1
|
Breschi L, Maravic T, Mazzitelli C, Josic U, Mancuso E, Cadenaro M, Pfeifer CS, Mazzoni A. The evolution of adhesive dentistry: From etch-and-rinse to universal bonding systems. Dent Mater 2025; 41:141-158. [PMID: 39632207 DOI: 10.1016/j.dental.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVES This review aimed at presenting the mechanisms and pitfalls of adhesion to enamel and dentin, advances in the materials science and in the development of strategies to improve hybrid layer (HL) longevity. METHODS Search of the literature was performed on PubMed, Scopus and Web of Science with keywords related to the structure of the dental substrate, HL degradation mechanisms and strategies to contrast them. RESULTS Albeit the advances in the dental materials' properties, HL degradation is still a relevant and current issue in adhesive dentistry. However, adhesive materials have become more resistant and less operator sensitive, and good adhesion is currently in the hands of every practitioner. Numerous novel strategies are being developed, able to improve the resistance of adhesive resins to degradation, their ability to infiltrate and chemically bond to dentin, to remove the unbound/residual water within the HL, reinforce the dentin collagen matrix, and inhibit endogenous metalloproteinases. Many of the strategies have turned to nature in search for powerful biomodifying compounds, and for the inspiration as to mimic naturally occurring regenerative processes. SIGNIFICANCE Extensive knowledge on the structure of the dental substrate and the complexity of adhesion to dentin has led to the development of improved formulations of dental adhesives and numerous valid strategies to improve the strength and longevity of the HL. Nevertheless, for many of them the road from bench to chairside still seems long. We encourage practitioners to know their materials well and use the strategies readily available to them.
Collapse
Affiliation(s)
- Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy.
| | - Tatjana Maravic
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| | - Claudia Mazzitelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| | - Uros Josic
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| | - Edoardo Mancuso
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| | - Milena Cadenaro
- Department of Medical Sciences, University of Trieste, Strada di Fiume 447, Trieste 34149, Italy; Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Via dell'Istria 65/1, Trieste 34137, Italy
| | - Carmem S Pfeifer
- School of Dentistry, Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, 2730 S Moody Ave., Portland, OR 97201, USA
| | - Annalisa Mazzoni
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| |
Collapse
|
2
|
Wang S, Mao S, Huang G, Jia P, Dong Y, Zheng J. Alkali-extracted proteins from the tooth dentin matrix as a mixture of bioactive molecules for cartilage repair and regeneration. Regen Ther 2024; 26:407-414. [PMID: 39070122 PMCID: PMC11282981 DOI: 10.1016/j.reth.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Dentin matrix extracted protein (DMEP) is a mixture of proteins extracted from the organic matrix of a natural demineralized dentin matrix that is rich in a variety of growth factors. However, the effect of DMEP on cartilage regeneration is unclear. The aim of this study was to investigate the efficacy of DMEP extracted via a novel alkali conditioning method in promoting cartilage regeneration. Methods Alkali-extracted DMEP (a-DMEP) was obtained from human dentin fragments using pH 10 bicarbonate buffer. The concentration of chondrogenesis-related growth factors in a-DMEP was measured via enzyme-linked immunosorbent assay (ELISA). Human bone marrow mesenchymal stem cells (hBMMSCs) in pellet form were induced with a-DMEP. Alcian blue and Safranin O staining were performed to detect cartilage matrix formation, and quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess chondrogenic-related gene expression in the pellets. Rabbit articular osteochondral defects were implanted with collagen and a-DMEP. Cartilage regeneration was assessed with histological staining 4 weeks after surgery. Results Compared with traditional neutral-extracted DMEP, a-DMEP significantly increased the levels of transforming growth factor beta 1(TGF-β1), insulin-like growth factor-1(IGF-1) and basic fibroblast growth factor (bFGF). After coculture with hBMMSC pellets, a-DMEP significantly promoted the expression of the collagen type II alpha 1(COL2A1) and aggrecan (ACAN) genes and the formation of cartilage extracellular matrix in cell pellets. Moreover, compared with equivalent amounts of exogenous human recombinant TGF-β1, a-DMEP had a stronger chondrogenic ability. In vivo, a-DMEP induced osteochondral regeneration with hyaline cartilage-like structures. Conclusions Our results showed that a-DMEP, a compound of various proteins derived from natural tissues, is a promising material for cartilage repair and regeneration.
Collapse
Affiliation(s)
- Sainan Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, China
| | - Sicong Mao
- Department of General Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, China
| | - Guibin Huang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, China
| | - Peipei Jia
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, China
| | - Yanmei Dong
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, China
| | - Jinxuan Zheng
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong Province, 510080, China
| |
Collapse
|
3
|
Ballikaya E, Çelebi-Saltik B. Approaches to vital pulp therapies. AUST ENDOD J 2023; 49:735-749. [PMID: 37515353 DOI: 10.1111/aej.12772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Tooth decay, which leads to pulpal inflammation due to the pulp's response to bacterial components and byproducts is the most common infectious disease. The main goals of clinical management are to eliminate sources of infection, to facilitate healing by regulating inflammation indental tissue, and to replace lost tissues. A variety of novel approaches from tissue engineering based on stem cells, bioactive molecules, and extracellular matrix-like scaffold structures to therapeutic applications, or a combination of all these are present in the literature. Shortcomings of existing conventional materials for pulp capping and the novel approches aiming to preserve pulp vitality highligted the need for developing new targeted dental materials. This review looks at the novel approches for vital pulp treatments after briefly addresing the conventional vital pulp treatment as well as the regenerative and self defense capabilities of the pulp. A narrative review focusing on the current and future approaches for pulp preservation was performed after surveying the relevant papers on vital pulp therapies including pulp capping, pulpotomy, and potential approaches for facilitating dentin-pulp complex regeneration in PubMed, Medline, and Scopus databases.
Collapse
Affiliation(s)
- Elif Ballikaya
- Department of Oral and Dental Health Research, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey
- Department of Pediatric Dentistry, Hacettepe University Faculty of Dentistry, Ankara, Turkey
| | - Betül Çelebi-Saltik
- Department of Oral and Dental Health Research, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| |
Collapse
|
4
|
de Oliveira SG, Kotowski N, Sampaio-Filho HR, Aguiar FHB, Dávila AMR, Jardim R. Metalloproteinases in Restorative Dentistry: An In Silico Study toward an Ideal Animal Model. Biomedicines 2023; 11:3042. [PMID: 38002041 PMCID: PMC10669239 DOI: 10.3390/biomedicines11113042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/02/2023] [Accepted: 09/13/2023] [Indexed: 11/26/2023] Open
Abstract
In dentistry, various animal models are used to evaluate adhesive systems, dental caries and periodontal diseases. Metalloproteinases (MMPs) are enzymes that degrade collagen in the dentin matrix and are categorized in over 20 different classes. Collagenases and gelatinases are intrinsic constituents of the human dentin organic matrix fibrillar network and are the most abundant MMPs in this tissue. Understanding such enzymes' action on dentin is important in the development of approaches that could reduce dentin degradation and provide restorative procedures with extended longevity. This in silico study is based on dentistry's most used animal models and intends to search for the most suitable, evolutionarily close to Homo sapiens. We were able to retrieve 176,077 mammalian MMP sequences from the UniProt database. These sequences were manually curated through a three-step process. After such, the remaining 3178 sequences were aligned in a multifasta file and phylogenetically reconstructed using the maximum likelihood method. Our study inferred that the animal models most evolutionarily related to Homo sapiens were Orcytolagus cuniculus (MMP-1 and MMP-8), Canis lupus (MMP-13), Rattus norvegicus (MMP-2) and Orcytolagus cuniculus (MMP-9). Further research will be needed for the biological validation of our findings.
Collapse
Affiliation(s)
- Simone Gomes de Oliveira
- Piracicaba School of Dentistry, Campinas State University, Piracicaba 13414-903, SP, Brazil
- School of Dentistry, State University of Rio de Janeiro, Rio de Janeiro 20551-030, RJ, Brazil
| | - Nelson Kotowski
- Computational and Systems Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (N.K.); (A.M.R.D.)
| | | | | | - Alberto Martín Rivera Dávila
- Computational and Systems Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (N.K.); (A.M.R.D.)
| | - Rodrigo Jardim
- Computational and Systems Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (N.K.); (A.M.R.D.)
| |
Collapse
|
5
|
Alkattan R, Ajaj R, Koller G, Banerji S, Deb S. A self-etch bonding system with potential to eliminate selective etching and resist proteolytic degradation. J Dent 2023; 132:104501. [PMID: 36967082 DOI: 10.1016/j.jdent.2023.104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/06/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
OBJECTIVES Bonded restorations using self-etch (SE) systems exhibit a limited lifespan due to their susceptibility to hydrolytic, enzymatic or fatigue degradation and poor performance on enamel. This study was conducted to develop and assess the performance of a two-step SE system using a functional monomer bis[2-(methacryloyloxy)ethyl]phosphate (BMEP) and demonstrate a strategy to enhance stability of bonded resin composite restorations to both enamel and dentine. METHODS A two-step SE system was formulated with a primer containing BMEP, with an adhesive with or without BMEP, and compared to a commercial 10-MDP-containing system, ClearfilTM SE Bond 2 (CFSE). The systems were evaluated on enamel for surface roughness and microshear bond strength (µSBS) and on dentine for microtensile bond strength (µTBS), nanoleakage, MMP inhibition and cyclic flexural fatigue. RESULTS Whilst all bonding systems resulted in statistically similar µSBS, BMEP-based primers yielded greater enamel surface roughness than the CFSE primer. The BMEP-free adhesives resulted in statistically similar or higher µTBS and lower nanoleakage compared to CFSE. In situ zymography revealed minimal to no MMP activity within the hybrid layer of BMEP-based systems. The BMEP-free adhesive exhibited flexural strength and fatigue resistance statistically similar to CFSE. CONCLUSIONS Incorporation of BMEP in the primer led to satisfactory bond strengths with both enamel and dentine, potentially eliminating the need for selective enamel etching. Combined with an adhesive formulation that is solvent-free and hydrophobic, and confining the acidic functional monomer in the primer resulted in minimal interfacial leakage, and resistance to proteolytic degradation and the cyclic nature of chewing. CLINICAL SIGNIFICANCE The SE bonding system containing BMEP combines the potent etching of phosphoric acid with the therapeutic function of the phosphate-based monomer in creating a homogenous hybrid layer with protection against endogenous proteolytic enzymes. This strategy may overcome current challenges that arise during selective enamel etching.
