both synaptic and β-cell function, have been identified: EphA/ephrin-A and neuroligin/neurexin. Here, we tested the role of another synaptic cleft protein, CADM1, in insulinoma cells and in rat and human islet β-cells. We found that CADM1 is a predominant CADM isoform in β-cells. In INS-1 cells and primary β-cells, CADM1 constrains insulin secretion, and its expression decreases after prolonged glucose stimulation. Using a coculture model, we found that CADM1 also influences insulin secretion in a transcellular manner. We asked whether extracellular CADM1 interactions exert their influence via the same mechanisms by which they influence neurotransmitter exocytosis. Our results suggest that, as in the CNS, CADM1 interactions drive exocytic site assembly and promote actin network formation. These results support the broader hypothesis that the effects of cell-cell contact on β-cell maturation and function are mediated by the same extracellular protein interactions that drive the formation of the presynaptic exocytic machinery. These interactions may be therapeutic targets for reversing β-cell dysfunction in diabetes.
Collapse
Affiliation(s)
- Charles Zhang
- Department of Medicine, University of California, Irvine, School of Medicine, Irvine, California
| | - Thomas A Caldwell
- Department of Medicine, University of California, Irvine, School of Medicine, Irvine, California
| | - M Reza Mirbolooki
- Department of Medicine, University of California, Irvine, School of Medicine, Irvine, California
| | - Diana Duong
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California; and
| | - Eun Jee Park
- Department of Medicine, University of California, Irvine, School of Medicine, Irvine, California
| | - Nai-Wen Chi
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Steven D Chessler
- Department of Medicine, University of California, Irvine, School of Medicine, Irvine, California;
| |
Collapse
|
18
|
Esguerra JLS, Mollet IG, Salunkhe VA, Wendt A, Eliasson L. Regulation of Pancreatic Beta Cell Stimulus-Secretion Coupling by microRNAs. Genes (Basel) 2014; 5:1018-31. [PMID: 25383562 PMCID: PMC4276924 DOI: 10.3390/genes5041018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/01/2014] [Accepted: 10/21/2014] [Indexed: 12/31/2022] Open
Abstract
Increased blood glucose after a meal is countered by the subsequent increased release of the hypoglycemic hormone insulin from the pancreatic beta cells. The cascade of molecular events encompassing the initial sensing and transport of glucose into the beta cell, culminating with the exocytosis of the insulin large dense core granules (LDCVs) is termed "stimulus-secretion coupling." Impairment in any of the relevant processes leads to insufficient insulin release, which contributes to the development of type 2 diabetes (T2D). The fate of the beta cell, when exposed to environmental triggers of the disease, is determined by the possibility to adapt to the new situation by regulation of gene expression. As established factors of post-transcriptional regulation, microRNAs (miRNAs) are well-recognized mediators of beta cell plasticity and adaptation. Here, we put focus on the importance of comprehending the transcriptional regulation of miRNAs, and how miRNAs are implicated in stimulus-secretion coupling, specifically those influencing the late stages of insulin secretion. We suggest that efficient beta cell adaptation requires an optimal balance between transcriptional regulation of miRNAs themselves, and miRNA-dependent gene regulation. The increased knowledge of the beta cell transcriptional network inclusive of non-coding RNAs such as miRNAs is essential in identifying novel targets for the treatment of T2D.
Collapse
Affiliation(s)
- Jonathan L S Esguerra
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, CRC 91-11, Jan Waldenströms gata 35, 205 02 Malmö, Sweden.
| | - Inês G Mollet
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, CRC 91-11, Jan Waldenströms gata 35, 205 02 Malmö, Sweden.
| | - Vishal A Salunkhe
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, CRC 91-11, Jan Waldenströms gata 35, 205 02 Malmö, Sweden.
| | - Anna Wendt
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, CRC 91-11, Jan Waldenströms gata 35, 205 02 Malmö, Sweden.
| | - Lena Eliasson
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, CRC 91-11, Jan Waldenströms gata 35, 205 02 Malmö, Sweden.
| |
Collapse
|
19
|
Stienstra R, Haim Y, Riahi Y, Netea M, Rudich A, Leibowitz G. Autophagy in adipose tissue and the beta cell: implications for obesity and diabetes. Diabetologia 2014; 57:1505-16. [PMID: 24795087 DOI: 10.1007/s00125-014-3255-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/01/2014] [Indexed: 12/11/2022]
Abstract
Autophagy is a lysosomal degradation pathway recycling intracellular long-lived proteins and damaged organelles, thereby maintaining cellular homeostasis. In addition to inflammatory processes, autophagy has been implicated in the regulation of adipose tissue and beta cell functions. In obesity and type 2 diabetes autophagic activity is modulated in a tissue-dependent manner. In this review we discuss the regulation of autophagy in adipose tissue and beta cells, exemplifying tissue-specific dysregulation of autophagy and its implications for the pathophysiology of obesity and type 2 diabetes. We will highlight common themes and outstanding gaps in our understanding, which need to be addressed before autophagy could be envisioned as a therapeutic target for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Rinke Stienstra
- Department of General Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | | | | | | | | | | |
Collapse
|
20
|
Eliasson L, Esguerra JLS. Role of non-coding RNAs in pancreatic beta-cell development and physiology. Acta Physiol (Oxf) 2014; 211:273-84. [PMID: 24666639 DOI: 10.1111/apha.12285] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 02/25/2014] [Accepted: 03/17/2014] [Indexed: 12/15/2022]
Abstract
The progression of diabetes is accompanied by increasing demand to the beta-cells to produce and secrete more insulin, requiring complex beta-cell adaptations. Functionally active and ubiquitous non-coding RNAs (ncRNAs) have the capacity to take part in such adaptations as they have been shown to be key regulatory molecules in various biological processes. In the pancreatic islets, the function of ncRNAs and their contribution to disease development is beginning to be understood. Here, we review the different classes of ncRNAs, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), and their potential contribution to insulin secretion. A special focus will be on miRNAs and their regulatory function in beta-cell physiology and insulin exocytosis. As important players in gene regulation, ncRNAs have huge potential in opening innovative therapeutic avenues against diabetes and associated complications.
