1
|
Anglès F, Gupta V, Wang C, Balch WE. COPII cage assembly factor Sec13 integrates information flow regulating endomembrane function in response to human variation. Sci Rep 2024; 14:10160. [PMID: 38698045 PMCID: PMC11065896 DOI: 10.1038/s41598-024-60687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
How information flow is coordinated for managing transit of 1/3 of the genome through endomembrane pathways by the coat complex II (COPII) system in response to human variation remains an enigma. By examining the interactome of the COPII cage-assembly component Sec13, we show that it is simultaneously associated with multiple protein complexes that facilitate different features of a continuous program of chromatin organization, transcription, translation, trafficking, and degradation steps that are differentially sensitive to Sec13 levels. For the trafficking step, and unlike other COPII components, reduction of Sec13 expression decreased the ubiquitination and degradation of wild-type (WT) and F508del variant cargo protein cystic fibrosis transmembrane conductance regulator (CFTR) leading to a striking increase in fold stability suggesting that the events differentiating export from degradation are critically dependent on COPII cage assembly at the ER Golgi intermediate compartment (ERGIC) associated recycling and degradation step linked to COPI exchange. Given Sec13's multiple roles in protein complex assemblies that change in response to its expression, we suggest that Sec13 serves as an unanticipated master regulator coordinating information flow from the genome to the proteome to facilitate spatial covariant features initiating and maintaining design and function of membrane architecture in response to human variation.
Collapse
Affiliation(s)
- Frédéric Anglès
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Vijay Gupta
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Chao Wang
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - William E Balch
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
2
|
Piccolo D, Zarouchlioti C, Bellingham J, Guarascio R, Ziaka K, Molday RS, Cheetham ME. A Proximity Complementation Assay to Identify Small Molecules That Enhance the Traffic of ABCA4 Misfolding Variants. Int J Mol Sci 2024; 25:4521. [PMID: 38674104 PMCID: PMC11050442 DOI: 10.3390/ijms25084521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
ABCA4-related retinopathy is the most common inherited Mendelian eye disorder worldwide, caused by biallelic variants in the ATP-binding cassette transporter ABCA4. To date, over 2200 ABCA4 variants have been identified, including missense, nonsense, indels, splice site and deep intronic defects. Notably, more than 60% are missense variants that can lead to protein misfolding, mistrafficking and degradation. Currently no approved therapies target ABCA4. In this study, we demonstrate that ABCA4 misfolding variants are temperature-sensitive and reduced temperature growth (30 °C) improves their traffic to the plasma membrane, suggesting the folding of these variants could be rescuable. Consequently, an in vitro platform was developed for the rapid and robust detection of ABCA4 traffic to the plasma membrane in transiently transfected cells. The system was used to assess selected candidate small molecules that were reported to improve the folding or traffic of other ABC transporters. Two candidates, 4-PBA and AICAR, were identified and validated for their ability to enhance both wild-type ABCA4 and variant trafficking to the cell surface in cell culture. We envision that this platform could serve as a primary screen for more sophisticated in vitro testing, enabling the discovery of breakthrough agents to rescue ABCA4 protein defects and mitigate ABCA4-related retinopathy.
Collapse
Affiliation(s)
- Davide Piccolo
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (D.P.); (C.Z.); (R.G.); (K.Z.)
| | - Christina Zarouchlioti
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (D.P.); (C.Z.); (R.G.); (K.Z.)
| | - James Bellingham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (D.P.); (C.Z.); (R.G.); (K.Z.)
| | - Rosellina Guarascio
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (D.P.); (C.Z.); (R.G.); (K.Z.)
| | - Kalliopi Ziaka
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (D.P.); (C.Z.); (R.G.); (K.Z.)
| | - Robert S. Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Michael E. Cheetham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (D.P.); (C.Z.); (R.G.); (K.Z.)
| |
Collapse
|
3
|
Ferreira FC, Amaral MD, Bacalhau M, Lopes-Pacheco M. PTI-801 (posenacaftor) shares a common mechanism with VX-445 (elexacaftor) to rescue p.Phe508del-CFTR. Eur J Pharmacol 2024; 967:176390. [PMID: 38336013 DOI: 10.1016/j.ejphar.2024.176390] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/05/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
The deletion of a phenylalanine at position 508 (p.Phe508del) in the CFTR anion channel is the most prevalent variant in people with Cystic Fibrosis (CF). This variant impairs folding and stability of the CF transmembrane conductance regulator (CFTR) protein, resulting in its defective trafficking and premature degradation. Over the last years, therapeutic accomplishments have been attained in developing small molecules that partially correct p.Phe508del-CFTR defects; however, the mechanism of action (MoA) of these compounds has only started to be uncovered. In this study, we employed biochemical, fluorescence microscopy, and functional assays to examine the efficacy and properties of PTI-801, a newly developed p.Phe508del-CFTR corrector. To exploit its MoA, we assessed PTI-801 effects in combination with low temperature, genetic revertants of p.Phe508del-CFTR (the in cis p.Val510Asp, p.Gly550Glu, p.Arg1070Trp, and 4RK) and other correctors. Our results demonstrated that PTI-801 rescues p.Phe508del-CFTR processing, PM trafficking, and channel function (upon agonist stimulation) with greater correction effects in combination with ABBV-2222, FDL-169, VX-661, or VX-809, but not with VX-445. Although PTI-801 exhibited no potentiator activity on low temperature- and corrector-rescued p.Phe508del-CFTR, this compound displayed similar behavior to that of VX-445 on genetic revertants. Such evidence associated with the lack of additivity when PTI-801 and VX-445 were combined indicates that they share a common binding site to correct p.Phe508del-CFTR defects. Despite the high efficacy of PTI-801 in combination with ABBV-2222, FDL-169, VX-661, or VX-809, these dual corrector combinations only partially restored p.Phe508del-CFTR conformational stability, as shown by the lower half-life of the mutant protein compared to that of WT-CFTR. In summary, PTI-801 likely shares a common MoA with VX-445 in rescuing p.Phe508del-CFTR, thus being a feasible alternative for the development of novel corrector combinations with greater capacity to rescue mutant CFTR folding and stability.
Collapse
Affiliation(s)
- Filipa C Ferreira
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Margarida D Amaral
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Mafalda Bacalhau
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal.
| |
Collapse
|
4
|
Nimer RM, Abdel Rahman AM. Recent advances in proteomic-based diagnostics of cystic fibrosis. Expert Rev Proteomics 2023; 20:151-169. [PMID: 37766616 DOI: 10.1080/14789450.2023.2258282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/06/2023] [Indexed: 09/29/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a genetic disease characterized by thick and sticky mucus accumulation, which may harm numerous internal organs. Various variables such as gene modifiers, environmental factors, age of diagnosis, and CF transmembrane conductance regulator (CFTR) gene mutations influence phenotypic disease diversity. Biomarkers that are based on genomic information may not accurately represent the underlying mechanism of the disease as well as its lethal complications. Therefore, recent advancements in mass spectrometry (MS)-based proteomics may provide deep insights into CF mechanisms and cellular functions by examining alterations in the protein expression patterns from various samples of individuals with CF. AREAS COVERED We present current developments in MS-based proteomics, its application, and findings in CF. In addition, the future roles of proteomics in finding diagnostic and prognostic novel biomarkers. EXPERT OPINION Despite significant advances in MS-based proteomics, extensive research in a large cohort for identifying and validating diagnostic, prognostic, predictive, and therapeutic biomarkers for CF disease is highly needed.
Collapse
Affiliation(s)
- Refat M Nimer
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Anas M Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Shao W, Sun K, Ma T, Jiang H, Hahn M, Ma Z, Jiao C, Yin Y. SUMOylation regulates low-temperature survival and oxidative DNA damage tolerance in Botrytis cinerea. THE NEW PHYTOLOGIST 2023; 238:817-834. [PMID: 36651012 DOI: 10.1111/nph.18748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
SUMOylation as one of the protein post-translational modifications plays crucial roles in multiple biological processes of eukaryotic organisms. Botrytis cinerea is a devastating fungal pathogen and capable of infecting plant hosts at low temperature. However, the molecular mechanisms of low-temperature adaptation are largely unknown in fungi. Combining with biochemical methods and biological analyses, we report that SUMOylation regulates pathogen survival at low temperature and oxidative DNA damage response during infection in B. cinerea. The heat shock protein (Hsp70) BcSsb and E3 ubiquitin ligase BcRad18 were identified as substrates of SUMOylation; moreover, their SUMOylation both requires a single unique SUMO-interacting motif (SIM). SUMOylated BcSsb regulates β-tubulin accumulation, thereby affecting the stability of microtubules and consequently mycelial growth at low temperature. On the contrary, SUMOylated BcRad18 modulates mono-ubiquitination of the sliding clamp protein proliferating cell nuclear antigen (PCNA), which is involved in response to oxidative DNA damage during infection. Our study uncovers the molecular mechanisms of SUMOylation-mediated low-temperature survival and oxidative DNA damage tolerance during infection in a devastating fungal pathogen, which provides novel insights into low-temperature adaptation and pathogenesis for postharvest pathogens as well as new targets for inhibitor invention in disease control.
Collapse
Affiliation(s)
- Wenyong Shao
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Kewei Sun
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Tianling Ma
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Huixian Jiang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Matthias Hahn
- Department of Biology, University of Kaiserslautern, PO Box 3049, 67653, Kaiserslautern, Germany
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Chen Jiao
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yanni Yin
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
6
|
Bacalhau M, Ferreira FC, Kmit A, Souza FR, da Silva VD, Pimentel AS, Amaral MD, Buarque CD, Lopes-Pacheco M. Identification of novel F508del-CFTR traffic correctors among triazole derivatives. Eur J Pharmacol 2022; 938:175396. [PMID: 36410419 DOI: 10.1016/j.ejphar.2022.175396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
The most prevalent cystic fibrosis (CF)-causing mutation - F508del - impairs the folding of CFTR protein, resulting in its defective trafficking and premature degradation. Small molecules termed correctors may rescue F508del-CFTR and therefore constitute promising pharmacotherapies acting on the fundamental cause of the disease. Here, we screened a collection of triazole compounds to identify novel F508del-CFTR correctors. The functional primary screen identified four hit compounds (LSO-18, LSO-24, LSO-28, and LSO-39), which were further validated and demonstrated to rescue F508del-CFTR processing, plasma membrane trafficking, and function. To interrogate their mechanism of action (MoA), we examined their additivity to the clinically approved drugs VX-661 and VX-445, low temperature, and genetic revertants of F508del-CFTR. Rescue of F508del-CFTR processing and function by LSO-18, LSO-24, and LSO-28, but not by LSO-39, was additive to VX-661, whereas LSO-28 and LSO-39, but not LSO-18 nor LSO-24, were additive to VX-445. All compounds under investigation demonstrated additive rescue of F508del-CFTR processing and function to low temperature as well as to rescue by genetic revertants G550E and 4RK. Nevertheless, none of these compounds was able to rescue processing nor function of DD/AA-CFTR, and LSO-39 (similarly to VX-661) exhibited no additivity to genetic revertant R1070W. From these findings, we suggest that LSO-39 (like VX-661) has a putative binding site at the NBD1:ICL4 interface, LSO-18 and LSO-24 seem to share the MoA with VX-445, and LSO-28 appears to act by a different MoA. Altogether, these findings represent an encouraging starting point to further exploit this chemical series for the development of novel CFTR correctors.
