1
|
Debuisson F, Ucakar B, Vanvarenberg K, Delongie KA, Haufroid V, Mwema A, des Rieux A. Nanomedicine-enhanced SCAP hybrid spheroids: A novel approach for improved stem cell survival. Int J Pharm 2025; 675:125503. [PMID: 40139449 DOI: 10.1016/j.ijpharm.2025.125503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
In regenerative medicine, the therapeutic potential of mesenchymal stem cells (MSC), such as stem cells from human apical papilla (SCAP), is well-documented and largely attributed to their secretome. However, their poor survival post-transplantation limits their efficacy. This study hypothesized that combining SCAP spheroids with nanomedicines loaded with NecroX-5 (an anti-necrotic drug) and rapamycin (an immunosuppressive agent) would enhance SCAP survival in vivo. The approach aimed to reduce oxidative stress-related cell death and suppress immune reactions towards xeno-/allogenic cells. Two types of nanocarriers, polymeric nanoparticles (NP) and lipid nanocapsules (LNC), were compared to encapsulate NecroX-5 and rapamycin. A magnetic-dependent method was employed to associate SCAP with nanomedicines, involving co-encapsulation of drugs and Super Paramagnetic Iron Oxide Nanoparticles (SPIONs) in the nanocarriers and cell magnetization using Nanoshuttle™. In vivo, SCAP hybrid spheroids expressing Luciferase, when injected subcutaneously into immunocompetent mice, showed increased bioluminescence signals compared to regular spheroids. These results provide proof-of-concept that magnetic-driven association of cells and nanomedicines into hybrid spheroids is feasible and suggest that delivering SCAP as hybrid spheroids can enhance their survival.
Collapse
Affiliation(s)
- Floriane Debuisson
- Advanced Drug Delivery and Biomaterials, LDRI, UCLouvain, Brussels, Belgium
| | - Bernard Ucakar
- Advanced Drug Delivery and Biomaterials, LDRI, UCLouvain, Brussels, Belgium
| | - Kevin Vanvarenberg
- Advanced Drug Delivery and Biomaterials, LDRI, UCLouvain, Brussels, Belgium
| | | | - Vincent Haufroid
- Departement of Clinical Chemistry, Cliniques universitaires Saint-Luc, Brussels, Belgium; Louvain centre for Toxicology and Applied Pharmacology, IREC, UCLouvain, Brussels, Belgium
| | - Ariane Mwema
- Advanced Drug Delivery and Biomaterials, LDRI, UCLouvain, Brussels, Belgium
| | - Anne des Rieux
- Advanced Drug Delivery and Biomaterials, LDRI, UCLouvain, Brussels, Belgium.
| |
Collapse
|
2
|
Gurel M, Zomer H, McFetridge C, Murfee WL, McFetridge PS. Physiologically-Modeled Dynamic Stimulation and Growth Factors Induce Differentiation of Mesenchymal Stem Cells to a Vascular Endothelial Cell Phenotype. Microcirculation 2025; 32:e70007. [PMID: 40120632 PMCID: PMC12012511 DOI: 10.1111/micc.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
OBJECTIVE Mesenchymal stem cells (MSCs) represent an attractive option as an endothelial cell (EC) source for regenerative medicine therapies. However, the differentiation of MSCs toward an ECs phenotype can be regulated by a complex and dynamic microenvironment, including specific growth factors as well as local mechanical cues. The objective of this work was to evaluate whether Physiologically-modeled dynamic stimulation (PMDS) characterized by continuous variability in pulse frequencies mimicking the dynamic temporal range of cardiac function would enhance MSC differentiation toward ECs compared to a constant frequency stimulation. METHODS Mesenchymal stem cells were grown in a complex growth factor cocktail versus standard culture media to initiate the endothelial differentiation process, then subsequently exposed to PMDS that vary in duration and constant flow (CF) at a fixed 10 dynes/cm2 shear stress and 1.3 Hz frequency. RESULTS Both PMDS and media type strongly influence cell differentiation and function. Cells were shown to significantly upregulate eNOS activity and displayed lower TNF-a induced leukocyte adhesion compared to cells cultured under CF, consistent with a more quiescent ECs phenotype that regulates anti-inflammatory and anti-thrombotic states. CONCLUSION These findings suggest that the dynamic microenvironment created by perfusion, in contrast to constant frequency, combined with growth factors, enhances MSCs differentiation toward a vascular endothelial-like phenotype.
Collapse
Affiliation(s)
- Mediha Gurel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
- Biotechnology Research and Application Center, Cukurova University, Adana, Turkey
- Electronic and Automation Department, Bitlis Eren University, Bitlis, Turkey
| | - Helena Zomer
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| | - Calum McFetridge
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Peter S McFetridge
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Kang M, Park HK, Kim KS, Choi D. Animal models for transplant immunology: bridging bench to bedside. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:354-376. [PMID: 39233453 PMCID: PMC11732767 DOI: 10.4285/ctr.24.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 09/06/2024]
Abstract
The progress of transplantation has been propelled forward by animal experiments. Animal models have not only provided opportunities to understand complex immune mechanisms in transplantation but also served as a platform to assess therapeutic interventions. While small animals have been instrumental in uncovering new therapeutic concepts related to immunosuppression and immune tolerance, the progression to human trials has largely been driven by studies in large animals. Recent research has begun to explore the potential of porcine organs to address the shortage of available organs. The consistent progress in transplant immunology research can be attributed to a thorough understanding of animal models. This review provides a comprehensive overview of the available animal models, detailing their modifications, strengths, and weaknesses, as well as their historical applications, to aid researchers in selecting the most suitable model for their specific research needs.
Collapse
Affiliation(s)
- Minseok Kang
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Hwon Kyum Park
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Kyeong Sik Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul, Korea
| |
Collapse
|
4
|
Rusch RM, Inagaki E, Taniguchi H, Sakakura S, Tamai R, Nonaka H, Shimizu S, Sato S, Ogawa Y, Masatoshi H, Negishi K, Okano H, Shimmura S. Adipose-derived mesenchymal stromal cells: A study on safety and efficacy in ocular inflammation. Ocul Surf 2024; 34:523-534. [PMID: 39542088 DOI: 10.1016/j.jtos.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/17/2024]
Abstract
PURPOSE This study explores the application of adipose-derived mesenchymal stromal cells (adMSCs) as a therapy for ocular inflammatory diseases utilizing a chronic GVHD model. METHODS Human adMSCs were administered via subconjunctival injection into mice with chronic ocular GVHD. Clinical scores and changes in T cell populations were analyzed. RESULTS The study showed significant improvement in corneal integrity, including epithelial damage, opacity, thickness, and structure, after subconjunctival adMSC transplantation. Additionally, adMSC transplantation increased CD45+ and Foxp3+ Tregs while decreasing CD4+ T cells, 1IL17A+ Th17 cells, and IFNγ+ Th1 cells in local cervical lymph nodes. Moreover, adMSC-conditioned media enhanced wound closure and cell migration toward the wound bed in vitro. The cells disappeared within a week suggesting that trophic factors were involved. CONCLUSION The dual benefit of adMSCs in immune-related ocular disorders underscores their potential for clinical application. This study focuses on subconjunctival delivery, effects of adMSCs and migration post-injection, with implications for optimizing cellular therapy application. The observed dual action, combining immunomodulation and tissue repair enhancement, underscores holistic approach of adMSC therapy in regenerative medicine, making it a potent treatment for diseases involving inflammation and tissue damage in the ocular surface.
Collapse
Affiliation(s)
- Robert M Rusch
- Department of Clinical Regenerative Medicine, Fujita Health University, Japan
| | - Emi Inagaki
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Hiroko Taniguchi
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Saki Sakakura
- Department of Clinical Regenerative Medicine, Fujita Health University, Japan
| | | | | | - Shota Shimizu
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Shinri Sato
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Hirayama Masatoshi
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Japan
| | - Shigeto Shimmura
- Department of Clinical Regenerative Medicine, Fujita Health University, Japan.
| |
Collapse
|
5
|
Chatzianagnosti S, Dermitzakis I, Theotokis P, Kousta E, Mastorakos G, Manthou ME. Application of Mesenchymal Stem Cells in Female Infertility Treatment: Protocols and Preliminary Results. Life (Basel) 2024; 14:1161. [PMID: 39337944 PMCID: PMC11433628 DOI: 10.3390/life14091161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Infertility is a global phenomenon that impacts people of both the male and the female sex; it is related to multiple factors affecting an individual's overall systemic health. Recently, investigators have been using mesenchymal stem cell (MSC) therapy for female-fertility-related disorders such as polycystic ovarian syndrome (PCOS), premature ovarian failure (POF), endometriosis, preeclampsia, and Asherman syndrome (AS). Studies have shown promising results, indicating that MSCs can enhance ovarian function and restore fertility for affected individuals. Due to their regenerative effects and their participation in several paracrine pathways, MSCs can improve the fertility outcome. However, their beneficial effects are dependent on the methodologies and materials used from isolation to reimplantation. In this review, we provide an overview of the protocols and methods used in applications of MSCs. Moreover, we summarize the findings of published preclinical studies on infertility treatments and discuss the multiple properties of these studies, depending on the isolation source of the MSCs used.
Collapse
Affiliation(s)
- Sofia Chatzianagnosti
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleni Kousta
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George Mastorakos
- Department of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
6
|
Wang X, He W, Huang H, Han J, Wang R, Li H, Long Y, Wang G, Han X. Recent Advances in Hydrogel Technology in Delivering Mesenchymal Stem Cell for Osteoarthritis Therapy. Biomolecules 2024; 14:858. [PMID: 39062572 PMCID: PMC11274544 DOI: 10.3390/biom14070858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/06/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Osteoarthritis (OA), a chronic joint disease affecting over 500 million individuals globally, is characterized by the destruction of articular cartilage and joint inflammation. Conventional treatments are insufficient for repairing damaged joint tissue, necessitating novel therapeutic approaches. Mesenchymal stem cells (MSCs), with their potential for differentiation and self-renewal, hold great promise as a treatment for OA. However, challenges such as MSC viability and apoptosis in the ischemic joint environment hinder their therapeutic effectiveness. Hydrogels with biocompatibility and degradability offer a three-dimensional scaffold that support cell viability and differentiation, making them ideal for MSC delivery in OA treatment. This review discusses the pathological features of OA, the properties of MSCs, the challenges associated with MSC therapy, and methods for hydrogel preparation and functionalization. Furthermore, it highlights the advantages of hydrogel-based MSC delivery systems while providing insights into future research directions and the clinical potential of this approach.
Collapse
Affiliation(s)
- Xiangjiang Wang
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Wentao He
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Hao Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Collage of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Jiali Han
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Ruren Wang
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Hongyi Li
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Ying Long
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Guiqing Wang
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Xianjing Han
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| |
Collapse
|
7
|
Rizano A, Margiana R, Supardi S, Narulita P. Exploring the future potential of mesenchymal stem/stromal cells and their derivatives to support assisted reproductive technology for female infertility applications. Hum Cell 2023; 36:1604-1619. [PMID: 37407748 DOI: 10.1007/s13577-023-00941-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023]
Abstract
Women's infertility impacts the quality of life of both patients and couples and has multifaceted dimensions that increase the number of challenges associated with female infertility and how to face them. Female reproductive disorders, such as premature ovarian failure (POF), endometriosis, Asherman syndrome (AS), polycystic ovary syndrome (PCOS), and preeclampsia, can stimulate infertility. In the last decade, translational medicine has advanced, and scientists are focusing on infertility therapy with innovative attitudes. Recent investigations have suggested that stem cell treatments could be safe and effective. Stem cell therapy has established a novel method for treating women's infertility as part of a regeneration approach. The chief properties and potential of mesenchymal stem/stromal cells (MSCs) in the future of women's infertility should be considered by researchers. Due to their high abundance, great ability to self-renew, and high differentiation capacity, as well as less ethical concerns, MSC-based therapy has been found to be an effective alternative strategy to the previous methods for treating female infertility, such as intrauterine insemination, in vitro fertilization, medicines, and surgical procedures. These types of stem cells exert their beneficial role by releasing active mediators, promoting cell homing, and contributing to immune modulation. Here we first provide an overview of MSCs and their crucial roles in both biological and immunological processes. The next large chapter covers current preclinical and clinical studies on the application of MSCs to treat various female reproductive disorders. Finally, we deliberate on the extant challenges that hinder the application of MSCs in female infertility and suggest plausible measures to alleviate these impediments.
Collapse
Affiliation(s)
- Andrew Rizano
- Department of Medical Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Ria Margiana
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Indonesia General Academic Hospital, Depok, Indonesia.
