1
|
Li J, Xiao C, Li C, He J. Tissue-resident immune cells: from defining characteristics to roles in diseases. Signal Transduct Target Ther 2025; 10:12. [PMID: 39820040 PMCID: PMC11755756 DOI: 10.1038/s41392-024-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025] Open
Abstract
Tissue-resident immune cells (TRICs) are a highly heterogeneous and plastic subpopulation of immune cells that reside in lymphoid or peripheral tissues without recirculation. These cells are endowed with notably distinct capabilities, setting them apart from their circulating leukocyte counterparts. Many studies demonstrate their complex roles in both health and disease, involving the regulation of homeostasis, protection, and destruction. The advancement of tissue-resolution technologies, such as single-cell sequencing and spatiotemporal omics, provides deeper insights into the cell morphology, characteristic markers, and dynamic transcriptional profiles of TRICs. Currently, the reported TRIC population includes tissue-resident T cells, tissue-resident memory B (BRM) cells, tissue-resident innate lymphocytes, tissue-resident macrophages, tissue-resident neutrophils (TRNs), and tissue-resident mast cells, but unignorably the existence of TRNs is controversial. Previous studies focus on one of them in specific tissues or diseases, however, the origins, developmental trajectories, and intercellular cross-talks of every TRIC type are not fully summarized. In addition, a systemic overview of TRICs in disease progression and the development of parallel therapeutic strategies is lacking. Here, we describe the development and function characteristics of all TRIC types and their major roles in health and diseases. We shed light on how to harness TRICs to offer new therapeutic targets and present burning questions in this field.
Collapse
Affiliation(s)
- Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Dietz S, Hebel J, Rühle J, Huff A, Eltzschig HK, Lajqi T, Poets CF, Gille C, Köstlin‐Gille N. Impact of the adenosine receptor A2BR expressed on myeloid cells on immune regulation during pregnancy. Eur J Immunol 2024; 54:e2451149. [PMID: 39460389 PMCID: PMC11628929 DOI: 10.1002/eji.202451149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
During pregnancy, the maternal immune system must carefully balance protection against pathogens with tolerance toward the semiallogeneic fetus. Dysfunctions of the immune system can lead to severe complications such as preeclampsia, fetal growth restriction, or pregnancy loss. Adenosine plays a role in physiological processes and plasma-level increase during pregnancy. The adenosine receptor A2B (A2BR), which is expressed on both, immune and nonimmune cells, is activated by high adenosine concentrations, achieved during pregnancy. We investigated the impact of A2BR expressed on myeloid cells on immune regulation during pregnancy using a mouse model with myeloid deficiency for A2BR. We demonstrate systemic changes in myeloid and lymphoid cell populations during pregnancy in A2BR-KO (Adora2B923f/f-LysMCre) mice with increased monocytes, neutrophils, and T cells but decreased B cells as well as altered T-cell subpopulations with decreased Th1 cells and Tregs and increased Th17 cells. Lack of A2BR on myeloid cells caused an increased systemic expression of IL-6 but decreased systemic accumulation and function of MDSC and reduced numbers of uterine natural killer cells. The pregnancy outcome was only marginally affected. Our results demonstrate that A2BR on myeloid cells plays a role in immune regulation during pregnancy, but the clinical impact on pregnancy remains unclear.
Collapse
Affiliation(s)
- Stefanie Dietz
- Department of NeonatologyTuebingen University Children's HospitalTuebingenGermany
- Department of NeonatologyHeidelberg University, Medical FacultyHeidelbergGermany
| | - Janine Hebel
- Department of NeonatologyTuebingen University Children's HospitalTuebingenGermany
| | - Jessica Rühle
- Department of NeonatologyTuebingen University Children's HospitalTuebingenGermany
| | - Alisha Huff
- Department of NeonatologyTuebingen University Children's HospitalTuebingenGermany
| | | | - Trim Lajqi
- Department of NeonatologyHeidelberg University, Medical FacultyHeidelbergGermany
| | - Christian F. Poets
- Department of NeonatologyTuebingen University Children's HospitalTuebingenGermany
| | - Christian Gille
- Department of NeonatologyHeidelberg University, Medical FacultyHeidelbergGermany
| | - Natascha Köstlin‐Gille
- Department of NeonatologyTuebingen University Children's HospitalTuebingenGermany
- Department of NeonatologyHeidelberg University, Medical FacultyHeidelbergGermany
| |
Collapse
|
3
|
Mor G, Singh A, Yang J, Adzibolosu N, Cai S, Kauf E, Yang L, Li Q, Li H, Werner A, Parthasarathy S, Ding J, Fortier J, Rodriguez-Garcia M, Diao LH. Decoding Functional and Developmental Trajectories of Tissue-Resident Uterine Dendritic Cells Through Integrative Omics. RESEARCH SQUARE 2024:rs.3.rs-5424920. [PMID: 39606471 PMCID: PMC11601813 DOI: 10.21203/rs.3.rs-5424920/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Uterine dendritic cells (uDCs) are critical for endometrial function, yet their origin, molecular characteristics, and specific roles during the pre- and post-implantation periods in the human endometrium remain largely unknown. The complexity of the endometrial environment makes defining the contributions of uDCs subtypes challenging. We hypothesize that distinct uDC subsets carry out specialized functions, and that resident progenitor DCs generate these subtypes. Employing single-cell RNA sequencing on uterine tissues collected across different menstrual phases and during early pregnancy, we identify several uDCs subtypes, including resident progenitor DCs. CITE-seq was performed on endometrial single-cell suspensions to link surface protein expression with key genes identified by the RNAseq analysis. Our analysis revealed the developmental trajectory of the uDCs along with the distinct functional roles of each uDC subtype, including immune regulation, antigen presentation, and creating a conducive environment for embryo implantation. This study provides a comprehensive characterization of uDCs, serving as a foundational reference for future studies for better understanding female reproductive disorders such as infertility and pregnancy complications.
Collapse
Affiliation(s)
| | | | - Jing Yang
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | | | - Songchen Cai
- Shenzhen Zhongshan Obstetrics & Gynecology Hospital
| | | | | | - Qiyuan Li
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Hanjie Li
- Shenzhen Institutes of Advanced Technology
| | | | | | | | | | | | | |
Collapse
|
4
|
Xie Y, Zhao F, Wang Y, Borowski S, Freitag N, Tirado-Gonzalez I, Hofsink N, Matschl U, Plösch T, Garcia MG, Blois SM. Fetal growth restriction induced by maternal gal-3 deficiency is associated with altered gut-placenta axis. Cell Death Dis 2024; 15:575. [PMID: 39117607 PMCID: PMC11310209 DOI: 10.1038/s41419-024-06962-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Adverse intrauterine conditions may cause fetal growth restriction (FGR), a pregnancy complication frequently linked to perinatal morbidity and mortality. Although many studies have focused on FGR, the pathophysiological processes underlying this disorder are complex and incompletely understood. We have recently determined that galectin-3 (gal-3), a β-galactoside-binding protein, regulates pregnancy-associated processes, including uterine receptibility, maternal vascular adaptation and placentation. Because gal-3 is expressed at both sides of the maternal-fetal interface, we unraveled the contribution of maternal- and paternal-derived gal-3 on fetal-placental development in the prenatal window and its effects on the post-natal period. Deficiency of maternal gal-3 induced maternal gut microbiome dysbiosis, resulting in a sex-specific fetal growth restriction mainly observed in female fetuses and offspring. In addition, poor placental metabolic adaptions (characterized by decreased trophoblast glycogen content and insulin-like growth factor 2 (Igf2) gene hypomethylation) were only associated with a lack of maternal-derived gal-3. Paternal gal-3 deficiency caused compromised vascularization in the placental labyrinth without affecting fetal growth trajectory. Thus, maternal-derived gal-3 may play a key role in fetal-placental development through the gut-placenta axis.
Collapse
Affiliation(s)
- Yiran Xie
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fangqi Zhao
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yiru Wang
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sophia Borowski
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH) and Institute of Biochemistry, Berlin, Germany and Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner site Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | - Nancy Freitag
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH) and Institute of Biochemistry, Berlin, Germany and Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner site Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | - Irene Tirado-Gonzalez
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Naomi Hofsink
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Urte Matschl
- Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Perinatal Neurobiology, Department of Human Medicine, School of Medicine and Health Sciences, Carlvon Ossietzky University Oldenburg, Oldenburg, Germany
| | - Mariana G Garcia
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra M Blois
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
5
|
Yang M, Wang M, Li N. Advances in pathogenesis of preeclampsia. Arch Gynecol Obstet 2024; 309:1815-1823. [PMID: 38421424 DOI: 10.1007/s00404-024-07393-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE Preeclampsia is a major cause of health problems for both pregnant women and unborn babies worldwide. However, the underlying causes of preeclampsia are not fully understood, leading to limited effective treatments. The goal of this study is to enhance our knowledge of its causes, devise prevention strategies, and develop treatments. METHODS We performed a systematic literature search. Six models regarding the pathogenesis of preeclampsia are discussed in this review. RESULTS This review focuses on the latest advancements in understanding preeclampsia's origins. Preeclampsia is a complex condition caused by various factors, processes, and pathways. Reduced blood flow and oxygen to the uterus and placenta, heightened inflammatory reactions, immune imbalances, altered genetic changes, imbalanced blood vessel growth factors, and disrupted gut bacteria may contribute to its development. CONCLUSION Preeclampsia is thought to result from the interplay of these factors.
Collapse
Affiliation(s)
- Mei Yang
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, No. 91 TianChi Road, Urumqi, 830001, Xinjiang, People's Republic of China
| | - Menghui Wang
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, No. 91 TianChi Road, Urumqi, 830001, Xinjiang, People's Republic of China
| | - Nanfang Li
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, No. 91 TianChi Road, Urumqi, 830001, Xinjiang, People's Republic of China.
| |
Collapse
|
6
|
Sun L, He Y, Chen J, Yang X, Ding Y, Shi M, He A, Zhang P, Huang Z, Li R. Bioinformatics analysis identifies potential autophagy key genes and immune infiltration in preeclampsia. J Obstet Gynaecol Res 2024; 50:618-632. [PMID: 38350492 DOI: 10.1111/jog.15902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND Preeclampsia (PE) is a disease that seriously threatens maternal and fetal health. Appropriate autophagy can shield the placenta from oxidative stress, but its role in PE is unclear. OBJECTIVE To identify potential autophagy-related genes in PE. METHODS Microarray datasets from the Gene Expression Omnibus database, compassing the test dataset GSE10588, along with validation datasets GSE4707 and GSE60438 GPL10558, were utilized. Differentially expressed genes (DEGs) were identified using the limma R package, intersected with autophagy-related genes. Hub genes were obtained using the Cytoscape software and analyzed via gene set enrichment analysis (GSEA). The diagnostic capability of hub genes was evaluated using receiver operating characteristic (ROC) curve analysis. Analysis of immune cell infiltration was conducted using single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT methods. Placental tissues were collected from 10 normal pregnant women and 10 preeclamptic pregnant women, and the expression of hub genes was validated through immunohistochemistry and western blot analysis. RESULTS Analysis of the microarray data identified 2224 DEGs, among which 26 were autophagy-related DEGs identified through intersection with autophagy genes. Ten hub genes were identified. Immune cell infiltration analysis suggested the potential involvement of T regulatory cells (Tregs), natural killer cells, neutrophils, and T follicular helper cells in the pathogenesis of PE. ROC curve analysis indicated promising diagnostic capabilities for EGFR and TP53. Additionally, levels of EGFR and TP53 were significantly higher in placental tissue from PE pregnancies compared to normal pregnancies. CONCLUSION EGFR and TP53 may play a role in PE by influencing autophagy.