Collapse
Affiliation(s)
- Mafalda Bacalhau
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Filipa C Ferreira
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Arthur Kmit
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Felipe R Souza
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
| | - Verônica D da Silva
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
| | - André S Pimentel
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
| | - Margarida D Amaral
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Camilla D Buarque
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
7
|
Anglès F, Wang C, Balch WE. Spatial covariance analysis reveals the residue-by-residue thermodynamic contribution of variation to the CFTR fold. Commun Biol 2022; 5:356. [PMID: 35418593 PMCID: PMC9008016 DOI: 10.1038/s42003-022-03302-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/21/2022] [Indexed: 12/21/2022] Open
Abstract
Although the impact of genome variation on the thermodynamic properties of function on the protein fold has been studied in vitro, it remains a challenge to assign these relationships across the entire polypeptide sequence in vivo. Using the Gaussian process regression based principle of Spatial CoVariance, we globally assign on a residue-by-residue basis the biological thermodynamic properties that contribute to the functional fold of CFTR in the cell. We demonstrate the existence of a thermodynamically sensitive region of the CFTR fold involving the interface between NBD1 and ICL4 that contributes to its export from endoplasmic reticulum. At the cell surface a new set of residues contribute uniquely to the management of channel function. These results support a general 'quality assurance' view of global protein fold management as an SCV principle describing the differential pre- and post-ER residue interactions contributing to compartmentalization of the energetics of the protein fold for function. Our results set the stage for future analyses of the quality systems managing protein sequence-to-function-to-structure broadly encompassing genome design leading to protein function in complex cellular relationships responsible for diversity and fitness in biology in response to the environment.
Collapse
Affiliation(s)
- Frédéric Anglès
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Chao Wang
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - William E Balch
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
8
|
Prins S, Corradi V, Sheppard DN, Tieleman DP, Vergani P. Can two wrongs make a right? F508del-CFTR ion channel rescue by second-site mutations in its transmembrane domains. J Biol Chem 2022; 298:101615. [PMID: 35065958 PMCID: PMC8861112 DOI: 10.1016/j.jbc.2022.101615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/20/2022] Open
Abstract
Deletion of phenylalanine 508 (F508del) in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel is the most common cause of cystic fibrosis. The F508 residue is located on nucleotide-binding domain 1 (NBD1) in contact with the cytosolic extensions of the transmembrane helices, in particular intracellular loop 4 (ICL4). To investigate how absence of F508 at this interface impacts the CFTR protein, we carried out a mutagenesis scan of ICL4 by introducing second-site mutations at 11 positions in cis with F508del. Using an image-based fluorescence assay, we measured how each mutation affected membrane proximity and ion-channel function. The scan strongly validated the effectiveness of R1070W at rescuing F508del defects. Molecular dynamics simulations highlighted two features characterizing the ICL4/NBD1 interface of F508del/R1070W-CFTR: flexibility, with frequent transient formation of interdomain hydrogen bonds, and loosely stacked aromatic sidechains (F1068, R1070W, and F1074, mimicking F1068, F508, and F1074 in WT CFTR). F508del-CFTR displayed a distorted aromatic stack, with F1068 displaced toward the space vacated by F508, while in F508del/R1070F-CFTR, which largely retained F508del defects, R1070F could not form hydrogen bonds and the interface was less flexible. Other ICL4 second-site mutations which partially rescued F508del-CFTR included F1068M and F1074M. Methionine side chains allow hydrophobic interactions without the steric rigidity of aromatic rings, possibly conferring flexibility to accommodate the absence of F508 and retain a dynamic interface. These studies highlight how both hydrophobic interactions and conformational flexibility might be important at the ICL4/NBD1 interface, suggesting possible structural underpinnings of F508del-induced dysfunction.
Collapse
Affiliation(s)
- Stella Prins
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Valentina Corradi
- Department of Biological Sciences, Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - D Peter Tieleman
- Department of Biological Sciences, Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada
| | - Paola Vergani
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
9
|
Zhang R, Liu W, Zeng J, Meng J, Jiang H, Wang J, Xing D. Niemann-Pick C1-Like 1 inhibitors for reducing cholesterol absorption. Eur J Med Chem 2022; 230:114111. [DOI: 10.1016/j.ejmech.2022.114111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 12/15/2022]
|
10
|
Zhu YM, Li Q, Gao X, Li YF, Liu YL, Dai P, Li XP. Familial Temperature-Sensitive Auditory Neuropathy: Distinctive Clinical Courses Caused by Variants of the OTOF Gene. Front Cell Dev Biol 2021; 9:732930. [PMID: 34692690 PMCID: PMC8529165 DOI: 10.3389/fcell.2021.732930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To investigate the clinical course and genetic etiology of familial temperature-sensitive auditory neuropathy (TSAN), which is a very rare subtype of auditory neuropathy (AN) that involves an elevation of hearing thresholds due to an increase in the core body temperature, and to evaluate the genotype-phenotype correlations in a family with TSAN. Methods: Six members of a non-consanguineous Chinese family, including four siblings complaining of communication difficulties when febrile, were enrolled in this study. The clinical and audiological profiles of the four siblings were fully evaluated during both febrile and afebrile episodes, and the genetic etiology of hearing loss (HL) was explored using next-generation sequencing (NGS) technology. Their parents, who had no complaints of fluctuating HL due to body temperature variation, were enrolled for the genetics portion only. Results: Audiological tests during the patients' febrile episodes met the classical diagnostic criteria for AN, including mild HL, poor speech discrimination, preserved cochlear microphonics (CMs), and absent auditory brainstem responses (ABRs). Importantly, unlike the pattern observed in previously reported cases of TSAN, the ABRs and electrocochleography (ECochG) signals of our patients improved to normal during afebrile periods. Genetic analysis identified a compound heterozygous variant of the OTOF gene (which encodes the otoferlin protein), including one previously reported pathogenic variant, c.5098G > C (p.Glu1700Gln), and one novel variant, c.4882C > A (p.Pro1628Thr). Neither of the identified variants affected the C2 domains related to the main function of otoferlin. Both variants faithfully cosegregated with TSAN within the pedigree, suggesting that OTOF is the causative gene of the autosomal recessive trait segregation in this family. Conclusion: The presence of CMs with absent (or markedly abnormal) ABRs is a reliable criterion for diagnosing AN. The severity of the phenotype caused by dysfunctional neurotransmitter release in TSAN may reflect variants that alter the C2 domains of otoferlin. The observations from this study enrich the current understanding of the phenotype and genotype of TSAN and may lay a foundation for further research on its pathogenesis.
Collapse
Affiliation(s)
- Yi-Ming Zhu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Qi Li
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xue Gao
- Department of Otolaryngology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yan-Fei Li
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - You-Li Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pu Dai
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
| | - Xiang-Ping Li
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Li JV, Ng CA, Cheng D, Zhou Z, Yao M, Guo Y, Yu ZY, Ramaswamy Y, Ju LA, Kuchel PW, Feneley MP, Fatkin D, Cox CD. Modified N-linked glycosylation status predicts trafficking defective human Piezo1 channel mutations. Commun Biol 2021; 4:1038. [PMID: 34489534 PMCID: PMC8421374 DOI: 10.1038/s42003-021-02528-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Mechanosensitive channels are integral membrane proteins that sense mechanical stimuli. Like most plasma membrane ion channel proteins they must pass through biosynthetic quality control in the endoplasmic reticulum that results in them reaching their destination at the plasma membrane. Here we show that N-linked glycosylation of two highly conserved asparagine residues in the 'cap' region of mechanosensitive Piezo1 channels are necessary for the mature protein to reach the plasma membrane. Both mutation of these asparagines (N2294Q/N2331Q) and treatment with an enzyme that hydrolyses N-linked oligosaccharides (PNGaseF) eliminates the fully glycosylated mature Piezo1 protein. The N-glycans in the cap are a pre-requisite for N-glycosylation in the 'propeller' regions, which are present in loops that are essential for mechanotransduction. Importantly, trafficking-defective Piezo1 variants linked to generalized lymphatic dysplasia and bicuspid aortic valve display reduced fully N-glycosylated Piezo1 protein. Thus the N-linked glycosylation status in vitro correlates with efficient membrane trafficking and will aid in determining the functional impact of Piezo1 variants of unknown significance.
Collapse
Affiliation(s)
- Jinyuan Vero Li
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Chai-Ann Ng
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Delfine Cheng
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Zijing Zhou
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Mingxi Yao
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Yang Guo
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Ze-Yan Yu
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Yogambha Ramaswamy
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Camperdown, NSW, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Camperdown, NSW, Australia
| | - Philip W Kuchel
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Michael P Feneley
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
- Department of Cardiology, St Vincent's Hospital, Sydney, Australia
| | - Diane Fatkin
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Charles D Cox
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia.
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
12
|
Prins S, Langron E, Hastings C, Hill EJ, Stefan AC, Griffin LD, Vergani P. Fluorescence assay for simultaneous quantification of CFTR ion-channel function and plasma membrane proximity. J Biol Chem 2020; 295:16529-16544. [PMID: 32934006 PMCID: PMC7864054 DOI: 10.1074/jbc.ra120.014061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/21/2020] [Indexed: 11/21/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma membrane anion channel that plays a key role in controlling transepithelial fluid movement. Excessive activation results in intestinal fluid loss during secretory diarrheas, whereas CFTR mutations underlie cystic fibrosis (CF). Anion permeability depends both on how well CFTR channels work (permeation/gating) and on how many are present at the membrane. Recently, treatments with two drug classes targeting CFTR-one boosting ion-channel function (potentiators) and the other increasing plasma membrane density (correctors)-have provided significant health benefits to CF patients. Here, we present an image-based fluorescence assay that can rapidly and simultaneously estimate both CFTR ion-channel function and the protein's proximity to the membrane. We monitor F508del-CFTR, the most common CF-causing variant, and confirm rescue by low temperature, CFTR-targeting drugs and second-site revertant mutation R1070W. In addition, we characterize a panel of 62 CF-causing mutations. Our measurements correlate well with published data (electrophysiology and biochemistry), further confirming validity of the assay. Finally, we profile effects of acute treatment with approved potentiator drug VX-770 on the rare-mutation panel. Mapping the potentiation profile on CFTR structures raises mechanistic hypotheses on drug action, suggesting that VX-770 might allow an open-channel conformation with an alternative arrangement of domain interfaces. The assay is a valuable tool for investigation of CFTR molecular mechanisms, allowing accurate inferences on gating/permeation. In addition, by providing a two-dimensional characterization of the CFTR protein, it could better inform development of single-drug and precision therapies addressing the root cause of CF disease.
Collapse
Affiliation(s)
- Stella Prins
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom
| | - Emily Langron
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom
| | - Cato Hastings
- CoMPLEX, University College London, London, United Kingdom
| | - Emily J Hill
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom
| | - Andra C Stefan
- Natural Sciences, University College London, London, United Kingdom
| | | | - Paola Vergani
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom.
| |
Collapse
|
13
|
Hodos RA, Strub MD, Ramachandran S, Li L, McCray PB, Dudley JT. Integrative genomic meta-analysis reveals novel molecular insights into cystic fibrosis and ΔF508-CFTR rescue. Sci Rep 2020; 10:20553. [PMID: 33239626 PMCID: PMC7689470 DOI: 10.1038/s41598-020-76347-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF), caused by mutations to CFTR, leads to severe and progressive lung disease. The most common mutant, ΔF508-CFTR, undergoes proteasomal degradation, extinguishing its anion channel function. Numerous in vitro interventions have been identified to partially rescue ΔF508-CFTR function yet remain poorly understood. Improved understanding of both the altered state of CF cells and the mechanisms of existing rescue strategies could reveal novel therapeutic strategies. Toward this aim, we measured transcriptional profiles of established temperature, genetic, and chemical interventions that rescue ΔF508-CFTR and also re-analyzed public datasets characterizing transcription in human CF vs. non-CF samples from airway and whole blood. Meta-analysis yielded a core disease signature and two core rescue signatures. To interpret these through the lens of prior knowledge, we compiled a "CFTR Gene Set Library" from literature. The core disease signature revealed remarkably strong connections to genes with established effects on CFTR trafficking and function and suggested novel roles of EGR1 and SGK1 in the disease state. Our data also revealed an unexpected mechanistic link between several genetic rescue interventions and the unfolded protein response. Finally, we found that C18, an analog of the CFTR corrector compound Lumacaftor, induces almost no transcriptional perturbation despite its rescue activity.