- Ciptomangunkusumo General Academic Hospital, Jakarta, Indonesia.
| | - Supardi Supardi
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Pety Narulita
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| |
Collapse
|
8
|
Schrodt MV, Behan-Bush RM, Liszewski JN, Humpal-Pash ME, Boland LK, Scroggins SM, Santillan DA, Ankrum JA. Efferocytosis of viable versus heat-inactivated MSC induces human monocytes to distinct immunosuppressive phenotypes. Stem Cell Res Ther 2023; 14:206. [PMID: 37592321 PMCID: PMC10433682 DOI: 10.1186/s13287-023-03443-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Immunomodulation by mesenchymal stromal cells (MSCs) can occur through trophic factor mechanisms, however, intravenously infused MSCs are rapidly cleared from the body yet a potent immunotherapeutic response is still observed. Recent work suggests that monocytes contribute to the clearance of MSCs via efferocytosis, the body's natural mechanism for clearing dead and dying cells in a non-inflammatory manner. This begs the questions of how variations in MSC quality affect monocyte phenotype and if viable MSCs are even needed to elicit an immunosuppressive response. METHODS Herein, we sought to dissect MSC's trophic mechanism from their efferocytic mechanisms and determine if the viability of MSCs prior to efferocytosis influences the resultant phenotype of monocytes. We cultured viable or heat-inactivated human umbilical cord MSCs with human peripheral blood mononuclear cells for 24 h and observed changes in monocyte surface marker expression and secretion profile. To isolate the effect of efferocytosis from MSC trophic factors, we used cell separation techniques to remove non-efferocytosed MSCs before challenging monocytes to suppress T-cells or respond to inflammatory stimuli. For all experiments, viable and heat-inactivated efferocytic-licensing of monocytes were compared to non-efferocytic-licensing control. RESULTS We found that monocytes efferocytose viable and heat-inactivated MSCs equally, but only viable MSC-licensed monocytes suppress activated T-cells and suppression occurred even after depletion of residual MSCs. This provides direct evidence that monocytes that efferocytose viable MSCs are immunosuppressive. Further characterization of monocytes after efferocytosis showed that uptake of viable-but not heat inactivated-MSC resulted in monocytes secreting IL-10 and producing kynurenine. When monocytes were challenged with LPS, IL-2, and IFN-γ to simulate sepsis, monocytes that had efferocytosed viable MSC had higher levels of IDO while monocytes that efferocytosed heat inactivated-MSCs produced the lowest levels of TNF-α. CONCLUSION Collectively, these studies show that the quality of MSCs efferocytosed by monocytes polarize monocytes toward distinctive immunosuppressive phenotypes and highlights the need to tailor MSC therapies for specific indications.
Collapse
Affiliation(s)
- Michael V Schrodt
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52245, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52245, USA
| | - Riley M Behan-Bush
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52245, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52245, USA
| | - Jesse N Liszewski
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52245, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52245, USA
| | - Madeleine E Humpal-Pash
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52245, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52245, USA
| | - Lauren K Boland
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52245, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52245, USA
| | - Sabrina M Scroggins
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Center for Immunology and Immune Based Diseases, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Sciences, Center for Immunology, Center for Clinical and Translational Science, University of Minnesota School of Medicine, Duluth, MN, USA
| | - Donna A Santillan
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Center for Immunology and Immune Based Diseases, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Sciences, Center for Immunology, Center for Clinical and Translational Science, University of Minnesota School of Medicine, Duluth, MN, USA
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52245, USA.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52245, USA.
- , 103 S. Capitol St., 5621 SC, Iowa City, IA, 52242, USA.
| |
Collapse
|
9
|
Tanoue Y, Tsuchiya T, Miyazaki T, Iwatake M, Watanabe H, Yukawa H, Sato K, Hatachi G, Shimoyama K, Matsumoto K, Doi R, Tomoshige K, Nagayasu T. Timing of Mesenchymal Stromal Cell Therapy Defines its Immunosuppressive Effects in a Rat Lung Transplantation Model. Cell Transplant 2023; 32:9636897231207177. [PMID: 37950374 PMCID: PMC10686017 DOI: 10.1177/09636897231207177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 09/04/2023] [Accepted: 09/27/2023] [Indexed: 11/12/2023] Open
Abstract
Cell therapy using mesenchymal stromal cells (MSCs) is being studied for its immunosuppressive effects. In organ transplantation, the amount of MSCs that accumulate in transplanted organs and other organs may differ depending on administration timing, which may impact their immunosuppressive effects. In vitro, adipose-derived mesenchymal stem cells (ADMSCs) suppress lymphocyte activation under cell-to-cell contact conditions. However, in vivo, it is controversial whether ADMSCs are more effective in accumulating in transplanted organs or in secondary lymphoid organs. Herein, we aimed to investigate whether the timing of ADMSC administration affects its immunosuppression ability in a rat lung transplantation model. In the transplantation study, rats were intramuscularly administered half the usual dose of tacrolimus (0.5 mg/kg) every 24 h after lung transplantation. ADMSCs (1 × 106) were administered via the jugular vein before (PreTx) or after (PostTx) transplantation. Cell tracking using quantum dots was performed. ADMSCs accumulated predominantly in the lung and liver; fewer ADMSCs were distributed in the grafted lung in the PreTx group than in the PostTx group. The rejection rate was remarkably low in the ADMSC-administered groups, particularly in the PostTx group. Serum tumor necrosis factor-α (TNF-α), interferon-γ, and interleukin (IL)-6 levels showed a greater tendency to decrease in the PreTx group than in the PostTx group. The proportion of regulatory T cells in the grafted lung 10 days after transplantation was higher in the PostTx group than in the PreTx group. PostTx administration suppresses rejection better than PreTx administration, possibly due to regulatory T cell induction by ADMSCs accumulated in the transplanted lungs, suggesting a mechanism different from that in heart or kidney transplantation that PreTx administration is more effective than PostTx administration. These results could help establish cell therapy using MSCs in lung transplantation.
Collapse
Affiliation(s)
- Yukinori Tanoue
- Division of Surgery Oncology, Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tomoshi Tsuchiya
- Department of Thoracic Surgery, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Takuro Miyazaki
- Division of Surgery Oncology, Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mayumi Iwatake
- Division of Surgery Oncology, Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hironosuke Watanabe
- Division of Surgery Oncology, Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroshi Yukawa
- Division of Quantum Science, Technology, and Quantum Life Science, Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Kazuhide Sato
- Division of Quantum Science, Technology, and Quantum Life Science, Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Go Hatachi
- Division of Surgery Oncology, Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Koichiro Shimoyama
- Division of Surgery Oncology, Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Keitaro Matsumoto
- Division of Surgery Oncology, Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Ryoichiro Doi
- Division of Surgery Oncology, Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Koichi Tomoshige
- Division of Surgery Oncology, Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takeshi Nagayasu
- Division of Surgery Oncology, Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
10
|
Mizuno T, Inoue M, Kubo T, Iwaki Y, Kawamoto K, Itamoto K, Kambayashi S, Igase M, Baba K, Okuda M. Improvement of anemia in five dogs with nonregenerative anemia treated with allogeneic adipose-derived stem cells. Vet Anim Sci 2022; 17:100264. [PMID: 35898238 PMCID: PMC9310121 DOI: 10.1016/j.vas.2022.100264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 10/31/2022] Open
Abstract
Five canine cases with nonregenerative anemia were included in this study. All were treated with allogeneic adipose-derived stem cells (ADSCs). All cases showed improvement of anemia by ADSCs treatment.
Background Objectives Methods Results Conclusions
Collapse
|
11
|
Nguyen TT, Pham DV, Park J, Phung CD, Nepal MR, Pandit M, Shrestha M, Son Y, Joshi M, Jeong TC, Park PH, Choi DY, Chang JH, Kim JH, Kim JR, Kim IK, Yong CS, Kim JO, Sung JH, Jiang HL, Kim HS, Yook S, Jeong JH. Engineering of hybrid spheroids of mesenchymal stem cells and drug depots for immunomodulating effect in islet xenotransplantation. SCIENCE ADVANCES 2022; 8:eabn8614. [PMID: 36001671 PMCID: PMC9401619 DOI: 10.1126/sciadv.abn8614] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Immunomodulation is an essential consideration for cell replacement procedures. Unfortunately, lifelong exposure to nonspecific systemic immunosuppression results in immunodeficiency and has toxic effects on nonimmune cells. Here, we engineered hybrid spheroids of mesenchymal stem cells (MSCs) with rapamycin-releasing poly(lactic-co-glycolic acid) microparticles (RAP-MPs) to prevent immune rejection of islet xenografts in diabetic C57BL/6 mice. Hybrid spheroids were rapidly formed by incubating cell-particle mixture in methylcellulose solution while maintaining high cell viability. RAP-MPs were uniformly distributed in hybrid spheroids and sustainably released RAP for ~3 weeks. Locoregional transplantation of hybrid spheroids containing low doses of RAP-MPs (200- to 4000-ng RAP per recipient) significantly prolonged islet survival times and promoted the generation of regional regulatory T cells. Enhanced programmed death-ligand 1 expression by MSCs was found to be responsible for the immunomodulatory performance of hybrid spheroids. Our results suggest that these hybrid spheroids offer a promising platform for the efficient use of MSCs in the transplantation field.
Collapse
Affiliation(s)
- Tiep Tien Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Duc-Vinh Pham
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Junhyeung Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Cao Dai Phung
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Mahesh Raj Nepal
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Mahesh Pandit
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Manju Shrestha
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Youlim Son
- College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea
| | - Mili Joshi
- College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea
| | - Tae Cheon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Jae-Hoon Chang
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Ju-Hyun Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Jae-Ryong Kim
- College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea
| | - Il-Kug Kim
- College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Jong-Hyuk Sung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
- Epibiotech Co. Ltd., Incheon, 21983, Republic of Korea
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Hyung-Sik Kim
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea
- Dental and Life Science Institute, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
12
|
Margiana R, Markov A, Zekiy AO, Hamza MU, Al-Dabbagh KA, Al-Zubaidi SH, Hameed NM, Ahmad I, Sivaraman R, Kzar HH, Al-Gazally ME, Mustafa YF, Siahmansouri H. Clinical application of mesenchymal stem cell in regenerative medicine: a narrative review. Stem Cell Res Ther 2022; 13:366. [PMID: 35902958 PMCID: PMC9330677 DOI: 10.1186/s13287-022-03054-0] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/18/2022] [Indexed: 12/16/2022] Open
Abstract
The multipotency property of mesenchymal stem cells (MSCs) has attained worldwide consideration because of their immense potential for immunomodulation and their therapeutic function in tissue regeneration. MSCs can migrate to tissue injury areas to contribute to immune modulation, secrete anti-inflammatory cytokines and hide themselves from the immune system. Certainly, various investigations have revealed anti-inflammatory, anti-aging, reconstruction, and wound healing potentials of MSCs in many in vitro and in vivo models. Moreover, current progresses in the field of MSCs biology have facilitated the progress of particular guidelines and quality control approaches, which eventually lead to clinical application of MSCs. In this literature, we provided a brief overview of immunoregulatory characteristics and immunosuppressive activities of MSCs. In addition, we discussed the enhancement, utilization, and therapeutic responses of MSCs in neural, liver, kidney, bone, heart diseases, and wound healing.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Alexander Markov
- Tyumen State Medical University, Tyumen, Russian Federation.,Tyumen Industrial University, Tyumen, Russian Federation
| | - Angelina O Zekiy
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | | | - Noora M Hameed
- Anesthesia Techniques, Al-Nisour University College, Baghdad, Iraq
| | - Irshad Ahmad
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - R Sivaraman
- Department of Mathematics, Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, University of Madras, Chennai, India
| | - Hamzah H Kzar
- Veterinary Medicine College, Al-Qasim Green University, Al-Qasim, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Vandermeulen M, Erpicum P, Bletard N, Poma L, Jouret F, Detry O. Effect of the Combination of Everolimus and Mesenchymal Stromal Cells on Regulatory T Cells Levels and in a Liver Transplant Rejection Model in Rats. Front Immunol 2022; 13:877953. [PMID: 35757737 PMCID: PMC9226583 DOI: 10.3389/fimmu.2022.877953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Mesenchymal stromal cells (MSCs) have particular properties that are of interest in organ transplantation, including the expansion of regulatory T cells (Tregs), a key factor in transplant tolerance induction. However, the most effective immunosuppressive drug to associate with MSCs has yet to be defined. Additionally, the impact of the association of everolimus with MSCs on Treg expansion, and on the induction of liver graft tolerance, has never been studied. The aim of this study was to evaluate the effects of MSCs in combination, or not, with everolimus on Treg expansion and in a model of rejection after liver transplantation (LT) in the rat. Methods Firstly, 24 Lewis rats were assigned to 4 groups (n=6 in each group) receiving intravenous MSCs or saline injection at day (D)9 with/without subcutaneous everolimus from D0 to D14. Analysis of circulating Tregs was performed at D0, D14 and D28. In a second set of experiment, 30 Lewis rats were randomized in 3 groups 48hours after LT with a Dark Agouti rat liver: everolimus (subcutaneous for 14 days), MSCs (intravenous injection at post-operative day 2 and 9), or both everolimus and MSCs. Rejection of the liver graft was assessed by liver tests, histology and survival. Results Individually, MSC infusion and everolimus promoted Treg expansion in rats, and everolimus had no negative impact on Treg expansion in combination with MSCs. However, in the LT model, injections of MSCs two and nine days following LT were not effective at preventing acute rejection, and the combination of MSCs with everolimus failed to show any synergistic effect when compared to everolimus alone. Conclusion Everolimus may be used in association with MSCs. However, in our model of LT in the rat, post-transplant MSC injections did not prevent acute rejection, and the association of MSCs with everolimus did not show any synergistic effect.
