1
|
Lin YS, Chang YC, Chao TL, Tsai YM, Jhuang SJ, Ho YH, Lai TY, Liu YL, Chen CY, Tsai CY, Hsueh YP, Chang SY, Chuang TH, Lee CY, Hsu LC. The Src-ZNRF1 axis controls TLR3 trafficking and interferon responses to limit lung barrier damage. J Exp Med 2023; 220:e20220727. [PMID: 37158982 PMCID: PMC10174191 DOI: 10.1084/jem.20220727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 01/23/2023] [Accepted: 03/02/2023] [Indexed: 05/10/2023] Open
Abstract
Type I interferons are important antiviral cytokines, but prolonged interferon production is detrimental to the host. The TLR3-driven immune response is crucial for mammalian antiviral immunity, and its intracellular localization determines induction of type I interferons; however, the mechanism terminating TLR3 signaling remains obscure. Here, we show that the E3 ubiquitin ligase ZNRF1 controls TLR3 sorting into multivesicular bodies/lysosomes to terminate signaling and type I interferon production. Mechanistically, c-Src kinase activated by TLR3 engagement phosphorylates ZNRF1 at tyrosine 103, which mediates K63-linked ubiquitination of TLR3 at lysine 813 and promotes TLR3 lysosomal trafficking and degradation. ZNRF1-deficient mice and cells are resistant to infection by encephalomyocarditis virus and SARS-CoV-2 because of enhanced type I interferon production. However, Znrf1-/- mice have exacerbated lung barrier damage triggered by antiviral immunity, leading to enhanced susceptibility to respiratory bacterial superinfections. Our study highlights the c-Src-ZNRF1 axis as a negative feedback mechanism controlling TLR3 trafficking and the termination of TLR3 signaling.
Collapse
Affiliation(s)
- You-Sheng Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Chi Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tai-Ling Chao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ya-Min Tsai
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Jhen Jhuang
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yu-Hsin Ho
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Yu Lai
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ling Liu
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Chiung-Ya Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ching-Yen Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Chih-Yuan Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei City, Taiwan
| | - Li-Chung Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Salokas K, Liu X, Öhman T, Chowdhury I, Gawriyski L, Keskitalo S, Varjosalo M. Physical and functional interactome atlas of human receptor tyrosine kinases. EMBO Rep 2022; 23:e54041. [PMID: 35384245 PMCID: PMC9171411 DOI: 10.15252/embr.202154041] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 12/03/2022] Open
Abstract
Much cell-to-cell communication is facilitated by cell surface receptor tyrosine kinases (RTKs). These proteins phosphorylate their downstream cytoplasmic substrates in response to stimuli such as growth factors. Despite their central roles, the functions of many RTKs are still poorly understood. To resolve the lack of systematic knowledge, we apply three complementary methods to map the molecular context and substrate profiles of RTKs. We use affinity purification coupled to mass spectrometry (AP-MS) to characterize stable binding partners and RTK-protein complexes, proximity-dependent biotin identification (BioID) to identify transient and proximal interactions, and an in vitro kinase assay to identify RTK substrates. To identify how kinase interactions depend on kinase activity, we also use kinase-deficient mutants. Our data represent a comprehensive, systemic mapping of RTK interactions and substrates. This resource adds information regarding well-studied RTKs, offers insights into the functions of less well-studied RTKs, and highlights RTK-RTK interactions and shared signaling pathways.
Collapse
Affiliation(s)
- Kari Salokas
- Institute of BiotechnologyHiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Xiaonan Liu
- Institute of BiotechnologyHiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Tiina Öhman
- Institute of BiotechnologyHiLIFEUniversity of HelsinkiHelsinkiFinland
| | | | - Lisa Gawriyski
- Institute of BiotechnologyHiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Salla Keskitalo
- Institute of BiotechnologyHiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Markku Varjosalo
- Institute of BiotechnologyHiLIFEUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
3
|
Strous GJ, Almeida ADS, Putters J, Schantl J, Sedek M, Slotman JA, Nespital T, Hassink GC, Mol JA. Growth Hormone Receptor Regulation in Cancer and Chronic Diseases. Front Endocrinol (Lausanne) 2020; 11:597573. [PMID: 33312162 PMCID: PMC7708378 DOI: 10.3389/fendo.2020.597573] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
The GHR signaling pathway plays important roles in growth, metabolism, cell cycle control, immunity, homeostatic processes, and chemoresistance via both the JAK/STAT and the SRC pathways. Dysregulation of GHR signaling is associated with various diseases and chronic conditions such as acromegaly, cancer, aging, metabolic disease, fibroses, inflammation and autoimmunity. Numerous studies entailing the GHR signaling pathway have been conducted for various cancers. Diverse factors mediate the up- or down-regulation of GHR signaling through post-translational modifications. Of the numerous modifications, ubiquitination and deubiquitination are prominent events. Ubiquitination by E3 ligase attaches ubiquitins to target proteins and induces proteasomal degradation or starts the sequence of events that leads to endocytosis and lysosomal degradation. In this review, we discuss the role of first line effectors that act directly on the GHR at the cell surface including ADAM17, JAK2, SRC family member Lyn, Ubc13/CHIP, proteasome, βTrCP, CK2, STAT5b, and SOCS2. Activity of all, except JAK2, Lyn and STAT5b, counteract GHR signaling. Loss of their function increases the GH-induced signaling in favor of aging and certain chronic diseases, exemplified by increased lung cancer risk in case of a mutation in the SOCS2-GHR interaction site. Insight in their roles in GHR signaling can be applied for cancer and other therapeutic strategies.
Collapse
Affiliation(s)
- Ger J. Strous
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
- BIMINI Biotech B.V., Leiden, Netherlands
| | - Ana Da Silva Almeida
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Joyce Putters
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Julia Schantl
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Magdalena Sedek
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Johan A. Slotman
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Tobias Nespital
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Gerco C. Hassink
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Jan A. Mol
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
4
|
Huang JY, Lu HC. mGluR5 Tunes NGF/TrkA Signaling to Orient Spiny Stellate Neuron Dendrites Toward Thalamocortical Axons During Whisker-Barrel Map Formation. Cereb Cortex 2019; 28:1991-2006. [PMID: 28453662 DOI: 10.1093/cercor/bhx105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Indexed: 12/12/2022] Open
Abstract
Neurons receive and integrate synaptic inputs at their dendrites, thus dendritic patterning shapes neural connectivity and behavior. Aberrant dendritogenesis is present in neurodevelopmental disorders such as Down's syndrome and autism. Abnormal glutamatergic signaling has been observed in these diseases, as has dysfunction of the metabotropic glutamate receptor 5 (mGluR5). Deleting mGluR5 in cortical glutamatergic neurons disrupted their coordinated dendritic outgrowth toward thalamocortical axons and perturbed somatosensory circuits. Here we show that mGluR5 loss-of-function disrupts dendritogenesis of cortical neurons by increasing mRNA levels of nerve growth factor (NGF) and fibroblast growth factor 10 (FGF10), in part through calcium-permeable AMPA receptors (CP-AMPARs), as the whisker-barrel map is forming. Postnatal NGF and FGF10 expression in cortical layer IV spiny stellate neurons differentially impacted dendritic patterns. Remarkably, NGF-expressing neurons exhibited dendritic patterns resembling mGluR5 knockout neurons: increased total dendritic length/complexity and reduced polarity. Furthermore, suppressing the kinase activity of TrkA, a major NGF receptor, prevents aberrant dendritic patterning in barrel cortex of mGluR5 knockout neurons. These results reveal novel roles for NGF-TrkA signaling and CP-AMPARs for proper dendritic development of cortical neurons. This is the first in vivo demonstration that cortical neuronal NGF expression modulates dendritic patterning during postnatal brain development.
Collapse
Affiliation(s)
- Jui-Yen Huang
- Department of Psychological and Brain Sciences, the Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN 47405, USA.,The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hui-Chen Lu
- Department of Psychological and Brain Sciences, the Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN 47405, USA.,The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Lee S, Park S, Lee H, Han S, Song JM, Han D, Suh YH. Nedd4 E3 ligase and beta-arrestins regulate ubiquitination, trafficking, and stability of the mGlu7 receptor. eLife 2019; 8:44502. [PMID: 31373553 PMCID: PMC6690720 DOI: 10.7554/elife.44502] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 08/01/2019] [Indexed: 12/23/2022] Open
Abstract
The metabotropic glutamate receptor 7 (mGlu7) is a class C G protein-coupled receptor that modulates excitatory neurotransmitter release at the presynaptic active zone. Although post-translational modification of cellular proteins with ubiquitin is a key molecular mechanism governing protein degradation and function, mGlu7 ubiquitination and its functional consequences have not been elucidated yet. Here, we report that Nedd4 ubiquitin E3 ligase and β-arrestins regulate ubiquitination of mGlu7 in heterologous cells and rat neurons. Upon agonist stimulation, β-arrestins recruit Nedd4 to mGlu7 and facilitate Nedd4-mediated ubiquitination of mGlu7. Nedd4 and β-arrestins regulate constitutive and agonist-induced endocytosis of mGlu7 and are required for mGlu7-dependent MAPK signaling in neurons. In addition, Nedd4-mediated ubiquitination results in the degradation of mGlu7 by both the ubiquitin-proteasome system and the lysosomal degradation pathway. These findings provide a model in which Nedd4 and β-arrestin act together as a complex to regulate mGlu7 surface expression and function at presynaptic terminals.