Collapse
|
6
|
Hardan L, Daood U, Bourgi R, Cuevas-Suárez CE, Devoto W, Zarow M, Jakubowicz N, Zamarripa-Calderón JE, Radwanski M, Orsini G, Lukomska-Szymanska M. Effect of Collagen Crosslinkers on Dentin Bond Strength of Adhesive Systems: A Systematic Review and Meta-Analysis. Cells 2022; 11:cells11152417. [PMID: 35954261 PMCID: PMC9368291 DOI: 10.3390/cells11152417] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to identify the role of crosslinking agents in the resin–dentin bond strength (BS) when used as modifiers in adhesives or pretreatments to the dentin surface through a systematic review and meta-analysis. This paper was conducted according to the directions of the PRISMA 2020 statement. The research question of this review was: “Would the use of crosslinkers agents improve the BS of resin-based materials to dentin?” The literature search was conducted in the following databases: Embase, PubMed, Scielo, Scopus, and Web of Science. Manuscripts that reported the effect on the BS after the use of crosslinking agents were included. The meta-analyses were performed using Review Manager v5.4.1. The comparisons were performed by comparing the standardized mean difference between the BS values obtained using the crosslinker agent or the control group. The subgroup comparisons were performed based on the adhesive strategy used (total-etch or self-etch). The immediate and long-term data were analyzed separately. A total of 50 articles were included in the qualitative analysis, while 45 articles were considered for the quantitative analysis. The meta-analysis suggested that pretreatment with epigallocatechin-3-gallate (EGCG), carbodiimide, ethylenediaminetetraacetic acid (EDTA), glutaraldehyde, and riboflavin crosslinking agents improved the long-term BS of resin composites to dentin (p ≤ 0.02). On the other hand, the use of proanthocyanidins as a pretreatment improved both the immediate and long-term BS values (p ≤ 0.02). When incorporated within the adhesive formulation, only glutaraldehyde, riboflavin, and EGCG improved the long-term BS to dentin. It could be concluded that the application of different crosslinking agents such as carbodiimide, EDTA, glutaraldehyde, riboflavin, and EGCG improved the long-term BS of adhesive systems to dentin. This effect was observed when these crosslinkers were used as a separate step and when incorporated within the formulation of the adhesive system.
Collapse
Affiliation(s)
- Louis Hardan
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon
| | - Umer Daood
- Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Wilayah Persekutuan, Kuala Lumpur 57000, Malaysia
| | - Rim Bourgi
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon
| | - Carlos Enrique Cuevas-Suárez
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, Circuito Ex Hacienda La Concepción S/N, San Agustín Tlaxiaca 42160, Mexico
- Correspondence: (C.E.C.-S.); (M.L.-S.); Tel.: +52-(771)-72000 (C.E.C.-S.); +48-42-675-74-61 (M.L.-S.)
| | | | - Maciej Zarow
- “NZOZ SPS Dentist” Dental Clinic and Postgraduate Course Centre, pl. Inwalidow 7/5, 30-033 Cracow, Poland
| | - Natalia Jakubowicz
- “NZOZ SPS Dentist” Dental Clinic and Postgraduate Course Centre, pl. Inwalidow 7/5, 30-033 Cracow, Poland
| | - Juan Eliezer Zamarripa-Calderón
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, Circuito Ex Hacienda La Concepción S/N, San Agustín Tlaxiaca 42160, Mexico
| | - Mateusz Radwanski
- Department of Endodontics, Chair of Conservative Dentistry and Endodontics, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
| | - Giovana Orsini
- Department of Clinical Sciences and Stomatology, School of Medicine, Polytechnic University of Marche, Via Tronto 10, 60126 Ancona, Italy
| | - Monika Lukomska-Szymanska
- Department of General Dentistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
- Correspondence: (C.E.C.-S.); (M.L.-S.); Tel.: +52-(771)-72000 (C.E.C.-S.); +48-42-675-74-61 (M.L.-S.)
| |
Collapse
|
7
|
Mussel-inspired monomer - A new selective protease inhibitor against dentine collagen degradation. Dent Mater 2022; 38:1149-1161. [PMID: 35680429 DOI: 10.1016/j.dental.2022.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/03/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVES To evaluate the inhibitory effect of a novel mussel-inspired monomer (N-(3,4-dihydroxyphenethyl)methacrylamide (DMA) on the soluble and matrix-bound proteases. METHODS The inhibitory effect of DMA (0, 1, 5, and 10 mM) and 1 mM chlorhexidine (CHX) dissolved in 50% ethanol/water on soluble recombinant human matrix metalloproteinases (rhMMP-2, -8, and -9), as well as cysteine cathepsins (B and K) were evaluated using both fluorometric assay kits and molecular docking. The effect of CHX and DMA on matrix-bound proteases was examined by in situ zymography, and the fluorescence intensity and relative area were calculated by Image J software. All data obtained were analyzed by one-way ANOVA followed by Tukey test (α = 0.05). RESULTS The anti-proteolytic ability of DMA increased in a dose-dependent manner except that of rhMMP-9. Inhibitory effect of 1 mM DMA against rhMMP-2, - 8, - 9, as well as cathepsin B and K was all significantly lower than 1 mM CHX (p < 0.05). The molecular docking analysis was in good agreement with the experimental results, that the binding energy of DMA was lower than CHX for all proteases. In situ zymography revealed that all DMA- and CHX-treated groups significantly inactivated the matrix-bound proteases, with a dramatic reduction of the fluorescence intensity and relative area compared with the control group (p < 0.05). SIGNIFICANCE Under the prerequisite condition that the overall inhibitory performance on matrix-bound proteases was comparable by DMA and CHX, the more selective property of DMA could avoid inducing potential negative effects by suppressing MMP-9 when applied in dental treatment compared with CHX.
Collapse
|
8
|
Mayer-Santos E, Maravic T, Comba A, Freitas PM, Marinho GB, Mazzitelli C, Mancuso E, Scotti N, Florenzano F, Breschi L, Mazzoni A. The Influence of Different Bleaching Protocols on Dentinal Enzymatic Activity: An In Vitro Study. Molecules 2022; 27:1684. [PMID: 35268785 PMCID: PMC8911605 DOI: 10.3390/molecules27051684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate matrix metalloproteinase (MMP) activity in human dentin using in-situ and gelatin zymography, after at-home and in-office bleaching, related to their clinical exposure times. Dentin specimens (n = 5) were treated with 35% hydrogen peroxide (50 min per session/4 sessions), 10% carbamide peroxide (180 min/21 sessions), or no treatment. All were subjected to in-situ zymography. Dentin slices were, subsequently, obtained, covered with fluorescein-conjugated gelatin, and examined with confocal laser-scanning microscopy. The fluorescence intensity was quantified and statistically analyzed using one-way ANOVA and Bonferroni tests (α = 0.05). Furthermore, gelatin zymography was performed on protein extracts obtained from dentin powder (N = 8 teeth), treated with hydrogen peroxide or carbamide peroxide, with different exposure times (10/50 min for hydrogen peroxide; 252/1260 min for carbamide peroxide). The results of the in-situ zymography showed no statistical differences between the bleached specimens and the control group, with a medium level of gelatinolytic activity expressed in the dentin tubules. The results of gelatin zymography showed an increased expression of pro-MMP-9 in carbamide peroxide groups. The expression of pro-MMP-2 decreased in all the experimental groups. The bleaching treatments performed on the enamel of sound teeth do not influence dentinal enzymatic activity. However, when unprotected dentin tissue is bleached, matrix metalloproteinases are more expressed, particularly when carbamide peroxide is used, proportional to the exposure time.
