1
|
Song Y, Wang Y, Wang W, Xie Y, Zhang J, Liu J, Jin Q, Wu W, Li H, Wang J, Zhang L, Yang Y, Gao T, Xie M. Advancements in noninvasive techniques for transplant rejection: from biomarker detection to molecular imaging. J Transl Med 2025; 23:147. [PMID: 39901268 PMCID: PMC11792214 DOI: 10.1186/s12967-024-05964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/11/2024] [Indexed: 02/05/2025] Open
Abstract
Transplant rejection remains a significant barrier to the long-term success of organ transplantation. Biopsy, although considered the gold standard, is invasive, costly, and unsuitable for routine monitoring. Traditional biomarkers, such as creatinine and troponin, offer limited predictive value owing to their low specificity, and conventional imaging techniques often fail to detect early organ damage, increasing the risk of undiagnosed rejection episodes. Considering these limitations, emerging noninvasive biomarkers and molecular imaging techniques hold promise for the early and accurate detection of transplant rejection, enabling personalized management strategies. This review highlights noninvasive biomarkers that predict, diagnose, and assess transplant prognosis by reflecting graft injury, inflammation, and immune responses. For example, donor-derived cell-free DNA (dd-cfDNA) is highly sensitive in detecting early graft injury, whereas gene expression profiling effectively excludes moderate-to-severe acute rejection (AR). Additionally, microRNA (miRNA) profiling enhances the diagnostic specificity for precise AR detection. Advanced molecular imaging techniques further augment the monitoring of rejection. Fluorescence imaging provides a high spatiotemporal resolution for AR grading, ultrasound offers real-time and portable monitoring, and magnetic resonance delivers high tissue contrast for anatomical assessments. Nuclear imaging modalities such as single photon emission computed tomography and positron emission tomography, enable dynamic visualization of immune responses within transplanted organs. Notably, dd-cfDNA and nuclear medicine imaging have already been integrated into clinical practice, thereby demonstrating the translational potential of these techniques. Unlike previous reviews, this work uniquely synthesizes advancements in both noninvasive biomarkers and molecular imaging, emphasizing their complementary strengths. Biomarkers deliver molecular-level insights, whereas imaging provides spatial and temporal resolution. Together, they create a synergistic framework for comprehensive and precise transplant monitoring. By bridging these domains, this review underscores their individual contributions and collective potential to enhance diagnostic accuracy, improve patient outcomes, and guide future research and clinical applications in transplant medicine.
Collapse
Affiliation(s)
- Yuan Song
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yihui Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Wenyuan Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yuji Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Junmin Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Jing Liu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Wenqian Wu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - He Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Jing Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518029, China
| | - Yali Yang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China.
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| | - Tang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China.
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China.
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518029, China.
| |
Collapse
|
2
|
Janfeshan S, Afshari A, Yaghobi R, Roozbeh J. Urinary CXCL-10, a prognostic biomarker for kidney graft injuries: a systematic review and meta-analysis. BMC Nephrol 2024; 25:292. [PMID: 39232662 PMCID: PMC11375915 DOI: 10.1186/s12882-024-03728-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
The challenges of long-term graft survival and the side effects of current immunosuppressive therapies in kidney transplantation highlight the need for improved drugs with fewer adverse effects. Biomarkers play a crucial role in quickly detecting post-transplant complications, with new biomarkers showing promise for ongoing monitoring of disease and potentially reducing the need for unnecessary invasive biopsies. The chemokines such as C-X-C motif chemokine ligand 10 (CXCL10), are particularly promising protein biomarkers for acute renal rejection, with urine samples being a desirable source for biomarkers. The aim of this review is to analyze the literature on the potential role of urinary CXCL10 protein in predicting kidney graft injuries. The results of this study demonstrate that evaluating urinary CXCL10 levels is more successful in identifying post-transplant injuries compared to assessing the CXCL10/Cr ratio.
Collapse
Affiliation(s)
- Sahar Janfeshan
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Ettenger RB, Seifert ME, Blydt-Hansen T, Briscoe DM, Holman J, Weng PL, Srivastava R, Fleming J, Malekzadeh M, Pearl M. Detection of Subclinical Rejection in Pediatric Kidney Transplantation: Current and Future Practices. Pediatr Transplant 2024; 28:e14836. [PMID: 39147695 DOI: 10.1111/petr.14836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024]
Abstract
INTRODUCTION The successes in the field of pediatric kidney transplantation over the past 60 years have been extraordinary. Year over year, there have been significant improvements in short-term graft survival. However, improvements in longer-term outcomes have been much less apparent. One important contributor has been the phenomenon of low-level rejection in the absence of clinical manifestations-so-called subclinical rejection (SCR). METHODS Traditionally, rejection has been diagnosed by changes in clinical parameters, including but not limited to serum creatinine and proteinuria. This review examines the shortcomings of this approach, the effects of SCR on kidney allograft outcome, the benefits and drawbacks of surveillance biopsies to identify SCR, and new urine and blood biomarkers that define the presence or absence of SCR. RESULTS Serum creatinine is an unreliable index of SCR. Surveillance biopsies are the method most utilized to detect SCR. However, these have significant drawbacks. New biomarkers show promise. These biomarkers include blood gene expression profiles and donor derived-cell free DNA; urine gene expression profiles; urinary cytokines, chemokines, and metabolomics; and other promising blood and urine tests. CONCLUSION Specific emphasis is placed on studies carried out in pediatric kidney transplant recipients. TRIAL REGISTRATION ClinicalTrials.gov: NCT03719339.
Collapse
Affiliation(s)
- Robert B Ettenger
- Division of Nephrology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Michael E Seifert
- Division of Pediatric Nephrology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tom Blydt-Hansen
- Multi-Organ Transplant Program, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - David M Briscoe
- Division of Nephrology, Department of Pediatrics Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John Holman
- Transplant Genomics Inc., Framingham, Massachusetts, USA
| | - Patricia L Weng
- Division of Nephrology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Rachana Srivastava
- Division of Nephrology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - James Fleming
- Transplant Genomics Inc., Framingham, Massachusetts, USA
| | - Mohammed Malekzadeh
- Division of Nephrology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Meghan Pearl
- Division of Nephrology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
4
|
Singampalli KL, Neal - Harris C, Yee C, Lin JS, Lillehoj PB. Highly Reusable Electrochemical Immunosensor for Ultrasensitive Protein Detection. ADVANCED SENSOR RESEARCH 2024; 3:2400004. [PMID: 39640072 PMCID: PMC11617009 DOI: 10.1002/adsr.202400004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Indexed: 12/07/2024]
Abstract
The detection and quantification of protein biomarkers in bodily fluids is important for many clinical applications, including disease diagnosis and health monitoring. Current techniques for ultrasensitive protein detection, such as enzyme-linked immunosorbent assay (ELISA) and electrochemical sensing, involve long incubation times (1.5-3 hr) and rely on single-use sensing electrodes which can be costly and generate excessive waste. This work demonstrates a reusable electrochemical immunosensor employing magnetic nanoparticles (MNPs) and dually labeled gold nanoparticles (AuNPs) for ultrasensitive measurements of protein biomarkers. As proof of concept, this platform was used to detect C-X-C motif chemokine ligand 9 (CXCL9), a biomarker associated with kidney transplant rejection, immune nephritis from checkpoint inhibitor therapy, and drug-associated acute interstitial nephritis, in human urine. The sensor successfully detected CXCL9 at concentrations as low as 27 pg/mL within ~1 hr. This immunosensor was also adapted onto a handheld smartphone-based diagnostic device and used for measurements of CXCL9, which exhibited a lower limit of detection of 65 pg/mL. Lastly, we demonstrate that the sensing electrodes can be reused for at least 100 measurements with a negligible loss in analytical performance, reducing the costs and waste associated with electrochemical sensing.
Collapse
Affiliation(s)
- Kavya L. Singampalli
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Cassian Yee
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jamie S. Lin
- Section of Nephrology, Division of Internal Medicine, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Peter B. Lillehoj
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
- Department of Mechanical Engineering, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
5
|
Kataria A, Athreya A, Gupta G. Biomarkers in Kidney Transplantation. ADVANCES IN KIDNEY DISEASE AND HEALTH 2024; 31:427-435. [PMID: 39232613 DOI: 10.1053/j.akdh.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 09/06/2024]
Abstract
Currently in the United States, there are more than 250,000 patients with a functioning kidney allograft and over 100,000 waitlisted patients awaiting kidney transplant, with a burgeoning number added to the kidney transplant wait list every year. Although early post-transplant care is delivered at the transplant center, the increasing number of kidney transplant recipients requires general nephrologists to actively participate in the long-term care of these patients. Serum creatinine and proteinuria are imperfect traditional biomarkers of allograft dysfunction and lag behind subclinical allograft injury. This manuscript reviews the various clinically available biomarkers in the field of kidney transplantation for a general nephrologist with a focus on the utility of donor-derived cell-free DNA, as a marker of early allograft injury. Blood gene expression profiling, initially studied in the context of early identification of subclinical rejection, awaits validation in larger multicentric trials. Urinary cellular messenger ribonucleic acid and chemokine CXCL10 hold promising potential for early diagnosis of both subclinical and acute rejection. Torque tenovirus, a ubiquitous DNA virus is emerging as a biomarker of immunosuppression exposure as peripheral blood torque tenovirus copy numbers might mirror the intensity of host immunosuppression. Although high-quality evidence is still being generated, evidence and recommendations are provided to aid the general nephrologist in implementation of novel biomarkers in their clinical practice.
Collapse
Affiliation(s)
| | - Akshay Athreya
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA
| | - Gaurav Gupta
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA; Hume-Lee Transplant Center, Virginia Commonwealth University, Richmond, VA.
| |
Collapse
|
6
|
Rroji M, Figurek A, Spasovski G. Advancing kidney transplant outcomes: the role of urinary proteomics in graft function monitoring and rejection detection. Expert Rev Proteomics 2024; 21:297-316. [PMID: 39133121 DOI: 10.1080/14789450.2024.2389829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/15/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Kidney transplantation significantly improves the lives of those with end-stage kidney disease, offering best alternative to dialysis. However, transplant success is threatened by the acute and chronic rejection mechanisms due to complex immune responses against the new organ. AREAS COVERED The ongoing research into biomarkers holds promise for revolutionizing the early detection and monitoring of the graft health. Liquid biopsy techniques offer a new avenue, with several diagnostic, predictive, and prognostic biomarkers showing promise in detecting and monitoring kidney diseases and an early and chronic allograft rejection. EXPERT OPINION Evaluating the protein composition related to kidney transplant results could lead to identifying biomarkers that provide insights into the graft functionality. Non-invasive proteomic biomarkers can drastically enhance clinical outcomes and change the way how kidney transplants are evaluated for patients and physicians if they succeed in this transition. Hence, the advancement in proteomic technologies, leads toward a significant improvement in understanding of the protein markers and molecular mechanisms linked to the outcomes of kidney transplants. However, the road from discovery to the use of such proteins in clinical practice is long, with a need for continuous validation and beyond the singular research team with comprehensive infrastructure and across research groups collaboration.
Collapse
Affiliation(s)
- Merita Rroji
- Faculty of Medicine, University Department of Nephrology, University of Medicine Tirana, Tirana, Albania
| | - Andreja Figurek
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Goce Spasovski
- Medical Faculty, University Department of Nephrology, University of Skopje, Skopje, Macedonia
| |
Collapse
|
7
|
Van Loon E, Tinel C, de Loor H, Bossuyt X, Callemeyn J, Coemans M, De Vusser K, Sauvaget V, Olivre J, Koshy P, Kuypers D, Sprangers B, Van Craenenbroeck AH, Vaulet T, Anglicheau D, Naesens M. Automated Urinary Chemokine Assays for Noninvasive Detection of Kidney Transplant Rejection: A Prospective Cohort Study. Am J Kidney Dis 2024; 83:467-476. [PMID: 37777058 DOI: 10.1053/j.ajkd.2023.07.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 10/02/2023]
Abstract
RATIONALE & OBJECTIVE Prior studies have demonstrated the diagnostic potential of urinary chemokines C-X-C motif ligand 9 (CXCL9) and CXCL10 for kidney transplant rejection. However, their benefit in addition to clinical information has not been demonstrated. We evaluated the diagnostic performance for detecting acute rejection of urinary CXCL9 and CXCL10 when integrated with clinical information. STUDY DESIGN Single-center prospective cohort study. SETTING & PARTICIPANTS We analyzed 1,559 biopsy-paired urinary samples from 622 kidney transplants performed between April 2013 and July 2019 at a single transplant center in Belgium. External validation was performed in 986 biopsy-paired urinary samples. TESTS COMPARED We quantified urinary CXCL9 (uCXCL9) and CXCL10 (uCXCL10) using an automated immunoassay platform and normalized the values to urinary creatinine. Urinary chemokines were incorporated into a multivariable model with routine clinical markers (estimated glomerular filtration rate, donor-specific antibodies, and polyoma viremia) (integrated model). This model was then compared with the tissue diagnosis according to the Banff classification for acute rejection. OUTCOME Acute rejection detected on kidney biopsy using the Banff classification. RESULTS Chemokines integrated with routine clinical markers had high diagnostic value for detection of acute rejection (n=150) (receiver operating characteristic area under the curve 81.3% [95% CI, 77.6-85.0]). The integrated model would help avoid 59 protocol biopsies per 100 patients when the risk for rejection is predicted to be below 10%. The performance of the integrated model was similar in the external validation cohort. LIMITATIONS The cross-sectional nature obviates investigating the evolution over time and prediction of future rejection. CONCLUSIONS The use of an integrated model of urinary chemokines and clinical markers for noninvasive monitoring of rejection could enable a reduction in the number of biopsies. Urinary chemokines may be useful noninvasive biomarkers whose use should be further studied in prospective randomized trials to clarify their role in guiding clinical care and the use of biopsies to detect rejection after kidney transplantation. PLAIN-LANGUAGE SUMMARY Urinary chemokines CXCL9 and CXCL10 have been suggested to be good noninvasive biomarkers of kidney transplant rejection. However, defining a context of use and integration with clinical information is necessary before clinical implementation can begin. In this study, we demonstrated that urinary chemokines CXCL9 and CXCL10, together with clinical information, have substantial diagnostic accuracy for the detection of acute kidney transplant rejection. Application of urinary chemokines together with clinical information may guide biopsy practices following kidney transplantation and potentially reduce the need for kidney transplant biopsies.