Collapse
Affiliation(s)
- L. Eliasson
- Department of Clinical Sciences-Malmö; Islet Cell Exocytosis; Lund University Diabetes Centre; Lund University; Malmö Sweden
| | - J. L. S. Esguerra
- Department of Clinical Sciences-Malmö; Islet Cell Exocytosis; Lund University Diabetes Centre; Lund University; Malmö Sweden
| |
Collapse
|
21
|
STXBP1 promotes Weibel-Palade body exocytosis through its interaction with the Rab27A effector Slp4-a. Blood 2014; 123:3185-94. [PMID: 24700782 DOI: 10.1182/blood-2013-10-535831] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Vascular endothelial cells contain unique rod-shaped secretory organelles, called Weibel-Palade bodies (WPBs), which contain the hemostatic protein von Willebrand factor (VWF) and a cocktail of angiogenic and inflammatory mediators. We have shown that the Rab27A effector synaptotagmin-like protein 4-a (Slp4-a) plays a critical role in regulating hormone-evoked WPB exocytosis. Using a nonbiased proteomic screen for targets for Slp4-a, we now identify syntaxin-binding protein 1 (STXBP1) and syntaxin-2 and -3 as endogenous Slp4-a binding partners in endothelial cells. Coimmunoprecipitations showed that STXBP1 interacts with syntaxin-2 and -3, but not with syntaxin-4. Small interfering RNA-mediated silencing of STXBP1 expression impaired histamine- and forskolin-induced VWF secretion. To further substantiate the role of STXBP1, we isolated blood outgrowth endothelial cells (BOECs) from an early infantile epileptic encephalopathy type 4 (EIEE4) patient carrying a de novo mutation in STXBP1. STXBP1-haploinsufficient EIEE4 BOECs contained similar numbers of morphologically normal WPBs compared with control BOECs of healthy donors; however, EIEE4 BOECs displayed significantly impaired histamine- and forskolin-stimulated VWF secretion. Based on these findings, we propose that the Rab27A-Slp4-a complex on WPB promotes exocytosis through an interaction with STXBP1, thereby controlling the release of vaso-active substances in the vasculature.
Collapse
|
22
|
Lyakhova TA, Knight JD. The C2 domains of granuphilin are high-affinity sensors for plasma membrane lipids. Chem Phys Lipids 2013; 182:29-37. [PMID: 24184645 DOI: 10.1016/j.chemphyslip.2013.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/30/2013] [Accepted: 10/19/2013] [Indexed: 11/30/2022]
Abstract
Membrane-targeting proteins are crucial components of many cell signaling pathways, including the secretion of insulin. Granuphilin, also known as synaptotagmin-like protein 4, functions in tethering secretory vesicles to the plasma membrane prior to exocytosis. Granuphilin docks to insulin secretory vesicles through interaction of its N-terminal domain with vesicular Rab proteins; however, the mechanisms of granuphilin plasma membrane targeting and release are less clear. Granuphilin contains two C2 domains, C2A and C2B, that interact with the plasma membrane lipid phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. The goal of this study was to determine membrane-binding mechanisms, affinities, and kinetics of both granuphilin C2 domains using fluorescence spectroscopic techniques. Results indicate that both C2A and C2B bind anionic lipids in a Ca(2+)-independent manner. The C2A domain binds liposomes containing a physiological mixture of lipids including 2% PI(4,5)P2 or PI(3,4,5)P3 with high affinity (apparent K(d, PIPx) of 2-5 nM), and binds nonspecifically with moderate affinity to anionic liposomes lacking phosphatidylinositol phosphate (PIPx) lipids. The C2B domain binds with sub-micromolar affinity to liposomes containing PI(4,5)P2 but does not have a measurable affinity for background anionic lipids. Both domains can be competed away from their target lipids by the soluble PIPx analog inositol-(1,2,3,4,5,6)-hexakisphosphate (IP6), which is a positive regulator of insulin secretion. Potential roles of these interactions in the docking and release of granuphilin from the plasma membrane are discussed.
Collapse
Affiliation(s)
- Tatyana A Lyakhova
- Department of Chemistry, University of Colorado Denver, Campus Box 194, P.O. Box 173364, Denver, CO 80217, USA
| | - Jefferson D Knight
- Department of Chemistry, University of Colorado Denver, Campus Box 194, P.O. Box 173364, Denver, CO 80217, USA.
| |
Collapse
|
23
|
Fukuda M. Rab27 effectors, pleiotropic regulators in secretory pathways. Traffic 2013; 14:949-63. [PMID: 23678941 DOI: 10.1111/tra.12083] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/13/2013] [Accepted: 05/16/2013] [Indexed: 12/18/2022]
Abstract
Rab27, a member of the small GTPase Rab family, is widely conserved in metazoan, and two Rab27 isoforms, Rab27A and Rab27B, are present in vertebrates. Rab27A was the first Rab protein whose dysfunction was found to cause a human hereditary disease, type 2 Griscelli syndrome, which is characterized by silvery hair and immunodeficiency. The discovery in the 21st century of three distinct types of mammalian Rab27A effectors [synaptotagmin-like protein (Slp), Slp homologue lacking C2 domains (Slac2), and Munc13-4] that specifically bind active Rab27A has greatly accelerated our understanding not only of the molecular mechanisms of Rab27A-mediated membrane traffic (e.g. melanosome transport and regulated secretion) but of the symptoms of Griscelli syndrome patients at the molecular level. Because Rab27B is widely expressed in various tissues together with Rab27A and has been found to have the ability to bind all of the Rab27A effectors that have been tested, Rab27A and Rab27B were initially thought to function redundantly by sharing common Rab27 effectors. However, recent evidence has indicated that by interacting with different Rab27 effectors Rab27A and Rab27B play different roles in special types of secretion (e.g. exosome secretion and mast cell secretion) even within the same cell type. In this review article, I describe the current state of our understanding of the functions of Rab27 effectors in secretory pathways.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
24
|
Nightingale T, Cutler D. The secretion of von Willebrand factor from endothelial cells; an increasingly complicated story. J Thromb Haemost 2013; 11 Suppl 1:192-201. [PMID: 23809123 PMCID: PMC4255685 DOI: 10.1111/jth.12225] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
von Willebrand factor (VWF) plays key roles in both primary and secondary hemostasis by capturing platelets and chaperoning clotting factor VIII, respectively. It is stored within the Weibel-Palade bodies (WPBs) of endothelial cells as a highly prothrombotic protein, and its release is thus necessarily under tight control. Regulating the secretion of VWF involves multiple layers of cellular machinery that act together at different stages, leading to the exocytic fusion of WPBs with the plasma membrane and the consequent release of VWF. This review aims to provide a snapshot of the current understanding of those components, in particular the members of the Rab family, acting in the increasingly complex story of VWF secretion.