Collapse
Affiliation(s)
- Rachel A Hodos
- Mount Sinai School of Medicine, Institute for Next Generation Healthcare, New York, NY, USA
- Courant Institute for Mathematical Sciences, New York University, New York, NY, USA
- BenevolentAI, Brooklyn, NY, USA
| | - Matthew D Strub
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA
| | - Shyam Ramachandran
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Editas Medicine, Cambridge, MA, USA
| | - Li Li
- Mount Sinai School of Medicine, Institute for Next Generation Healthcare, New York, NY, USA
- Sema4, Stamford, CT, USA
| | - Paul B McCray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA.
| | - Joel T Dudley
- Mount Sinai School of Medicine, Institute for Next Generation Healthcare, New York, NY, USA.
| |
Collapse
|
14
|
Subramanian K, Hutt DM, Scott SM, Gupta V, Mao S, Balch WE. Correction of Niemann-Pick type C1 trafficking and activity with the histone deacetylase inhibitor valproic acid. J Biol Chem 2020; 295:8017-8035. [PMID: 32354745 DOI: 10.1074/jbc.ra119.010524] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is primarily caused by mutations in the NPC1 gene and is characterized by the accumulation of unesterified cholesterol and lipids in the late endosomal (LE) and lysosomal (Ly) compartments. The most prevalent disease-linked mutation is the I1061T variant of NPC1, which exhibits defective folding and trafficking from the endoplasmic reticulum to the LE/Ly compartments. We now show that the FDA-approved histone deacetylase inhibitor (HDACi) valproic acid (VPA) corrects the folding and trafficking defect associated with I1061T-NPC1 leading to restoration of cholesterol homeostasis, an effect that is largely driven by a reduction in HDAC7 expression. The VPA-mediated trafficking correction is in part associated with an increase in the acetylation of lysine residues in the cysteine-rich domain of NPC1. The HDACi-mediated correction is synergistically improved by combining it with the FDA-approved anti-malarial, chloroquine, a known lysosomotropic compound, which improved the stability of the LE/Ly-localized fraction of the I1061T variant. We posit that combining the activity of VPA, to modulate epigenetically the cellular acetylome, with chloroquine, to alter the lysosomal environment to favor stability of the trafficked I1061T variant protein can have a significant therapeutic benefit in patients carrying at least one copy of the I1061T variant of NPC1, the most common disease-associated mutation leading to NPC disease. Given its ability to cross the blood-brain barrier, we posit VPA provides a potential mechanism to improve the response to 2-hydroxypropyl-β-cyclodextrin, by restoring a functional NPC1 to the cholesterol managing compartment as an adjunct therapy.
Collapse
Affiliation(s)
| | - Darren M Hutt
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Samantha M Scott
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Vijay Gupta
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Shu Mao
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA
| | - William E Balch
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| |
Collapse
|
15
|
van Mourik P, Beekman JM, van der Ent CK. Intestinal organoids to model cystic fibrosis. Eur Respir J 2019; 54:13993003.02379-2018. [PMID: 31023844 DOI: 10.1183/13993003.02379-2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/07/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Peter van Mourik
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
16
|
Kumari N, Kumar A, Thapa BR, Modi M, Pal A, Prasad R. Characterization of mutation spectrum and identification of novel mutations in ATP7B gene from a cohort of Wilson disease patients: Functional and therapeutic implications. Hum Mutat 2018; 39:1926-1941. [PMID: 30120852 DOI: 10.1002/humu.23614] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022]
Abstract
Wilson disease (WD), a copper metabolism disorder, occurs due to the presence of mutations in the gene encoding ATP7B, a protein that primarily facilitates hepatic copper excretion. A better understanding of spectrum and functional significance of ATP7B variants is critical to formulating targeted and personalized therapies. Henceforth, we screened and sequenced 21 exons of ATP7B gene from 50 WD patients and 60 healthy subjects. We identified 28 variants comprising, seven novels in 20% alleles, while eight variations affecting 23% alleles were first time reported in Indian cohort. The c.813C>A, p.(Cys271*) (10%) was the most frequent mutation. Bioinformatics analysis revealed five of seven novel variants viz. c.1600C>A, p.(Pro534Thr); c.1616C>A, p.(Pro539His); c.1924G>T, p.(Asp642Tyr); c.2168G>C, p.(Arg723Thr); c.2174G>C, p.(Arg725Thr) resulted in protein misfolding. Sequence conservation analysis of ATP7B regions containing novel variants documented an evolutionarily conserved nature. Functional analysis of these novel variants in five different cell lines lacking inherent ATP7B expression demonstrated sensitivity to CuCl2 -treatment, experiencing augmented cellular copper retention and decreased copper excretion as well as ceruloplasmin secretion to that of wildtype-ATP7B expressing cells. Interestingly, pharmacological chaperone 4-phenylbutyrate, a clinically approved compound, partially restored protein function of ATP7B mutants. These findings might enable novel treatment strategies in WD by clinically enhancing the protein expression of mutant ATP7B with residual copper export activity.
Collapse
Affiliation(s)
- Niti Kumari
- Department of Biochemistry, PGIMER, Chandigarh, India
| | - Aman Kumar
- Department of Biochemistry, PGIMER, Chandigarh, India
| | - Babu Ram Thapa
- Department of Paediatrics Gastroenterology, PGIMER, Chandigarh, India
| | - Manish Modi
- Department of Neurology, PGIMER, Chandigarh, India
| | - Arnab Pal
- Department of Biochemistry, PGIMER, Chandigarh, India
| | | |
Collapse
|
17
|
Oldoni F, van Capelleveen JC, Dalila N, Wolters JC, Heeren J, Sinke RJ, Hui DY, Dallinga-Thie GM, Frikke-Schmidt R, Hovingh KG, van de Sluis B, Tybjærg-Hansen A, Kuivenhoven JA. Naturally Occurring Variants in LRP1 (Low-Density Lipoprotein Receptor-Related Protein 1) Affect HDL (High-Density Lipoprotein) Metabolism Through ABCA1 (ATP-Binding Cassette A1) and SR-B1 (Scavenger Receptor Class B Type 1) in Humans. Arterioscler Thromb Vasc Biol 2018; 38:1440-1453. [PMID: 29853565 PMCID: PMC6023722 DOI: 10.1161/atvbaha.117.310309] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— Studies into the role of LRP1 (low-density lipoprotein receptor–related protein 1) in human lipid metabolism are scarce. Although it is known that a common variant in LRP1 (rs116133520) is significantly associated with HDL-C (high-density lipoprotein cholesterol), the mechanism underlying this observation is unclear. In this study, we set out to study the functional effects of 2 rare LRP1 variants identified in subjects with extremely low HDL-C levels. Approach and Results— In 2 subjects with HDL-C below the first percentile for age and sex and moderately elevated triglycerides, we identified 2 rare variants in LRP1: p.Val3244Ile and p.Glu3983Asp. Both variants decrease LRP1 expression and stability. We show in a series of translational experiments that these variants culminate in reduced trafficking of ABCA1 (ATP-binding cassette A1) to the cell membrane. This is accompanied by an increase in cell surface expression of SR-B1 (scavenger receptor class B type 1). Combined these effects may contribute to low HDL-C levels in our study subjects. Supporting these findings, we provide epidemiological evidence that rs116133520 is associated with apo (apolipoprotein) A1 but not with apoB levels. Conclusions— This study provides the first evidence that rare variants in LRP1 are associated with changes in human lipid metabolism. Specifically, this study shows that LRP1 may affect HDL metabolism by virtue of its effect on both ABCA1 and SR-B1.
Collapse
Affiliation(s)
- Federico Oldoni
- From the Department of Pediatrics, Section of Molecular Genetics, University Medical Centre Groningen, University of Groningen, The Netherlands (F.O., J.C.W., B.v.d.S., J.A.K.)
| | | | - Nawar Dalila
- Department of Clinical Biochemistry, Rigshospitalet (N.D., R.F.-S., A.T.-H.)
| | - Justina C Wolters
- From the Department of Pediatrics, Section of Molecular Genetics, University Medical Centre Groningen, University of Groningen, The Netherlands (F.O., J.C.W., B.v.d.S., J.A.K.)
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Germany (J.H.)
| | - Richard J Sinke
- Department of Genetics, University Medical Centre Groningen, The Netherlands (R.J.S.)
| | - David Y Hui
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, OH (D.Y.H.)
| | - Geesje M Dallinga-Thie
- Department of Vascular Medicine (J.C.v.C., G.M.D.-T., K.G.H.).,Department Experimental Vascular Medicine (G.M.D.-T.), Academic Medical Center, Amsterdam, The Netherlands
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet (N.D., R.F.-S., A.T.-H.)
| | - Kees G Hovingh
- Department of Vascular Medicine (J.C.v.C., G.M.D.-T., K.G.H.)
| | - Bart van de Sluis
- From the Department of Pediatrics, Section of Molecular Genetics, University Medical Centre Groningen, University of Groningen, The Netherlands (F.O., J.C.W., B.v.d.S., J.A.K.)
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet (N.D., R.F.-S., A.T.-H.).,Copenhagen City Heart Study, Frederiksberg Hospital (A.T.-H.), Copenhagen University Hospital and Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jan Albert Kuivenhoven
- From the Department of Pediatrics, Section of Molecular Genetics, University Medical Centre Groningen, University of Groningen, The Netherlands (F.O., J.C.W., B.v.d.S., J.A.K.)
| |
Collapse
|
18
|
Lim SH, Legere EA, Snider J, Stagljar I. Recent Progress in CFTR Interactome Mapping and Its Importance for Cystic Fibrosis. Front Pharmacol 2018; 8:997. [PMID: 29403380 PMCID: PMC5785726 DOI: 10.3389/fphar.2017.00997] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/26/2017] [Indexed: 12/25/2022] Open
Abstract
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a chloride channel found in secretory epithelia with a plethora of known interacting proteins. Mutations in the CFTR gene cause cystic fibrosis (CF), a disease that leads to progressive respiratory illness and other complications of phenotypic variance resulting from perturbations of this protein interaction network. Studying the collection of CFTR interacting proteins and the differences between the interactomes of mutant and wild type CFTR provides insight into the molecular machinery of the disease and highlights possible therapeutic targets. This mini review focuses on functional genomics and proteomics approaches used for systematic, high-throughput identification of CFTR-interacting proteins to provide comprehensive insight into CFTR regulation and function.
Collapse
Affiliation(s)
- Sang Hyun Lim
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | - Jamie Snider
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Igor Stagljar
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Correcting CFTR folding defects by small-molecule correctors to cure cystic fibrosis. Curr Opin Pharmacol 2017; 34:83-90. [PMID: 29055231 DOI: 10.1016/j.coph.2017.09.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/15/2017] [Accepted: 09/26/2017] [Indexed: 12/18/2022]
Abstract
Pharmacological intervention to treat the lethal genetic disease cystic fibrosis has become reality, even for the severe, most common folding mutant F508del CFTR. CFTR defects range from absence of the protein, misfolding that leads to degradation rather than cell-surface localization (such as F508del), to functional chloride-channel defects on the cell surface. Corrector and potentiator drugs improve cell-surface location and channel activity, respectively, and combination therapy of two correctors and a potentiator have shown synergy. Several combinations are in the drug-development pipeline and although the primary defect is not repaired, rescue levels are reaching those resembling a cure for CF. Combination therapy with correctors may also improve functional CFTR mutants and benefit patients on potentiator therapy.