Collapse
Affiliation(s)
- Elisabet Van Loon
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven; Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Claire Tinel
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven
| | - Henriette de Loor
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven
| | - Xavier Bossuyt
- Clinical and Diagnostic Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven; Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Jasper Callemeyn
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven; Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Maarten Coemans
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven
| | - Katrien De Vusser
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven; Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | | | | | | | - Dirk Kuypers
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven; Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Ben Sprangers
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven; Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven
| | - Amaryllis H Van Craenenbroeck
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven; Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Thibaut Vaulet
- ESAT STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven
| | - Dany Anglicheau
- INSERM U1151, Université de Paris, Paris, France; Department of Nephrology and Kidney Transplantation, RTRS Centaure, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven; Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
8
|
Hirt-Minkowski P, Schaub S. Urine CXCL10 as a biomarker in kidney transplantation. Curr Opin Organ Transplant 2024; 29:138-143. [PMID: 38235748 PMCID: PMC10919271 DOI: 10.1097/mot.0000000000001135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
PURPOSE OF REVIEW Urine CXCL10 is a promising biomarker for posttransplant renal allograft monitoring but is currently not widely used for clinical management. RECENT FINDINGS Large retrospective studies and data from a prospective randomized trial as well as a prospective cohort study demonstrate that low urine CXCL10 levels are associated with a low risk of rejection and can exclude BK polyomavirus replication with high certainty. Urine CXCL10 can either be used as part of a multiparameter based risk assessment tool, or as an individual biomarker taking relevant confounders into account. A novel Luminex-based CXCL10 assay has been validated in a multicenter study, and proved to be robust, reproducible, and accurate. SUMMARY Urine CXCL10 is a well characterized inflammation biomarker, which can be used to guide performance of surveillance biopsies. Wide implementation into clinical practice depends on the availability of inexpensive, thoroughly validated assays with approval from regulatory authorities.
Collapse
Affiliation(s)
| | - Stefan Schaub
- Clinic for Transplantation Immunology and Nephrology
- HLA-Diagnostic and lmmunogenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
9
|
Swolinsky JS, Hinz RM, Markus CE, Singer E, Bachmann F, Halleck F, Kron S, Naik MG, Schmidt D, Obermeier M, Gebert P, Rauch G, Kropf S, Haase M, Budde K, Eckardt KU, Westhoff TH, Schmidt-Ott KM. Plasma NGAL levels in stable kidney transplant recipients and the risk of allograft loss. Nephrol Dial Transplant 2024; 39:483-495. [PMID: 37858309 PMCID: PMC11024820 DOI: 10.1093/ndt/gfad226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND The objective of this study was to investigate the utility of neutrophil gelatinase-associated lipocalin (NGAL) and calprotectin (CPT) to predict long-term graft survival in stable kidney transplant recipients (KTR). METHODS A total of 709 stable outpatient KTR were enrolled >2 months post-transplant. The utility of plasma and urinary NGAL (pNGAL, uNGAL) and plasma and urinary CPT at enrollment to predict death-censored graft loss was evaluated during a 58-month follow-up. RESULTS Among biomarkers, pNGAL showed the best predictive ability for graft loss and was the only biomarker with an area under the curve (AUC) > 0.7 for graft loss within 5 years. Patients with graft loss within 5 years (n = 49) had a median pNGAL of 304 [interquartile range (IQR) 235-358] versus 182 (IQR 128-246) ng/mL with surviving grafts (P < .001). Time-dependent receiver operating characteristic analyses at 58 months indicated an AUC for pNGAL of 0.795, serum creatinine-based Chronic Kidney Disease Epidemiology Collaboration estimated glomerular filtration rate (eGFR) had an AUC of 0.866. pNGAL added to a model based on conventional risk factors for graft loss with death as competing risk (age, transplant age, presence of donor-specific antibodies, presence of proteinuria, history of delayed graft function) had a strong independent association with graft loss {subdistribution hazard ratio (sHR) for binary log-transformed pNGAL [log2(pNGAL)] 3.4, 95% confidence interval (CI) 2.24-5.15, P < .0001}. This association was substantially attenuated when eGFR was added to the model [sHR for log2(pNGAL) 1.63, 95% CI 0.92-2.88, P = .095]. Category-free net reclassification improvement of a risk model including log2(pNGAL) in addition to conventional risk factors and eGFR was 54.3% (95% CI 9.2%-99.3%) but C-statistic did not improve significantly. CONCLUSIONS pNGAL was an independent predictor of renal allograft loss in stable KTR from one transplant center but did not show consistent added value when compared with baseline predictors including the conventional marker eGFR. Future studies in larger cohorts are warranted.
Collapse
Affiliation(s)
- Jutta S Swolinsky
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ricarda M Hinz
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Carolin E Markus
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Eugenia Singer
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Friederike Bachmann
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany
| | - Fabian Halleck
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany
| | - Susanne Kron
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany
| | - Marcel G Naik
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin
| | - Danilo Schmidt
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany
| | | | - Pimrapat Gebert
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biometry and Clinical Epidemiology
| | - Geraldine Rauch
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biometry and Clinical Epidemiology
| | - Siegfried Kropf
- Institute of Biometry and Medical Informatics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Michael Haase
- Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
- Diaverum Renal Services, MVZ Potsdam, Potsdam, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany
| | - Timm H Westhoff
- Medical Department I, Marien Hospital Herne, Universitätsklinikum der Ruhr-Universität Bochum, Bochum, Germany
| | - Kai M Schmidt-Ott
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| |
Collapse
|
10
|
Chancharoenthana W, Traitanon O, Leelahavanichkul A, Tasanarong A. Molecular immune monitoring in kidney transplant rejection: a state-of-the-art review. Front Immunol 2023; 14:1206929. [PMID: 37675106 PMCID: PMC10477600 DOI: 10.3389/fimmu.2023.1206929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/31/2023] [Indexed: 09/08/2023] Open
Abstract
Although current regimens of immunosuppressive drugs are effective in renal transplant recipients, long-term renal allograft outcomes remain suboptimal. For many years, the diagnosis of renal allograft rejection and of several causes of renal allograft dysfunction, such as chronic subclinical inflammation and infection, was mostly based on renal allograft biopsy, which is not only invasive but also possibly performed too late for proper management. In addition, certain allograft dysfunctions are difficult to differentiate from renal histology due to their similar pathogenesis and immune responses. As such, non-invasive assays and biomarkers may be more beneficial than conventional renal biopsy for enhancing graft survival and optimizing immunosuppressive drug regimens during long-term care. This paper discusses recent biomarker candidates, including donor-derived cell-free DNA, transcriptomics, microRNAs, exosomes (or other extracellular vesicles), urine chemokines, and nucleosomes, that show high potential for clinical use in determining the prognosis of long-term outcomes of kidney transplantation, along with their limitations.
Collapse
Affiliation(s)
- Wiwat Chancharoenthana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Thammasat Multi-Organ Transplant Center, Thammasat University Hospital, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Opas Traitanon
- Thammasat Multi-Organ Transplant Center, Thammasat University Hospital, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Adis Tasanarong
- Thammasat Multi-Organ Transplant Center, Thammasat University Hospital, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| |
Collapse
|
11
|
Ho J, Schaub S, Jackson AM, Balshaw R, Carroll R, Cun S, De Serres SA, Fantus D, Handschin J, Hönger G, Jevnikar AM, Kleiser M, Lee JH, Li Y, Nickerson P, Pei R, Pochinco D, Shih R, Trinh M, Wang J, Nguyen J, Knechtle S. Multicenter Validation of a Urine CXCL10 Assay for Noninvasive Monitoring of Renal Transplants. Transplantation 2023; 107:1630-1641. [PMID: 36949034 DOI: 10.1097/tp.0000000000004554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
BACKGROUND Urine CXCL10 (C-X-C motif chemokine ligand 10, interferon gamma-induced protein 10 [IP10]) outperforms standard-of-care monitoring for detecting subclinical and early clinical T-cell-mediated rejection (TCMR) and may advance TCMR therapy development through biomarker-enriched trials. The goal was to perform an international multicenter validation of a CXCL10 bead-based immunoassay (Luminex) for transplant surveillance and compare with an electrochemiluminescence-based (Meso Scale Discovery [MSD]) assay used in transplant trials. METHODS Four laboratories participated in the Luminex assay development and evaluation. Urine CXCL10 was measured by Luminex and MSD in 2 independent adult kidney transplant trial cohorts (Basel and TMCT04). In an independent test and validation set, a linear mixed-effects model to predict (log 10 -transformed) MSD CXCL10 from Luminex CXCL10 was developed to determine the conversion between assays. Net reclassification was determined after mathematical conversion. RESULTS The Luminex assay was precise, with an intra- and interassay coefficient of variation 8.1% and 9.3%; showed modest agreement between 4 laboratories (R 0.96 to 0.99, P < 0.001); and correlated with known CXCL10 in a single- (n = 100 urines, R 0.94 to 0.98, P < 0.001) and multicenter cohort (n = 468 urines, R 0.92, P < 0.001) but the 2 assays were not equivalent by Passing-Bablok regression. Linear mixed-effects modeling demonstrated an intercept of -0.490 and coefficient of 1.028, showing Luminex CXCL10 are slightly higher than MSD CXCL10, but the agreement is close to 1.0. After conversion of the biopsy thresholds, the decision to biopsy would be changed for only 6% (5/85) patients showing acceptable reclassification. CONCLUSIONS These data demonstrate this urine CXCL10 Luminex immunoassay is robust, reproducible, and accurate, indicating it can be readily translated into clinical HLA laboratories for serial posttransplant surveillance.
Collapse
Affiliation(s)
- Julie Ho
- Department of Internal Medicine and Immunology, University of Manitoba, Winnipeg, Canada
- Transplant Manitoba, Shared Health Manitoba, Winnipeg, Canada
| | - Stefan Schaub
- Transplantation Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
- HLA-Diagnostic and Immunogenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | | | - Robert Balshaw
- George and Fay Yee Center for Healthcare Innovation, Manitoba, Canada
| | - Robert Carroll
- Royal Adelaide Hospital, University of Adelaide, SA, Australia
| | - Sylvia Cun
- Thermo Fisher Scientific, Los Angeles, CA
| | | | - Daniel Fantus
- Division of Nephrology, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM) and Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada
| | - Joelle Handschin
- Transplantation Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Gideon Hönger
- Transplantation Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
- HLA-Diagnostic and Immunogenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Anthony M Jevnikar
- Department of Medicine, Western University and Multiorgan Transplant Program, London, ON, Canada
| | - Marc Kleiser
- HLA-Diagnostic and Immunogenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | | | - Yan Li
- Department of Surgery and Immunology, Duke University, Durham, NC
| | - Peter Nickerson
- Department of Internal Medicine and Immunology, University of Manitoba, Winnipeg, Canada
- Transplant Manitoba, Shared Health Manitoba, Winnipeg, Canada
- Canadian Blood Services HLA Laboratory, Diagnostic Services of Manitoba, Canada
| | - Rui Pei
- Thermo Fisher Scientific, Los Angeles, CA
| | - Denise Pochinco
- Canadian Blood Services HLA Laboratory, Diagnostic Services of Manitoba, Canada
| | - Remi Shih
- Terasaki Innovation Center, Los Angeles, CA
| | | | - Jason Wang
- Thermo Fisher Scientific, Los Angeles, CA
| | | | - Stuart Knechtle
- Department of Surgery and Immunology, Duke University, Durham, NC
| |
Collapse
|
12
|
Huang E, Mengel M, Clahsen-van Groningen MC, Jackson AM. Diagnostic Potential of Minimally Invasive Biomarkers: A Biopsy-centered Viewpoint From the Banff Minimally Invasive Diagnostics Working Group. Transplantation 2023; 107:45-52. [PMID: 36508645 PMCID: PMC9746335 DOI: 10.1097/tp.0000000000004339] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 12/14/2022]
Abstract
With recent advances and commercial implementation of minimally invasive biomarkers in kidney transplantation, new strategies for the surveillance of allograft health are emerging. Blood and urine-based biomarkers can be used to detect the presence of rejection, but their applicability as diagnostic tests has not been studied. A Banff working group was recently formed to consider the potential of minimally invasive biomarkers for integration into the Banff classification for kidney allograft pathology. We review the existing data on donor-derived cell-free DNA, blood and urine transcriptomics, urinary protein chemokines, and next-generation diagnostics and conclude that the available data do not support their use as stand-alone diagnostic tests at this point. Future studies assessing their ability to distinguish complex phenotypes, differentiate T cell-mediated rejection from antibody-mediated rejection, and function as an adjunct to histology are needed to elevate these minimally invasive biomarkers from surveillance tests to diagnostic tests.
Collapse
Affiliation(s)
- Edmund Huang
- Division of Nephrology, Department of Medicine, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Michael Mengel
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Marian C. Clahsen-van Groningen
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Institute of Experimental and Systems Biology, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
13
|
Johnson AC, Silva JAF, Kim SC, Larsen CP. Progress in kidney transplantation: The role for systems immunology. Front Med (Lausanne) 2022; 9:1070385. [PMID: 36590970 PMCID: PMC9800623 DOI: 10.3389/fmed.2022.1070385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
The development of systems biology represents an immense breakthrough in our ability to perform translational research and deliver personalized and precision medicine. A multidisciplinary approach in combination with use of novel techniques allows for the extraction and analysis of vast quantities of data even from the volume and source limited samples that can be obtained from human subjects. Continued advances in microfluidics, scalability and affordability of sequencing technologies, and development of data analysis tools have made the application of a multi-omics, or systems, approach more accessible for use outside of specialized centers. The study of alloimmune and protective immune responses after solid organ transplant offers innumerable opportunities for a multi-omics approach, however, transplant immunology labs are only just beginning to adopt the systems methodology. In this review, we focus on advances in biological techniques and how they are improving our understanding of the immune system and its interactions, highlighting potential applications in transplant immunology. First, we describe the techniques that are available, with emphasis on major advances that allow for increased scalability. Then, we review initial applications in the field of transplantation with a focus on topics that are nearing clinical integration. Finally, we examine major barriers to adapting these methods and discuss potential future developments.