Collapse
Affiliation(s)
- T Nightingale
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | | |
Collapse
|
25
|
Loder MK, Tsuboi T, Rutter GA. Live-cell imaging of vesicle trafficking and divalent metal ions by total internal reflection fluorescence (TIRF) microscopy. Methods Mol Biol 2013; 950:13-26. [PMID: 23086867 DOI: 10.1007/978-1-62703-137-0_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Total internal reflection fluorescence (TIRF) microscopy is an especially powerful tool for visualizing live cellular events. Fluorescent molecules alone provide broad information about the expression and localization of proteins and other molecules; however, the temporal and spatial resolution is confounded by signal from outside the area of interest and the intensity of the illumination required. TIRF overcomes this limitation by using the reflective properties of a laser beam to illuminate a narrow (<100 nm) strip at the surface of a cell with a relatively low powered evanescent wave, thus making it possible to measure events occurring specifically at the plasma membrane such as exocytosis, single molecule interactions, and ionic changes during signal transduction. Here we describe some of the methods for using TIRF microscopy to study the processes involved in exocytosis from excitable cells (i.e., neurons, endocrine, neuroendocrine, and exocrine cells) and the release of physiologically active substances (i.e., neurotransmitters, hormones, and mucus).The failure of regulated exocytosis is associated with various diseases such as allergy, brain dysfunction, and endocrine illness. Diabetes mellitus, which is due to an absolute (type I) or relative (type II) deficiency of insulin secretion from pancreatic β-cells, is a major area of therapeutic interest. Insulin is stored in dense core vesicles with Zn(2+) ions in pancreatic β-cells. Insulin secretion is regulated by plasma glucose concentration which acts through intracellular metabolism to influence intracellular [Ca(2+)]. However, the precise molecular mechanisms controlling insulin granule movement towards, and fusion at, the plasma membrane remain only partially understood. To tackle this problem, we have used live cell imaging techniques to image regulated exocytosis in single living β-cells alongside intracellular Ca(2+) and Zn(2+) concentrations.
Collapse
Affiliation(s)
- Merewyn K Loder
- Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Imperial College London, London, UK
| | | | | |
Collapse
|
26
|
The interplay between the Rab27A effectors Slp4-a and MyRIP controls hormone-evoked Weibel-Palade body exocytosis. Blood 2012; 120:2757-67. [PMID: 22898601 DOI: 10.1182/blood-2012-05-429936] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Weibel-Palade body (WPB) exocytosis underlies hormone-evoked VWF secretion from endothelial cells (ECs). We identify new endogenous components of the WPB: Rab3B, Rab3D, and the Rab27A/Rab3 effector Slp4-a (granuphilin), and determine their role in WPB exocytosis. We show that Rab3B, Rab3D, and Rab27A contribute to Slp4-a localization to WPBs. siRNA knockdown of Slp4-a, MyRIP, Rab3B, Rab3D, Rab27A, or Rab3B/Rab27A, or overexpression of EGFP-Slp4-a or EGFP-MyRIP showed that Slp4-a is a positive and MyRIP a negative regulator of WPB exocytosis and that Rab27A alone mediates these effects. We found that ECs maintain a constant amount of cellular Rab27A irrespective of the WPB pool size and that Rab27A (and Rab3s) cycle between WPBs and a cytosolic pool. The dynamic redistribution of Rab proteins markedly decreased the Rab27A concentration on individual WPBs with increasing WPB number per cell. Despite this, the probability of WPB release was independent of WPB pool size showing that WPB exocytosis is not determined simply by the absolute amount of Rab27A and its effectors on WPBs. Instead, we propose that the probability of release is determined by the fractional occupancy of WPB-Rab27A by Slp4-a and MyRIP, with the balance favoring exocytosis.
Collapse
|
27
|
Bilogan CK, Horb ME. Microarray analysis of Xenopus endoderm expressing Ptf1a. Genesis 2012; 50:853-70. [PMID: 22815262 DOI: 10.1002/dvg.22048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 07/03/2012] [Accepted: 07/09/2012] [Indexed: 01/29/2023]
Abstract
Pancreas-specific transcription factor 1a (Ptf1a), a bHLH transcription factor, has two temporally distinct functions during pancreas development; initially it is required for early specification of the entire pancreas, while later it is required for proper differentiation and maintenance of only acinar cells. The importance of Ptf1a function was revealed by the fact that loss of Ptf1a leads to pancreas agenesis in humans. While Ptf1a is one of the most important pancreatic transcription factors, little is known about the differences between the regulatory networks it controls during initial specification of the pancreas as opposed to acinar cell development, and to date no comprehensive analysis of its downstream targets has been published. In this article, we use Xenopus embryos to identify putative downstream targets of Ptf1a. We isolated anterior endoderm tissue overexpressing Ptf1a at two early stages, NF32 and NF36, and compared their gene expression profiles using microarrays. Our results revealed that Ptf1a regulates genes with a wide variety of functions, providing insight into the complexity of the regulatory network required for pancreas specification.
Collapse
Affiliation(s)
- Cassandra K Bilogan
- Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | | |
Collapse
|
28
|
Oh E, Kalwat MA, Kim MJ, Verhage M, Thurmond DC. Munc18-1 regulates first-phase insulin release by promoting granule docking to multiple syntaxin isoforms. J Biol Chem 2012; 287:25821-33. [PMID: 22685295 DOI: 10.1074/jbc.m112.361501] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Attenuated levels of the Sec1/Munc18 (SM) protein Munc18-1 in human islet β-cells is coincident with type 2 diabetes, although how Munc18-1 facilitates insulin secretion remains enigmatic. Herein, using conventional Munc18-1(+/-) and β-cell specific Munc18-1(-/-) knock-out mice, we establish that Munc18-1 is required for the first phase of insulin secretion. Conversely, human islets expressing elevated levels of Munc18-1 elicited significant potentiation of only first-phase insulin release. Insulin secretory changes positively correlated with insulin granule number at the plasma membrane: Munc18-1-deficient cells lacked 35% of the normal component of pre-docked insulin secretory granules, whereas cells with elevated levels of Munc18-1 exhibited a ∼20% increase in pre-docked granule number. Pre-docked syntaxin 1-based SNARE complexes bound by Munc18-1 were detected in β-cell lysates but, surprisingly, were reduced by elevation of Munc18-1 levels. Paradoxically, elevated Munc18-1 levels coincided with increased binding of syntaxin 4 to VAMP2 at the plasma membrane. Accordingly, syntaxin 4 was a requisite for Munc18-1 potentiation of insulin release. Munc18c, the cognate SM isoform for syntaxin 4, failed to bind SNARE complexes. Given that Munc18-1 does not pair with syntaxin 4, these data suggest a novel indirect role for Munc18-1 in facilitating syntaxin 4-mediated granule pre-docking to support first-phase insulin exocytosis.