Collapse
Affiliation(s)
- Morgan Vandermeulen
- Department of Abdominal Surgery and Transplantation, University of Liege Hospital [Centre Hospitalier Universitaire (CHU) ULiege], Liege, Belgium.,Centre de Recherche et de Développement du Département de Chirurgie (CREDEC), Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liege (ULiege), Liege, Belgium.,Laboratory of Translational Research in Nephrology (LTRN), Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liege (ULiege), Liege, Belgium
| | - Pauline Erpicum
- Laboratory of Translational Research in Nephrology (LTRN), Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liege (ULiege), Liege, Belgium.,Division of Nephrology, University of Liege Hospital [Centre Hospitalier Universitaire (CHU) ULiege], Liege, Belgium
| | - Noella Bletard
- Department of Pathology, University of Liege Hospital [Centre Hospitalier Universitaire (CHU) ULiege], Liege, Belgium
| | - Laurence Poma
- Laboratory of Translational Research in Nephrology (LTRN), Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liege (ULiege), Liege, Belgium
| | - François Jouret
- Laboratory of Translational Research in Nephrology (LTRN), Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liege (ULiege), Liege, Belgium.,Division of Nephrology, University of Liege Hospital [Centre Hospitalier Universitaire (CHU) ULiege], Liege, Belgium
| | - Olivier Detry
- Department of Abdominal Surgery and Transplantation, University of Liege Hospital [Centre Hospitalier Universitaire (CHU) ULiege], Liege, Belgium.,Centre de Recherche et de Développement du Département de Chirurgie (CREDEC), Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liege (ULiege), Liege, Belgium
| |
Collapse
|
14
|
Yeo WS, Ng QX. Biomarkers of immune tolerance in kidney transplantation: an overview. Pediatr Nephrol 2022; 37:489-498. [PMID: 33712863 DOI: 10.1007/s00467-021-05023-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 11/30/2022]
Abstract
Kidney failure, one of the most prevalent diseases in the world and with increasing incidence, is associated with substantial morbidity and mortality. Currently available modes of kidney replacement therapy include dialysis and kidney transplantation. Though kidney transplantation is the preferred and ideal mode of kidney replacement therapy, this modality, however, is not without its risks. Kidney transplant recipients are constantly at risk of complications associated with immunosuppression, namely, opportunistic infections (e.g., Epstein-Barr virus and cytomegalovirus infections), post-transplant lymphoproliferative disorder, and complications associated with immunosuppressants (e.g., calcineurin inhibitor- and corticosteroid-associated new onset diabetes after transplantation and calcineurin inhibitor-associated nephrotoxicity). Transplantation tolerance, an acquired state in which immunocompetent recipients have developed donor-specific unresponsiveness, may be the Holy Grail in enabling optimal allograft survival and obviating the risks associated with immunosuppression in kidney transplant recipients. This review aims to discuss the biomarkers available to predict, identify, and define the transplant immune tolerant state and various tolerance induction strategies. Regrettably, pediatric patients have not been included in any tolerance studies and this should be the focus of future studies.
Collapse
Affiliation(s)
- Wee-Song Yeo
- Mount Elizabeth Hospital, 3 Mount Elizabeth, Singapore, 228510, Singapore.
| | - Qin Xiang Ng
- MOH Holdings Pte Ltd, 1 Maritime Square, Singapore, 099253, Singapore
| |
Collapse
|
15
|
Namdari H, Hosseini M, Yazdanifar M, Farajifard H, Parvizpour F, Karamigolbaghi M, Hamidieh AA, Rezaei F. Protective and pathological roles of regulatory immune cells in human cytomegalovirus infection following hematopoietic stem cell transplantation. Rev Med Virol 2021; 32:e2319. [PMID: 34914147 DOI: 10.1002/rmv.2319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/11/2022]
Abstract
Human cytomegalovirus (HCMV) is ubiquitously prevalent. Immune system in healthy individuals is capable of controlling HCMV infection; however, HCMV can be life-threatening for immunocompromised individuals, such as transplant recipients. Both innate and adaptive immune systems are critically involved in the HCMV infection. Recent studies have indicated that regulatory immune cells which play essential roles in maintaining a healthy immune environment are closely related to immune response in HCMV infection. However, the exact role of regulatory immune cells in immune regulation and homoeostasis during the battle between HCMV and host still requires further research. In this review, we highlight the protective and pathological roles of regulatory immune cells in HCMV infection following hematopoietic stem cell transplantation (HSCT).
Collapse
Affiliation(s)
- Haideh Namdari
- Iranian Tissue Bank and Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Hosseini
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Yazdanifar
- Department of Pediatrics, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Hamid Farajifard
- Iranian Tissue Bank and Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Parvizpour
- Iranian Tissue Bank and Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Karamigolbaghi
- Iranian Tissue Bank and Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Kamm JL, Riley CB, Parlane NA, Gee EK, McIlwraith CW. Immune response to allogeneic equine mesenchymal stromal cells. Stem Cell Res Ther 2021; 12:570. [PMID: 34772445 PMCID: PMC8588742 DOI: 10.1186/s13287-021-02624-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/08/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) are believed to be hypoimmunogeneic with potential use for allogeneic administration. METHODS Bone marrow was harvested from Connemara (n = 1), Standardbred (n = 6), and Thoroughbred (n = 3) horses. MSCs were grouped by their level of expression of major histocompatibility factor II (MHC II). MSCs were then sub-grouped by those MSCs derived from universal blood donor horses. MSCs were isolated and cultured using media containing fetal bovine serum until adequate numbers were acquired. The MSCs were cultured in xenogen-free media for 48 h prior to use and during all assays. Autologous and allogeneic MSCs were then directly co-cultured with responder leukocytes from the Connemara horse in varying concentrations of MSCs to leukocytes (1:1, 1:10, and 1:100). MSCs were also cultured with complement present and heat-inactivated complement to determine whether complement alone would decrease MSC viability. MSCs underwent haplotyping of their equine leukocyte antigen (ELA) to determine whether the MHC factors were matched or mismatched between the donor MSCs and the responder leukocytes. RESULTS All allogeneic MSCs were found to be ELA mismatched with the responder leukocytes. MHC II-low and universal blood donor MSCs caused no peripheral blood mononuclear cell (PBMC) proliferation, no increase in B cells, and no activation of CD8 lymphocytes. Universal blood donor MSCs stimulated a significant increase in the number of T regulatory cells. Neutrophil interaction with MSCs showed that universal blood donor and MHC II-high allogeneic MSCs at the 6 h time point in co-culture caused greater neutrophil activation than the other co-culture groups. Complement-mediated cytotoxicity did not consistently cause MSC death in cultures with active complement as compared to those with inactivated complement. Gene expression assays revealed that the universal blood donor group and the MHC II-low MSCs were more metabolically active both in the anabolic and catabolic gene categories when cultured with allogeneic lymphocytes as compared to the other co-cultures. These upregulated genes included CD59, FGF-2, HGF, IDO, IL-10, IL-RA, IL-2, SOX2, TGF-β1, ADAMSTS-4, ADAMSTS-5, CCL2, CXCLB/IL-8, IFNγ, IL-1β, and TNFα. CONCLUSIONS MHC II-low MSCs are the most appropriate type of allogeneic MSC to prevent activation of the innate and cell-mediated component of the adaptive immune systems and have increased gene expression as compared to other allogeneic MSCs.
Collapse
Affiliation(s)
- J. Lacy Kamm
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North, 4442 New Zealand
| | - Christopher B. Riley
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North, 4442 New Zealand
| | - Natalie A. Parlane
- AgResearch, Hopkirk Research Institute, Massey University, Palmerston North, 4474 New Zealand
| | - Erica K. Gee
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North, 4442 New Zealand
| | - C. Wayne McIlwraith
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North, 4442 New Zealand
- C. Wayne McIlwraith Translational Medicine Institute and the Orthopaedic Research Center, Colorado State University, 1678 Campus Delivery, Fort Collins, CO 80523-1678 USA
| |
Collapse
|
17
|
Preconditioned Mesenchymal Stromal Cells to Improve Allotransplantation Outcome. Cells 2021; 10:cells10092325. [PMID: 34571974 PMCID: PMC8469056 DOI: 10.3390/cells10092325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are tissue-derived progenitor cells with immunomodulatory as well as multilineage differentiation capacities, and have been widely applied as cellular therapeutics in different disease systems in both preclinical models and clinical studies. Although many studies have applied MSCs in different types of allotransplantation, the efficacy varies. It has been demonstrated that preconditioning MSCs prior to in vivo administration may enhance their efficacy. In the field of organ/tissue allotransplantation, many recent studies have shown that preconditioning of MSCs with (1) pretreatment with bioactive factors or reagents such as cytokines, or (2) specific gene transfection, could prolong allotransplant survival and improve allotransplant function. Herein, we review these preconditioning strategies and discuss potential directions for further improvement.
Collapse
|
18
|
Reinders MEJ, Groeneweg KE, Hendriks SH, Bank JR, Dreyer GJ, de Vries APJ, van Pel M, Roelofs H, Huurman VAL, Meij P, Moes DJAR, Fibbe WE, Claas FHJ, Roelen DL, van Kooten C, Kers J, Heidt S, Rabelink TJ, de Fijter JW. Autologous bone marrow-derived mesenchymal stromal cell therapy with early tacrolimus withdrawal: The randomized prospective, single-center, open-label TRITON study. Am J Transplant 2021; 21:3055-3065. [PMID: 33565206 PMCID: PMC8518640 DOI: 10.1111/ajt.16528] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 01/25/2023]
Abstract
After renal transplantation, there is a need for immunosuppressive regimens which effectively prevent allograft rejection, while preserving renal function and minimizing side effects. From this perspective, mesenchymal stromal cell (MSC) therapy is of interest. In this randomized prospective, single-center, open-label trial, we compared MSCs infused 6 and 7 weeks after renal transplantation and early tacrolimus withdrawal with a control tacrolimus group. Primary end point was quantitative evaluation of interstitial fibrosis in protocol biopsies at 4 and 24 weeks posttransplant. Secondary end points included acute rejection, graft loss, death, renal function, adverse events, and immunological responses. Seventy patients were randomly assigned of which 57 patients were included in the final analysis (29 MSC; 28 controls). Quantitative progression of fibrosis failed to show benefit in the MSC group and GFR remained stable in both groups. One acute rejection was documented (MSC group), while subclinical rejection in week 24 protocol biopsies occurred in seven patients (four MSC; three controls). In the MSC group, regulatory T cell numbers were significantly higher compared to controls (p = .014, week 24). In conclusion, early tacrolimus withdrawal with MSC therapy was safe and feasible without increased rejection and with preserved renal function. MSC therapy is a potentially useful approach after renal transplantation.