Collapse
Affiliation(s)
- Sanghyeon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sunha Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyojin Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seulki Han
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Man Song
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Young Ho Suh
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Critchley WR, Pellet-Many C, Ringham-Terry B, Harrison MA, Zachary IC, Ponnambalam S. Receptor Tyrosine Kinase Ubiquitination and De-Ubiquitination in Signal Transduction and Receptor Trafficking. Cells 2018; 7:E22. [PMID: 29543760 PMCID: PMC5870354 DOI: 10.3390/cells7030022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 12/13/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are membrane-based sensors that enable rapid communication between cells and their environment. Evidence is now emerging that interdependent regulatory mechanisms, such as membrane trafficking, ubiquitination, proteolysis and gene expression, have substantial effects on RTK signal transduction and cellular responses. Different RTKs exhibit both basal and ligand-stimulated ubiquitination, linked to trafficking through different intracellular compartments including the secretory pathway, plasma membrane, endosomes and lysosomes. The ubiquitin ligase superfamily comprising the E1, E2 and E3 enzymes are increasingly implicated in this post-translational modification by adding mono- and polyubiquitin tags to RTKs. Conversely, removal of these ubiquitin tags by proteases called de-ubiquitinases (DUBs) enables RTK recycling for another round of ligand sensing and signal transduction. The endocytosis of basal and activated RTKs from the plasma membrane is closely linked to controlled proteolysis after trafficking and delivery to late endosomes and lysosomes. Proteolytic RTK fragments can also have the capacity to move to compartments such as the nucleus and regulate gene expression. Such mechanistic diversity now provides new opportunities for modulating RTK-regulated cellular responses in health and disease states.
Collapse
Affiliation(s)
- William R Critchley
- Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Caroline Pellet-Many
- Centre for Cardiovascular Biology & Medicine, Rayne Building, University College London, London WC1E 6PT, UK.
| | - Benjamin Ringham-Terry
- Centre for Cardiovascular Biology & Medicine, Rayne Building, University College London, London WC1E 6PT, UK.
| | | | - Ian C Zachary
- Centre for Cardiovascular Biology & Medicine, Rayne Building, University College London, London WC1E 6PT, UK.
| | - Sreenivasan Ponnambalam
- Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
7
|
Otero MG, Bessone IF, Hallberg AE, Cromberg LE, De Rossi MC, Saez TM, Levi V, Almenar-Queralt A, Falzone TL. Proteasome stress leads to APP axonal transport defects by promoting its amyloidogenic processing in lysosomes. J Cell Sci 2018; 131:jcs.214536. [DOI: 10.1242/jcs.214536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/25/2018] [Indexed: 01/25/2023] Open
Abstract
Alzheimer Disease (AD) pathology includes the accumulation of poly-ubiquitinated proteins and failures in proteasome-dependent degradation. Whereas the distribution of proteasomes and its role in synaptic function have been studied, whether proteasome activity regulates the axonal transport and metabolism of the amyloid precursor protein (APP), remains elusive. Using live imaging in primary hippocampal neurons, we showed that proteasome inhibition rapidly and severely impairs the axonal transport of APP. Fluorescent cross-correlation analyses and membrane internalization blockage showed that plasma membrane APP do not contribute to transport defects. Moreover, by western blots and double-color APP imaging we demonstrated that proteasome inhibition precludes APP axonal transport by enhancing its endo-lysosomal delivery where β-cleavage is induced. Together, we found that proteasomes controls the distal transport of APP and can re-distribute Golgi-derived vesicles to the endo-lysosomal pathway. This crosstalk between proteasomes and lysosomes regulates APP intracellular dynamics, and defects in proteasome activity can be considered a contributing factor that lead to abnormal APP metabolism in AD.
Collapse
Affiliation(s)
- María Gabriela Otero
- Instituto de Biología Celular y Neurociencias, IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires. Paraguay 2155, Buenos Aires, CP1121, Argentina
| | - Ivan Fernandez Bessone
- Instituto de Biología Celular y Neurociencias, IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires. Paraguay 2155, Buenos Aires, CP1121, Argentina
| | - Alan Earle Hallberg
- Instituto de Biología Celular y Neurociencias, IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires. Paraguay 2155, Buenos Aires, CP1121, Argentina
| | - Lucas Eneas Cromberg
- Instituto de Biología Celular y Neurociencias, IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires. Paraguay 2155, Buenos Aires, CP1121, Argentina
| | - María Cecilia De Rossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica-IQUIBICEN UBA-CONICET, CP1428EGA, Argentina
| | - Trinidad M. Saez
- Instituto de Biología Celular y Neurociencias, IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires. Paraguay 2155, Buenos Aires, CP1121, Argentina
- Instituto de Biología y Medicina Experimental, IBYME (CONICET). Vuelta de obligado 2490, Buenos Aires, CP 1428, Argentina
| | - Valeria Levi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica-IQUIBICEN UBA-CONICET, CP1428EGA, Argentina
| | - Angels Almenar-Queralt
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Tomás Luis Falzone
- Instituto de Biología Celular y Neurociencias, IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires. Paraguay 2155, Buenos Aires, CP1121, Argentina
- Instituto de Biología y Medicina Experimental, IBYME (CONICET). Vuelta de obligado 2490, Buenos Aires, CP 1428, Argentina
| |
Collapse
|
8
|
Sánchez-Sánchez J, Arévalo JC. A Review on Ubiquitination of Neurotrophin Receptors: Facts and Perspectives. Int J Mol Sci 2017; 18:ijms18030630. [PMID: 28335430 PMCID: PMC5372643 DOI: 10.3390/ijms18030630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 02/04/2023] Open
Abstract
Ubiquitination is a reversible post-translational modification involved in a plethora of different physiological functions. Among the substrates that are ubiquitinated, neurotrophin receptors (TrkA, TrkB, TrkC, and p75NTR) have been studied recently. TrkA is the most studied receptor in terms of its ubiquitination, and different E3 ubiquitin ligases and deubiquitinases have been implicated in its ubiquitination, whereas not much is known about the other neurotrophin receptors aside from their ubiquitination. Additional studies are needed that focus on the ubiquitination of TrkB, TrkC, and p75NTR in order to further understand the role of ubiquitination in their physiological and pathological functions. Here we review what is currently known regarding the ubiquitination of neurotrophin receptors and its physiological and pathological relevance.
Collapse
Affiliation(s)
- Julia Sánchez-Sánchez
- Department of Cell Biology and Pathology, Institute of Neuroscience Castile & Leon, University of Salamanca, 37007 Salamanca, Spain.
| | | |
Collapse
|
9
|
The de-ubiquitylating enzyme DUBA is essential for spermatogenesis in Drosophila. Cell Death Differ 2016; 23:2019-2030. [PMID: 27518434 DOI: 10.1038/cdd.2016.79] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 06/21/2016] [Accepted: 07/05/2016] [Indexed: 01/21/2023] Open
Abstract
De-ubiquitylating enzymes (DUBs) reverse protein ubiquitylation and thereby control essential cellular functions. Screening for a DUB that counteracts caspase ubiquitylation to regulate cell survival, we identified the Drosophila ovarian tumour-type DUB DUBA (CG6091). DUBA physically interacts with the initiator caspase death regulator Nedd2-like caspase (Dronc) and de-ubiquitylates it, thereby contributing to efficient inhibitor of apoptosis-antagonist-induced apoptosis in the fly eye. Searching also for non-apoptotic functions of DUBA, we found that Duba-null mutants are male sterile and display defects in spermatid individualisation, a process that depends on non-apoptotic caspase activity. Spermatids of DUBA-deficient flies showed reduced caspase activity and lack critical structures of the individualisation process. Biochemical characterisation revealed an obligate activation step of DUBA by phosphorylation. With genetic rescue experiments we demonstrate that DUBA phosphorylation and catalytic activity are crucial in vivo for DUBA function in spermatogenesis. Our results demonstrate for the first time the importance of de-ubiquitylation for fly spermatogenesis.
Collapse
|
10
|
Proenca CC, Song M, Lee FS. Differential effects of BDNF and neurotrophin 4 (NT4) on endocytic sorting of TrkB receptors. J Neurochem 2016; 138:397-406. [PMID: 27216821 DOI: 10.1111/jnc.13676] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 05/03/2016] [Accepted: 05/19/2016] [Indexed: 01/31/2023]
Abstract
Neurotrophins are a family of growth factors playing key roles in the survival, development, and function of neurons. The neurotrophins brain-derived neurotrophic factor (BDNF) and NT4 both bind to and activate TrkB receptors, however, they mediate distinct neuronal functions. The molecular mechanism of how TrkB activation by BDNF and NT4 leads to diverse outcomes is unknown. Here, we report that BDNF and NT4 lead to differential endocytic sorting of TrkB receptors resulting in diverse biological functions in cultured cortical neurons. Fluorescent microscopy and surface biotinylation experiments showed that both neurotrophins stimulate internalization of TrkB with similar kinetics. Exposure to BDNF for 2-3 h reduced the surface pool of TrkB receptors to half, whereas a longer treatment (4-5 h) with NT4 was necessary to achieve a similar level of down-regulation. Although BDNF and NT4 induced TrkB phosphorylation with similar intensities, BDNF induced more rapid ubiquitination and degradation of TrkB than NT4. Interestingly, TrkB receptor ubiquitination by these ligands have substantially different pH sensitivities, resulting in varying degrees of receptor ubiquitination at lower pH levels. Consequently, NT4 was capable of maintaining longer sustained downstream signaling activation that correlated with reduced TrkB ubiquitination at endosomal pH. Thus, by leading to altered endocytic trafficking itineraries for TrkB receptors, BDNF and NT4 elicit differential TrkB signaling in terms of duration, intensity, and specificity, which may contribute to their functional differences in vivo. The neurotrophins, brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT4), both bind to and activate TrkB receptors, however, they mediate distinct neuronal functions. Here, we propose that BDNF and NT4 lead to differential endocytic sorting of TrkB receptors resulting in diverse biological functions. BDNF induces more rapid ubiquitination and degradation of TrkB than NT4. Consequently, NT4 is capable of maintaining more sustained signaling downstream of TrkB receptors.
