1
|
Xiong X, Du Y, Liu P, Li X, Lai X, Miao H, Ning B. Unveiling EIF5A2: A multifaceted player in cellular regulation, tumorigenesis and drug resistance. Eur J Pharmacol 2025; 997:177596. [PMID: 40194645 DOI: 10.1016/j.ejphar.2025.177596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
The eukaryotic initiation factor 5A2 gene (EIF5A2) is a highly conserved and multifunctional gene that significantly influences various cellular processes, including translation elongation, RNA binding, ribosome binding, protein binding and post-translational modifications. Overexpression of EIF5A2 is frequently observed in multiple cancers, where it functions as an oncoprotein. Additionally, EIF5A2 is implicated in drug resistance through the regulation of various molecular pathways. In the review, we describe the structure and functions of EIF5A2 in normal cells and its role in tumorigenesis. We also elucidate the molecular mechanisms associated with EIF5A2 in the context of tumorigenesis and drug resistance. We propose that the biological roles of EIF5A2 in regulating diverse cellular processes and tumorigenesis are clinically significant and warrant further investigation.
Collapse
Affiliation(s)
- Xifeng Xiong
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China; Guangzhou Institute of Burn Clinical Medicine, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China
| | - Yanli Du
- Guangdong Medical University, Zhanjiang, 524023, Guangdong, China; Department of Orthopedic, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China
| | - Peng Liu
- Departments of Burn and Plastic, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China
| | - Xinye Li
- Guangdong Medical University, Zhanjiang, 524023, Guangdong, China; Department of Orthopedic, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China
| | - Xudong Lai
- Department of infectious disease, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China
| | - Haixiong Miao
- Department of Orthopedic, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China.
| | - Bo Ning
- Department of Neurosurgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China.
| |
Collapse
|
2
|
Lou D, Wang J, Zhang H, Jia Q, Liu L, Bian Y, Di Y, Shan C. Tripartite Motif Containing 71 Suppresses Tumor Growth by Down-Regulating eIF5A2 Expression in Laryngeal Squamous Cell Carcinoma. Appl Biochem Biotechnol 2025; 197:1504-1515. [PMID: 39579322 DOI: 10.1007/s12010-024-05084-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
The incidence of laryngeal squamous cell carcinoma (LSCC) has been rising recently. LSCC is one of the most prevalent malignant tumors of the head and neck. In this study, we aimed to investigate whether tripartite motif containing 71 (TRIM71) could serve as a molecular target for the treatment of LSCC. The mRNA and protein levels were examined by using real-time qPCR and Western blot, respectively. Cell proliferation was determined by cell-counting kit 8 assay. To further confirm the function of TRIM71 in LSCC, an in vivo cell line-derived xenograft study was conducted. The half-life of eukaryotic translation initiation factor 5A2 (eIF5A2) protein was measured by cycloheximide chase assay. Our results showed that TRIM71 was significantly downregulated in LSCC tumor tissues. TRIM71 overexpression significantly inhibited LSCC cell growth and suppressed tumor volume and weight in the xenograft models. The interaction between TRIM71 and eIF5A2 was verified by co-immunoprecipitation assay. Moreover, overexpression of TRIM71 in LSCC cells significantly inhibited the protein expression of eIF5A2 by down-regulating its stability, while it did not affect its mRNA level. In contrast, overexpression of eIF5A2 abolished the anti-tumor effects of TRIM71. In summary, TRIM71 may exert its anti-tumor effects through regulating eIF5A2, highlighting the potential of TRIM71 as an effective therapeutic target for the treatment of LSCC.