Collapse
Affiliation(s)
- Lu Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yanhong He
- Department of Obstetrics and Gynecology, The Affiliated Shunde hospital of Jinan University, the Second People's Hospital of Shunde, Foshan, China
| | - Jie Chen
- Department of Obstetrics and Gynecology, The Affiliated Shunde hospital of Jinan University, the Second People's Hospital of Shunde, Foshan, China
| | - Xiaofeng Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuzhen Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Meiting Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Andong He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ping Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhengrui Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Parisi F, Fenizia C, Introini A, Zavatta A, Scaccabarozzi C, Biasin M, Savasi V. The pathophysiological role of estrogens in the initial stages of pregnancy: molecular mechanisms and clinical implications for pregnancy outcome from the periconceptional period to end of the first trimester. Hum Reprod Update 2023; 29:699-720. [PMID: 37353909 PMCID: PMC10628507 DOI: 10.1093/humupd/dmad016] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/12/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Estrogens regulate disparate female physiological processes, thus ensuring reproduction. Altered estrogen levels and signaling have been associated with increased risks of pregnancy failure and complications, including hypertensive disorders and low birthweight babies. However, the role of estrogens in the periconceptional period and early pregnancy is still understudied. OBJECTIVE AND RATIONALE This review aims to summarize the current evidence on the role of maternal estrogens during the periconceptional period and the first trimester of pregnancies conceived naturally and following ART. Detailed molecular mechanisms and related clinical impacts are extensively described. SEARCH METHODS Data for this narrative review were independently identified by seven researchers on Pubmed and Embase databases. The following keywords were selected: 'estrogens' OR 'estrogen level(s)' OR 'serum estradiol' OR 'estradiol/estrogen concentration', AND 'early pregnancy' OR 'first trimester of pregnancy' OR 'preconceptional period' OR 'ART' OR 'In Vitro Fertilization (IVF)' OR 'Embryo Transfer' OR 'Frozen Embryo Transfer' OR 'oocyte donation' OR 'egg donation' OR 'miscarriage' OR 'pregnancy outcome' OR 'endometrium'. OUTCOMES During the periconceptional period (defined here as the critical time window starting 1 month before conception), estrogens play a crucial role in endometrial receptivity, through the activation of paracrine/autocrine signaling. A derailed estrogenic milieu within this period seems to be detrimental both in natural and ART-conceived pregnancies. Low estrogen levels are associated with non-conception cycles in natural pregnancies. On the other hand, excessive supraphysiologic estrogen concentrations at time of the LH peak correlate with lower live birth rates and higher risks of pregnancy complications. In early pregnancy, estrogen plays a massive role in placentation mainly by modulating angiogenic factor expression-and in the development of an immune-tolerant uterine micro-environment by remodeling the function of uterine natural killer and T-helper cells. Lower estrogen levels are thought to trigger abnormal placentation in naturally conceived pregnancies, whereas an estrogen excess seems to worsen pregnancy development and outcomes. WIDER IMPLICATIONS Most current evidence available endorses a relation between periconceptional and first trimester estrogen levels and pregnancy outcomes, further depicting an optimal concentration range to optimize pregnancy success. However, how estrogens co-operate with other factors in order to maintain a fine balance between local tolerance towards the developing fetus and immune responses to pathogens remains elusive. Further studies are highly warranted, also aiming to identify the determinants of estrogen response and biomarkers for personalized estrogen administration regimens in ART.
Collapse
Affiliation(s)
- F Parisi
- Department of Woman, Mother and Neonate, ‘V. Buzzi’ Children Hospital, ASST Fatebenefratelli Sacco, Milan, via L. Castelvetro 32, Milan, Italy
| | - C Fenizia
- Department of Pathophysiology and Transplantation, University of Milan, Milan, via F. Sforza 35, Milan 20122, Italy
- Department of Biomedical and Clinical Sciences, “L.Sacco” Hospital, University of Milan, Milan, via G.B. Grassi 74, Milan 20157, Italy
| | - A Introini
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Nobels väg 5, Stockholm, Sweden
| | - A Zavatta
- Department of Woman, Mother and Neonate, ‘V. Buzzi’ Children Hospital, ASST Fatebenefratelli Sacco, Milan, via L. Castelvetro 32, Milan, Italy
| | - C Scaccabarozzi
- Department of Biomedical and Clinical Sciences, “L.Sacco” Hospital, University of Milan, Milan, via G.B. Grassi 74, Milan 20157, Italy
| | - M Biasin
- Department of Biomedical and Clinical Sciences, “L.Sacco” Hospital, University of Milan, Milan, via G.B. Grassi 74, Milan 20157, Italy
| | - V Savasi
- Department of Biomedical and Clinical Sciences, “L.Sacco” Hospital, University of Milan, Milan, via G.B. Grassi 74, Milan 20157, Italy
| |
Collapse
|
8
|
Deer E, Herrock O, Campbell N, Cornelius D, Fitzgerald S, Amaral LM, LaMarca B. The role of immune cells and mediators in preeclampsia. Nat Rev Nephrol 2023; 19:257-270. [PMID: 36635411 PMCID: PMC10038936 DOI: 10.1038/s41581-022-00670-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 01/14/2023]
Abstract
Preeclampsia is a hypertensive disorder of major concern in pregnancy than can lead to intrauterine growth restriction, placental abruption and stillbirth. The pathophysiology of preeclampsia is multifactorial, including not only kidney dysfunction but also endothelial dysfunction, as the maternal endothelium becomes exposed to placental factors that are released into the circulation and increase systemic levels of vasoconstrictors, oxidative stress, anti-angiogenic factors and inflammatory mediators. Importantly, inflammation can lead to insufficient placental perfusion and low birthweight in offspring. Various innate and adaptive immune cells and mediators have been implicated in the development of preeclampsia, in which oxidative stress is associated with activation of the maternal inflammatory response. Immune cells such as regulatory T cells, macrophages, natural killer cells, and neutrophils are known to have major causative roles in the pathology of preeclampsia, but the contributions of additional immune cells such as B cells, inflammatory cytokines and anti-angiotensin II type 1 receptor autoantibodies are also now recognized. Immunological interventions, therefore, have therapeutic potential in this disease. Here, we provide an overview of the immune responses that are involved in the pathogenesis of preeclampsia, including the role of innate and adaptive immune cells and mediators.
Collapse
Affiliation(s)
- Evangeline Deer
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Owen Herrock
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Nathan Campbell
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Denise Cornelius
- Emergency Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sarah Fitzgerald
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lorena M Amaral
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Babbette LaMarca
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA.
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
9
|
Andreescu M, Frîncu F, Plotogea M, Mehedințu C. Recurrent Abortion and the Involvement of Killer-Cell Immunoglobulin-like Receptor (KIR) Genes, Activated T Cells, NK Abnormalities, and Cytokine Profiles. J Clin Med 2023; 12:jcm12041355. [PMID: 36835892 PMCID: PMC9968158 DOI: 10.3390/jcm12041355] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/21/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Immune tolerance at the feto-maternal interface is crucial for the growth of the semi-allograft fetus in the womb. The outcome of pregnancy is dependent on a fine balance between various immunological forces. For a long time, the potential role of the immune system in pregnancy disorders has remained enigmatic. Current evidence has revealed that natural killer (NK) cells are the predominant immune cell population in the uterine decidua. NK cells cooperate with T-cells to provide an optimal microenvironment for the growth of the developing fetus by producing cytokines, chemokines, and angiogenic factors. These factors support trophoblast migration and angiogenesis which regulates the process of placentation. NK cells differentiate between "self" and "non-self" through their surface receptors known as killer-cell immunoglobulin-like receptors (KIRs). They induce immune tolerance through communication via their KIR and fetal human leucocyte antigens (HLA). KIRs are surface receptors of NKs that comprise both activating and inhibiting receptors. Due to the wide diversity manifested by its genes, the KIR repertoire is different in each individual. Significant evidence has implicated KIRs in recurrent spontaneous abortion (RSA); however, maternal KIR gene diversity in RSA is still unclear. Research has shown that immunological aberrancies including activating KIRs, NK abnormalities, and T cell downregulation are risk factors for RSA. In this review, we discuss relevant data from experimental studies on NK cell abnormalities, KIR, and T-cells in the incidence of recurrent spontaneous abortion.
Collapse
Affiliation(s)
- Mihaela Andreescu
- Department of Clinical Sciences, Hematology, Faculty of Medicine, Titu Maiorescu University of Bucharest, 040051 Bucharest, Romania
- Department of Hematology, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Correspondence: (M.A.); (F.F.)
| | - Francesca Frîncu
- Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, 01171 Bucharest, Romania
- Department of Obstetrics and Gynecology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Correspondence: (M.A.); (F.F.)
| | - Mihaela Plotogea
- Department of Obstetrics and Gynecology, Nicolae Malaxa Clinical Hospital, 022441 Bucharest, Romania
| | - Claudia Mehedințu
- Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, 01171 Bucharest, Romania
- Department of Obstetrics and Gynecology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
10
|
Ma J, Gao W, Li D. Recurrent implantation failure: A comprehensive summary from etiology to treatment. Front Endocrinol (Lausanne) 2023; 13:1061766. [PMID: 36686483 PMCID: PMC9849692 DOI: 10.3389/fendo.2022.1061766] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Implantation is the first step in human reproduction. Successful implantation depends on the crosstalk between embryo and endometrium. Recurrent implantation failure (RIF) is a clinical phenomenon characterized by a lack of implantation after the transfer of several embryos and disturbs approximately 10% couples undergoing in vitro fertilization and embryo transfer. Despite increasing literature on RIF, there is still no widely accepted definition or standard protocol for the diagnosis and treatment of RIF. Progress in predicting and preventing RIF has been hampered by a lack of widely accepted definitions. Most couples with RIF can become pregnant after clinical intervention. The prognosis for couples with RIF is related to maternal age. RIF can be caused by immunology, thrombophilias, endometrial receptivity, microbiome, anatomical abnormalities, male factors, and embryo aneuploidy. It is important to determine the most possible etiologies, and individualized treatment aimed at the primary cause seems to be an effective method for increasing the implantation rate. Couples with RIF require psychological support and appropriate clinical intervention. Further studies are required to evaluate diagnostic method and he effectiveness of each therapy, and guide clinical treatment.
Collapse
Affiliation(s)
- Junying Ma
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, Shenyang, China
- Shengjing Hospital of China Medical University, Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China
| | - Wenyan Gao
- Department of Obstetrics, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Da Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, Shenyang, China
- Shengjing Hospital of China Medical University, Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China
| |
Collapse
|
11
|
Oravecz O, Romero R, Tóth E, Kapitány J, Posta M, Gallo DM, Rossi SW, Tarca AL, Erez O, Papp Z, Matkó J, Than NG, Balogh A. Placental galectins regulate innate and adaptive immune responses in pregnancy. Front Immunol 2022; 13:1088024. [PMID: 36643922 PMCID: PMC9832025 DOI: 10.3389/fimmu.2022.1088024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 12/29/2022] Open
Abstract
Introduction Galectins are master regulators of maternal immune responses and placentation in pregnancy. Galectin-13 (gal-13) and galectin-14 (gal-14) are expressed solely by the placenta and contribute to maternal-fetal immune tolerance by inducing the apoptosis of activated T lymphocytes and the polarization of neutrophils toward an immune-regulatory phenotype.Furthermore, their decreased placental expression is associated with pregnancy complications, such as preeclampsia and miscarriage. Yet, our knowledge of the immunoregulatory role of placental galectins is incomplete. Methods This study aimed to investigate the effects of recombinant gal-13 and gal-14 on cell viability, apoptosis, and cytokine production of peripheral blood mononuclear cells (PBMCs) and the signaling pathways involved. Results Herein, we show that gal-13 and gal-14 bind to the surface of non-activated PBMCs (monocytes, natural killer cells, B cells, and T cells) and increase their viability while decreasing the rate of their apoptosis without promoting cell proliferation. We also demonstrate that gal-13 and gal-14 induce the production of interleukin (IL)-8, IL-10, and interferon-gamma cytokines in a concentration-dependent manner in PBMCs. The parallel activation of Erk1/2, p38, and NF-ĸB signaling evidenced by kinase phosphorylation in PBMCs suggests the involvement of these pathways in the regulation of the galectin-affected immune cell functions. Discussion These findings provide further evidence on how placenta-specific galectins assist in the establishment and maintenance of a proper immune environment during a healthy pregnancy.