Collapse
Affiliation(s)
- Catia C Proenca
- Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Minseok Song
- Synaptic Circuit Plasticity Laboratory, Department of Structure & Function of Neural Network, Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, Korea
| | - Francis S Lee
- Department of Psychiatry, Weill Medical College of Cornell University, New York City, New York, USA.,Department of Pharmacology, Weill Medical College of Cornell University, New York City, New York, USA
| |
Collapse
|
11
|
Bal’ NV, Balaban PM. Ubiquitin-dependent protein degradation is necessary for long-term plasticity and memory. NEUROCHEM J+ 2015. [DOI: 10.1134/s1819712415040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Meabon JS, de Laat R, Ieguchi K, Serbzhinsky D, Hudson MP, Huber BR, Wiley JC, Bothwell M. Intracellular LINGO-1 negatively regulates Trk neurotrophin receptor signaling. Mol Cell Neurosci 2015; 70:1-10. [PMID: 26546150 DOI: 10.1016/j.mcn.2015.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 10/08/2015] [Accepted: 11/02/2015] [Indexed: 11/30/2022] Open
Abstract
Neurotrophins, essential regulators of many aspects of neuronal differentiation and function, signal via four receptors, p75, TrkA, TrkB and TrkC. The three Trk paralogs are members of the LIG superfamily of membrane proteins, which share extracellular domains consisting of leucine-rich repeat and C2 Ig domains. Another LIG protein, LINGO-1 has been reported to bind and influence signaling of p75 as well as TrkA, TrkB and TrkC. Here we examine the manner in which LINGO-1 influences the function of TrkA, TrkB and TrkC. We report that Trk activation promotes Trk association with LINGO-1, and that this association promotes Trk degradation by a lysosomal mechanism. This mechanism resembles the mechanism by which another LIG protein, LRIG1, promotes lysosomal degradation of receptor tyrosine kinases such as the EGF receptor. We present evidence indicating that the Trk/LINGO-1 interaction occurs, in part, within recycling endosomes. We show that a mutant form of LINGO-1, with much of the extracellular domain deleted, has the capacity to enhance TrkA signaling in PC12 cells, possibly by acting as an inhibitor of Trk down-regulation by full length LINGO-1. We propose that LINGO-1 functions as a negative feedback regulator of signaling by cognate receptor tyrosine kinases including TrkA, TrkB and TrkC.
Collapse
Affiliation(s)
- James S Meabon
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Mental Illness Research Education and Clinical Center, VA Medical Center, Seattle, WA 98108, USA
| | | | - Katsuaki Ieguchi
- Department of Pharmacology, Tokyo Women's Medical University, Tokyo, Japan
| | | | - Mark P Hudson
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, USA
| | - B Russel Huber
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jesse C Wiley
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Mark Bothwell
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
13
|
Li X, Lavigne P, Lavoie C. GGA3 mediates TrkA endocytic recycling to promote sustained Akt phosphorylation and cell survival. Mol Biol Cell 2015; 26:4412-26. [PMID: 26446845 PMCID: PMC4666136 DOI: 10.1091/mbc.e15-02-0087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/29/2015] [Indexed: 01/11/2023] Open
Abstract
GGA3 binds directly to the TrkA internal DXXLL motif and mediates TrkA endocytic recycling. This effect is dependent on the activation of Arf6. GGA3 is a key player in a novel DXXLL-mediated recycling machinery for TrkA, where it prolongs the activation of Akt signaling and survival responses. Although TrkA postendocytic sorting significantly influences neuronal cell survival and differentiation, the molecular mechanism underlying TrkA receptor sorting in the recycling or degradation pathways remains poorly understood. Here we demonstrate that Golgi-localized, γ adaptin-ear–containing ADP ribosylation factor-binding protein 3 (GGA3) interacts directly with the TrkA cytoplasmic tail through an internal DXXLL motif and mediates the functional recycling of TrkA to the plasma membrane. We find that GGA3 depletion by siRNA delays TrkA recycling, accelerates TrkA degradation, attenuates sustained NGF-induced Akt activation, and reduces cell survival. We also show that GGA3’s effect on TrkA recycling is dependent on the activation of Arf6. This work identifies GGA3 as a key player in a novel DXXLL-mediated endosomal sorting machinery that targets TrkA to the plasma membrane, where it prolongs the activation of Akt signaling and survival responses.
Collapse
Affiliation(s)
- Xuezhi Li
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Pierre Lavigne
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Christine Lavoie
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
14
|
Schmieg N, Thomas C, Yabe A, Lynch DS, Iglesias T, Chakravarty P, Schiavo G. Novel Kidins220/ARMS Splice Isoforms: Potential Specific Regulators of Neuronal and Cardiovascular Development. PLoS One 2015; 10:e0129944. [PMID: 26083449 PMCID: PMC4470590 DOI: 10.1371/journal.pone.0129944] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/14/2015] [Indexed: 01/19/2023] Open
Abstract
Kidins220/ARMS is a transmembrane protein playing a crucial role in neuronal and cardiovascular development. Kidins220/ARMS is a downstream target of neurotrophin receptors and interacts with several signalling and trafficking factors. Through computational modelling, we found two potential sites for alternative splicing of Kidins220/ARMS. The first is located between exon 24 and exon 29, while the second site replaces exon 32 by a short alternative terminal exon 33. Here we describe the conserved occurrence of several Kidins220/ARMS splice isoforms at RNA and protein levels. Kidins220/ARMS splice isoforms display spatio-temporal regulation during development with distinct patterns in different neuronal populations. Neurotrophin receptor stimulation in cortical and hippocampal neurons and neuroendocrine cells induces specific Kidins220/ARMS splice isoforms and alters the appearance kinetics of the full-length transcript. Remarkably, alternative terminal exon splicing generates Kidins220/ARMS variants with distinct cellular localisation: Kidins220/ARMS containing exon 32 is targeted to the plasma membrane and neurite tips, whereas Kidins220/ARMS without exon 33 mainly clusters the full-length protein in a perinuclear intracellular compartment in PC12 cells and primary neurons, leading to a change in neurotrophin receptor expression. Overall, this study demonstrates the existence of novel Kidins220/ARMS splice isoforms with unique properties, revealing additional complexity in the functional regulation of neurotrophin receptors, and potentially other signalling pathways involved in neuronal and cardiovascular development.
Collapse
Affiliation(s)
- Nathalie Schmieg
- Molecular Neuropathobiology Laboratory, Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
- The Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, United Kingdom
| | - Claire Thomas
- The Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, United Kingdom
| | - Arisa Yabe
- The Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, United Kingdom
| | - David S. Lynch
- Molecular Neuropathobiology Laboratory, Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
- Leonard Wolfson Centre for Experimental Neurology, University College London, 8 Queen Anne Street, London W1G 9LD, United Kingdom
| | - Teresa Iglesias
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid 28029, Spain
- CIBERNED (ISCIII), C/ Valderrebollo 5, Madrid 28031, Spain
| | - Probir Chakravarty
- The Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, United Kingdom
| | - Giampietro Schiavo
- Molecular Neuropathobiology Laboratory, Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Ceriani M, Amigoni L, D'Aloia A, Berruti G, Martegani E. The deubiquitinating enzyme UBPy/USP8 interacts with TrkA and inhibits neuronal differentiation in PC12 cells. Exp Cell Res 2015; 333:49-59. [PMID: 25662281 DOI: 10.1016/j.yexcr.2015.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/20/2015] [Accepted: 01/28/2015] [Indexed: 11/19/2022]
Abstract
The tropomyosin-related kinase (Trk) family of receptor tyrosine kinases controls synaptic function, plasticity and sustains differentiation, morphology, and neuronal cell survival. Understanding Trk receptors down-regulation and recycling is a crucial step to point out sympathetic and sensory neuron function and survival. PC12 cells derived from pheochromocytoma of the rat adrenal medulla have been widely used as a model system for studies of neuronal differentiation as they respond to nerve growth factor (NGF) with a dramatic change in phenotype and acquire a number of properties characteristic of sympathetic neurons. In this study we demonstrated that in PC12 cells the TrkA receptor interacts with the deubiquitinating enzyme USP8/UBPy in a NGF-dependent manner and that it is deubiquitinated in vivo and in vitro by USP8. USP8 overexpression blocked NGF-induced neurites outgrowth while the overexpression of the catalytically inactive mutant USP8/UBPy(C748A) caused a marked increase of cell differentiation. Localization and biochemical experiments have point out that USP8 and TrkA partially co-localize in endosomes after NGF stimulation. Finally we have studied the role played by USP8 on TrkA turnover; using specific siRNA for USP8 we found that USP8 knockdown increases TrkA half-life, suggesting that the deubiquitinating activity of USP8 promotes TrkA degradation.
Collapse
Affiliation(s)
- Michela Ceriani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Loredana Amigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Alessia D'Aloia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Giovanna Berruti
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Enzo Martegani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| |
Collapse
|
16
|
The role of rab proteins in neuronal cells and in the trafficking of neurotrophin receptors. MEMBRANES 2014; 4:642-77. [PMID: 25295627 PMCID: PMC4289860 DOI: 10.3390/membranes4040642] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/27/2014] [Accepted: 09/16/2014] [Indexed: 12/11/2022]
Abstract
Neurotrophins are a family of proteins that are important for neuronal development, neuronal survival and neuronal functions. Neurotrophins exert their role by binding to their receptors, the Trk family of receptor tyrosine kinases (TrkA, TrkB, and TrkC) and p75NTR, a member of the tumor necrosis factor (TNF) receptor superfamily. Binding of neurotrophins to receptors triggers a complex series of signal transduction events, which are able to induce neuronal differentiation but are also responsible for neuronal maintenance and neuronal functions. Rab proteins are small GTPases localized to the cytosolic surface of specific intracellular compartments and are involved in controlling vesicular transport. Rab proteins, acting as master regulators of the membrane trafficking network, play a central role in both trafficking and signaling pathways of neurotrophin receptors. Axonal transport represents the Achilles' heel of neurons, due to the long-range distance that molecules, organelles and, in particular, neurotrophin-receptor complexes have to cover. Indeed, alterations of axonal transport and, specifically, of axonal trafficking of neurotrophin receptors are responsible for several human neurodegenerative diseases, such as Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis and some forms of Charcot-Marie-Tooth disease. In this review, we will discuss the link between Rab proteins and neurotrophin receptor trafficking and their influence on downstream signaling pathways.