Collapse
Affiliation(s)
- Dan Lou
- Department of Otolaryngology, the Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
- Department of Otolaryngology, the First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei, China
| | - Jianxing Wang
- Department of Otolaryngology, the Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Haizhong Zhang
- Department of Otolaryngology, the Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Qiaojing Jia
- Department of Otolaryngology, the Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Lisha Liu
- Department of Otolaryngology, the Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Yanrui Bian
- Department of Otolaryngology, the Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Yue Di
- Department of Otolaryngology, the First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei, China
| | - Chunguang Shan
- Department of Otolaryngology, the Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
3
|
Zhao G, Zhao X, Liu Z, Wang B, Dong P, Watari H, Pfeffer LM, Tigyi G, Zhang W, Yue J. Knockout or inhibition of DHPS suppresses ovarian tumor growth and metastasis by attenuating the TGFβ pathway. Sci Rep 2025; 15:917. [PMID: 39762448 PMCID: PMC11704301 DOI: 10.1038/s41598-025-85466-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
Deoxyhypusine synthase (DHPS) is an enzyme encoded by the DHPS gene, with high expression in various cancers, including ovarian cancer (OC). DHPS regulates the translation initiation factor EIF5A, and EIF5A2 knockout inhibits OC tumor growth and metastasis by blocking the epithelial-to-mesenchymal transition (EMT) and the TGFβ pathway. In this study, we show that DHPS is amplified in OC patients, and its elevated expression correlates with poor survival. Using lentiviral CRISPR/Cas9 vectors for DHPS knockout, we observed EMT inhibition in SKOV3 and OVCAR8 cells through suppressed hypusination and reduced EIF5A2 expression. Inhibition of DHPS activity with GC7 similarly blocked hypusination and EMT. Disrupting DHPS expression, either genetically or pharmacologically, inhibited primary tumor growth and metastasis in OC mouse models. These findings suggest that targeting DHPS and inhibiting hypusination could be promising strategies for OC treatment.
Collapse
Affiliation(s)
- Guannan Zhao
- Department of Pathology and Laboratory Medicine, Collage of Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, United States
- Center for Cancer Research, Collage of Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Xinxin Zhao
- Department of Obstetrics and Gynecology, The Third Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Ziping Liu
- Department of Obstetrics and Gynecology, The Third Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Baojin Wang
- Department of Obstetrics and Gynecology, The Third Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, Collage of Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, United States
- Center for Cancer Research, Collage of Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Gabor Tigyi
- Department of Physiology, Collage of Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Wenjing Zhang
- Department of Genetics, Genomics & Informatics, Collage of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, Collage of Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, United States.
- Center for Cancer Research, Collage of Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
4
|
Pisani DF, Lettieri-Barbato D, Ivanov S. Polyamine metabolism in macrophage-adipose tissue function and homeostasis. Trends Endocrinol Metab 2024; 35:937-950. [PMID: 38897879 DOI: 10.1016/j.tem.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Intracellular metabolism is a crucial regulator of macrophage function. Recent evidence revealed that the polyamine pathway and subsequent hypusination of eukaryotic initiation factor 5A (eIF5A) are master regulators of immune cell functions. In brown adipose tissue (BAT), macrophages show an impressive degree of heterogenicity, with specific subsets supporting adaptive thermogenesis during cold exposure. In this review, we discuss the impact of polyamine metabolism on macrophage diversity and function, with a particular focus on their role in adipose tissue homeostasis. Thus, we highlight the exploration of how polyamine metabolism in macrophages contributes to BAT homeostasis as an attractive and exciting new field of research.
Collapse
Affiliation(s)
| | - Daniele Lettieri-Barbato
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; IRCCS-Fondazione Bietti, Rome, Italy.
| | | |
Collapse
|
5
|
Becker AE, Kochanowski P, Wu PK, Wątor E, Chen W, Guchhait K, Biela AP, Grudnik P, Park JI. ERK1/2 interaction with DHPS regulates eIF5A deoxyhypusination independently of ERK kinase activity. Cell Rep 2024; 43:114831. [PMID: 39392755 PMCID: PMC11544350 DOI: 10.1016/j.celrep.2024.114831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 08/20/2024] [Accepted: 09/19/2024] [Indexed: 10/13/2024] Open
Abstract
This study explores a non-kinase effect of extracellular regulated kinases 1/2 (ERK1/2) on the interaction between deoxyhypusine synthase (DHPS) and its substrate, eukaryotic translation initiation factor 5A (eIF5A). We report that Raf/MEK/ERK activation decreases the DHPS-ERK1/2 interaction while increasing DHPS-eIF5A association in cells. We determined the cryoelectron microscopy (cryo-EM) structure of the DHPS-ERK2 complex at 3.5 Å to show that ERK2 hinders substrate entrance to the DHPS active site, subsequently inhibiting deoxyhypusination in vitro. In cells, impairing the ERK2 activation loop, but not the catalytic site, prolongs the DHPS-ERK2 interaction irrespective of Raf/MEK signaling. The ERK2 Ser-Pro-Ser motif, but not the common docking or F-site recognition sites, also regulates this complex. These data suggest that ERK1/2 dynamically regulate the DHPS-eIF5A interaction in response to Raf/MEK activity, regardless of its kinase function. In contrast, ERK1/2 kinase activity is necessary to regulate the expression of DHPS and eIF5A. These findings highlight an ERK1/2-mediated dual kinase-dependent and -independent regulation of deoxyhypusination.