Collapse
Affiliation(s)
- Eric Mayer-Santos
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (E.M.-S.); (P.M.F.); (G.B.M.)
| | - Tatjana Maravic
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; (T.M.); (C.M.); (E.M.); (F.F.); (L.B.)
| | - Allegra Comba
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (A.C.); (N.S.)
| | - Patricia Moreira Freitas
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (E.M.-S.); (P.M.F.); (G.B.M.)
| | - Giovanna Bueno Marinho
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (E.M.-S.); (P.M.F.); (G.B.M.)
| | - Claudia Mazzitelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; (T.M.); (C.M.); (E.M.); (F.F.); (L.B.)
| | - Edoardo Mancuso
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; (T.M.); (C.M.); (E.M.); (F.F.); (L.B.)
| | - Nicola Scotti
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (A.C.); (N.S.)
| | - Federica Florenzano
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; (T.M.); (C.M.); (E.M.); (F.F.); (L.B.)
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; (T.M.); (C.M.); (E.M.); (F.F.); (L.B.)
| | - Annalisa Mazzoni
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; (T.M.); (C.M.); (E.M.); (F.F.); (L.B.)
| |
Collapse
|
9
|
Maravić T, Baena E, Mazzitelli C, Josić U, Mancuso E, Checchi V, Generali L, Ceballos L, Breschi L, Mazzoni A. Endogenous Enzymatic Activity in Dentin Treated with a Chitosan Primer. Int J Mol Sci 2021; 22:ijms22168852. [PMID: 34445554 PMCID: PMC8396363 DOI: 10.3390/ijms22168852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to evaluate the effect of different concentrations of chitosan polymer on dentinal enzymatic activity by means of gelatin and in situ zymography. Human dentin was frozen and ground in a miller. Dentin powder aliquots were demineralized with phosphoric acid and treated with three different concentrations of lyophilized chitosan polymer (1, 0.5 and 0.1 wt%) dissolved in distilled water. Dentin proteins were extracted from each experimental group and electrophoresed under non-reducing conditions in 10% SDS-PAGE containing fluorescein-labeled gelatin. After 48 h in the incubation buffer at 37 °C, proteolytic activity was registered under long-wave UV light scanner and quantified by using Image J software. Furthermore, additional teeth (n = 4) were prepared for the in situ zymographic analysis in unrestored as well as restored dentin pretreated with the same chitosan primers. The registered enzymatic activity was directly proportional to the chitosan concentration and higher in the restored dentin groups (p < 0.05), except for the 0.1% chitosan primer. Chitosan 0.1% only showed faint expression of enzymatic activity compared to 1% and 0.5% concentrations. Chitosan 0.1% dissolved in water can produce significant reduction in MMPs activity and could possibly contribute to bond strength preservation over time.
Collapse
Affiliation(s)
- Tatjana Maravić
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna-Alma Mater Studiorum, Via San Vitale 59, 40125 Bologna, Italy; (T.M.); (C.M.); (U.J.); (E.M.); (L.B.)
| | - Eugenia Baena
- Area of Stomatology, Health Sciences Faculty, King Juan Carlos University, Avda. de Atenas, 28922 Alcorcón, Spain; (E.B.); (L.C.)
| | - Claudia Mazzitelli
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna-Alma Mater Studiorum, Via San Vitale 59, 40125 Bologna, Italy; (T.M.); (C.M.); (U.J.); (E.M.); (L.B.)
| | - Uroš Josić
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna-Alma Mater Studiorum, Via San Vitale 59, 40125 Bologna, Italy; (T.M.); (C.M.); (U.J.); (E.M.); (L.B.)
| | - Edoardo Mancuso
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna-Alma Mater Studiorum, Via San Vitale 59, 40125 Bologna, Italy; (T.M.); (C.M.); (U.J.); (E.M.); (L.B.)
| | - Vittorio Checchi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, University of Modena & Reggio Emilia, 41124 Modena, Italy; (V.C.); (L.G.)
| | - Luigi Generali
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, University of Modena & Reggio Emilia, 41124 Modena, Italy; (V.C.); (L.G.)
| | - Laura Ceballos
- Area of Stomatology, Health Sciences Faculty, King Juan Carlos University, Avda. de Atenas, 28922 Alcorcón, Spain; (E.B.); (L.C.)
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna-Alma Mater Studiorum, Via San Vitale 59, 40125 Bologna, Italy; (T.M.); (C.M.); (U.J.); (E.M.); (L.B.)
| | - Annalisa Mazzoni
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna-Alma Mater Studiorum, Via San Vitale 59, 40125 Bologna, Italy; (T.M.); (C.M.); (U.J.); (E.M.); (L.B.)
- Correspondence: ; Tel.: +39-051-208-8139; Fax: +39-051-22-5208
| |
Collapse
|
10
|
Endogenous Enzymatic Activity of Primary and Permanent Dentine. MATERIALS 2021; 14:ma14144043. [PMID: 34300961 PMCID: PMC8304528 DOI: 10.3390/ma14144043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/04/2022]
Abstract
Matrix metalloproteinases (MMPs) play an important role in tooth development and influence caries development and hybrid layer degradation. Literature is scant on the differences in the activity of MMPs between primary and permanent dentine. Accordingly, the aim of the present study was to investigate endogenous gelatinolytic activity in primary and permanent dentine. Separate batches of dentine powder were obtained from intact human primary and permanent molars (n = 6). Each batch was divided in two subgroups: (1) mineralised; and (2) demineralised with 10% H3PO4. After protein extraction, gelatine zymography was performed. Furthermore, in situ zymography was performed on dentine sections of the same groups (n = 3). The slices were polished, covered with fluorescein-conjugated gelatine and evaluated using a confocal microscope. In situ zymography data were analysed using two-way analysis of variance and post hoc Holm–Šidák statistics (α = 0.05). Primary dentine showed poorly defined bands in the zymograms that vaguely corresponded to the pro-form and active form of MMP-2 and the pro-form of MMP-9. In permanent dentine, demineralised powder demonstrated stronger gelatinolytic activity than mineralised powder. In situ zymography identified stronger enzymatic activity in primary etched dentine (p < 0.05). Stronger enzymatic activity recorded in primary dentine may be related to the differences in morphology and composition between primary and permanent dentine.
Collapse
|
11
|
Fugolin AP, Logan MG, Kendall AJ, Ferracane JL, Pfeifer CS. Effect of side-group methylation on the performance of methacrylamides and methacrylates for dentin hybridization. Dent Mater 2021; 37:805-815. [PMID: 33663882 PMCID: PMC8058282 DOI: 10.1016/j.dental.2021.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/30/2020] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
The stability of the bond between polymeric adhesives to mineralized substrates is crucial in many biomedical applications. The objective of this study was to determine the effect of methyl substitution at the α- and β-carbons on the kinetics of polymerization, monomer hydrolytic stability, and long-term bond strength to dentin for methacrylamide- and methacrylate-based crosslinked networks for dental adhesive applications. METHODS Secondary methacrylamides (α-CH3 substituted=1-methyl HEMAM, β-CH3 substituted=2-methyl HEMAM, and unsubstituted=HEMAM) and OH-terminated methacrylates (α- and β-CH3 mixture=1-methyl HEMA and 2-methyl HEMA, and unsubstituted=HEMA) were copolymerized with urethane dimethacrylate. The kinetics of photopolymerization were followed in real-time using near-IR spectroscopy. Monomer hydrolysis kinetics were followed by NMR spectroscopy in water at pH 1 over 30 days. Solvated adhesives (40 vol% ethanol) were used to bond composite to dentin and microtensile bond strength (μTBS) measured after 24h and 6 months storage in water at 37°C. RESULTS The rate of polymerization increased in the following order: OH-terminated methacrylates≥methacrylamides>NH2-terminated methacrylates, with minimal effect of the substitution. Final conversion ranged between 79% for 1-methyl AEMA and 94% for HEMA. 1-methyl-HEMAM showed the highest and most stable μTBS, while HEMA showed a 37% reduction after six months All groups showed measurable degradation after up to 4 days in pH 1, with the methacrylamides showing less degradation than the methacrylates. Additionally, transesterification products were observed in the methacrylamide groups. SIGNIFICANCE Amide monomers were significantly more stable to hydrolysis than the analogous methacrylates. The addition of a α- or β-CH3 groups increased the rate of hydrolysis, with the magnitude of the effect tracking with the expected base-catalyzed hydrolysis of esters or amides, but opposite in influence. The α-CH3 substituted secondary methacrylamide, 1-methyl HEMAM, showed the most stable adhesive interface. A side reaction was observed with transesterification of the monomers studied under ambient conditions, which was not expected under the relatively mild conditions used here, which warrants further investigation.
