1
|
Hui W, Wenhua S, Shuojie Z, Lulin W, Panpan Z, Tongtong Z, Xiaoli X, Juhua D. How does NFAT3 regulate the occurrence of cardiac hypertrophy? IJC HEART & VASCULATURE 2023; 48:101271. [PMID: 37753338 PMCID: PMC10518445 DOI: 10.1016/j.ijcha.2023.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023]
Abstract
Cardiac hypertrophy is initially an adaptive response to physiological and pathological stimuli. Although pathological myocardial hypertrophy is the main cause of morbidity and mortality, our understanding of its mechanism is still weak. NFAT3 (nuclear factor of activated T-cell-3) is a member of the nuclear factor of the activated T cells (NFAT) family. NFAT3 plays a critical role in regulating the expression of cardiac hypertrophy genes by inducing their transcription. Recently, accumulating evidence has indicated that NFAT3 is a potent regulator of the progression of cardiac hypertrophy. This review, for the first time, summarizes the current studies on NFAT3 in cardiac hypertrophy, including the pathophysiological processes and the underlying pathological mechanism, focusing on the nuclear translocation and transcriptional function of NFAT3. This review will provide deep insight into the pathogenesis of cardiac hypertrophy and a theoretical basis for identifying new therapeutic targets in the NFAT3 network.
Collapse
Affiliation(s)
- Wang Hui
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Su Wenhua
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Cardiology, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Zhang Shuojie
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wang Lulin
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhao Panpan
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhang Tongtong
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xie Xiaoli
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Dan Juhua
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
2
|
High-Resolution Crystal Structure of Muscle Phosphoglycerate Mutase Provides Insight into Its Nuclear Import and Role. Int J Mol Sci 2022; 23:ijms232113198. [DOI: 10.3390/ijms232113198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Phosphoglycerate mutase (PGAM) is a glycolytic enzyme converting 3-phosphoglycerate to 2-phosphoglycerate, which in mammalian cells is expressed in two isoforms: brain (PGAM1) and muscle (PGAM2). Recently, it was shown that besides its enzymatic function, PGAM2 can be imported to the cell nucleus where it co-localizes with the nucleoli. It was suggested that it functions there to stabilize the nucleolar structure, maintain mRNA expression, and assist in the assembly of new pre-ribosomal subunits. However, the precise mechanism by which the protein translocates to the nucleus is unknown. In this study, we present the first crystal structure of PGAM2, identify the residues involved in the nuclear localization of the protein and propose that PGAM contains a “quaternary nuclear localization sequence (NLS)”, i.e., one that consists of residues from different protein chains. Additionally, we identify potential interaction partners for PGAM2 in the nucleoli and demonstrate that 14-3-3ζ/δ is indeed an interaction partner of PGAM2 in the nucleus. We also present evidence that the insulin/IGF1–PI3K–Akt–mTOR signaling pathway is responsible for the nuclear localization of PGAM2.
Collapse
|
3
|
Zhong QH, Zha SW, Lau ATY, Xu YM. Recent knowledge of NFATc4 in oncogenesis and cancer prognosis. Cancer Cell Int 2022; 22:212. [PMID: 35698138 PMCID: PMC9190084 DOI: 10.1186/s12935-022-02619-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
Nuclear factor of activated T-cells, cytoplasmic 4 (NFATc4), a transcription factor of NFAT family, which is activated by Ca2+/calcineurin signaling. Recently, it is reported that aberrantly activated NFATc4 participated and modulated in the initiation, proliferation, invasion, and metastasis of various cancers (including cancers of the lung, breast, ovary, cervix, skin, liver, pancreas, as well as glioma, primary myelofibrosis and acute myelocytic leukemia). In this review, we cover the latest knowledge on NFATc4 expression pattern, post-translational modification, epigenetic regulation, transcriptional activity regulation and its downstream targets. Furthermore, we perform database analysis to reveal the prognostic value of NFATc4 in various cancers and discuss the current unexplored areas of NFATc4 research. All in all, the result from these studies strongly suggest that NFATc4 has the potential as a molecular therapeutic target in multiple human cancer types.
Collapse
Affiliation(s)
- Qiu-Hua Zhong
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041 People’s Republic of China
| | - Si-Wei Zha
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041 People’s Republic of China
| | - Andy T. Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041 People’s Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041 People’s Republic of China
| |
Collapse
|
4
|
Thompson WC, Goldspink PH. 14-3-3 protein regulation of excitation-contraction coupling. Pflugers Arch 2021; 474:267-279. [PMID: 34820713 PMCID: PMC8837530 DOI: 10.1007/s00424-021-02635-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 11/25/2022]
Abstract
14-3-3 proteins (14-3-3 s) are a family of highly conserved proteins that regulate many cellular processes in eukaryotes by interacting with a diverse array of client proteins. The 14-3-3 proteins have been implicated in several disease states and previous reviews have condensed the literature with respect to their structure, function, and the regulation of different cellular processes. This review focuses on the growing body of literature exploring the important role 14-3-3 proteins appear to play in regulating the biochemical and biophysical events associated with excitation-contraction coupling (ECC) in muscle. It presents both a timely and unique analysis that seeks to unite studies emphasizing the identification and diversity of 14-3-3 protein function and client protein interactions, as modulators of muscle contraction. It also highlights ideas within these two well-established but intersecting fields that support further investigation with respect to the mechanistic actions of 14-3-3 proteins in the modulation of force generation in muscle.
Collapse
Affiliation(s)
- Walter C Thompson
- Department of Physiology and Biophysics (M/C 901) and Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, 835 South Wolcott Avenue, RM E-202, Chicago, IL, 60612, USA
| | - Paul H Goldspink
- Department of Physiology and Biophysics (M/C 901) and Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, 835 South Wolcott Avenue, RM E-202, Chicago, IL, 60612, USA.
| |
Collapse
|
5
|
Waløen K, Jung-Kc K, Vecchia ED, Pandey S, Gasparik N, Døskeland A, Patil S, Kleppe R, Hritz J, Norton WHJ, Martinez A, Haavik J. Cysteine Modification by Ebselen Reduces the Stability and Cellular Levels of 14-3-3 Proteins. Mol Pharmacol 2021; 100:155-169. [PMID: 34031189 DOI: 10.1124/molpharm.120.000184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/11/2021] [Indexed: 11/22/2022] Open
Abstract
The 14-3-3 proteins constitute a family of adaptor proteins with many binding partners and biological functions, and they are considered promising drug targets in cancer and neuropsychiatry. By screening 1280 small-molecule drugs using differential scanning fluorimetry (DSF), we found 15 compounds that decreased the thermal stability of 14-3-3ζ Among these compounds, ebselen was identified as a covalent, destabilizing ligand of 14-3-3 isoforms ζ, ε, γ, and η Ebselen bonding decreased 14-3-3ζ binding to its partner Ser19-phosphorylated tyrosine hydroxylase. Characterization of site-directed mutants at cysteine residues in 14-3-3ζ (C25, C94, and C189) by DSF and mass spectroscopy revealed covalent modification by ebselen of all cysteines through a selenylsulfide bond. C25 appeared to be the preferential site of ebselen interaction in vitro, whereas modification of C94 was the main determinant for protein destabilization. At therapeutically relevant concentrations, ebselen and ebselen oxide caused decreased 14-3-3 levels in SH-SY5Y cells, accompanied with an increased degradation, most probably by the ubiquitin-dependent proteasome pathway. Moreover, ebselen-treated zebrafish displayed decreased brain 14-3-3 content, a freezing phenotype, and reduced mobility, resembling the effects of lithium, consistent with its proposed action as a safer lithium-mimetic drug. Ebselen has recently emerged as a promising drug candidate in several medical areas, such as cancer, neuropsychiatric disorders, and infectious diseases, including coronavirus disease 2019. Its pleiotropic actions are attributed to antioxidant effects and formation of selenosulfides with critical cysteine residues in proteins. Our work indicates that a destabilization of 14-3-3 may affect the protein interaction networks of this protein family, contributing to the therapeutic potential of ebselen. SIGNIFICANCE STATEMENT: There is currently great interest in the repurposing of established drugs for new indications and therapeutic targets. This study shows that ebselen, which is a promising drug candidate against cancer, bipolar disorder, and the viral infection coronavirus disease 2019, covalently bonds to cysteine residues in 14-3-3 adaptor proteins, triggering destabilization and increased degradation in cells and intact brain tissue when used in therapeutic concentrations, potentially explaining the behavioral, anti-inflammatory, and antineoplastic effects of this drug.