Collapse
Affiliation(s)
- Marlies E. J. Reinders
- Department of Internal Medicine (Nephrology) and Transplant CenterLeiden University Medical CenterLeidenthe Netherlands
| | - Koen E. Groeneweg
- Department of Internal Medicine (Nephrology) and Transplant CenterLeiden University Medical CenterLeidenthe Netherlands
| | - Sanne H. Hendriks
- Department of ImmunologyLeiden University Medical CenterLeidenthe Netherlands
| | - Jonna R. Bank
- Department of Internal Medicine (Nephrology) and Transplant CenterLeiden University Medical CenterLeidenthe Netherlands
| | - Geertje J. Dreyer
- Department of Internal Medicine (Nephrology) and Transplant CenterLeiden University Medical CenterLeidenthe Netherlands
| | - Aiko P. J. de Vries
- Department of Internal Medicine (Nephrology) and Transplant CenterLeiden University Medical CenterLeidenthe Netherlands
| | - Melissa van Pel
- Department of ImmunologyLeiden University Medical CenterLeidenthe Netherlands,NECSTGENLeidenthe Netherlands
| | - Helene Roelofs
- Department of ImmunologyLeiden University Medical CenterLeidenthe Netherlands
| | - Volkert A. L. Huurman
- Department of Transplant Surgery and Transplant CenterLeiden University Medical CenterLeidenthe Netherlands
| | - Paula Meij
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenthe Netherlands
| | - Dirk J. A. R. Moes
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenthe Netherlands
| | - Willem E. Fibbe
- Department of ImmunologyLeiden University Medical CenterLeidenthe Netherlands
| | - Frans H. J. Claas
- Department of ImmunologyLeiden University Medical CenterLeidenthe Netherlands
| | - Dave L. Roelen
- Department of ImmunologyLeiden University Medical CenterLeidenthe Netherlands
| | - Cees van Kooten
- Department of Internal Medicine (Nephrology) and Transplant CenterLeiden University Medical CenterLeidenthe Netherlands
| | - Jesper Kers
- Department of PathologyLeiden University Medical CenterLeidenthe Netherlands,Department of PathologyAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands,Van ‘t Hoff Institute for Molecular Sciences (HIMS)University of AmsterdamAmsterdamthe Netherlands
| | - Sebastiaan Heidt
- Department of ImmunologyLeiden University Medical CenterLeidenthe Netherlands
| | - Ton J. Rabelink
- Department of Internal Medicine (Nephrology) and Transplant CenterLeiden University Medical CenterLeidenthe Netherlands
| | - Johan W. de Fijter
- Department of Internal Medicine (Nephrology) and Transplant CenterLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
19
|
Casiraghi F, Perico N, Podestà MA, Todeschini M, Zambelli M, Colledan M, Camagni S, Fagiuoli S, Pinna AD, Cescon M, Bertuzzo V, Maroni L, Introna M, Capelli C, Golay JT, Buzzi M, Mister M, Ordonez PYR, Breno M, Mele C, Villa A, Remuzzi G. Third-party bone marrow-derived mesenchymal stromal cell infusion before liver transplantation: A randomized controlled trial. Am J Transplant 2021; 21:2795-2809. [PMID: 33370477 DOI: 10.1111/ajt.16468] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/24/2020] [Accepted: 12/21/2020] [Indexed: 01/25/2023]
Abstract
Mesenchymal stromal cells (MSC) have emerged as a promising therapy to minimize the immunosuppressive regimen or induce tolerance in solid organ transplantation. In this randomized open-label phase Ib/IIa clinical trial, 20 liver transplant patients were randomly allocated (1:1) to receive a single pretransplant intravenous infusion of third-party bone marrow-derived MSC or standard of care alone. The primary endpoint was the safety profile of MSC administration during the 1-year follow-up. In all, 19 patients completed the study, and none of those who received MSC experienced infusion-related complications. The incidence of serious and non-serious adverse events was similar in the two groups. Circulating Treg/memory Treg and tolerant NK subset of CD56bright NK cells increased slightly over baseline, albeit not to a statistically significant extent, in MSC-treated patients but not in the control group. Graft function and survival, as well as histologic parameters and intragraft expression of tolerance-associated transcripts in 1-year protocol biopsies were similar in the two groups. In conclusion, pretransplant MSC infusion in liver transplant recipients was safe and induced mild positive changes in immunoregulatory T and NK cells in the peripheral blood. This study opens the way for a trial on possible tolerogenic efficacy of MSC in liver transplantation. ClinicalTrials.gov identifier: NCT02260375.
Collapse
Affiliation(s)
- Federica Casiraghi
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Norberto Perico
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Manuel A Podestà
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.,Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marta Todeschini
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Marco Zambelli
- Department of Organ Failure and Transplantation, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Michele Colledan
- Department of Organ Failure and Transplantation, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Stefania Camagni
- Department of Organ Failure and Transplantation, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Stefano Fagiuoli
- Gastroenterology, Hepatology and Transplantation, Department of Medicine, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Antonio D Pinna
- General Surgery and Transplant Unit, Department of Medical and Surgical Sciences, Azienda Ospedaliero-Universitaria-Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Matteo Cescon
- General Surgery and Transplant Unit, Department of Medical and Surgical Sciences, Azienda Ospedaliero-Universitaria-Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Valentina Bertuzzo
- General Surgery and Transplant Unit, Department of Medical and Surgical Sciences, Azienda Ospedaliero-Universitaria-Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Lorenzo Maroni
- General Surgery and Transplant Unit, Department of Medical and Surgical Sciences, Azienda Ospedaliero-Universitaria-Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Martino Introna
- G. Lanzani Laboratory of Cell Therapy, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Chiara Capelli
- G. Lanzani Laboratory of Cell Therapy, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Josee T Golay
- G. Lanzani Laboratory of Cell Therapy, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Marina Buzzi
- Emilia Romagna Cord Blood Bank, Immunohematology and Transfusion Medicine, Azienda Ospedaliero-Universitaria-Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - Marilena Mister
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Pamela Y R Ordonez
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Matteo Breno
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Caterina Mele
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Alessandro Villa
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | | |
Collapse
|
20
|
Chen Y, Yan G, Ma Y, Zhong M, Yang Y, Guo J, Wang C, Han W, Zhang L, Xu S, Huang J, Dai H, Qi Z. Combination of mesenchymal stem cells and FK506 prolongs heart allograft survival by inhibiting TBK1/IRF3-regulated-IFN-γ production. Immunol Lett 2021; 238:21-28. [PMID: 34228988 DOI: 10.1016/j.imlet.2021.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/04/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
Lifelong immunosuppression use presents many serious side effects to transplant recipients. Previous studies have shown that mesenchymal stem cells (MSC) regulate the progress of inflammation and protect allograft function. However, the benefits of MSC combined with low-dose tacrolimus (FK506) has not been investigated in heart transplant recipients, and its mechanism deserves further investigation. SD Rat bone marrow-derived MSC were infused into recipient mouse (C57BL/6, B6) through the tail vein, followed by a BALB/c donor cervical ectopic heart transplantation on the next day of infusion. T-lymphocyte subsets and their functions were determined using flow cytometry, ELISA, and qPCR. Thereafter, in vitro and in vivo experiments were conducted to identify the mechanisms regarding MSC and FK506 combination (MF group) use in regulating IFN-γ signaling. MF group in the allogeneic heart transplantation mouse model inhibited acute rejection and prolonged mean survival time (MST) of grafts from 7 days (d) to 22d. Pathological examination of heart grafts suggested that inflammatory cell infiltration decreased, and tissue damage was significantly reduced in the MF group. IFN-γ mRNA expression levels in the grafts and recipients decreased, while IL-4 and TGF-β mRNA expression increased in the MF group. Phosphorylation of TBK1/IRF3 in recipient immune cells decreased under donor antigen stimulation. Combination use of MSC and FK506 can prolong graft survival, possibly by down-regulating TBK1/IRF3 phosphorylation, thus reducing IFN-γ production to prevent infiltration of inflammatory cells in the graft and extend graft survival. The findings provide a potential new approach to immunosuppression selection.
Collapse
Affiliation(s)
- Yingyu Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China; Organ Transplantation institute, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China; School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Guoliang Yan
- Organ Transplantation institute, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China; School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yunhan Ma
- Organ Transplantation institute, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China; School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Mengya Zhong
- Organ Transplantation institute, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China; School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yan Yang
- Organ Transplantation institute, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China; School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Junjun Guo
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Chenxi Wang
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Weimin Han
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Liyi Zhang
- Organ Transplantation institute, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China; School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shuangyue Xu
- Organ Transplantation institute, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China; School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jinjin Huang
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Helong Dai
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China; Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China; Clinical Immunology Center, Central South University, Changsha, China.
| | - Zhongquan Qi
- Organ Transplantation institute, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen, Fujian, China; Medical College, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
21
|
Zhao L, Hu C, Han F, Chen D, Cheng J, Wu J, Peng W, Chen J. Induction therapy with mesenchymal stromal cells in kidney transplantation: a meta-analysis. Stem Cell Res Ther 2021; 12:158. [PMID: 33648596 PMCID: PMC7923637 DOI: 10.1186/s13287-021-02219-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 02/09/2021] [Indexed: 12/22/2022] Open
Abstract
Objective The aim of this meta-analysis was to evaluate the therapeutic effects of mesenchymal stromal cells (MSCs) versus traditional regimens for induction therapy in kidney transplantation (KT), especially the safety of MSC infusion, practicability of MSCs as induction therapy agents, and posttransplant complications. Methods PubMed, Embase, EBSCO, Ovid, and the Cochrane Library were searched for prospective clinical trials that compared MSCs with traditional regimens for induction therapy in KT. Results Four trials were included, including a total of 197 patients. The pooled results revealed that MSC therapy had a lower 1-year infection rate than did the traditional therapies (RR = 0.65, 95% CI: 0.46–0.9, P = 0.01). There were no significant differences between the two protocols regarding the 1-year acute rejection (AR) rate (RR = 0.77, 95% CI: 0.41–1.45, P = 0.42), 1-year graft survival rate (RR = 0.99, 95% CI: 0.95–1.03, P = 0.74), delayed graft function (DGF) rate (RR = 0.54, 95% CI: 0.21–1.38, P = 0.2) and renal graft function at 1 month (MD = −1.56, 95% CI: − 14.2–11.08, p = 0.81), 3 months (MD = 0.15, 95% CI: − 5.63–5.93, p = 0.96), 6 months (MD = − 1.95, 95% CI: − 9.87–5.97, p = 0.63), and 12 months (MD = − 1.13, 95% CI: − 7.16–4.89, p = 0.71) postsurgery. Subgroup analysis demonstrated that the 1-year AR rate, 1-year graft survival rate, DGF rate, and renal graft function at 12 months postsurgery did not significantly differ between the low-dose calcineurin inhibitor (CNI) group and the standard-dose CNI group, indicating the potential benefits of successful CNI sparing in combination with MSC treatment. Moreover, when MSCs were applied as an alternative therapy rather than an additional therapy or allogeneic MSCs were utilized instead of autologous MSCs, all of the outcomes mentioned above were comparable. Conclusion Induction therapy with MSCs is safe and has similar immune response modulation effects to those of traditional regimens in the short term in KT recipients. However, regarding the long-term effects, as suggested by the 1-year infection rate and the potential of CNI sparing, MSC therapy has significant advantages. However, these advantages should be further verified in more well-designed, multicenter randomized controlled trials (RCTs) with large sample sizes and long follow-up periods. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02219-7.
Collapse
Affiliation(s)
- Lingfei Zhao
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Institute of Nephrology, Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Chenxia Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Fei Han
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Dajin Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jun Cheng
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jianyong Wu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Wenhan Peng
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
22
|
Podestà MA, Remuzzi G, Casiraghi F. Mesenchymal Stromal Cell Therapy in Solid Organ Transplantation. Front Immunol 2021; 11:618243. [PMID: 33643298 PMCID: PMC7902912 DOI: 10.3389/fimmu.2020.618243] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/29/2020] [Indexed: 12/29/2022] Open
Abstract
Transplantation is the gold-standard treatment for the failure of several solid organs, including the kidneys, liver, heart, lung and small bowel. The use of tailored immunosuppressive agents has improved graft and patient survival remarkably in early post-transplant stages, but long-term outcomes are frequently unsatisfactory due to the development of chronic graft rejection, which ultimately leads to transplant failure. Moreover, prolonged immunosuppression entails severe side effects that severely impact patient survival and quality of life. The achievement of tolerance, i.e., stable graft function without the need for immunosuppression, is considered the Holy Grail of the field of solid organ transplantation. However, spontaneous tolerance in solid allograft recipients is a rare and unpredictable event. Several strategies that include peri-transplant administration of non-hematopoietic immunomodulatory cells can safely and effectively induce tolerance in pre-clinical models of solid organ transplantation. Mesenchymal stromal cells (MSC), non-hematopoietic cells that can be obtained from several adult and fetal tissues, are among the most promising candidates. In this review, we will focus on current pre-clinical evidence of the immunomodulatory effect of MSC in solid organ transplantation, and discuss the available evidence of their safety and efficacy in clinical trials.
Collapse
Affiliation(s)
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| | - Federica Casiraghi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| |
Collapse
|
23
|
Hoogduijn MJ, Issa F, Casiraghi F, Reinders MEJ. Cellular therapies in organ transplantation. Transpl Int 2021; 34:233-244. [PMID: 33207013 PMCID: PMC7898347 DOI: 10.1111/tri.13789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/15/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Cellular therapy is a promising tool for improving the outcome of organ transplantation. Various cell types with different immunoregulatory and regenerative properties may find application for specific transplant rejection or injury-related indications. The current era is crucial for the development of cellular therapies. Preclinical models have demonstrated the feasibility of efficacious cell therapy in transplantation, early clinical trials have shown safety of several of these therapies, and the first steps towards efficacy studies in humans have been made. In this review, we address the current state of the art of cellular therapies in clinical transplantation and discuss monitoring tools and endpoints for these studies.