Collapse
Affiliation(s)
- Ana P Fugolin
- Biomaterials and Biomechanics, Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Matthew G Logan
- Biomaterials and Biomechanics, Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Alexander J Kendall
- Biomaterials and Biomechanics, Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jack L Ferracane
- Biomaterials and Biomechanics, Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Carmem S Pfeifer
- Biomaterials and Biomechanics, Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
12
|
Paken G, Çömlekoğlu ME, Sonugelen M. Detection of the hybrid layer biodegradation initiation factor with a scanning electron microscope. Microsc Res Tech 2021; 84:2166-2175. [PMID: 33931911 DOI: 10.1002/jemt.23771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/28/2021] [Accepted: 03/25/2021] [Indexed: 11/08/2022]
Abstract
The purpose of this study was to elucidate the origin of initiation of hybrid layer biodegradation. Ninety caries-free human third molars were divided into three surface groups: enamel, dentin, and NaOCl-treated dentin. (n = 30/group) Each group was divided into three subgroups (n = 10/group) of luting resin materials with etch-and-rinse; self-etch and self-adhesive systems. Resin composite blocks and sticks were fabricated and adhered onto dentin and enamel surfaces. The bond strength values were evaluated with micro shear test and statistical analysis were made. On the other hand, teeth were sectioned with a slow-speed saw into multiple beams. After thermocycling, samples were kept in 50% silver nitrate solution. Samples were analyzed with SEM in back-scattered mode. According to the micro-shear bond tests, higher bond strength values were observed in etch-and-rinse system. Bond strength values in self-adhesive and etch-and-rinse groups were significantly higher than self-etch groups in dentin surface and dentin surface treatment with NaOCl. Back-scattered scanning electron microscope results showed that, different degradation mechanism was observed. The present study indicates that, due to the acid etching in dentin, collagen biodegradation was observed within the hybrid layer. On the enamel surfaces, resin degradation was related with resin monomers in adhesive systems.
Collapse
Affiliation(s)
- Gamze Paken
- Department of Prosthodontics, School of Dentistry, Usak University, Usak, Turkey
| | | | - Mehmet Sonugelen
- Department of Prosthodontics, School of Dentistry, Ege University, Izmir, Turkey
| |
Collapse
|
13
|
Oosterlaken BM, Vena MP, de With G. In Vitro Mineralization of Collagen. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004418. [PMID: 33711177 PMCID: PMC11469168 DOI: 10.1002/adma.202004418] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/29/2020] [Indexed: 06/12/2023]
Abstract
Collagen mineralization is a biological process in many skeletal elements in the animal kingdom. Examples of these collagen-based skeletons are the siliceous spicules of glass sponges or the intrafibrillar hydroxyapatite platelets in vertebrates. The mineralization of collagen in vitro has gained interest for two reasons: understanding the processes behind bone formation and the synthesis of scaffolds for tissue engineering. In this paper, the efforts toward collagen mineralization in vitro are reviewed. First, general introduction toward collagen type I, the main component of the extracellular matrix in animals, is provided, followed by a brief overview of collagenous skeletons. Then, the in vitro mineralization of collagen is critically reviewed. Due to their biological abundance, hydroxyapatite and silica are the focus of this review. To a much lesser extent, also some efforts with other minerals are outlined. Combining all minerals and the suggested mechanisms for each mineral, a general mechanism for the intrafibrillar mineralization of collagen is proposed. This review concludes with an outlook for further improvement of collagen-based tissue engineering scaffolds.
Collapse
Affiliation(s)
- Bernette Maria Oosterlaken
- Laboratory of Physical ChemistryDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyPO Box 513EindhovenMB5600The Netherlands
| | - Maria Paula Vena
- Laboratory of Physical ChemistryDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyPO Box 513EindhovenMB5600The Netherlands
| | - Gijsbertus de With
- Laboratory of Physical ChemistryDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyPO Box 513EindhovenMB5600The Netherlands
| |
Collapse
|
14
|
Moreira KM, Bertassoni LE, Davies RP, Joia F, Höfling JF, Nascimento FD, Puppin-Rontani RM. Impact of biomineralization on resin/biomineralized dentin bond longevity in a minimally invasive approach: An "in vitro" 18-month follow-up. Dent Mater 2021; 37:e276-e289. [PMID: 33608139 DOI: 10.1016/j.dental.2021.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To determine the impact of treating caries-affected dentin (CAD) with: 0.2% sodium fluoride (NaF), casein phosphopeptide-amorphous calcium phosphate (CPP-ACP/MI Paste™) or peptide P11-4 (Curodont™ Repair) on the longevity of resin/CAD interface at storage times of 24 -h, 6- and 18-month. METHODS 255 caries-free third molars were used, and CAD was produced by a biological method. The teeth were randomly distributed into: G1- Sound dentin (SD); G2- CAD; G3- CAD + 0.2% NaF (CAD/NaF); G4- CAD + CPP-ACP (CAD/ACP); G5- CAD + Curodont™ Repair (CAD/P11-4). The Filtek Z350 composite resin block was bonded to dentin using Adper™ Single 2 (4 mm/height). Resin/dentin blocks were stored in a solution of Simulated Body Fluid at 37 °C, pressures were modified to simulate natural pulpal pressures. Specimens were investigated by microtensile bond strength (μTBS) (n = 8), Scanning Electron Microscopy (to assess the failure mode) (n = 8), nanoinfiltration (to assess the interface sealing) (n = 3), in situ zymography (to assess the gelatinolytic activity) (n = 3) and micro-computed microtomography (μ-CT) (to assess the mineralization) (n = 3). Data from μTBS, μ-CT and, nanoinfiltration and hybrid layer formation/degradation were submitted to two-way ANOVA and Tukey tests, and failure patterns and in situ zymography to Kruskal-Wallis and Dunn tests (α = 5%). RESULTS The highest mineral density change by μ-CT, smallest silver nitrate infiltration and proteolytic activity in the adhesive layer were obtained significantly for the groups SD, CAD/ACP and CAD/P11-4, with most mixed fractures at 18-month (p < 0.001). CAD/NaF showed significantly similar values to CAD, CAD and CAD/NaF which presented a high percentage of adhesive fracture (p < 0.001) at all time periods. SIGNIFICANCE Treating caries-affected dentin with remineralizing agents CPP-ACP and Curodont™ Repair, has the potential to be a clinically relevant treatment protocol to increase the longevity of adhesive restorations.
Collapse
Affiliation(s)
- Kelly Maria Moreira
- Department of Science Health and Pediatric Dentistry, Division of Pediatric Dentistry, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba 13414-903, SP, Brazil.
| | - Luiz Eduardo Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR 97201, USA.
| | - Robert Phill Davies
- Division of Oral Biology, School of Dentistry, Faculty of Medicine & Health, University of Leeds, Leeds S9 7TF, UK.
| | - Felipe Joia
- Department of Oral Diagnosis, Piracicaba Dental School University of Campinas - UNICAMP, Piracicaba 13414-903, SP, Brazil.
| | - José Francisco Höfling
- Department of Oral Diagnosis, Piracicaba Dental School University of Campinas - UNICAMP, Piracicaba 13414-903, SP, Brazil.
| | - Fabio Duprat Nascimento
- Interdisciplinary Center of Biochemistry Investigation, University of Mogi das Cruzes, Mogi das Cruzes 08780-911, SP, Brazil.
| | - Regina Maria Puppin-Rontani
- Department of Science Health and Pediatric Dentistry, Division of Pediatric Dentistry, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba 13414-903, SP, Brazil.
| |
Collapse
|
15
|
Gobbi P, Maravic T, Comba A, Mazzitelli C, Mancuso E, Falconi M, Breschi L, Mazzoni A. Biochemical and immunohistochemical analysis of tissue inhibitor of metalloproteinases-1 in human sound dentin. Clin Oral Investig 2021; 25:5067-5075. [PMID: 33569677 PMCID: PMC8342377 DOI: 10.1007/s00784-021-03819-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/29/2021] [Indexed: 11/29/2022]
Abstract
Objectives Matrix metalloproteases (MMPs) are a family of enzymes that operate a proteolytic activity at the level of the extracellular matrix. MMPs are regulated by tissue inhibitors of metalloproteinases (TIMPs) that can ubiquitously bind different enzyme forms. The study aims to identify a morfo-functional association between TIMP-1 and MMP-2 and -9 in human dentin. Materials and methods Proteins were extracted from demineralized human sound dentin powder and centrifuged to separate two aliquots with different molecular weights of proteins, higher and lower than 30 kDa. In each aliquot, the evaluation of the presence of TIMP-1/MMP-2 and TIMP-1/MMP-9 was performed using co-immunoprecipitation/immunoblotting analysis. The distribution of TIMP-1, in association with MMP-2 and -9, was investigated using a double immunohistochemical technique. Furthermore, the activity of TIMP-1 was measured by reverse zymography, where acrylamide gel was copolymerized with gelatin and recombinant MMP-2. Results Co-immunoprecipitation/immunoblotting analysis showed the association TIMP-1/MMP-2 and TIMP-1/MMP-9 in human sound dentin. Electron microscopy evaluation revealed a diffuse presence of TIMP-1 tightly associated with MMP-2 and -9. Reverse zymography analysis confirmed that TIMP-1 present in human dentin is active and can bind different MMPs isoforms. Conclusions The strict association of TIMP-1 with MMP-2 and -9 in situ appeared a constant finding in the human sound dentin. Clinical relevance Considering the role of TIMP-1, MMP-2, and MMP-9 within the connective tissues, clinically applicable protocols could be developed in the future to increase or decrease the level of TIMPs in human dentin to regulate the activity of MMPs, contributing to reduce caries progression and collagen degradation.