Collapse
Affiliation(s)
- Orsolya Oravecz
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States,Detroit Medical Center, Detroit, MI, United States
| | - Eszter Tóth
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Judit Kapitány
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Máté Posta
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Károly Rácz Doctoral School of Clinical Medicine, Semmelweis University, Budapest, Hungary
| | - Dahiana M. Gallo
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States,Department of Obstetrics and Gynecology, Universidad Del Valle, Cali, Colombia
| | | | - Adi L. Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States,Genesis Theranostix Group, Budapest, Hungary
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States,Genesis Theranostix Group, Budapest, Hungary,Department of Obstetrics and Gynecology, Soroka University Medical Center, Beer Sheva, Israel
| | - Zoltán Papp
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary,Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - János Matkó
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Nándor Gábor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Genesis Theranostix Group, Budapest, Hungary,Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary,Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary,*Correspondence: Nándor Gábor Than,
| | - Andrea Balogh
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
12
|
Wahlen S, Matthijssens F, Van Loocke W, Taveirne S, Kiekens L, Persyn E, Van Ammel E, De Vos Z, De Munter S, Matthys P, Van Nieuwerburgh F, Taghon T, Vandekerckhove B, Van Vlierberghe P, Leclercq G. The transcription factor RUNX2 drives the generation of human NK cells and promotes tissue residency. eLife 2022; 11:e80320. [PMID: 35793229 PMCID: PMC9259014 DOI: 10.7554/elife.80320] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that eliminate virus-infected and cancer cells by cytotoxicity and cytokine secretion. In addition to circulating NK cells, distinct tissue-resident NK subsets have been identified in various organs. Although transcription factors regulating NK cell development and function have been extensively studied in mice, the role of RUNX2 in these processes has not been investigated, neither in mice nor in human. Here, by manipulating RUNX2 expression with either knockdown or overexpression in human haematopoietic stem cell-based NK cell differentiation cultures, combined with transcriptomic and ChIP-sequencing analyses, we established that RUNX2 drives the generation of NK cells, possibly through induction of IL-2Rβ expression in NK progenitor cells. Importantly, RUNX2 promotes tissue residency in human NK cells. Our findings have the potential to improve existing NK cell-based cancer therapies and can impact research fields beyond NK cell biology, since tissue-resident subsets have also been described in other lymphocyte subpopulations.
Collapse
Affiliation(s)
- Sigrid Wahlen
- Department of Diagnostic Sciences, Ghent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Filip Matthijssens
- Cancer Research Institute GhentGhentBelgium
- Department of Biomolecular Medicine, Ghent UniversityGhentBelgium
| | - Wouter Van Loocke
- Cancer Research Institute GhentGhentBelgium
- Department of Biomolecular Medicine, Ghent UniversityGhentBelgium
| | - Sylvie Taveirne
- Department of Diagnostic Sciences, Ghent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Laura Kiekens
- Department of Diagnostic Sciences, Ghent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Eva Persyn
- Department of Diagnostic Sciences, Ghent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Els Van Ammel
- Department of Diagnostic Sciences, Ghent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Zenzi De Vos
- Department of Diagnostic Sciences, Ghent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Stijn De Munter
- Department of Diagnostic Sciences, Ghent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU LeuvenLeuvenBelgium
| | | | - Tom Taghon
- Department of Diagnostic Sciences, Ghent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Ghent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Pieter Van Vlierberghe
- Cancer Research Institute GhentGhentBelgium
- Department of Biomolecular Medicine, Ghent UniversityGhentBelgium
| | - Georges Leclercq
- Department of Diagnostic Sciences, Ghent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| |
Collapse
|
13
|
Sobstyl M, Brecht P, Sobstyl A, Mertowska P, Grywalska E. The Role of Microbiota in the Immunopathogenesis of Endometrial Cancer. Int J Mol Sci 2022; 23:ijms23105756. [PMID: 35628566 PMCID: PMC9143279 DOI: 10.3390/ijms23105756] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
The female reproductive tract hosts a specific microbiome, which plays a crucial role in sustaining equilibrium and good health. In the majority of reproductive women, the microbiota (all bacteria, viruses, fungi, and other single-celled organisms within the human body) of the vaginal and cervical microenvironment are dominated by Lactobacillus species, which benefit the host through symbiotic relationships, in comparison to the uterus, fallopian tubes, and ovaries, which may contain a low-biomass microbiome with a diverse mixture of microorganisms. Although disruption to the balance of the microbiota develops, the altered immune and metabolic signaling may cause an impact on diseases such as cancer. These pathophysiological modifications in the gut–uterus axis may spark gynecological cancers. New information displays that gynecological and gastrointestinal tract dysbiosis (disruption of the microbiota homeostasis) can play an active role in the advancement and metastasis of gynecological neoplasms, such as cervical, endometrial, and ovarian cancers. Understanding the relationship between microbiota and endometrial cancer is critical for prognosis, diagnosis, prevention, and the development of innovative treatments. Identifying a specific microbiome may become an effective method for characterization of the specific microbiota involved in endometrial carcinogenesis. The aim of this study was to summarize the current state of knowledge that describes the correlation of microbiota with endometrial cancer with regard to the formation of immunological pathologies.
Collapse
Affiliation(s)
- Małgorzata Sobstyl
- Department of Gynecology and Gynecological Endocrinology, Medical University of Lublin, 20-037 Lublin, Poland;
| | - Peet Brecht
- Department of Experimental Immunology, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (P.B.); (A.S.)
| | - Anna Sobstyl
- Department of Experimental Immunology, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (P.B.); (A.S.)
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (P.B.); (A.S.)
- Correspondence: (P.M.); (E.G.)
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (P.B.); (A.S.)
- Correspondence: (P.M.); (E.G.)
| |
Collapse
|
14
|
Hashemi E, Mei A, Wang D, Khalil M, Malarkannan S. Methods for Isolating and Defining Single-Cell Transcriptomes of Tissue-Resident Human NK Cells. Methods Mol Biol 2022; 2463:103-116. [PMID: 35344170 DOI: 10.1007/978-1-0716-2160-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Natural killer (NK) cells are innate lymphocytes that control tumors and microbial infections. Human NK cells are transcriptomically and phenotypically heterogeneous. The site where NK cells develop and reside determines their phenotype and effector functions. Our current knowledge about human NK cells is primarily from blood- and bone marrow-derived NK cells. The major limitation in formulating organ-specific clinical therapy is the knowledge gap on how tissue-resident NK cells develop, home, and function. Thus, it is crucial to define the transcriptomic profiles and the transcriptional regulation of tissue-resident NK cells. The major challenges in studying tissue-resident NK cells include their total number and the complexity of the tissue. Additionally, during isolation, keeping them viable and naïve without activation are challenging tasks. Here, we provide methods for isolating and performing transcriptomic analyses of NK cells at the individual cell level. Single-cell RNA sequencing provides a higher resolution of cellular heterogeneity and a better understanding of cell-cell interactions within the microenvironment. Using these methods, we can efficiently identify distinct populations of NK cells in tissues and define their unique transcriptomic profiles.
Collapse
Affiliation(s)
- Elaheh Hashemi
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ao Mei
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Dandan Wang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mohamed Khalil
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA.
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
15
|
Fraser R, Zenclussen AC. Killer Timing: The Temporal Uterine Natural Killer Cell Differentiation Pathway and Implications for Female Reproductive Health. Front Endocrinol (Lausanne) 2022; 13:904744. [PMID: 35832424 PMCID: PMC9271944 DOI: 10.3389/fendo.2022.904744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells are the predominant maternal uterine immune cell component, and they densely populate uterine mucosa to promote key changes in the post-ovulatory endometrium and in early pregnancy. It is broadly accepted that (a) immature, inactive endometrial NK (eNK) cells in the pre-ovulatory endometrium become activated and transition into decidual NK (dNK) cells in the secretory stage, peri-implantation endometrium, and continue to mature into early pregnancy; and (b) that secretory-stage and early pregnancy dNK cells promote uterine vascular growth and mediate trophoblast invasion, but do not exert their killing function. However, this may be an overly simplistic view. Evidence of specific dNK functional killer roles, as well as opposing effects of dNK cells on the uterine vasculature before and after conception, indicates the presence of a transitory secretory-stage dNK cell (s-dNK) phenotype with a unique angiodevelopmental profile during the peri-implantation period, that is that is functionally distinct from the angiomodulatory dNK cells that promote vessel destabilisation and vascular cell apoptosis to facilitate uterine vascular changes in early pregnancy. It is possible that abnormal activation and differentiation into the proposed transitory s-dNK phenotype may have implications in uterine pathologies ranging from infertility to cancer, as well as downstream effects on dNK cell differentiation in early pregnancy. Further, dysregulated transition into the angiomodulatory dNK phenotype in early pregnancy will likely have potential repercussions for adverse pregnancy outcomes, since impaired dNK function is associated with several obstetric complications. A comprehensive understanding of the uterine NK cell temporal differentiation pathway may therefore have important translational potential due to likely NK phenotypic functional implications in a range of reproductive, obstetric, and gynaecological pathologies.
Collapse
Affiliation(s)
- Rupsha Fraser
- Centre for Reproductive Health, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Rupsha Fraser,
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, Leipzig, Germany
| |
Collapse
|
16
|
Sfakianoudis K, Rapani A, Grigoriadis S, Pantou A, Maziotis E, Kokkini G, Tsirligkani C, Bolaris S, Nikolettos K, Chronopoulou M, Pantos K, Simopoulou M. The Role of Uterine Natural Killer Cells on Recurrent Miscarriage and Recurrent Implantation Failure: From Pathophysiology to Treatment. Biomedicines 2021; 9:biomedicines9101425. [PMID: 34680540 PMCID: PMC8533591 DOI: 10.3390/biomedicines9101425] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 01/15/2023] Open
Abstract
Uterine natural killer (uNK) cells constitute a unique uterine leucocyte subpopulation facilitating implantation and maintaining pregnancy. Herein, we critically analyze current evidence regarding the role of uNK cells in the events entailed in recurrent implantation failure (RIF) and recurrent miscarriages (RM). Data suggest an association between RIF and RM with abnormally elevated uNK cells’ numbers, as well as with a defective biological activity leading to cytotoxicity. However, other studies do not concur on these associations. Robust data suggesting a definitive causative relationship between uNK cells and RIF and RM is missing. Considering the possibility of uNK cells involvement on RIF and RM pathophysiology, possible treatments including glucocorticoids, intralipids, and intravenous immunoglobulin administration have been proposed towards addressing uNK related RIF and RM. When considering clinical routine practice, this study indicated that solid evidence is required to report on efficiency and safety of these treatments as there are recommendations that clearly advise against their employment. In conclusion, defining a causative relationship between uNK and RIF–RM pathologies certainly merits investigation. Future studies should serve as a prerequisite prior to proposing the use of uNK as a biomarker or prior to targeting uNK cells for therapeutic purposes addressing RIF and RM.
Collapse
Affiliation(s)
- Konstantinos Sfakianoudis
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (A.P.); (M.C.); (K.P.)
| | - Anna Rapani
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias, 11527 Athens, Greece; (A.R.); (S.G.); (E.M.); (G.K.); (C.T.)
| | - Sokratis Grigoriadis
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias, 11527 Athens, Greece; (A.R.); (S.G.); (E.M.); (G.K.); (C.T.)
- Assisted Conception Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 76, Vasilisis Sofias Avenue, 11528 Athens, Greece
| | - Agni Pantou
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (A.P.); (M.C.); (K.P.)