Collapse
Affiliation(s)
- Kai Waløen
- Department of Biomedicine (K.W., K.J.K.C., S.Pan., A.D., S.Pat., A.M., J.Ha.), Proteomics Unit (PROBE), (A.D.), University of Bergen, Bergen, Norway; Department of Neuroscience, Psychology and Behaviour, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK (E.D.V., W.H.J.N.); CEITEC-MU, Masaryk University, Brno, Czech Republic (N.G., J.Hr.); Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic and Norwegian Centre for Maritime and Diving Medicine, Department of Occupational Medicine (R.K.), Division of Psychiatry (J.Ha.), Haukeland University Hospital, Bergen, Norway
| | - Kunwar Jung-Kc
- Department of Biomedicine (K.W., K.J.K.C., S.Pan., A.D., S.Pat., A.M., J.Ha.), Proteomics Unit (PROBE), (A.D.), University of Bergen, Bergen, Norway; Department of Neuroscience, Psychology and Behaviour, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK (E.D.V., W.H.J.N.); CEITEC-MU, Masaryk University, Brno, Czech Republic (N.G., J.Hr.); Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic and Norwegian Centre for Maritime and Diving Medicine, Department of Occupational Medicine (R.K.), Division of Psychiatry (J.Ha.), Haukeland University Hospital, Bergen, Norway
| | - Elisa D Vecchia
- Department of Biomedicine (K.W., K.J.K.C., S.Pan., A.D., S.Pat., A.M., J.Ha.), Proteomics Unit (PROBE), (A.D.), University of Bergen, Bergen, Norway; Department of Neuroscience, Psychology and Behaviour, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK (E.D.V., W.H.J.N.); CEITEC-MU, Masaryk University, Brno, Czech Republic (N.G., J.Hr.); Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic and Norwegian Centre for Maritime and Diving Medicine, Department of Occupational Medicine (R.K.), Division of Psychiatry (J.Ha.), Haukeland University Hospital, Bergen, Norway
| | - Sunil Pandey
- Department of Biomedicine (K.W., K.J.K.C., S.Pan., A.D., S.Pat., A.M., J.Ha.), Proteomics Unit (PROBE), (A.D.), University of Bergen, Bergen, Norway; Department of Neuroscience, Psychology and Behaviour, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK (E.D.V., W.H.J.N.); CEITEC-MU, Masaryk University, Brno, Czech Republic (N.G., J.Hr.); Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic and Norwegian Centre for Maritime and Diving Medicine, Department of Occupational Medicine (R.K.), Division of Psychiatry (J.Ha.), Haukeland University Hospital, Bergen, Norway
| | - Norbert Gasparik
- Department of Biomedicine (K.W., K.J.K.C., S.Pan., A.D., S.Pat., A.M., J.Ha.), Proteomics Unit (PROBE), (A.D.), University of Bergen, Bergen, Norway; Department of Neuroscience, Psychology and Behaviour, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK (E.D.V., W.H.J.N.); CEITEC-MU, Masaryk University, Brno, Czech Republic (N.G., J.Hr.); Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic and Norwegian Centre for Maritime and Diving Medicine, Department of Occupational Medicine (R.K.), Division of Psychiatry (J.Ha.), Haukeland University Hospital, Bergen, Norway
| | - Anne Døskeland
- Department of Biomedicine (K.W., K.J.K.C., S.Pan., A.D., S.Pat., A.M., J.Ha.), Proteomics Unit (PROBE), (A.D.), University of Bergen, Bergen, Norway; Department of Neuroscience, Psychology and Behaviour, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK (E.D.V., W.H.J.N.); CEITEC-MU, Masaryk University, Brno, Czech Republic (N.G., J.Hr.); Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic and Norwegian Centre for Maritime and Diving Medicine, Department of Occupational Medicine (R.K.), Division of Psychiatry (J.Ha.), Haukeland University Hospital, Bergen, Norway
| | - Sudarshan Patil
- Department of Biomedicine (K.W., K.J.K.C., S.Pan., A.D., S.Pat., A.M., J.Ha.), Proteomics Unit (PROBE), (A.D.), University of Bergen, Bergen, Norway; Department of Neuroscience, Psychology and Behaviour, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK (E.D.V., W.H.J.N.); CEITEC-MU, Masaryk University, Brno, Czech Republic (N.G., J.Hr.); Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic and Norwegian Centre for Maritime and Diving Medicine, Department of Occupational Medicine (R.K.), Division of Psychiatry (J.Ha.), Haukeland University Hospital, Bergen, Norway
| | - Rune Kleppe
- Department of Biomedicine (K.W., K.J.K.C., S.Pan., A.D., S.Pat., A.M., J.Ha.), Proteomics Unit (PROBE), (A.D.), University of Bergen, Bergen, Norway; Department of Neuroscience, Psychology and Behaviour, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK (E.D.V., W.H.J.N.); CEITEC-MU, Masaryk University, Brno, Czech Republic (N.G., J.Hr.); Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic and Norwegian Centre for Maritime and Diving Medicine, Department of Occupational Medicine (R.K.), Division of Psychiatry (J.Ha.), Haukeland University Hospital, Bergen, Norway
| | - Jozef Hritz
- Department of Biomedicine (K.W., K.J.K.C., S.Pan., A.D., S.Pat., A.M., J.Ha.), Proteomics Unit (PROBE), (A.D.), University of Bergen, Bergen, Norway; Department of Neuroscience, Psychology and Behaviour, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK (E.D.V., W.H.J.N.); CEITEC-MU, Masaryk University, Brno, Czech Republic (N.G., J.Hr.); Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic and Norwegian Centre for Maritime and Diving Medicine, Department of Occupational Medicine (R.K.), Division of Psychiatry (J.Ha.), Haukeland University Hospital, Bergen, Norway
| | - William H J Norton
- Department of Biomedicine (K.W., K.J.K.C., S.Pan., A.D., S.Pat., A.M., J.Ha.), Proteomics Unit (PROBE), (A.D.), University of Bergen, Bergen, Norway; Department of Neuroscience, Psychology and Behaviour, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK (E.D.V., W.H.J.N.); CEITEC-MU, Masaryk University, Brno, Czech Republic (N.G., J.Hr.); Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic and Norwegian Centre for Maritime and Diving Medicine, Department of Occupational Medicine (R.K.), Division of Psychiatry (J.Ha.), Haukeland University Hospital, Bergen, Norway
| | - Aurora Martinez
- Department of Biomedicine (K.W., K.J.K.C., S.Pan., A.D., S.Pat., A.M., J.Ha.), Proteomics Unit (PROBE), (A.D.), University of Bergen, Bergen, Norway; Department of Neuroscience, Psychology and Behaviour, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK (E.D.V., W.H.J.N.); CEITEC-MU, Masaryk University, Brno, Czech Republic (N.G., J.Hr.); Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic and Norwegian Centre for Maritime and Diving Medicine, Department of Occupational Medicine (R.K.), Division of Psychiatry (J.Ha.), Haukeland University Hospital, Bergen, Norway
| | - Jan Haavik
- Department of Biomedicine (K.W., K.J.K.C., S.Pan., A.D., S.Pat., A.M., J.Ha.), Proteomics Unit (PROBE), (A.D.), University of Bergen, Bergen, Norway; Department of Neuroscience, Psychology and Behaviour, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK (E.D.V., W.H.J.N.); CEITEC-MU, Masaryk University, Brno, Czech Republic (N.G., J.Hr.); Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic and Norwegian Centre for Maritime and Diving Medicine, Department of Occupational Medicine (R.K.), Division of Psychiatry (J.Ha.), Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
6
|
Su F, Shi M, Zhang J, Li Y, Tian J. Recombinant high‑mobility group box 1 induces cardiomyocyte hypertrophy by regulating the 14‑3‑3η, PI3K and nuclear factor of activated T cells signaling pathways. Mol Med Rep 2021; 23:214. [PMID: 33495819 PMCID: PMC7845624 DOI: 10.3892/mmr.2021.11853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 09/07/2020] [Indexed: 01/20/2023] Open
Abstract
High-mobility group box 1 (HMGB1) is released by necrotic cells and serves an important role in cardiovascular pathology. However, the effects of HMGB1 in cardiomyocyte hypertrophy remain unclear. Therefore, the aim of the present study was to investigate the potential role of HMGB1 in cardiomyocyte hypertrophy and the underlying mechanisms of its action. Neonatal mouse cardiomyocytes (NMCs) were co-cultured with recombinant HMGB1 (rHMGB1). Wortmannin was used to inhibit PI3K activity in cardiomyocytes. Subsequently, atrial natriuretic peptide (ANP), 14-3-3 and phosphorylated-Akt (p-Akt) protein levels were detected using western blot analysis. In addition, nuclear factor of activated T cells 3 (NFAT3) protein levels were measured by western blot analysis and observed in NMCs under a confocal microscope. The results revealed that rHMGB1 increased ANP and p-Akt, and decreased 14-3-3η protein levels. Furthermore, wortmannin abrogated the effects of rHMGB1 on ANP, 14-3-3η and p-Akt protein levels. In addition, rHMGB1 induced nuclear translocation of NFAT3, which was also inhibited by wortmannin pretreatment. The results of this study suggest that rHMGB1 induces cardiac hypertrophy by regulating the 14-3-3η/PI3K/Akt/NFAT3 signaling pathway.
Collapse
Affiliation(s)
- Feifei Su
- Department of Cardiology, Air Force Medical Center, People's Liberation Army, Beijing 100142, P.R. China
| | - Miaoqian Shi
- Department of Cardiology, The Seventh Medical Centre of The People's Liberation Army General Hospital, Beijing 100700, P.R. China
| | - Jian Zhang
- Department of Cardiology, Beijing Chest Hospital Heart Center, Capital Medical University, Beijing 101149, P.R. China
| | - Yan Li
- Department of Cardiology, Tangdu Hospital Affiliated to The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jianwei Tian
- Department of Cardiology, Air Force Medical Center, People's Liberation Army, Beijing 100142, P.R. China
| |
Collapse
|
7
|
Tan YF, Yu J, Pan WJ, Qi JY, Zhang MZ. Protective Mechanisms of Suxiao Jiuxin Pills () on Myocardial Ischemia-Reperfusion Injury in vivo and in vitro. Chin J Integr Med 2020; 26:583-590. [PMID: 32524394 PMCID: PMC7283981 DOI: 10.1007/s11655-020-2726-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2018] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To study the protective mechanism of Chinese medicine Suxiao Jiuxin Pills (, SXJ) on myocardial ischemia and reperfusion (I/R) injury. METHODS Mouse myocardial I/R injury model was created by 30-min coronary artery occlusion followed by 24-h reperfusion, the mice were then divided into the sham group (n=7), the I/R group (n=13), the tirofiban group (TIR, positive drug treatment, n=9), and the SXJ group (n=11). Infarct size (IS), risk region (RR), and left ventricle (LV) were analyzed with double staining methods. In addition, H9C2 rat cardiomyocytes were cultured with Na2S2O4 to simulate I/R in vitro. The phosphorylation of extracellular regulated protein kinases1/2 (ERK1/2), protein kinase B (AKT), glycogen synthase kinase-3β (GSK3β), and protein expression of GATA4 in nucleus were detected with Western blot assay. RESULTS The ratio of IS/RR in SXJ and TIR groups were lower than that in I/R group (SXJ, 22.4% ±6.6%; TIR, 20.8%±3.3%; vs. I/R, 35.4%±3.7%, P<0.05, respectively). In vitro experiments showed that SXJ increased the Na2S2O4-enhanced phosphorylation of AKT/GSK3β and nuclear expression of GATA4. CONCLUSION SXJ prevents myocardial I/R injury in mice by activating AKT/GSK3β and GATA4 signaling pathways.