Collapse
Affiliation(s)
- Martin J. Hoogduijn
- Nephrology and TransplantationDepartment of Internal MedicineErasmus University Medical CenterErasmus Medical CenterRotterdamThe Netherlands
| | - Fadi Issa
- Transplantation Research and Immunology GroupNuffield Department of Surgical SciencesJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | | | - Marlies E. J. Reinders
- Nephrology and TransplantationDepartment of Internal MedicineErasmus University Medical CenterErasmus Medical CenterRotterdamThe Netherlands
| |
Collapse
|
24
|
Wang F, Chen X, Li J, Wang D, Huang H, Li X, Bi Z, Peng Y, Zhang X, Li G, Wang J, Wang C, Fu Q, Liu L. Dose- and Time-Dependent Effects of Human Mesenchymal Stromal Cell Infusion on Cardiac Allograft Rejection in Mice. Stem Cells Dev 2021; 30:203-213. [PMID: 33371825 DOI: 10.1089/scd.2019.0300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Heart transplantation is the final life-saving therapeutic strategy for many end-stage heart diseases. Long-term immunosuppressive regimens are needed to prevent allograft rejection. Mesenchymal stromal cells (MSCs) have been shown as immunomodulatory therapy for organ transplantation. However, the effect of dose and timing of MSC treatment on heart transplantation has not yet been examined. In this study, we infused three doses (1 × 106, 2 × 106, or 5 × 106 cells) of human MSCs (hMSCs) to the recipient BALB/c mice before (7 days or 24 h) or after (24 h) receiving C57BL/6 cardiac transplants. We found that infusion of high dose hMSCs (5 × 106) at 24 h post-transplantation significantly prolonged the survival time of cardiac grafts. To delineate the underlying mechanism, grafts, spleens, and draining lymph nodes were harvested for analysis. Dose-dependent effect of hMSC treatment was shown in: (1) alleviation of International Society of Heart and Lung Transplantation (ISHLT) score in grafts; (2) reduction of the population of CD4+ and CD8+ T cells; (3) increase of regulatory T (Treg) cells; (4) and decrease of serum levels of inflammatory cytokines and donor-specific antibodies. Taken together, we showed timing critical and dose-dependent immunomodulatory effects of hMSC treatment against acute allograft rejection in a mouse model of heart transplantation.
Collapse
Affiliation(s)
- Feng Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Organ Transplant Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyong Chen
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jun Li
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dong Wang
- Department of Clinical Laboratory, The First Affiliated Hospital, SunYat-sen University, Guangzhou, China
| | - Huiting Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xirui Li
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zirong Bi
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanwen Peng
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoran Zhang
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Gang Li
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jiali Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Changxi Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory on Organ Donation and Transplant Immunology, Guangzhou, China
| | - Qian Fu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Longshan Liu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory on Organ Donation and Transplant Immunology, Guangzhou, China
| |
Collapse
|
25
|
Song L, Gou W, Wang J, Wei H, Lee J, Strange C, Wang H. Overexpression of alpha-1 antitrypsin in mesenchymal stromal cells improves their intrinsic biological properties and therapeutic effects in nonobese diabetic mice. Stem Cells Transl Med 2021; 10:320-331. [PMID: 32945622 PMCID: PMC7848369 DOI: 10.1002/sctm.20-0122] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/28/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Islet/β cell dysfunction and death caused by autoimmune-mediated injuries are major features of type 1 diabetes (T1D). Mesenchymal stromal cells (MSCs) have been used for the treatment of T1D in animal models and clinical trials. Based on the anti-inflammatory effects of alpha-1 antitrypsin (AAT), we generated human AAT engineered MSCs (hAAT-MSCs) by infecting human bone marrow-derived MSCs with the pHAGE CMV-a1aT-UBC-GFP-W lentiviral vector. We compared the colony forming, differentiation, and migration capacity of empty virus-treated MSCs (hMSC) and hAAT-MSCs and tested their protective effects in the prevention of onset of T1D in nonobese diabetic (NOD) mice. hAAT-MSCs showed increased self-renewal, better migration and multilineage differentiation abilities compared to hMSCs. In addition, polymerase chain reaction array for 84 MSC-related genes showed that 23 genes were upregulated, and 3 genes were downregulated in hAAT-MSCs compared to hMSCs. Upregulated genes include those critical for the stemness (ie, Wnt family member 3A [WNT3A], kinase insert domain receptor [KDR]), migration (intercellular adhesion molecule 1 [ICAM-1], vascular cell adhesion protein 1 [VICAM-1], matrix metalloproteinase-2 [MMP2]), and survival (insulin-like growth factor 1 [IGF-1]) of MSCs. Pathway analysis showed that changed genes were related to growth factor activity, positive regulation of cell migration, and positive regulation of transcription. In vivo, a single intravenous infusion of hAAT-MSCs significantly limited inflammatory infiltration into islets and delayed diabetes onset in the NOD mice compared with those receiving vehicle or hMSCs. Taken together, overexpression of hAAT in MSCs improved intrinsic biological properties of MSCs needed for cellular therapy for the treatment of T1D.
Collapse
Affiliation(s)
- Lili Song
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Wenyu Gou
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Jingjing Wang
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Hua Wei
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Jennifer Lee
- Academic Magnet High SchoolNorth CharlestonSouth CarolinaUSA
| | - Charlie Strange
- Department of MedicineMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Hongjun Wang
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
- Ralph H. Johnson Veterans Affairs Medical CenterCharlestonSouth CarolinaUSA
| |
Collapse
|
26
|
Wu Z, Liang J, Huang W, Jiang L, Paul C, Gao X, Alam P, Kanisicak O, Xu M, Wang Y. Immunomodulatory effects of mesenchymal stem cells for the treatment of cardiac allograft rejection. Exp Biol Med (Maywood) 2020; 246:851-860. [PMID: 33327780 DOI: 10.1177/1535370220978650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heart transplantation continues to be the gold standard clinical intervention to treat patients with end-stage heart failure. However, there are major complications associated with this surgical procedure that reduce the survival prognosis of heart transplant patients, including allograft rejection, malignancies, infections, and other complications that arise from the use of broad-spectrum immunosuppression drugs. Recent studies have demonstrated the use of mesenchymal stem cells (MSCs) against allotransplantation rejection in both in vitro and in vivo settings due to their immunomodulatory properties. Therefore, utilization of MSCs provides new and exciting strategies to improve heart transplantation and potentially reduce the use of broad-spectrum immunosuppression drugs while alleviating allograft rejection. In this review, we will discuss the current research on the mechanisms of cardiac allograft rejection, the physiological and immunological characteristics of MSCs, the effects of MSCs on the immune system, and immunomodulation of heart transplantation by MSCs.
Collapse
Affiliation(s)
- Zhichao Wu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jialiang Liang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Lin Jiang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Xiang Gao
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Perwez Alam
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Onur Kanisicak
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
27
|
Mesenchymal Stem/Progenitor Cells: The Prospect of Human Clinical Translation. Stem Cells Int 2020; 2020:8837654. [PMID: 33953753 PMCID: PMC8063852 DOI: 10.1155/2020/8837654] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/19/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/progenitor cells (MSCs) are key players in regenerative medicine, relying principally on their differentiation/regeneration potential, immunomodulatory properties, paracrine effects, and potent homing ability with minimal if any ethical concerns. Even though multiple preclinical and clinical studies have demonstrated remarkable properties for MSCs, the clinical applicability of MSC-based therapies is still questionable. Several challenges exist that critically hinder a successful clinical translation of MSC-based therapies, including but not limited to heterogeneity of their populations, variability in their quality and quantity, donor-related factors, discrepancies in protocols for isolation, in vitro expansion and premodification, and variability in methods of cell delivery, dosing, and cell homing. Alterations of MSC viability, proliferation, properties, and/or function are also affected by various drugs and chemicals. Moreover, significant safety concerns exist due to possible teratogenic/neoplastic potential and transmission of infectious diseases. Through the current review, we aim to highlight the major challenges facing MSCs' human clinical translation and shed light on the undergoing strategies to overcome them.
Collapse
|
28
|
Wu L, Han D, Jiang J, Xie X, Zhao X, Ke T, Zhao W, Liu L, Zhao W. Co-transplantation of bone marrow mesenchymal stem cells and monocytes in the brain stem to repair the facial nerve axotomy. Eur J Histochem 2020; 64. [PMID: 32705858 PMCID: PMC7388641 DOI: 10.4081/ejh.2020.3136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022] Open
Abstract
After the facial nerve axotomy (FNA), the distal end of the axon would gradually decay and disappear. Accumulated evidence shows that transplantation of bone marrow mesenchymal stem cells (BMSCs) reveals potential in the treatment of nervous system diseases or injuries. This study is aimed at investigating the therapeutic effects of co-transplantation of BMSCs and monocytes in FNA. We found that co-culture significantly elevated the CD4+/CD8+ ratio and CD4+ CD25+ T cell proportion compared with monocytes transplantation, and enhanced the differentiation of BMSCs into neurons. After the cell transplantation, the lowest apoptosis in the facial nerve nucleus was found in the co-transplantation group 2 (BMSCs:monocytes= 1:30). Moreover, the lowest expression levels of pro-inflammatory cytokines and the highest expression levels of anti-inflammatory cytokines were observed in the co-transplantation group 2 (BMSCs: monocytes= 1:30). The highest expression levels of protein in the JAK/STAT6 pathway and the SDF-1/CXCR4 axis were found in the co-transplantation group 2. BMSC/monocyte co-transplantation significantly improves the microenvironment in the facial nerve nucleus in FNA rats; therefore these findings suggest that it could promote the anti-/pro-inflammatory balance shift towards the anti-inflammatory microenvironment, alleviating survival conditions for BMSCs, regulating BMSC the chemotaxis homing, differentiation, and the section of BMSCs, and finally reducing the neuronal apoptosis. These findings might provide essential evidence for the in-hospital treatment of FNA with co-transplantation of BMSCs and monocytes.
Collapse
Affiliation(s)
- Li Wu
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming.
| | - Dan Han
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming.
| | - Jie Jiang
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming.
| | - Xiaojie Xie
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China.
| | - Xunran Zhao
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming.
| | - Tengfei Ke
- Department of Medical Imaging, Third Affiliated Hospital of Kunming Medical University, Kunming.
| | - Wen Zhao
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming.
| | - Liu Liu
- Department of Plastic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming.
| | - Wei Zhao
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming.
| |
Collapse
|
29
|
Effect of Timing and Complement Receptor Antagonism on Intragraft Recruitment and Protolerogenic Effects of Mesenchymal Stromal Cells in Murine Kidney Transplantation. Transplantation 2020; 103:1121-1130. [PMID: 30801518 DOI: 10.1097/tp.0000000000002611] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) have protolerogenic effects in renal transplantation, but they induce long-term regulatory T cells (Treg)-dependent graft acceptance only when infused before transplantation. When given posttransplant, MSCs home to the graft where they promote engraftment syndrome and do not induce Treg. Unfortunately, pretransplant MSC administration is unfeasible in deceased-donor kidney transplantation. METHODS To make MSCs a therapeutic option also for deceased organ recipients, we tested whether MSC infusion at the time of transplant (day 0) or posttransplant (day 2) together with inhibition of complement receptors prevents engraftment syndrome and allows their homing to secondary lymphoid organs for promoting tolerance. We analyzed intragraft and splenic MSC localization, graft survival, and alloimmune response in mice recipients of kidney allografts and syngeneic MSCs given on day 0 or on posttransplant day 2. C3a receptor (C3aR) or C5a receptor (C5aR) antagonists were administered to mice in combination with the cells or were used together to treat MSCs before infusion. RESULTS Syngeneic MSCs given at day 0 homed to the spleen increased Treg numbers and induced long-term graft acceptance. Posttransplant MSC infusion, combined with a short course of C3aR or C5aR antagonist or administration of MSCs pretreated with C3aR and C5aR antagonists, prevented intragraft recruitment of MSCs and graft inflammation, inhibited antidonor T-cell reactivity, but failed to induce Treg, resulting in mild prolongation of graft survival. CONCLUSIONS These data support testing the safety/efficacy profile of administering MSCs on the day of transplant in deceased-donor transplant recipients and indicate that complement is crucial for MSC recruitment into the kidney allograft.
Collapse
|
30
|
Cyclosporine A promotes the therapeutic effect of mesenchymal stem cells on transplantation reaction. Clin Sci (Lond) 2020; 133:2143-2157. [PMID: 31654074 DOI: 10.1042/cs20190294] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022]
Abstract
The successful application of mesenchymal stem cells (MSCs) remains a major challenge in stem cell therapy. Currently, several in vitro studies have indicated potentially beneficial interactions of MSCs with immunosuppressive drugs. These interactions can be even more complex in vivo, and it is in this setting that we investigate the effect of MSCs in combination with Cyclosporine A (CsA) on transplantation reaction and allogeneic cell survival. Using an in vivo mouse model, we found that CsA significantly promoted the survival of MSCs in various organs and tissues of the recipients. In addition, compared to treatment with CsA or MSCs alone, the survival of transplanted allogeneic cells was significantly improved after the combined application of MSCs with CsA. We further observed that the combinatory treatment suppressed immune response to the alloantigen challenge and modulated the immune balance by harnessing proinflammatory CD4+T-bet+ and CD4+RORγt+ cell subsets. These changes were accompanied by a significant decrease in IL-17 production along with an elevated level of IL-10. Co-cultivation of purified naive CD4+ cells with peritoneal macrophages isolated from mice treated with MSCs and CsA revealed that MSC-educated macrophages play an important role in the immunomodulatory effect observed on distinct T-cell subpopulations. Taken together, our findings suggest that CsA promotes MSC survival in vivo and that the therapeutic efficacy of the combination of MSCs with CsA is superior to each monotherapy. This combinatory treatment thus represents a promising approach to reducing immunosuppressant dosage while maintaining or even improving the outcome of therapy.