Collapse
|
17
|
Li B, Lu D, Shan L. Ubiquitination of pattern recognition receptors in plant innate immunity. MOLECULAR PLANT PATHOLOGY 2014; 15:737-746. [PMID: 25275148 PMCID: PMC4183980 DOI: 10.1111/mpp.12128] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Lacking an adaptive immune system, plants largely rely on plasma membrane-resident pattern recognition receptors (PRRs) to sense pathogen invasion. The activation of PRRs leads to the profound immune responses that coordinately contribute to the restriction of pathogen multiplication. Protein post-translational modifications dynamically shape the intensity and duration of the signalling pathways. In this review, we discuss the specific regulation of PRR activation and signalling by protein ubiquitination, endocytosis and degradation, with a particular focus on the bacterial flagellin receptor FLS2 (flagellin sensing 2) in Arabidopsis.
Collapse
Affiliation(s)
- Bo Li
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dongping Lu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Libo Shan
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
18
|
Terenzio M, Golding M, Russell MRG, Wicher KB, Rosewell I, Spencer-Dene B, Ish-Horowicz D, Schiavo G. Bicaudal-D1 regulates the intracellular sorting and signalling of neurotrophin receptors. EMBO J 2014; 33:1582-98. [PMID: 24920579 PMCID: PMC4198053 DOI: 10.15252/embj.201387579] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/14/2014] [Accepted: 04/23/2014] [Indexed: 12/31/2022] Open
Abstract
We have identified a new function for the dynein adaptor Bicaudal D homolog 1 (BICD1) by screening a siRNA library for genes affecting the dynamics of neurotrophin receptor-containing endosomes in motor neurons (MNs). Depleting BICD1 increased the intracellular accumulation of brain-derived neurotrophic factor (BDNF)-activated TrkB and p75 neurotrophin receptor (p75(NTR)) by disrupting the endosomal sorting, reducing lysosomal degradation and increasing the co-localisation of these neurotrophin receptors with retromer-associated sorting nexin 1. The resulting re-routing of active receptors increased their recycling to the plasma membrane and altered the repertoire of signalling-competent TrkB isoforms and p75(NTR) available for ligand binding on the neuronal surface. This resulted in attenuated, but more sustained, AKT activation in response to BDNF stimulation. These data, together with our observation that Bicd1 expression is restricted to the developing nervous system when neurotrophin receptor expression peaks, indicate that BICD1 regulates neurotrophin signalling by modulating the endosomal sorting of internalised ligand-activated receptors.
Collapse
Affiliation(s)
- Marco Terenzio
- Molecular NeuroPathobiology Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Matthew Golding
- Molecular NeuroPathobiology Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Matthew R G Russell
- Electron Microscopy Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Krzysztof B Wicher
- Developmental Genetics Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Ian Rosewell
- Transgenic Services laboratory, Cancer Research UK London Research Institute, London, UK
| | - Bradley Spencer-Dene
- Experimental Histopathology Laboratory, Cancer Research UK London Research Institute, London, UK
| | - David Ish-Horowicz
- Developmental Genetics Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Giampietro Schiavo
- Molecular NeuroPathobiology Laboratory, Cancer Research UK London Research Institute, London, UK Sobell Department of Motor Neuroscience & Movement Disorders, UCL-Institute of Neurology, University College London, London, UK
| |
Collapse
|
19
|
Garzón M, Duffy AM, Chan J, Lynch MK, Mackie K, Pickel VM. Dopamine D₂ and acetylcholine α7 nicotinic receptors have subcellular distributions favoring mediation of convergent signaling in the mouse ventral tegmental area. Neuroscience 2013; 252:126-43. [PMID: 23954803 DOI: 10.1016/j.neuroscience.2013.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 08/06/2013] [Accepted: 08/06/2013] [Indexed: 11/24/2022]
Abstract
Alpha7 nicotinic acetylcholine receptors (α7nAChRs) mediate nicotine-induced burst-firing of dopamine neurons in the ventral tegmental area (VTA), a limbic brain region critically involved in reward and in dopamine D2 receptor (D2R)-related cortical dysfunctions associated with psychosis. The known presence of α7nAChRs and Gi-coupled D2Rs in dopamine neurons of the VTA suggests that these receptors are targeted to at least some of the same neurons in this brain region. To test this hypothesis, we used electron microscopic immunolabeling of antisera against peptide sequences of α7nACh and D2 receptors in the mouse VTA. Dual D2R and α7nAChR labeling was seen in many of the same somata (co-localization over 97%) and dendrites (co-localization over 49%), where immunoreactivity for each of the receptors was localized to endomembranes as well as to non-synaptic or synaptic plasma membranes often near excitatory-type synapses. In comparison with somata and dendrites, many more small axons and axon terminals were separately labeled for each of the receptors. Thus, single-labeled axon terminals were predominant for both α7nAChR (57.9%) and D2R (89.0%). The majority of the immunolabeled axonal profiles contained D2R-immunoreactivity (81.6%) and formed either symmetric or asymmetric synapses consistent with involvement in the release of both inhibitory and excitatory transmitters. Of 160 D2R-labeled terminals, 81.2% were presynaptic to dendrites that expressed α7nAChR alone or together with the D2R. Numerous glial processes inclusive of those enveloping either excitatory- or inhibitory-type synapses also contained single labeling for D2R (n=152) and α7nAChR (n=561). These results suggest that classic antipsychotic drugs, all of which block the D2R, may facilitate α7nAChR-mediated burst-firing by elimination of D2R-dependent inhibition in neurons expressing both receptors as well as by indirect pre-synaptic and glial mechanisms.
Collapse
Affiliation(s)
- M Garzón
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065, USA; Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina UAM, Madrid 28029, Spain; Instituto de Investigación Hospital Universitario La Paz (IDIPAZ), Paseo de la Castellana 261, Madrid 28046, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Geetha T, Rege SD, Mathews SE, Meakin SO, White MF, Babu JR. Nerve growth factor receptor TrkA, a new receptor in insulin signaling pathway in PC12 cells. J Biol Chem 2013; 288:23807-13. [PMID: 23749991 DOI: 10.1074/jbc.m112.436279] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TrkA is a cell surface transmembrane receptor tyrosine kinase for nerve growth factor (NGF). TrkA has an NPXY motif and kinase regulatory loop similar to insulin receptor (INSR) suggesting that NGF→TrkA signaling might overlap with insulin→INSR signaling. During insulin or NGF stimulation TrkA, insulin receptor substrate-1 (IRS-1), INSR (and presumably other proteins) forms a complex in PC12 cells. In PC12 cells, tyrosine phosphorylation of INSR and IRS-1 is dependent upon the functional TrkA kinase domain. Moreover, expression of TrkA kinase-inactive mutant blocked the activation of Akt and Erk5 in response to insulin or NGF. Based on these data, we propose that TrkA participates in insulin signaling pathway in PC12 cells.
Collapse
Affiliation(s)
- Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, Alabama 36849,USA
| | | | | | | | | | | |
Collapse
|
21
|
Berta G, Harci A, Tarjányi O, Vecsernyés M, Balogh A, Pap M, Szeberényi J, Sétáló G. Partial rescue of geldanamycin-induced TrkA depletion by a proteasome inhibitor in PC12 cells. Brain Res 2013; 1520:70-9. [PMID: 23701727 DOI: 10.1016/j.brainres.2013.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/25/2013] [Accepted: 05/10/2013] [Indexed: 10/26/2022]
Abstract
In this work we tried to identify mechanisms that could explain how chemical inhibition of heat-shock protein 90 reduces nerve growth factor signaling in rat pheochromocytoma PC12 cells. Geldanamycin is an antibiotic originally discovered based on its ability to bind heat-shock protein 90. This interaction can lead to the disruption of heat-shock protein 90-containing multimolecular complexes. It can also induce the inhibition or even degradation of partner proteins dissociated from the 90 kDa chaperone and, eventually, can cause apoptosis, for instance, in PC12 cells. Before the onset of initial apoptotic events, however, a marked decrease in the activity of extracellular signal-regulated kinases ERK 1/2 and protein kinase B/Akt can be observed together with reduced expression of the high affinity nerve growth factor receptor, tropomyosine-related kinase, TrkA, in this cell type. The proteasome inhibitor MG-132 can effectively counteract the geldanamycin-induced reduction of TrkA expression and it can render TrkA and ERK1/2 phosphorylation but not that of protein kinase B/Akt by nerve growth factor again inducible. We have found altered intracellular distribution of TrkA in geldanamycin-treated and proteasome-inhibited PC12 cells that may, at least from the viewpoint of protein localization explain why nerve growth factor remains without effect on protein kinase B/Akt. The lack of protein kinase B/Akt stimulation by nerve growth factor in turn reveals why nerve growth factor treatment cannot save PC12 cells from geldanamycin-induced programmed cell death. Our observations can help to better understand the mechanism of action of geldanamycin, a compound with strong human therapeutical potential.