Collapse
Affiliation(s)
- Ya-Fang Tan
- AMI Key Laboratory of Chinese Medicine in Guangzhou, Guangdong Province Hospital of Chinese Medicine, the 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Science, Guangzhou, 510006, China.,Intensive Care Research Team of Traditional Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, the 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Science, Guangzhou, 510006, China
| | - Juan Yu
- Animal Laboratory, Guangdong Province Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Wen-Jun Pan
- AMI Key Laboratory of Chinese Medicine in Guangzhou, Guangdong Province Hospital of Chinese Medicine, the 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Science, Guangzhou, 510006, China.,Intensive Care Research Team of Traditional Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, the 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Science, Guangzhou, 510006, China
| | - Jian-Yong Qi
- AMI Key Laboratory of Chinese Medicine in Guangzhou, Guangdong Province Hospital of Chinese Medicine, the 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Science, Guangzhou, 510006, China.,Intensive Care Research Team of Traditional Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, the 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Science, Guangzhou, 510006, China
| | - Min-Zhou Zhang
- AMI Key Laboratory of Chinese Medicine in Guangzhou, Guangdong Province Hospital of Chinese Medicine, the 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Science, Guangzhou, 510006, China. .,Intensive Care Research Team of Traditional Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, the 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Science, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Mitochondria are transported along microtubules in membrane nanotubes to rescue distressed cardiomyocytes from apoptosis. Cell Death Dis 2018; 9:81. [PMID: 29362447 PMCID: PMC5833423 DOI: 10.1038/s41419-017-0145-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022]
Abstract
Membrane nanotubes (MNTs) act as “highways” between cells to facilitate the transfer of multiple signals and play an important role in many diseases. Our previous work reported on the transfer of mitochondria via MNTs between cardiomyocytes (CMs) and cardiac myofibroblasts (MFs); however, the elucidation of the underlying mechanism and pathophysiological significance of this transfer requires additional study. In this study, we determined that the mean movement velocity of mitochondria in MNTs between CMs and MFs was approximately 17.5 ± 2.1 nm/s. Meanwhile, treatment with microtubule polymerisation inhibitors nocodazole or colcemid in cell culture decreased mitochondrial velocity, and knockdown of the microtubule motor protein kinesin family member 5B (KIF5B) led to a similar effect, indicating that mitochondrial movement was dependent on microtubules and the motor protein KIF5B. Furthermore, we showed that hypoxia/reoxygenation-induced CM apoptosis was attenuated by coculture with intact or hypoxia/reoxygenation-treated MFs, which transferred mitochondria to CMs. This rescue was prevented either by separating the cells using Transwell culture or by impairing mitochondrial transfer with nocodazole or colcemid treatment. In conclusion, as a novel means of intercellular communication, MNTs rescue distressed CMs from apoptosis by transporting mitochondria along microtubules via KIF5B.
Collapse
|
9
|
Su F, Shi M, Zhang J, Zheng Q, Zhang D, Zhang W, Wang H, Li X. Simvastatin Protects Heart from Pressure Overload Injury by Inhibiting Excessive Autophagy. Int J Med Sci 2018; 15:1508-1516. [PMID: 30443172 PMCID: PMC6216062 DOI: 10.7150/ijms.28106] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022] Open
Abstract
Cardiac hypertrophy is an independent predictor of cardiovascular morbidity and mortality. To identify the mechanisms by which simvastatin inhibits cardiac hypertrophy induced by pressure overload, we determined effects of simvastatin on 14-3-3 protein expression and autophagic activity. Simvastatin was administered intragastrically to Sprague-Dawley (SD) rats before abdominal aortic banding (AAB). Neonatal rat cardiomyocytes (NRCs) were treated with simvastatin before angiotensin II (AngII) stimulation. 14-3-3, LC3, and p62 protein levels were determined by western blot. Autophagy was also measured by the double-labeled red fluorescent protein-green fluorescent protein autophagy reporter system. Simvastatin alleviated excessive autophagy, characterized by a high LC3II/LC3I ratio and low level of p62, and blunted cardiac hypertrophy while increasing 14-3-3 protein expression in rats that had undergone AAB. In addition, it increased 14-3-3 expression and inhibited excessive autophagy in NRCs exposed to AngII. Our study demonstrated that simvastatin may inhibit excessive autophagy, increase 14-3-3 expression, and finally exert beneficial effects on cardioprotection against pressure overload.
Collapse
Affiliation(s)
- Feifei Su
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Miaoqian Shi
- Department of Cardiology, PLA Army General Hospital, No.5 Nanmen Cang, Dongcheng District, Beijing, 100700, China
| | - Jian Zhang
- Department of Cardiology, Beijing Chest Hospital Heart Center, Capital Medical University, No.9. Beiguan Grand Street, Tongzhou District, Beijing, 101149, China
| | - Qiangsun Zheng
- Division of Cardiology, Second Affiliated Hospital of JiaoTong University, Xi'an, 710004, China
| | - Dongwei Zhang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Wei Zhang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Haichang Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xue Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| |
Collapse
|
10
|
Liu R, Wang H, Liu J, Wang J, Zheng M, Tan X, Xing S, Cui H, Li Q, Zhao G, Wen J. Uncovering the embryonic development-related proteome and metabolome signatures in breast muscle and intramuscular fat of fast-and slow-growing chickens. BMC Genomics 2017; 18:816. [PMID: 29061108 PMCID: PMC5653991 DOI: 10.1186/s12864-017-4150-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/02/2017] [Indexed: 11/23/2022] Open
Abstract
Background Skeletal muscle development is closely linked to meat production and its quality. This study is the first to quantify the proteomes and metabolomes of breast muscle in two distinct chicken breeds at embryonic day 12 (ED 12), ED 17, post-hatch D 1 and D 14 using mass spectrometry-based approaches. Results Results found that intramuscular fat (IMF) accumulation increased from ED 17 to D 1 and that was exactly the opposite of when most obvious growth of muscle occurred (ED 12 - ED 17 and D 1 - D 14). For slow-growing Beijing-You chickens, Ingenuity Pathway Analysis of 77–99 differential abundance (DA) proteins and 63–72 metabolites, indicated significant enrichment of molecules and pathways related to protein processing and PPAR signaling. For fast-growing Cobb chickens, analysis of 68–95 DA proteins and 56–59 metabolites demonstrated that molecules and pathways related to ATP production were significantly enriched after ED12. For IMF, several rate-limiting enzymes for beta-oxidation of fatty acid (ACADL, ACAD9, HADHA and HADHB) were identified as candidate biomarkers for IMF deposition in both breeds. Conclusions This study found that ED 17 - D 1 was the earliest period for IMF accumulation. Pathways related to protein processing and PPAR signaling were enriched to support high capacity of embryonic IMF accumulation in Beijing-You. Pathways related to ATP production were enriched to support the fast muscle growth in Cobb. The beta-oxidation of fatty acid is identified as the key pathway regulating chicken IMF deposition at early stages. Electronic supplementary material The online version of this article (10.1186/s12864-017-4150-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ranran Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan W Rd, Beijing, 100193, People's Republic of China.,State Key Laboratory of Animal Nutrition, Beijing, People's Republic of China
| | - Hongyang Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan W Rd, Beijing, 100193, People's Republic of China.,State Key Laboratory of Animal Nutrition, Beijing, People's Republic of China
| | - Jie Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan W Rd, Beijing, 100193, People's Republic of China.,State Key Laboratory of Animal Nutrition, Beijing, People's Republic of China
| | - Jie Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan W Rd, Beijing, 100193, People's Republic of China.,State Key Laboratory of Animal Nutrition, Beijing, People's Republic of China
| | - Maiqing Zheng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan W Rd, Beijing, 100193, People's Republic of China.,State Key Laboratory of Animal Nutrition, Beijing, People's Republic of China
| | - Xiaodong Tan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan W Rd, Beijing, 100193, People's Republic of China.,State Key Laboratory of Animal Nutrition, Beijing, People's Republic of China
| | - Siyuan Xing
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan W Rd, Beijing, 100193, People's Republic of China.,State Key Laboratory of Animal Nutrition, Beijing, People's Republic of China
| | - Huanxian Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan W Rd, Beijing, 100193, People's Republic of China.,State Key Laboratory of Animal Nutrition, Beijing, People's Republic of China
| | - Qinghe Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan W Rd, Beijing, 100193, People's Republic of China.,State Key Laboratory of Animal Nutrition, Beijing, People's Republic of China
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan W Rd, Beijing, 100193, People's Republic of China. .,State Key Laboratory of Animal Nutrition, Beijing, People's Republic of China.