Collapse
|
14
|
Yao Q, Wang C, Wang Y, Xiang W, Chen Y, Zhou Q, Chen J, Jiang H, Chen D. STXBP3 and GOT2 predict immunological activity in acute allograft rejection. Front Immunol 2022; 13:1025681. [PMID: 36532048 PMCID: PMC9751189 DOI: 10.3389/fimmu.2022.1025681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022] Open
Abstract
Background Acute allograft rejection (AR) following renal transplantation contributes to chronic rejection and allograft dysfunction. The current diagnosis of AR remains dependent on renal allograft biopsy which cannot immediately detect renal allograft injury in the presence of AR. In this study, sensitive biomarkers for AR diagnosis were investigated and developed to protect renal function. Methods We analyzed pre- and postoperative data from five databases combined with our own data to identify the key differently expressed genes (DEGs). Furthermore, we performed a bioinformatics analysis to determine the immune characteristics of DEGs. The expression of key DEGs was further confirmed using the real-time quantitative PCR (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), and immunohistochemical (IHC) staining in patients with AR. ROC curves analysis was used to estimate the performance of key DEGs in the early diagnosis of AR. Results We identified glutamic-oxaloacetic transaminase 2 (GOT2) and syntaxin binding protein 3 (STXBP3) as key DEGs. The higher expression of STXBP3 and GOT2 in patients with AR was confirmed using RT-qPCR, ELISA, and IHC staining. ROC curve analysis also showed favorable values of STXBP3 and GOT2 for the diagnosis of early stage AR. Conclusions STXBP3 and GOT2 could reflect the immunological status of patients with AR and have strong potential for the diagnosis of early-stage AR.
Collapse
Affiliation(s)
- Qinfan Yao
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China,Institute of Nephropathy, Zhejiang University, Hangzhou, China,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Cuili Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China,Institute of Nephropathy, Zhejiang University, Hangzhou, China,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Yucheng Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China,Institute of Nephropathy, Zhejiang University, Hangzhou, China,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Wenyu Xiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China,Institute of Nephropathy, Zhejiang University, Hangzhou, China,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Yin Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China,Institute of Nephropathy, Zhejiang University, Hangzhou, China,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Qin Zhou
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China,Institute of Nephropathy, Zhejiang University, Hangzhou, China,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China,Institute of Nephropathy, Zhejiang University, Hangzhou, China,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Hong Jiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China,Institute of Nephropathy, Zhejiang University, Hangzhou, China,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China,*Correspondence: Dajin Chen, ; Hong Jiang,
| | - Dajin Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China,Institute of Nephropathy, Zhejiang University, Hangzhou, China,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China,*Correspondence: Dajin Chen, ; Hong Jiang,
| |
Collapse
|
15
|
The Most Promising Biomarkers of Allogeneic Kidney Transplant Rejection. J Immunol Res 2022; 2022:6572338. [PMID: 35669103 PMCID: PMC9167141 DOI: 10.1155/2022/6572338] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/30/2022] [Indexed: 12/13/2022] Open
Abstract
Clinical transplantology is a constantly evolving field of medicine. Kidney transplantation has become standard clinical practice, and it has a significant impact on reducing mortality and improving the quality of life of patients. Allogenic transplantation induces an immune response, which may lead to the rejection of the transplanted organ. The gold standard for evaluating rejection of the transplanted kidney by the recipient's organism is a biopsy of this organ. However, due to the high invasiveness of this procedure, alternative diagnostic methods are being sought. Therefore, the biomarkers may play an essential predictive role in transplant rejection. A review of the most promising biomarkers for early diagnosis and prognosis prediction of allogenic kidney transplant rejection summarizes novel data on neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), C-X-C motif chemokine 10 (CXCL-10), cystatin C (CysC), osteopontin (OPN), and clusterin (CLU) and analyses the dynamics of changes of the biomarkers mentioned above in kidney diseases and the mechanism of rejection of the transplanted kidney.
Collapse
|
16
|
Van Loon E, Lamarthée B, Barba T, Claes S, Coemans M, de Loor H, Emonds MP, Koshy P, Kuypers D, Proost P, Senev A, Sprangers B, Tinel C, Thaunat O, Van Craenenbroeck AH, Schols D, Naesens M. Circulating Donor-Specific Anti-HLA Antibodies Associate With Immune Activation Independent of Kidney Transplant Histopathological Findings. Front Immunol 2022; 13:818569. [PMID: 35281018 PMCID: PMC8904423 DOI: 10.3389/fimmu.2022.818569] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Despite the critical role of cytokines in allograft rejection, the relation of peripheral blood cytokine profiles to clinical kidney transplant rejection has not been fully elucidated. We assessed 28 cytokines through multiplex assay in 293 blood samples from kidney transplant recipients at time of graft dysfunction. Unsupervised hierarchical clustering identified a subset of patients with increased pro-inflammatory cytokine levels. This patient subset was hallmarked by a high prevalence (75%) of donor-specific anti-human leukocyte antigen antibodies (HLA-DSA) and histological rejection (70%) and had worse graft survival compared to the group with low cytokine levels (HLA-DSA in 1.7% and rejection in 33.7%). Thirty percent of patients with high pro-inflammatory cytokine levels and HLA-DSA did not have histological rejection. Exploring the cellular origin of these cytokines, we found a corresponding expression in endothelial cells, monocytes, and natural killer cells in single-cell RNASeq data from kidney transplant biopsies. Finally, we confirmed secretion of these cytokines in HLA-DSA-mediated cross talk between endothelial cells, NK cells, and monocytes. In conclusion, blood pro-inflammatory cytokines are increased in kidney transplant patients with HLA-DSA, even in the absence of histology of rejection. These observations challenge the concept that histology is the gold standard for identification of ongoing allo-immune activation after transplantation.
Collapse
Affiliation(s)
- Elisabet Van Loon
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Baptiste Lamarthée
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Thomas Barba
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital Lyon, Hospices Civils de Lyon, Lyon, France
| | - Sandra Claes
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Maarten Coemans
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Leuven Biostatistics and Statistical Bioinformatics Centre, Department of Public Health and Primary Care, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Henriette de Loor
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Marie-Paule Emonds
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Histocompatibility and Immunogenetics Laboratory, Red Cross-Flanders, Mechelen, Belgium
| | - Priyanka Koshy
- Department of Imaging and Pathology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Dirk Kuypers
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Aleksandar Senev
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Histocompatibility and Immunogenetics Laboratory, Red Cross-Flanders, Mechelen, Belgium
| | - Ben Sprangers
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium.,Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Claire Tinel
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Olivier Thaunat
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital Lyon, Hospices Civils de Lyon, Lyon, France
| | - Amaryllis H Van Craenenbroeck
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Dominique Schols
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Dou M, Ding C, Zheng B, Deng G, Zhu K, Xu C, Xue W, Ding X, Zheng J, Tian P. Immune-Related Genes for Predicting Future Kidney Graft Loss: A Study Based on GEO Database. Front Immunol 2022; 13:859693. [PMID: 35281025 PMCID: PMC8913884 DOI: 10.3389/fimmu.2022.859693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022] Open
Abstract
Objective We aimed to identify feature immune-related genes that correlated with graft rejection and to develop a prognostic model based on immune-related genes in kidney transplantation. Methods Gene expression profiles were obtained from the GEO database. The GSE36059 dataset was used as a discovery cohort. Then, differential expression analysis and a machine learning method were performed to select feature immune-related genes. After that, univariate and multivariate Cox regression analyses were used to identify prognosis-related genes. A novel Riskscore model was built based on the results of multivariate regression. The levels of these feature genes were also confirmed in an independent single-cell dataset and other GEO datasets. Results 15 immune-related genes were expressed differently between non-rejection and rejection kidney allografts. Those differentially expressed immune-related genes (DE-IRGs) were mainly associated with immune-related biological processes and pathways. Subsequently, a 5-immune-gene signature was constructed and showed favorable predictive results in the GSE21374 dataset. Recipients were divided into the high-risk and low-risk groups according to the median value of RiskScore. The GO and KEGG analysis indicated that the differentially expressed genes (DEGs) between high-risk and low-risk groups were mainly involved in inflammatory pathways, chemokine-related pathways, and rejection-related pathways. Immune infiltration analysis demonstrated that RiskScore was potentially related to immune infiltration. Kaplan-Meier survival analysis suggested that recipients in the high-risk group had poor graft survival. AUC values of 1- and 3-year graft survival were 0.804 and 0.793, respectively. Conclusion Our data suggest that this immune-related prognostic model had good sensitivity and specificity in predicting the 1- and 3-year kidney graft survival and might act as a useful tool for predicting kidney graft loss.
Collapse
Affiliation(s)
- Meng Dou
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chenguang Ding
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Bingxuan Zheng
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ge Deng
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kun Zhu
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Cuixiang Xu
- Center of Shaanxi Provincial Clinical Laboratory, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Wujun Xue
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoming Ding
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jin Zheng
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Puxun Tian
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Puxun Tian,
| |
Collapse
|
18
|
Gao J, Wu L, Zhao Y, Hong Q, Feng Z, Chen X. Cxcl10 deficiency attenuates renal interstitial fibrosis through regulating epithelial-to-mesenchymal transition. Exp Cell Res 2022; 410:112965. [PMID: 34896075 DOI: 10.1016/j.yexcr.2021.112965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/03/2021] [Accepted: 12/04/2021] [Indexed: 11/28/2022]
Abstract
IFN-γ-inducible protein 10 (IP-10, CXCL10) has been widely demonstrated to be involved in multiple kidney pathological processes. However, the role of CXCL10 in renal fibrosis remains unclear. In this study, Cxcl10-deficient (Cxcl10-/-) mice were used to generate the unilateral ureteral obstruction (UUO) model. The level of renal fibrosis and inflammatory cell infiltration was examined in vivo and the effects of CXCL10 on EMT process of HK-2 cells was investigated in vitro. We observed that the injury degree of renal tissue and the collagen deposition levels were lighter and the expression of α-SMA, collagen I and fibronectin was significantly reduced in Cxcl10-/- mice, while the expression of E-cadherin was increased. However, interstitial F4/80-positive macrophages and CD4-positive T lymphocytes were unaffected by knockout of Cxcl10. Furthermore, IFN-γ or CXCL10 stimulation could obviously promote the expression of α-SMA, collagen I, fibronectin and reduce the expression of E-cadherin in HK-2 cells, which could be inhibited by transfection of Cxcl10-siRNA. Our findings suggested Cxcl10 knockout could reduce renal dysfunction and inhibit renal fibrosis through regulating EMT process of renal tubular epithelial cells in murine UUO model. These results may provide a novel insight into the mechanism and a potential therapy target of renal fibrosis.
Collapse
Affiliation(s)
- Jie Gao
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Fuxing Road 28, Beijing, 100853, China; Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwu Road 324, Jinan, 250021, China
| | - Lingling Wu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Fuxing Road 28, Beijing, 100853, China
| | - Yinghua Zhao
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Fuxing Road 28, Beijing, 100853, China
| | - Quan Hong
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Fuxing Road 28, Beijing, 100853, China
| | - Zhe Feng
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Fuxing Road 28, Beijing, 100853, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Fuxing Road 28, Beijing, 100853, China.
| |
Collapse
|
19
|
Deville KA, Seifert ME. Biomarkers of alloimmune events in pediatric kidney transplantation. Front Pediatr 2022; 10:1087841. [PMID: 36741087 PMCID: PMC9895094 DOI: 10.3389/fped.2022.1087841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/28/2022] [Indexed: 01/21/2023] Open
Abstract
Alloimmune events such as the development of de novo donor-specific antibody (dnDSA), T cell-mediated rejection (TCMR), and antibody-mediated rejection (ABMR) are the primary contributors to kidney transplant failure in children. For decades, a creatinine-based estimated glomerular filtration rate (eGFR) has been the non-invasive gold standard biomarker for detecting clinically significant alloimmune events, but it suffers from low sensitivity and specificity, especially in smaller children and older allografts. Many clinically "stable" children (based on creatinine) will have alloimmune events known as "subclinical acute rejection" (based on biopsy) that merely reflect the inadequacy of creatinine-based estimates for alloimmune injury rather than a distinct phenotype from clinical rejection with allograft dysfunction. The poor biomarker performance of creatinine leads to many unnecessary surveillance and for-cause biopsies that could be avoided by integrating non-invasive biomarkers with superior sensitivity and specificity into current clinical paradigms. In this review article, we will present and appraise the current state-of-the-art in monitoring for alloimmune events in pediatric kidney transplantation. We will first discuss the current clinical standards for assessing the presence of alloimmune injury and predicting long-term outcomes. We will review principles of biomarker medicine and the application of comprehensive metrics to assess the performance of a given biomarker against the current gold standard. We will then highlight novel blood- and urine-based biomarkers (with special emphasis on pediatric biomarker studies) that have shown superior diagnostic and prognostic performance to the current clinical standards including creatinine-based eGFR. Finally, we will review some of the barriers to translating this research and implementing emerging biomarkers into common clinical practice, and present a transformative approach to using multiple biomarker platforms at different times to optimize the detection and management of critical alloimmune events in pediatric kidney transplant recipients.