Collapse
Affiliation(s)
- Eunjin Oh
- Department of Pediatrics, Herman B. Wells Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
29
|
Mosedale M, Egodage S, Calma RC, Chi NW, Chessler SD. Neurexin-1α contributes to insulin-containing secretory granule docking. J Biol Chem 2012; 287:6350-61. [PMID: 22235116 DOI: 10.1074/jbc.m111.299081] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neurexins are a family of transmembrane, synaptic adhesion molecules. In neurons, neurexins bind to both sub-plasma membrane and synaptic vesicle-associated constituents of the secretory machinery, play a key role in the organization and stabilization of the presynaptic active zone, and help mediate docking of synaptic vesicles. We have previously shown that neurexins, like many other protein constituents of the neurotransmitter exocytotic machinery, are expressed in pancreatic β cells. We hypothesized that the role of neurexins in β cells parallels their role in neurons, with β-cell neurexins helping to mediate insulin granule docking and secretion. Here we demonstrate that β cells express a more restricted pattern of neurexin transcripts than neurons, with a clear predominance of neurexin-1α expressed in isolated islets. Using INS-1E β cells, we found that neurexin-1α interacts with membrane-bound components of the secretory granule-docking machinery and with the granule-associated protein granuphilin. Decreased expression of neurexin-1α, like decreased expression of granuphilin, reduces granule docking at the β-cell membrane and improves insulin secretion. Perifusion of neurexin-1α KO mouse islets revealed a significant increase in second-phase insulin secretion with a trend toward increased first-phase secretion. Upon glucose stimulation, neurexin-1α protein levels decrease. This glucose-induced down-regulation may enhance glucose-stimulated insulin secretion. We conclude that neurexin-1α is a component of the β-cell secretory machinery and contributes to secretory granule docking, most likely through interactions with granuphilin. Neurexin-1α is the only transmembrane component of the docking machinery identified thus far. Our findings provide new insights into the mechanisms of insulin granule docking and exocytosis.
Collapse
Affiliation(s)
- Merrie Mosedale
- Pediatric Diabetes Research Center, Veterans Affairs San Diego Healthcare System, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|
30
|
Brozzi F, Diraison F, Lajus S, Rajatileka S, Philips T, Regazzi R, Fukuda M, Verkade P, Molnár E, Váradi A. Molecular mechanism of myosin Va recruitment to dense core secretory granules. Traffic 2011; 13:54-69. [PMID: 21985333 DOI: 10.1111/j.1600-0854.2011.01301.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The brain-spliced isoform of Myosin Va (BR-MyoVa) plays an important role in the transport of dense core secretory granules (SGs) to the plasma membrane in hormone and neuropeptide-producing cells. The molecular composition of the protein complex that recruits BR-MyoVa to SGs and regulates its function has not been identified to date. We have identified interaction between SG-associated proteins granuphilin-a/b (Gran-a/b), BR-MyoVa and Rab27a, a member of the Rab family of GTPases. Gran-a/b-BR-MyoVa interaction is direct, involves regions downstream of the Rab27-binding domain, and the C-terminal part of Gran-a determines exon specificity. MyoVa and Gran-a/b are partially colocalised on SGs and disruption of Gran-a/b-BR-MyoVa binding results in a perinuclear accumulation of SGs which augments nutrient-stimulated hormone secretion in pancreatic beta-cells. These results indicate the existence of at least another binding partner of BR-MyoVa that was identified as rabphilin-3A (Rph-3A). BR-MyoVa-Rph-3A interaction is also direct and enhanced when secretion is activated. The BR-MyoVa-Rph-3A and BR-MyoVa-Gran-a/b complexes are linked to a different subset of SGs, and simultaneous inhibition of these complexes nearly completely blocks stimulated hormone release. This study demonstrates that multiple binding partners of BR-MyoVa regulate SG transport, and this molecular mechanism is universally used by neuronal, endocrine and neuroendocrine cells.
Collapse
Affiliation(s)
- Flora Brozzi
- Centre for Research in Biomedicine, Faculty of Health and Life Sciences, University of the West of England, Bristol, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang H, Ishizaki R, Kobayashi E, Fujiwara T, Akagawa K, Izumi T. Loss of granuphilin and loss of syntaxin-1A cause differential effects on insulin granule docking and fusion. J Biol Chem 2011; 286:32244-50. [PMID: 21768089 PMCID: PMC3173164 DOI: 10.1074/jbc.m111.268631] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 07/03/2011] [Indexed: 11/06/2022] Open
Abstract
The Rab27 effector granuphilin/Slp4 is essential for the stable attachment (docking) of secretory granules to the plasma membrane, and it also inhibits subsequent fusion. Granuphilin is thought to mediate these processes through interactions with Rab27 on the granule membrane and with syntaxin-1a on the plasma membrane and its binding partner Munc18-1. Consistent with this hypothesis, both syntaxin-1a- and Munc18-1-deficient secretory cells, as well as granuphilin null cells, have been observed to have a deficit of docked granules. However, to date there has been no direct comparative analysis of the docking defects in those mutant cells. In this study, we morphometrically compared granule-docking states between granuphilin null and syntaxin-1a null pancreatic β cells derived from mice having the same genetic background. We found that loss of syntaxin-1a does not cause a significant granule-docking defect, in contrast to granuphilin deficiency. Furthermore, we newly generated granuphilin/syntaxin-1a double knock-out mice, characterized their phenotypes, and found that the double mutant mice represent a phenocopy of granuphilin null mice and do not represent phenotypes of syntaxin-1a null mice, including their granule-docking behavior. Because granuphilin binds to syntaxin-2 and syntaxin-3 as well as syntaxin-1a, it likely mediates granule docking through interactions with those multiple syntaxins on the plasma membrane.
Collapse
Affiliation(s)
- Hao Wang
- From the Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512 and
| | - Ray Ishizaki
- From the Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512 and
| | - Eri Kobayashi
- From the Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512 and
| | - Tomonori Fujiwara
- the Department of Cell Physiology, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| | - Kimio Akagawa
- the Department of Cell Physiology, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| | - Tetsuro Izumi
- From the Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512 and
| |
Collapse
|
32
|
Shandala T, Woodcock JM, Ng Y, Biggs L, Skoulakis EMC, Brooks DA, Lopez AF. Drosophila 14-3-3ε has a crucial role in anti-microbial peptide secretion and innate immunity. J Cell Sci 2011; 124:2165-74. [DOI: 10.1242/jcs.080598] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The secretion of anti-microbial peptides is recognised as an essential step in innate immunity, but there is limited knowledge of the molecular mechanism controlling the release of these effectors from immune response cells. Here, we report that Drosophila 14-3-3ε mutants exhibit reduced survival when infected with either Gram-positive or Gram-negative bacteria, indicating a functional role for 14-3-3ε in innate immunity. In 14-3-3ε mutants, there was a reduced release of the anti-microbial peptide Drosomycin into the haemolymph, which correlated with an accumulation of Drosomycin-containing vesicles near the plasma membrane of cells isolated from immune response tissues. Drosomycin appeared to be delivered towards the plasma membrane in Rab4- and Rab11-positive vesicles and smaller Rab11-positive vesicles. RNAi silencing of Rab11 and Rab4 significantly blocked the anterograde delivery of Drosomycin from the perinuclear region to the plasma membrane. However, in 14-3-3ε mutants there was an accumulation of small Rab11-positive vesicles near the plasma membrane. This vesicular phenotype was similar to that observed in response to the depletion of the vesicular Syntaxin protein Syx1a. In wild-type Drosophila immune tissue, 14-3-3ε was detected adjacent to Rab11, and partially overlapping with Syx1a, on vesicles near the plasma membrane. We conclude that 14-3-3ε is required for Rab11-positive vesicle function, which in turn enables antimicrobial peptide secretion during an innate immune response.