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias, 11527 Athens, Greece; (A.R.); (S.G.); (E.M.); (G.K.); (C.T.)
| | - Evangelos Maziotis
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias, 11527 Athens, Greece; (A.R.); (S.G.); (E.M.); (G.K.); (C.T.)
- Assisted Conception Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 76, Vasilisis Sofias Avenue, 11528 Athens, Greece
| | - Georgia Kokkini
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias, 11527 Athens, Greece; (A.R.); (S.G.); (E.M.); (G.K.); (C.T.)
| | - Chrysanthi Tsirligkani
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias, 11527 Athens, Greece; (A.R.); (S.G.); (E.M.); (G.K.); (C.T.)
| | - Stamatis Bolaris
- Assisted Conception Unit, General-Maternity District Hospital "Elena Venizelou", Elenas Venizelou Avenue, 11521 Athens, Greece;
| | - Konstantinos Nikolettos
- Assisted Reproduction Unit of Thrace “Embryokosmogenesis”, Apalos, 68132 Alexandroupoli, Greece;
| | - Margarita Chronopoulou
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (A.P.); (M.C.); (K.P.)
| | - Konstantinos Pantos
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (A.P.); (M.C.); (K.P.)
| | - Mara Simopoulou
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias, 11527 Athens, Greece; (A.R.); (S.G.); (E.M.); (G.K.); (C.T.)
- Assisted Conception Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 76, Vasilisis Sofias Avenue, 11528 Athens, Greece
- Correspondence: ; Tel.: +30-21-0746-2592
| |
Collapse
|
17
|
Fu YY, Ren CE, Qiao PY, Meng YH. Uterine natural killer cells and recurrent spontaneous abortion. Am J Reprod Immunol 2021; 86:e13433. [PMID: 33896061 DOI: 10.1111/aji.13433] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/07/2021] [Indexed: 01/07/2023] Open
Abstract
Recurrent spontaneous abortion (RSA), termed as two or more consecutive pregnancy loss is a great problem for some women of childbearing age. A large number of evidence confirm that there may be an immune background of RSA. As a member of the innate immune system, uterine natural killer (uNK) cells account for about 70% of total lymphocytes during pregnancy and play a critical role in the establishment and maintenance of pregnancy. This review mainly introduces the phenotype, origin, receptor, and function of uNK cells to illuminate its relationship with RSA.
Collapse
Affiliation(s)
- Yao-Yao Fu
- Clinical Medical Colleges, Weifang Medical University, Weifang, China
| | - Chun-E Ren
- Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Peng-Yun Qiao
- Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yu-Han Meng
- Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
18
|
Sauerbrun-Cutler MT, Huber WJ, Krueger PM, Sung CJ, Has P, Sharma S. Do endometrial natural killer and regulatory T cells differ in infertile and clinical pregnancy patients? An analysis in patients undergoing frozen embryo transfer cycles. Am J Reprod Immunol 2021; 85:e13393. [PMID: 33501767 DOI: 10.1111/aji.13393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/23/2020] [Accepted: 01/20/2021] [Indexed: 11/29/2022] Open
Abstract
PROBLEM Clinical significance of endometrial and peripheral blood natural killer (NK) and regulatory T cells (Tregs) during frozen embryo transfer (FET) cycles has not been well characterized. DESIGN Retrospective cohort study. METHOD OF STUDY Endometrial tissue was collected from infertility patients prior to a frozen embryo transfer cycle as part of an endometrial receptivity analysis (ERA® ) biopsy or endometrial scratch test. Uterine NK (uNK) and Treg cell density was compared based on pregnancy status in the subsequent frozen embryo transfer cycle. Peripheral blood was also collected from a separate cohort of patients undergoing frozen embryo transfer. Treg cell density was compared by the presence or the absence of a clinical pregnancy in each phase of the cycle. RESULTS In the 33 luteal phase biopsies there were more endometrial Tregs, similar uNK and a trend toward lower CD16+ uNK cells in women with a future ongoing clinical pregnancy compared to non-pregnant women. There were no differences in uNK and Treg density in natural scratch cycles vs programmed cycles or in non-receptive vs receptive endometrium (ERA® cycles). In the peripheral blood analysis, the pregnant group had higher peripheral blood Tregs on the day of serum β-hCG time point when compared to the non-pregnant group. CONCLUSION Higher levels of endometrial Tregs and lower levels of CD16+ uNK cells are positive prognostic factors for infertile women prior to frozen embryo transfer. Our work on phenotypic and proportional analyses of endometrial immune cells may complement the ERA® in predicting improved pregnancy rates in patients with implantation failure.
Collapse
Affiliation(s)
- May-Tal Sauerbrun-Cutler
- Department of Obstetrics and Gynecology, Women & Infants Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Warren J Huber
- Department of Obstetrics and Gynecology, Women & Infants Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Paula M Krueger
- Department of Pediatrics, Women & Infants Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - C James Sung
- Department of Pathology and Laboratory Medicine, Women & Infants Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Phinnara Has
- Department of Obstetrics and Gynecology, Women & Infants Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Surendra Sharma
- Department of Pediatrics, Women & Infants Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
19
|
Huber WJ, Sauerbrun-Cutler MT, Krueger PM, Lambert-Messerlian G, Sharma S. Human chorionic gonadotropin-mediated modulation of pregnancy-compatible peripheral blood natural killer cells in frozen embryo transfer cycles. Am J Reprod Immunol 2020; 85:e13324. [PMID: 33245601 DOI: 10.1111/aji.13324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
PROBLEM To evaluate pregnancy-compatible phenotypic and functional changes in peripheral blood natural killer (pNK) cells during frozen embryo transfer (FET) cycles. METHOD OF STUDY Peripheral blood was collected from patients undergoing frozen embryo transfer cycles at three separate time points in the cycle. pNK cell phenotype was analyzed by flow cytometry. Impact of pregnancy status on pNK cell cytotoxicity was characterized by two methods: (1) a three-dimensional endovascular tube formation approach and (2) a NK cell-specific K562 cell kill assay. RESULTS A total of 35 patients were enrolled, 15 with clinical pregnancies and 20 with negative serum β-hCG levels. Overall percentage of CD45+ CD3- CD56+ pNK cell did not change during the FET cycle. Pregnancy resulted in an increase in CD45+ CD3- CD56+ pNK cell population on the day of serum β-hCG. pNK cells from non-pregnant patients caused significant tube disruption when compared to pregnant patients. Addition of serum from pregnant women reduced the tube disruption by pNK cells from non-pregnant patients. pNK cells from pregnant patients showed significantly lower cytotoxicity toward K562 cells in serum-free conditions. The addition of pregnancy serum decreased non-pregnant pNK cell cytotoxicity. Pregnancy status had no impact on VEGF-A and VEGF-C serum levels. Recombinant hCG added to non-pregnant serum resulted in a significant reduction in non-pregnant pNK cell-mediated K562 cell kill. CONCLUSION There was no difference in pNK cell populations based on timing of the FET cycle. However, pregnancy increased the percentage of CD45+ CD3- CD56+ pNK cells. Additionally, pNK cells from pregnant women have reduced cytotoxicity and this is possibly mediated by hCG.
Collapse
Affiliation(s)
- Warren J Huber
- Department of Obstetrics and Gynecology, Women & Infants Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - May-Tal Sauerbrun-Cutler
- Department of Obstetrics and Gynecology, Women & Infants Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Paula M Krueger
- Department of Pediatrics, Women & Infants Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Geralyn Lambert-Messerlian
- Department of Obstetrics and Gynecology, Women & Infants Hospital, Alpert Medical School of Brown University, Providence, RI, USA.,Department of Pathology and Laboratory Medicine, Women & Infants Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Surendra Sharma
- Department of Pediatrics, Women & Infants Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
20
|
Hashemi E, Malarkannan S. Tissue-Resident NK Cells: Development, Maturation, and Clinical Relevance. Cancers (Basel) 2020; 12:cancers12061553. [PMID: 32545516 PMCID: PMC7352973 DOI: 10.3390/cancers12061553] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells belong to type 1 innate lymphoid cells (ILC1) and are essential in killing infected or transformed cells. NK cells mediate their effector functions using non-clonotypic germ-line-encoded activation receptors. The utilization of non-polymorphic and conserved activating receptors promoted the conceptual dogma that NK cells are homogeneous with limited but focused immune functions. However, emerging studies reveal that NK cells are highly heterogeneous with divergent immune functions. A distinct combination of several activation and inhibitory receptors form a diverse array of NK cell subsets in both humans and mice. Importantly, one of the central factors that determine NK cell heterogeneity and their divergent functions is their tissue residency. Decades of studies provided strong support that NK cells develop in the bone marrow. However, evolving evidence supports the notion that NK cells also develop and differentiate in tissues. Here, we summarize the molecular basis, phenotypic signatures, and functions of tissue-resident NK cells and compare them with conventional NK cells.
Collapse
Affiliation(s)
- Elaheh Hashemi
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA;
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA;
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence:
| |
Collapse
|
21
|
Cappelletti M, Presicce P, Kallapur SG. Immunobiology of Acute Chorioamnionitis. Front Immunol 2020; 11:649. [PMID: 32373122 PMCID: PMC7177011 DOI: 10.3389/fimmu.2020.00649] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/23/2020] [Indexed: 12/19/2022] Open
Abstract
Acute chorioamnionitis is characterized by neutrophilic infiltration and inflammation at the maternal fetal interface. It is a relatively common complication of pregnancy and can have devastating consequences including preterm labor, maternal infections, fetal infection/inflammation, fetal lung, brain, and gastrointestinal tract injury. In this review, we will discuss current understanding of the pathogenesis, immunobiology, and mechanisms of this condition. Most commonly, acute chorioamnionitis is a result of ascending infection with relatively low-virulence organisms such as the Ureaplasma species. Furthermore, recent vaginal microbiome studies suggest that there is a link between vaginal dysbiosis, vaginal inflammation, and ascending infection. Although less common, microorganisms invading the maternal-fetal interface via hematogenous route (e.g., Zika virus, Cytomegalovirus, and Listeria) can cause placental villitis and severe fetal inflammation and injury. We will provide an overview of the knowledge gleaned from different animal models of acute chorioamnionitis and the role of different immune cells in different maternal-fetal compartments. Lastly, we will discuss how infectious agents can break the maternal tolerance of fetal allograft during pregnancy and highlight the novel future therapeutic approaches.
Collapse
Affiliation(s)
- Monica Cappelletti
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
| | - Pietro Presicce
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
| | - Suhas G Kallapur
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
22
|
Cui W, Wang C, Luo Q, Xing T, Shen J, Wang W. Toxoplasma gondii ROP16 I Deletion: The Exacerbated Impact on Adverse Pregnant Outcomes in Mice. Front Microbiol 2020; 10:3151. [PMID: 32082272 PMCID: PMC7005636 DOI: 10.3389/fmicb.2019.03151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/29/2019] [Indexed: 01/18/2023] Open
Abstract
Imbalance of Th1 and Th2 response at the maternal-fetal interface is considered as a radical event in the pathogenesis of immunity-related pregnant diseases. It has been demonstrated that the ROP16I, a rhoptry protein of Toxoplasma gondii, and the viable parasite with ROP16I may induce M2 macrophage polarization in host innate immunity and may be involved in the adverse pregnant outcomes. However, the mechanisms by which T. gondii-derived effectors subvert the immune tolerance in the pathology of pregnancy remain unclear. Here, we constructed the RH strain with ROP16I deletion (RHΔrop16) to explore the pathogenesis of abnormal pregnancy. We found that C57BL/6 mice infected with RHΔrop16 exhibited the increased resorption of fetuses and more severe adverse pathology of placentae at the early phase of gestation, as compared to the mice infected with RH wild type (RH WT) parasite. Additionally, RHΔrop16 strain infection significantly promoted M1 macrophage phenotypes of CD80 and CD86, and decreased CD206 expression of M2 macrophages, with upregulation of the iNOS and downregulation of the Arg-1 expression in placental homogenates. Simultaneously, the pro-inflammatory cytokines of IL-12 and TNF-α were elevated whereas the anti-inflammatory cytokine of TGF-β1 was dampened. Moreover, the p38α mitogen-activated protein kinase (p38α MAPK) was notably phosphorylated in placental macrophages infected with both RHΔrop16 and RH WT strains compared with the control. Taken together, our findings indicated that ROP16I deletion of type I RH strain may cause exacerbated adverse pregnant outcomes, which is attributable to subversion of the maternal immune tolerance due to the increased pro-inflammatory cytokines in the pregnant animals. The results also suggest that ROP16I might be a protective factor and other T. gondii-derived molecules might be involved in the M1-Th1 biased pathological process in aberrant pregnancy at the early phase of gestation.