Collapse
Affiliation(s)
- Pietro Gobbi
- Department of Biomolecular Sciences, Carlo Bo Urbino University, Via Aurelio Saffi 2, 61029, Urbino, Italy
| | - Tatjana Maravic
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, 40125, Bologna, Italy
| | - Allegra Comba
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, 40125, Bologna, Italy
| | - Claudia Mazzitelli
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, 40125, Bologna, Italy
| | - Edoardo Mancuso
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, 40125, Bologna, Italy
| | - Mirella Falconi
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, 40125, Bologna, Italy
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, 40125, Bologna, Italy.
| | - Annalisa Mazzoni
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, 40125, Bologna, Italy
| |
Collapse
|
16
|
The Role of Matrix Metalloproteinases in Periodontal Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17144923. [PMID: 32650590 PMCID: PMC7399864 DOI: 10.3390/ijerph17144923] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
This review provides a detailed description of matrix metalloproteinases (MMPs), focusing on those that are known to have critical roles in bone and periodontal disease. Periodontal disease is an inflammatory process initiated by anaerobic bacteria, which promote the host immune response in the form of a complex network of molecular pathways involving proinflammatory mediators such as cytokines, growth factors, and MMPs. MMPs are a family of 23 endopeptidases, collectively capable of degrading virtually all extracellular matrix (ECM) components. This study critically discusses the available research concerning the involvement of the MMPs in periodontal disease development and progression and presents possible therapeutic strategies. MMPs participate in morphogenesis, physiological tissue turnover, and pathological tissue destruction. Alterations in the regulation of MMP activity are implicated in the manifestation of oral diseases, and MMPs comprise the most important pathway in tissue destruction associated with periodontal disease. MMPs can be considered a risk factor for periodontal disease, and measurements of MMP levels may be useful markers for early detection of periodontitis and as a tool to assess prognostic follow-ups. Detection and inhibition of MMPs could, therefore, be useful in periodontal disease prevention or be an essential part of periodontal disease therapy, which, considering the huge incidence of the disease, may greatly improve oral health globally.
Collapse
|
17
|
de Moraes IQS, do Nascimento TG, da Silva AT, de Lira LMSS, Parolia A, Porto ICCDM. Inhibition of matrix metalloproteinases: a troubleshooting for dentin adhesion. Restor Dent Endod 2020; 45:e31. [PMID: 32839712 PMCID: PMC7431940 DOI: 10.5395/rde.2020.45.e31] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/17/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are enzymes that can degrade collagen in hybrid layer and reduce the longevity of adhesive restorations. As scientific understanding of the MMPs has advanced, useful strategies focusing on preventing these enzymes' actions by MMP inhibitors have quickly developed in many medical fields. However, in restorative dentistry, it is still not well established. This paper is an overview of the strategies to inhibit MMPs that can achieve a long-lasting material-tooth adhesion. Literature search was performed comprehensively using the electronic databases: PubMed, ScienceDirect and Scopus including articles from May 2007 to December 2019 and the main search terms were “matrix metalloproteinases”, “collagen”, and “dentin” and “hybrid layer”. MMPs typical structure consists of several distinct domains. MMP inhibitors can be divided into 2 main groups: synthetic (synthetic-peptides, non-peptide molecules and compounds, tetracyclines, metallic ions, and others) and natural bioactive inhibitors mainly flavonoids. Selective inhibitors of MMPs promise to be the future for specific targeting of preventing dentin proteolysis. The knowledge about MMPs functionality should be considered to synthesize drugs capable to efficiently and selectively block MMPs chemical routes targeting their inactivation in order to overcome the current limitations of the therapeutic use of MMPs inhibitors, i.e., easy clinical application and long-lasting effect.
Collapse
Affiliation(s)
- Izadora Quintela Souza de Moraes
- Laboratory of Pharmaceutical and Food Analysis, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Ticiano Gomes do Nascimento
- Laboratory of Pharmaceutical and Food Analysis, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Antonio Thomás da Silva
- Laboratory of Pharmaceutical and Food Analysis, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Lilian Maria Santos Silva de Lira
- Laboratory of Pharmaceutical and Food Analysis, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Abhishek Parolia
- Division of Clinical Dentistry, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Isabel Cristina Celerino de Moraes Porto
- Laboratory of Pharmaceutical and Food Analysis, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil.,Department of Restorative Dentistry, Faculty of Dentistry, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil
| |
Collapse
|
18
|
Mazzoni A, Maravić T, Tezvergil-Mutluay A, Tjäderhane L, Scaffa PMC, Seseogullari-Dirihan R, Bavelloni A, Gobbi P, Pashley DH, Tay FR, Breschi L. Biochemical and immunohistochemical identification of MMP-7 in human dentin. J Dent 2018; 79:90-95. [PMID: 30367893 DOI: 10.1016/j.jdent.2018.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/23/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Matrix metalloproteinases (MMPs) are dentinal endogenous enzymes claimed to have a vital role in dentin organic matrix breakdown. The aim of the study was to investigate presence, localization and distribution of MMP-7 in sound human dentin. METHODS Dentin was powdered, demineralized and dissolved in isoelectric focusing buffer. Resolved proteins were transferred to nitrocellulose membranes for western blotting (WB) analyses. For the zymographic analysis, aliquots of dentin protein were electrophoresed in 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis containing fluorescently labeled gelatin. Further, the concentrations of dentinal MMPs were measured using Fluorescent Microsphere Immunoassay with a human MMP-MAP multiplex kit. Pre- and post-embedding immunolabeling technique was used to investigate the localization and distribution of MMP-7 in dentin. Dentin was cryo-fractured, the fragments partially decalcified and labeled with a primary monoclonal anti-MMP-7 and a secondary antibody conjugated with gold nanoparticles. MMP-7 labelings were identified in the demineralized dentin matrix as highly electron-dense dispersed gold particles. RESULTS WB and zymographic analysis of extracted dentin proteins showed presence of MMP-7 (∼20-28 KDa). Further, MMP-7 was found in the supernatants of the incubated dentin beams using Fluorescent Microsphere Immunoassay. FEI-SEM and TEM analyses established MMP-7 as an intrinsic constituent of the human dentin organic matrix. CONCLUSION This study demonstrated that MMP-7 is an endogenous component of the human dentin fibrillar network. CLINICAL SIGNIFICANCE It is pivotal to understand the underlying processes behind dentin matrix remodeling and degradation in order to develop the most optimal clinical protocols and ensure the longevity of dental restorations.
Collapse
Affiliation(s)
- Annalisa Mazzoni
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna-Alma Mater Studiorum, Via San Vitale 59, Bologna, Italy.
| | - Tatjana Maravić
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna-Alma Mater Studiorum, Via San Vitale 59, Bologna, Italy.
| | - Arzu Tezvergil-Mutluay
- Department of Restorative Dentistry and Cariology, Adhesive Dentistry Research Group Institute of Dentistry, University of Turku, FI-20014 Turun Yliopisto, Turku Finland; Turku University Hospital, Kiinamyllynkatu 4-8 Turku, Finland.
| | - Leo Tjäderhane
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki University Hospital, Mannerheimintie 172, 00014 Helsinki, Finland; Research Unit of Oral Health Sciences, Medical Research Center Oulu (MRC Oulu), Oulu University Hospital and University of Oulu, Pentti Kaiteran katu 1, Linnanmaa, Oulu, Finland.
| | | | - Roda Seseogullari-Dirihan
- Department of Restorative Dentistry and Cariology, Adhesive Dentistry Research Group Institute of Dentistry, University of Turku, FI-20014 Turun Yliopisto, Turku Finland; Turku University Hospital, Kiinamyllynkatu 4-8 Turku, Finland.
| | - Alberto Bavelloni
- Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Via di Barbiano, 1/10, 40136 Bologna, Italy.
| | - Pietro Gobbi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Aurelio Saffi 2, Urbino, Italy.
| | - David H Pashley
- The Dental College of Georgia, Augusta University, 1430 John Wesley Gilbert Drive, Augusta, Georgia, USA.
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, 1430 John Wesley Gilbert Drive, Augusta, Georgia, USA.
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna-Alma Mater Studiorum, Via San Vitale 59, Bologna, Italy.
| |
Collapse
|
19
|
Release of ICTP and CTX telopeptides from demineralized dentin matrices: Effect of time, mass and surface area. Dent Mater 2018; 34:452-459. [DOI: 10.1016/j.dental.2017.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 11/23/2022]
|
20
|
Stape THS, Tjäderhane L, Tezvergil-Mutluay A, Da Silva WG, Dos Santos Silva AR, da Silva WJ, Marques MR. In situ analysis of gelatinolytic activity in human dentin. Acta Histochem 2018; 120:136-141. [PMID: 29373132 DOI: 10.1016/j.acthis.2017.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/27/2017] [Accepted: 12/29/2017] [Indexed: 11/29/2022]
Abstract
Matrix metalloproteinases (MMPs) such as gelatinases are differentially expressed in human tissues. These enzymes cleave specific substrates involved in cell signaling, tissue development and remodeling and tissue breakdown. Recent evidences show that gelatinases are crucial for normal dentin development and their activity is maintained throughout the entire tooth function in the oral cavity. Due to the lack of information about the exact location and activity of gelatinases in mature human dentin, the present study was designed to examine gelatinolytic levels in sound dentin. In situ zymography using confocal microscopy was performed on both mineralized and demineralized dentin samples. Sites presenting gelatinase activity were identified throughout the entire biological tissue pursuing different gelatinolytic levels for distinct areas: predentin and dentinal tubule regions presented higher gelatinolytic activity compared to intertubular dentin. Dentin regions with higher gelatinolytic activity immunohistochemically were partially correlated with MMP-2 expression. The maintenance of gelatinolytic activity in mature dentin may have biological implications related to biomineralization of predentin and tubular/peritubular dentinal regions, as well as regulation of defensive mechanisms of the dentin-pulp complex.