Collapse
Affiliation(s)
- Tetyana Shandala
- Division of Human Immunology, Centre for Cancer Biology, Adelaide SA5000, Australia
- Sansom Institute for Health Research, University of South Australia, Adelaide SA5000, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide SA5000, Australia
| | - Joanna M. Woodcock
- Division of Human Immunology, Centre for Cancer Biology, Adelaide SA5000, Australia
| | - Yeap Ng
- Division of Human Immunology, Centre for Cancer Biology, Adelaide SA5000, Australia
- Sansom Institute for Health Research, University of South Australia, Adelaide SA5000, Australia
| | - Lisa Biggs
- Division of Human Immunology, Centre for Cancer Biology, Adelaide SA5000, Australia
| | | | - Doug A. Brooks
- Sansom Institute for Health Research, University of South Australia, Adelaide SA5000, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide SA5000, Australia
| | - Angel F. Lopez
- Division of Human Immunology, Centre for Cancer Biology, Adelaide SA5000, Australia
| |
Collapse
|
33
|
Mandic SA, Skelin M, Johansson JU, Rupnik MS, Berggren PO, Bark C. Munc18-1 and Munc18-2 proteins modulate beta-cell Ca2+ sensitivity and kinetics of insulin exocytosis differently. J Biol Chem 2011; 286:28026-40. [PMID: 21690086 DOI: 10.1074/jbc.m111.235366] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fast neurotransmission and slower hormone release share the same core fusion machinery consisting of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. In evoked neurotransmission, interactions between SNAREs and the Munc18-1 protein, a member of the Sec1/Munc18 (SM) protein family, are essential for exocytosis, whereas other SM proteins are dispensable. To address if the exclusivity of Munc18-1 demonstrated in neuroexocytosis also applied to fast insulin secretion, we characterized the presence and function of Munc18-1 and its closest homologue Munc18-2 in β-cell stimulus-secretion coupling. We show that pancreatic β-cells express both Munc18-1 and Munc18-2. The two Munc18 homologues exhibit different subcellular localization, and only Munc18-1 redistributes in response to glucose stimulation. However, both Munc18-1 and Munc18-2 augment glucose-stimulated hormone release. Ramp-like photorelease of caged Ca(2+) and high resolution whole-cell patch clamp recordings show that Munc18-1 and Munc18-2 overexpression shift the Ca(2+) sensitivity of the fastest phase of insulin exocytosis differently. In addition, we reveal that Ca(2+) sensitivity of exocytosis in β-cells depends on the phosphorylation status of the Munc18 proteins. Even though Munc18-1 emerges as the key SM-protein determining the Ca(2+) threshold for triggering secretory activity in a stimulated β-cell, Munc18-2 has the ability to increase Ca(2+) sensitivity and thus mediates the release of fusion-competent granules requiring a lower cytoplasmic-free Ca(2+) concentration, [Ca(2+)](i)(.) Hence, Munc18-1 and Munc18-2 display distinct subcellular compartmentalization and can coordinate the insulin exocytotic process differently as a consequence of the actual [Ca(2+)](i).
Collapse
Affiliation(s)
- Slavena A Mandic
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, 17176 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
34
|
Aoki R, Kitaguchi T, Oya M, Yanagihara Y, Sato M, Miyawaki A, Tsuboi T. Duration of fusion pore opening and the amount of hormone released are regulated by myosin II during kiss-and-run exocytosis. Biochem J 2010; 429:497-504. [PMID: 20528772 DOI: 10.1042/bj20091839] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Since the fusion pore of the secretory vesicle is resealed before complete dilation during 'kiss-and-run' exocytosis, their cargoes are not completely released. Although the transient fusion pore is kept open for several seconds, the precise mechanisms that control fusion pore maintenance, and their physiological significance, are not well understood. Using dual-colour TIRF (total internal reflection fluorescence) microscopy in neuroendocrine PC12 cells, we show that myosin II regulates the fusion pore dynamics during kiss-and-run exocytosis. The release kinetics of mRFP (monomeric red fluorescent protein)-tagged tPA (tissue plasminogen activator) and Venus-tagged BDNF (brain-derived neurotrophic factor), which show slower release kinetics than NPY (neuropeptide Y)-mRFP and insulin-mRFP, were prolonged by the overexpression of a wild-type form of the RLC (myosin II regulatory light chain). In contrast, overexpression of a dominant-negative form of RLC shortened the release kinetics. Using spH (synapto-pHluorin), a green fluorescent protein-based pH sensor inside the vesicles, we confirmed that the modulation of the release kinetics by myosin II is due to changes in the duration of fusion pore opening. In addition, we revealed that the amount of hormone released into the extracellular space upon stimulation was increased by overexpression of wild-type RLC. We propose that the duration of fusion pore opening is regulated by myosin II to control the amount of hormone released from a single vesicle.
Collapse
Affiliation(s)
- Ryo Aoki
- Department of Life Sciences, The University of Tokyo, Meguro, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Yang L, Zhao L, Gan Z, He Z, Xu J, Gao X, Wang X, Han W, Chen L, Xu T, Li W, Liu Y. Deficiency in RNA editing enzyme ADAR2 impairs regulated exocytosis. FASEB J 2010; 24:3720-32. [PMID: 20501795 DOI: 10.1096/fj.09-152363] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mammalian RNA editing catalyzed by adenosine deaminases acting on RNA (ADARs) ADAR1 and ADAR2 plays pivotal roles in the brain through functional modifications of neurotransmitter receptors and ion channels. We have demonstrated previously that RNA editing by ADAR2 is regulated metabolically in pancreatic β cells. To investigate the cellular functions of ADAR2 in professional secretory cells, we studied the effects of ADAR2 knockdown on regulated exocytosis. Selective knockdown of ADAR2 expression markedly impaired glucose-stimulated insulin secretion in the rat insulinoma INS-1 cells and primary pancreatic islets and significantly diminished KCl-stimulated secretion of exogenous human growth hormone or endogenous chromogranin B protein in the rat adrenal pheochromocytoma PC12 cells. Notably, restored overexpression of catalytically active but not editing-deficient mutant ADAR2 could rescue the impairment in stimulated secretion from ADAR2 knockdown cells. Moreover, ADAR2 suppression significantly attenuated Ca(2+)-evoked membrane capacitance increases and appreciably reduced the number of membrane-docked insulin granules in INS-1 cells. Interestingly, the secretory defects resulting from ADAR2 deficiency were coupled to decreased expression of Munc18-1 and synaptotagmin-7, two key molecules in the regulation of vesicle exocytosis. Thus, these findings reveal an important aspect of ADAR2 actions in regulated exocytosis, implicating RNA editing in the control of cellular secretory machinery.