Collapse
|
20
|
Adnan H, Zhang Z, Park HJ, Tailor C, Che C, Kamani M, Spitalny G, Binnington B, Lingwood C. Endoplasmic Reticulum-Targeted Subunit Toxins Provide a New Approach to Rescue Misfolded Mutant Proteins and Revert Cell Models of Genetic Diseases. PLoS One 2016; 11:e0166948. [PMID: 27935997 PMCID: PMC5147855 DOI: 10.1371/journal.pone.0166948] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 11/06/2016] [Indexed: 01/08/2023] Open
Abstract
Many germ line diseases stem from a relatively minor disturbance in mutant protein endoplasmic reticulum (ER) 3D assembly. Chaperones are recruited which, on failure to correct folding, sort the mutant for retrotranslocation and cytosolic proteasomal degradation (ER-associated degradation-ERAD), to initiate/exacerbate deficiency-disease symptoms. Several bacterial (and plant) subunit toxins, retrograde transport to the ER after initial cell surface receptor binding/internalization. The A subunit has evolved to mimic a misfolded protein and hijack the ERAD membrane translocon (dislocon), to effect cytosolic access and cytopathology. We show such toxins compete for ERAD to rescue endogenous misfolded proteins. Cholera toxin or verotoxin (Shiga toxin) containing genetically inactivated (± an N-terminal polyleucine tail) A subunit can, within 2–4 hrs, temporarily increase F508delCFTR protein, the major cystic fibrosis (CF) mutant (5-10x), F508delCFTR Golgi maturation (<10x), cell surface expression (20x) and chloride transport (2x) in F508del CFTR transfected cells and patient-derived F508delCFTR bronchiolar epithelia, without apparent cytopathology. These toxoids also increase glucocerobrosidase (GCC) in N370SGCC Gaucher Disease fibroblasts (3x), another ERAD–exacerbated misfiling disease. We identify a new, potentially benign approach to the treatment of certain genetic protein misfolding diseases.
Collapse
Affiliation(s)
- Humaira Adnan
- Division of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Zhenbo Zhang
- Division of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hyun-Joo Park
- Division of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chetankumar Tailor
- Division of Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Clare Che
- Division of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mustafa Kamani
- Division of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Beth Binnington
- Division of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Clifford Lingwood
- Division of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
21
|
Ramachandran S, Osterhaus SR, Parekh KR, Jacobi AM, Behlke MA, McCray PB. SYVN1, NEDD8, and FBXO2 Proteins Regulate ΔF508 Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Ubiquitin-mediated Proteasomal Degradation. J Biol Chem 2016; 291:25489-25504. [PMID: 27756846 PMCID: PMC5207249 DOI: 10.1074/jbc.m116.754283] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/07/2016] [Indexed: 11/06/2022] Open
Abstract
We previously reported that delivery of a microRNA-138 mimic or siRNA against SIN3A to cultured cystic fibrosis (ΔF508/ΔF508) airway epithelia partially restored ΔF508-cystic fibrosis transmembrane conductance regulator (CFTR)-mediated cAMP-stimulated Cl- conductance. We hypothesized that dissecting this microRNA-138/SIN3A-regulated gene network would identify individual proteins contributing to the rescue of ΔF508-CFTR function. Among the genes in the network, we rigorously validated candidates using functional CFTR maturation and electrolyte transport assays in polarized airway epithelia. We found that depletion of the ubiquitin ligase SYVN1, the ubiquitin/proteasome system regulator NEDD8, or the F-box protein FBXO2 partially restored ΔF508-CFTR-mediated Cl- transport in primary cultures of human cystic fibrosis airway epithelia. Moreover, knockdown of SYVN1, NEDD8, or FBXO2 in combination with corrector compound 18 further potentiated rescue of ΔF508-CFTR-mediated Cl- conductance. This study provides new knowledge of the CFTR biosynthetic pathway. It suggests that SYVN1 and FBXO2 represent two distinct multiprotein complexes that may degrade ΔF508-CFTR in airway epithelia and identifies a new role for NEDD8 in regulating ΔF508-CFTR ubiquitination.
Collapse
Affiliation(s)
- Shyam Ramachandran
- From the Department of Pediatrics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242 and
| | - Samantha R Osterhaus
- From the Department of Pediatrics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242 and
| | - Kalpaj R Parekh
- From the Department of Pediatrics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242 and
| | | | | | - Paul B McCray
- From the Department of Pediatrics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242 and
| |
Collapse
|
22
|
Awah CU, Tamm S, Hedtfeld S, Steinemann D, Tümmler B, Tsiavaliaris G, Stanke F. Mechanism of allele specific assembly and disruption of master regulator transcription factor complexes of NF-KBp50, NF-KBp65 and HIF1a on a non-coding FAS SNP. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1411-1428. [PMID: 27616356 DOI: 10.1016/j.bbagrm.2016.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/22/2016] [Accepted: 09/07/2016] [Indexed: 12/30/2022]
Abstract
A challenging question in genetics is to understand the molecular function of non-coding variants of the genome. By using differential EMSA, ChIP and functional genome analysis, we have found that changes in transcription factors (TF) apparent binding affinity and dissociation rates are responsible for allele specific assembly or disruption of master TFs: we observed that NF-KBp50, NF-KBp65 and HIF1a bind with an affinity of up to 10 fold better to the C-allele than to the T-allele of rs7901656 both in vivo and in vitro. Furthermore, we showed that NF-KBp50, p65 and HIF1a form higher order heteromultimeric complexes overlapping rs7901656, implying synergism of action among TFs governing cellular response to infection and hypoxia. With rs7901656 on the FAS gene as a paradigm, we show how allele specific transcription factor complex assembly and disruption by a causal variant contributes to disease and phenotypic diversity. This finding provides the highly needed mechanistic insight into how the molecular etiology of regulatory SNPs can be understood in functional terms.
Collapse
Affiliation(s)
- Chidiebere U Awah
- Department of Paediatric Pneumology, Neonatology and Allergology, Hannover Medical School, Hannover, Germany; Graduate School of Excellence, MD/PhD Programme Molecular Medicine Hannover Biomedical Research School, Hannover Biomedical Research School, Hannover Medical School, Hannover, Germany
| | - Stephanie Tamm
- Department of Paediatric Pneumology, Neonatology and Allergology, Hannover Medical School, Hannover, Germany
| | - Silke Hedtfeld
- Department of Paediatric Pneumology, Neonatology and Allergology, Hannover Medical School, Hannover, Germany
| | - Doris Steinemann
- Institute for Human Genetics, Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Department of Paediatric Pneumology, Neonatology and Allergology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Germany
| | | | - Frauke Stanke
- Department of Paediatric Pneumology, Neonatology and Allergology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Germany.
| |
Collapse
|
23
|
Milhem RM, Al-Gazali L, Ali BR. Improved plasma membrane expression of the trafficking defective P344R mutant of muscle, skeletal, receptor tyrosine kinase (MuSK) causing congenital myasthenic syndrome. Int J Biochem Cell Biol 2015; 60:119-129. [PMID: 25562515 DOI: 10.1016/j.biocel.2014.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/14/2014] [Accepted: 12/22/2014] [Indexed: 02/08/2023]
Abstract
Muscle, skeletal, receptor tyrosine kinase (MuSK) is a key organizer at the postsynaptic membrane and critical for proper development and maintenance of the neuromuscular junction. Mutations in MUSK result in congenital myasthenic syndrome (CMS). We hypothesized that the CMS-causing missense mutation (P344R), found within the cysteine-rich domain of the protein, will affect its conformational tertiary structure. Consequently, the protein will misfold, get retained in the endoplasmic reticulum (ER) and lose its biological function through degradation by the highly conserved ER associated degradation (ERAD) machinery. We report that P344R-MuSK mutant is trafficking-deficient when expressed at 37°C in HeLa, COS-7 and HEK293 cell lines. It colocalized with the ER marker calnexin in contrast to wild-type MuSK which localized to the plasma membrane. The N-glycosylation status of P344R-MuSK is that of an immature and not properly post-translationally modified protein. Inhibition of protein synthesis showed that the P344R mutant's half-life is shorter than wild-type MuSK protein. Proteasomal inhibition resulted in the stabilization of the mutant protein. The mutant protein is highly ubiquitinated compared to wild-type confirming targeting for proteasomal degradation. The mutant showed around 50% of its in vivo autophosphorylation activity. P344R-MuSK mutant's trafficking defect is correctable by culturing the expressing cells at 27°C. Moreover, chemical compounds namely 2.5% glycerol, 1% dimethyl sulfoxide, 10 μM thapsigargin and 1 μM curcumin improved the maturation and exit of the mutant protein from the ER. These findings open perspectives for potential therapeutic intervention for patients with CMS harboring the P344R-MuSK mutation.
Collapse
Affiliation(s)
- Reham M Milhem
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates
| | - Lihadh Al-Gazali
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates.
| |
Collapse
|
24
|
Shah K, Cheng Y, Hahn B, Bridges R, Bradbury NA, Mueller DM. Synonymous codon usage affects the expression of wild type and F508del CFTR. J Mol Biol 2015; 427:1464-1479. [PMID: 25676312 DOI: 10.1016/j.jmb.2015.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 10/24/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel composed of 1480 amino acids. The major mutation responsible for cystic fibrosis results in loss of amino acid residue, F508 (F508del). Loss of F508 in CFTR alters the folding pathway resulting in endoplasmic-reticulum-associated degradation. This study investigates the role of synonymous codon in the expression of CFTR and CFTR F508del in human HEK293 cells. DNA encoding the open reading frame (ORF) for CFTR containing synonymous codon replacements was expressed using a heterologous vector integrated into the genome. The results indicate that the codon usage greatly affects the expression of CFTR. While the promoter strength driving expression of the ORFs was largely unchanged and the mRNA half-lives were unchanged, the steady-state levels of the mRNA varied by as much as 30-fold. Experiments support that this apparent inconsistency is attributed to nonsense mediated decay independent of exon junction complex. The ratio of CFTR/mRNA indicates that mRNA containing native codons was more efficient in expressing mature CFTR as compared to mRNA containing synonymous high-expression codons. However, when F508del CFTR was expressed after codon optimization, a greater percentage of the protein escaped endoplasmic-reticulum-associated degradation resulting in considerable levels of mature F508del CFTR on the plasma membrane, which showed channel activity. These results indicate that codon usage has an effect on mRNA levels and protein expression, for CFTR, and likely on chaperone-assisted folding pathway, for F508del CFTR.