Collapse
Affiliation(s)
- Wen Cui
- Department of Pathogen Biology, Provincial Laboratories of Pathogen Biology and Zoonoses Anhui, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Cong Wang
- Department of Clinical Laboratory, The Second Hospital of Hefei, Hefei, China
| | - Qingli Luo
- Department of Pathogen Biology, Provincial Laboratories of Pathogen Biology and Zoonoses Anhui, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Tian Xing
- The Key Laboratory of Oral Disease Research of Anhui, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Jilong Shen
- Department of Pathogen Biology, Provincial Laboratories of Pathogen Biology and Zoonoses Anhui, School of Basic Medicine, Anhui Medical University, Hefei, China.,Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Wang
- Department of Pathogen Biology, Provincial Laboratories of Pathogen Biology and Zoonoses Anhui, School of Basic Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
23
|
Balogh A, Toth E, Romero R, Parej K, Csala D, Szenasi NL, Hajdu I, Juhasz K, Kovacs AF, Meiri H, Hupuczi P, Tarca AL, Hassan SS, Erez O, Zavodszky P, Matko J, Papp Z, Rossi SW, Hahn S, Pallinger E, Than NG. Placental Galectins Are Key Players in Regulating the Maternal Adaptive Immune Response. Front Immunol 2019; 10:1240. [PMID: 31275299 PMCID: PMC6593412 DOI: 10.3389/fimmu.2019.01240] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Galectins are potent immunomodulators that regulate maternal immune responses in pregnancy and prevent the rejection of the semi-allogeneic fetus that also occurs in miscarriages. We previously identified a gene cluster on Chromosome 19 that expresses a subfamily of galectins, including galectin-13 (Gal-13) and galectin-14 (Gal-14), which emerged in anthropoid primates. These galectins are expressed only by the placenta and induce the apoptosis of activated T lymphocytes, possibly contributing to a shifted maternal immune balance in pregnancy. The placental expression of Gal-13 and Gal-14 is decreased in preeclampsia, a life-threatening obstetrical syndrome partly attributed to maternal anti-fetal rejection. This study is aimed at revealing the effects of Gal-13 and Gal-14 on T cell functions and comparing the expression of these galectins in placentas from healthy pregnancies and miscarriages. First-trimester placentas were collected from miscarriages and elective termination of pregnancies, tissue microarrays were constructed, and then the expression of Gal-13 and Gal-14 was analyzed by immunohistochemistry and immunoscoring. Recombinant Gal-13 and Gal-14 were expressed and purified, and their effects were investigated on primary peripheral blood T cells. The binding of Gal-13 and Gal-14 to T cells and the effects of these galectins on apoptosis, activation marker (CD25, CD71, CD95, HLA-DR) expression and cytokine (IL-1β, IL-6, IL-8, IL-10, IFNγ) production of T cells were examined by flow cytometry. Gal-13 and Gal-14 are primarily expressed by the syncytiotrophoblast at the maternal-fetal interface in the first trimester, and their placental expression is decreased in miscarriages compared to first-trimester controls. Recombinant Gal-13 and Gal-14 bind to T cells in a population- and activation-dependent manner. Gal-13 and Gal-14 induce apoptosis of Th and Tc cell populations, regardless of their activation status. Out of the investigated activation markers, Gal-14 decreases the cell surface expression of CD71, Gal-13 increases the expression of CD25, and both galectins increase the expression of CD95 on T cells. Non-activated T cells produce larger amounts of IL-8 in the presence of Gal-13 or Gal-14. In conclusion, these results show that Gal-13 and Gal-14 already provide an immunoprivileged environment at the maternal-fetal interface during early pregnancy, and their reduced expression is related to miscarriages.
Collapse
Affiliation(s)
- Andrea Balogh
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Eszter Toth
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Katalin Parej
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Structural Biophysics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Diana Csala
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Nikolett L Szenasi
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Istvan Hajdu
- Structural Biophysics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kata Juhasz
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Arpad F Kovacs
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | | | - Petronella Hupuczi
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Adi L Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, United States
| | - Sonia S Hassan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Offer Erez
- Division of Obstetrics and Gynecology, Maternity Department "D", Faculty of Health Sciences, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Peter Zavodszky
- Structural Biophysics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Janos Matko
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Zoltan Papp
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary.,Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - Simona W Rossi
- Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Sinuhe Hahn
- Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Eva Pallinger
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Nandor Gabor Than
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary.,First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
24
|
Złotkowska A, Andronowska A. Variable chemokine expression in porcine trophoblasts and endometrium during the peri-implantation period. Theriogenology 2019; 131:16-27. [PMID: 30928625 DOI: 10.1016/j.theriogenology.2019.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/11/2019] [Accepted: 03/16/2019] [Indexed: 02/07/2023]
Abstract
Successful embryo implantation and its further development depends on appropriate endometrial remodelling. Porcine early pregnancy is associated with intensive endometrial angiogenesis and establishment of an immunotolerant environment for the embryo. An increasing number of factors are believed to participate in endometrial remodelling. The aim of this study was to elucidate the involvement of selected chemokines at the porcine maternal-foetal interface during the peri-implantation period. Real-time PCR analysis revealed several upregulated chemokines during the time of implantation, and Western blot/ELISA analyses and immunohistochemical staining confirmed their presence at the protein level. The gene expression of several chemokines and receptors was also confirmed in early porcine trophoblasts. The results indicated that IFNG, a porcine trophoblast signal, positively influenced the expression of some chemokines in endometrial cells. In conclusion, we suggest that some of the examined chemokines may be involved in endometrial communication with the trophoblast (CCL2, CCL5, CCL11, CXCL12), whereas others are implicated in the recruitment of immune cells and establishment of an immunotolerant environment for the embryo (CXCL9, CXCL10).
Collapse
Affiliation(s)
- Aleksandra Złotkowska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Aneta Andronowska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland.
| |
Collapse
|
25
|
Zhang T, Chen X, Wang CC, Li TC, Kwak-Kim J. Intrauterine infusion of human chorionic gonadotropin before embryo transfer in IVF/ET cycle: The critical review. Am J Reprod Immunol 2019; 81:e13077. [PMID: 30589989 DOI: 10.1111/aji.13077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022] Open
Abstract
Intrauterine infusion of human chorionic gonadotropin (IUI-hCG) has been proposed to improve the outcome of in vitro fertilization-embryo transfer (IVF-ET), since it plays a critical role in synchronizing endometrial and fetal development. As the early mediator from embryo, hCG promotes the decidualization, angiogenesis, maternal immune tolerance, and trophoblast invasion, favoring successful implantation of embryo. Although multiple clinical trials have been conducted to verify the efficacy of IUI-hCG on IVF-ET outcome in recent years, the findings remained controversial. The difference in study design and population might be the cause to the different consequences after administration of hCG. More importantly, the endometrial receptivity, which might affect the efficacy of IUI-hCG, has not been assessed in women receiving this intervention. Selecting the right population suitable for IUI-hCG based on known etiology would be crucial in enhancing its efficacy and minimize any possible complications. Investigation of optimal indications for IUI-hCG should be highlighted in the future.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR.,Shenzhen Youshare Biotechnology Co. Ltd, Shenzhen, China
| | - Xiaoyan Chen
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR
| | - Chi-Chiu Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong City, Hong Kong.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong City, Hong Kong
| | - Tin Chiu Li
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR
| | - Joanne Kwak-Kim
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois.,Reproductive Medicine, Department of Obstetrics and Gynecology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, Illinois
| |
Collapse
|
26
|
Moving from peripheral blood to local uterine immunophenotype analysis in patients with poor reproductive history: pilot study of a novel technique. Ir J Med Sci 2018; 188:893-901. [DOI: 10.1007/s11845-018-1933-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/13/2018] [Indexed: 12/29/2022]
|
27
|
D'Ippolito S, Di Nicuolo F, Pontecorvi A, Gratta M, Scambia G, Di Simone N. Endometrial microbes and microbiome: Recent insights on the inflammatory and immune "players" of the human endometrium. Am J Reprod Immunol 2018; 80:e13065. [PMID: 30375712 DOI: 10.1111/aji.13065] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 12/29/2022] Open
Abstract
In recent years, extended scientific works shed light on the important role played by the endometrium in early pregnancy. This review examines our current knowledge about the delicate balance between microbial and cellular immune agents at endometrial level: All of them might affect endometrial receptivity. In contrast to the classical thinking of human endometrium as a sterile tissue, several recent studies have drawn attention to a resident population of microorganisms, which reaches only a 30% of concordance with those of the cervical-vaginal flora. At present, the understanding of the microbiome in relation to human reproduction is in its infancy and further studies are needed to clarify the activity of endometrial microbiome and the possible effects of a "reproductive tract dysbiosis" on fertility. Moreover, in the human endometrium, there is a complex system works preventing the risk of infection as well as enabling, when pregnancy occurs, the acceptance of the blastocyst. In this way, the endometrium plays a central role in the uterine immune surveillance. A better understanding of the different agents that may affect endometrial receptivity would improve the diagnosis and treatment of obstetric complications related to defective implantation and placentation.