Collapse
Affiliation(s)
- Kyle A Deville
- Division of Pediatric Nephrology, Department of Pediatrics, University of Alabama Heersink School of Medicine, Birmingham, AL, United States
| | - Michael E Seifert
- Division of Pediatric Nephrology, Department of Pediatrics, University of Alabama Heersink School of Medicine, Birmingham, AL, United States
| |
Collapse
|
20
|
Urinary CXCL10 specifically relates to HLA-DQ eplet mismatch load in kidney transplant recipients. Transpl Immunol 2021; 70:101494. [PMID: 34774739 DOI: 10.1016/j.trim.2021.101494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Urinary CXCL10 (uCXCL10) is associated with graft inflammation and graft survival, but the factors related to its excretion are not well known. HLA molecular matching at epitope level allow estimating the "dissimilarity" between donor and recipient HLA more precisely, being better related to further transplant outcomes. The relationship between uCXCL10 and HLA molecular mismatch has not been previously explored. METHODS HLA class I and class II typing of some 65 recipients and their donors was retrospectively performed by high resolution sequence-specific-primer (Life Technologies, Brown Deer, WI). The HLA-Matchmaker 3.1 software was used to assess eplet matching. Urine samples collected on the day of the 1-year surveillance biopsy were available of these 65 patients. uCXCL10 was measured using a commercial enzyme-linked immunoassay kit. RESULTS 1-year uCXCL10 was independently associated with HLA-DQB1 eplet mismatch load (β 0.300, 95%CI 0.010-0.058, p = 0.006). Kidney transplant recipients with a HLA-DQB1 eplet mismatch load >3 showed higher values of uCXCL10 at 1-year (p = 0.018) than those with ≤3. Patients with a HLA-DQB1 eplet mismatch load >3 with subclinical AbMR had significantly higher levels of the logarithm of 1-year uCXCL10 (No AbMR 0.88, IQR 0.37; AbMR 1.38, IQR 0.34, p = 0.002) than those without AbMR. CONCLUSIONS uCXCL10 specifically relates to HLA-DQ eplet mismatch load. This relationship can partly explain the previously reported association between uCXCL10 excretion and graft inflammation. An adequate evaluation of any potential non-invasive biomarker, such as uCXCL10, must take into account the HLA molecular mismatch.
Collapse
|
21
|
Brunet M, Millán O. Getting immunosuppression just right: the role of clinical biomarkers in predicting patient response post solid organ transplantation. Expert Rev Clin Pharmacol 2021; 14:1467-1479. [PMID: 34607521 DOI: 10.1080/17512433.2021.1987882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Actually, immunosuppression selection isn't based on individual immune alloreactivity, and immunosuppressive drug dosing is mainly based on the development of toxicity and the achievement of specific target concentrations. Since a successful outcome requires optimal patient risk stratification and treatment, several groups have evaluated candidate biomarkers that have shown promise in the assessment of individual immune responses, the prediction of personal pharmacodynamic effects of immunosuppressive drugs and the prognosis and diagnosis of graft outcomes.. AREAS COVERED This review includes biomarkers that the Scientific Community in Solid Organ Transplantation currently considers to have potential as diagnostic and prognostic biomarkers of graft evolution. We have focused on recent scientific advances and expert recommendations regarding the role of specific and non-specific pharmacodynamic biomarkers that are mainly involved in the T-cell-mediated response. EXPERT OPINION Integral pharmacologic monitoring that combines pharmacokinetics, pharmacogenetics and predictive pharmacodynamic biomarkers may provide crucial information and allow personal adjustment of immunosuppressive drugs at an early stage before severe adverse events ensue. Multicentre, randomized, prospective and interventional trials are needed to fine tune the established cut-off values for each biomarker and the optimal monitoring frequency for each biomarker and to accurately evaluate possible clinical confounding factors to enable correct clinical qualification.
Collapse
Affiliation(s)
- Mercè Brunet
- Pharmacology and Toxicology Section, CDB, IDIBAPS, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Biomedical Research Center in Hepatic and Digestive Diseases (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Olga Millán
- Pharmacology and Toxicology Section, CDB, IDIBAPS, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Biomedical Research Center in Hepatic and Digestive Diseases (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
22
|
Lubetzky ML, Salinas T, Schwartz JE, Suthanthiran M. Urinary Cell mRNA Profiles Predictive of Human Kidney Allograft Status. Clin J Am Soc Nephrol 2021; 16:1565-1577. [PMID: 33906907 PMCID: PMC8499006 DOI: 10.2215/cjn.14010820] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Immune monitoring of kidney allograft recipients and personalized therapeutics may help reach the aspirational goal of "one transplant for life." The invasive kidney biopsy procedure, the diagnostic tool of choice, has become safer and the biopsy classification more refined. Nevertheless, biopsy-associated complications, interobserver variability in biopsy specimen scoring, and costs continue to be significant concerns. The dynamics of the immune repertoire make frequent assessments of allograft status necessary, but repeat biopsies of the kidney are neither practical nor safe. To address the existing challenges, we developed urinary cell mRNA profiling and investigated the diagnostic, prognostic, and predictive accuracy of absolute levels of a hypothesis-based panel of mRNAs encoding immunoregulatory proteins. Enabled by our refinements of the PCR assay and by investigating mechanistic hypotheses, our single-center studies identified urinary cell mRNAs associated with T cell-mediated rejection, antibody-mediated rejection, interstitial fibrosis and tubular atrophy, and BK virus nephropathy. In the multicenter National Institutes of Health Clinical Trials in Organ Transplantation-04, we discovered and validated a urinary cell three-gene signature of T-cell CD3 ε chain mRNA, interferon gamma inducible protein 10 (IP-10) mRNA, and 18s ribosomal RNA that is diagnostic of subclinical acute cellular rejection and acute cellular rejection and prognostic of acute cellular rejection and graft function. The trajectory of the signature score remained flat and below the diagnostic threshold for acute cellular rejection in the patients with no rejection biopsy specimens, whereas a sharp rise was observed during the weeks before the biopsy specimen that showed acute cellular rejection. Our RNA sequencing and bioinformatics identified kidney allograft biopsy specimen gene signatures of acute rejection to be enriched in urinary cells matched to acute rejection biopsy specimens. The urinary cellular landscape was more diverse and more enriched for immune cell types compared with kidney allograft biopsy specimens. Urinary cell mRNA profile-guided clinical trials are needed to evaluate their value compared with current standard of care.
Collapse
Affiliation(s)
- Michelle L. Lubetzky
- Division of Nephrology and Hypertension, Weill Cornell Department of Medicine, New York, New York,Department of Transplantation Medicine, New York–Presbyterian Hospital, New York, New York
| | - Thalia Salinas
- Division of Nephrology and Hypertension, Weill Cornell Department of Medicine, New York, New York,Department of Transplantation Medicine, New York–Presbyterian Hospital, New York, New York
| | - Joseph E. Schwartz
- Division of Nephrology and Hypertension, Weill Cornell Department of Medicine, New York, New York,Department of Transplantation Medicine, New York–Presbyterian Hospital, New York, New York,Department of Psychiatry and Behavioral Sciences, Stony Brook Renaissance School of Medicine, Stony Brook, New York
| | - Manikkam Suthanthiran
- Division of Nephrology and Hypertension, Weill Cornell Department of Medicine, New York, New York,Department of Transplantation Medicine, New York–Presbyterian Hospital, New York, New York
| |
Collapse
|
23
|
Handschin J, Wehmeier C, Amico P, Hopfer H, Dickenmann M, Schaub S, Hirt-Minkowski P. Urinary CXCL10 Measurement in Late Renal Allograft Biopsies Predicts Outcome Even in Histologically Quiescent Patients. Transplant Proc 2021; 53:2168-2179. [PMID: 34419254 DOI: 10.1016/j.transproceed.2021.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/27/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND CXCL10 is a promising early noninvasive diagnostic marker for allograft rejection and predictive for long-term outcomes. However, its value when measured later in the posttransplant course has not yet been accurately analyzed. METHODS We investigated urinary CXCL10 in 141 patients from a prospective, observational renal transplant cohort with 182 clinically indicated allograft biopsies performed >12 months posttransplant and corresponding urines. Urinary CXCL10 was retrospectively quantified on stored urines using the MSD V-Plex Chemokine Panel 1 sandwich immunoassay (Meso Scale Discovery). The primary outcome was a composite of allograft loss/renal function decline (>30% estimated glomerular filtration rate [eGFR]-decrease between index biopsy and last follow-up). RESULTS Seventy-two patients (51%) reached the primary outcome, and their urinary CXCL10 levels were significantly higher at the time of their biopsy compared with patients with stable allograft function (median 9.3 ng/mmol vs 3.3 ng/mmol, P < .0001). Time-to-endpoint analyses according to high/low urinary CXCL10 demonstrated that low urinary CXCL10 (≤7.0 ng/mmol) was associated with 73% 5-year event-free graft survival compared with 48% with high urinary CXCL10 (>7.0 ng/mmol; P = .0001). Even in histologically quiescent patients, high urinary CXCL10 was associated with inferior endpoint-free graft survival (P = .003), and it was an independent predictor of the primary outcome (P = .03). CONCLUSIONS This study demonstrates that urinary CXCL10 has a promising diagnostic performance for detection of late allograft rejection and is an independent predictor of long-term renal allograft outcomes, even in histologically quiescent patients.
Collapse
Affiliation(s)
- Joelle Handschin
- Transplantation Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Caroline Wehmeier
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Patrizia Amico
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Helmut Hopfer
- lnstitute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Michael Dickenmann
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Stefan Schaub
- Transplantation Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland; Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland; HLA-Diagnostic and lmmunogenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Patricia Hirt-Minkowski
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
24
|
Başak Oktay S, Akbaş SH, Yilmaz VT, Özen Küçükçetin İ, Toru HS, Yücel SG. Association Between Graft Function and Urine CXCL10 and Acylcarnitines Levels in Kidney Transplant Recipients. Lab Med 2021; 53:78-84. [PMID: 34388247 DOI: 10.1093/labmed/lmab049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE To evaluate post-transplantation graft functions noninvasively by using urine C-X-C motif chemokine 10 (CXCL10) and metabolome analysis. METHODS The 65 living-donor kidney-transplant recipients in our cohort underwent renal biopsy to investigate possible graft dysfunction. The patients were divided into 2 groups, according to pathology reports: chronic allograft dysfunction (CAD; n = 18) and antibody-mediated/humoral allograft rejection (AMR; n = 16). The control group was composed of renal transplant recipients with stable health (n = 33). We performed serum creatinine, blood urea nitrogen (BUN), cystatin C, urine protein, CXCL10, and metabolome analyses on specimens from the patients. RESULTS BUN, creatinine, cystatin C, urine protein, leucine + isoleucine, citrulline, and free/acetyl/propionyl carnitine levels were significantly higher in patients with CAD and AMR, compared with the control individuals. CXCL10 levels were significantly elevated in patients with AMR, compared with patients with CAD and controls. CXCL10 (AUC = 0.771) and cystatin C (AUC = 0.746) were significantly higher in the AMR group, compared with the CAD group (P<.02). CONCLUSIONS CXCL10 and metabolome analyzes are useful for evaluation of graft functions. Also, CXCL10 might be useful as a supplementary noninvasive screening test for diagnosis of allograft rejection.
Collapse
Affiliation(s)
- Saniye Başak Oktay
- Department of Biochemistry, Adıyaman University Education and Research Hospital, Adıyaman, Turkey
| | | | | | | | - Havva Serap Toru
- Department of Pathology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | | |
Collapse
|
25
|
Lamarche C, Sharma AK, Goldberg A, Wang L, Blydt-Hansen TD. Biomarker implementation: Evaluation of the decision-making impact of CXCL10 testing in a pediatric cohort. Pediatr Transplant 2021; 25:e13908. [PMID: 33155737 DOI: 10.1111/petr.13908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/13/2020] [Accepted: 10/07/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Children are at high risk for subclinical rejection, and kidney biopsy is currently used for surveillance. Our objective was to test how novel rejection biomarkers such as urinary CXCL10 may influence clinical decision-making to indicate need for a biopsy. METHODS A minimum dataset for standard decision-making to indicate a biopsy was established by an expert panel and used to design clinical vignettes for use in a survey. Pediatric nephrologists were recruited to review the vignettes and A) estimate rejection risk and B) decide whether to biopsy; first without and then with urinary CXCL10/Cr level. Accuracy of biopsy decisions was then tested against the biopsy results. IRA was assessed by Fleiss Kappa (κ) for binary choice and ICC for probabilities. RESULTS Eleven pediatric nephrologists reviewed 15 vignettes each. ICC of probability assessment for rejection improved from poor (0.28, P < .01) to fair (0.48, P < .01) with addition of CXCL10/Cr data. It did not, however, improve the IRA for decision to biopsy (K = 0.48 and K = 0.43, for the comparison). Change in clinician estimated probability of rejection with additional CXCL10/Cr data was correlated with CXCL10/Cr level (r2 = 0.7756, P < .0001). Decision accuracy went from 8/15 (53.3%) cases to 11/15 (73.3%) with CXCL10/Cr, although improvement did not achieve statistical significance. Using CXCL10/Cr alone would have been accurate in 12/15 cases (80%). CONCLUSION There is high variability in decision-making on biopsy indication. Urinary CXCL10/Cr improves probability estimates for risk of rejection. Training may be needed to assist nephrologists in better integrate biomarker information into clinical decision-making.
Collapse
Affiliation(s)
- Caroline Lamarche
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Atul K Sharma
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Aviva Goldberg
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Li Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tom D Blydt-Hansen
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
26
|
Blydt-Hansen TD, Sharma A, Gibson IW, Wiebe C, Sharma AP, Langlois V, Teoh CW, Rush D, Nickerson P, Wishart D, Ho J. Validity and utility of urinary CXCL10/Cr immune monitoring in pediatric kidney transplant recipients. Am J Transplant 2021; 21:1545-1555. [PMID: 33034126 DOI: 10.1111/ajt.16336] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/26/2020] [Accepted: 09/20/2020] [Indexed: 02/06/2023]
Abstract
Individualized posttransplant immunosuppression is hampered by suboptimal monitoring strategies. To validate the utility of urinary CXCL10/Cr immune monitoring in children, we conducted a multicenter prospective observational study in children <21 years with serial and biopsy-associated urine samples (n = 97). Biopsies (n = 240) were categorized as normal (NOR), rejection (>i1t1; REJ), indeterminate (IND), BKV infection, and leukocyturia (LEU). An independent pediatric cohort of 180 urines was used for external validation. Ninety-seven patients aged 11.4 ± 5.5 years showed elevated urinary CXCL10/Cr in REJ (3.1, IQR 1.1, 16.4; P < .001) and BKV nephropathy (median = 5.6, IQR 1.3, 26.9; P < .001) vs. NOR (0.8, IQR 0.4, 1.5). The AUC for REJ vs. NOR was 0.76 (95% CI 0.66-0.86). Low (0.63) and high (4.08) CXCL10/Cr levels defined high sensitivity and specificity thresholds, respectively; validated against an independent sample set (AUC = 0.76, 95% CI 0.66-0.86). Serial urines anticipated REJ up to 4 weeks prior to biopsy and declined within 1 month following treatment. Elevated mean CXCL10/Cr was correlated with first-year eGFR decline (ρ = -0.37, P ≤ .001), particularly when persistently exceeding ≥4.08 (ratio = 0.81; P < .04). Useful thresholds for urinary CXCL10/Cr levels reproducibly define the risk of rejection, immune quiescence, and decline in allograft function for use in real-time clinical monitoring in children.