Collapse
Affiliation(s)
- Thiago Henrique Scarabello Stape
- Adhesive Dentistry Research Group, Institute of Dentistry, University of Turku, Turku, Finland; Department of Restorative Dentistry and Cariology, University of Turku, Turku, Finland
| | - Leo Tjäderhane
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland and Helsinki University Hospital, Helsinki, Finland; Research Unit of Oral Health Sciences, and Medical Research Center Oulu (MRC Oulu), Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Arzu Tezvergil-Mutluay
- Adhesive Dentistry Research Group, Institute of Dentistry, University of Turku, Turku, Finland; Department of Restorative Dentistry and Cariology, University of Turku, Turku, Finland
| | - Wagner Gomes Da Silva
- Department of Oral Diagnosis, Semiology Area, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Alan Roger Dos Santos Silva
- Department of Oral Diagnosis, Semiology Area, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Wander José da Silva
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Marcelo Rocha Marques
- Department of Morphology Division of Histology, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil.
| |
Collapse
|
21
|
Breschi L, Maravic T, Cunha SR, Comba A, Cadenaro M, Tjäderhane L, Pashley DH, Tay FR, Mazzoni A. Dentin bonding systems: From dentin collagen structure to bond preservation and clinical applications. Dent Mater 2018; 34:78-96. [DOI: 10.1016/j.dental.2017.11.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/10/2017] [Indexed: 12/18/2022]
|
22
|
Tabatabaei FS, Tatari S, Samadi R, Moharamzadeh K. Different methods of dentin processing for application in bone tissue engineering: A systematic review. J Biomed Mater Res A 2016; 104:2616-27. [PMID: 27256548 DOI: 10.1002/jbm.a.35790] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 11/10/2022]
Abstract
Dentin has become an interesting potential biomaterial for tissue engineering of oral hard tissues. It can be used as a scaffold or as a source of growth factors in bone tissue engineering. Different forms of dentin have been studied for their potential use as bone substitutes. Here, we systematically review different methods of dentin preparation and the efficacy of processed dentin in bone tissue engineering. An electronic search was carried out in PubMed and Scopus databases for articles published from 2000 to 2016. Studies on dentin preparation for application in bone tissue engineering were selected. The initial search yielded a total of 1045 articles, of which 37 were finally selected. Review of studies showed that demineralization was the most commonly used dentin preparation process for use in tissue engineering. Dentin extract, dentin particles (tooth ash), freeze-dried dentin, and denatured dentin are others method of dentin preparation. Based on our literature review, we can conclude that preparation procedure and the size and shape of dentin particles play an important role in its osteoinductive and osteoconductive properties. Standardization of these methods is important to draw a conclusion in this regard. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2616-2627, 2016.
Collapse
Affiliation(s)
- Fahimeh Sadat Tabatabaei
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Tatari
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Samadi
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Keyvan Moharamzadeh
- School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield, S10 2TA, United Kingdom
| |
Collapse
|
23
|
Kuhn E, Reis A, Campagnoli EB, Chibinski ACR, Carrilho MRDO, Wambier DS. Effect of sealing infected dentin with glass ionomer cement on the abundance and localization of MMP-2, MMP-8, and MMP-9 in young permanent molars in vivo. Int J Paediatr Dent 2016; 26:125-33. [PMID: 25967636 DOI: 10.1111/ipd.12167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The study of MMPs' behavior in carious lesions contributes to the understanding of the mechanisms involved in dentin reorganization after restoration. AIM To compare the abundance and localization of MMPs 2, 8, and 9 in infected dentin before and after restoration. DESIGN The sample consisted of 23 young permanent molars with active deep carious lesions. Infected carious dentin samples were collected from the same tooth at baseline and 60 days after cavity lining with GIC and composite resin restoration and processed for immunohistochemistry assays. After digital images were obtained, two calibrated operators analyzed the samples according to the immunostaining intensity and the MMPs' localization. Chi-square test was used for statistical analysis. RESULTS The intensity of immunostaining for MMP-8 was reduced after 60 days (P = 0.02), and no difference was observed for MMP-2 (P = 0.32) and MMP-9 (P = 0.14). The MMPs' distribution was generalized in the intertubular dentin and absent or located in the intratubular dentin, regardless of the period. CONCLUSION The sealing of infected carious dentin in young permanent molars reduced the expression of MMP-8, which is consistent with the initial remodeling process of the dentin matrix.
Collapse
Affiliation(s)
- Eunice Kuhn
- Department of Dentistry, School of Dentistry, Ponta Grossa State University, Ponta Grossa, Brazil
| | - Alessandra Reis
- Department of Dentistry, School of Dentistry, Ponta Grossa State University, Ponta Grossa, Brazil
| | - Eduardo Bauml Campagnoli
- Department of Dentistry, School of Dentistry, Ponta Grossa State University, Ponta Grossa, Brazil
| | | | | | - Denise Stadler Wambier
- Department of Dentistry, School of Dentistry, Ponta Grossa State University, Ponta Grossa, Brazil
| |
Collapse
|
24
|
Turco G, Frassetto A, Fontanive L, Mazzoni A, Cadenaro M, Di Lenarda R, Tay FR, Pashley DH, Breschi L. Occlusal loading and cross-linking effects on dentin collagen degradation in physiological conditions. Dent Mater 2016; 32:192-9. [DOI: 10.1016/j.dental.2015.11.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 10/18/2015] [Accepted: 11/30/2015] [Indexed: 11/25/2022]
|
25
|
Salehi S, Cooper P, Smith A, Ferracane J. Dentin matrix components extracted with phosphoric acid enhance cell proliferation and mineralization. Dent Mater 2016; 32:334-42. [PMID: 26777093 DOI: 10.1016/j.dental.2015.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 11/07/2015] [Accepted: 11/20/2015] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Acids, such as those used in adhesive dentistry, have been shown to solubilize bioactive molecules from dentin. These dentin matrix components (DMC) may promote cell proliferation and differentiation, and ultimately contribute to dentin regeneration. The objective of this study was to evaluate the potential for varying concentrations of DMC extracted from human dentin by phosphoric acid of a range of pHs to stimulate proliferation and mineralization of two different cultured pulp cell populations. METHODS DMC were solubilized from powdered human dentin (7 days - 4°C) by phosphoric acid of pH 1, 3, and 5 and also, EDTA. Extracts were dialyzed for 7 days against distilled water and lyophilized. Undifferentiated mouse dental pulp cells (OD-21) and cells of the odontoblast-like cell line (MDPC-23) were seeded in six-well plates (1×10(5)) and cultured for 24h in DMEM (Dulbecco's modified Eagle's medium) containing 10% (v/v) FBS (fetal bovine serum). The cells were washed with serum-free medium and then treated with different concentrations of DMC (0.01, 0.1, 1.0 and 10.0μg/ml) daily in serum free medium for 7 days. After 3, 5 (MDPC-23 only), and 7 days of treatment, cell proliferation was measured using 10vol% Alamar blue solution, which was added to each well for 1h. Cell numbers were first measured by cell counting (Trypan blue; n=5) and Alamar blue fluorescence to validate the assay, which was then used for the subsequent assessments of proliferation. Mineralization was assessed by Alizarin Red S assay after 12 days exposure to DMC (n=5). Controls were media-only (DMEM) and dexamethasone (DEX; positive control). Results were analysed by ANOVA/Tukey's (p≤0.05). RESULTS There was a linear correlation between cell counts and Alamar blue fluorescence (R(2)>0.96 for both cell types) , verifying the validity of the Alamar blue assay for these cell types. In general, there was a dose-dependent trend for enhanced cell proliferation with higher concentration of DMC for both cell lines, especially at 10.0μg/ml. DEX exposure resulted in significantly higher mineralization, but did not affect cell proliferation. DMC exposure demonstrated significantly greater mineralization than media-only control for 10μg/ml for all extracts, and at lower concentrations for EDTA and pH 5 extracts. SIGNIFICANCE Human dentin matrix components solubilized by acids at pH levels found in commercial dentin adhesives enhanced cell proliferation and mineralization of mouse and rat undifferentiated dental pulp cells when presented in adequate concentration.