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan W Rd, Beijing, 100193, People's Republic of China. .,State Key Laboratory of Animal Nutrition, Beijing, People's Republic of China.
| |
Collapse
|
11
|
Duran J, Oyarce C, Pavez M, Valladares D, Basualto-Alarcon C, Lagos D, Barrientos G, Troncoso MF, Ibarra C, Estrada M. GSK-3β/NFAT Signaling Is Involved in Testosterone-Induced Cardiac Myocyte Hypertrophy. PLoS One 2016; 11:e0168255. [PMID: 27977752 PMCID: PMC5158037 DOI: 10.1371/journal.pone.0168255] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/28/2016] [Indexed: 11/18/2022] Open
Abstract
Testosterone induces cardiac hypertrophy through a mechanism that involves a concerted crosstalk between cytosolic and nuclear signaling pathways. Nuclear factor of activated T-cells (NFAT) is associated with the promotion of cardiac hypertrophy, glycogen synthase kinase-3β (GSK-3β) is considered to function as a negative regulator, mainly by modulating NFAT activity. However, the role played by calcineurin-NFAT and GSK-3β signaling in testosterone-induced cardiac hypertrophy has remained unknown. Here, we determined that testosterone stimulates cardiac myocyte hypertrophy through NFAT activation and GSK-3β inhibition. Testosterone increased the activity of NFAT-luciferase (NFAT-Luc) in a time- and dose-dependent manner, with the activity peaking after 24 h of stimulation with 100 nM testosterone. NFAT-Luc activity induced by testosterone was blocked by the calcineurin inhibitors FK506 and cyclosporine A and by 11R-VIVIT, a specific peptide inhibitor of NFAT. Conversely, testosterone inhibited GSK-3β activity as determined by increased GSK-3β phosphorylation at Ser9 and β-catenin protein accumulation, and also by reduction in β-catenin phosphorylation at residues Ser33, Ser37, and Thr41. GSK-3β inhibition with 1-azakenpaullone or a GSK-3β-targeting siRNA increased NFAT-Luc activity, whereas overexpression of a constitutively active GSK-3β mutant (GSK-3βS9A) inhibited NFAT-Luc activation mediated by testosterone. Testosterone-induced cardiac myocyte hypertrophy was established by increased cardiac myocyte size and [3H]-leucine incorporation (as a measurement of cellular protein synthesis). Calcineurin-NFAT inhibition abolished and GSK-3β inhibition promoted the hypertrophy stimulated by testosterone. GSK-3β activation by GSK-3βS9A blocked the increase of hypertrophic markers induced by testosterone. Moreover, inhibition of intracellular androgen receptor prevented testosterone-induced NFAT-Luc activation. Collectively, these results suggest that cardiac myocyte hypertrophy induced by testosterone involves a cooperative mechanism that links androgen signaling with the recruitment of NFAT through calcineurin activation and GSK-3β inhibition.
Collapse
Affiliation(s)
- Javier Duran
- Laboratorio de Endocrinología Celular, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Cesar Oyarce
- Laboratorio de Endocrinología Celular, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mario Pavez
- Laboratorio de Endocrinología Celular, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Denisse Valladares
- Laboratorio de Endocrinología Celular, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carla Basualto-Alarcon
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Daniel Lagos
- Laboratorio de Endocrinología Celular, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Genaro Barrientos
- Laboratorio de Endocrinología Celular, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mayarling Francisca Troncoso
- Laboratorio de Endocrinología Celular, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Cristian Ibarra
- Heart Failure Bioscience Department, Cardiovascular and Metabolic Diseases (CVMD), Innovative Medicines & Early Development iMED Biotech unit, AstraZeneca R&D, Mölndal, Sweden
| | - Manuel Estrada
- Laboratorio de Endocrinología Celular, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
12
|
Tejeda-Muñoz N, Robles-Flores M. Glycogen synthase kinase 3 in Wnt signaling pathway and cancer. IUBMB Life 2015; 67:914-22. [PMID: 26600003 DOI: 10.1002/iub.1454] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/12/2015] [Accepted: 10/21/2015] [Indexed: 12/19/2022]
Abstract
Glycogen synthase kinase 3 (GSK-3) was first discovered in 1980 as one of the key enzymes of glycogen metabolism. Since then, GSK-3 has been revealed as one of the master regulators of a diverse range of signaling pathways, including those activated by Wnts, participating in the regulation of numerous cellular functions, suggesting that its activity is tightly regulated. Numerous studies have pointed to an association of GSK-3 dysregulation with the onset and progression of human diseases, including diabetes mellitus, obesity, inflammation, neurological illnesses, and cancer. Therefore, GSK-3 is recognized as an attractive therapeutic target in multiple disorders. However, the great number of substrates that are phosphorylated by GSK-3 has raised the question of whether this limits its feasibility as a therapeutic target because of the potential disruption of many cellular processes and also by the fear that inhibition of GSK-3 may stimulate or aid in malignant transformation, as GSK-3 can phosphorylate pro-oncogenic factors. This mini review focuses on the role played by GSK-3 in Wnt signaling pathway and cancer using as model colon cancer.
Collapse
Affiliation(s)
- Nydia Tejeda-Muñoz
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico, D.F., 04510, México
| | - Martha Robles-Flores
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico, D.F., 04510, México
| |
Collapse
|
13
|
Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther 2014; 148:114-31. [PMID: 25435019 DOI: 10.1016/j.pharmthera.2014.11.016] [Citation(s) in RCA: 1240] [Impact Index Per Article: 112.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/18/2014] [Indexed: 12/23/2022]
Abstract
Glycogen synthase kinase-3 (GSK3) may be the busiest kinase in most cells, with over 100 known substrates to deal with. How does GSK3 maintain control to selectively phosphorylate each substrate, and why was it evolutionarily favorable for GSK3 to assume such a large responsibility? GSK3 must be particularly adaptable for incorporating new substrates into its repertoire, and we discuss the distinct properties of GSK3 that may contribute to its capacity to fulfill its roles in multiple signaling pathways. The mechanisms regulating GSK3 (predominantly post-translational modifications, substrate priming, cellular trafficking, protein complexes) have been reviewed previously, so here we focus on newly identified complexities in these mechanisms, how each of these regulatory mechanism contributes to the ability of GSK3 to select which substrates to phosphorylate, and how these mechanisms may have contributed to its adaptability as new substrates evolved. The current understanding of the mechanisms regulating GSK3 is reviewed, as are emerging topics in the actions of GSK3, particularly its interactions with receptors and receptor-coupled signal transduction events, and differential actions and regulation of the two GSK3 isoforms, GSK3α and GSK3β. Another remarkable characteristic of GSK3 is its involvement in many prevalent disorders, including psychiatric and neurological diseases, inflammatory diseases, cancer, and others. We address the feasibility of targeting GSK3 therapeutically, and provide an update of its involvement in the etiology and treatment of several disorders.
Collapse
Affiliation(s)
- Eleonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Steven F Grieco
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Richard S Jope
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States.
| |
Collapse
|
14
|
Lin S, Gu H, Xu M, Cui X, Zhang Y, Gao W, Yuan G. The formation and stabilization of a novel G-quadruplex in the 5'-flanking region of the relaxin gene. PLoS One 2012; 7:e31201. [PMID: 22363579 PMCID: PMC3283602 DOI: 10.1371/journal.pone.0031201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 01/04/2012] [Indexed: 01/02/2023] Open
Abstract
It has been reported that binding of STAT3 protein to the 5'-flanking region of the relaxin gene may result in downregulation of the relaxin expression. There is a Guanine(G)-rich segment located in about 3.8 Kb upstream of the relaxin gene and very close to the STAT3's binding site. In our study, NMR spectroscopy revealed the formation of G-quadruplex by this G-rich strand, and the result was confirmed by ESI mass spectrometry and CD spectroscopy. The theoretical structure of RLX G-quadruplex was constructed and refined by molecular modeling. When this relaxin G-quadruplex was stabilized by berberine(ΔTm = 10°C), a natural alkaloid from a Chinese herb, the gene expression could be up-regulated in a dose-dependent manner which was proved by luciferase assay. This result is different from the general G-quadruplex function that inhibiting the telomere replication or down-regulating many oncogenes expression. Therefore, our study reported a novel G-quadruplex in the relaxin gene and complemented the regulation mechanism about gene expression by G-quadruplexes.
Collapse
Affiliation(s)
- Sen Lin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Huiping Gu
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Institute of Vascular Medicine, Third Hospital, Peking University, Beijing, China
| | - Ming Xu
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Institute of Vascular Medicine, Third Hospital, Peking University, Beijing, China
- * E-mail: (MX); (GY)
| | - Xiaojie Cui
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Youyi Zhang
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Institute of Vascular Medicine, Third Hospital, Peking University, Beijing, China
| | - Wei Gao
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Institute of Vascular Medicine, Third Hospital, Peking University, Beijing, China
| | - Gu Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- * E-mail: (MX); (GY)
| |
Collapse
|
15
|
Li Y, Zhang H, Liao W, Song Y, Ma X, Chen C, Lu Z, Li Z, Zhang Y. Transactivated EGFR mediates α1-AR-induced STAT3 activation and cardiac hypertrophy. Am J Physiol Heart Circ Physiol 2011; 301:H1941-51. [DOI: 10.1152/ajpheart.00338.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Li Y, Zhang H, Liao W, Song Y, Ma X, Chen C, Lu Z, Li Z, Zhang Y. α1-Adrenergic receptor (α1-AR) is a crucial mediator of cardiac hypertrophy. Although numerous intracellular pathways have been implicated in α1-AR-induced hypertrophy, its precise mechanism remains elusive. We aimed to determine whether α1-AR induces cardiac hypertrophy through a novel signaling pathway-α1-AR/epidermal growth factor receptor (EGFR)/signal transducer and activator of transcription 3 (STAT3). The activation of STAT3 by α1-AR was first demonstrated by tyrosine phosphorylation, nuclear translocation, DNA binding, and transcriptional activity in neonatal Sprague-Dawley rat cardiomyocytes. Activated STAT3 showed an essential role in α1-AR-induced cardiomyocyte hypertrophic growth, as assessed by treatment with STAT3 inhibitory peptide and lentivirus-STAT3 small interfering RNA. The results were further confirmed by in vivo experiments involving intraperitoneal injection of the STAT3 inhibitor WP1066 significantly inhibiting phenylephrine-infusion-induced heart hypertrophy in male C57BL/6 mice. Furthermore, the α1-AR-activated STAT3 was associated with transactivation of EGFR because inhibition of EGFR with the selective inhibitor AG1478 prevented α1-AR-induced STAT3 tyrosine phosphorylation and its transcriptional activity, as well as cardiac hypertrophy. In summary, these results suggest that α1-AR induces the activation of STAT3, mainly through transactivation of EGFR, which plays an important role in α1-AR-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Yan Li
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Ministry of Health, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, People's Republic of China
| | - Hui Zhang
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Ministry of Health, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, People's Republic of China
| | - Wenqiang Liao
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Ministry of Health, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, People's Republic of China
| | - Yao Song
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Ministry of Health, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, People's Republic of China
| | - Xiaowei Ma
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Ministry of Health, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, People's Republic of China
| | - Chao Chen
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Ministry of Health, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, People's Republic of China
| | - Zhizhen Lu
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Ministry of Health, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, People's Republic of China
| | - Zijian Li
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Ministry of Health, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, People's Republic of China
| | - Youyi Zhang
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Ministry of Health, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, People's Republic of China
| |
Collapse
|
16
|
Sussman MA, Völkers M, Fischer K, Bailey B, Cottage CT, Din S, Gude N, Avitabile D, Alvarez R, Sundararaman B, Quijada P, Mason M, Konstandin MH, Malhowski A, Cheng Z, Khan M, McGregor M. Myocardial AKT: the omnipresent nexus. Physiol Rev 2011; 91:1023-70. [PMID: 21742795 PMCID: PMC3674828 DOI: 10.1152/physrev.00024.2010] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses.