Collapse
Affiliation(s)
- Tom D Blydt-Hansen
- Pediatric Nephrology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Atul Sharma
- Biostatistical Consulting Unit, George, Fay Yee Center for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ian W Gibson
- Pathology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Chris Wiebe
- Nephrology, University of Manitoba, Winnipeg, Manitoba, Canada.,Transplant/Immunology Lab, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ajay P Sharma
- Pediatric Nephrology, University of Western Ontario, London, Ontario, Canada
| | - Valerie Langlois
- Pediatric Nephrology, University of Toronto, Toronto, Ontario, Canada
| | - Chia W Teoh
- Pediatric Nephrology, University of Toronto, Toronto, Ontario, Canada
| | - David Rush
- Nephrology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter Nickerson
- Nephrology, University of Manitoba, Winnipeg, Manitoba, Canada.,Transplant/Immunology Lab, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David Wishart
- Computing Science, University of Alberta, Edmonton, Alberta, Canada.,The Metabolomics Innovation Center, Edmonton, Alberta, Canada
| | - Julie Ho
- Nephrology, University of Manitoba, Winnipeg, Manitoba, Canada.,Manitoba Centre for Proteomics & Systems Biology, Winnipeg, Manitoba, Canada
| |
Collapse
|
27
|
BK Polyomavirus Nephropathy in Kidney Transplantation: Balancing Rejection and Infection. Viruses 2021; 13:v13030487. [PMID: 33809472 PMCID: PMC7998398 DOI: 10.3390/v13030487] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/16/2022] Open
Abstract
BK polyomavirus nephropathy (BKVN) and allograft rejection are two closely-associated diseases on opposite ends of the immune scale in kidney transplant recipients. The principle of balancing the immune system remains the mainstay of therapeutic strategy. While patient outcomes can be improved through screening, risk factors identification, and rapid reduction of immunosuppressants, a lack of standard curative therapy is the primary concern during clinical practice. Additionally, difficulty in pathological differential diagnosis and clinicopathology’s dissociation pose problems for a definite diagnosis. This article discusses the delicate evaluation needed to optimize immunosuppression and reviews recent advances in molecular diagnosis and immunological therapy for BKVN patients. New biomarkers for BKVN diagnosis are under development. For example, measurement of virus-specific T cell level may play a role in steering immunosuppressants. The development of cellular therapy may provide prevention, even a cure, for BKVN, a complex post-transplant complication.
Collapse
|
28
|
Arnau A, Benito-Hernández A, Ramos-Barrón MA, García-Unzueta MT, Gómez-Román JJ, Gómez-Ortega JM, López-Hoyos M, San Segundo D, Ruiz JC, Rodrigo E. Urinary C-X-C Motif Chemokine 10 Is Related to Acute Graft Lesions Secondary to T Cell- and Antibody-Mediated Damage. Ann Transplant 2021; 26:e929491. [PMID: 33686050 PMCID: PMC7955576 DOI: 10.12659/aot.929491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Non-invasive biomarkers of graft rejection are needed to optimize the management and outcomes of kidney transplant recipients. Urinary excretion of IFN-γ-related chemokine CXCL10 is clearly associated with clinical and subclinical T cell-mediated graft inflammation, but its relationship with antibody-mediated damage has not been fully addressed. Further, the variables influencing levels of urinary CXCL10 excretion are unknown. Material/Methods A total of 151 kidney graft biopsies (92 surveillance and 59 indication biopsies) and 151 matched urine samples obtained before biopsy were prospectively analyzed. T cell-mediated rejection (TCMR) and antibody-mediated rejection (AbMR) were defined according to the 2017 Banff classification criteria. Urinary CXCL10 levels were measured by ELISA and corrected by urinary creatinine. Results Banff scores ‘t’, ‘i’, ‘g’, and ‘ptc’ were significantly related to urinary CXCL10 levels. Multivariate analysis showed that ‘t’ (β=0.107, P=0.001) and ‘ptc’ (β=0.093, P=0.002) were significantly associated with urinary CXCL10. Donor-specific antibodies (DSAs) were related to the high excretion of urinary CXCL10 at 1 year after transplantation (odds ratio [OR] 17.817, P=0.003). Urinary CXCL10 showed good discrimination ability for AbMR (AUC-ROC 0.760, P=0.001). The third tertile of urinary CXCL10 remained significantly associated with AbMR (OR 4.577, 95% confidence interval 1.799–11.646, P=0.001) after multivariate regression analysis. Conclusions DSA was the only variable clearly related to high urinary CXCL10 levels. Urinary CXCL10 is a good non-invasive candidate biomarker of AbMR and TCMR, supplying information independent of renal function and other variables normally used to monitor kidney transplants.
Collapse
Affiliation(s)
- Alvaro Arnau
- Nephrology Service, University Hospital Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| | - Adalberto Benito-Hernández
- Nephrology Service, University Hospital Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| | - María Angeles Ramos-Barrón
- Nephrology Service, University Hospital Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| | - María Teresa García-Unzueta
- Department of Clinical Biochemistry, University Hospital Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| | - José Javier Gómez-Román
- Pathology Service, University Hospital Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| | - José María Gómez-Ortega
- Pathology Service, University Hospital Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| | - Marcos López-Hoyos
- Immunology Service, University Hospital Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| | - David San Segundo
- Immunology Service, University Hospital Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| | - Juan Carlos Ruiz
- Nephrology Service, University Hospital Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| | - Emilio Rodrigo
- Nephrology Service, University Hospital Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| |
Collapse
|
29
|
Tinel C, Vermorel A, Picciotto D, Morin L, Devresse A, Sauvaget V, Lebreton X, Aouni L, Prié D, Brabant S, Avettand-Fenoel V, Scemla A, Timsit MO, Snanoudj R, Legendre C, Terzi F, Rabant M, Anglicheau D. Deciphering the Prognostic and Predictive Value of Urinary CXCL10 in Kidney Recipients With BK Virus Reactivation. Front Immunol 2020; 11:604353. [PMID: 33362789 PMCID: PMC7759001 DOI: 10.3389/fimmu.2020.604353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/09/2020] [Indexed: 01/14/2023] Open
Abstract
BK virus (BKV) replication increases urinary chemokine C-X-C motif ligand 10 (uCXCL10) levels in kidney transplant recipients (KTRs). Here, we investigated uCXCL10 levels across different stages of BKV replication as a prognostic and predictive marker for functional decline in KTRs after BKV-DNAemia. uCXCL10 was assessed in a cross-sectional study (474 paired urine/blood/biopsy samples and a longitudinal study (1,184 samples from 60 KTRs with BKV-DNAemia). uCXCL10 levels gradually increased with urine (P-value < 0.0001) and blood BKV viral load (P < 0.05) but were similar in the viruria and no BKV groups (P > 0.99). In viremic patients, uCXCL10 at biopsy was associated with graft functional decline [HR = 1.65, 95% CI (1.08–2.51), P = 0.02], irrespective of baseline eGFR, blood viral load, or BKVN diagnosis. uCXL10/cr (threshold: 12.86 ng/mmol) discriminated patients with a low risk of graft function decline from high-risk patients (P = 0.01). In the longitudinal study, the uCXCL10 and BKV-DNAemia trajectories were superimposable. Stratification using the same uCXCL10/cr threshold at first viremia predicted the subsequent inflammatory response, assessed by time-adjusted uCXCL10/cr AUC (P < 0.001), and graft functional decline (P = 0.03). In KTRs, uCXCL10 increases in BKV-DNAemia but not in isolated viruria. uCXCL10/cr is a prognostic biomarker of eGFR decrease, and a 12.86 ng/ml threshold predicts higher inflammatory burdens and poor renal outcomes.
Collapse
Affiliation(s)
- Claire Tinel
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Necker-Enfants Malades Institute, French National Institute of Health and Medical Research, Paris, France.,Paris University, Paris, France
| | - Agathe Vermorel
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Daniela Picciotto
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lise Morin
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Arnaud Devresse
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Division of Nephrology, University Hospital Saint-Luc, Brussels, Belgium.,Institute of Experimental and Clinical Research, Catholic University of Louvain, Brussels, Belgium
| | - Virginia Sauvaget
- Necker-Enfants Malades Institute, French National Institute of Health and Medical Research, Paris, France
| | - Xavier Lebreton
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Laïla Aouni
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Dominique Prié
- Paris University, Paris, France.,Department of Physiology, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Séverine Brabant
- Department of Physiology, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Véronique Avettand-Fenoel
- Paris University, Paris, France.,Département of Virology, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Anne Scemla
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marc Olivier Timsit
- Paris University, Paris, France.,Department of Urology, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Renaud Snanoudj
- Department of Nephrology, Hemodialysis and Kidney Transplantation, Foch Hospital, Suresnes, France
| | - Christophe Legendre
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Necker-Enfants Malades Institute, French National Institute of Health and Medical Research, Paris, France.,Paris University, Paris, France
| | - Fabiola Terzi
- Necker-Enfants Malades Institute, French National Institute of Health and Medical Research, Paris, France
| | - Marion Rabant
- Necker-Enfants Malades Institute, French National Institute of Health and Medical Research, Paris, France.,Paris University, Paris, France.,Pathology Department, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Dany Anglicheau
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Necker-Enfants Malades Institute, French National Institute of Health and Medical Research, Paris, France.,Paris University, Paris, France
| |
Collapse
|
30
|
Tinel C, Devresse A, Vermorel A, Sauvaget V, Marx D, Avettand-Fenoel V, Amrouche L, Timsit MO, Snanoudj R, Caillard S, Moulin B, Olagne J, Essig M, Gwinner W, Naesens M, Marquet P, Legendre C, Terzi F, Rabant M, Anglicheau D. Development and validation of an optimized integrative model using urinary chemokines for noninvasive diagnosis of acute allograft rejection. Am J Transplant 2020; 20:3462-3476. [PMID: 32342614 DOI: 10.1111/ajt.15959] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 01/25/2023]
Abstract
The urinary chemokines CXCL9 and CXCL10 are promising noninvasive diagnostic markers of acute rejection (AR) in kidney recipients, but their levels might be confounded by urinary tract infection (UTI) and BK virus (BKV) reactivation. Multiparametric model development and validation addressed these confounding factors in a training set of 391 samples, optimizing the diagnostic performance of urinary chemokines. CXCL9/creatinine increased in UTI and BKV viremia with or without nephropathy (BKVN) (no UTI/leukocyturia/UTI: -0.10/1.61/2.09, P = .0001 and no BKV/viremia/BKVN: -0.10/1.90/2.29, P < .001) as well as CXCL10/creatinine (1.17/2.09/1.98, P < .0001 and 1.13/2.21/2.51, P < .001, respectively). An optimized 8-parameter model (recipient age, sex, estimated glomerular filtration rate, donor specific antibodies, UTI, BKV blood viral load, CXCL9, and CXCL10) diagnosed AR with high accuracy (area under the curve [AUC]: 0.85, 95% confidence interval [CI]: 0.80-0.89) and remained highly accurate at the time of screening (AUC: 0.81, 95% CI: 0.48-1) or indication biopsies (AUC: 0.85, 95% CI: 0.81-0.90) and within the first year (AUC: 0.86, 95% CI: 0.80-0.91) or later (AUC: 0.90, 95% CI: 0.84-0.96), achieving AR diagnosis with an AUC of 0.85 and 0.92 (P < .0001) in 2 external validation cohorts. Decision curve analyses demonstrated the clinical utility of the model. Considering confounding factors rather than excluding them, we optimized a noninvasive multiparametric diagnostic model for AR of kidney allografts with unprecedented accuracy.
Collapse
Affiliation(s)
- Claire Tinel
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Necker-Enfants Malades Institute, French National Institute of Health and Medical Research U1151, Paris, France.,Centaure Foundation and Labex Transplantex, Necker Hospital, Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Paris, France
| | - Arnaud Devresse
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Division of Nephrology, University Hospital Saint-Luc, Brussels, Belgium.,Institute of Experimental and Clinical Research, Catholic University of Louvain, Brussels, Belgium
| | - Agathe Vermorel
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Virginia Sauvaget
- Necker-Enfants Malades Institute, French National Institute of Health and Medical Research U1151, Paris, France
| | - David Marx
- Department of Nephrology and Transplantation, Strasbourg University Hospital, Strasbourg, France
| | - Véronique Avettand-Fenoel
- Paris Descartes, Sorbonne Paris Cité University, Paris, France.,Department of Virology, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lucile Amrouche
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Necker-Enfants Malades Institute, French National Institute of Health and Medical Research U1151, Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Paris, France
| | - Marc-Olivier Timsit
- Paris Descartes, Sorbonne Paris Cité University, Paris, France.,Department of Urology, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Renaud Snanoudj
- Department of Nephrology, Hemodialysis and Kidney Transplantation, Foch Hospital, Suresnes, France
| | - Sophie Caillard
- Department of Nephrology and Transplantation, Strasbourg University Hospital, Strasbourg, France
| | - Bruno Moulin
- Department of Nephrology and Transplantation, Strasbourg University Hospital, Strasbourg, France
| | - Jérome Olagne
- Department of Nephrology and Transplantation, Strasbourg University Hospital, Strasbourg, France
| | - Marie Essig
- CHU Limoges, Department of Nephrology, Dialysis and Transplantation, Limoges, France.,U1248 INSERM, Université de Limoges, CHU Limoges, Limoges, France
| | - Wilfried Gwinner
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Pierre Marquet
- U1248 INSERM, Université de Limoges, CHU Limoges, Limoges, France
| | - Christophe Legendre
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Necker-Enfants Malades Institute, French National Institute of Health and Medical Research U1151, Paris, France.,Centaure Foundation and Labex Transplantex, Necker Hospital, Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Paris, France
| | - Fabiola Terzi
- Necker-Enfants Malades Institute, French National Institute of Health and Medical Research U1151, Paris, France
| | - Marion Rabant
- Necker-Enfants Malades Institute, French National Institute of Health and Medical Research U1151, Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Paris, France.,Pathology Department, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Dany Anglicheau
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Necker-Enfants Malades Institute, French National Institute of Health and Medical Research U1151, Paris, France.,Centaure Foundation and Labex Transplantex, Necker Hospital, Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Paris, France
| |
Collapse
|
31
|
Rush DN. Subclinical Rejection: a Universally Held Concept? CURRENT TRANSPLANTATION REPORTS 2020. [DOI: 10.1007/s40472-020-00290-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Kaminski MM, Alcantar MA, Lape IT, Greensmith R, Huske AC, Valeri JA, Marty FM, Klämbt V, Azzi J, Akalin E, Riella LV, Collins JJ. A CRISPR-based assay for the detection of opportunistic infections post-transplantation and for the monitoring of transplant rejection. Nat Biomed Eng 2020; 4:601-609. [PMID: 32284553 DOI: 10.1038/s41551-020-0546-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/06/2020] [Indexed: 12/26/2022]
Abstract
In organ transplantation, infection and rejection are major causes of graft loss. They are linked by the net state of immunosuppression. To diagnose and treat these conditions earlier, and to improve long-term patient outcomes, refined strategies for the monitoring of patients after graft transplantation are needed. Here, we show that a fast and inexpensive assay based on CRISPR-Cas13 accurately detects BK polyomavirus DNA and cytomegalovirus DNA from patient-derived blood and urine samples, as well as CXCL9 messenger RNA (a marker of graft rejection) at elevated levels in urine samples from patients experiencing acute kidney transplant rejection. The assay, which we adapted for lateral-flow readout, enables-via simple visualization-the post-transplantation monitoring of common opportunistic viral infections and of graft rejection, and should facilitate point-of-care post-transplantation monitoring.