Collapse
Affiliation(s)
- Liu Yang
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tomas A, Yermen B, Regazzi R, Pessin JE, Halban PA. Regulation of insulin secretion by phosphatidylinositol-4,5-bisphosphate. Traffic 2010; 11:123-37. [PMID: 19845918 DOI: 10.1111/j.1600-0854.2009.00996.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The role of PIP(2) in pancreatic beta cell function was examined here using the beta cell line MIN6B1. Blocking PIP(2) with PH-PLC-GFP or PIP5KIgamma RNAi did not impact on glucose-stimulated secretion although susceptibility to apoptosis was increased. Over-expression of PIP5KIgamma improved cell survival and inhibited secretion with accumulation of endocytic vacuoles containing F-actin, PIP(2), transferrin receptor, caveolin 1, Arf6 and the insulin granule membrane protein phogrin but not insulin. Expression of constitutively active Arf6 Q67L also resulted in vacuole formation and inhibition of secretion, which was reversed by PH-PLC-GFP co-expression. PIP(2) co-localized with gelsolin and F-actin, and gelsolin co-expression partially reversed the secretory defect of PIP5KIgamma-over-expressing cells. RhoA/ROCK inhibition increased actin depolymerization and secretion, which was prevented by over-expressing PIP5KIgamma, while blocking PIP(2) reduced constitutively active RhoA V14-induced F-actin polymerization. In conclusion, although PIP(2) plays a pro-survival role in MIN6B1 cells, excessive PIP(2) production because of PIP5KIgamma over-expression inhibits secretion because of both a defective Arf6/PIP5KIgamma-dependent endocytic recycling of secretory membrane and secretory membrane components such as phogrin and the RhoA/ROCK/PIP5KIgamma-dependent perturbation of F-actin cytoskeleton remodelling.
Collapse
Affiliation(s)
- Alejandra Tomas
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
37
|
Jewell JL, Oh E, Thurmond DC. Exocytosis mechanisms underlying insulin release and glucose uptake: conserved roles for Munc18c and syntaxin 4. Am J Physiol Regul Integr Comp Physiol 2010; 298:R517-31. [PMID: 20053958 DOI: 10.1152/ajpregu.00597.2009] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Type 2 diabetes has been coined "a two-hit disease," as it involves specific defects of glucose-stimulated insulin secretion from the pancreatic beta cells in addition to defects in peripheral tissue insulin action required for glucose uptake. Both of these processes, insulin secretion and glucose uptake, are mediated by SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein core complexes composed of syntaxin, SNAP-23/25, and VAMP proteins. The SNARE core complex is regulated by the Sec1/Munc18 (SM) family of proteins, which selectively bind to their cognate syntaxin isoforms with high affinity. The process of insulin secretion uses multiple Munc18-syntaxin isoform pairs, whereas insulin action in the peripheral tissues appears to use only the Munc18c-syntaxin 4 pair. Importantly, recent reports have linked obesity and Type 2 diabetes in humans with changes in protein levels and single nucleotide polymorphisms (SNPs) of Munc18 and syntaxin isoforms relevant to these exocytotic processes, although the molecular mechanisms underlying the observed phenotypes remain incomplete (5, 104, 144). Given the conservation of these proteins in two seemingly disparate processes and the need to design and implement novel and more effective clinical interventions, it will be vitally important to delineate the mechanisms governing these conserved SNARE-mediated exocytosis events. Thus, we provide here an up-to-date historical review of advancements in defining the roles and molecular mechanisms of Munc18-syntaxin complexes in the pathophysiology of Type 2 diabetes.
Collapse
Affiliation(s)
- Jenna L Jewell
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
38
|
Tsuboi T, Kitaguchi T, Karasawa S, Fukuda M, Miyawaki A. Age-dependent preferential dense-core vesicle exocytosis in neuroendocrine cells revealed by newly developed monomeric fluorescent timer protein. Mol Biol Cell 2010; 21:87-94. [PMID: 19889833 PMCID: PMC2801723 DOI: 10.1091/mbc.e09-08-0722] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/13/2009] [Accepted: 10/28/2009] [Indexed: 11/11/2022] Open
Abstract
Although it is evident that only a few secretory vesicles accumulating in neuroendocrine cells are qualified to fuse with the plasma membrane and release their contents to the extracellular space, the molecular mechanisms that regulate their exocytosis are poorly understood. For example, it has been controversial whether secretory vesicles are exocytosed randomly or preferentially according to their age. Using a newly developed protein-based fluorescent timer, monomeric Kusabira Green Orange (mK-GO), which changes color with a predictable time course, here we show that small GTPase Rab27A effectors regulate age-dependent exocytosis of secretory vesicles in PC12 cells. When the vesicles were labeled with mK-GO-tagged neuropeptide Y or tissue-type plasminogen activator, punctate structures with green or red fluorescence were observed. Application of high [K(+)] stimulation induced exocytosis of new (green) fluorescent secretory vesicles but not of old (red) vesicles. Overexpression or depletion of rabphilin and synaptotagmin-like protein4-a (Slp4-a), which regulate exocytosis positively and negatively, respectively, disturbed the age-dependent exocytosis of the secretory vesicles in different manners. Our results suggest that coordinate functions of the two effectors of Rab27A, rabphilin and Slp4-a, are required for regulated secretory pathway.
Collapse
Affiliation(s)
- Takashi Tsuboi
- *Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| | - Tetsuya Kitaguchi
- Life Function and Dynamics, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Wako, Saitama 351-0198, Japan
| | - Satoshi Karasawa
- Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
- Amalgaam Co., Ltd., Itabashi, Tokyo 173-0004, Japan; and
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
- Life Function and Dynamics, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Wako, Saitama 351-0198, Japan
| |
Collapse
|
39
|
Kasai H, Hatakeyama H, Ohno M, Takahashi N. Exocytosis in islet beta-cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:305-38. [PMID: 20217504 DOI: 10.1007/978-90-481-3271-3_14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The development of technologies that allow for live optical imaging of exocytosis from beta-cells has greatly improved our understanding of insulin secretion. Two-photon imaging, in particular, has enabled researchers to visualize the exocytosis of large dense-core vesicles (LDCVs) containing insulin from beta-cells in intact islets of Langerhans. These studies have revealed that high glucose levels induce two phases of insulin secretion and that this release is dependent upon cytosolic Ca(2+) and cAMP. This technology has also made it possible to examine the spatial profile of insulin exocytosis in these tissues and compare that profile with those of other secretory glands. Such studies have led to the discovery of the massive exocytosis of synaptic-like microvesicles (SLMVs) in beta-cells. These imaging studies have also helped clarify facets of insulin exocytosis that cannot be properly addressed using the currently available electrophysiological techniques. This chapter provides a concise introduction to the field of optical imaging for those researchers who wish to characterize exocytosis from beta-cells in the islets of Langerhans.