Collapse
Affiliation(s)
- Mark A Sussman
- Department of Biology, San Diego State University, SDSU Heart Institute, San Diego, California 92182, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
He K, Shi X, Zhang X, Dang S, Ma X, Liu F, Xu M, Lv Z, Han D, Fang X, Zhang Y. Long-distance intercellular connectivity between cardiomyocytes and cardiofibroblasts mediated by membrane nanotubes. Cardiovasc Res 2011; 92:39-47. [PMID: 21719573 DOI: 10.1093/cvr/cvr189] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIMS Intercellular interactions between cardiomyocytes (CMs) and cardiofibroblasts (FBs) are important in the physiological and pathophysiological heart. Understanding such interactions is important for developing effective heart disease therapies. However, until recently, little has been known about these interactions. We aimed to investigate structural and functional connections between CMs and FBs that are distinct from gap junctions. METHODS AND RESULTS By membrane dye staining, we observed long, thin membrane nanotubular structures containing actin and microtubules that connected neonatal rat ventricular CMs and FBs. By single-particle tracking, we observed vehicles moving between CMs and FBs within the membrane nanotubes. By dual colour staining, confocal imaging and flow cytometry, we observed mitochondria exchange between CMs and FBs in a coculture system. By combined atomic force microscopy (AFM) and confocal microscopy, we observed calcium signal propagation from AFM-stimulated CM (or FB) to unstimulated FB (or CM) via membrane nanotubes. By membrane and cytoskeleton staining, we observed similar nanotubular structures in adult mouse heart tissue, which suggests their physiological relevance. CONCLUSIONS As a novel type of CM to FB communication, membrane nanotubes observed in vitro and in vivo provide structural and functional connectivity between CMs and FBs over long distances.
Collapse
Affiliation(s)
- Kangmin He
- Institute of Vascular Medicine of Third Hospital, Ministry of Education Key Lab of Molecular Cardiovascular Sciences, Ministry of Health Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100191, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ma X, Song Y, Chen C, Fu Y, Shen Q, Li Z, Zhang Y. Distinct actions of intermittent and sustained β-adrenoceptor stimulation on cardiac remodeling. SCIENCE CHINA-LIFE SCIENCES 2011; 54:493-501. [DOI: 10.1007/s11427-011-4183-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 05/10/2011] [Indexed: 02/02/2023]
|
19
|
He K, Fu Y, Zhang W, Yuan J, Li Z, Lv Z, Zhang Y, Fang X. Single-molecule imaging revealed enhanced dimerization of transforming growth factor β type II receptors in hypertrophic cardiomyocytes. Biochem Biophys Res Commun 2011; 407:313-7. [PMID: 21382347 DOI: 10.1016/j.bbrc.2011.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/02/2011] [Indexed: 12/29/2022]
Abstract
Transforming growth factor β (TGF-β) signaling plays an important role in the pathogenesis of cardiac hypertrophy. However, the molecular mechanism of TGF-β signaling during the process of cardiac remodeling remains poorly understood. In the present study, by employing single-molecule fluorescence imaging approach, we demonstrated that in neonatal rat cardiomyocytes, TGF-β type II receptors (TβRII) existed as monomers at the low expression level, and dimerized upon TGF-β1 stimulation. Importantly, for the first time, we found the increased dimerization of TβRII in hypertrophic cardiomyocytes comparing to the normal cardiomyocytes. The enhanced TβRII dimerization was correlated with the enhanced Smad3 phosphorylation levels. These results provide new information on the mechanism of TGF-β signaling in cardiac remodeling.
Collapse
Affiliation(s)
- Kangmin He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Shin SY, Yang HW, Kim JR, Do Heo W, Cho KH. A hidden incoherent switch regulates RCAN1 in the calcineurin–NFAT signaling network. J Cell Sci 2011; 124:82-90. [DOI: 10.1242/jcs.076034] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Regulator of calcineurin 1 (RCAN1) is a key regulator of the calcineurin–NFAT signaling network in organisms ranging from yeast to human, but its functional role is still under debate because different roles of RCAN1 have been suggested under various experimental conditions. To elucidate the mechanisms underlying the RCAN1 regulatory system, we used a systems approach by combining single-cell experimentation with in silico simulations. In particular, we found that the nuclear export of GSK3β, which switches on the facilitative role of RCAN1 in the calcineurin–NFAT signaling pathway, is promoted by PI3K signaling. Based on this, along with integrated information from previous experiments, we developed a mathematical model in which the functional role of RCAN1 changes in a dose-dependent manner: RCAN1 functions as an inhibitor when its levels are low, but as a facilitator when its levels are high. Furthermore, we identified a hidden incoherent regulation switch that mediates this role change, which entails negative regulation through RCAN1 binding to calcineurin and positive regulation through sequential phosphorylation of RCAN1.
Collapse
Affiliation(s)
- Sung-Young Shin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Hee Won Yang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Jeong-Rae Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
- Department of Mathematics, University of Seoul, Seoul 130-743, Republic of Korea
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| |
Collapse
|
21
|
Hong HM, Song EJ, Oh E, Kabir MH, Lee C, Yoo YS. Endothelin-1- and isoproterenol-induced differential protein expression and signaling pathway in HL-1 cardiomyocytes. Proteomics 2010; 11:283-97. [PMID: 21204255 DOI: 10.1002/pmic.201000018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 08/13/2010] [Accepted: 10/20/2010] [Indexed: 11/07/2022]
Abstract
It is well known that the two chemical compounds endothelin-1 (ET-1) and isoproterenol (ISO) can individually induce cardiac hypertrophy through G protein-coupled receptors in cardiomyocytes. However, the cardiac hypertrophy signaling pathway activated by ET-1 and ISO is not well defined. Therefore, we investigated the protein expression profile and signaling transduction in HL-l cardiomyocyte cells treated with ET-1 and ISO. Following separation of the cell lysates by using 2-DE and silver staining, we identified 16 protein spots that were differentially expressed as compared to the controls. Of these 16 spots, three changed only after treatment with ET-1, whereas four changed only after treatment with ISO, suggesting that these two stimuli could induce different signaling pathways. In order to reveal the differences between ET-1- and ISO-induced signaling, we studied the different events that occur at each step of the signaling pathways, when selected biocomponents were blocked by inhibitors. Our results indicated that ET-1 and ISO used different pathways for phosphorylation of glycogen synthase kinase-3β (GSK3β). ET-1 mainly used the mitogen-activated protein kinase and phosphatidylinositol-3-kinase/AKT pathways to activate GSK3β, whereas under ISO stimulation, only the phosphatidylinositol-3-kinase/AKT pathway was required to trigger the GSK3β pathway. Furthermore, the strength of the GSK3β signal in ISO-induced cardiac hypertrophy was stronger than that in ET-1-induced cardiac hypertrophy. We found that these two agonists brought about different changes in the protein expression of HL-1 cardiomyocytes through distinct signaling pathways even though the destination of the two signaling pathways was the same.