Collapse
Affiliation(s)
- Michael M Kaminski
- Institute for Medical Engineering and Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Miguel A Alcantar
- Institute for Medical Engineering and Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Isadora T Lape
- Schuster Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert Greensmith
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Allison C Huske
- Institute for Medical Engineering and Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacqueline A Valeri
- Institute for Medical Engineering and Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Francisco M Marty
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Verena Klämbt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jamil Azzi
- Schuster Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Enver Akalin
- Montefiore Einstein Center for Transplantation, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Leonardo V Riella
- Schuster Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - James J Collins
- Institute for Medical Engineering and Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA. .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
33
|
Mühlbacher J, Doberer K, Kozakowski N, Regele H, Camovic S, Haindl S, Bond G, Haslacher H, Eskandary F, Reeve J, Böhmig GA, Wahrmann M. Non-invasive Chemokine Detection: Improved Prediction of Antibody-Mediated Rejection in Donor-Specific Antibody-Positive Renal Allograft Recipients. Front Med (Lausanne) 2020; 7:114. [PMID: 32328494 PMCID: PMC7160229 DOI: 10.3389/fmed.2020.00114] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/12/2020] [Indexed: 01/02/2023] Open
Abstract
Background: Screening for donor-specific antibodies (DSA) has limited diagnostic value in patients with late antibody-mediated rejection (ABMR). Here, we evaluated whether biomarkers reflecting microcirculation inflammation or tissue injury-as an adjunct to DSA detection-are able to improve non-invasive ABMR monitoring. Methods: Upon prospective cross-sectional antibody screening of 741 long-term kidney transplant recipients with a silent clinical course, 86 DSA-positive patients were identified and biopsied. Serum and urine levels of E-selectin/CD62E, vascular cell adhesion molecule 1 (VCAM-1), granzyme B, hepatocyte growth factor (HGF), C-C motif chemokine ligand (CCL)3, CCL4, C-X-C motif chemokine ligand (CXCL)9, CXCL10, and CXCL11 in DSA-positive recipients were investigated applying multiplexed bead-based immunoassays. Results: Diagnosis of ABMR (50 patients) was associated with significantly higher levels of CXCL9 and CXCL10 in blood and urine and of HGF in blood. Overall, urinary CXCL9 had the highest diagnostic accuracy for ABMR (area under the receiver operating characteristic curve: 0.77; accuracy: 80%) and its combined evaluation with the mean fluorescence intensity of the immunodominant DSA (DSAmax MFI) revealed a net reclassification improvement of 73% compared to DSAmax MFI alone. Conclusions: Our results suggest urinary CXCL9 testing, combined with DSA analysis, as a valuable non-invasive tool to uncover clinically silent ABMR late after transplantation.
Collapse
Affiliation(s)
- Jakob Mühlbacher
- Division of General Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Konstantin Doberer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | - Heinz Regele
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Sümeyra Camovic
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Susanne Haindl
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gregor Bond
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Farsad Eskandary
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Jeff Reeve
- Alberta Transplant Applied Genomics Centre, University of Alberta, Edmonton, AB, Canada
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Markus Wahrmann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
34
|
Yang JYC, Sarwal RD, Sigdel TK, Damm I, Rosenbaum B, Liberto JM, Chan-On C, Arreola-Guerra JM, Alberu J, Vincenti F, Sarwal MM. A urine score for noninvasive accurate diagnosis and prediction of kidney transplant rejection. Sci Transl Med 2020; 12:eaba2501. [PMID: 32188722 PMCID: PMC8289390 DOI: 10.1126/scitranslmed.aba2501] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
Accurate and noninvasive monitoring of renal allograft posttransplant is essential for early detection of acute rejection (AR) and to affect the long-term survival of the transplant. We present the development and validation of a noninvasive, spot urine-based diagnostic assay based on measurements of six urinary DNA, protein, and metabolic biomarkers. The performance of this assay for detecting kidney injury in both native kidneys and renal allografts is presented on a cohort of 601 distinct urine samples. The urinary composite score enables diagnosis of AR, with a receiver-operator characteristic curve area under the curve of 0.99 and an accuracy of 96%. In addition, we demonstrate the clinical utility of this assay for predicting AR before a rise in the serum creatinine, enabling earlier detection of rejection than currently possible by standard of care tests. This noninvasive, sensitive, and quantitative approach is a robust and informative method for the rapid and routine monitoring of renal allografts.
Collapse
Affiliation(s)
- Joshua Y C Yang
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Reuben D Sarwal
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tara K Sigdel
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Izabella Damm
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ben Rosenbaum
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Juliane M Liberto
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chitranon Chan-On
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - José M Arreola-Guerra
- Department of Surgery, University of Mexico, Instituto Nacional de Ciencias Medicas y Nutricion, Ciudad de México, CDMX 14080, Mexico
| | - Josefina Alberu
- Department of Surgery, University of Mexico, Instituto Nacional de Ciencias Medicas y Nutricion, Ciudad de México, CDMX 14080, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, N.L. 64710, Mexico
| | - Flavio Vincenti
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Minnie M Sarwal
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
35
|
Gao J, Wu L, Wang S, Chen X. Role of Chemokine (C-X-C Motif) Ligand 10 (CXCL10) in Renal Diseases. Mediators Inflamm 2020; 2020:6194864. [PMID: 32089645 PMCID: PMC7025113 DOI: 10.1155/2020/6194864] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/02/2019] [Accepted: 12/23/2019] [Indexed: 12/31/2022] Open
Abstract
Chemokine C-X-C ligand 10 (CXCL10), also known as interferon-γ-inducible protein 10 (IP-10), exerts biological function mainly through binding to its specific receptor, CXCR3. Studies have shown that renal resident mesangial cells, renal tubular epithelial cells, podocytes, endothelial cells, and infiltrating inflammatory cells express CXCL10 and CXCR3 under inflammatory conditions. In the last few years, strong experimental and clinical evidence has indicated that CXCL10 is involved in the development of renal diseases through the chemoattraction of inflammatory cells and facilitation of cell growth and angiostatic effects. In addition, CXCL10 has been shown to be a significant biomarker of disease severity, and it can be used as a prognostic indicator for a variety of renal diseases, such as renal allograft dysfunction and lupus nephritis. In this review, we summarize the structures and biological functions of CXCL10 and CXCR3, focusing on the important role of CXCL10 in the pathogenesis of kidney disease, and provide a theoretical basis for CXCL10 as a potential biomarker and therapeutic target in human kidney disease.
Collapse
Affiliation(s)
- Jie Gao
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Fuxing Road 28, Beijing 100853, China
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jingwu Road 324, Jinan 250000, China
| | - Lingling Wu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Fuxing Road 28, Beijing 100853, China
| | - Siyang Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Fuxing Road 28, Beijing 100853, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Fuxing Road 28, Beijing 100853, China
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW To provide an update of the literature on the use of new biomarkers of rejection in kidney transplant recipients. RECENT FINDINGS The kidney allograft biopsy is currently considered the gold standard for the diagnosis of rejection. However, the kidney biopsy is invasive and could be indeterminate. A significant progress has been made in discovery of new biomarkers of rejection, and some of them have been introduced recently for potential use in clinical practice including measurement of serum donor-derived cell free DNA, allo-specific CD154 + T-cytotoxic memory cells, and gene-expression 'signatures'. The literature supports that these biomarkers provide fair and reliable diagnostic accuracy and may be helpful in clinical decision-making when the kidney biopsy is contraindicated or is inconclusive. SUMMARY The new biomarkers provide a promising approach to detect acute rejections in a noninvasive way.
Collapse
|
37
|
Popik W, Khatua AK, Fabre NF, Hildreth JEK, Alcendor DJ. BK Virus Replication in the Glomerular Vascular Unit: Implications for BK Virus Associated Nephropathy. Viruses 2019; 11:E583. [PMID: 31252545 PMCID: PMC6669441 DOI: 10.3390/v11070583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/10/2019] [Accepted: 06/25/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND BK polyomavirus (BKV) reactivates from latency after immunosuppression in renal transplant patients, resulting in BKV-associated nephropathy (BKVAN). BKVAN has emerged as an important cause of graft dysfunction and graft loss among transplant patients. BKV infection in kidney transplant patients has increased over recent decades which correlates with the use of more potent immunosuppressive therapies. BKV infection of the Glomerular Vascular Unit (GVU) consisting of podocytes, mesangial cells, and glomerular endothelial cells could lead to glomerular inflammation and contribute to renal fibrosis. The effects of BKV on GVU infectivity have not been reported. METHODS We infected GVU cells with the Dunlop strain of BKV. Viral infectivity was analyzed by microscopy, immunofluorescence, Western blot analysis, and quantitative RT-PCR (qRT-PCR). The expression of specific proinflammatory cytokines induced by BKV was analyzed by qRT-PCR. RESULTS BKV infection of podocytes, mesangial cells, and glomerular endothelial cells was confirmed by qRT-PCR and positive staining with antibodies to the BKV VP1 major capsid protein, or the SV40 Large T-Antigen. The increased transcriptional expression of interferon gamma-induced protein 10 (CXCL10/IP-10) and interferon beta (IFNβ) was detected in podocytes and mesangial cells at 96 h post-infection. CONCLUSIONS All cellular components of the GVU are permissive for BKV replication. Cytopathic effects induced by BKV in podocytes and glomerular endothelial cells and the expression of CXCL10 and IFNβ genes by podocytes and mesangial cells may together contribute to glomerular inflammation and cytopathology in BKVAN.
Collapse
Affiliation(s)
- Waldemar Popik
- Department of Internal Medicine, Meharry Medical College, Nashville, TN 37208-3599, USA
| | - Atanu K Khatua
- Department of Microbiology, Immunology and Physiology, Center for AIDS Health Disparities Research, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, TN 37208-3599, USA
| | - Noyna F Fabre
- Department of Microbiology, Immunology and Physiology, Center for AIDS Health Disparities Research, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, TN 37208-3599, USA
| | - James E K Hildreth
- Department of Internal Medicine, Meharry Medical College, Nashville, TN 37208-3599, USA
| | - Donald J Alcendor
- Department of Microbiology, Immunology and Physiology, Center for AIDS Health Disparities Research, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, TN 37208-3599, USA.
- Department of Obstetrics and Gynecology, Meharry Medical College, School of Medicine, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, TN 37208-3599, USA.
| |
Collapse
|
38
|
Switching renal transplant recipients to belatacept therapy: results of a real-life gradual conversion protocol. Transpl Immunol 2019; 56:101207. [PMID: 31071442 DOI: 10.1016/j.trim.2019.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/18/2019] [Accepted: 04/26/2019] [Indexed: 01/30/2023]
Abstract
Conversion to belatacept immunosuppression is a therapeutic option for renal-transplant recipients with calcineurin inhibitors (CNI) toxicity, but it associates with high risk of acute rejection. Gradual conversion and serial immune monitoring with urinary chemokine CXCL9 may allow increasing safety of this maneuver. We converted kidney transplant recipients with signs of toxicity to CNI or other immunosuppressive drugs to belatacept over a 2-month period. We monitored renal function, metabolic profile, and circulating lymphocyte subsets. We also quantified urinary CXCL9 over a 12-month follow-up period. Between September 2016 and March 2017, 35 patients were successfully switched to belatacept immunosuppression at 3.3 (1.3-7.2) years after transplant. Two patients had a reversible rise in serum creatinine, associated with acute rejection in one case. Urinary CXCL9 increased before serum creatinine. After conversion, blood pressure and HbA1c significantly declined while eGFR and proteinuria remained stable. The percentage of circulating effector T cells and memory B cells significantly declined. Conversion from CNI to belatacept, in this setting, was feasible and safe, provided it was performed over a 2-month time-period. Monitoring urinary CXCL9 may further increase safety through earlier identification of patients at risk for acute rejection. The procedure associates with improved blood pressure, metabolic profile, and reduced circulating effector T and B cells.