Collapse
|
31
|
Identifying the Therapeutic Significance of Mesenchymal Stem Cells. Cells 2020; 9:cells9051145. [PMID: 32384763 PMCID: PMC7291143 DOI: 10.3390/cells9051145] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
The pleiotropic behavior of mesenchymal stem cells (MSCs) has gained global attention due to their immense potential for immunosuppression and their therapeutic role in immune disorders. MSCs migrate towards inflamed microenvironments, produce anti-inflammatory cytokines and conceal themselves from the innate immune system. These signatures are the reason for the uprising in the sciences of cellular therapy in the last decades. Irrespective of their therapeutic role in immune disorders, some factors limit beneficial effects such as inconsistency of cell characteristics, erratic protocols, deviating dosages, and diverse transfusion patterns. Conclusive protocols for cell culture, differentiation, expansion, and cryopreservation of MSCs are of the utmost importance for a better understanding of MSCs in therapeutic applications. In this review, we address the immunomodulatory properties and immunosuppressive actions of MSCs. Also, we sum up the results of the enhancement, utilization, and therapeutic responses of MSCs in treating inflammatory diseases, metabolic disorders and diabetes.
Collapse
|
32
|
Bao Z, Li J, Zhang P, Pan Q, Liu B, Zhu J, Jian Q, Jia D, Yi C, Moeller CJ, Liu H. Toll-Like Receptor 3 Activator Preconditioning Enhances Modulatory Function of Adipose‑Derived Mesenchymal Stem Cells in a Fully MHC-Mismatched Murine Model of Heterotopic Heart Transplantation. Ann Transplant 2020; 25:e921287. [PMID: 32366814 PMCID: PMC7219555 DOI: 10.12659/aot.921287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Donor-specific tolerance is the ultimate goal in organ transplantation. Diverse approaches, including the use of mesenchymal stem cells (MSCs), have been investigated to induce graft tolerance. Non-stimulated MSCs showed limited regulatory functions through interaction with multiple immune-regulatory cells, such as regulatory T cells (Tregs). To augment their functions, MSCs have been preconditioned with toll-like receptor (TLR3/4) agonist in autoimmune disease models, but results were conflicting. Material/Methods We evaluated the immunomodulatory effects of mouse adipose-derived mesenchymal stem cells (ADSCs) preconditioned with various combinations of TLR3/4 agonist and antagonists, including polyinosinic-polycytidylic acid poly(I:C)-TLR3 agonist, lipopolysaccharide (LPS) -TLR4 agonist, and TAK242-TLR4 antagonist. In vitro and in vivo experiments including mixed lymphocyte reaction, cytokines measurement, Tregs analysis, and a fully mismatched MHC heterotopic heart transplantation in mice (BALB/c to C57BL/6) were conducted. Results ADSCs preconditioned with poly(I:C) showed the highest efficiency in inhibiting lymphocyte proliferation, which was correlated with the upregulation of fibrinogen-like protein 2 (FGL2), an effector molecule of Tregs. The mean survival of cardiac allografts was extended from 8 to 12 days by intravenous injection of a single dose of ADSCs preconditioned with TLR3 agonist. The proportion of Tregs in the recipient’s spleen was significantly increased by injecting the poly(I:C)-stimulated ADSCs. Conclusions These results show that short-term TLR3 agonist preconditioning enhances the immunomodulatory efficacy of ADSCs, which can induce the generation of Tregs and upregulate the expression of FGL2, thereby improving the outcome of patients receiving organ transplantation.
Collapse
Affiliation(s)
- Zhiye Bao
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China (mainland)
| | - Jingjing Li
- Department of Pediatric Surgery, Tianjin Children's Hospital, Tianjin, China (mainland)
| | - Pengju Zhang
- Oncology Center of People's Liberation Army (PLA), 81st Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Qi Pan
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China (mainland)
| | - Boqian Liu
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China (mainland)
| | - Jiayi Zhu
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China (mainland)
| | - Qian Jian
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China (mainland)
| | - Degong Jia
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China (mainland)
| | - Caiyu Yi
- China Medical University, Shenyang, Liaoning, China (mainland)
| | | | - Hao Liu
- The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
33
|
Lanzoni G, Linetsky E, Correa D, Alvarez RA, Marttos A, Hirani K, Cayetano SM, Castro JG, Paidas MJ, Efantis Potter J, Xu X, Glassberg M, Tan J, Patel AN, Goldstein B, Kenyon NS, Baidal D, Alejandro R, Vianna R, Ruiz P, Caplan AI, Ricordi C. Umbilical Cord-derived Mesenchymal Stem Cells for COVID-19 Patients with Acute Respiratory Distress Syndrome (ARDS). CELLR4-- REPAIR, REPLACEMENT, REGENERATION, & REPROGRAMMING 2020; 8. [PMID: 34164564 DOI: 10.32113/cellr4_20204_2839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The coronavirus SARS-CoV-2 is cause of a global pandemic of a pneumonia-like disease termed Coronavirus Disease 2019 (COVID-19). COVID-19 presents a high mortality rate, estimated at 3.4%. More than 1 out of 4 hospitalized COVID-19 patients require admission to an Intensive Care Unit (ICU) for respiratory support, and a large proportion of these ICU-COVID-19 patients, between 17% and 46%, have died. In these patients COVID-19 infection causes an inflammatory response in the lungs that can progress to inflammation with cytokine storm, Acute Lung Injury (ALI), Acute Respiratory Distress Syndrome (ARDS), thromboembolic events, disseminated intravascular coagulation, organ failure, and death. Mesenchymal Stem Cells (MSCs) are potent immunomodulatory cells that recognize sites of injury, limit effector T cell reactions, and positively modulate regulatory cell populations. MSCs also stimulate local tissue regeneration via paracrine effects inducing angiogenic, anti-fibrotic and remodeling responses. MSCs can be derived in large number from the Umbilical Cord (UC). UC-MSCs, utilized in the allogeneic setting, have demonstrated safety and efficacy in clinical trials for a number of disease conditions including inflammatory and immune-based diseases. UC-MSCs have been shown to inhibit inflammation and fibrosis in the lungs and have been utilized to treat patients with severe COVID-19 in pilot, uncontrolled clinical trials, that reported promising results. UC-MSCs processed at our facility have been authorized by the FDA for clinical trials in patients with an Alzheimer's Disease, and in patients with Type 1 Diabetes (T1D). We hypothesize that UC-MSC will also exert beneficial therapeutic effects in COVID-19 patients with cytokine storm and ARDS. We propose an early phase controlled, randomized clinical trial in COVID-19 patients with ALI/ARDS. Subjects in the treatment group will be treated with two doses of UC-MSC (l00 × 106 cells). The first dose will be infused within 24 hours following study enrollment. A second dose will be administered 72 ± 6 hours after the first infusion. Subject in the control group will receive infusion of vehicle (DPBS supplemented with 1% HSA and 70 U/kg unfractionated Heparin, delivered IV) following the same timeline. Subjects will be evaluated daily during the first 6 days, then at 14, 28, 60, and 90 days following enrollment (see Schedule of Assessment for time window details). Safety will be determined by adverse events (AEs) and serious adverse events (SAEs) during the follow-up period. Efficacy will be defined by clinical outcomes, as well as a variety of pulmonary, biochemical and immunological tests. Success of the current study will provide a framework for larger controlled, randomized clinical trials and a means of accelerating a possible solution for this urgent but unmet medical need. The proposed early phase clinical trial will be performed at the University of Miami (UM), in the facilities of the Diabetes Research Institute (DRI), UHealth Intensive Care Unit (ICU) and the Clinical Translational Research Site (CTRS) at the University of Miami Miller School of Medicine and at the Jackson Memorial Hospital (JMH).
Collapse
Affiliation(s)
- G Lanzoni
- Diabetes Research Institute, Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - E Linetsky
- Diabetes Research Institute, Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - D Correa
- Diabetes Research Institute, Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Orthopedics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - R A Alvarez
- University of Miami Health System and Jackson Health System, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - A Marttos
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,University of Miami Health System and Jackson Health System, Miami, FL, USA
| | - K Hirani
- Diabetes Research Institute, Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - S Messinger Cayetano
- Diabetes Research Institute, Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - J G Castro
- University of Miami Health System and Jackson Health System, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - M J Paidas
- University of Miami Health System and Jackson Health System, Miami, FL, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - J Efantis Potter
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - X Xu
- Diabetes Research Institute, Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - M Glassberg
- Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - J Tan
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China
| | - A N Patel
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.,HCA Research Institute, Nashville, TN, USA
| | - B Goldstein
- Department of Head and Neck Surgery and Communication Sciences, Duke University, Durham, NC, USA
| | - N S Kenyon
- Diabetes Research Institute, Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - D Baidal
- Diabetes Research Institute, Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - R Alejandro
- Diabetes Research Institute, Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - R Vianna
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,University of Miami Health System and Jackson Health System, Miami, FL, USA.,Miami Transplant Institute, Jackson Health System, Miami, FL, USA
| | - P Ruiz
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,University of Miami Health System and Jackson Health System, Miami, FL, USA.,Miami Transplant Institute, Jackson Health System, Miami, FL, USA
| | - A I Caplan
- Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - C Ricordi
- Diabetes Research Institute, Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,University of Miami Health System and Jackson Health System, Miami, FL, USA
| |
Collapse
|
34
|
Zhou X, Jin N, Wang F, Chen B. Mesenchymal stem cells: a promising way in therapies of graft-versus-host disease. Cancer Cell Int 2020; 20:114. [PMID: 32280306 PMCID: PMC7137413 DOI: 10.1186/s12935-020-01193-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
It is well acknowledged that allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment for numerous malignant blood diseases, which has also been applied to autoimmune diseases for more than a decade. Whereas graft-versus-host disease (GVHD) occurs after allogeneic hematopoietic stem cell transplantation (allo-HSCT) as a common serious complication, seriously affecting the efficacy of transplantation. Mesenchymal stem cells (MSCs) derived from a wealth of sources can easily isolate and expand with low immunogenicity. MSCs also have paracrine and immune regulatory functions, leading to a broad application prospect in treatment and tissue engineering. This review focuses on immunoregulatory function of MSCs, factors affecting mesenchymal stem cells to exert immunosuppressive effects, clinical application of MSCs in GVHD and researches on MSC-derived extracellular vesicles (EVs). The latest research progress on MSC in related fields is reviewed as well. The relevant literature from PubMed databases is reviewed in this article.
Collapse
Affiliation(s)
- Xinyi Zhou
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Dingjiaqiao 87, Gulou District, Nanjing, 210009 Jiangsu People's Republic of China
| | - Nan Jin
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Dingjiaqiao 87, Gulou District, Nanjing, 210009 Jiangsu People's Republic of China
| | - Fei Wang
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Dingjiaqiao 87, Gulou District, Nanjing, 210009 Jiangsu People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Dingjiaqiao 87, Gulou District, Nanjing, 210009 Jiangsu People's Republic of China
| |
Collapse
|
35
|
Lai X, Yao Z, Ning F, Zhang L, Fang J, Li G, Xu L, Xiong Y, Liu L, Chen R, Ma J, Chen Z. Blockade of OX40/OX40L pathway combined with ethylene-carbodiimide-fixed donor splenocytes induces donor-specific allograft tolerance in presensitized recipients. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:84. [PMID: 32175377 DOI: 10.21037/atm.2019.12.146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Memory T cells (Tms) are the major barrier preventing long-term allograft survival in presensitized transplant recipients. The OX40/OX40L pathway is important in the induction and maintenance of Tms. Methods In this study, we added anti-OX40L mAb to ethylene-carbodiimide-fixed donor splenocytes (ECDI-SPs)-a method which is effective in inducing allograft tolerance in non-presensitized mouse heart transplant model. Recipient mice received heart transplantation after 6 weeks of donor skin presensitization and were treated with anti-OX40L mAb, ECDI-SPs or anti-OX40L mAb + ECDI-SPs, respectively. Results Our data showed that the combination of ECDI-SPs and anti-OX40L mAb induced donor-specific tolerance in skin-presensitized heart transplant recipients, with the mechanism for this being associated with suppression of Tms and upregulation of CD4+CD25+Foxp3+ T regulatory cells (Tregs). Importantly, CD25+ T-cell depletion in the combined therapy-treated recipients broke the establishment of allograft tolerance, whereas adoptive transfer of presensitization-derived T cells into tolerant recipients suppressed Tregs expansion and abolished established tolerance. Conclusions Blockade of OX40/OX40L pathway in combination with ECDI-SPs appears to modulate the Tms/Tregs imbalance so as to create a protective milieu and induce graft tolerance in presensitized recipients.