Collapse
Affiliation(s)
- Gergely Berta
- Department of Medical Biology, Medical School, University of Pécs, Pécs, Hungary H-7643, Pécs, Szigeti út 12., Hungary
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Disease-relevant proteostasis regulation of cystic fibrosis transmembrane conductance regulator. Cell Death Differ 2013; 20:1101-15. [PMID: 23686137 DOI: 10.1038/cdd.2013.46] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 01/20/2023] Open
Abstract
Mismanaged protein trafficking by the proteostasis network contributes to several conformational diseases, including cystic fibrosis, the most frequent lethal inherited disease in Caucasians. Proteostasis regulators, as cystamine, enable the beneficial action of cystic fibrosis transmembrane conductance regulator (CFTR) potentiators in ΔF508-CFTR airways beyond drug washout. Here we tested the hypothesis that functional CFTR protein can sustain its own plasma membrane (PM) stability. Depletion or inhibition of wild-type CFTR present in bronchial epithelial cells reduced the availability of the small GTPase Rab5 by causing Rab5 sequestration within the detergent-insoluble protein fraction together with its accumulation in aggresomes. CFTR depletion decreased the recruitment of the Rab5 effector early endosome antigen 1 to endosomes, thus reducing the local generation of phosphatidylinositol-3-phosphate. This diverts recycling of surface proteins, including transferrin receptor and CFTR itself. Inhibiting CFTR function also resulted in its ubiquitination and interaction with SQSTM1/p62 at the PM, favoring its disposal. Addition of cystamine prevented the recycling defect of CFTR by enhancing BECN1 expression and reducing SQSTM1 accumulation. Our results unravel an unexpected link between CFTR protein and function, the latter regulating the levels of CFTR surface expression in a positive feed-forward loop, and highlight CFTR as a pivot of proteostasis in bronchial epithelial cells.
Collapse
|
23
|
Poon WW, Carlos AJ, Aguilar BL, Berchtold NC, Kawano CK, Zograbyan V, Yaopruke T, Shelanski M, Cotman CW. β-Amyloid (Aβ) oligomers impair brain-derived neurotrophic factor retrograde trafficking by down-regulating ubiquitin C-terminal hydrolase, UCH-L1. J Biol Chem 2013; 288:16937-16948. [PMID: 23599427 DOI: 10.1074/jbc.m113.463711] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We previously found that BDNF-dependent retrograde trafficking is impaired in AD transgenic mouse neurons. Utilizing a novel microfluidic culture chamber, we demonstrate that Aβ oligomers compromise BDNF-mediated retrograde transport by impairing endosomal vesicle velocities, resulting in impaired downstream signaling driven by BDNF/TrkB, including ERK5 activation, and CREB-dependent gene regulation. Our data suggest that a key mechanism mediating the deficit involves ubiquitin C-terminal hydrolase L1 (UCH-L1), a deubiquitinating enzyme that functions to regulate cellular ubiquitin. Aβ-induced deficits in BDNF trafficking and signaling are mimicked by LDN (an inhibitor of UCH-L1) and can be reversed by increasing cellular UCH-L1 levels, demonstrated here using a transducible TAT-UCH-L1 strategy. Finally, our data reveal that UCH-L1 mRNA levels are decreased in the hippocampi of AD brains. Taken together, our data implicate that UCH-L1 is important for regulating neurotrophin receptor sorting to signaling endosomes and supporting retrograde transport. Further, our results support the idea that in AD, Aβ may down-regulate UCH-L1 in the AD brain, which in turn impairs BDNF/TrkB-mediated retrograde signaling, compromising synaptic plasticity and neuronal survival.
Collapse
Affiliation(s)
- Wayne W Poon
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697.
| | - Anthony J Carlos
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697
| | - Brittany L Aguilar
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697
| | - Nicole C Berchtold
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697
| | - Crystal K Kawano
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697
| | - Vahe Zograbyan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697
| | - Tim Yaopruke
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697
| | - Michael Shelanski
- Department of Pathology and the Taub Institute, Columbia University, New York, New York 10032
| | - Carl W Cotman
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697
| |
Collapse
|
24
|
Sidoryk-Wegrzynowicz M, Aschner M. Role of astrocytes in manganese mediated neurotoxicity. BMC Pharmacol Toxicol 2013; 14:23. [PMID: 23594835 PMCID: PMC3637816 DOI: 10.1186/2050-6511-14-23] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/10/2013] [Indexed: 01/08/2023] Open
Abstract
Astrocytes are responsible for numerous aspects of metabolic support, nutrition, control of the ion and neurotransmitter environment in central nervous system (CNS). Failure by astrocytes to support essential neuronal metabolic requirements plays a fundamental role in the pathogenesis of brain injury and the ensuing neuronal death. Astrocyte-neuron interactions play a central role in brain homeostasis, in particular via neurotransmitter recycling functions. Disruption of the glutamine (Gln)/glutamate (Glu) -γ-aminobutyric acid (GABA) cycle (GGC) between astrocytes and neurons contributes to changes in Glu-ergic and/or GABA-ergic transmission, and is associated with several neuropathological conditions, including manganese (Mn) toxicity. In this review, we discuss recent advances in support of the important roles for astrocytes in normal as well as neuropathological conditions primarily those caused by exposure to Mn.
Collapse
|
25
|
Haglund K, Dikic I. The role of ubiquitylation in receptor endocytosis and endosomal sorting. J Cell Sci 2013; 125:265-75. [PMID: 22357968 DOI: 10.1242/jcs.091280] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ligand-induced activation of transmembrane receptors activates intracellular signaling cascades that control vital cellular processes, such as cell proliferation, differentiation, migration and survival. Receptor signaling is modulated by several mechanisms to ensure that the correct biological outcome is achieved. One such mechanism, which negatively regulates receptor signaling, involves the modification of receptors with ubiquitin. This post-translational modification can promote receptor endocytosis and targets receptors for lysosomal degradation, thereby ensuring termination of receptor signaling. In this Commentary, we review the roles of ubiquitylation in receptor endocytosis and degradative endosomal sorting by drawing on the epidermal growth factor receptor (EGFR) as a well-studied example. Furthermore, we elaborate on the molecular basis of ubiquitin recognition along the endocytic pathway through compartment-specific ubiquitin-binding proteins and highlight how endocytic sorting machineries control these processes. In addition, we discuss the importance of ubiquitin-dependent receptor endocytosis for the maintenance of cellular homeostasis and in the prevention of diseases such as cancer.
Collapse
Affiliation(s)
- Kaisa Haglund
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0310 Oslo, Norway.
| | | |
Collapse
|
26
|
Bassoon and Piccolo maintain synapse integrity by regulating protein ubiquitination and degradation. EMBO J 2013; 32:954-69. [PMID: 23403927 DOI: 10.1038/emboj.2013.27] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 01/15/2013] [Indexed: 11/08/2022] Open
Abstract
The presynaptic active zone (AZ) is a specialized microdomain designed for the efficient and repetitive release of neurotransmitter. Bassoon and Piccolo are two high molecular weight components of the AZ, with hypothesized roles in its assembly and structural maintenance. However, glutamatergic synapses lacking either protein exhibit relatively minor defects, presumably due to their significant functional redundancy. In the present study, we have used interference RNAs to eliminate both proteins from glutamatergic synapses, and find that they are essential for maintaining synaptic integrity. Loss of Bassoon and Piccolo leads to the aberrant degradation of multiple presynaptic proteins, culminating in synapse degeneration. This phenotype is mediated in part by the E3 ubiquitin ligase Siah1, an interacting partner of Bassoon and Piccolo whose activity is negatively regulated by their conserved zinc finger domains. Our findings demonstrate a novel role for Bassoon and Piccolo as critical regulators of presynaptic ubiquitination and proteostasis.
Collapse
|
27
|
Karch CM, Jeng AT, Goate AM. Extracellular Tau levels are influenced by variability in Tau that is associated with tauopathies. J Biol Chem 2012; 287:42751-62. [PMID: 23105105 DOI: 10.1074/jbc.m112.380642] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tauopathies are a class of neurodegenerative diseases marked by intracellular aggregates of hyperphosphorylated Tau. These diseases may occur by sporadic mechanisms in which genetic variants represent risk factors for disease, as is the case in Alzheimer disease (AD). In AD, cerebrospinal fluid (CSF) levels of soluble Tau/pTau-181 are higher in cases compared with controls. A subset of frontotemporal dementia (FTD) cases occur by a familial mechanism in which MAPT, the gene that encodes Tau, mutations are dominantly inherited. In symptomatic FTD patients expressing a MAPT mutation, CSF Tau levels are slightly elevated but are significantly lower than in AD patients. We sought to model CSF Tau changes by measuring extracellular Tau in cultured cells. Full-length, monomeric extracellular total Tau and pTau-181 were detectable in human neuroblastoma cells expressing endogenous Tau, in human non-neuronal cells overexpressing wild-type Tau, and in mouse cortical neurons. Tau isoforms influence the rate of Tau release, whereby the N terminus (exons 2/3) and microtubule binding repeat length contribute to Tau release from the cell. Compared with cells overexpressing wild-type Tau, cells overexpressing FTD-associated MAPT mutations produce significantly less extracellular total Tau without altering intracellular total Tau levels. This study demonstrates that cells actively release Tau in the absence of disease or toxicity, and Tau release is modified by changes in the Tau protein that are associated with tauopathies.