Collapse
|
39
|
Watson D, Yang JYC, Sarwal RD, Sigdel TK, Liberto JM, Damm I, Louie V, Sigdel S, Livingstone D, Soh K, Chakraborty A, Liang M, Lin PC, Sarwal MM. A Novel Multi-Biomarker Assay for Non-Invasive Quantitative Monitoring of Kidney Injury. J Clin Med 2019; 8:E499. [PMID: 31013714 PMCID: PMC6517941 DOI: 10.3390/jcm8040499] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 12/11/2022] Open
Abstract
The current standard of care measures for kidney function, proteinuria, and serum creatinine (SCr) are poor predictors of early-stage kidney disease. Measures that can detect chronic kidney disease in its earlier stages are needed to enable therapeutic intervention and reduce adverse outcomes of chronic kidney disease. We have developed the Kidney Injury Test (KIT) and a novel KIT Score based on the composite measurement and validation of multiple biomarkers across a unique set of 397 urine samples. The test is performed on urine samples that require no processing at the site of collection and without target sequencing or amplification. We sought to verify that the pre-defined KIT test, KIT Score, and clinical thresholds correlate with established chronic kidney disease (CKD) and may provide predictive information on early kidney injury status above and beyond proteinuria and renal function measurements alone. Statistical analyses across six DNA, protein, and metabolite markers were performed on a subset of residual spot urine samples with CKD that met assay performance quality controls from patients attending the clinical labs at the University of California, San Francisco (UCSF) as part of an ongoing IRB-approved prospective study. Inclusion criteria included selection of patients with confirmed CKD and normal healthy controls; exclusion criteria included incomplete or missing information for sample classification, logistical delays in transport/processing of urine samples or low sample volume, and acute kidney injury. Multivariate logistic regression of kidney injury status and likelihood ratio statistics were used to assess the contribution of the KIT Score for prediction of kidney injury status and stage of CKD as well as assess the potential contribution of the KIT Score for detection of early-stage CKD above and beyond traditional measures of renal function. Urine samples were processed by a proprietary immunoprobe for measuring cell-free DNA (cfDNA), methylated cfDNA, clusterin, CXCL10, total protein, and creatinine. The KIT Score and stratified KIT Score Risk Group (high versus low) had a sensitivity and specificity for detection of kidney injury status (healthy or CKD) of 97.3% (95% CI: 94.6-99.3%) and 94.1% (95% CI: 82.3-100%). In addition, in patients with normal renal function (estimated glomerular filtration rate (eGFR) ≥ 90), the KIT Score clearly identifies those with predisposing risk factors for CKD, which could not be detected by eGFR or proteinuria (p < 0.001). The KIT Score uncovers a burden of kidney injury that may yet be incompletely recognized, opening the door for earlier detection, intervention and preservation of renal function.
Collapse
Affiliation(s)
- Drew Watson
- KIT Bio, 665 3rd Street, San Francisco, CA 94107, USA.
| | - Joshua Y C Yang
- KIT Bio, 665 3rd Street, San Francisco, CA 94107, USA.
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
- Masters in Translational Medicine Program, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Reuben D Sarwal
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Tara K Sigdel
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Juliane M Liberto
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Izabella Damm
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Victoria Louie
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Shristi Sigdel
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Devon Livingstone
- Masters in Translational Medicine Program, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Katherine Soh
- Masters in Translational Medicine Program, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Arjun Chakraborty
- Masters in Translational Medicine Program, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Michael Liang
- Masters in Translational Medicine Program, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Pei-Chen Lin
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
- Masters in Translational Medicine Program, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Minnie M Sarwal
- KIT Bio, 665 3rd Street, San Francisco, CA 94107, USA.
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
- Masters in Translational Medicine Program, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
40
|
Ho J, Sharma A, Kroeker K, Carroll R, De Serres S, Gibson IW, Hirt-Minkowski P, Jevnikar A, Kim SJ, Knoll G, Rush DN, Wiebe C, Nickerson P. Multicentre randomised controlled trial protocol of urine CXCL10 monitoring strategy in kidney transplant recipients. BMJ Open 2019; 9:e024908. [PMID: 30975673 PMCID: PMC6500325 DOI: 10.1136/bmjopen-2018-024908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Subclinical inflammation is an important predictor of death-censored graft loss, and its treatment has been shown to improve graft outcomes. Urine CXCL10 outperforms standard post-transplant surveillance in observational studies, by detecting subclinical rejection and early clinical rejection before graft functional decline in kidney transplant recipients. METHODS AND ANALYSIS This is a phase ii/iii multicentre, international randomised controlled parallel group trial to determine if the early treatment of rejection, as detected by urine CXCL10, will improve kidney allograft outcomes. Incident adult kidney transplant patients (n~420) will be enrolled to undergo routine urine CXCL10 monitoring postkidney transplant. Patients at high risk of rejection, defined as confirmed elevated urine CXCL10 level, will be randomised 1:1 stratified by centre (n=250). The intervention arm (n=125) will undergo a study biopsy to check for subclinical rejection and biopsy-proven rejection will be treated per protocol. The control arm (n=125) will undergo routine post-transplant monitoring. The primary outcome at 12 months is a composite of death-censored graft loss, clinical biopsy-proven acute rejection, de novo donor-specific antibody, inflammation in areas of interstitial fibrosis and tubular atrophy (Banff i-IFTA, chronic active T-cell mediated rejection) and subclinical tubulitis on 12-month surveillance biopsy. The secondary outcomes include decline of graft function, microvascular inflammation at 12 months, development of IFTA at 12 months, days from transplantation to clinical biopsy-proven rejection, albuminuria, EuroQol five-dimension five-level instrument, cost-effectiveness analysis of the urine CXCL10 monitoring strategy and the urine CXCL10 kinetics in response to rejection therapy. ETHICS AND DISSEMINATION The study has been approved by the University of Manitoba Health Research Ethics Board (HS20861, B2017:076) and the local research ethics boards of participating centres. Recruitment commenced in March 2018 and results are expected to be published in 2023. De-identified data may be shared with other researchers according to international guidelines (International Committee of Medical Journal Editors [ICJME]). TRIAL REGISTRATION NUMBER NCT03206801; Pre-results.
Collapse
Affiliation(s)
- Julie Ho
- Internal Medicine, University of Manitoba College of Medicine, Winnipeg, Manitoba, Canada
- Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Atul Sharma
- Data Science, George and Fay Yee Centre for Healthcare Innovation, Winnipeg, Manitoba, Canada
| | - Kristine Kroeker
- Data Science, George and Fay Yee Centre for Healthcare Innovation, Winnipeg, Manitoba, Canada
| | - Robert Carroll
- Transplant Nephrology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Sacha De Serres
- Internal Medicine & Nephrology, Universite Laval, Québec, Québec, Canada
| | - Ian W Gibson
- Pathology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Anthony Jevnikar
- Internal Medicine & Nephrology, Western University, London, Ontario, Canada
| | - S Joseph Kim
- Internal Medicine & Nephrology, University of Toronto, Toronto, Ontario, Canada
| | - Greg Knoll
- Internal Medicine & Nephrology, University of Ottawa, Ottawa, Ontario, Canada
| | - David N Rush
- Internal Medicine, University of Manitoba College of Medicine, Winnipeg, Manitoba, Canada
| | - Chris Wiebe
- Internal Medicine, University of Manitoba College of Medicine, Winnipeg, Manitoba, Canada
| | - Peter Nickerson
- Internal Medicine, University of Manitoba College of Medicine, Winnipeg, Manitoba, Canada
| |
Collapse
|
41
|
Abstract
After more than 6 decades of clinical practice, the transplant community continues to research noninvasive biomarkers of solid organ injury to help improve patient care. In this review, we discuss the clinical usefulness of selective biomarkers and how they are processed at the laboratory. In addition, we organize these biomarkers based on specific aims and introduce innovative markers currently under investigation.
Collapse
Affiliation(s)
- John Choi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Albana Bano
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Jamil Azzi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Yang JYC, Verleden SE, Zarinsefat A, Vanaudenaerde BM, Vos R, Verleden GM, Sarwal RD, Sigdel TK, Liberto JM, Damm I, Watson D, Sarwal MM. Cell-Free DNA and CXCL10 Derived from Bronchoalveolar Lavage Predict Lung Transplant Survival. J Clin Med 2019; 8:jcm8020241. [PMID: 30781765 PMCID: PMC6406976 DOI: 10.3390/jcm8020241] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 12/22/2022] Open
Abstract
Standard methods for detecting chronic lung allograft dysfunction (CLAD) and rejection have poor sensitivity and specificity and have conventionally required bronchoscopies and biopsies. Plasma cell-free DNA (cfDNA) has been shown to be increased in various types of allograft injury in transplant recipients and CXCL10 has been reported to be increased in the lung tissue of patients undergoing CLAD. This study used a novel cfDNA and CXCL10 assay to evaluate the noninvasive assessment of CLAD phenotype and prediction of survival from bronchoalveolar lavage (BAL) fluid. A total of 60 BAL samples (20 with bronchiolitis obliterans (BOS), 20 with restrictive allograft syndrome (RAS), and 20 with stable allografts (STA)) were collected from 60 unique lung transplant patients; cfDNA and CXCL10 were measured by the ELISA-based KIT assay. Median cfDNA was significantly higher in BOS patients (6739 genomic equivalents (GE)/mL) versus STA (2920 GE/mL) and RAS (4174 GE/mL) (p < 0.01 all comparisons). Likelihood ratio tests revealed a significant association of overall survival with cfDNA (p = 0.0083), CXCL10 (p = 0.0146), and the interaction of cfDNA and CXCL10 (p = 0.023) based on multivariate Cox proportional hazards regression. Dichotomizing patients based on the median cfDNA level controlled for the mean level of CXCL10 revealed an over two-fold longer median overall survival time in patients with low levels of cfDNA. The KIT assay could predict allograft survival with superior performance compared with traditional biomarkers. These data support the pursuit of larger prospective studies to evaluate the predictive performance of cfDNA and CXCL10 prior to lung allograft failure.
Collapse
Affiliation(s)
- Joshua Y C Yang
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
- KIT Bio, 2000 University Avenue, Palo Alto, CA 94303, USA.
| | - Stijn E Verleden
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, 3000 Leuven, Belgium.
| | - Arya Zarinsefat
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Bart M Vanaudenaerde
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, 3000 Leuven, Belgium.
| | - Robin Vos
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, 3000 Leuven, Belgium.
| | - Geert M Verleden
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, 3000 Leuven, Belgium.
| | - Reuben D Sarwal
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Tara K Sigdel
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Juliane M Liberto
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Izabella Damm
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Drew Watson
- KIT Bio, 2000 University Avenue, Palo Alto, CA 94303, USA.
| | - Minnie M Sarwal
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
- KIT Bio, 2000 University Avenue, Palo Alto, CA 94303, USA.
| |
Collapse
|
43
|
Sigdel TK, Yang JYC, Bestard O, Schroeder A, Hsieh SC, Liberto JM, Damm I, Geraedts ACM, Sarwal MM. A urinary Common Rejection Module (uCRM) score for non-invasive kidney transplant monitoring. PLoS One 2019; 14:e0220052. [PMID: 31365568 PMCID: PMC6668802 DOI: 10.1371/journal.pone.0220052] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
A Common Rejection Module (CRM) consisting of 11 genes expressed in allograft biopsies was previously reported to serve as a biomarker for acute rejection (AR), correlate with the extent of graft injury, and predict future allograft damage. We investigated the use of this gene panel on the urine cell pellet of kidney transplant patients. Urinary cell sediments collected from patients with biopsy-confirmed acute rejection, borderline AR (bAR), BK virus nephropathy (BKVN), and stable kidney grafts with normal protocol biopsies (STA) were analyzed for expression of these 11 genes using quantitative polymerase chain reaction (qPCR). We assessed these 11 CRM genes for their abundance, autocorrelation, and individual expression levels. Expression of 10/11 genes were elevated in AR when compared to STA. Psmb9 and Cxcl10could classify AR versus STA as accurately as the 11-gene model (sensitivity = 93.6%, specificity = 97.6%). A uCRM score, based on the geometric mean of the expression levels, could distinguish AR from STA with high accuracy (AUC = 0.9886) and correlated specifically with histologic measures of tubulitis and interstitial inflammation rather than tubular atrophy, glomerulosclerosis, intimal proliferation, tubular vacuolization or acute glomerulitis. This urine gene expression-based score may enable the non-invasive and quantitative monitoring of AR.
Collapse
Affiliation(s)
- Tara K. Sigdel
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Joshua Y. C. Yang
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Oriol Bestard
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
- Kidney Transplant Unit, Bellvitge University Hospital, UB, Barcelona, Spain
| | - Andrew Schroeder
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Szu-Chuan Hsieh
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Juliane M. Liberto
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Izabella Damm
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Anna C. M. Geraedts
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Minnie M. Sarwal
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Faddoul G, Nadkarni GN, Bridges ND, Goebel J, Hricik DE, Formica R, Menon MC, Morrison Y, Murphy B, Newell K, Nickerson P, Poggio ED, Rush D, Heeger PS. Analysis of Biomarkers Within the Initial 2 Years Posttransplant and 5-Year Kidney Transplant Outcomes: Results From Clinical Trials in Organ Transplantation-17. Transplantation 2018; 102:673-680. [PMID: 29189482 DOI: 10.1097/tp.0000000000002026] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND An early posttransplant biomarker/surrogate marker for kidney allograft loss has the potential to guide targeted interventions. Previously published findings, including results from the Clinical Trials in Organ Transplantation (CTOT)-01 study, showed that elevated urinary chemokine CXCL9 levels and elevated frequencies of donor-reactive interferon gamma (IFNγ)-producing T cells by enzyme-linked immunosorbent spot (ELISPOT) assay associated with acute cellular rejection within the first year and with lower 1-year posttransplant estimated glomerular filtration rate (eGFR). How well these biomarkers correlate with late outcomes, including graft loss, is unclear. METHODS In CTOT-17, we obtained 5-year outcomes in the CTOT-01 cohort and correlated them with (a) biomarker results and (b) changes in eGFR (Chronic Kidney Disease Epidemiology Collaboration formula) over the initial 2 years posttransplant using univariable analysis and multivariable logistic regression. RESULTS Graft loss occurred in 14 (7.6%) of 184 subjects 2 to 5 years posttransplant. Neither IFNγ ELISPOTs nor urinary CXCL9 were informative. In contrast, a 40% or greater decline in eGFR from 6 months to 2 years posttransplant independently correlated with 13-fold odds of 5-year graft loss (adjusted odds ratio, 13.1; 95% confidence interval, 3.0-56.6), a result that was validated in the independent Genomics of Chronic Allograft Rejection cohort (n = 165; adjusted odds ratio, 11.2). CONCLUSIONS We conclude that although pretransplant and early posttransplant ELISPOT and chemokine measurements associate with outcomes within 2 years posttransplant, changes in eGFR between 3 or 6 months and 24 months are better surrogates for 5-year outcomes, including graft loss.