Collapse
Affiliation(s)
- Satin Salehi
- Department of Restorative Dentistry, Division of Biomaterials and Biomechanics, Oregon Health & Science University, Portland, OR 97201, USA
| | - Paul Cooper
- Oral Biology, School of Dentistry, University of Birmingham, Birmingham B4 6NN, United Kingdom
| | - Anthony Smith
- Oral Biology, School of Dentistry, University of Birmingham, Birmingham B4 6NN, United Kingdom
| | - Jack Ferracane
- Department of Restorative Dentistry, Division of Biomaterials and Biomechanics, Oregon Health & Science University, Portland, OR 97201, USA.
| |
Collapse
|
26
|
Cadenaro M, Fontanive L, Navarra CO, Gobbi P, Mazzoni A, Di Lenarda R, Tay FR, Pashley DH, Breschi L. Effect of carboidiimide on thermal denaturation temperature of dentin collagen. Dent Mater 2016; 32:492-8. [PMID: 26764172 DOI: 10.1016/j.dental.2015.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/09/2015] [Accepted: 12/07/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVES 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) has been shown to cross-link dentin type I collagen. Increased cross-linking usually elevates the glass transition temperature of polymers. The aim of this study was to evaluate the cross-linking reaction promoted by EDC in different aqueous concentrations by measuring the thermal denaturation temperature (Td) of human dentin collagen. METHODS The Td of dehydrated collagen and of insoluble dentin matrix collagen immersed in 0.5M or 1M EDC aqueous solution for different treatment times was obtained using a Differential Scanning Calorimeter (DSC). Specimens were also analyzed by Energy Dispersive X-Ray Spectroscopy. RESULTS EDC-treated dentin collagen showed a significantly higher Td than the untreated specimens when immersed in either 0.5M EDC or 1M EDC for 10min or longer (p<0.05). EDC-treated dentin collagen showed an increase of sulfur and chloride, not detectable in EDC-untreated dentin specimens. Conversely, the relative amount of carbon, nitrogen and oxygen was not modified by treatments. SIGNIFICANCE EDC-treated dentin collagen showed a higher Td than the untreated control at all tested concentrations and immersion times. A higher Td can be considered an indirect indicator of a more resistant and highly cross-linked collagen network. More data are needed to confirm these results.
Collapse
Affiliation(s)
- Milena Cadenaro
- Department of Medical Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34129 Trieste, Italy.
| | - Luca Fontanive
- Department of Medical Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34129 Trieste, Italy
| | - Chiara Ottavia Navarra
- Department of Medical Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34129 Trieste, Italy
| | - Pietro Gobbi
- Department of Earth, Life and Environment Sciences (Di.STeVA), University of Urbino, Campus Scientifico Enrico Mattei - Via Ca' Le Suore 2/4, I-61029 Urbino (PU), Italy
| | - Annalisa Mazzoni
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna, Via San Vitale 59, I-40125 Bologna, Italy
| | - Roberto Di Lenarda
- Department of Medical Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34129 Trieste, Italy
| | - Franklin R Tay
- Department of Oral Biology, Georgia Regents University, College of Dental Medicine, Augusta, GA, USA
| | - David H Pashley
- Department of Oral Biology, Georgia Regents University, College of Dental Medicine, Augusta, GA, USA
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna, Via San Vitale 59, I-40125 Bologna, Italy
| |
Collapse
|
27
|
Cuffaro HM, Pääkkönen V, Tjäderhane L. Enzymatic isolation of viable human odontoblasts. Int Endod J 2015; 49:454-61. [PMID: 26011565 DOI: 10.1111/iej.12473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 05/18/2015] [Indexed: 02/04/2023]
Abstract
AIM To improve an enzymatic method previously used for isolation of rat odontoblasts to isolate viable mature human odontoblasts. METHODOLOGY Collagenase I, collagenase I/hyaluronidase mixture and hyaluronidase were used to extract mature human odontoblasts from the pulp chamber. Detachment of odontoblasts from dentine was determined with field emission scanning electron microscopy (FESEM) and to analyse the significance of differences in tubular diameter, and the t-test was used. MTT-reaction was used to analyse cell viability, and nonparametric Kruskal-Wallis and Mann-Whitney post hoc tests were used to analyse the data. Immunofluorescent staining of dentine sialoprotein (DSP), aquaporin-4 (AQP4) and matrix metalloproteinase-20 (MMP-20) and quantitative PCR (qPCR) of dentine sialophosphoprotein (DSPP) were used to confirm the odontoblastic nature of the cells. RESULTS MTT-reaction and FESEM demonstrated collagenase I/hyaluronidase resulted in more effective detachment and higher viability than collagenase I alone. Hyaluronidase alone was not able to detach odontoblasts. Immunofluorescence revealed the typical odontoblastic-morphology with one process, and DSP, AQP4 and MMP-20 were detected. Quantitative PCR of DSPP confirmed that the isolated cells expressed this odontoblast-specific gene. CONCLUSION The isolation of viable human odontoblasts was successful. The cells demonstrated morphology typical for odontoblasts and expressed characteristic odontoblast-type genes and proteins. This method will enable new approaches, such as apoptosis analysis, for studies using fully differentiated odontoblasts.
Collapse
Affiliation(s)
- H M Cuffaro
- Institute of Dentistry, University of Oulu, Oulu, Finland
| | - V Pääkkönen
- Institute of Dentistry, University of Oulu, Oulu, Finland
| | - L Tjäderhane
- Institute of Dentistry, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
28
|
Tjäderhane L, Buzalaf MAR, Carrilho M, Chaussain C. Matrix metalloproteinases and other matrix proteinases in relation to cariology: the era of 'dentin degradomics'. Caries Res 2015; 49:193-208. [PMID: 25661522 DOI: 10.1159/000363582] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 05/07/2014] [Indexed: 11/19/2022] Open
Abstract
Dentin organic matrix, with type I collagen as the main component, is exposed after demineralization in dentinal caries, erosion or acidic conditioning during adhesive composite restorative treatment. This exposed matrix is prone to slow hydrolytic degradation by host collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins. Here we review the recent findings demonstrating that inhibition of salivary or dentin endogenous collagenolytic enzymes may provide preventive means against progression of caries or erosion, just as they have been shown to retain the integrity and improve the longevity of resin composite filling bonding to dentin. This paper also presents the case that the organic matrix in caries-affected dentin may not be preserved as intact as previously considered. In partially demineralized dentin, MMPs and cysteine cathepsins with the ability to cleave off the terminal non-helical ends of collagen molecules (telopeptides) may lead to the gradual loss of intramolecular gap areas. This would seriously compromise the matrix ability for intrafibrillar remineralization, which is considered essential in restoring the dentin's mechanical properties. More detailed data of the enzymes responsible and their detailed function in dentin-destructive conditions may not only help to find new and better preventive means, but better preservation of demineralized dentin collagenous matrix may also facilitate true biological remineralization for the better restoration of tooth structural and mechanical integrity and mechanical properties.
Collapse
Affiliation(s)
- Leo Tjäderhane
- Institute of Dentistry, University of Oulu, Oulu, Finland
| | | | | | | |
Collapse
|
29
|
Tezvergil-Mutluay A, Agee KA, Mazzoni A, Carvalho RM, Carrilho M, Tersariol IL, Nascimento FD, Imazato S, Tjäderhane L, Breschi L, Tay FR, Pashley DH. Can quaternary ammonium methacrylates inhibit matrix MMPs and cathepsins? Dent Mater 2014; 31:e25-32. [PMID: 25467953 DOI: 10.1016/j.dental.2014.10.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/31/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Dentin matrices release ICTP and CTX fragments during collagen degradation. ICTP fragments are known to be produced by MMPs. CTX fragments are thought to come from cathepsin K activity. The purpose of this study was to determine if quaternary methacrylates (QAMs) can inhibit matrix MMPs and cathepsins. METHODS Dentin beams were demineralizated, and dried to constant weight. Beams were incubated with rh-cathepsin B, K, L or S for 24h at pH 7.4 to identify which cathepsins release CTX at neutral pH. Beams were dipped in ATA, an antimicrobial QAM to determine if it can inhibit dentin matrix proteases. Other beams were dipped in another QAM (MDPB) to determine if it produced similar inhibition of dentin proteases. RESULTS Only beams incubated with cathepsin K lost more dry mass than the controls and released CTX. Dentin beams dipped in ATA and incubated for 1 week at pH 7.4, showed a concentration-dependent reduction in weight-loss. There was no change in ICTP release from control values, meaning that ATA did not inhibit MMPs. Media concentrations of CTX fell significantly at 15wt% ATA indicating that ATA inhibits capthesins. Beams dipped in increasing concentrations of MDPB lost progressively less mass, showing that MDPB is a protease-inhibitor. ICTP released from controls or beams exposed to low concentrations were the same, while 5 or 10% MDPB significantly lowered ICTP production. CTX levels were strongly inhibited by 2.5-10% MDPB, indicating that MDPB is a potent inhibitor of both MMPs and cathepsin K. SIGNIFICANCE CTX seems to be released from dentin matrix only by cathepsin K. MMPs and cathepsin K and B may all contribute to matrix degradation.