Collapse
Affiliation(s)
- Silvia D'Ippolito
- Dipartimento di Scienze della Salute della Donna e del Bambino, Area Salute Donna, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italia.,Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Rome, Italia
| | - Fiorella Di Nicuolo
- Dipartimento di Scienze della Salute della Donna e del Bambino, Area Salute Donna, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italia.,Paolo VI International Scientific Institute, Università Cattolica del Sacro Cuore, Rome, Italia
| | - Alfredo Pontecorvi
- Paolo VI International Scientific Institute, Università Cattolica del Sacro Cuore, Rome, Italia.,Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Area Endocrino-Metabolica e Dermo-Reumatologica, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italia.,Istituto di Patologia Medica, Università Cattolica del Sacro Cuore, Rome, Italia
| | - Matteo Gratta
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Rome, Italia
| | - Giovanni Scambia
- Dipartimento di Scienze della Salute della Donna e del Bambino, Area Salute Donna, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italia.,Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Rome, Italia
| | - Nicoletta Di Simone
- Dipartimento di Scienze della Salute della Donna e del Bambino, Area Salute Donna, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italia.,Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Rome, Italia
| |
Collapse
|
28
|
Piao LX, Cheng JH, Aosai F, Zhao XD, Norose K, Jin XJ. Cellular immunopathogenesis in primary Toxoplasma gondii
infection during pregnancy. Parasite Immunol 2018; 40:e12570. [DOI: 10.1111/pim.12570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Lian Xun Piao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy; Yanbian University; Yanji China
| | - Jia Hui Cheng
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy; Yanbian University; Yanji China
| | - Fumie Aosai
- Department of Infection and Host Defense; Graduate School of Medicine; Chiba University; Chiba Japan
- Department of Infection and Host Defense; Graduate School of Medicine; Shinshu University; Matsumoto Japan
| | - Xu Dong Zhao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy; Yanbian University; Yanji China
| | - Kazumi Norose
- Department of Infection and Host Defense; Graduate School of Medicine; Chiba University; Chiba Japan
| | - Xue Jun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy; Yanbian University; Yanji China
| |
Collapse
|
29
|
Cheng SB, Davis S, Sharma S. Maternal-fetal cross talk through cell-free fetal DNA, telomere shortening, microchimerism, and inflammation. Am J Reprod Immunol 2018; 79:e12851. [PMID: 29577468 PMCID: PMC5908740 DOI: 10.1111/aji.12851] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 02/22/2018] [Indexed: 12/11/2022] Open
Abstract
There exists a strong correlation between unscheduled inflammation at the maternal-fetal interface and the continuum of pregnancy complications. In normal pregnancy, immunological tolerance is established to protect the semi-allogeneic fetus. There has been extensive research on how the immunity, endovascular trophoblast migration, and hormonal nexus are orchestrated during pregnancy at the maternal-fetal interface to program a normal pregnancy outcome. It is not clear what contributes to the plasticity of uterine immune tolerance, fetal survial, and long-term post-partum health of the mother and the offspring. Old and new concepts have reemerged and emerged that include cell-free fetal DNA (cffDNA), telomere shortening, microchimerism involving bidirectional migration of maternal and fetal cells, and pregnancy as a stress factor. The question is how these pathways converge in a gestational age-dependent manner to contribute to the health of the mother and the offspring later in life and respond to an array of inflammatory challenges. In this Review, we provide pertinent discussion on maternal-fetal cross talk through cffDNA, telomere shortening, and microchimerism in the context of inflammatory and anti-inflammatory settings, particularly how these pathways lead to normal and adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Shi-Bin Cheng
- Department of Pediatrics, Women and Infants’ Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Sarah Davis
- Department of Obstetrics and Gynecology, Women and Infants’ Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Surendra Sharma
- Department of Pediatrics, Women and Infants’ Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
30
|
Franasiak JM, Scott RT. Contribution of immunology to implantation failure of euploid embryos. Fertil Steril 2017; 107:1279-1283. [DOI: 10.1016/j.fertnstert.2017.04.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 11/28/2022]
|
31
|
Raghupathy R, Szekeres-Bartho J. Dydrogesterone and the immunology of pregnancy. Horm Mol Biol Clin Investig 2017; 27:63-71. [PMID: 26812877 DOI: 10.1515/hmbci-2015-0062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/16/2015] [Indexed: 11/15/2022]
Abstract
Progesterone is indispensable for the maintenance of pregnancy, both via its endocrine effects and its role in creating a favorable immunological environment for the fetus. This review focuses on the immunological effects of progesterone. Progestogens have been shown to have very interesting effects on cytokine production and decidual natural killer (NK) cell activity. The orally-administered progestogen, dydrogesterone, has the ability to modulate cytokine production patterns in a manner that could be conducive to successful pregnancy. The adverse effects of progesterone deficiency and the beneficial effects of progesterone supplementation in pregnancy pathologies will be discussed.
Collapse
|
32
|
Cheng SB, Sharma S. Preeclampsia and health risks later in life: an immunological link. Semin Immunopathol 2016; 38:699-708. [PMID: 27339196 DOI: 10.1007/s00281-016-0579-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/16/2016] [Indexed: 12/11/2022]
Abstract
Pregnancy represents a period of physiological stress, and although this stress is experienced for a very modest portion of life, it is now recognized as a window to women's future health, often by unmasking predispositions to conditions that only become symptomatic later in life. In normal pregnancy, the mother experiences mild metabolic syndrome-like condition through week 20 of gestation. A pronounced phenotype of metabolic syndrome may program pregnancy complications such as preeclampsia. Preeclampsia is a serious complication with a myriad of manifestations for mother and offspring. This pregnancy syndrome is a polygenic disease and has been now linked to higher incidence of cardiovascular disease, diabetes, and several other disorders associated with vulnerable organs. Furthermore, the offspring born to preeclamptic mothers also exhibit an elevated risk of cardiovascular disease, stroke, and mental disorders during adulthood. This suggests that preeclampsia not only exposes the mother and the fetus to complications during pregnancy but also programs chronic diseases in later life. The etiology of preeclampsia is thought to be primarily associated with poor placentation and entails excessive maternal inflammation and endothelial dysfunction. It is well established now that the maternal immune system and the placenta are involved in a highly choreographed cross-talk that underlies adequate spiral artery remodeling required for uteroplacental perfusion and free flow of nutrients to the fetus. Since normal pregnancy is associated with a sequence of events represented by temporal events of inflammation (implantation), anti-inflammation (gestation), and inflammation (parturition), it is quite possible that unscheduled alterations in these regulatory responses may lead to pathologic consequences. Although it is not clear whether immunological alterations occur early in pregnancy, it is proposed that dysregulated systemic and placental immunity contribute to impaired angiogenesis and the onset of preeclampsia. This review will focus on important aspects of the immune system that coordinate with placental dysfunction to program preeclampsia and influence health in later life.
Collapse
Affiliation(s)
- Shi-Bin Cheng
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island, Warren Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI, 02905, USA
| | - Surendra Sharma
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island, Warren Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI, 02905, USA.
| |
Collapse
|
33
|
Shen Z, Rodriguez-Garcia M, Patel MV, Barr FD, Wira CR. Menopausal status influences the expression of programmed death (PD)-1 and its ligand PD-L1 on immune cells from the human female reproductive tract. Am J Reprod Immunol 2016; 76:118-25. [PMID: 27321759 DOI: 10.1111/aji.12532] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 01/18/2023] Open
Abstract
PROBLEM The programmed death 1 (PD-1)/PD-L1 pathway regulates peripheral tolerance, immune responses, and is up-regulated in chronic viral infections, including HIV infection. However, expression of PD-1/PD-L1 on immune cells from the human female reproductive tract (FRT) and possible regulation by menopause and sex hormones are poorly understood. METHOD OF STUDY PD-1/PD-L1 expression was analyzed on CD4(+) and CD8(+) T cells, CD163(+) macrophages, and CD11c(+) dendritic cells (DC) from endometrium (EM), endocervix (CX) and ectocervix (ECX). Expression after hormone treatment in culture was also evaluated. RESULTS PD-1 and PD-L1 were constitutively expressed on CD4(+) and CD8(+) T cells from the FRT. PD-L1(+) CD4(+) T cells were increased in CX compared to EM and ECX, while no differences were found for PD-1 or between CD8(+) T cells from different sites. Macrophages and DCs constitutively expressed PD-L1, but not PD-1, with no differences observed between FRT sites. Pre-menopausal FRT tissues showed increased PD-L1 expression on CD8(+) T cells, but decreased expression on DCs when compared to post-menopausal women. In vitro estradiol treatment up-regulated PD-L1 expression specifically on CD8(+) T cells from CX, but had no effect on PD-1/PD-L1 expression on the other cell types. CONCLUSION Our results suggest that PD-L1 may be involved in the differential regulation of FRT immune responses between pre-menopausal and post-menopausal women.
Collapse
Affiliation(s)
- Zheng Shen
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Marta Rodriguez-Garcia
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Mickey V Patel
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Fiona D Barr
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Charles R Wira
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
34
|
Characterization of Natural Killer Cells and Cytokines in Maternal Placenta and Fetus of Diabetic Mothers. J Immunol Res 2016; 2016:7154524. [PMID: 27294162 PMCID: PMC4884836 DOI: 10.1155/2016/7154524] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/20/2016] [Accepted: 04/24/2016] [Indexed: 12/30/2022] Open
Abstract
The present study characterized natural killer cells and cytokines in diabetic mothers, their placenta, and fetus. In the maternal blood from the hyperglycemic groups, the CD16+CD56− NK cells increased, whereas that of CD16+CD56+ decreased in gestational diabetes mellitus [GDM] group. Cord blood from type 2 diabetes [DM-2] showed a higher proportion of CD16+CD56− and CD16−CD56+. The placental extravillous layer of GDM and DM-2 showed an increase of CD16+CD56− cells and, irrespective of region, the proportion of CD16−CD56+ cells was higher in mild gestational hyperglycemia [MGH] and GDM and lower in DM-2. IL-2 was lower in maternal blood and IFN-γ higher in maternal and cord blood from the GDM group. IL-17 was higher in maternal and cord blood from the DM-2 group. The placental extravillous layer of the MGH showed high levels of IL-4, IL-6, IL-10, IL-17, and IFN-γ and low levels of IL-1β and IL-8, whereas the placental villous layer contained high levels of IL-17 and IFN-γ. The GDM group, irrespective of region, showed higher levels of IL-8. The DM-2 group, irrespective of region, placenta showed high levels of TNF-α, IL-17, and IFN-γ. The hyperglycemia produces an inflammatory environment with a high content of inflammatory cytokines and cells expressing CD16+.
Collapse
|
35
|
Sacks G. Enough! Stop the arguments and get on with the science of natural killer cell testing. Hum Reprod 2015; 30:1526-1531. [DOI: 10.1093/humrep/dev096] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
36
|
Chen CP, Piao L, Chen X, Yu J, Masch R, Schatz F, Lockwood CJ, Huang SJ. Expression of Interferon γ by Decidual Cells and Natural Killer Cells at the Human Implantation Site: Implications for Preeclampsia, Spontaneous Abortion, and Intrauterine Growth Restriction. Reprod Sci 2015; 22:1461-7. [PMID: 25963913 DOI: 10.1177/1933719115585148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human first-trimester decidual cells (FTDCs) chemoattract CXCR3-expressing circulating CD56(bright)CD16(-) natural killer (NK) cells, which increase uteroplacental blood flow by remodeling spiral arteries and arterioles. This recruitment reflects elevated FTDC expression of NK cell-recruiting induced protein 10 and interferon (IFN)-inducible T-cell-α chemoattractant produced in response to the synergistic effects of tumor necrosis factor α (TNF-α) and IFN-γ stimulation. Decidual macrophages express TNF-α, whereas the cellular origin of IFN-γ is unclear. Therefore, this study aims to identify the cell source(s) of IFN-γ in human first trimester decidua. Immunostaining of decidual sections revealed that both FTDCs and decidual NK (dNK) cells express IFN-γ. Although individual dNK cells express higher IFN-γ levels, the more numerous FTDCs account for greater proportion of total IFN-γ immunostaining. Freshly isolated FTDCs express greater IFN-γ staining than dNK cells as measured by flow cytometry, whereas incubation of dNK cells with documented NK cell activators significantly increases IFN-γ above FTDC levels. Confluent FTDCs intrinsically produce, but paradoxically respond to, exogenous IFN-γ.