Collapse
Affiliation(s)
- Celeste M Karch
- Department of Psychiatry and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
28
|
Clague M, Liu H, Urbé S. Governance of Endocytic Trafficking and Signaling by Reversible Ubiquitylation. Dev Cell 2012; 23:457-67. [DOI: 10.1016/j.devcel.2012.08.011] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/27/2012] [Accepted: 08/21/2012] [Indexed: 12/17/2022]
|
29
|
Meijer IMJ, van Rotterdam W, van Zoelen EJJ, van Leeuwen JEM. Recycling of EGFR and ErbB2 is associated with impaired Hrs tyrosine phosphorylation and decreased deubiquitination by AMSH. Cell Signal 2012; 24:1981-8. [PMID: 22800866 DOI: 10.1016/j.cellsig.2012.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/20/2012] [Accepted: 07/09/2012] [Indexed: 01/19/2023]
Abstract
ErbB receptors play an important role in normal cellular growth, differentiation and development, but overexpression or poor downregulation can result in enhanced signaling and cancerous growth. ErbB signaling is terminated by clathrin-dependent receptor-mediated endocytosis, followed by incorporation in multi-vesicular bodies and subsequent degradation in lysosomes. In contrast to EGFR, ErbB2 displays poor ligand-induced downregulation and enhanced recycling, but the molecular mechanisms underlying this difference are poorly understood. Given our previous observation that both EGFR and an EGFR-ErbB2 chimera undergo Cbl-mediated K63-polyubiquitination, we investigated in the present study whether activation of the EGFR and the EGFR-ErbB2 chimera is associated with tyrosine phosphorylation of the ESCRT-0 complex subunit Hrs and AMSH-mediated deubiquitination. EGF stimulation of the EGFR resulted in efficient Hrs tyrosine phosphorylation and deubiquitination by the K63-polyubiquitin chain-specific deubiquitinating enzyme AMSH. In contrast, EGF activation of EGFR-ErbB2 showed significantly decreased Hrs tyrosine phosphorylation and deubiquitination by AMSH. To test whether this phenotype is the result of endosomal recycling, we induced recycling of the EGFR by stimulation with TGFα. Indeed, even though TGFα-stimulation of EGFR is associated with efficient ligand-stimulated K63-polyubiquitination, we observed that Hrs tyrosine phosphorylation as well as AMSH-mediated deubiquitination is significantly reduced under these conditions. Using various EGFR-ErbB2 chimeras, we demonstrate that enhanced recycling, decreased Hrs tyrosine phosphorylation and decreased AMSH mediated deubiquitination of EGFR-ErbB2 chimeras is primarily due to the presence of ErbB2 sequences or the absence of EGFR sequences C-terminal to the Cbl binding site. We conclude that endosomal recycling of the EGFR and ErbB2 receptors is associated with significantly impaired tyrosine phosphorylation of the ESCRT-0 subunit Hrs as well as decreased deubiquitination by AMSH, which is consistent with the finding that recycling receptors are not efficiently incorporated in the MVB pathway.
Collapse
Affiliation(s)
- Inez M J Meijer
- Department of Cell & Applied Biology, Faculty of Science, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
30
|
Pryor S, McCaffrey G, Young LR, Grimes ML. NGF causes TrkA to specifically attract microtubules to lipid rafts. PLoS One 2012; 7:e35163. [PMID: 22496904 PMCID: PMC3319630 DOI: 10.1371/journal.pone.0035163] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/13/2012] [Indexed: 11/18/2022] Open
Abstract
Membrane protein sorting is mediated by interactions between proteins and lipids. One mechanism that contributes to sorting involves patches of lipids, termed lipid rafts, which are different from their surroundings in lipid and protein composition. Although the nerve growth factor (NGF) receptors, TrkA and p75(NTR) collaborate with each other at the plasma membrane to bind NGF, these two receptors are endocytosed separately and activate different cellular responses. We hypothesized that receptor localization in membrane rafts may play a role in endocytic sorting. TrkA and p75(NTR) both reside in detergent-resistant membranes (DRMs), yet they responded differently to a variety of conditions. The ganglioside, GM1, caused increased association of NGF, TrkA, and microtubules with DRMs, but a decrease in p75(NTR). When microtubules were induced to polymerize and attach to DRMs by in vitro reactions, TrkA, but not p75(NTR), was bound to microtubules in DRMs and in a detergent-resistant endosomal fraction. NGF enhanced the interaction between TrkA and microtubules in DRMs, yet tyrosine phosphorylated TrkA was entirely absent in DRMs under conditions where activated TrkA was detected in detergent-sensitive membranes and endosomes. These data indicate that TrkA and p75(NTR) partition into membrane rafts by different mechanisms, and that the fraction of TrkA that associates with DRMs is internalized but does not directly form signaling endosomes. Rather, by attracting microtubules to lipid rafts, TrkA may mediate other processes such as axon guidance.
Collapse
Affiliation(s)
- Shona Pryor
- Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand
| | - Gretchen McCaffrey
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Lindsay R. Young
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
- Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand
| | - Mark L. Grimes
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
- Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, United States of America
- * E-mail:
| |
Collapse
|
31
|
Abstract
Cullin-3 (Cul3) functions as a scaffolding protein in the Bric-a-brac, Tramtrack, Broad-complex (BTB)-Cul3-Rbx1 ubiquitin E3 ligase complex. Here, we report a previously undescribed role for Cul3 complexes in late endosome (LE) maturation. RNAi-mediated depletion of Cul3 results in a trafficking defect of two cargoes of the endolysosomal pathway, influenza A virus (IAV) and epidermal growth factor receptor (EGFR). IAV is able to reach an acidic endosomal compartment, coinciding with LE/lysosome (LY) markers. However, it remains trapped or the capsid is unable to uncoat after penetration into the cytosol. Similarly, activation and subsequent ubiquitination of EGFR appear normal, whereas downstream EGFR degradation is delayed and its ligand EGF accumulates in LE/LYs. Indeed, Cul3-depleted cells display severe morphological defects in LEs that could account for these trafficking defects; they accumulate acidic LE/LYs, and some cells become highly vacuolated, with enlarged Rab7-positive endosomes. Together, these results suggest a crucial role of Cul3 in regulating late steps in the endolysosomal trafficking pathway.
Collapse
|
32
|
Duffy AM, Fitzgerald ML, Chan J, Robinson DC, Milner TA, Mackie K, Pickel VM. Acetylcholine α7 nicotinic and dopamine D2 receptors are targeted to many of the same postsynaptic dendrites and astrocytes in the rodent prefrontal cortex. Synapse 2011; 65:1350-67. [PMID: 21858872 PMCID: PMC3356922 DOI: 10.1002/syn.20977] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The alpha-7 nicotinic acetylcholine receptor (α7nAChR) and the dopamine D(2) receptor (D(2) R) are both implicated in attentional processes and cognition, mediated in part through the prefrontal cortex (PFC). We examined the dual electron microscopic immunolabeling of α7nAChR and either D(2) R or the vesicular acetylcholine transporter (VAChT) in rodent PFC to assess convergent functional activation sites. Immunoreactivity (ir) for α7nAChR and/or D(2) R was seen in the same as well as separate neuronal and glial profiles. At least half of the dually labeled profiles were somata and dendrites, while most labeled axon terminals expressed only D(2) R-ir. The D(2) R-labeled terminals were without synaptic specializations or formed inhibitory or excitatory-type synapses with somatodendritic profiles, some of which expressed the α7nAChR and/or D(2) R. Astrocytic glial processes comprised the majority of nonsomatodendritic α7nAChR or α7nAChR and D(2) R-labeled profiles. Glial processes containing α7nAChR-ir were frequently located near VAChT-labeled terminals and also showed perisynaptic and perivascular associations. We conclude that in rodent PFC α7nACh and D(2) R activation can dually modulate (1) postsynaptic dendritic responses within the same or separate but synaptically linked neurons in which the D(2) R has the predominately presynaptic distribution, and (2) astrocytic signaling that may be crucial for synaptic transmission and functional hyperemia.
Collapse
Affiliation(s)
- Aine M. Duffy
- Department of Neurology and Neuroscience, Division of Neurobiology, Weill Cornell Medical College, New York, New York 10065
| | - Megan L. Fitzgerald
- Department of Neurology and Neuroscience, Division of Neurobiology, Weill Cornell Medical College, New York, New York 10065
| | - June Chan
- Department of Neurology and Neuroscience, Division of Neurobiology, Weill Cornell Medical College, New York, New York 10065
| | - Danielle C. Robinson
- Department of Neurology and Neuroscience, Division of Neurobiology, Weill Cornell Medical College, New York, New York 10065
| | - Teresa A. Milner
- Department of Neurology and Neuroscience, Division of Neurobiology, Weill Cornell Medical College, New York, New York 10065
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York 10065
| | - Kenneth Mackie
- Department of Psychological and Brain Sciences and the Gill Center, Indiana University, Bloomington, Indiana 47405
| | - Virginia M. Pickel
- Department of Neurology and Neuroscience, Division of Neurobiology, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|
33
|
Abstract
Being deeply connected to signalling, cell dynamics, growth, regulation, and defence, endocytic processes are linked to almost all aspects of cell life and disease. In this review, we focus on endosomes in the classical endocytic pathway, and on the programme of changes that lead to the formation and maturation of late endosomes/multivesicular bodies. The maturation programme entails a dramatic transformation of these dynamic organelles disconnecting them functionally and spatially from early endosomes and preparing them for their unidirectional role as a feeder pathway to lysosomes.
Collapse
|
34
|
Song EJ, Yoo YS. Nerve growth factor-induced neurite outgrowth is potentiated by stabilization of TrkA receptors. BMB Rep 2011; 44:182-6. [PMID: 21429296 DOI: 10.5483/bmbrep.2011.44.3.182] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Exogenous stimuli such as nerve growth factor (NGF) exert their effects on neurite outgrowth via Trk neurotrophin receptors. TrkA receptors are known to be ubiquitinated via proteasome inhibition in the presence of NGF. However, the effect of proteasome inhibition on neurite outgrowth has not been studied extensively. To clarify these issues, we investigated signaling events in PC12 cells treated with NGF and the proteasome inhibitor MG132. We found that MG132 facilitated NGF-induced neurite outgrowth and potentiated the phosphorylation of the extracellular signal-regulated kinase/mitogen- activated protein kinase (ERK/MAPK) and phosphatidylinositol- 3-kinase (PI3K)/AKT pathways and TrkA receptors. MG132 stimulated internalization of surface TrkA receptor and stabilized intracellular TrkA receptor, and the Ub(K63) chain was found to be essential for stability. These results indicate that the ubiquitin-proteasome system potentiated neurite formation by regulating the stability of TrkA receptors.