Collapse
Affiliation(s)
- Hye-Min Hong
- Integrated Omics Center, Life/Health Division Korea Institute of Science and Technology, Cheongryang, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
22
|
Liu X, Gai Y, Liu F, Gao W, Zhang Y, Xu M, Li Z. Trimetazidine inhibits pressure overload-induced cardiac fibrosis through NADPH oxidase–ROS–CTGF pathway. Cardiovasc Res 2010; 88:150-8. [DOI: 10.1093/cvr/cvq181] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
23
|
Jiang SY, Xu M, Ma XW, Xiao H, Zhang YY. A distinct AMP-activated protein kinase phosphorylation site characterizes cardiac hypertrophy induced by L-thyroxine and angiotensin II. Clin Exp Pharmacol Physiol 2010; 37:919-25. [PMID: 20497424 DOI: 10.1111/j.1440-1681.2010.05404.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
1. The purpose of the present study was to evaluate differences in the AMP-activated protein kinase (AMPK) phosphorylation sites in cardiac hypertrophy induced by L-thyroxine and angiotensin (Ang) II. 2. Cardiac hypertrophy was induced in wild-type and AMPKalpha2-knockout mice by treatment with 1 mg/kg, i.p., thyroxine or 1.44 mg/kg per day AngII for 14 days. The phenotype of the hypertrophy was evaluated using echocardiographic measurements and histological analyses. The phosphorylation of AMPK at alpha-Ser(485/491) and alpha-Thr(172) was determined by western blot analysis. 3. In wild-type mice, the phosphorylation of AMPKalpha-Ser(485/491) was significantly elevated in the AngII-treated group, but not in the thyroxine-treated group, compared with the vehicle control group. In contrast, the phosphorylation of AMPKalpha-Thr(172) was significantly increased by thyroxine, but not AngII, treatment compared with the vehicle control group. Furthermore, knockout of the AMPKalpha2 subunit abolished phosphorylation at the alpha-Ser(485/491) site and significantly suppressed phosphorylation at the alpha-Thr(172) site, resulting in alleviation of thyroxine- but not AngII-induced hypertrophy. 4. In conclusion, L-thyroxine and AngII induce the phosphorylation of distinct sites of AMPK in cardiac hypertrophy. Phosphorylation of AMPK alpha-Thr(172) may contribute to thyroxine-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Sheng-Yang Jiang
- Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | | | | | | | | |
Collapse
|
24
|
Li Q, Lin X, Yang X, Chang J. NFATc4 is negatively regulated in miR-133a-mediated cardiomyocyte hypertrophic repression. Am J Physiol Heart Circ Physiol 2010; 298:H1340-7. [PMID: 20173049 PMCID: PMC3774484 DOI: 10.1152/ajpheart.00592.2009] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 02/12/2010] [Indexed: 01/04/2023]
Abstract
Activation of NFAT (nuclear factor of activated T cells)-mediated hypertrophic signaling is a major regulatory response to hypertrophic stimuli. A recent study unveiled potential regulatory roles for microRNA-133a (miR-133a) in cardiac hypertrophy. To date, however, no connection has been made between miR-133a and NFAT signaling. In this study, we determined that NFATc4, a hypertrophy-associated mediator, is negatively regulated by miR-133a. Two conserved base-pairing sites between the NFATc4 3'-untranslated region (UTR) and miR-133a were verified. Mutation of these sites in the NFATc4 3'-UTR completely blocked the negative effect of miR-133a on NFATc4, suggesting that NFATc4 is a direct target for miR-133a regulation. Using a gain-of-function approach, we demonstrate that miR-133 significantly reduces the endogenous level of, as well as the hypertrophic stimulus-mediated increase in, NFATc4 gene expression. This latter effect of miR-133a on NFATc4 gene expression was coincided with an attenuated cardiomyocyte hypertrophy induced by an alpha-adrenergic receptor agonist. Conversely, cells treated with miR-133a inhibitor resulted in an increase in NFATc4 expression level. Application of miR-133a had no apparent effect on NFATc4 nuclear localization. We conclude that the negative regulation of NFATc4 expression contributes to miR-133a-mediated hypertrophic repression.
Collapse
Affiliation(s)
- Qi Li
- Center for Molecular Development and Disease, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | |
Collapse
|
25
|
Tsika RW, Ma L, Kehat I, Schramm C, Simmer G, Morgan B, Fine DM, Hanft LM, McDonald KS, Molkentin JD, Krenz M, Yang S, Ji J. TEAD-1 overexpression in the mouse heart promotes an age-dependent heart dysfunction. J Biol Chem 2010; 285:13721-35. [PMID: 20194497 DOI: 10.1074/jbc.m109.063057] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
TEA domain transcription factor-1 (TEAD-1) is essential for proper heart development and is implicated in cardiac specific gene expression and the hypertrophic response of primary cardiomyocytes to hormonal and mechanical stimuli, and its activity increases in the pressure-overloaded hypertrophied rat heart. To investigate whether TEAD-1 is an in vivo modulator of cardiac specific gene expression and hypertrophy, we developed transgenic mice expressing hemagglutinin-tagged TEAD-1 under the control of the muscle creatine kinase promoter. We show that a sustained increase in TEAD-1 protein leads to an age-dependent dysfunction. Magnetic resonance imaging revealed decreases in cardiac output, stroke volume, ejection fraction, and fractional shortening. Isolated TEAD-1 hearts revealed decreased left ventricular power output that correlated with increased betaMyHC protein. Histological analysis showed altered alignment of cardiomyocytes, septal wall thickening, and fibrosis, although electrocardiography displayed a left axis shift of mean electrical axis. Transcripts representing most members of the fetal heart gene program remained elevated from fetal to adult life. Western blot analyses revealed decreases in p-phospholamban, SERCA2a, p-CX43, p-GSK-3alpha/beta, nuclear beta-catenin, GATA4, NFATc3/c4, and increased NCX1, nuclear DYKR1A, and Pur alpha/beta protein. TEAD-1 mice did not display cardiac hypertrophy. TEAD-1 mice do not tolerate stress as they die over a 4-day period after surgical induction of pressure overload. These data provide the first in vivo evidence that increased TEAD-1 can induce characteristics of cardiac remodeling associated with cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Richard W Tsika
- Department of Biochemistry, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gopinath S, Vanamala SK, Gujrati M, Klopfenstein JD, Dinh DH, Rao JS. Doxorubicin-mediated apoptosis in glioma cells requires NFAT3. Cell Mol Life Sci 2009; 66:3967-78. [PMID: 19784808 PMCID: PMC2809824 DOI: 10.1007/s00018-009-0157-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 09/10/2009] [Indexed: 11/30/2022]
Abstract
Nuclear factor of activated T cells (NFAT), a family of transcription factors, has been implicated in many cellular processes, including some cancers. Here, we characterize, for the first time, the role of NFAT3 in doxorubicin (DOX)-mediated apoptosis, migration, and invasion in SNB19 and U87 glioma cells. This study demonstrates that the specific knockdown of NFAT3 results in a dramatic inhibition of the apoptotic effect induced by DOX and favors cell survival. Inhibition of NFAT3 activation by shNFAT3 (shNF3) significantly downregulated tumor necrosis factor (TNF)-alpha induction, its receptor TNFR1, caspase 10, caspase 3, and poly (ADP-ribose) polymerase, abrogating DOX-mediated apoptosis in glioma cells. DOX treatment resulted in NFAT3 translocation to the nucleus. Similarly, shNF3 treatment in SNB19 and U87 cells reversed DOX-induced inhibition of cell migration and invasion, as determined by wound healing and matrigel invasion assays. Taken together, these results indicate that NFAT3 is a prerequisite for the induction of DOX-mediated apoptosis in glioma cells.
Collapse
Affiliation(s)
- Sreelatha Gopinath
- Department of Cancer Biology and Pharmacology, College of Medicine at Peoria, University of Illinois, 1649, Peoria, IL 61656 USA
| | - Sravan K. Vanamala
- Department of Cancer Biology and Pharmacology, College of Medicine at Peoria, University of Illinois, 1649, Peoria, IL 61656 USA
| | - Meena Gujrati
- Department of Pathology, College of Medicine at Peoria, University of Illinois, Peoria, IL 61656 USA
| | - Jeffrey D. Klopfenstein
- Department of Neurosurgery, College of Medicine at Peoria, University of Illinois, Peoria, IL 61656 USA
| | - Dzung H. Dinh
- Department of Neurosurgery, College of Medicine at Peoria, University of Illinois, Peoria, IL 61656 USA
| | - Jasti S. Rao
- Department of Cancer Biology and Pharmacology, College of Medicine at Peoria, University of Illinois, 1649, Peoria, IL 61656 USA
- Department of Neurosurgery, College of Medicine at Peoria, University of Illinois, Peoria, IL 61656 USA
| |
Collapse
|
27
|
Watanabe K, Thandavarayan RA, Gurusamy N, Zhang S, Muslin AJ, Suzuki K, Tachikawa H, Kodama M, Aizawa Y. Role of 14-3-3 protein and oxidative stress in diabetic cardiomyopathy. ACTA ACUST UNITED AC 2009; 96:277-87. [PMID: 19706371 DOI: 10.1556/aphysiol.96.2009.3.3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cardiovascular disease is a leading cause of death worldwide. Diabetes mellitus is a well-known and important risk factor for cardiovascular diseases. The occurrence of diabetic cardiomyopathy is independent of hypertension, coronary artery disease, or any other known cardiac diseases. There is growing evidence that excess generation of highly reactive free radicals, largely due to hyperglycemia, causes oxidative stress, which further exacerbates the development and progression of diabetes and its complications. Diabetic cardiomyopathy is characterized by morphologic and structural changes in the myocardium and coronary vasculature mediated by the activation of various signaling pathways. Myocardial apoptosis, hypertrophy and fibrosis are the most frequently proposed mechanisms to explain cardiac changes in diabetic cardiomyopathy. Mammalian 14-3-3 proteins are dimeric phosphoserine-binding proteins that participate in signal transduction and regulate several aspects of cellular biochemistry. 14-3-3 protein regulates diabetic cardiomyopathy via multiple signaling pathways. This review focuses on emerging evidence suggesting that 14-3-3 protein plays a key role in the pathogenesis of the cardiovascular complications of diabetes, which underlie the development and progression of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Kenichi Watanabe
- Department of Clinical Pharmacology, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata City, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Qi JY, Xu M, Lu ZZ, Zhang YY. 14-3-3 inhibits insulin-like growth factor-I-induced proliferation of cardiac fibroblasts via a phosphatidylinositol 3-kinase-dependent pathway. Clin Exp Pharmacol Physiol 2009; 37:296-302. [PMID: 19719751 DOI: 10.1111/j.1440-1681.2009.05282.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Insulin-like growth factor (IGF)-I plays an important role in the pathogenesis of heart disease and has been shown to strongly induce the proliferation of cardiac fibroblasts (CFs). It remains unknown whether 14-3-3 proteins, which are associated the regulation of signal transduction, affect IGF-I-induced CF proliferation. 2. In the present study, we investigated the effects of 14-3-3 proteins on CF proliferation in response to IGF-I. Proliferation of CFs was determined by cell counting and a bromodeoxyuridine incorporation assay. Phosphorylation of signalling molecules was evaluated by western blottling. Activity of nuclear factor of activated T cells (NFAT) was examined using a dual luciferase reporter gene assay and immunofluorescence. 3. It was found that adenovirus-mediated transfection of YFP-R18 peptide (AdR18), a known inhibitor of 14-3-3, significantly enhanced IGF-I-induced CF proliferation. This potentiation arose from an increase in phosphorylation of phosphatidylinositol 3-kinase (PI3-K) and AKT (protein kinase B), inactivation of glycogen synthesis kinase (GSK) 3beta and increased NFAT activity. 4. Collectively, the results of the present study suggest that 14-3-3 proteins inhibit IGF-I-induced CF proliferation via a PI3-K-dependent NFAT signalling pathway. This finding may contribute to our understanding of the function of 14-3-3 proteins in the heart.