Collapse
Affiliation(s)
- Xingqiang Lai
- Organ Transplant Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Zhongpeng Yao
- Organ Transplant Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Fen Ning
- Guangzhou Institute of Pediatrics, Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Lei Zhang
- Organ Transplant Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Jiali Fang
- Organ Transplant Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Guanghui Li
- Organ Transplant Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Lu Xu
- Organ Transplant Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yunyi Xiong
- Organ Transplant Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Luhao Liu
- Organ Transplant Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Rongxin Chen
- Organ Transplant Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Junjie Ma
- Organ Transplant Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Zheng Chen
- Organ Transplant Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| |
Collapse
|
36
|
He JG, Li BB, Zhou L, Yan D, Xie QL, Zhao W. Indoleamine 2,3-dioxgenase-transfected mesenchymal stem cells suppress heart allograft rejection by increasing the production and activity of dendritic cells and regulatory T cells. J Investig Med 2020; 68:728-737. [PMID: 31892638 DOI: 10.1136/jim-2019-001160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2019] [Indexed: 01/14/2023]
Abstract
Expression of indoleamine 2,3-dioxygenase (IDO) in mesenchymal stem cells (MSC) is thought to contribute to MSC-mediated immunosuppression. A lentiviral-based transgenic system was used to generate bone marrow stem cells (BMSC) which stably expressed IDO (IDO-BMSCs). Coculture of IDO-BMSCs with dendritic cells (DC) or T cells was used to evaluate the immunomodulatory effect of IDO-BMSCs. A heterotopic heart transplant model in rats was used to evaluate allograft rejection after IDO-BMSC treatment. Mechanisms of IDO-BMSC-mediated immunosuppression were investigated by evaluating levels of proinflammatory and anti-inflammatory cytokines, and production of Tregs. A significant decrease in DC marker-positive cells and a significant increase in Tregs were observed in IDO-BMSC cocultured. Treatment of transplanted rats with IDO-BMSCs was associated with significantly prolonged graft survival. Compared with the control groups, transplanted animals treated with IDO-BMSCs had a (1) significantly higher ejection fraction and fractional shortening, (2) significantly lower expression of CD86, CD80, and MHCII, and significantly higher expression in CD274, and Tregs, and (3) significantly higher levels of interleukin-10 (IL-10), transforming growth factor beta-1 (TGF-β1), TGF-β2, and TGF-β3, and significantly lower levels of IL-2 and interferon gamma. Our results expand our understanding of the molecular mechanisms underlying suppression of heart allograft rejection via IDO-expressing BMSCs.
Collapse
Affiliation(s)
- Ji-Gang He
- Department of Cardiac and Vascular Surgery, First People's Hospital of Yunnan Province, Kunming, China
| | - Bei-Bei Li
- Department of Cardiac and Vascular Surgery, First People's Hospital of Yunnan Province, Kunming, China
| | - Liang Zhou
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Dan Yan
- Intensive Care Unit, First People's Hospital of Yunnan Province, Kunming, China
| | - Qiao-Li Xie
- Department of Cardiac and Vascular Surgery, First People's Hospital of Yunnan Province, Kunming, China
| | - Wei Zhao
- Department of Cardiac and Vascular Surgery, First People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
37
|
Ramirez-Bajo MJ, Rovira J, Lazo-Rodriguez M, Banon-Maneus E, Tubita V, Moya-Rull D, Hierro-Garcia N, Ventura-Aguiar P, Oppenheimer F, Campistol JM, Diekmann F. Impact of Mesenchymal Stromal Cells and Their Extracellular Vesicles in a Rat Model of Kidney Rejection. Front Cell Dev Biol 2020; 8:10. [PMID: 32064259 PMCID: PMC7000363 DOI: 10.3389/fcell.2020.00010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) from different sources possess great therapeutic potential due to their immunomodulatory properties associated with allograft tolerance. However, a crucial role in this activity resides in extracellular vesicles (EVs) and signaling molecules secreted by cells. This study aimed to evaluate the immunomodulatory properties of donor and recipient MSCs isolated from adipose tissue (AD) or bone marrow (BM) and their EVs on kidney outcome in a rat kidney transplant model. Methods The heterotopic-kidney-transplant Fisher-to-Lewis rat model (F-L) was performed to study mixed cellular and humoral rejection. After kidney transplantation, Lewis recipients were assigned to 10 groups; two control groups; four groups received autologous MSCs (either AD- or BM- MSC) or EVs (derived from both cell types); and four groups received donor-derived MSCs or EVs. AD and BM-EVs were purified by ultracentrifugation. Autologous cell therapies were administered three times intravenously; immediately after kidney transplantation, 4 and 8 weeks, whereas donor-derived cell therapies were administered once intravenously immediately after transplantation. Survival and renal function were monitored. Twelve weeks after kidney transplantation grafts were harvested, infiltrating lymphocytes were analyzed by flow cytometry and histological lesions were characterized. Results Autologous AD- and BM-MSCs, but not their EVs, prolonged graft and recipient survival in a rat model of kidney rejection. Autologous AD- and BM-MSCs significantly improved renal function during the first 4 weeks after transplantation. The amelioration of graft function could be associated with an improvement in tubular damage, as well as in T, and NK cell infiltration. On the other side, the application of donor-derived AD-MSC was harmful, and all rats died before the end of the protocol. AD-EVs did not accelerate the rejection. Contrary to autologous MSCs results, the single dose of donor-derived BM-MSCs is not enough to ameliorate kidney graft damage. Conclusion EVs treatments did not exert any benefit in our experimental settings. In the autologous setting, BM-MSCs prompted as a potentially promising therapy to improve kidney graft outcomes in rats with chronic mixed rejection. In the donor-derived setting, AD-MSC accelerated progression to end-stage kidney disease. Further experiments are required to adjust timing and dose for better long-term outcomes.
Collapse
Affiliation(s)
- Maria Jose Ramirez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Marta Lazo-Rodriguez
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain
| | - Elisenda Banon-Maneus
- Red de Investigación Renal (REDINREN), Madrid, Spain.,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain
| | - Valeria Tubita
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Daniel Moya-Rull
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Natalia Hierro-Garcia
- Red de Investigación Renal (REDINREN), Madrid, Spain.,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain
| | - Pedro Ventura-Aguiar
- Departament de Nefrologia i Trasplantament Renal, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Federico Oppenheimer
- Departament de Nefrologia i Trasplantament Renal, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Josep M Campistol
- Red de Investigación Renal (REDINREN), Madrid, Spain.,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain.,Departament de Nefrologia i Trasplantament Renal, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Fritz Diekmann
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain.,Departament de Nefrologia i Trasplantament Renal, Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
38
|
Plenter RJ, Coulombe MG, Roybal HM, Lin CM, Gill RG, Zamora MR, Grazia TJ. C-kit-derived CD11b + cells are critical for cardiac allograft prolongation by autologous C-kit + progenitor cells. Cell Immunol 2020; 347:104023. [PMID: 31836133 DOI: 10.1016/j.cellimm.2019.104023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/06/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022]
Abstract
Autologous C-kit+ cells robustly prolong cardiac allografts. As C-kit+ cells can transdifferentiate to hematopoietic cells as well as non-hematopoietic cells, we aimed to clarify the class(es) of C-kit-derived cell(s) required for cardiac allograft prolongation. Autologous C-kit+ cells were administered post-cardiac transplantation and allografts were evaluated for C-kit+ inoculum-derived cells. Results suggested that alloimmunity was a major signal for trafficking of C-kit-derived cells to the allograft and demonstrated that C-kit+ inoculum-derived cells expressed CD11b early after transfer. Allograft survival studies with CD11b-DTR C-kit+ cells demonstrated a requirement for C-kit+-derived CD11b+ cells. Co-therapy studies demonstrated near complete abrogation of acute rejection with concomitant CTLA4-Ig therapy and no loss of prolongation in combination with Cyclosporine A. These results strongly implicate a C-kit-derived myeloid population as critical for allograft preservation and demonstrate the potential therapeutic application of autologous C-kit+ progenitor cells as calcineurin inhibitor-sparing agents and possibly as co-therapeutics for durable graft survival.
Collapse
Affiliation(s)
- R J Plenter
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, USA; Department of Surgery, University of Colorado, Aurora, CO, USA.
| | - M G Coulombe
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, USA; Department of Surgery, University of Colorado, Aurora, CO, USA.
| | - H M Roybal
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, USA.
| | - C M Lin
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, USA.
| | - R G Gill
- Department of Microbiology and Immunology, University of Colorado, Aurora, CO, USA; Department of Surgery, University of Colorado, Aurora, CO, USA.
| | - M R Zamora
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, USA.
| | - T J Grazia
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, USA; Department of Microbiology and Immunology, University of Colorado, Aurora, CO, USA; Division of Pulmonary Diseases, Section of Advanced Lung Disease and Lung Transplantation, Baylor University Medical Center, Dallas, TX, USA.
| |
Collapse
|
39
|
Mesenchymal stem cell-derived extracellular vesicles improve the molecular phenotype of isolated rat lungs during ischemia/reperfusion injury. J Heart Lung Transplant 2019; 38:1306-1316. [PMID: 31530458 DOI: 10.1016/j.healun.2019.08.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/14/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Lung ischemia/reperfusion (IR) injury contributes to the development of severe complications in patients undergoing transplantation. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) exert beneficial actions comparable to those of MSCs without the risks of the cell-based strategy. This research investigated EV effects during IR injury in isolated rat lungs. METHODS An established model of 180-minutes ex vivo lung perfusion (EVLP) was used. At 60 minutes EVs (n = 5) or saline (n = 5) were administered. Parallel experiments used labeled EVs to determine EV biodistribution (n = 4). Perfusate samples were collected to perform gas analysis and to assess the concentration of nitric oxide (NO), hyaluronan (HA), inflammatory mediators, and leukocytes. Lung biopsies were taken at 180 minutes to evaluate HA, adenosine triphosphate (ATP), gene expression, and histology. RESULTS Compared with untreated lungs, EV-treated organs showed decreased vascular resistance and a rise of perfusate NO metabolites. EVs prevented the reduction in pulmonary ATP caused by IR. Increased medium-high-molecular-weight HA was detected in the perfusate and in the lung tissue of the IR + EV group. Significant differences in cell count on perfusate and tissue samples, together with induction of transcription and synthesis of chemokines, suggested EV-dependent modulation of leukocyte recruitment. EVs upregulated genes involved in the resolution of inflammation and oxidative stress. Biodistribution analysis showed that EVs were retained in the lung tissue and internalized within pulmonary cells. CONCLUSIONS This study shows multiple novel EV influences on pulmonary energetics, tissue integrity, and gene expression during IR. The use of cell-free therapies during EVLP could constitute a valuable strategy for reconditioning and repair of injured lungs before transplantation.
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Mesenchymal stromal cells (MSC) have emerged as one of the most promising candidates for immunomodulatory cell therapy in kidney transplantation. Here we describe novel insights into the MSC mechanism of action and provide an overview of initial safety and feasibility studies with MSC in kidney transplantation. RECENT FINDINGS Clinical studies of MSC-based cell therapy in kidney transplant recipients demonstrated the safety and feasibility of cell therapy and provide the first encouraging evidence of the efficacy of MSC in enabling the minimization of immunosuppressive drugs. In our initial experience with MSC-based therapy in kidney transplant recipients we carried out extensive clinical and immunological monitoring of MSC-treated patients and found possible biomarkers of MSC immunomodulation in some of them. Based on these biomarkers we identified a patient in whom complete discontinuation of immunosuppression has been achieved safely and successfully. SUMMARY Many issues should be addressed before MSC-based therapy becomes a standard treatment protocol for kidney transplantation. A better understanding of the MSC mechanism of action and the identification of biomarkers of response to therapy will inform the rational design of the most effective clinical protocol and the selection of patients amenable to safe immunosuppressive drug withdrawal.
Collapse
|
41
|
Podestà MA, Remuzzi G, Casiraghi F. Mesenchymal Stromal Cells for Transplant Tolerance. Front Immunol 2019; 10:1287. [PMID: 31231393 PMCID: PMC6559333 DOI: 10.3389/fimmu.2019.01287] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022] Open
Abstract
In solid organ transplantation lifelong immunosuppression exposes transplant recipients to life-threatening complications, such as infections and malignancies, and to severe side effects. Cellular therapy with mesenchymal stromal cells (MSC) has recently emerged as a promising strategy to regulate anti-donor immune responses, allowing immunosuppressive drug minimization and tolerance induction. In this review we summarize preclinical data on MSC in solid organ transplant models, focusing on potential mechanisms of action of MSC, including down-regulation of effector T-cell response and activation of regulatory pathways. We will also provide an overview of available data on safety and feasibility of MSC therapy in solid organ transplant patients, highlighting the issues that still need to be addressed before establishing MSC as a safe and effective tolerogenic cell therapy in transplantation.