Collapse
Affiliation(s)
- Arzu Tezvergil-Mutluay
- Adhesive Dentistry Research Group, Institute of Dentistry, University of Turku, Turku, Finland
| | - Kelli A Agee
- Department of Oral Biology, College of Dental Medicine, Georgia Regents University, Augusta, GA, USA
| | | | - Ricardo M Carvalho
- Department of Oral Science, School of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marcela Carrilho
- UNIBAN (University Bandeirante Anhanguera), Biomaterials Research Group, Sao Paulo, Brazil
| | - Ivarne L Tersariol
- Centro Interdisciplinar de Investigacão Bioquimica, University of Mogi das Cruzes, Mogi das cruzes, Brazil; Department of Biochemistry, Federal University São Paulo, Brazil
| | | | - Satoshi Imazato
- Osaka University Graduate School of Dentistry, Department of Biomaterials Science, Osaka, Japan
| | - Leo Tjäderhane
- Institute of Dentistry, University of Oulu, Oulu University Hospital, Oulu, Finland; Institute of Dentistry, University of Turku, Turku, Finland
| | - Lorenzo Breschi
- Department of SAU&FAL, University of Bologna, Bologna, Italy; UNIBAN (University Bandeirante Anhanguera), Biomaterials Research Group, Sao Paulo, Brazil
| | - Franklin R Tay
- Department of Oral Biology, College of Dental Medicine, Georgia Regents University, Augusta, GA, USA
| | - David H Pashley
- Department of Oral Biology, College of Dental Medicine, Georgia Regents University, Augusta, GA, USA.
| |
Collapse
|
30
|
Khaddam M, Salmon B, Le Denmat D, Tjaderhane L, Menashi S, Chaussain C, Rochefort GY, Boukpessi T. Grape seed extracts inhibit dentin matrix degradation by MMP-3. Front Physiol 2014; 5:425. [PMID: 25400590 PMCID: PMC4215787 DOI: 10.3389/fphys.2014.00425] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/13/2014] [Indexed: 11/22/2022] Open
Abstract
UNLABELLED Since Matrix metalloproteinases (MMPs) have been suggested to contribute to dentin caries progression, the hypothesis that MMP inhibition would affect the progression of dentin caries is clinically relevant. Grape seed extracts (GSE) have been previously reported to be natural inhibitors of MMPs. OBJECTIVE To evaluate the capacity of a GSE mouthrinse to prevent the degradation of demineralized dentin matrix by MMP-3 (stromelysin-1). MATERIALS AND METHODS Standardized blocks of dentin obtained from sound permanent teeth extracted for orthodontic reasons were demineralized with Ethylenediaminetetraacetic acid (EDTA) and pretreated either with (A) GSE (0.2% w/v), (B) amine fluoride (AmF) (20% w/v), (C) a mouthrinse which contains both, (D) placebo, (E) sodium fluoride (0.15 mg.ml(-1)), (F) PBS, (G) Chlorhexidine digluconate (CHX), or (H) zinc chloride (ZnCl2). The dentin blocks were then incubated with activated recombinant MMP-3. The supernatants were analyzed by Western Blot for several dentin matrix proteins known to be MMP-3 substrate. In parallel, scanning electron microscopy (SEM) was performed on resin replica of the dentin blocks. RESULTS Western blot analysis of the supernatants revealed that MMP-3 released from the dentin matrix small proteoglycans (decorin and biglycan) and dentin sialoprotein (DSP) in the AmF, sodium fluoride, PBS and placebo pretreated groups, but not in the GSE and mouthrinse pretreated groups. SEM examination of resin replica showed that the mouthrinse and its active components not only had an anti-MMP action but also modified the dentin surface accessibility. CONCLUSION This study shows that GSE either alone or combined with AmF as in the evaluated mouthrinse limits dentin matrix degradation. This association may be promising to prevent the progression of caries within dentin. However, the procedure should be adapted to clinically relevant durations.
Collapse
Affiliation(s)
- Mayssam Khaddam
- EA 2496, Orofacial Pathologies, Imaging and Biotherapies, Dental school, University Paris Descartes, Sorbonne Paris CitéMontrouge, France
| | - Benjamin Salmon
- EA 2496, Orofacial Pathologies, Imaging and Biotherapies, Dental school, University Paris Descartes, Sorbonne Paris CitéMontrouge, France
- Assistance Publique - Hôpitaux de Paris, Odontology Departments (Bretonneau and Charles Foix)Paris, France
| | - Dominique Le Denmat
- EA 2496, Orofacial Pathologies, Imaging and Biotherapies, Dental school, University Paris Descartes, Sorbonne Paris CitéMontrouge, France
| | - Leo Tjaderhane
- Medical Research Center Oulu, Institute of Dentistry, Oulu University Hospital and University of OuluOulu, Finland
| | - Suzanne Menashi
- Laboratoire CRRET, Université Paris-Est, Centre National de la Recherche ScientifiqueCréteil, France
| | - Catherine Chaussain
- EA 2496, Orofacial Pathologies, Imaging and Biotherapies, Dental school, University Paris Descartes, Sorbonne Paris CitéMontrouge, France
- Assistance Publique - Hôpitaux de Paris, Odontology Departments (Bretonneau and Charles Foix)Paris, France
| | - Gaël Y. Rochefort
- EA 2496, Orofacial Pathologies, Imaging and Biotherapies, Dental school, University Paris Descartes, Sorbonne Paris CitéMontrouge, France
| | - Tchilalo Boukpessi
- EA 2496, Orofacial Pathologies, Imaging and Biotherapies, Dental school, University Paris Descartes, Sorbonne Paris CitéMontrouge, France
- Assistance Publique - Hôpitaux de Paris, Odontology Departments (Bretonneau and Charles Foix)Paris, France
| |
Collapse
|
31
|
Hedenbjörk-Lager A, Bjørndal L, Gustafsson A, Sorsa T, Tjäderhane L, Åkerman S, Ericson D. Caries correlates strongly to salivary levels of matrix metalloproteinase-8. Caries Res 2014; 49:1-8. [PMID: 25096527 DOI: 10.1159/000360625] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 02/08/2014] [Indexed: 11/19/2022] Open
Abstract
The caries process in dentin involves the degradation of both mineral and organic matrix. The demineralization has been demonstrated to be caused by bacterial acids. However, the collagen degradation is considered to be initiated by endogenous proteolytic enzymes, mainly collagenolytic matrix metalloproteinases (MMPs). This paper aims to relate salivary MMP-8 (or salivary collagenase-2) and tissue inhibitor of MMP (TIMP-1) levels to manifest caries in a large number of subjects. A random sample of 451 adults (aged 18-87 years) living in the south of Sweden was included in this study. Standard clinical examinations were performed, and stimulated saliva was collected and analyzed for concentrations of MMP-8, TIMP-1 and total protein, using an immunofluorometric assay, an enzyme-linked immunosorbent assay and the Bradford assay, respectively. Salivary numbers of mutans streptococci and lactobacilli were determined using a chair-side kit. Subjects with manifest caries lesions presented with elevated levels of MMP-8 (p < 0.001) as well as total protein, MMP-8/TIMP-1 ratio, bleeding on probing and plaque index (p = 0.05) compared with subjects without manifest caries. Multiple linear regression analysis with caries as the dependent variable revealed MMP-8 as the only significant explanatory variable (p < 0.001). TIMP-1 was not significant in any case. Using MMP-8 as the dependent variable revealed total protein concentration, caries lesions (p ≤ 0.001) and salivary secretion rate (p = 0.05) as explanatory variables. In conclusion, our data reveal that subjects with manifest caries lesions have elevated levels of salivary MMP-8 relative to subjects with no caries lesions.
Collapse
|
32
|
Tjäderhane L, Buzalaf MA, Salo T. The origin of matrix metalloproteinases in attrited dentine. Arch Oral Biol 2013; 59:233-5. [PMID: 24370196 DOI: 10.1016/j.archoralbio.2013.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 11/21/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Leo Tjäderhane
- Institute of Dentistry, University of Oulu, Oulu University Hospital, Oulu, Finland; Institute of Dentistry, University of Turku, Turku, Finland; Nordic Institute of Dental Materials (NIOM), Oslo, Norway.
| | - Marília A Buzalaf
- Discipline of Biochemistry, Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Tuula Salo
- Institute of Dentistry, University of Oulu, Oulu University Hospital, Oulu, Finland; Institute of Dentistry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
33
|
Optimizing dentin bond durability: control of collagen degradation by matrix metalloproteinases and cysteine cathepsins. Dent Mater 2012; 29:116-35. [PMID: 22901826 DOI: 10.1016/j.dental.2012.08.004] [Citation(s) in RCA: 311] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/04/2012] [Accepted: 08/05/2012] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Contemporary adhesives lose their bond strength to dentin regardless of the bonding system used. This loss relates to the hydrolysis of collagen matrix of the hybrid layers. The preservation of the collagen matrix integrity is a key issue in the attempts to improve the dentin bonding durability. METHODS Dentin contains collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins, which are responsible for the hydrolytic degradation of collagen matrix in the bonded interface. RESULTS The identities, roles and function of collagenolytic enzymes in mineralized dentin has been gathered only within last 15 years, but they have already been demonstrated to have an important role in dental hard tissue pathologies, including the degradation of the hybrid layer. Identifying responsible enzymes facilitates the development of new, more efficient methods to improve the stability of dentin-adhesive bond and durability of bond strength. SIGNIFICANCE Understanding the nature and role of proteolytic degradation of dentin-adhesive interfaces has improved immensely and has practically grown to a scientific field of its own within only 10 years, holding excellent promise that stable resin-dentin bonds will be routinely available in a daily clinical setting already in a near future.
Collapse
|