Collapse
Affiliation(s)
- Jian-Yong Qi
- Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | | | | | | |
Collapse
|
29
|
Regulation of gap-junction protein connexin 43 by beta-adrenergic receptor stimulation in rat cardiomyocytes. Acta Pharmacol Sin 2009; 30:928-34. [PMID: 19574999 DOI: 10.1038/aps.2009.92] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AIM beta-adrenergic receptor (beta-AR) agonists are among the most potent factors regulating cardiac electrophysiological properties. Connexin 43 (Cx43), the predominant gap-junction protein in the heart, has an indispensable role in modulating cardiac electric activities by affecting gap-junction function. The present study investigates the effects of short-term stimulation of beta-AR subtypes on Cx43 expression and gap junction intercellular communication (GJIC) function. METHODS The level of Cx43 expression in neonatal rat cardiomyocytes (NRCM) was detected by a Western blotting assay. The GJIC function was evaluated by scrape loading/dye transfer assay. RESULTS Stimulation of beta-AR by the agonist isoproterenol for 5 min induces the up-regulation of nonphosphorylated Cx43 protein level, but not total Cx43. Selective beta(2)-AR inhibitor ICI 118551, but not beta(1)-AR inhibitor CGP20712, could fully abolish the effect. Moreover, pretreatment with both protein kinase A inhibitor H89 and G(i) protein inhibitor pertussis toxin also inhibited the isoproterenol-induced increase of nonphosphorylated Cx43 expression. Isoproterenol-induced up-regulation of nonphosphorylated Cx43 is accompanied with enhanced GJIC function. CONCLUSION Taken together, beta(2)-AR stimulation increases the expression of nonphosphorylated Cx43, thereby enhancing the gating function of gap junctions in cardiac myocytes in both a protein kinase A- and G(i)-dependent manner.Acta Pharmacologica Sinica (2009) 30: 928-934; doi: 10.1038/aps.2009.92.
Collapse
|
30
|
Domain architecture of the regulators of calcineurin (RCANs) and identification of a divergent RCAN in yeast. Mol Cell Biol 2009; 29:2777-93. [PMID: 19273587 DOI: 10.1128/mcb.01197-08] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Regulators of calcineurin (RCANs) in fungi and mammals have been shown to stimulate and inhibit calcineurin signaling in vivo through direct interactions with the catalytic subunit of the phosphatase. The dual effects of RCANs on calcineurin were examined by performing structure-function analyses on yeast Rcn1 and human RCAN1 (a.k.a. DSCR1, MCIP1, and calcipressin 1) proteins expressed at a variety of different levels in yeast. At high levels of expression, the inhibitory effects required a degenerate PxIxIT-like motif and a novel LxxP motif, which may be related to calcineurin-binding motifs in human NFAT proteins. The conserved glycogen synthase kinase 3 (GSK-3) phosphorylation site was not required for inhibition, suggesting that RCANs can simply compete with other substrates for docking onto calcineurin. In addition to these docking motifs, two other highly conserved motifs plus the GSK-3 phosphorylation site in RCANs, along with the E3 ubiquitin ligase SCF(Cdc4), were required for stimulation of calcineurin signaling in yeast. These findings suggest that RCANs may function primarily as chaperones for calcineurin biosynthesis or recycling, requiring binding, phosphorylation, ubiquitylation, and proteasomal degradation for their stimulatory effect. Finally, another highly divergent yeast RCAN, termed Rcn2 (YOR220w), was identified through a functional genetic screen. Rcn2 lacks all stimulatory motifs, though its expression was still strongly induced by calcineurin signaling through Crz1 and it competed with other endogenous substrates when overexpressed, similar to canonical RCANs. These findings suggest a primary role for canonical RCANs in facilitating calcineurin signaling, but canonical RCANs may secondarily inhibit calcineurin signaling by interfering with substrate interactions and enzymatic activity.
Collapse
|
31
|
Zhang H, Feng W, Liao W, Ma X, Han Q, Zhang Y. The gp130/STAT3 signaling pathway mediates beta-adrenergic receptor-induced atrial natriuretic factor expression in cardiomyocytes. FEBS J 2008; 275:3590-7. [PMID: 18537819 DOI: 10.1111/j.1742-4658.2008.06504.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
beta-Adrenergic receptor (beta-AR)-induced cardiac remodeling is closely linked with the re-expression of the atrial natriuretic factor (ANF) gene. However, the exact molecular mechanism of this response remains elusive. Here, we demonstrate that the beta-AR agonist isoproterenol potently evokes the tyrosine phosphorylation of STAT3 and increases its transcriptional activity in an extracellularly regulated kinase 1/2 and glycoprotein (gp)130 signaling-dependent manner in rat cardiomyocytes. Interestingly, both specific silencing of signal transducers and activators of transcription 3 (STAT3) expression by lentivirus-mediated RNA interference and antagonism of gp130 signaling lead to significant inhibition of isoproterenol-stimulated ANF expression. Together, these results indicate that gp130/STAT3 signaling has an essential role in ANF expression by beta-AR stimulation.
Collapse
Affiliation(s)
- Hui Zhang
- Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | | | | | | | | | | |
Collapse
|
32
|
Bao Y, Li R, Jiang J, Cai B, Gao J, Le K, Zhang F, Chen S, Liu P. Activation of peroxisome proliferator-activated receptor gamma inhibits endothelin-1-induced cardiac hypertrophy via the calcineurin/NFAT signaling pathway. Mol Cell Biochem 2008; 317:189-96. [PMID: 18600431 DOI: 10.1007/s11010-008-9848-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 06/13/2008] [Indexed: 12/31/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPAR-gamma) has been described as a negative regulator of cardiac hypertrophy. A better understanding of PPAR-gamma and cardiac hypertrophy may facilitate the development of novel therapeutic strategies to treat heart diseases related to cardiac hypertrophy by mimicking the naturally preferred mechanisms. In the present study, we investigated the interaction between PPAR-gamma and calcineurin/nuclear factor of activated T-cells (NFAT) in endothelin-1 (ET-1)-induced hypertrophy of neonatal rat cardiac myocytes. The results suggest that the treatment of cultured cardiac myocytes with a PPAR-gamma ligand, rosiglitazone, inhibited the ET-1-induced increase in protein synthesis, surface area, calcineurin enzymatic activity, and protein expression. Both the application of rosiglitazone and overexpression of the PPAR-gamma inhibited the nuclear translocation of NFATc4. Moreover, co-immunoprecipitation studies showed that rosiglitazone enhanced the association between PPAR-gamma and calcineurin/NFAT. These results suggest that ET-1-induced cardiac hypertrophy is inhibited by activation of PPAR-gamma, which is at least partly due to cross-talk between PPAR-gamma and calcineurin/NFAT.
Collapse
Affiliation(s)
- Yingxia Bao
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, 74 Zhongshan II Road, Guangzhou, 510080, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Glycogen synthase kinase 3 (GSK3) in the heart: a point of integration in hypertrophic signalling and a therapeutic target? A critical analysis. Br J Pharmacol 2008; 153 Suppl 1:S137-53. [PMID: 18204489 DOI: 10.1038/sj.bjp.0707659] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3, of which there are two isoforms, GSK3alpha and GSK3beta) was originally characterized in the context of regulation of glycogen metabolism, though it is now known to regulate many other cellular processes. Phosphorylation of GSK3alpha(Ser21) and GSK3beta(Ser9) inhibits their activity. In the heart, emphasis has been placed particularly on GSK3beta, rather than GSK3alpha. Importantly, catalytically-active GSK3 generally restrains gene expression and, in the heart, catalytically-active GSK3 has been implicated in anti-hypertrophic signalling. Inhibition of GSK3 results in changes in the activities of transcription and translation factors in the heart and promotes hypertrophic responses, and it is generally assumed that signal transduction from hypertrophic stimuli to GSK3 passes primarily through protein kinase B/Akt (PKB/Akt). However, recent data suggest that the situation is far more complex. We review evidence pertaining to the role of GSK3 in the myocardium and discuss effects of genetic manipulation of GSK3 activity in vivo. We also discuss the signalling pathways potentially regulating GSK3 activity and propose that, depending on the stimulus, phosphorylation of GSK3 is independent of PKB/Akt. Potential GSK3 substrates studied in relation to myocardial hypertrophy include nuclear factors of activated T cells, beta-catenin, GATA4, myocardin, CREB, and eukaryotic initiation factor 2Bvarepsilon. These and other transcription factor substrates putatively important in the heart are considered. We discuss whether cardiac pathologies could be treated by therapeutic intervention at the GSK3 level but conclude that any intervention would be premature without greater understanding of the precise role of GSK3 in cardiac processes.
Collapse
|
34
|
Li R, Zheng W, Pi R, Gao J, Zhang H, Wang P, Le K, Liu P. Activation of peroxisome proliferator-activated receptor-alpha prevents glycogen synthase 3beta phosphorylation and inhibits cardiac hypertrophy. FEBS Lett 2007; 581:3311-6. [PMID: 17597616 DOI: 10.1016/j.febslet.2007.06.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 06/10/2007] [Indexed: 10/23/2022]
Abstract
Activation of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) has been recently reported to inhibit vascular inflammatory response and prevent cardiac hypertrophy. However, it is unclear how the activation of PPAR-alpha regulates hypertrophic response. In the present study, we found that application of fenofibrate and overexpression of PPAR-alpha inhibited endothelin-1 (ET-1)-induced phosphorylation of protein kinase B (Akt) at Ser473 and glycogen synthase kinase3beta (GSK3beta) at Ser9, and prevented ET-1-induced nuclear translocation of NFATc4 in cardiomyocytes. Moreover, co-immunoprecipitation studies showed that fenofibrate strongly induced the association of nuclear factor of activated T cells (NFATc4) with PPAR-alpha. These results suggest that activation of PPAR-alpha inhibits ET-1-induced cardiac hypertrophy through regulating PI3K/Akt/GSK3beta and NFAT signaling pathways.