Collapse
Affiliation(s)
- Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Hongo, Tokyo 113-0033, Japan.
| | | | | | | |
Collapse
|
40
|
Abstract
Exocytosis is a highly conserved and essential process. Although numerous proteins are involved throughout the exocytotic process, the defining membrane fusion step appears to occur through a lipid-dominated mechanism. Here we review and integrate the current literature on protein and lipid roles in exocytosis, with emphasis on the multiple roles of cholesterol in exocytosis and membrane fusion, in an effort to promote a more molecular systems-level view of the as yet poorly understood process of Ca2+-triggered membrane mergers.
Collapse
|
41
|
Wang Z, Thurmond DC. Mechanisms of biphasic insulin-granule exocytosis - roles of the cytoskeleton, small GTPases and SNARE proteins. J Cell Sci 2009; 122:893-903. [PMID: 19295123 DOI: 10.1242/jcs.034355] [Citation(s) in RCA: 277] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The release of insulin from pancreatic islets requires negative regulation to ensure low levels of insulin release under resting conditions, as well as positive regulation to facilitate robust responsiveness to conditions of elevated fuel or glucose. The first phase of release involves the plasma-membrane fusion of a small pool of granules, termed the readily releasable pool; these granules are already at the membrane under basal conditions, and discharge their cargo in response to nutrient and also non-nutrient secretagogues. By contrast, second-phase secretion is evoked exclusively by nutrients, and involves the mobilization of intracellular granules to t-SNARE sites at the plasma membrane to enable the distal docking and fusion steps of insulin exocytosis. Nearly 40 years ago, the actin cytoskeleton was first recognized as a key mediator of biphasic insulin release, and was originally presumed to act as a barrier to block granule docking at the cell periphery. More recently, however, the discovery of cycling GTPases that are involved in F-actin reorganization in the islet beta-cell, combined with the availability of reagents that are more specific and tools with which to study the mechanisms that underlie granule movement, have contributed greatly to our understanding of the role of the cytoskeleton in regulating biphasic insulin secretion. Herein, we provide historical perspective and review recent progress that has been made towards integrating cytoskeletal reorganization and cycling of small Rho-, Rab- and Ras-family GTPases into our current models of stimulus-secretion coupling and second-phase insulin release.
Collapse
Affiliation(s)
- Zhanxiang Wang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|
42
|
Zhang Y, Kang YH, Chang N, Lam PPL, Liu Y, Olkkonen VM, Gaisano HY. Cab45b, a Munc18b-interacting partner, regulates exocytosis in pancreatic beta-cells. J Biol Chem 2009; 284:20840-7. [PMID: 19487699 DOI: 10.1074/jbc.m109.017467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cab45b is a cytosolic Ca(2+)-binding protein reported to regulate zymogen secretion in pancreatic acini. We now show that Cab45b is also expressed in pancreatic islet beta-cells and interacts there with the Sec1-Munc18 protein Munc18b. We employed patch clamp cell capacitance measurements to show that antibodies against Cab45b inhibited depolarization-evoked membrane capacitance increments, suggesting an impact on beta-cell granule exocytosis, both the readily releasable granule pool and refilling of this pool. Site-specific mutants in the Cab45b EF-hands were used to dissect the molecular interactions involved in Cab45b function. Mutants in EF-hands 2 and 3 had no detectable effects on interaction of Cab45b with Munc18b and did not affect the depolarization-evoked calcium currents, but remarkably, they facilitated the complex formation of Munc18b with syntaxin-2 and -3. As a result, these two EF-hand mutants inhibited beta-cell membrane capacitance increments. This inhibition is mediated via Munc18b because Munc18b silencing with small interfering RNA abolished the effects of these two mutants. The results suggest a mechanism for Cab45b action that involves regulating the dynamic association of Munc18b with SNAREs to impact beta-cell granule exocytosis.
Collapse
Affiliation(s)
- Yi Zhang
- Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
OBJECTIVE The Sec1/Munc18 protein Munc18c has been implicated in Syntaxin 4-mediated exocytosis events, although its purpose in exocytosis has remained elusive. Given that Syntaxin 4 functions in the second phase of glucose-stimulated insulin secretion (GSIS), we hypothesized that Munc18c would also be required and sought insight into the possible mechanism(s) using the islet beta-cell as a model system. RESEARCH DESIGN AND METHODS Perifusion analyses of isolated Munc18c- (-/+) or Munc18c-depleted (RNAi) mouse islets were used to assess biphasic secretion. Protein interaction studies used subcellular fractions and detergent lysates prepared from MIN6 beta-cells to determine the mechanistic role of Munc18c in Syntaxin 4 activation and docking/fusion of vesicle-associated membrane protein (VAMP)2-containing insulin granules. Electron microscopy was used to gauge changes in granule localization. RESULTS Munc18c (-/+) islets secreted approximately 60% less insulin selectively during second-phase GSIS; RNAi-mediated Munc18c depletion functionally recapitulated this in wild-type and Munc18c (-/+) islets in a gene dosage-dependent manner. Munc18c depletion ablated the glucose-stimulated VAMP2-Syntaxin 4 association as well as Syntaxin 4 activation, correlating with the deficit in insulin release. Remarkably, Munc18c depletion resulted in aberrant granule localization to the plasma membrane in response to glucose stimulation, consistent with its selective effect on the second phase of secretion. CONCLUSIONS Collectively, these studies demonstrate an essential positive role for Munc18c in second-phase GSIS and suggest novel roles for Munc18c in granule localization to the plasma membrane as well as in triggering Syntaxin 4 accessibility to VAMP2 at a step preceding vesicle docking/fusion.
Collapse
Affiliation(s)
- Eunjin Oh
- From the Department of Biochemistry and Molecular Biology, Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Debbie C. Thurmond
- From the Department of Biochemistry and Molecular Biology, Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, Indiana
- Corresponding author: Debbie C. Thurmond,
| |
Collapse
|
44
|
Kunapuli P, Jang GF, Kazim L, Cowell JK. Mass spectrometry identifies LGI1-interacting proteins that are involved in synaptic vesicle function in the human brain. J Mol Neurosci 2009; 39:137-43. [PMID: 19387870 DOI: 10.1007/s12031-009-9202-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 04/02/2009] [Indexed: 11/24/2022]
Abstract
The LGI1 gene has been shown to predispose to epilepsy and influence cell invasion in glioma cells. To identify proteins that interact with LGI1 and gain a better understanding of its function, we have used co-immunoprecipitation (co-IP) of a secreted green fluorescent protein-tagged LGI1 protein combined with mass spectrometry to identify interacting partners from lysates prepared from human subcortical white matter. Proteins were recovered from polyacrylamide gels and analyzed using liquid chromatography coupled to tandem mass spectrometry. This analysis identified a range of proteins, but in particular synaptotagmin, synaptophysin, and syntaxin 1A. Each of these proteins is found associated with synaptic vesicles. These interactions were confirmed independently by co-IP and Western blotting and implicate LGI1 in synapse biology in neurons. Other vesicle-related proteins that were recovered by co-IP include clathrin heavy chain 1, syntaxin binding protein 1, and a disintegrin and metalloprotease 23. These observations support a role for LGI1 in synapse vesicle function in neurons.