Collapse
Affiliation(s)
- Kalpit Shah
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University, The Chicago Medical School, North Chicago, IL 60064, USA; Department of Physiology and Biophysics, Rosalind Franklin University, The Chicago Medical School, North Chicago, IL 60064, USA
| | - Yi Cheng
- Department of Physiology and Biophysics, Rosalind Franklin University, The Chicago Medical School, North Chicago, IL 60064, USA
| | - Brian Hahn
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University, The Chicago Medical School, North Chicago, IL 60064, USA
| | - Robert Bridges
- Department of Physiology and Biophysics, Rosalind Franklin University, The Chicago Medical School, North Chicago, IL 60064, USA
| | - Neil A Bradbury
- Department of Physiology and Biophysics, Rosalind Franklin University, The Chicago Medical School, North Chicago, IL 60064, USA
| | - David M Mueller
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University, The Chicago Medical School, North Chicago, IL 60064, USA.
| |
Collapse
|
25
|
Roth DM, Hutt DM, Tong J, Bouchecareilh M, Wang N, Seeley T, Dekkers JF, Beekman JM, Garza D, Drew L, Masliah E, Morimoto RI, Balch WE. Modulation of the maladaptive stress response to manage diseases of protein folding. PLoS Biol 2014; 12:e1001998. [PMID: 25406061 PMCID: PMC4236052 DOI: 10.1371/journal.pbio.1001998] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 10/07/2014] [Indexed: 12/31/2022] Open
Abstract
Diseases of protein folding arise because of the inability of an altered peptide sequence to properly engage protein homeostasis components that direct protein folding and function. To identify global principles of misfolding disease pathology we examined the impact of the local folding environment in alpha-1-antitrypsin deficiency (AATD), Niemann-Pick type C1 disease (NPC1), Alzheimer's disease (AD), and cystic fibrosis (CF). Using distinct models, including patient-derived cell lines and primary epithelium, mouse brain tissue, and Caenorhabditis elegans, we found that chronic expression of misfolded proteins not only triggers the sustained activation of the heat shock response (HSR) pathway, but that this sustained activation is maladaptive. In diseased cells, maladaptation alters protein structure-function relationships, impacts protein folding in the cytosol, and further exacerbates the disease state. We show that down-regulation of this maladaptive stress response (MSR), through silencing of HSF1, the master regulator of the HSR, restores cellular protein folding and improves the disease phenotype. We propose that restoration of a more physiological proteostatic environment will strongly impact the management and progression of loss-of-function and gain-of-toxic-function phenotypes common in human disease.
Collapse
Affiliation(s)
- Daniela Martino Roth
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Darren M. Hutt
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jiansong Tong
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Marion Bouchecareilh
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ning Wang
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois, United States of America
| | - Theo Seeley
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Johanna F. Dekkers
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
| | - Jeffrey M. Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
| | - Dan Garza
- Proteostasis Therapeutics Inc., Cambridge, Massachusetts, United States of America
| | - Lawrence Drew
- Proteostasis Therapeutics Inc., Cambridge, Massachusetts, United States of America
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, California, United States of America
| | - Richard I. Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois, United States of America
| | - William E. Balch
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
- The Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Liu X, Dawson DC. Cystic fibrosis transmembrane conductance regulator (CFTR) potentiators protect G551D but not ΔF508 CFTR from thermal instability. Biochemistry 2014; 53:5613-8. [PMID: 25148434 PMCID: PMC4159205 DOI: 10.1021/bi501007v] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
![]()
The G551D cystic fibrosis transmembrane
conductance regulator (CFTR)
mutation is associated with severe disease in ∼5% of cystic
fibrosis patients worldwide. This amino acid substitution in NBD1
results in a CFTR chloride channel characterized by a severe gating
defect that can be at least partially overcome in vitro by exposure to a CFTR potentiator. In contrast, the more common
ΔF508 mutation is associated with a severe protein trafficking
defect, as well as impaired channel function. Recent clinical trials
demonstrated a beneficial effect of the CFTR potentiator, Ivacaftor
(VX-770), on lung function of patients bearing at least one copy of
G551D CFTR, but no comparable effect on ΔF508 homozygotes. This
difference in efficacy was not surprising in view of the established
difference in the molecular phenotypes of the two mutant channels.
Recently, however, it was shown that the structural defect introduced
by the deletion of F508 is associated with the thermal instability
of ΔF508 CFTR channel function in vitro. This
additional mutant phenotype raised the possibility that the differences
in the behavior of ΔF508 and G551D CFTR, as well as the disparate
efficacy of Ivacaftor, might be a reflection of the differing thermal
stabilities of the two channels at 37 °C. We compared the thermal
stability of G551D and ΔF508 CFTR in Xenopus oocytes in the presence and absence of CTFR potentiators. G551D
CFTR exhibited a thermal instability that was comparable to that of
ΔF508 CFTR. G551D CFTR, however, was protected from thermal
instability by CFTR potentiators, whereas ΔF508 CFTR was not.
These results suggest that the efficacy of VX-770 in patients bearing
the G551D mutation is due, at least in part, to the ability of the
small molecule to protect the mutant channel from thermal instability
at human body temperature.
Collapse
Affiliation(s)
- Xuehong Liu
- Department of Physiology & Pharmacology, Oregon Health & Science University , Portland, Oregon 97239, United States
| | | |
Collapse
|
27
|
Pranke IM, Sermet-Gaudelus I. Biosynthesis of cystic fibrosis transmembrane conductance regulator. Int J Biochem Cell Biol 2014; 52:26-38. [DOI: 10.1016/j.biocel.2014.03.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 01/19/2023]
|
28
|
Therapeutic potential of proteasome inhibitors in congenital erythropoietic porphyria. Proc Natl Acad Sci U S A 2013; 110:18238-43. [PMID: 24145442 DOI: 10.1073/pnas.1314177110] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Congenital erythropoietic porphyria (CEP) is a rare autosomal recessive disorder characterized by uroporphyrinogen III synthase (UROS) deficiency resulting in massive porphyrin accumulation in blood cells, which is responsible for hemolytic anemia and skin photosensitivity. Among the missense mutations actually described up to now in CEP patients, the C73R and the P248Q mutations lead to a profound UROS deficiency and are usually associated with a severe clinical phenotype. We previously demonstrated that the UROS(C73R) mutant protein conserves intrinsic enzymatic activity but triggers premature degradation in cellular systems that could be prevented by proteasome inhibitors. We show evidence that the reduced kinetic stability of the UROS(P248Q) mutant is also responsible for increased protein turnover in human erythroid cells. Through the analysis of EGFP-tagged versions of UROS enzyme, we demonstrate that both UROS(C73R) and UROS(P248Q) are equally destabilized in mammalian cells and targeted to the proteasomal pathway for degradation. We show that a treatment with proteasomal inhibitors, but not with lysosomal inhibitors, could rescue the expression of both EGFP-UROS mutants. Finally, in CEP mice (Uros(P248Q/P248Q)) treated with bortezomib (Velcade), a clinically approved proteasome inhibitor, we observed reduced porphyrin accumulation in circulating RBCs and urine, as well as reversion of skin photosensitivity on bortezomib treatment. These results of medical importance pave the way for pharmacologic treatment of CEP disease by preventing certain enzymatically active UROS mutants from early degradation by using proteasome inhibitors or chemical chaperones.
Collapse
|
29
|
Stanke F, van Barneveld A, Hedtfeld S, Wölfl S, Becker T, Tümmler B. The CF-modifying gene EHF promotes p.Phe508del-CFTR residual function by altering protein glycosylation and trafficking in epithelial cells. Eur J Hum Genet 2013; 22:660-6. [PMID: 24105369 PMCID: PMC3992571 DOI: 10.1038/ejhg.2013.209] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/26/2013] [Accepted: 08/09/2013] [Indexed: 01/07/2023] Open
Abstract
The three-base-pair deletion c.1521_1523delCTT (p.Phe508del, F508del) in the cystic fibrosis transmembrane conductance regulator (CFTR) is the most frequent disease-causing lesion in cystic fibrosis (CF). The CFTR gene encodes a chloride and bicarbonate channel at the apical membrane of epithelial cells. Altered ion transport of CFTR-expressing epithelia can be used to differentiate manifestations of the so-called CF basic defect. Recently, an 11p13 region has been described as a CF modifier by the North American CF Genetic Modifier Study Consortium. Selecting the epithelial-specific transcription factor EHF (ets homologous factor) as the likely candidate gene on 11p13, we have genotyped two intragenic microsatellites in EHF to replicate the 11p13 finding in the patient cohort of the European CF Twin and Sibling Study. We could observe an association of rare EHF haplotypes among homozygotes for c.1521_1523delCTT in CFTR, which exhibit a CF-untypical manifestation of the CF basic defect such as CFTR-mediated residual chloride secretion and low response to amiloride. We have reviewed transcriptome data obtained from intestinal epithelial samples of homozygotes for c.1521_1523delCTT in CFTR, which were stratified for their EHF genetic background. Transcripts that were upregulated among homozygotes for c.1521_1523delCTT in CFTR, who carry two rare EHF alleles, were enriched for genes that alter protein glycosylation and trafficking, both mechanisms being pivotal for the effective targeting of fully functional p.Phe508del-CFTR to the apical membrane of epithelial cells. We conclude that EHF modifies the CF phenotype by altering capabilities of the epithelial cell to correctly process the folding and trafficking of mutant p.Phe508del-CFTR.
Collapse
Affiliation(s)
- Frauke Stanke
- 1] Department of Pediatrics, Hannover Medical School, Hannover, Germany [2] Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Andrea van Barneveld
- 1] Department of Pediatrics, Hannover Medical School, Hannover, Germany [2] Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Silke Hedtfeld
- 1] Department of Pediatrics, Hannover Medical School, Hannover, Germany [2] Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Stefan Wölfl
- Institute for Pharmacy and Molecular Biotechnology, Ruperto-Carola University of Heidelberg, Heidelberg, Germany
| | - Tim Becker
- 1] German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany [2] Institute of Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - Burkhard Tümmler
- 1] Department of Pediatrics, Hannover Medical School, Hannover, Germany [2] Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| |
Collapse
|
30
|
Karaki F, Ohgane K, Dodo K, Hashimoto Y. Structure–activity relationship studies of Niemann-Pick type C1-like 1 (NPC1L1) ligands identified by screening assay monitoring pharmacological chaperone effect. Bioorg Med Chem 2013; 21:5297-309. [DOI: 10.1016/j.bmc.2013.06.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 11/30/2022]
|
31
|
Kirby EF, Heard AS, Wang XR. Enhancing the Potency of F508del Correction: A Multi-Layer Combinational Approach to Drug Discovery for Cystic Fibrosis. JOURNAL OF PHARMACOLOGY & CLINICAL TOXICOLOGY 2013; 1:1007. [PMID: 24855632 PMCID: PMC4026356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
With better understanding of the cellular and molecular pathophysiology underlying cystic fibrosis (CF), novel drugs are being developed that specifically target the molecular defects of the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel on the plasma membrane that causes CF. Starting with cell-based high-throughput screening, small molecules have been identified that are able to fix specific molecular defects of various disease-causing CFTR mutants. With the successful development of ivacaftor, a "potentiator" that enhances CFTR chloride channel activity, new types of small-molecule compounds that "correct" the misfolding and misprocessing of the most common CF-causing mutation, F508del, are actively being sought for. Recent studies focused on the potential mechanisms of action of some of the investigational CFTR "correctors" shed new light on how the F508del mutant can be targeted in an attempt to ameliorate the clinical symptoms associated with CF. A multi-layer combinational approach has been proposed to achieve the high-potency correction necessary for significant clinical outcome. The mechanistic insights obtained from such studies will shape the future therapeutics development for the vast majority of CF patients.
Collapse
Affiliation(s)
| | | | - X Robert Wang
- Corresponding author X Robert Wang, Department of Pharmaceutical, Social and Administrative Sciences, Samford University McWhorter School of Pharmacy, 800 Lakeshore Drive, Birmingham, AL 35229, USA, Tel: 205-726-2997; FAX: 205-726-2088;
| |
Collapse
|
32
|
Hutt DM, Balch WE. Expanding proteostasis by membrane trafficking networks. Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a013383. [PMID: 23426524 DOI: 10.1101/cshperspect.a013383] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The folding biology common to all three kingdoms of life (Archaea, Bacteria, and Eukarya) is proteostasis. The proteostasis network (PN) functions as a "cloud" to generate, protect, and degrade the proteome. Whereas microbes (Bacteria, Archaea) have a single compartment, Eukarya have numerous subcellular compartments. We examine evidence that Eukarya compartments use coat, tether, and fusion (CTF) membrane trafficking components to form an evolutionarily advanced arm of the PN that we refer to as the "trafficking PN" (TPN). We suggest that the TPN builds compartments by generating a mosaic of integrated cargo-specific trafficking signatures (TRaCKS). TRaCKS control the temporal and spatial features of protein-folding biology based on the Anfinsen principle that the local environment plays a critical role in managing protein structure. TPN-generated endomembrane compartments apply a "quinary" level of structural control to modify the secondary, tertiary, and quaternary structures defined by the primary polypeptide-chain sequence. The development of Anfinsen compartments provides a unifying foundation for understanding the purpose of endomembrane biology and its capacity to drive extant Eukarya function and diversity.