Collapse
Affiliation(s)
- Ruifang Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, PR China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Li T, Paudel HK. 14-3-3ζ Facilitates GSK3β-catalyzed tau phosphorylation in HEK-293 cells by a mechanism that requires phosphorylation of GSK3β on Ser9. Neurosci Lett 2007; 414:203-8. [PMID: 17317006 DOI: 10.1016/j.neulet.2006.11.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 11/10/2006] [Accepted: 11/22/2006] [Indexed: 01/05/2023]
Abstract
Hyperphosphorylated tau is the prominent component of paired helical filaments, which are the major component of neurofibrillary tangles associated with Alzheimer's disease (AD). Glycogen synthase kinase 3beta (GSK3beta) is implicated to phosphorylate tau in normal and AD brain. Previously, we isolated a large multiprotein complex containing tau, Ser9-phosphorylated GSK3beta and 14-3-3zeta from bovine brain microtubules. We showed that within the complex, 14-3-3zeta binds to tau and GSK3beta and mediates GSK3beta-catalyzed tau phosphorylation. A recent report however indicated that 14-3-3zeta does not bind to tau or GSK3beta and does not increase tau phosphorylation by GSK3beta in cell models [T.A. Matthews, G.V.W. Johnson, Neurosci. Lett. 384 (2005) 211-216]. In the current study we have thoroughly analyzed the binding of 14-3-3zeta with tau and GSK3beta and evaluated the effect of 14-3-3zeta on tau phosphorylation by GSK3beta in HEK-293 cells. We found that 14-3-3zeta binds to tau and Ser9-phosphorylated GSK3beta. Nonphosphorylated GSK3beta phosphorylates tau without being influenced by 14-3-3zeta. Ser9-phosphorylated GSK3beta on the other hand phosphorylates tau significantly only in the presence of 14-3-3zeta. Our data demonstrate that 14-3-3zeta mediates tau phosphorylation by Ser9-phosphorylated GSK3beta in HEK-293 cells.
Collapse
Affiliation(s)
- Tong Li
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, 3755 Cote Ste Catherine, and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | |
Collapse
|
36
|
Zhang H, Wang X, Li J, Zhu J, Xie X, Yuan B, Yang Z, Zeng M, Jiang Z, Li J, Huang C, Ye Q. Tissue type-specific modulation of ER transcriptional activity by NFAT3. Biochem Biophys Res Commun 2007; 353:576-81. [PMID: 17194453 DOI: 10.1016/j.bbrc.2006.12.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 12/07/2006] [Indexed: 11/28/2022]
Abstract
NFAT3 belongs to the NFAT family of transcription factors playing important roles in the development of several organ systems and was found to act as a transcriptional coactivator of estrogen receptors (ERalpha and ERbeta) in breast cancer cells. Since some cofactors of transcription factors show cell or tissue type-specific effects on transcriptional regulation, we investigated the effect of NFAT3 on the transcriptional activity of ERs in different cell lines originated from kidney. Surprisingly, overexpression of NFAT3 in these cell types decreased dose-dependently both ERalpha and ERbeta transcriptional activities in a ligand-independent manner. Knockdown of endogenous NFAT3 using NFAT3 small interfering RNA (siRNA) increased ER transcriptional activities. NFAT3 deletion mutants lacking the ER-binding sites completely abolished the NFAT3 repression of ERalpha and ERbeta transcriptional activities. Replacement of Ser168 and Ser170, the amino acid residues on which NFAT3 can be phosphorylated, with Ala did not change the ability of NFAT3 to inhibit the transcriptional activity of ERalpha and ERbeta. Taken together, these results demonstrate that NFAT3 is a new kind of cofactor that displays dual transcription modulation mode dependent on tissue types.
Collapse
Affiliation(s)
- Hao Zhang
- Beijing Institute of Biotechnology, Beijing 100850, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Di Fede G, Giaccone G, Limido L, Mangieri M, Suardi S, Puoti G, Morbin M, Mazzoleni G, Ghetti B, Tagliavini F. The ε Isoform of 14-3-3 Protein Is a Component of the Prion Protein Amyloid Deposits of Gerstmann-Sträussler-Scheinker Disease. J Neuropathol Exp Neurol 2007; 66:124-30. [PMID: 17278997 DOI: 10.1097/nen.0b013e3180302060] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The 14-3-3 proteins are highly conserved, ubiquitous molecules involved in a variety of biologic events, such as transduction pathway modulation, cell cycle control, and apoptosis. Seven isoforms have been identified that are abundant in the brain, preferentially localized in neurons. Remarkable increases in 14-3-3 are seen in the cerebrospinal fluid of patients with Creutzfeldt-Jakob disease (CJD), and it has been found in pathologic inclusions of several neurodegenerative diseases. Moreover, the zeta isoform has been detected in prion protein (PrP) amyloid deposits of CJD patients. To further investigate the cerebral distribution of 14-3-3 in prion-related encephalopathies, we carried out an immunohistochemical and biochemical analysis of brain tissue from patients with Gerstmann-Sträussler-Scheinker disease (GSS) and sporadic, familial and acquired forms of CJD, using specific antibodies against the seven 14-3-3 isoforms. The study showed a strong immunoreactivity of PrP amyloid plaques of GSS patients for the 14-3-3 epsilon isoform, but not for the other isoforms. The epsilon isoform of 14-3-3 was not found in PrP deposits of CJD. These results indicate that the epsilon isoform of 14-3-3 is a component of PrP amyloid deposits of GSS and suggest that this is the sole 14-3-3 isoform specifically involved in the neuropathologic changes associated with this disorder.
Collapse
Affiliation(s)
- Giuseppe Di Fede
- Department of Neuropathology and Neurology, Istituto Nazionale Neurologico Carlo Besta, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cleasby ME, Reinten TA, Cooney GJ, James DE, Kraegen EW. Functional Studies of Akt Isoform Specificity in Skeletal Muscle in Vivo; Maintained Insulin Sensitivity Despite Reduced Insulin Receptor Substrate-1 Expression. Mol Endocrinol 2007; 21:215-28. [PMID: 17021050 DOI: 10.1210/me.2006-0154] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AbstractThe phosphoinositide 3-kinase/Akt pathway is thought to be essential for normal insulin action and glucose metabolism in skeletal muscle and has been shown to be dysregulated in insulin resistance. However, the specific roles of and signaling pathways triggered by Akt isoforms have not been fully assessed in muscle in vivo. We overexpressed constitutively active (ca-) Akt-1 or Akt-2 constructs in muscle using in vivo electrotransfer and, after 1 wk, assessed the roles of each isoform on glucose metabolism and fiber growth. We achieved greater than 2.5-fold increases in total Ser473 phosphorylation in muscles expressing ca-Akt-1 and ca-Akt-2, respectively. Both isoforms caused hypertrophy of muscle fibers, consistent with increases in p70S6kinase phosphorylation, and a 60% increase in glycogen accumulation, although only Akt-1 increased glycogen synthase kinase-3β phosphorylation. Akt-2, but not Akt-1, increased basal glucose uptake (by 33%, P = 0.004) and incorporation into glycogen and lipids, suggesting a specific effect on glucose transport. Consistent with this, short hairpin RNA-mediated silencing of Akt-2 caused reductions in glycogen storage and glucose uptake. Consistent with Akt-mediated insulin receptor substrate 1 (IRS-1) degradation, we observed approximately 30% reductions in IRS-1 protein in muscle overexpressing ca-Akt-1 or ca-Akt-2. Despite this, we observed no decrease in insulin-stimulated glucose uptake. Furthermore, a 68% reduction in IRS-1 levels induced using short hairpin RNAs targeting IRS-1 also did not affect glucose disposal after a glucose load. These data indicate distinct roles for Akt-1 and Akt-2 in muscle glucose metabolism and that moderate reductions in IRS-1 expression do not result in the development of insulin resistance in skeletal muscle in vivo.
Collapse
Affiliation(s)
- Mark E Cleasby
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.
| | | | | | | | | |
Collapse
|
39
|
Gurusamy N, Watanabe K, Ma M, Prakash P, Hirabayashi K, Zhang S, Muslin AJ, Kodama M, Aizawa Y. Glycogen synthase kinase 3β together with 14-3-3 protein regulates diabetic cardiomyopathy: Effect of losartan and tempol. FEBS Lett 2006; 580:1932-40. [PMID: 16530186 DOI: 10.1016/j.febslet.2006.02.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 01/19/2006] [Accepted: 02/20/2006] [Indexed: 01/11/2023]
Abstract
Glycogen synthase kinase (GSK) 3beta is a multifunctional protein that positively regulates myocardial apoptosis and negatively regulates hypertrophy. However, the role of GSK3beta in the diabetic myocardium is largely unknown. We found that GSK3beta became more active (less phosphorylated at serine 9) via decreased Akt phosphorylation, in parallel to c-Jun NH2 terminal kinase activation, which correlated with increased activated caspase 3 and myocardial apoptosis 3 days after streptozotocin (STZ) injection in mice. However, 28 days after STZ injection, GSK3beta became inactive, which correlated with the enhanced protein kinase C beta2 and p38 mitogen activated protein kinase expression, nuclear translocation of nuclear factor of activated T cells c3, cardiac hypertrophy and fibrosis. All of the above parameters were exacerbated in dominant-negative 14-3-3 transgenic mice. Our results suggest that GSK3beta together with 14-3-3 protein plays essential roles in the signaling of diabetic cardiomyopathy, and treatment with either losartan or tempol prevents these changes.
Collapse
Affiliation(s)
- Narasimman Gurusamy
- Department of Clinical Pharmacology, Niigata University of Pharmacy and Applied Life Sciences, 5-13-2 Kamishinei-Cho, Niigata City, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|