Collapse
Affiliation(s)
- Padmaja Kunapuli
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | |
Collapse
|
45
|
Newcomer insulin secretory granules as a highly calcium-sensitive pool. Proc Natl Acad Sci U S A 2009; 106:7432-6. [PMID: 19372374 DOI: 10.1073/pnas.0901202106] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insulin secretion is biphasic in response to a step in glucose stimulation. Recent experiments suggest that 2 different mechanisms operate during the 2 phases, with transient first-phase secretion due to exocytosis of docked granules but the second sustained phase due largely to newcomer granules. Another line of research has shown that there exist 2 pools of releasable granules with different Ca(2+) sensitivities. An immediately releasable pool (IRP) is located in the vicinity of Ca(2+) channels, whereas a highly Ca(2+)-sensitive pool (HCSP) resides mainly away from Ca(2+) channels. We extend a previous model of exocytosis and insulin release by adding an HCSP and show that the inclusion of this pool naturally leads to insulin secretion mainly from newcomer granules during the second phase of secretion. We show that the model is compatible with data from single cells on the HCSP and from stimulation of islets by glucose, including L- and R-type Ca(2+) channel knockouts, as well as from Syntaxin-1A-deficient cells. We also use the model to investigate the relative contribution of calcium signaling and pool depletion in controlling biphasic secretion.
Collapse
|
46
|
Affiliation(s)
- Anna L. Gloyn
- From the Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K
| | - Matthias Braun
- From the Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K
| | - Patrik Rorsman
- From the Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K
| |
Collapse
|
47
|
Burgoyne RD, Barclay JW, Ciufo LF, Graham ME, Handley MTW, Morgan A. The functions of Munc18-1 in regulated exocytosis. Ann N Y Acad Sci 2009; 1152:76-86. [PMID: 19161378 DOI: 10.1111/j.1749-6632.2008.03987.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The activation of regulated exocytosis occurs by a rise in cytosolic Ca(2+) concentration. Synaptotagmins act as the Ca(2+) sensors, whereas the machinery that allows fusion of secretory vesicles with the plasma membrane consists of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, including syntaxin 1, SNAP-25, and VAMP. Within the pathway leading to exocytosis, there is an essential requirement for a member of the conserved Sec1/Munc18 (SM) protein family, which in neurotransmitter and neurohormone release in mammalian cells is Munc18-1. The exact role of Munc18-1 and the steps within exocytosis in which it acts have been intensively investigated. Current evidence suggests that Munc18-1 acts via distinct modes of interactions with syntaxin 1 and the other SNARE proteins and influences all of the steps leading to exocytosis, including vesicle recruitment, tethering, docking, priming, and membrane fusion.
Collapse
Affiliation(s)
- Robert D Burgoyne
- The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom.
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Neuroendocrine pancreatic islet beta-cells secrete the hormone insulin in response to glucose stimulation and adapt efficiently to increased demand by peripheral tissues to maintain glucose homeostasis. Insulin is packed within dense-core granules, which traffic and dock onto the plasma membrane whereby a Ca(2+) stimulus evokes exocytosis by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE), complex-mediated, membrane fusion. Recent studies have unveiled postdocking steps mediated by "priming" factors that influence SNARE complex assembly to confer fusion readiness to the docked granules. This review will summarize recent insights into the priming role for Munc13 in the exocytosis of insulin granules. We present evidence for the interaction of Munc13-1 with exocytotic substrates involved in cAMP-mediated potentiation of insulin release, the latter we show to mediate enhanced granule-to-granule fusion events underlying compound exocytosis. We thus also further review the current understanding of granule-to-granule fusion. As agents acting on cAMP signaling are clinically used to augment insulin release in diabetes, this better understanding of priming steps may reveal additional novel therapeutic strategies to increase the capacity for insulin release to improve the treatment of diabetes.
Collapse
Affiliation(s)
- Edwin P Kwan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
49
|
Abstract
Plasma insulin levels are determined mainly by the rate of exocytosis of the insulin-containing large dense core vesicles (LDCVs) of pancreatic islet beta-cells. This process involves the recruitment of LDCVs to the plasma membrane, where they are docked by the assembly of multiprotein SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes. However, fusion of the two membranes will proceed only in the presence of Ca(2+) ions, implicating a Ca(2+) sensor protein. The synaptotagmin gene family, comprising 15 members, was proposed to act as such Ca(2+) sensor in regulated exocytosis in neurons and neuroendocrine and endocrine cells. Herein, we review the physiological function of the various synaptotagmins with reference to their impact on insulin exocytosis. Cumulating evidence emphasizes the crucial role of synaptotagmin VII and IX as mediators of glucose-induced insulin secretion.
Collapse
Affiliation(s)
- Benoit R Gauthier
- Dept. of Cell Physiology and Metabolism, University Medical Center, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
50
|
Abstract
Small GTPase Rab is a member of a large family of Ras-related proteins, highly conserved in eukaryotic cells, and thought to regulate specific type(s) and/or specific step(s) in intracellular membrane trafficking. Given our interest in synaptic transmission, we addressed the possibility that Rab27 (a close isoform of Rab3) could be involved in cytosolic synaptic vesicle mobilization. Indeed, preterminal injection of a specific antibody against squid Rab27 (anti-sqRab27 antibody) combined with confocal microscopy demonstrated that Rab27 is present on squid synaptic vesicles. Electrophysiological study of injected synapses showed that the anti-sqRab27 antibody inhibited synaptic release in a stimulation-dependent manner without affecting presynaptic action potentials or inward Ca(2+) current. This result was confirmed in in vitro synaptosomes by using total internal reflection fluorescence microscopy. Thus, synaptosomal Ca(2+)-stimulated release of FM1-43 dye was greatly impaired by intraterminal anti-sqRab27 antibody. Ultrastructural analysis of the injected giant preterminal further showed a reduced number of docked synaptic vesicles and an increase in nondocked vesicular profiles distant from the active zone. These results, taken together, indicate that Rab27 is primarily involved in the maturation of recycled vesicles and/or their transport to the presynaptic active zone in the squid giant synapse.
Collapse
|