Collapse
Affiliation(s)
- Eun Joo Song
- Integrated Omics Center, Life Health Division, Korea Institute of Science and Technology, Seoul, Korea
| | | |
Collapse
|
35
|
Takahashi Y, Shimokawa N, Esmaeili-Mahani S, Morita A, Masuda H, Iwasaki T, Tamura J, Haglund K, Koibuchi N. Ligand-induced downregulation of TrkA is partly regulated through ubiquitination by Cbl. FEBS Lett 2011; 585:1741-7. [PMID: 21570973 DOI: 10.1016/j.febslet.2011.04.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 01/13/2023]
Abstract
Nerve growth factor (NGF) binding to its receptor TrkA, which belongs to the family of receptor tyrosine kinases (RTKs), is known to induce its internalization, endosomal trafficking and subsequent lysosomal degradation. The Cbl family of ubiquitin ligases plays a major role in mediating ubiquitination and degradation of RTKs. However, it is not known whether Cbl participates in mediating ubiquitination of TrkA. Here we report that c-Cbl mediates ligand-induced ubiquitination and degradation of TrkA. TrkA ubiquitination and degradation required direct interactions between c-Cbl and phosphorylated TrkA. c-Cbl and ubiquitinated TrkA are found in a complex after NGF stimulation and are degraded in lysosomes. Taken together, our data demonstrate that c-Cbl can induce downregulation of NGF-TrkA complexes through ubiquitination and degradation of TrkA.
Collapse
Affiliation(s)
- Yuga Takahashi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Georgieva MV, de Pablo Y, Sanchis D, Comella JX, Llovera M. Ubiquitination of TrkA by Nedd4-2 regulates receptor lysosomal targeting and mediates receptor signaling. J Neurochem 2011; 117:479-93. [PMID: 21332718 DOI: 10.1111/j.1471-4159.2011.07218.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nerve growth factor receptor TrkA (tropomyosin-related kinase receptor) participates in the survival and differentiation of several neuronal populations. The C-terminal tail of TrkA contains a PPXY motif, the binding site of the E3 ubiquitin-ligase Nedd4-2 (neural precursor cell expressed, developmentally down-regulated 4-2). In order to analyze the role of Nedd4-2 ubiquitination on TrkA function, we generated three TrkA mutants, by introducing point mutations on conserved hydrophobic amino acids - Leu784 and Val790 switched to Ala. TrkA mutants co-localized and co-immunoprecipitated more efficiently with Nedd4-2 and consequently a strong increase in the basal multimonoubiquitination of the mutant receptors was observed. In addition, we found a decrease in TrkA abundance because of the preferential sorting of mutant receptors towards the late endosome/lysosome pathway instead of recycling back to the plasma membrane. Despite the reduction in the amount of membrane receptor caused by the C-terminal changes, TrkA mutants were able to activate signaling cascades and were even more efficient in promoting neurite outgrowth than the wild-type receptor. Our results demonstrate that the C-terminal tail hydrophobicity of TrkA regulates Nedd4-2 binding and activity and therefore controls receptor turnover. In addition, TrkA multimonoubiquitination does not interfere with the activation of signaling cascades, but rather potentiates receptor signaling leading to differentiation.
Collapse
Affiliation(s)
- Maya V Georgieva
- Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, Lleida, Spain
| | | | | | | | | |
Collapse
|
37
|
Lin A, Hou Q, Jarzylo L, Amato S, Gilbert J, Shang F, Man HY. Nedd4-mediated AMPA receptor ubiquitination regulates receptor turnover and trafficking. J Neurochem 2011; 119:27-39. [PMID: 21338354 DOI: 10.1111/j.1471-4159.2011.07221.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
α-Amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptors (AMPARs) are the primary mediators of excitatory synaptic transmission in the brain. Alterations in AMPAR localization and turnover have been considered critical mechanisms underpinning synaptic plasticity and higher brain functions, but the molecular processes that control AMPAR trafficking and stability are still not fully understood. Here, we report that mammalian AMPARs are subject to ubiquitination in neurons and in transfected heterologous cells. Ubiquitination facilitates AMPAR endocytosis, leading to a reduction in AMPAR cell-surface localization and total receptor abundance. Mutation of lysine residues to arginine residues at the glutamate receptor subunit 1 (GluA1) C-terminus dramatically reduces GluA1 ubiquitination and abolishes ubiquitin-dependent GluA1 internalization and degradation, indicating that the lysine residues, particularly K868, are sites of ubiquitination. We also find that the E3 ligase neural precursor cell expressed, developmentally down-regulated 4 (Nedd4) is enriched in synaptosomes and co-localizes and associates with AMPARs in neurons. Nedd4 expression leads to AMPAR ubiquitination, leading to reduced AMPAR surface expression and suppressed excitatory synaptic transmission. Conversely, knockdown of Nedd4 by specific siRNAs abolishes AMPAR ubiquitination. These data indicate that Nedd4 is the E3 ubiquitin ligase responsible for AMPAR ubiquitination, a modification that regulates multiple aspects of AMPAR molecular biology including trafficking, localization and stability.
Collapse
Affiliation(s)
- Amy Lin
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Sun T, Guo J, Shallow H, Yang T, Xu J, Li W, Hanson C, Wu JG, Li X, Massaeli H, Zhang S. The role of monoubiquitination in endocytic degradation of human ether-a-go-go-related gene (hERG) channels under low K+ conditions. J Biol Chem 2010; 286:6751-9. [PMID: 21177251 DOI: 10.1074/jbc.m110.198408] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A reduction in extracellular K(+) concentration ([K(+)](o)) causes cardiac arrhythmias and triggers internalization of the cardiac rapidly activating delayed rectifier potassium channel (I(Kr)) encoded by the human ether-a-go-go-related gene (hERG). We investigated the role of ubiquitin (Ub) in endocytic degradation of hERG channels stably expressed in HEK cells. Under low K(+) conditions, UbKO, a lysine-less mutant Ub that only supports monoubiquitination, preferentially interacted and selectively enhanced degradation of the mature hERG channels. Overexpression of Vps24 protein, also known as charged multivesicular body protein 3, significantly accelerated degradation of mature hERG channels, whereas knockdown of Vps24 impeded this process. Moreover, the lysosomal inhibitor bafilomycin A1 inhibited degradation of the internalized mature hERG channels. Thus, monoubiquitination directs mature hERG channels to degrade through the multivesicular body/lysosome pathway. Interestingly, the protease inhibitor lactacystin inhibited the low K(+)-induced hERG endocytosis and concomitantly led to an accumulation of monoubiquitinated mature hERG channels, suggesting that deubiquitination is also required for the endocytic degradation. Consistently, overexpression of the endosomal deubiquitinating enzyme signal transducing adaptor molecule-binding protein significantly accelerated whereas knockdown of endogenous signal transducing adaptor molecule-binding protein impeded degradation of the mature hERG channels under low K(+) conditions. Thus, monoubiquitin dynamically mediates endocytic degradation of mature hERG channels under low K(+) conditions.
Collapse
Affiliation(s)
- Tao Sun
- Department of Physiology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci 2010; 30:6838-51. [PMID: 20484626 DOI: 10.1523/jneurosci.5699-09.2010] [Citation(s) in RCA: 881] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
alpha-Synuclein is central in Parkinson's disease pathogenesis. Although initially alpha-synuclein was considered a purely intracellular protein, recent data suggest that it can be detected in the plasma and CSF of humans and in the culture media of neuronal cells. To address a role of secreted alpha-synuclein in neuronal homeostasis, we have generated wild-type alpha-synuclein and beta-galactosidase inducible SH-SY5Y cells. Soluble oligomeric and monomeric species of alpha-synuclein are readily detected in the conditioned media (CM) of these cells at concentrations similar to those observed in human CSF. We have found that, in this model, alpha-synuclein is secreted by externalized vesicles in a calcium-dependent manner. Electron microscopy and liquid chromatography-mass spectrometry proteomic analysis demonstrate that these vesicles have the characteristic hallmarks of exosomes, secreted intraluminar vesicles of multivesicular bodies. Application of CM containing secreted alpha-synuclein causes cell death of recipient neuronal cells, which can be reversed after alpha-synuclein immunodepletion from the CM. High- and low-molecular-weight alpha-synuclein species, isolated from this CM, significantly decrease cell viability. Importantly, treatment of the CM with oligomer-interfering compounds before application rescues the recipient neuronal cells from the observed toxicity. Our results show for the first time that cell-produced alpha-synuclein is secreted via an exosomal, calcium-dependent mechanism and suggest that alpha-synuclein secretion serves to amplify and propagate Parkinson's disease-related pathology.
Collapse
|
41
|
Hausott B, Kurnaz I, Gajovic S, Klimaschewski L. Signaling by neuronal tyrosine kinase receptors: relevance for development and regeneration. Anat Rec (Hoboken) 2010; 292:1976-85. [PMID: 19943349 DOI: 10.1002/ar.20964] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Receptor tyrosine kinase activation by binding of neurotrophic factors determines neuronal morphology and identity, migration of neurons to appropriate destinations, and integration into functional neural circuits as well as synapse formation with appropriate targets at the right time and at the right place. This review summarizes the most important aspects of intraneuronal signaling mechanisms and induced gene expression changes that underlie morphological and neurochemical consequences of receptor tyrosine kinase activation in central and peripheral neurons.