Collapse
Affiliation(s)
- Geovani Faddoul
- Department of Medicine, Translational Transplant Research Center, Recanati Miller Transplant Institute, Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY
| | - Girish N Nadkarni
- Department of Medicine, Translational Transplant Research Center, Recanati Miller Transplant Institute, Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nancy D Bridges
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jens Goebel
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Donald E Hricik
- Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH
| | - Richard Formica
- Department of Medicine, Yale University School of Medicine, New Haven, CT
| | - Madhav C Menon
- Department of Medicine, Translational Transplant Research Center, Recanati Miller Transplant Institute, Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yvonne Morrison
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Barbara Murphy
- Department of Medicine, Translational Transplant Research Center, Recanati Miller Transplant Institute, Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kenneth Newell
- Department of Surgery, Emory University Medical Center, Atlanta, GA
| | - Peter Nickerson
- Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Emilio D Poggio
- Department of Nephrology and Hypertension, Cleveland Clinic, Cleveland, OH
| | - David Rush
- Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter S Heeger
- Department of Medicine, Translational Transplant Research Center, Recanati Miller Transplant Institute, Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY
| | | |
Collapse
|
45
|
Urinary CXCL10 Chemokine Is Associated With Alloimmune and Virus Compartment-Specific Renal Allograft Inflammation. Transplantation 2018; 102:521-529. [PMID: 28902772 DOI: 10.1097/tp.0000000000001931] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Urinary CXC chemokine ligand 10 (CXCL10) is a promising biomarker for subclinical tubulointerstitial inflammation, but limited data exist regarding its correlation with (micro)vascular inflammation. Furthermore, no study has evaluated whether concomitant serum CXCL10 improves the discrimination for (micro)vascular inflammation. METHODS We investigated whether serum/urinary CXCL10 reflect subclinical inflammation within different renal compartments. Patients (n = 107) with 107 surveillance biopsies were classified as: normal histology (n = 47), normal histology with polyomavirus BK (BKV) or cytomegalovirus (CMV) viremia (n = 17), moderate-severe tubulointerstitial inflammation (tubulitis ≥2, n = 18), pure microvascular inflammation (n = 15), and isolated v lesions (n = 10). Serum and urinary CXCL10 Enzyme-linked Immunosorbent Assay was performed. An independent validation set was evaluated for urine CXCL10: normal histology (n = 14), normal histology with BKV or CMV viremia (n = 19), tubulitis ≥2 (n = 15), pure microvascular inflammation (n = 41), and isolated v lesions (n = 14). RESULTS Elevated urinary CXCL10 reflected inflammation within the tubulointerstitial (urinary CXCL10/creatinine, 1.23 ng/mmol vs 0.46 ng/mmol; P = 0.02; area under the curve, 0.69; P = 0.001) and microvascular compartments (urinary CXCL10/creatinine, 1.72 ng/mmol vs 0.46 ng/mmol; P = 0.03; area under the curve, 0.69; P = 0.02) compared to normal histology. Intriguingly, urinary CXCL10 was predominantly elevated with peritubular capillaritis, but not glomerulitis (P = 0.04). Furthermore, urinary CXCL10 corresponded with BKV, but not CMV viremia (P = 0.02). These urine CXCL10 findings were confirmed in the independent validation set. Finally, serum CXCL10 was elevated with BKV and CMV viremia but was not associated with microvascular or vascular inflammation (P ≥ 0.19). CONCLUSIONS Urinary CXCL10 reflects subclinical inflammation within the tubulointerstitial and peritubular capillary spaces, but not the vascular/systemic compartments; this was consistent with BKV (tubulointerstitial) and CMV viremia (systemic). Serum CXCL10 was not a useful marker for (micro)vascular inflammation.
Collapse
|
46
|
Mockler C, Sharma A, Gibson IW, Gao A, Wong A, Ho J, Blydt-Hansen TD. The prognostic value of urinary chemokines at 6 months after pediatric kidney transplantation. Pediatr Transplant 2018; 22:e13205. [PMID: 29733487 DOI: 10.1111/petr.13205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2018] [Indexed: 11/29/2022]
Abstract
Pediatric kidney transplantation is lifesaving, but long-term allograft survival is still limited by injury processes mediated by alloimmune inflammation that may otherwise be clinically silent. Chemokines associated with alloimmune inflammation may offer prognostic value early post-transplant by identifying patients at increased risk of poor graft outcomes. We conducted a single-center prospective cohort study of consecutive pediatric kidney transplant recipients (<19 years). Urinary CCL2 and CXCL10 measured at 6 months post-transplant were evaluated for association with long-term eGFR decline, allograft survival, and concomitant acute cellular rejection histology. Thirty-eight patients with a mean age of 12.4 ± 4.6 years were evaluated. Urinary CCL2 was associated with eGFR decline until 6 months (ρ -0.43; P < .01), but not at later time points. Urinary CXCL10 was associated with eGFR decline at 36 months (ρ -0.49; P < .01), risk of 50% eGFR decline (HR = 1.04; P = .02), risk of allograft loss (HR = 1.05; P = .01), borderline rejection or rejection episodes 6-12 months post-transplant (r .41; P = .02), and Banff i + t score (r .47, P < .01). CCL2 and CXCL10 were also correlated with one another (ρ 0.54; P < .01). CCL2 and CXCL10 provide differing, but complementary, information that may be useful for early non-invasive prognostic testing in pediatric kidney transplant recipients.
Collapse
Affiliation(s)
- Claire Mockler
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Atul Sharma
- Department of Pediatrics and Child Health, Children's Hospital at Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Ian W Gibson
- Department of Pathology, Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Ang Gao
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Alexander Wong
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Julie Ho
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada.,Section of Nephrology, Department of Internal Medicine, Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Tom D Blydt-Hansen
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
47
|
Mincham CM, Gibson IW, Sharma A, Wiebe C, Mandal R, Rush D, Nickerson P, Ho J, Wishart DS, Blydt-Hansen TD. Evolution of renal function and urinary biomarker indicators of inflammation on serial kidney biopsies in pediatric kidney transplant recipients with and without rejection. Pediatr Transplant 2018; 22:e13202. [PMID: 29696778 DOI: 10.1111/petr.13202] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/26/2018] [Indexed: 01/06/2023]
Abstract
Urinary CXCL10 and metabolites are biomarkers independently associated with TCMR. We sought to test whether these biomarkers fluctuate in association with histological severity of TCMR over short time frames. Forty-nine pairs of renal biopsies obtained 1-3 months apart from 40 pediatric renal transplant recipients were each scored for TCMR acuity score (i + t; Banff criteria). Urinary CXCL10:Cr and TCMR MDS were obtained at each biopsy and were tested for association with changes between biopsies in acuity, estimated GFR (ΔeGFR), and 12-month ΔeGFR. Sequential biopsies were obtained 1.8 ± 0.8 months apart. Biopsy 1 was usually obtained under protocol (75%), and 62% percent had evidence of TCMR. Using each biopsy pair for comparison, ΔeGFR did not predict change in acuity. By contrast, change in acuity was significantly correlated with change in urinary CXCL10:Cr (ρ 0.45, P = .003) and MDS (ρ 0.29, P = .04) between biopsies. The 12-month ΔeGFR was not predicted by TCMR acuity or CXCL10:Cr at Biopsy 2; however, an inverse correlation was seen with urinary MDS (ρ -0.35; P = .02). Changes in eGFR correlate poorly with evolving TCMR acuity on histology. Urinary biomarkers may be superior for non-invasive monitoring of rejection, including histological response to therapy, and may be prognostic for medium-term function.
Collapse
Affiliation(s)
- Christine M Mincham
- Department of Pediatrics, University of British Columbia, BC Children's Hospital, Vancouver, BC, Canada
| | - Ian W Gibson
- Department of Pathology, University of Manitoba, Health Sciences Center, Winnipeg, MB, Canada
| | - Atul Sharma
- Department of Pediatrics and Child Health, University of Manitoba, Children's Hospital at Health Sciences Center, Winnipeg, MB, Canada
| | - Chris Wiebe
- Department of Internal Medicine, Section of Nephrology, University of Manitoba, Health Sciences Center, Winnipeg, MB, Canada
| | - Rupasri Mandal
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - David Rush
- Department of Internal Medicine, Section of Nephrology, University of Manitoba, Health Sciences Center, Winnipeg, MB, Canada
| | - Peter Nickerson
- Department of Internal Medicine, Section of Nephrology, University of Manitoba, Health Sciences Center, Winnipeg, MB, Canada
| | - Julie Ho
- Department of Internal Medicine, Section of Nephrology, University of Manitoba, Health Sciences Center, Winnipeg, MB, Canada.,Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - David S Wishart
- The Metabolomics Innovation Center, University of Alberta, Edmonton, AB, Canada
| | - Tom D Blydt-Hansen
- Department of Pediatrics, University of British Columbia, BC Children's Hospital, Vancouver, BC, Canada
| |
Collapse
|
48
|
Jamshaid F, Froghi S, Di Cocco P, Dor FJ. Novel non-invasive biomarkers diagnostic of acute rejection in renal transplant recipients: A systematic review. Int J Clin Pract 2018; 72:e13220. [PMID: 30011113 DOI: 10.1111/ijcp.13220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/07/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Acute rejection is a significant complication detrimental to kidney transplant function. Current accepted means of diagnosis is percutaneous renal biopsy, a costly and invasive procedure. There is an urgent need to detect and validate non-invasive biomarkers capable of replacing the biopsy. DESIGN, SETTING, PARTICIPANTS AND MEASUREMENTS Comprehensive literature searches of Medline, EMBASE and Cochrane Central Register of Controlled Trials databases were performed. Eligible studies were included as per inclusion criteria and assessed for quality using the GRADE quality of evidence tool. Outcomes evaluated included biomarker diagnostic performance, number of patients/samples, mean age and gender ratio, immunosuppression regime, in addition to clinical applications of the biomarker(s) tested. PRISMA guidelines were followed. Where possible, statistical analysis of comparative performance data was performed. RESULTS 23 studies were included in this review, including 19 adult, 3 paediatric and 1 mixed studies. A total of 2858 participants and 50 candidate non-invasive tests were identified. Sensitivity, specificity and area under the curve performance values ranged 36%-100%, 30%-100% and 0.55-0.98, respectively. CONCLUSIONS Although larger, more robust multi-centre validation studies are needed before non-invasive biomarkers can replace the biopsy, numerous candidate tests have demonstrated significant promise for various facets of postoperative management. Suggested uses include: ruling out patients with a low risk of acute rejection to avoid the need for biopsy, non-invasive testing where the biopsy is contraindicated and a prompt diagnosis is needed, and integration into a serial blood monitoring protocol in conjunction with serum creatinine.
Collapse
Affiliation(s)
- Faisal Jamshaid
- MRC Centre for Transplantation, Guy's Campus, Kings College London School of Medicine, London, UK
| | - Saied Froghi
- MRC Centre for Transplantation, Guy's Campus, Kings College London School of Medicine, London, UK
- Imperial College London, Imperial College Renal and Transplant Centre, Hammersmith Hospital, London, UK
| | - Pierpaolo Di Cocco
- Imperial College London, Imperial College Renal and Transplant Centre, Hammersmith Hospital, London, UK
| | - Frank Jmf Dor
- Imperial College London, Imperial College Renal and Transplant Centre, Hammersmith Hospital, London, UK
| |
Collapse
|
49
|
Wiebe C, Ho J, Gibson IW, Rush DN, Nickerson PW. Carpe diem-Time to transition from empiric to precision medicine in kidney transplantation. Am J Transplant 2018; 18:1615-1625. [PMID: 29603637 DOI: 10.1111/ajt.14746] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/13/2018] [Accepted: 03/20/2018] [Indexed: 02/06/2023]
Abstract
The current immunosuppressive pipeline in kidney transplantation is limited. In part, this is due to excellent one-year allograft outcomes with the current standard of care (ie, calcineurin inhibitor in combination with anti-proliferative agents). Despite this success, a recent Federal government-sponsored systematic review has identified gaps/limits in the evidence of what constitutes optimal calcineurin inhibitor use in the short- and long-term. Moreover, recent empiric approaches to minimize/withdraw/convert from calcineurin inhibitors have come with the price of increased alloreactivity. As the time horizon to replace calcineurin inhibitors on a global scale may be distant, the transplant community should seize the opportunity to develop ways to personalize calcineurin inhibitor immunosuppression to the individual-transitioning from empiricism to precision. The authors argue in this viewpoint that the path to precision will require measures capable of detecting subclinical alloreactivity to define adequacy of immunosuppression, as well as novel genetic analytics to accurately define alloimmune risk at the individual level-both approaches will require validation in clinical trials.
Collapse
Affiliation(s)
- Chris Wiebe
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Diagnostic Services of Manitoba, Winnipeg, MB, Canada
| | - Julie Ho
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Ian W Gibson
- Diagnostic Services of Manitoba, Winnipeg, MB, Canada.,Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - David N Rush
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Peter W Nickerson
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Diagnostic Services of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Despite modern immunosuppression, renal allograft rejection remains a major contributor to graft loss. Novel biomarkers may help improve posttransplant outcomes through the early detection and treatment of rejection. Our objective is to provide an overview of proteomics, review recent discovery-based rejection studies, and explore innovative approaches in biomarker development. RECENT FINDINGS Urine MMP7 was identified as a biomarker of subclinical and clinical rejection using two-dimensional liquid chromatography tandem-mass spectrometry (LC-MS/MS) and improved the overall diagnostic discrimination of urine CXCL10 : Cr alone for renal allograft inflammation. A novel peptide signature to classify stable allografts from acute rejection, chronic allograft injury, and polyoma virus (BKV) nephropathy was identified using isobaric tag for relative and absolute quantitation (TRAQ) and label-free MS, with independent validation by selected reaction monitoring mass spectrometry (SRM-MS). Finally, an in-depth exploration of peripheral blood mononuclear cells identified differential proteoform expression in healthy transplants versus rejection. SUMMARY There is still much in the human proteome that remains to be explored, and further integration of renal, urinary, and exosomal data may offer deeper insight into the pathophysiology of rejection. Functional proteomics may be more biologically relevant than protein/peptide quantity alone, such as assessment of proteoforms or activity-based protein profiling. Discovery-based studies have identified potential biomarker candidates, but external validation studies are required.
Collapse
|