Collapse
Affiliation(s)
- Darren M Hutt
- Department of Cell Biology and Department of Chemical Physiology, The Skaggs Institute for Chemical Biology and the Dorris Institute for Neurological Diseases, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
33
|
Donnelly BF, Needham PG, Snyder AC, Roy A, Khadem S, Brodsky JL, Subramanya AR. Hsp70 and Hsp90 multichaperone complexes sequentially regulate thiazide-sensitive cotransporter endoplasmic reticulum-associated degradation and biogenesis. J Biol Chem 2013; 288:13124-35. [PMID: 23482560 DOI: 10.1074/jbc.m113.455394] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The thiazide-sensitive NaCl cotransporter (NCC) is the primary mediator of salt reabsorption in the distal convoluted tubule and is a key determinant of the blood pressure set point. Given its complex topology, NCC is inefficiently processed and prone to endoplasmic reticulum (ER)-associated degradation (ERAD), although the mechanisms governing this process remain obscure. Here, we identify factors that impact the ER quality control of NCC. Analyses of NCC immunoprecipitates revealed that the cotransporter formed complexes with the core chaperones Hsp90, Hsp70, and Hsp40. Disruption of Hsp90 function accelerated NCC degradation, suggesting that Hsp90 promotes NCC folding. In addition, two cochaperones, the C terminus of Hsp70-interacting protein (CHIP) and the Hsp70/Hsp90 organizer protein, were associated with NCC. Although CHIP, an E3 ubiquitin ligase, promoted NCC ubiquitination and ERAD, the Hsp70/Hsp90 organizer protein stabilized NCC turnover, indicating that these two proteins differentially remodel the core chaperone systems to favor cotransporter degradation and biogenesis, respectively. Adjusting the folding environment in mammalian cells via reduced temperature enhanced NCC biosynthetic trafficking, increased Hsp90-NCC interaction, and diminished binding to Hsp70. In contrast, cotransporters harboring disease-causing mutations that impair NCC biogenesis failed to escape ERAD as efficiently as the wild type protein when cells were incubated at a lower temperature. Instead, these mutants interacted more strongly with Hsp70, Hsp40, and CHIP, consistent with a role for the Hsp70/Hsp40 system in selecting misfolded NCC for ERAD. Collectively, these observations indicate that Hsp70 and Hsp90 comprise two functionally distinct ER quality control checkpoints that sequentially monitor NCC biogenesis.
Collapse
Affiliation(s)
- Bridget F Donnelly
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Lei L, Cao X, Yang F, Shi DJ, Tang YQ, Zheng J, Wang K. A TRPV4 channel C-terminal folding recognition domain critical for trafficking and function. J Biol Chem 2013; 288:10427-39. [PMID: 23457335 DOI: 10.1074/jbc.m113.457291] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Ca(2+)-permeable transient receptor potential vanilloid subtype 4 (TRPV4) channel mediates crucial physiological functions, such as calcium signaling, temperature sensing, and maintaining cell volume and energy homeostasis. Noticeably, most disease-causing genetic mutations are concentrated in the cytoplasmic domains. In the present study, we focused on the role of the TRPV4 C terminus in modulating protein folding, trafficking, and activity. By examining a series of C-terminal deletions, we identified a 20-amino acid distal region covering residues 838-857 that is critical for channel folding, maturation, and trafficking. Surface biotinylation, confocal imaging, and fluorescence-based calcium influx assay demonstrated that mutant proteins missing this region were trapped in the endoplasmic reticulum and unglycosylated, leading to accelerated degradation and loss of channel activity. Rosetta de novo structural modeling indicated that residues 838-857 assume a defined conformation, with Gly(849) and Pro(851) located at critical positions. Patch clamp recordings confirmed that lowering the temperature from 37 to 30 °C rescued channel activity of folding-defective mutants. Moreover, biochemical tests demonstrated that, in addition to participating in C-C interaction, the C terminus also interacts with the N terminus. Taken together, our findings indicate that the C-terminal region of TRPV4 is critical for channel protein folding and maturation, and the short distal segment plays an essential role in this process. Therefore, selectively disrupting the folding-sensitive region may present therapeutic potential for treating overactive TRPV4-mediated diseases, such as pain and skeletal dysplasias.
Collapse
Affiliation(s)
- Lei Lei
- Department of Neurobiology, Neuroscience Research Institute, Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Hulleman JD, Brown SJ, Rosen H, Kelly JW. A high-throughput cell-based Gaussia luciferase reporter assay for identifying modulators of fibulin-3 secretion. ACTA ACUST UNITED AC 2012; 18:647-58. [PMID: 23230284 DOI: 10.1177/1087057112469405] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An R345W mutation in fibulin-3 causes its inefficient secretion, increased intracellular steady-state levels, and the macular dystrophy, Malattia Leventinese (ML), a disease similar to age-related macular degeneration. It is unknown whether R345W causes ML through increased intracellular levels, by the secretion of a potentially aggregation-prone protein, or both. To identify small molecules that alter the secretion of fibulin-3, we developed ARPE19 retinal cell lines that inducibly express wild-type (WT) or R345W fibulin-3 fused to an enhanced Gaussia luciferase (eGLuc2). Screening of the Library of Pharmacologically Active Compounds demonstrated that these cell lines and the GLuc assay are suitable for high-throughput chemical screening. Two estrogen-related compounds enhanced fibulin-3 secretion, whereas a diverse series of small molecules reduced fibulin-3 secretion. A counterscreen identified compounds that did not substantially alter the secretion of unfused eGLuc2, demonstrating at least partial selectivity for fibulin-3. A secondary assay using untagged fibulin-3 confirmed that the top three inhibitory compounds reduced R345W fibulin-3 secretion. Interestingly, in untagged fibulin-3 studies, one compound, phorbol 12-myristate 13-acetate, reduced R345W fibulin-3 secretion while minimally enhancing WT fibulin-3 secretion, the desired activity and selectivity we sought for ML. The identified compounds could serve as tools for probing the etiology of fibulin-3-related diseases.
Collapse
Affiliation(s)
- John D Hulleman
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | | | | | | |
Collapse
|
36
|
Nicolaou N, Margadant C, Kevelam SH, Lilien MR, Oosterveld MJS, Kreft M, van Eerde AM, Pfundt R, Terhal PA, van der Zwaag B, Nikkels PGJ, Sachs N, Goldschmeding R, Knoers NVAM, Renkema KY, Sonnenberg A. Gain of glycosylation in integrin α3 causes lung disease and nephrotic syndrome. J Clin Invest 2012; 122:4375-87. [PMID: 23114595 DOI: 10.1172/jci64100] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/06/2012] [Indexed: 12/23/2022] Open
Abstract
Integrins are transmembrane αβ glycoproteins that connect the extracellular matrix to the cytoskeleton. The laminin-binding integrin α3β1 is expressed at high levels in lung epithelium and in kidney podocytes. In podocytes, α3β1 associates with the tetraspanin CD151 to maintain a functional filtration barrier. Here, we report on a patient homozygous for a novel missense mutation in the human ITGA3 gene, causing fatal interstitial lung disease and congenital nephrotic syndrome. The mutation caused an alanine-to-serine substitution in the integrin α3 subunit, thereby introducing an N-glycosylation motif at amino acid position 349. We expressed this mutant form of ITGA3 in murine podocytes and found that hyperglycosylation of the α3 precursor prevented its heterodimerization with β1, whereas CD151 association with the α3 subunit occurred normally. Consequently, the β1 precursor accumulated in the ER, and the mutant α3 precursor was degraded by the ubiquitin-proteasome system. Thus, these findings uncover a gain-of-glycosylation mutation in ITGA3 that prevents the biosynthesis of functional α3β1, causing a fatal multiorgan disorder.
Collapse
Affiliation(s)
- Nayia Nicolaou
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
He L, Kota P, Aleksandrov AA, Cui L, Jensen T, Dokholyan NV, Riordan JR. Correctors of ΔF508 CFTR restore global conformational maturation without thermally stabilizing the mutant protein. FASEB J 2012; 27:536-45. [PMID: 23104983 DOI: 10.1096/fj.12-216119] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Most cystic fibrosis is caused by the deletion of a single amino acid (F508) from CFTR and the resulting misfolding and destabilization of the protein. Compounds identified by high-throughput screening to improve ΔF508 CFTR maturation have already entered clinical trials, and it is important to understand their mechanisms of action to further improve their efficacy. Here, we showed that several of these compounds, including the investigational drug VX-809, caused a much greater increase (5- to 10-fold) in maturation at 27 than at 37°C (<2-fold), and the mature product remained short-lived (T(1/2)∼4.5 h) and thermally unstable, even though its overall conformational state was similar to wild type, as judged by resistance to proteolysis and interdomain cross-linking. Consistent with its inability to restore thermodynamic stability, VX-809 stimulated maturation 2-5-fold beyond that caused by several different stabilizing modifications of NBD1 and the NBD1/CL4 interface. The compound also promoted maturation of several disease-associated processing mutants on the CL4 side of this interface. Although these effects may reflect an interaction of VX-809 with this interface, an interpretation supported by computational docking, it also rescued maturation of mutants in other cytoplasmic loops, either by allosteric effects or via additional sites of action. In addition to revealing the capabilities and some of the limitations of this important investigational drug, these findings clearly demonstrate that ΔF508 CFTR can be completely assembled and evade cellular quality control systems, while remaining thermodynamically unstable. He, L., Kota, P., Aleksandrov, A. A., Cui, L., Jensen, T., Dokholyan, N. V., Riordan, J. R. Correctors of ΔF508 CFTR restore global conformational maturation without thermally stabilizing the mutant protein.
Collapse
Affiliation(s)
- Lihua He
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7248, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Hopp K, Ward CJ, Hommerding CJ, Nasr SH, Tuan HF, Gainullin VG, Rossetti S, Torres VE, Harris PC. Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity. J Clin Invest 2012; 122:4257-73. [PMID: 23064367 DOI: 10.1172/jci64313] [Citation(s) in RCA: 305] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/23/2012] [Indexed: 12/13/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations to PKD1 or PKD2, triggering progressive cystogenesis and typically leading to end-stage renal disease in midlife. The phenotypic spectrum, however, ranges from in utero onset to adequate renal function at old age. Recent patient data suggest that the disease is dosage dependent, where incompletely penetrant alleles influence disease severity. Here, we have developed a knockin mouse model matching a likely disease variant, PKD1 p.R3277C (RC), and have proved that its functionally hypomorphic nature modifies the ADPKD phenotype. While Pkd1+/null mice are normal, Pkd1RC/null mice have rapidly progressive disease, and Pkd1RC/RC animals develop gradual cystogenesis. These models effectively mimic the pathophysiological features of in utero-onset and typical ADPKD, respectively, correlating the level of functional Pkd1 product with disease severity, highlighting the dosage dependence of cystogenesis. Additionally, molecular analyses identified p.R3277C as a temperature-sensitive folding/trafficking mutant, and length defects in collecting duct primary cilia, the organelle central to PKD pathogenesis, were clearly detected for the first time to our knowledge in PKD1. Altogether, this study highlights the role that in trans variants at the disease locus can play in phenotypic modification of dominant diseases and provides a truly orthologous PKD1 model, optimal for therapeutic testing.