Collapse
Affiliation(s)
- Chie-Pein Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Longzhu Piao
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Xilin Chen
- Department of Hematology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jianhua Yu
- Department of Hematology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Rachel Masch
- Department of Obstetrics and Gynecology, Beth Israel Medical Center, New York, NY, USA
| | - Frederick Schatz
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Charles J Lockwood
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - S Joseph Huang
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
37
|
Ishida Y, Zhao D, Ohkuchi A, Kuwata T, Yoshitake H, Yuge K, Takizawa T, Matsubara S, Suzuki M, Saito S, Takizawa T. Maternal peripheral blood natural killer cells incorporate placenta-associated microRNAs during pregnancy. Int J Mol Med 2015; 35:1511-24. [PMID: 25824636 PMCID: PMC4432927 DOI: 10.3892/ijmm.2015.2157] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 03/27/2015] [Indexed: 12/28/2022] Open
Abstract
Although recent studies have demonstrated that microRNAs (miRNAs or miRs) regulate fundamental natural killer (NK) cellular processes, including cytotoxicity and cytokine production, little is known about the miRNA-gene regulatory relationships in maternal peripheral blood NK (pNK) cells during pregnancy. In the present study, to determine the roles of miRNAs within gene regulatory networks of maternal pNK cells, we performed comprehensive miRNA and gene expression profiling of maternal pNK cells using a combination of reverse transcription quantitative PCR (RT-qPCR)-based miRNA array and DNA microarray analyses and analyzed the differential expression levels between first- and third-trimester pNK cells. Furthermore, we constructed regulatory networks for miRNA-mediated gene expression in pNK cells during pregnancy by Ingenuity Pathway Analysis (IPA). PCR-based array analysis revealed that the placenta-derived miRNAs [chromosome 19 miRNA cluster (C19MC) miRNAs] were detected in pNK cells during pregnancy. Twenty-five miRNAs, including six C19MC miRNAs, were significantly upregulated in the third- compared to first-trimester pNK cells. The rapid clearance of C19MC miRNAs also occurred in the pNK cells following delivery. Nine miRNAs, including eight C19MC miRNAs, were significantly downregulated in the post-delivery pNK cells compared to those of the third-trimester. DNA microarray analysis identified 69 NK cell function-related genes that were differentially expressed between the first- and third-trimester pNK cells. On pathway and network analysis, the observed gene expression changes of pNK cells likely contribute to the increase in the cytotoxicity, as well as the cell cycle progression of third- compared to first-trimester pNK cells. Thirteen of the 69 NK cell function-related genes were significantly down-regulated between the first- and third-trimester pNK cells. Nine of the 13 downregulated NK-function-associated genes were in silico target candidates of 12 upregulated miRNAs, including C19MC miRNA miR-512-3p. The results of this study suggest that the transfer of placental C19MC miRNAs into maternal pNK cells occurs during pregnancy. The present study provides new insight into maternal NK cell functions.
Collapse
Affiliation(s)
- Yoichi Ishida
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329‑0498, Japan
| | - Dongwei Zhao
- Department of Molecular Medicine and Anatomy, Graduate School of Medicine, Nippon Medical School, Tokyo 113‑8602, Japan
| | - Akihide Ohkuchi
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329‑0498, Japan
| | - Tomoyuki Kuwata
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329‑0498, Japan
| | - Hiroshi Yoshitake
- Department of Molecular Medicine and Anatomy, Graduate School of Medicine, Nippon Medical School, Tokyo 113‑8602, Japan
| | - Kazuya Yuge
- Department of Molecular Medicine and Anatomy, Graduate School of Medicine, Nippon Medical School, Tokyo 113‑8602, Japan
| | - Takami Takizawa
- Department of Molecular Medicine and Anatomy, Graduate School of Medicine, Nippon Medical School, Tokyo 113‑8602, Japan
| | - Shigeki Matsubara
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329‑0498, Japan
| | - Mitsuaki Suzuki
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329‑0498, Japan
| | - Shigeru Saito
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama 930‑0194, Japan
| | - Toshihiro Takizawa
- Department of Molecular Medicine and Anatomy, Graduate School of Medicine, Nippon Medical School, Tokyo 113‑8602, Japan
| |
Collapse
|
38
|
Weisblum Y, Panet A, Haimov-Kochman R, Wolf DG. Models of vertical cytomegalovirus (CMV) transmission and pathogenesis. Semin Immunopathol 2014; 36:615-25. [PMID: 25291972 DOI: 10.1007/s00281-014-0449-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 02/04/2023]
Abstract
Despite the considerable clinical impact of congenital human cytomegalovirus (HCMV) infection, the mechanisms of maternal-fetal transmission and the resultant placental and fetal damage are largely unknown. Here, we discuss animal models for the evaluation of CMV vaccines and virus-induced pathology and particularly explore surrogate human models for HCMV transmission and pathogenesis in the maternal-fetal interface. Studies in floating and anchoring placental villi and more recently, ex vivo modeling of HCMV infection in integral human decidual tissues, provide unique insights into patterns of viral tropism, spread, and injury, defining the outcome of congenital infection, and the effect of potential antiviral interventions.
Collapse
Affiliation(s)
- Yiska Weisblum
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | |
Collapse
|
39
|
Cheng SB, Sharma S. Interleukin-10: a pleiotropic regulator in pregnancy. Am J Reprod Immunol 2014; 73:487-500. [PMID: 25269386 DOI: 10.1111/aji.12329] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/09/2014] [Indexed: 12/14/2022] Open
Abstract
Pregnancy is a unique and well-choreographed physiological process that involves intricate interplay of inflammatory and anti-inflammatory milieu, hormonal changes, and cellular and molecular events at the maternal-fetal interface. IL-10 is a pregnancy compatible cytokine that plays a vital role in maintaining immune tolerance. A wide array of cell types including both immune and non-immune cells secret IL-10 in an autocrine and paracrine manner. IL-10 binds to a specific receptor complex and activates JAK-STAT and PI3K-Akt signaling pathways while inhibiting NF-κB signaling pathway. IL-10 exerts its anti-inflammatory effects mainly by decreasing pro-inflammatory cytokines such as IL-1, IL-6, IL-12, and TNF-α, by inducing heme oxygenase-1, and by inhibiting antigen presentation via blocking major histocompatibility complex (MHC) class II expression. Prior studies from our group and others have shown that IL-10 also functions as a potent protector against vascular dysfunction, and enhancement of IL-10 may serve as an immunotherapeutic intervention to treat adverse pregnancy outcomes. This review seeks to critically evaluate the archetypal functions of IL-10 as an immune suppressive factor as well as its novel functions as a vascular protector and modulator of endoplasmic reticulum (ER) stress and autophagy in the context of normal and adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Shi-Bin Cheng
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Surendra Sharma
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
40
|
Sotnikova N, Voronin D, Antsiferova Y, Bukina E. Interaction of Decidual CD56+ NK with Trophoblast Cells during Normal Pregnancy and Recurrent Spontaneous Abortion at Early Term of Gestation. Scand J Immunol 2014; 80:198-208. [DOI: 10.1111/sji.12196] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/24/2014] [Indexed: 12/30/2022]
Affiliation(s)
- N. Sotnikova
- Federal State Research Institute of Maternity and Childhood named V.N. Gorodkov; Ivanovo Russia
| | - D. Voronin
- Federal State Research Institute of Maternity and Childhood named V.N. Gorodkov; Ivanovo Russia
| | - Y. Antsiferova
- Federal State Research Institute of Maternity and Childhood named V.N. Gorodkov; Ivanovo Russia
| | - E. Bukina
- Federal State Research Institute of Maternity and Childhood named V.N. Gorodkov; Ivanovo Russia
| |
Collapse
|
41
|
Lima PDA, Zhang J, Dunk C, Lye SJ, Croy BA. Leukocyte driven-decidual angiogenesis in early pregnancy. Cell Mol Immunol 2014; 11:522-37. [PMID: 25066422 DOI: 10.1038/cmi.2014.63] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/21/2014] [Accepted: 06/22/2014] [Indexed: 12/15/2022] Open
Abstract
Successful pregnancy and long-term, post-natal maternal and offspring cardiac, vascular and metabolic health require key maternal cardiovascular adaptations over gestation. Within the pregnant decidualizing uterus, coordinated vascular, immunological and stromal cell changes occur. Considerable attention has been given to the roles of uterine natural killer (uNK) cells in initiating decidual spiral arterial remodeling, a process normally completed by mid-gestation in mice and in humans. However, leukocyte roles in much earlier, region specific, decidual vascular remodeling are now being defined. Interest in immune cell-promoted vascular remodeling is driven by vascular aberrations that are reported in human gestational complications such as infertility, recurrent spontaneous abortion, preeclampsia (PE) and fetal growth restriction. Appropriate maternal cardiovascular responses during pregnancy protect mothers and their children from later cardiovascular disease risk elevation. One of the earliest uterine responses to pregnancy in species with hemochorial placentation is stromal cell decidualization, which creates unique niches for angiogenesis and leukocyte recruitment. In early decidua basalis, the aspect of the implantation site that will cradle the developing placenta and provide the major blood vessels to support mature placental functions, leukocytes are greatly enriched and display specialized properties. UNK cells, the most abundant leukocyte subset in early decidua basalis, have angiogenic abilities and are essential for normal early decidual angiogenesis. The regulation of uNK cells and their roles in determining maternal and progeny cardiovascular health over pregnancy and postpartum are discussed.
Collapse
Affiliation(s)
- Patricia D A Lima
- Ottawa Hospital Research Institute, The Ottawa Hospital General Campus, Critical Care Wing, Ottawa, ON, Canada
| | - Jianhong Zhang
- Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Caroline Dunk
- Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Stephen J Lye
- 1] Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada [2] Department of Physiology and University of Toronto, Toronto, ON, Canada [3] Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
| | - B Anne Croy
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
42
|
Lockwood CJ, Basar M, Kayisli UA, Guzeloglu-Kayisli O, Murk W, Wang J, De Paz N, Shapiro JP, Masch RJ, Semerci N, Huang SJ, Schatz F. Interferon-γ protects first-trimester decidual cells against aberrant matrix metalloproteinases 1, 3, and 9 expression in preeclampsia. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2549-59. [PMID: 25065683 DOI: 10.1016/j.ajpath.2014.05.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/23/2014] [Accepted: 05/28/2014] [Indexed: 01/19/2023]
Abstract
Human extravillous trophoblast (EVT) invades the decidua via integrin receptors and subsequently degrades extracellular matrix proteins. In preeclampsia (PE), shallow EVT invasion elicits incomplete spiral artery remodeling, causing reduced uteroplacental blood flow. Previous studies show that preeclamptic decidual cells, but not interstitial EVTs, display higher levels of extracellular matrix-degrading matrix metalloproteinase (MMP)-9, but not MMP-2. Herein, we extend our previous PE-related assessment of MMP-2 and MMP-9 to include MMP-1, which preferentially degrades fibrillar collagens, and MMP-3, which can initiate a local proteolytic cascade. In human first-trimester decidual cells incubated with estradiol, tumor necrosis factor-α (TNF-α) significantly enhanced MMP-1, MMP-3, and MMP-9 mRNA and protein levels and activity measured by real-time quantitative RT-PCR, ELISA, immunoblotting, and zymography, respectively. In contrast, interferon γ (IFN-γ) reversed these effects and medroxyprogesterone acetate elicited further reversal. Immunoblotting revealed that p38 mitogen-activated protein kinase signaling mediated TNF-α enhancement of MMP-1, MMP-3, and MMP-9, whereas IFN-γ inhibited p38 mitogen-activated protein kinase phosphorylation. Unlike highly regulated MMP-1, MMP-3, and MMP-9, MMP-2 mRNA and protein expression was constitutive in decidual cells. Because inflammation underlies PE-associated shallow EVT invasion, these results suggest that excess macrophage-derived TNF-α augments expression of MMP-1, MMP-3, and MMP-9 in decidual cells to interfere with normal stepwise EVT invasion of the decidua. In contrast, decidual natural killer cell-derived IFN-γ reverses such TNF-α-induced MMPs to protect against PE.
Collapse
Affiliation(s)
- Charles J Lockwood
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, Ohio.
| | - Murat Basar
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Umit A Kayisli
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Ozlem Guzeloglu-Kayisli
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, Ohio
| | - William Murk
- Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, Connecticut
| | - Jenny Wang
- Department of Obstetrics and Gynecology, School of Medicine, Yale University, New Haven, Connecticut
| | - Nicole De Paz
- Department of Obstetrics and Gynecology, School of Medicine, Yale University, New Haven, Connecticut
| | - John P Shapiro
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Rachel J Masch
- Beth Israel Medical Center, Albert Einstein College of Medicine, New York, New York
| | - Nihan Semerci
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, Ohio
| | - S Joseph Huang
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Frederick Schatz
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
43
|
Bidarimath M, Khalaj K, Wessels JM, Tayade C. MicroRNAs, immune cells and pregnancy. Cell Mol Immunol 2014; 11:538-47. [PMID: 24954225 DOI: 10.1038/cmi.2014.45] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 05/13/2014] [Accepted: 05/15/2014] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) are a recently discovered class of non-coding RNAs that are expressed in many cell types, where they regulate the expression of complementary RNAs, thus modulating the stability and translation of mRNAs. miRNAs are predicted to regulate the expression of ∼50% of all protein coding genes in mammals. Therefore, they participate in virtually all cellular processes investigated so far. Altered miRNAs expressions are associated with both physiological (pregnancy) and pathological processes (cancer). As the dynamic maternal-fetal interface plays a critical role in the maintenance of successful pregnancy, it is not surprising that the miRNAs that are unique to reproductive tissues are abundantly expressed. Research in this field has demonstrated the presence and dysregulation of a distinct set of pregnancy-associated miRNAs; however, most studies have centered on localizing various miRNAs in reproductive microdomains associated with normal or complicated pregnancies. Although several independent miRNA regulatory mechanisms associated with endometrial receptivity, immune cells, angiogenesis and placental development have been studied, miRNA-mediated regulation of pregnancy remains poorly understood. This review provides a summary of the current data on miRNA regulation as well as functional profiles of miRNAs that are found in the uterus, in immune cells associated with maternal tolerance to the fetus, and those involved in angiogenesis and placental development.