Collapse
Affiliation(s)
- Barbara Hausott
- Division of Neuroanatomy, Medical University Innsbruck, Muellerstrasse 59, Innsbruck, Austria
| | | | | | | |
Collapse
|
42
|
The neuroblastoma tumour-suppressor TrkAI and its oncogenic alternative TrkAIII splice variant exhibit geldanamycin-sensitive interactions with Hsp90 in human neuroblastoma cells. Oncogene 2009; 28:4075-94. [PMID: 19734938 DOI: 10.1038/onc.2009.256] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hsp90 chaperones stabilize many tyrosine kinases including several oncogenes, which are inhibited or induced to degrade by the Hsp90 inhibitor geldanamycin (GA). As a consequence, GA has been developed for future chemotherapeutic use in several tumour types including neuroblastoma (NB). Alternative splicing of the neurotrophin receptor tyrosine kinase TrkA may have a pivotal function in regulating NB behaviour, with reports suggesting that tumour-suppressing signals from TrkA may be converted to oncogenic signals by stress-regulated alternative TrkAIII splicing. Within this context, it is important to know whether Hsp90 interacts with TrkA variants in NB cells and how GA influences this. Here, we report that both TrkAI and TrkAIII are Hsp90 clients in human NB cells. TrkAI exhibits GA-sensitive interaction with Hsp90 required for receptor endoplasmic reticulum export, maturation, cell surface stabilization and ligand-mediated activation, whereas TrkAIII exhibits GA-sensitive interactions with Hsp90 required for spontaneous activity and to a lesser extent stability. We show that GA inhibits proliferation and induces apoptosis of TrkAI expressing NB cells, whereas TrkAIII reduces the sensitivity of NB cells to GA-induced elimination. Our data suggest that GA-sensitive interactions with Hsp90 are critical for both TrkAI tumour suppressor and TrkAIII oncogenic function in NB and that TrkAIII expression exerts a negative impact on GA-induced NB cell eradication, which can be counteracted by a novel TrkAIII-specific peptide nucleic acid inhibitor.
Collapse
|
43
|
Guo J, Massaeli H, Xu J, Jia Z, Wigle JT, Mesaeli N, Zhang S. Extracellular K+ concentration controls cell surface density of IKr in rabbit hearts and of the HERG channel in human cell lines. J Clin Invest 2009; 119:2745-57. [PMID: 19726881 DOI: 10.1172/jci39027] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 06/10/2009] [Indexed: 12/19/2022] Open
Abstract
Although the modulation of ion channel gating by hormones and drugs has been extensively studied, much less is known about how cell surface ion channel expression levels are regulated. Here, we demonstrate that the cell surface density of both the heterologously expressed K+ channel encoded by the human ether-a-go-go-related gene (HERG) and its native counterpart, the rapidly activating delayed rectifier K+ channel (IKr), in rabbit hearts in vivo is precisely controlled by extracellular K+ concentration ([K+]o) within a physiologically relevant range. Reduction of [K+]o led to accelerated internalization and degradation of HERG channels within hours. Confocal analysis revealed colocalization between HERG and ubiquitin during the process of HERG internalization, and overexpression of ubiquitin facilitated HERG degradation under low [K+]o. The HERG channels colocalized with a marker of multivesicular bodies during internalization, and the internalized HERG channels were targeted to lysosomes. Our results provide the first evidence to our knowledge that the cell surface density of a voltage-gated K+ channel, HERG, is regulated by a biological factor, extracellular K+. Because hypokalemia is known to exacerbate long QT syndrome (LQTS) and Torsades de pointes tachyarrhythmias, our findings provide a potential mechanistic link between hypokalemia and LQTS.
Collapse
Affiliation(s)
- Jun Guo
- Department of Physiology, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
44
|
Moises T, Wüller S, Saxena S, Senderek J, Weis J, Krüttgen A. Proteasomal inhibition alters the trafficking of the neurotrophin receptor TrkA. Biochem Biophys Res Commun 2009; 387:360-4. [PMID: 19607811 DOI: 10.1016/j.bbrc.2009.07.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 07/09/2009] [Indexed: 01/07/2023]
Abstract
Neurotrophin receptors of the Trk family promote neuronal survival. The signal transduction of Trk receptors is regulated by endosomal trafficking. Monoubiquitination of receptor tyrosine kinases is an established signal for sorting of internalized receptors to late endosomes. The NGF receptor TrkA is sorted to late endosomes and undergoes ubiquitination, indicating a so far undefined regulatory role of proteasomal activity in the trafficking of TrkA. Surprisingly, we found that proteasomal inhibition alters the trafficking of TrkA from the late endosomal sorting pathway to the recycling pathway. Many neurodegenerative diseases are associated with impaired proteasomal activity. Thus, our study suggests that missorting of neurotrophic receptors might contribute to neuronal death in those neurodegenerative diseases that are known to be associated with impaired proteasomal function.
Collapse
Affiliation(s)
- T Moises
- Dept of Neuropathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Down-regulating protein kinase C alpha: functional cooperation between the proteasome and the endocytic system. Cell Signal 2009; 21:1607-19. [PMID: 19586612 DOI: 10.1016/j.cellsig.2009.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 05/31/2009] [Accepted: 06/26/2009] [Indexed: 11/23/2022]
Abstract
Ubiquitination, proteasome, caveolae and endosomes have been implicated in controlling protein kinase C alpha (PKC alpha) down-regulation. However, the molecular mechanism remained obscure. Here we show that endosomes and proteasome cooperate in phorbol ester 12-O-tetradecanoyl phorbol acetate (TPA)-induced down-regulation of PKC alpha. We show that following TPA treatment and translocation to the plasma membrane, PKC alpha undergoes multimonoubiquitination prior to its degradation by the proteasome. However, to reach the proteasome, PKC alpha must travel through the endocytic system from early to late endosomes. This route requires functional endosomes, whereby endosomal alkalinization, or ablation, abrogates completely PKC alpha degradation maintaining the enzyme at the plasma membrane. This route also depends on synaptotagmin (Syt) II and the Rab7 GTPase, whereby Syt II knock-down or expression of the GDP-locked Rab7 inactive mutant prevents PKC alpha degradation. We further show that proteasome plays a dual role, where an active proteasome is required for deubiquitination of PKC alpha, a step crucial to prevent PKC alpha targeting to the endocytic recycling compartment. Finally, we show that the association with rafts-localized cell surface proteins that internalize in a clathrin-independent fashion is necessary to allow the trafficking of PKC alpha from the plasma membrane to the proteasome, its ultimate degradation station.
Collapse
|
46
|
Liu H, Buus R, Clague MJ, Urbé S. Regulation of ErbB2 receptor status by the proteasomal DUB POH1. PLoS One 2009; 4:e5544. [PMID: 19436748 PMCID: PMC2677670 DOI: 10.1371/journal.pone.0005544] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Accepted: 04/15/2009] [Indexed: 12/14/2022] Open
Abstract
Understanding the factors, which control ErbB2 and EGF receptor (EGFR) status in cells is likely to inform future therapeutic approaches directed at these potent oncogenes. ErbB2 is resistant to stimulus-induced degradation and high levels of over-expression can inhibit EGF receptor down-regulation. We now show that for HeLa cells expressing similar numbers of EGFR and ErbB2, EGFR down-regulation is efficient and insensitive to reduction of ErbB2 levels. Deubiquitinating enzymes (DUBs) may extend protein half-lives by rescuing ubiquitinated substrates from proteasomal degradation or from ubiquitin-dependent lysosomal sorting. Using a siRNA library directed at the full complement of human DUBs, we identified POH1 (also known as Rpn11 or PSMD14), a component of the proteasome lid, as a critical DUB controlling the apparent ErbB2 levels. Moreover, the effects on ErbB2 levels can be reproduced by administration of proteasomal inhibitors such as epoxomicin used at maximally tolerated doses. However, the extent of this apparent loss and specificity for ErbB2 versus EGFR could not be accounted for by changes in transcription or degradation rate. Further investigation revealed that cell surface ErbB2 levels are only mildly affected by POH1 knock-down and that the apparent loss can at least partially be explained by the accumulation of higher molecular weight ubiquitinated forms of ErbB2 that are detectable with an extracellular but not intracellular domain directed antibody. We propose that POH1 may deubiquitinate ErbB2 and that this activity is not necessarily coupled to proteasomal degradation.
Collapse
Affiliation(s)
- Han Liu
- Physiological Laboratory, School of Biomedical Sciences, Liverpool, United Kingdom
| | - Richard Buus
- Physiological Laboratory, School of Biomedical Sciences, Liverpool, United Kingdom
| | - Michael J. Clague
- Physiological Laboratory, School of Biomedical Sciences, Liverpool, United Kingdom
- * E-mail: (MJC); (SU)
| | - Sylvie Urbé
- Physiological Laboratory, School of Biomedical Sciences, Liverpool, United Kingdom
- * E-mail: (MJC); (SU)
| |
Collapse
|
47
|
Geetha T, Seibenhener ML, Chen L, Madura K, Wooten MW. p62 serves as a shuttling factor for TrkA interaction with the proteasome. Biochem Biophys Res Commun 2008; 374:33-7. [PMID: 18598672 DOI: 10.1016/j.bbrc.2008.06.082] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 06/19/2008] [Indexed: 10/21/2022]
Abstract
The scaffold protein p62 is involved in internalization and trafficking of TrkA. The receptor is deubiquitinated by the proteasomes prior to degradation by lysosomes. Here we demonstrate that p62 serves as a shuttling protein for interaction of ubiquitinated TrkA with Rpt1, one of the six ATPases of 19S regulatory particle of the 26S proteasome. In p62(-/-) mouse brain TrkA failed to interact with the Rpt1. The interaction of TrkA with Rpt1 was reduced in proteasomes isolated from p62(-/-) brain, but was restored by addition of p62. The UBA domain of p62 interacts with TrkA and its PB1/UbL domain with AAA-ATPase cassette in the C-terminal region of Rpt1. Last, neurotrophin-dependent turnover of TrkA was impaired by reduction in the level of p62. These findings reveal that p62 serves as a shuttling factor for interaction of ubiquitinated substrates with the proteasome and could promote localized protein turnover in neurons.
Collapse
Affiliation(s)
- Thangiah Geetha
- Department of Biological Sciences, Program in Cellular and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | |
Collapse
|