Collapse
Affiliation(s)
- Manuel Alfredo Podestà
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Remuzzi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Federica Casiraghi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
42
|
Kuan II, Lee CC, Chen CH, Lu J, Kuo YS, Wu HC. The extracellular domain of epithelial cell adhesion molecule (EpCAM) enhances multipotency of mesenchymal stem cells through EGFR-LIN28-LET7 signaling. J Biol Chem 2019; 294:7769-7786. [PMID: 30926604 DOI: 10.1074/jbc.ra119.007386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/19/2019] [Indexed: 11/06/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are widely considered to be an attractive cell source for regenerative therapies, but maintaining multipotency and self-renewal in cultured MSCs is especially challenging. Hence, the development and mechanistic description of strategies that help promote multipotency in MSCs will be vital to future clinical use. Here, using an array of techniques and approaches, including cell biology, RT-quantitative PCR, immunoblotting, immunofluorescence, flow cytometry, and ChIP assays, we show that the extracellular domain of epithelial cell adhesion molecule (EpCAM) (EpEX) significantly increases the levels of pluripotency factors through a signaling cascade that includes epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3), and Lin-28 homolog A (LIN28) and enhances the proliferation of human bone marrow MSCs. Moreover, we found that EpEX-induced LIN28 expression reduces the expression of the microRNA LET7 and up-regulates that of the transcription factor high-mobility group AT-hook 2 (HMGA2), which activates the transcription of pluripotency factors. Surprisingly, we found that EpEX treatment also enhances osteogenesis of MSCs under differentiation conditions, as evidenced by increases in osteogenic markers, including Runt-related transcription factor 2 (RUNX2). Taken together, our results indicate that EpEX stimulates EGFR signaling and thereby context-dependently controls MSC states and activities, promoting cell proliferation and multipotency under maintenance conditions and osteogenesis under differentiation conditions.
Collapse
Affiliation(s)
- I-I Kuan
- From the Institute of Cellular and Organismic Biology and
| | - Chi-Chiu Lee
- From the Institute of Cellular and Organismic Biology and
| | - Chien-Hsu Chen
- From the Institute of Cellular and Organismic Biology and
| | - Jean Lu
- Genomic Research Center, Academia Sinica, Taipei 115 and
| | - Yuan-Sung Kuo
- the Department of Surgery, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Han-Chung Wu
- From the Institute of Cellular and Organismic Biology and .,Genomic Research Center, Academia Sinica, Taipei 115 and
| |
Collapse
|
43
|
Abstract
In this chapter, we describe the history of transplantation, the multiple cell types, and mechanisms that are involved in rejection and tolerance of a transplanted organ, as well as summarize the common and promising new therapeutics used in transplant patients.
Collapse
Affiliation(s)
- Jessica Stolp
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Masaaki Zaitsu
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Kathryn J Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
44
|
Mesenchymal stem cells in combination with low-dose rapamycin significantly prolong islet allograft survival through induction of regulatory T cells. Biochem Biophys Res Commun 2018; 506:619-625. [DOI: 10.1016/j.bbrc.2018.10.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/11/2018] [Indexed: 12/13/2022]
|
45
|
Guo H, Li B, Wang W, Zhao N, Gao H. Mesenchymal stem cells overexpressing IL-35: a novel immunosuppressive strategy and therapeutic target for inducing transplant tolerance. Stem Cell Res Ther 2018; 9:254. [PMID: 30257721 PMCID: PMC6158805 DOI: 10.1186/s13287-018-0988-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Inducing donor-specific immunological tolerance, which avoids the complications of long-term immunosuppression, is an important goal in organ transplantation. Interleukin-35 (IL-35), a cytokine identified in 2007, is mainly secreted by regulatory T cells (Tregs) and is essential for Tregs to exert their maximal immunoregulatory activity in vitro and in vivo. A growing number of studies show that IL-35 plays an important role in autoimmune diseases and infectious diseases. Recent research has shown that IL-35 could effectively alleviate allograft rejection and has the potential to be a novel therapeutic strategy for graft rejection. With increasing study of immunoregulation, cell-based therapy has become a novel approach to attenuate rejection after transplantation. Mesenchymal stem cells (MSCs), which exhibit important properties of multilineage differentiation, tissue repair, and immunoregulation, have recently emerged as attractive candidates for cell-based therapeutics, especially in transplantation. Accumulating evidence demonstrates that the therapeutic abilities of MSCs can be amplified by gene modification. Therefore, researchers have constructed IL-35 gene-modified MSCs and explored their functions and mechanisms in some disease models. In this review, we discuss the potential tolerance-inducing effects of MSCs in transplantation and briefly introduce the immunoregulatory functions of the IL-35 gene-modified MSCs.
Collapse
Affiliation(s)
- Hao Guo
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Baozhu Li
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Wei Wang
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Na Zhao
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Haopeng Gao
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| |
Collapse
|
46
|
Ezekian B, Schroder PM, Freischlag K, Yoon J, Kwun J, Knechtle SJ. Contemporary Strategies and Barriers to Transplantation Tolerance. Transplantation 2018; 102:1213-1222. [PMID: 29757903 PMCID: PMC6059978 DOI: 10.1097/tp.0000000000002242] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/30/2022]
Abstract
The purpose of this review is to discuss immunologic tolerance as it applies to solid organ transplantation and to identify barriers that hinder the achievement of this long-term goal. First, the definition of tolerance and an introduction of mechanisms by which tolerance exists or can be achieved will be discussed. Next, a review of contemporary attempts at achieving transplant tolerance will be described. Finally, a discussion of the humoral barriers to transplantation tolerance and potential ways to overcome these barriers will be presented.
Collapse
Affiliation(s)
- Brian Ezekian
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC
| | - Paul M. Schroder
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC
| | - Kyle Freischlag
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC
| | - Janghoon Yoon
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC
| | - Jean Kwun
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC
| | - Stuart J. Knechtle
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC
| |
Collapse
|
47
|
Watanabe H, Tsuchiya T, Shimoyama K, Shimizu A, Akita S, Yukawa H, Baba Y, Nagayasu T. Adipose-derived mesenchymal stem cells attenuate rejection in a rat lung transplantation model. J Surg Res 2018; 227:17-27. [DOI: 10.1016/j.jss.2018.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/29/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022]
|
48
|
Perico N, Casiraghi F, Todeschini M, Cortinovis M, Gotti E, Portalupi V, Mister M, Gaspari F, Villa A, Fiori S, Introna M, Longhi E, Remuzzi G. Long-Term Clinical and Immunological Profile of Kidney Transplant Patients Given Mesenchymal Stromal Cell Immunotherapy. Front Immunol 2018; 9:1359. [PMID: 29963053 PMCID: PMC6014158 DOI: 10.3389/fimmu.2018.01359] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/31/2018] [Indexed: 12/11/2022] Open
Abstract
We report here the long-term clinical and immunological results of four living-donor kidney transplant patients given autologous bone marrow-derived mesenchymal stromal cells (MSCs) as part of a phase 1 study focused on the safety and feasibility of this cell therapy. According to study protocols implemented over time, based on initial early safety findings, the patients were given MSC at day 7 posttransplant (n = 2) or at day −1 pretransplant (n = 2) and received induction therapy with basiliximab and low-dose rabbit anti-thymocyte globulin (RATG) or RATG alone, and were maintained on low-dose ciclosporin (CsA)/mycophenolate mofetil (MMF). All MSC-treated patients had stable graft function during the 5- to 7-year follow-up, without increased susceptibility to infections or neoplasm. In three MSC recipients, but not historical control patients, circulating memory CD8+ T cell percentages remained lower than basal, coupled with persistent reduction of ex vivo donor-specific cytotoxicity. Two patients showed a long-lasting increase in the regulatory T cell/memory CD8+ T cell ratio, paralleled by high circulating levels of naïve and transitional B cells. In one of these two patients, CsA was successfully discontinued, and currently the low-dose MMF monotherapy is on the tapering phase. The study shows that MSC therapy is safe in the long term and could promote a pro-tolerogenic environment in selected patients. Extensive immunomonitoring of MSC-treated kidney transplant recipients could help selection of patients for safe withdrawal of maintenance immunosuppressive drugs (NCT00752479 and NCT02012153).
Collapse
Affiliation(s)
- Norberto Perico
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | | | - Marta Todeschini
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Monica Cortinovis
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Eliana Gotti
- Unit of Nephrology and Dialysis, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Valentina Portalupi
- Unit of Nephrology and Dialysis, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Marilena Mister
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Flavio Gaspari
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Alessandro Villa
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Sonia Fiori
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Martino Introna
- G. Lanzani Laboratory of Cell Therapy, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Elena Longhi
- Laboratory of Transplant Immunology, UOC Coordinamento Trapianti IRCCS Fondazione Ca' Granda - Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Giuseppe Remuzzi
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy.,Unit of Nephrology and Dialysis, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy.,L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
49
|
Ding Y, Liang X, Zhang Y, Yi L, Shum HC, Chen Q, Chan BP, Fan H, Liu Z, Tergaonkar V, Qi Z, Tse HF, Lian Q. Rap1 deficiency-provoked paracrine dysfunction impairs immunosuppressive potency of mesenchymal stem cells in allograft rejection of heart transplantation. Cell Death Dis 2018; 9:386. [PMID: 29515165 PMCID: PMC5842217 DOI: 10.1038/s41419-018-0414-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 02/11/2018] [Accepted: 02/14/2018] [Indexed: 12/20/2022]
Abstract
Immunomodulatory activity of mesenchymal stem cells (MSCs) is largely mediated by paracrine factors. Our previous studies showed that activation of nuclear factor-kappa B (NF-κB) regulates cytokine/growth factor secretion by MSCs. This study aimed to elucidate the role of Rap1 (repressor/activator protein), a novel modulator involved in the NF-κB pathway, in regulating the immunomodulatory potency of MSCs in acute allograft rejection of heart transplantation. The immunosuppressive potency of wild-type MSCs (WT-MSCs) or Rap1-deficient MSCs (Rap1-/--MSCs) was examined in mice with acute allograft rejection following heart transplantation. With a combination of immunosuppressant rapamycin at a dose of 1 mg/kg/d, WT-MSCs notably prolonged the survival of the transplanted heart compared with Rap1-/--MSCs. Rap1-/--MSCs displayed a marked insensitivity to inhibit the mixed lymphocyte reaction (MLR) due to impaired cytokine production and a significantly reduced activity of NF-κB signaling in vitro. Finally, transplantation of encapsulated WT-MSCs greatly prolonged the survival of the heart allograft compared with encapsulated Rap1-/--MSCs. Our results indicate that Rap1 is essential to maintain the immunomodulatory function of MSCs. Deletion of Rap1 results in impaired immunomodulatory function of MSCs.
Collapse
Affiliation(s)
- Yue Ding
- Department of Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Organ Transplantation Institute of Xiamen University, Xiamen, Fujian Province, China
| | - Xiaoting Liang
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Clinical Translational Medical Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuelin Zhang
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Li Yi
- Peking University Shenzhen Hospital, Shenzhen, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Qiulan Chen
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Barbara P Chan
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Huimin Fan
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongmin Liu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Vinay Tergaonkar
- Institute of Molecular and Cellular Biology, Biopolis, Singapore
| | - Zhongquan Qi
- Organ Transplantation Institute of Xiamen University, Xiamen, Fujian Province, China.
| | - Hung-Fat Tse
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Qizhou Lian
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Peking University Shenzhen Hospital, Shenzhen, China.
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
50
|
Kaundal U, Bagai U, Rakha A. Immunomodulatory plasticity of mesenchymal stem cells: a potential key to successful solid organ transplantation. J Transl Med 2018; 16:31. [PMID: 29448956 PMCID: PMC5815241 DOI: 10.1186/s12967-018-1403-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/07/2018] [Indexed: 02/06/2023] Open
Abstract
Organ transplantation remains to be a treatment of choice for patients suffering from irreversible organ failure. Immunosuppressive (IS) drugs employed to maintain the allograft have shown excellent short-term graft survival, but, their long-term use could contribute to immunological and non-immunological risk factors, resulting in graft dysfunctionalities. Upcoming IS regimes have highlighted the use of cell-based therapies, which can eliminate the risk of drug-borne toxicities while maintaining efficacy of the treatment. Mesenchymal stem cells (MSCs) have been considered as an invaluable cell type, owing to their unique immunomodulatory properties, which makes them desirable for application in transplant settings, where hyper-activation of the immune system is evident. The immunoregulatory potential of MSCs holds true for preclinical studies while achieving it in clinical studies continues to be a challenge. Understanding the biological factors responsible for subdued responses of MSCs in vivo would allow uninhibited use of this therapy for countless conditions. In this review, we summarize the variations in the preclinical and clinical studies utilizing MSCs, discuss the factors which might be responsible for variability in outcome and propose the advancements likely to occur in future for using this as a "boutique/personalised therapy" for patient care.
Collapse
Affiliation(s)
- Urvashi Kaundal
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
- Department of Zoology, Panjab University, Sector 14, Chandigarh, India
| | - Upma Bagai
- Department of Zoology, Panjab University, Sector 14, Chandigarh, India
| | - Aruna Rakha
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
| |
Collapse
|