Collapse
Affiliation(s)
- Katharina Hopp
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhang D, Ciciriello F, Anjos SM, Carissimo A, Liao J, Carlile GW, Balghi H, Robert R, Luini A, Hanrahan JW, Thomas DY. Ouabain Mimics Low Temperature Rescue of F508del-CFTR in Cystic Fibrosis Epithelial Cells. Front Pharmacol 2012; 3:176. [PMID: 23060796 PMCID: PMC3463858 DOI: 10.3389/fphar.2012.00176] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 09/14/2012] [Indexed: 11/23/2022] Open
Abstract
Most cases of cystic fibrosis (CF) are caused by the deletion of a single phenylalanine residue at position 508 of the cystic fibrosis transmembrane conductance regulator (CFTR). The mutant F508del-CFTR is retained in the endoplasmic reticulum and degraded, but can be induced by low temperature incubation (29°C) to traffic to the plasma membrane where it functions as a chloride channel. Here we show that, cardiac glycosides, at nanomolar concentrations, can partially correct the trafficking of F508del-CFTR in human CF bronchial epithelial cells (CFBE41o-) and in an F508del-CFTR mouse model. Comparison of the transcriptional profiles obtained with polarized CFBE41o-cells after treatment with ouabain and by low temperature has revealed a striking similarity between the two corrector treatments that is not shared with other correctors. In summary, our study shows a novel function of ouabain and its analogs in the regulation of F508del-CFTR trafficking and suggests that compounds that mimic this low temperature correction of trafficking will provide new avenues for the development of therapeutics for CF.
Collapse
Affiliation(s)
- Donglei Zhang
- Department of Biochemistry, McGill University Montréal, QC, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tucker TA, Fortenberry JA, Zsembery A, Schwiebert LM, Schwiebert EM. The ΔF508-CFTR mutation inhibits wild-type CFTR processing and function when co-expressed in human airway epithelia and in mouse nasal mucosa. BMC PHYSIOLOGY 2012; 12:12. [PMID: 22999299 PMCID: PMC3507716 DOI: 10.1186/1472-6793-12-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 09/04/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND Rescue or correction of CFTR function in native epithelia is the ultimate goal of CF therapeutics development. Wild-type (WT) CFTR introduction and replacement is also of particular interest. Such therapies may be complicated by possible CFTR self-assembly into an oligomer or multimer. RESULTS Surprisingly, functional CFTR assays in native airway epithelia showed that the most common CFTR mutant, ΔF508-CFTR (ΔF-CFTR), inhibits WT-CFTR when both forms are co-expressed. To examine more mechanistically, both forms of CFTR were transfected transiently in varying amounts into IB3-1 CF human airway epithelial cells and HEK-293 human embryonic kidney cells null for endogenous CFTR protein expression. Increasing amounts of ΔF-CFTR inhibited WT-CFTR protein processing and function in CF human airway epithelial cells but not in heterologous HEK-293 cells. Stably expressed ΔF-CFTR in clones of the non-CF human airway epithelial cell line, CALU-3, also showed reduction in cAMP-stimulated anion secretion and in WT-CFTR processing. An ultimate test of this dominant negative-like effect of ΔF-CFTR on WT-CFTR was the parallel study of two different CF mouse models: the ΔF-CFTR mouse and the bitransgenic CFTR mouse corrected in the gut but null in the lung and airways. WT/ΔF heterozygotes had an intermediate phenotype with regard to CFTR agonist responses in in vivo nasal potential difference (NPD) recordings and in Ussing chamber recordings of short-circuit current (ISC) in vitro on primary tracheal epithelial cells isolated from the same mice. In contrast, CFTR bitransgenic +/- heterozygotes had no difference in their responses versus +/+ wild-type mice. CONCLUSIONS Taken altogether, these data suggest that ΔF-CFTR and WT-CFTR co-assemble into an oligomeric macromolecular complex in native epithelia and share protein processing machinery and regulation at the level of the endoplasmic reticulum (ER). As a consequence, ΔF-CFTR slows WT-CFTR protein processing and limits its expression and function in the apical membrane of native airway epithelia. Implications of these data for the relative health of CF heterozygous carriers, for CFTR protein processing in native airway epithelia, and for the relative efficacy of different CF therapeutic approaches is significant and is discussed.
Collapse
Affiliation(s)
- Torry A Tucker
- Departments of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294-0005, USA
- Gregory Fleming James Cystic Fibrosis (CF) Research Center, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, 35294-0005 AL, USA
- Department of Biochemistry, University of Texas Health Sciences Center at Tyler, Tyler, TX, USA
| | - James A Fortenberry
- Gregory Fleming James Cystic Fibrosis (CF) Research Center, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, 35294-0005 AL, USA
| | - Akos Zsembery
- Departments of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294-0005, USA
- Gregory Fleming James Cystic Fibrosis (CF) Research Center, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, 35294-0005 AL, USA
- Department of Experimental Human Physiology, Semmelweis University, Budapest, Hungary
| | - Lisa M Schwiebert
- Departments of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294-0005, USA
- Gregory Fleming James Cystic Fibrosis (CF) Research Center, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, 35294-0005 AL, USA
| | - Erik M Schwiebert
- Departments of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294-0005, USA
- Gregory Fleming James Cystic Fibrosis (CF) Research Center, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, 35294-0005 AL, USA
- DiscoveryBioMed, Inc, Birmingham, AL, USA
| |
Collapse
|
41
|
Lee K, Hong TJ, Hahn JS. Roles of 17-AAG-induced molecular chaperones and Rma1 E3 ubiquitin ligase in folding and degradation of Pendrin. FEBS Lett 2012; 586:2535-41. [PMID: 22750442 DOI: 10.1016/j.febslet.2012.06.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/01/2012] [Accepted: 06/16/2012] [Indexed: 11/16/2022]
Abstract
Pendrin is a transmembrane chloride/anion exchanger highly expressed in thyroid, kidney, and inner ear. Endoplasmic reticulum (ER)-retention of improperly folded Pendrin mutants is considered as the major cause for Pendred syndrome. However, the folding and degradation mechanisms of Pendrin are poorly understood. Here, we report that treatment of 17-AAG, an Hsp90 inhibitor, facilitates the folding of Pendrin through heat shock transcription factor 1 (Hsf1)-dependent induction of molecular chaperones. Furthermore, we demonstrate that Rma1, an E3 ubiquitin ligase localized in the ER membrane, is involved in Pendrin degradation.
Collapse
Affiliation(s)
- Kanghyun Lee
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Republic of Korea
| | | | | |
Collapse
|
42
|
Coppinger JA, Hutt DM, Razvi A, Koulov AV, Pankow S, Yates JR, Balch WE. A chaperone trap contributes to the onset of cystic fibrosis. PLoS One 2012; 7:e37682. [PMID: 22701530 PMCID: PMC3365120 DOI: 10.1371/journal.pone.0037682] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 04/26/2012] [Indexed: 12/29/2022] Open
Abstract
Protein folding is the primary role of proteostasis network (PN) where chaperone interactions with client proteins determine the success or failure of the folding reaction in the cell. We now address how the Phe508 deletion in the NBD1 domain of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein responsible for cystic fibrosis (CF) impacts the binding of CFTR with cellular chaperones. We applied single ion reaction monitoring mass spectrometry (SRM-MS) to quantitatively characterize the stoichiometry of the heat shock proteins (Hsps) in CFTR folding intermediates in vivo and mapped the sites of interaction of the NBD1 domain of CFTR with Hsp90 in vitro. Unlike folding of WT-CFTR, we now demonstrate the presence of ΔF508-CFTR in a stalled folding intermediate in stoichiometric association with the core Hsps 40, 70 and 90, referred to as a ‘chaperone trap’. Culturing cells at 30 C resulted in correction of ΔF508-CFTR trafficking and function, restoring the sub-stoichiometric association of core Hsps observed for WT-CFTR. These results support the interpretation that ΔF508-CFTR is restricted to a chaperone-bound folding intermediate, a state that may contribute to its loss of trafficking and increased targeting for degradation. We propose that stalled folding intermediates could define a critical proteostasis pathway branch-point(s) responsible for the loss of function in misfolding diseases as observed in CF.
Collapse
Affiliation(s)
- Judith A Coppinger
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | | | | | | | | | | | | |
Collapse
|
43
|
Saxena A, Banasavadi-Siddegowda YK, Fan Y, Bhattacharya S, Roy G, Giovannucci DR, Frizzell RA, Wang X. Human heat shock protein 105/110 kDa (Hsp105/110) regulates biogenesis and quality control of misfolded cystic fibrosis transmembrane conductance regulator at multiple levels. J Biol Chem 2012; 287:19158-70. [PMID: 22505710 DOI: 10.1074/jbc.m111.297580] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Heat shock protein 105/110-kDa (Hsp105/110), a member of the Hsp70 super family of molecular chaperones, serves as a nucleotide exchange factor for Hsc70, independently prevents the aggregation of misfolded proteins, and functionally relates to Hsp90. We investigated the roles of human Hsp105α, the constitutively expressed isoform, in the biogenesis and quality control of the cystic fibrosis transmembrane conductance regulator (CFTR). In the endoplasmic reticulum (ER), Hsp105 facilitates CFTR quality control at an early stage in its biosynthesis but promotes CFTR post-translational folding. Deletion of Phe-508 (ΔF508), the most prevalent mutation causing cystic fibrosis, interferes with de novo folding of CFTR, impairing its export from the ER and accelerating its clearance in the ER and post-Golgi compartments. We show that Hsp105 preferentially associates with and stabilizes ΔF508 CFTR at both levels. Introduction of the Hsp105 substrate binding domain potently increases the steady state level of ΔF508 CFTR by reducing its early-stage degradation. This in turn dramatically enhances ΔF508 CFTR cell surface functional expression in cystic fibrosis airway epithelial cells. Although other Hsc70 nucleotide exchange factors such as HspBP1 and BAG-2 inhibit CFTR post-translational degradation in the ER through cochaperone CHIP, Hsp105 has a primary role promoting CFTR quality control at an earlier stage. The Hsp105-mediated multilevel regulation of ΔF508 CFTR folding and quality control provides new opportunities to understand how chaperone machinery regulates the homeostasis and functional expression of misfolded proteins in the cell. Future studies in this direction will inform therapeutics development for cystic fibrosis and other protein misfolding diseases.
Collapse
Affiliation(s)
- Anita Saxena
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio 43614, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Hutt DM, Roth DM, Chalfant MA, Youker RT, Matteson J, Brodsky JL, Balch WE. FK506 binding protein 8 peptidylprolyl isomerase activity manages a late stage of cystic fibrosis transmembrane conductance regulator (CFTR) folding and stability. J Biol Chem 2012; 287:21914-25. [PMID: 22474283 DOI: 10.1074/jbc.m112.339788] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the apical chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) with 90% of patients carrying at least one deletion of the F508 (ΔF508) allele. This mutant form of CFTR is characterized by a folding and trafficking defect that prevents exit from the endoplasmic reticulum. We previously reported that ΔF508 CFTR can be recovered in a complex with Hsp90 and its co-chaperones as an on-pathway folding intermediate, suggesting that Δ508 CF disease arises due to a failure of the proteostasis network (PN), which manages protein folding and degradation in the cell. We have now examined the role of FK506-binding protein 8 (FKBP8), a component of the CFTR interactome, during the biogenesis of wild-type and ΔF508 CFTR. FKBP8 is a member of the peptidylprolyl isomerase family that mediates the cis/trans interconversion of peptidyl prolyl bonds. Our results suggest that FKBP8 is a key PN factor required at a post-Hsp90 step in CFTR biogenesis. In addition, changes in its expression level or alteration of its activity by a peptidylprolyl isomerase inhibitor alter CFTR stability and transport. We propose that CF is caused by the sequential failure of the prevailing PN pathway to stabilize ΔF508-CFTR for endoplasmic reticulum export, a pathway that can be therapeutically managed.