Collapse
Affiliation(s)
- Mallikarjun Bidarimath
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ont., Canada
| | - Kasra Khalaj
- 1] Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ont., Canada [2] Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ont., Canada
| | - Jocelyn M Wessels
- 1] Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ont., Canada [2] Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ont., Canada
| | - Chandrakant Tayade
- 1] Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ont., Canada [2] Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ont., Canada
| |
Collapse
|
44
|
Relationship between maternal immunological response during pregnancy and onset of preeclampsia. J Immunol Res 2014; 2014:210241. [PMID: 24987708 PMCID: PMC4060291 DOI: 10.1155/2014/210241] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 01/19/2023] Open
Abstract
Maternofetal immune tolerance is essential to maintain pregnancy. The maternal immunological tolerance to the semiallogeneic fetus becomes greater in egg donation pregnancies with unrelated donors as the complete fetal genome is allogeneic to the mother. Instead of being rejected, the allogeneic fetus is tolerated by the pregnant woman in egg donation pregnancies. It has been reported that maternal morbidity during egg donation pregnancies is higher as compared with spontaneous or in vitro fertilization pregnancies. Particularly, egg donation pregnancies are associated with a higher incidence of pregnancy-induced hypertension and placental pathology. Preeclampsia, a pregnancy-specific disease characterized by the development of both hypertension and proteinuria, remains the leading cause of maternal and perinatal mortality and morbidity. The aim of this review is to characterize and relate the maternofetal immunological tolerance phenomenon during pregnancies with a semiallogenic fetus, which are the spontaneously conceived pregnancies and in vitro fertilization pregnancies, and those with an allogeneic fetus or egg donation pregnancies. Maternofetal immune tolerance in uncomplicated pregnancies and pathological pregnancies, such as those with preeclampsia, has also been assessed. Moreover, whether an inadequate maternal immunological response to the allogenic fetus could lead to a higher prevalence of preeclampsia in egg donation pregnancies has been addressed.
Collapse
|
45
|
Ohta T, Koshi K, Ushizawa K, Hosoe M, Takahashi T, Yamaguchi T, Kizaki K, Hashizume K. Expression profiles of perforin, granzyme B and granulysin genes during the estrous cycle and gestation in the bovine endometrium. Anim Sci J 2014; 85:763-9. [PMID: 24798459 DOI: 10.1111/asj.12209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/14/2014] [Indexed: 01/22/2023]
Abstract
The conceptus is susceptible to destruction by maternal cytotoxic lymphocytes, which have cytotoxic potential. Therefore, it is expected that mechanisms for regulating cytotoxic lymphocytes exist, but little is known about the expression of cytotoxic genes in the endometrium. In the present study, we examined the spatial and temporal expression patterns of the cytotoxic genes perforin, granzyme B, and granulysin during the estrous cycle and gestation in the bovine endometrium. Endometrial tissues were collected from cows during the estrous cycle and gestation. The gene expression patterns of the three cytotoxic genes were examined using quantitative polymerase chain reaction and in situ hybridization, and cytotoxic lymphocyte subsets were characterized using immunohistochemistry. During mid- to late gestation in the intercaruncular (ICAR), granulysin expression was significantly increased, and a large number of granulysin-expressing cells were localized in the luminal epithelium. Perforin and granzyme B displayed similar expression profiles and were highly expressed in the peri-implantation endometrium, but few cells expressing these genes were found in the endometrial stroma. In conclusion, these findings suggest that in the ICAR epithelium granulysin may play important roles in the establishment and maintenance of gestation during normal pregnancy.
Collapse
Affiliation(s)
- Tomokazu Ohta
- Department of Veterinary Medicine, Iwate University, Morioka, Japan; Laboratory for Immune Regulation, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Jabrane-Ferrat N, Siewiera J. The up side of decidual natural killer cells: new developments in immunology of pregnancy. Immunology 2014; 141:490-7. [PMID: 24256296 DOI: 10.1111/imm.12218] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/05/2013] [Accepted: 11/17/2013] [Indexed: 12/30/2022] Open
Abstract
Early phases of human pregnancy are associated with the accumulation of a unique subset of natural killer (NK) cells in the maternal decidua. Decidual NK (dNK) cells that are devoid of cytotoxicity play a pivotal role in successful pregnancy. By secreting large amounts of cytokines/chemokines and angiogenic factors, dNK cells participate in all steps of placentation including trophoblast invasion into the maternal endometrium and vascular remodelling. In this review, we summarize some of dNK cell features and discuss more recent exciting data that challenge the conventional view of these cells. Our new data demonstrate that dNK cells undergo fine tuning or even subvert their classical inhibitory machinery and turn into a real defence force in order to prevent the spread of viruses to fetal tissue. Today it is not clear how these phenotypic and functional adaptations impact cellular cross-talk at the fetal-maternal interface and tissue homeostasis. Ultimately, precise understanding of the molecular mechanisms that govern dNK cell plasticity during congenital human cytomegalovirus infection should lead to the design of more robust strategies to reverse immune escape during viral infection and cancer.
Collapse
Affiliation(s)
- Nabila Jabrane-Ferrat
- Institut National de la Santé et de la Recherche Médicale, UMR 1043, Toulouse, France; Centre National Recherche Scientifique, UMR 5282, Toulouse, France; Université Toulouse III Paul Sabatier, Toulouse, France
| | | |
Collapse
|
47
|
Stamenov G, Penkova K, Chaushev T, Persenska S, Dzhambazov B, Iliev I, Baltadjieva D. Endometrial NK Cell Subpopulations CD16−CD56Brightand CD16−CD56Dimin Women with Recurrent Implantation Failure. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2013.0080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
48
|
Lockwood CJ, Huang SJ, Chen CP, Huang Y, Xu J, Faramarzi S, Kayisli O, Kayisli U, Koopman L, Smedts D, Buchwalder LF, Schatz F. Decidual cell regulation of natural killer cell-recruiting chemokines: implications for the pathogenesis and prediction of preeclampsia. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 183:841-56. [PMID: 23973270 DOI: 10.1016/j.ajpath.2013.05.029] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/17/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
Abstract
First trimester human decidua is composed of decidual cells, CD56(bright)CD16(-) decidual natural killer (dNK) cells, and macrophages. Decidual cells incubated with NK cell-derived IFN-γ and either macrophage-derived TNF-α or IL-1β synergistically enhanced mRNA and protein expression of IP-10 and I-TAC. Both chemokines recruit CXCR3-expressing NK cells. This synergy required IFN-γ receptor 1 and 2 mediation via JAK/STAT and NFκB signaling pathways. However, synergy was not observed on neutrophil, monocyte, and NK cell-recruiting chemokines. Immunostaining of first trimester decidua localized IP-10, I-TAC, IFN-γR1, and -R2 to vimentin-positive decidual cells versus cytokeratin-positive interstitial trophoblasts. Flow cytometry identified high CXCR3 levels on dNK cells and minority peripheral CD56(bright)CD16(-) pNK cells and intermediate CXCR3 levels on the majority of CD56(dim)CD16(+) pNK cells. Incubation of pNK cells with either IP-10 or I-TAC elicited concentration-dependent enhanced CXCR3 levels and migration of both pNK cell subsets that peaked at 10 ng/mL, whereas each chemokine at a concentration of 50 ng/mL inhibited CXCR3 expression and pNK cell migration. Deciduae from women with preeclampsia, a leading cause of maternal and fetal morbidity and mortality, displayed significantly lower dNK cell numbers and higher IP-10 and I-TAC levels versus gestational age-matched controls. Significantly elevated IP-10 levels in first trimester sera from women eventually developing preeclampsia compared with controls, identifying IP-10 as a novel, robust early predictor of preeclampsia.
Collapse
Affiliation(s)
- Charles J Lockwood
- Department of Obstetrics and Gynecology, Ohio State University College of Medicine, Columbus, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sharma S. Natural killer cells and regulatory T cells in early pregnancy loss. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2014; 58:219-29. [PMID: 25023688 PMCID: PMC4306453 DOI: 10.1387/ijdb.140109ss] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Survival of the allogeneic embryo in the uterus depends on the maintenance of immune tolerance at the maternal-fetal interface. The pregnant uterus is replete with activated maternal immune cells. How this immune tolerance is acquired and maintained has been a topic of intense investigation. The key immune cells that predominantly populate the pregnant uterus are natural killer (NK) cells. In normal pregnancy, these cells are not killers, but rather provide a microenvironment that is pregnancy compatible and supports healthy placentation. In placental mammals, an array of highly orchestrated immune elements to support successful pregnancy outcome has been incorporated. This includes active cooperation between maternal immune cells, particularly NK cells, and trophoblast cells. This intricate process is required for placentation, immune regulation and to remodel the blood supply to the fetus. During the past decade, various types of maternal immune cells have been thought to be involved in cross-talk with trophoblasts and in programming immune tolerance. Regulatory T cells (Tregs) have attracted a great deal of attention in promoting implantation and immune tolerance beyond implantation. However, what has not been fully addressed is how this immune-trophoblast axis breaks down during adverse pregnancy outcomes, particularly early pregnancy loss, and in response to unscheduled inflammation. Intense research efforts have begun to shed light on the roles of NK cells and Tregs in early pregnancy loss, although much remains to be unraveled in order to fully characterize the mechanisms underlying their detrimental activity. An increased understanding of host-environment interactions that lead to the cytotoxic phenotype of these otherwise pregnancy compatible maternal immune cells is important for prediction, prevention and treatment of pregnancy maladies, particularly recurrent pregnancy loss. In this review, we discuss relevant information from experimental and human models that may explain the pregnancy disrupting roles of these pivotal sentinel cells at the maternal-fetal interface.
Collapse
Affiliation(s)
- Surendra Sharma
- Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Department of Pediatrics, Providence, Rhode Island, USA.
| |
Collapse
|
50
|
Bartmann C, Segerer SE, Rieger L, Kapp M, Sütterlin M, Kämmerer U. Quantification of the Predominant Immune Cell Populations in Decidua Throughout Human Pregnancy. Am J Reprod Immunol 2013; 71:109-19. [DOI: 10.1111/aji.12185] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 11/10/2013] [Indexed: 12/15/2022] Open
Affiliation(s)
- Catharina Bartmann
- Department of Obstetrics and Gynecology; University Hospital of Würzburg; Würzburg Germany
| | | | - Lorenz Rieger
- Department of Obstetrics and Gynecology; Hospital of Landshut-Achdorf; Landshut Germany
| | - Michaela Kapp
- Department of Obstetrics and Gynecology; University Hospital of Würzburg; Würzburg Germany
| | - Marc Sütterlin
- Department of Obstetrics and Gynecology; University Medical Centre Mannheim; Heidelberg University; Mannheim Germany
| | - Ulrike Kämmerer
- Department of Obstetrics and Gynecology; University Hospital of Würzburg; Würzburg Germany
| |
Collapse
|