Collapse
Affiliation(s)
- Darren M Hutt
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Ishii S. Pharmacological chaperone therapy for Fabry disease. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2012; 88:18-30. [PMID: 22241068 PMCID: PMC3278969 DOI: 10.2183/pjab.88.18] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 11/30/2011] [Indexed: 05/31/2023]
Abstract
Fabry disease is an inherited lysosomal storage disorder caused by deficient α-galactosidase A activity. Many missense mutations in Fabry disease often cause misfolded gene products, which leads to their retention in the endoplasmic reticulum by the quality control system; they are then removed by endoplasmic reticulum-associated degradation. We discovered that a potent α-galactosidase A inhibitor, 1-deoxygalactonojirimycin, acts as a pharmacological chaperone to facilitate the proper folding of the mutant enzyme by binding to its active site, thereby improving its stability and trafficking to the lysosomes in mammalian cells. The oral administration of 1-deoxygalactonojirimycin to transgenic mice expressing human mutant α-galactosidase A resulted in significant increases in α-galactosidase A activity in various organs, with concomitant reductions in globotriaosylceramide, which contributes to the pathology of Fabry disease. Seventy-eight missense mutations were found to be responsive to 1-deoxygalactonojirimycin. These data indicate that many patients with Fabry disease could potentially benefit from pharmacological chaperone therapy.
Collapse
Affiliation(s)
- Satoshi Ishii
- Department of Matrix Medicine, Faculty of Medicine, Oita University, Hasama-cho Idaigaoka 1-1, Yufu-shi, Oita 879-5593, Japan.
| |
Collapse
|
46
|
Hulleman JD, Kaushal S, Balch WE, Kelly JW. Compromised mutant EFEMP1 secretion associated with macular dystrophy remedied by proteostasis network alteration. Mol Biol Cell 2011; 22:4765-75. [PMID: 22031286 PMCID: PMC3237620 DOI: 10.1091/mbc.e11-08-0695] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
R345W EFEMP1 is secreted poorly, causing the macular dystrophy malattia leventinese. A novel assay shows that other substitutions (F, Y, P) at residue 345 impair secretion, partly by reducing native disulfide bonds. EFEMP1 secretion is rescued by reduced growth temperature and translational attenuation—potential strategies to delay disease. An Arg345Trp (R345W) mutation in epidermal growth factor–containing, fibulin-like extracellular matrix protein 1 (EFEMP1) causes its inefficient secretion and the macular dystrophy malattia leventinese/Doyne honeycomb retinal dystrophy (ML/DHRD). To understand the influence of the protein homeostasis (or proteostasis) network in rescuing mutant EFEMP1 misfolding and inefficient secretion linked to ML/DHRD, we developed a convenient and sensitive cell-based luminescence assay to monitor secretion versus intracellular accumulation. Fusing EFEMP1 to Gaussia luciferase faithfully recapitulates mutant EFEMP1 secretion defects observed previously using more cumbersome methodology. To understand what governs mutant intracellular retention, we generated a series of R345 mutants. These mutants revealed that aromatic residue substitutions (i.e., Trp, Tyr, and Phe) at position 345 cause significant EFEMP1 secretion deficiencies. These secretion defects appear to be caused, in part, by reduced native disulfide bonding in domain 6 harboring the 345 position. Finally, we demonstrate that mutant EFEMP1 secretion and proper disulfide formation are enhanced by adaptation of the cellular environment by a reduced growth temperature and/or translational attenuation. This study highlights the mechanisms underlying the inefficient secretion of R345W EFEMP1 and demonstrates that alteration of the proteostasis network may provide a strategy to alleviate or delay the onset of this macular dystrophy.
Collapse
Affiliation(s)
- John D Hulleman
- Departments of Chemistry and Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
47
|
Banasavadi-Siddegowda YK, Mai J, Fan Y, Bhattacharya S, Giovannucci DR, Sanchez ER, Fischer G, Wang X. FKBP38 peptidylprolyl isomerase promotes the folding of cystic fibrosis transmembrane conductance regulator in the endoplasmic reticulum. J Biol Chem 2011; 286:43071-80. [PMID: 22030396 DOI: 10.1074/jbc.m111.269993] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
FK506-binding protein 38 (FKBP38), a membrane-anchored, tetratricopeptide repeat (TPR)-containing immunophilin, associates with nascent plasma membrane ion channels in the endoplasmic reticulum (ER). It promotes the maturation of the human ether-à-go-go-related gene (HERG) potassium channel and maintains the steady state level of the cystic fibrosis transmembrane conductance regulator (CFTR), but the underlying mechanisms remain unclear. Using a combination of steady state and pulse-chase analyses, we show that FKBP38 knockdown increases protein synthesis but inhibits the post-translational folding of CFTR, leading to reduced steady state levels of CFTR in the ER, decreased processing, and impaired cell surface functional expression in Calu-3 human airway epithelial cells. The membrane anchorage of FKBP38 is necessary for the inhibition of protein synthesis but not for CFTR post-translational folding. In contrast, the peptidylprolyl cis/trans isomerase active site is utilized to promote CFTR post-translational folding but is not important for regulation of protein synthesis. Uncoupling FKBP38 from Hsp90 by substituting a conserved lysine in the TPR domain modestly enhances CFTR maturation and further reduces its synthesis. Removing the N-terminal glutamate-rich domain (ERD) slightly enhances CFTR synthesis but reduces its maturation, suggesting that the ERD contributes to FKBP38 biological activities. Our data support a dual role for FKBP38 in regulating CFTR synthesis and post-translational folding. In contrast to earlier prediction but consistent with in vitro enzymological studies, FKBP38 peptidylprolyl cis/trans isomerase plays an important role in membrane protein biogenesis on the cytoplasmic side of the ER membrane, whose activity is negatively regulated by Hsp90 through the TPR domain.
Collapse
|
48
|
de Groot T, van der Hagen EAE, Verkaart S, te Boekhorst VAM, Bindels RJM, Hoenderop JGJ. Role of the transient receptor potential vanilloid 5 (TRPV5) protein N terminus in channel activity, tetramerization, and trafficking. J Biol Chem 2011; 286:32132-9. [PMID: 21795703 DOI: 10.1074/jbc.m111.226878] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The epithelial Ca(2+) channel transient receptor potential vanilloid 5 (TRPV5) constitutes the apical entry site for active Ca(2+) reabsorption in the kidney. The TRPV5 channel is a member of the TRP family of cation channels, which are composed of four subunits together forming a central pore. Regulation of channel activity is tightly controlled by the intracellular N and C termini. The TRPV5 C terminus regulates channel activity by various mechanisms, but knowledge regarding the role of the N terminus remains scarce. To study the role of the N terminus in TRPV5 regulation, we generated different N-terminal deletion constructs. We found that deletion of the first 32 residues did not affect TRPV5-mediated (45)Ca(2+) uptake, whereas deletion up to residue 34 and 75 abolished channel function. Immunocytochemistry demonstrated that these mutant channels were retained in the endoplasmic reticulum and in contrast to wild-type TRPV5 did not reach the Golgi apparatus, explaining the lack of complex glycosylation of the mutants. A limited amount of mutant channels escaped the endoplasmic reticulum and reached the plasma membrane, as shown by cell surface biotinylation. These channels did not internalize, explaining the reduced but significant amount of these mutant channels at the plasma membrane. Wild-type TRPV5 channels, despite significant plasma membrane internalization, showed higher plasma membrane levels compared with the mutant channels. The assembly into tetramers was not affected by the N-terminal deletions. Thus, the N-terminal residues 34-75 are critical in the formation of a functional TRPV5 channel because the deletion mutants were present at the plasma membrane as tetramers, but lacked channel activity.
Collapse
Affiliation(s)
- Theun de Groot
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Proteins provide much of the scaffolding for life, as well as undertaking a variety of essential catalytic reactions. These characteristic functions have led us to presuppose that proteins are in general functional only when well structured and correctly folded. As we begin to explore the repertoire of possible protein sequences inherent in the human and other genomes, two stark facts that belie this supposition become clear: firstly, the number of apparent open reading frames in the human genome is significantly smaller than appears to be necessary to code for all of the diverse proteins in higher organisms, and secondly that a significant proportion of the protein sequences that would be coded by the genome would not be expected to form stable three-dimensional (3D) structures. Clearly the genome must include coding for a multitude of alternative forms of proteins, some of which may be partly or fully disordered or incompletely structured in their functional states. At the same time as this likelihood was recognized, experimental studies also began to uncover examples of important protein molecules and domains that were incompletely structured or completely disordered in solution, yet remained perfectly functional. In the ensuing years, we have seen an explosion of experimental and genome-annotation studies that have mapped the extent of the intrinsic disorder phenomenon and explored the possible biological rationales for its widespread occurrence. Answers to the question 'why would a particular domain need to be unstructured?' are as varied as the systems where such domains are found. This review provides a survey of recent new directions in this field, and includes an evaluation of the role not only of intrinsically disordered proteins but also of partially structured and highly dynamic members of the disorder-order continuum.
Collapse
|
50
|
Vonk WIM, de Bie P, Wichers CGK, van den Berghe PVE, van der Plaats R, Berger R, Wijmenga C, Klomp LWJ, van de Sluis B. The copper-transporting capacity of ATP7A mutants associated with Menkes disease is ameliorated by COMMD1 as a result of improved protein expression. Cell Mol Life Sci 2011; 69:149-63. [PMID: 21667063 PMCID: PMC3249196 DOI: 10.1007/s00018-011-0743-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 05/26/2011] [Accepted: 05/30/2011] [Indexed: 01/02/2023]
Abstract
Menkes disease (MD) is an X-linked recessive disorder characterized by copper deficiency resulting in a diminished function of copper-dependent enzymes. Most MD patients die in early childhood, although mild forms of MD have also been described. A diversity of mutations in the gene encoding of the Golgi-resident copper-transporting P1B-type ATPase ATP7A underlies MD. To elucidate the molecular consequences of the ATP7A mutations, various mutations in ATP7A associated with distinct phenotypes of MD (L873R, C1000R, N1304S, and A1362D) were analyzed in detail. All mutants studied displayed changes in protein expression and intracellular localization parallel to a dramatic decline in their copper-transporting capacity compared to ATP7A the wild-type. We restored these observed defects in ATP7A mutant proteins by culturing the cells at 30°C, which improves the quality of protein folding, similar to that which as has recently has been demonstrated for misfolded ATP7B, a copper transporter homologous to ATP7A. Further, the effect of the canine copper toxicosis protein COMMD1 on ATP7A function was examined as COMMD1 has been shown to regulate the proteolysis of ATP7B proteins. Interestingly, in addition to adjusted growth temperature, binding of COMMD1 partially restored the expression, subcellular localization, and copper-exporting activities of the ATP7A mutants. However, no effect of pharmacological chaperones was observed. Together, the presented data might provide a new direction for developing therapies to improve the residual exporting activity of unstable ATP7A mutant proteins, and suggests a potential role for COMMD1 in this process.
Collapse
Affiliation(s)
- Willianne I M Vonk
- Department of Metabolic and Endocrine Diseases, Netherlands Metabolomics Center, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|