Collapse
Affiliation(s)
- Andrew E Becker
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Paweł Kochanowski
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Pui-Kei Wu
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elżbieta Wątor
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Wenjing Chen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Koushik Guchhait
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Artur P Biela
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Przemysław Grudnik
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
6
|
Xiong H, Ye J, Luo Q, Li W, Xu N, Yang H. Exosomal EIF5A derived from Lewis lung carcinoma induced adipocyte wasting in cancer cachexia. Cell Signal 2023; 112:110901. [PMID: 37743008 DOI: 10.1016/j.cellsig.2023.110901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/11/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Cancer cachexia is a systemic inflammation-driven syndrome, characterized by muscle atrophy and adipose tissue wasting, with progressive weight loss leading to serious impairment of physiological function. Extracellular vesicles (EVs) derived from cancer cells play a significant role in adipocyte lipolysis, yet the mechanism remain uneclucidated. In this study, EVs derived from Lewis lung carcinoma (LLC) cells were extracted and characterized. 3T3-L1 and HIB1B adipocytes were cultured with conditioned medium or EVs from LLC, and LLC cells were used to establish a cancer cachexia mouse model. EVs derived from LLC cells were taken up by 3T3-L1 and HIB1B adipocytes, and derived exosomal EIF5A protein-induced lipolysis of adipocytes. High level of EIF5A was expressed in EVs from LLC cells, exosomal EIF5A is linked to lipid metabolism. Elevated expression of EIF5A is associated with shorter overall survival in lung cancer patients. Western blots, glycerol release and Oil red O staining assays were used to evaluate lipolysis of adipocytes. The reduction of lipolysis in 3T3-L1 and HIB1B adipocytes is achieved through silencing EIF5A or treating with pharmacologic inhibitor GC7 in vitro, and suppressing the expression of EIF5A in LLC cells by infected with shRNA or GC7 treatment partly alleviated white and brown adipose tissue lipolysis in vivo. Mechanistically, EIF5A directly binds with G protein-coupled bile acid receptor 1 (GPBAR1) mRNA to promote its translation and then activates cAMP response element binding protein (CREB) signaling pathway to induce lipolysis. This study demonstrates that exosomal EIF5A from LLC cells, with hypusinated EIF5A, has a lipolytic effect on adipocyte and adipose tissues in cancer cachexia model. Exosomal EIF5A could be involved in lipolysis and these findings indicate that a novel regulator and potential target for cachexia treatment.
Collapse
Affiliation(s)
- Hairong Xiong
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxin Ye
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianqian Luo
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Li
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Xu
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Anisimova AS, Kolyupanova NM, Makarova NE, Egorov AA, Kulakovskiy IV, Dmitriev SE. Human Tissues Exhibit Diverse Composition of Translation Machinery. Int J Mol Sci 2023; 24:8361. [PMID: 37176068 PMCID: PMC10179197 DOI: 10.3390/ijms24098361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
While protein synthesis is vital for the majority of cell types of the human body, diversely differentiated cells require specific translation regulation. This suggests the specialization of translation machinery across tissues and organs. Using transcriptomic data from GTEx, FANTOM, and Gene Atlas, we systematically explored the abundance of transcripts encoding translation factors and aminoacyl-tRNA synthetases (ARSases) in human tissues. We revised a few known and identified several novel translation-related genes exhibiting strict tissue-specific expression. The proteins they encode include eEF1A1, eEF1A2, PABPC1L, PABPC3, eIF1B, eIF4E1B, eIF4ENIF1, and eIF5AL1. Furthermore, our analysis revealed a pervasive tissue-specific relative abundance of translation machinery components (e.g., PABP and eRF3 paralogs, eIF2B and eIF3 subunits, eIF5MPs, and some ARSases), suggesting presumptive variance in the composition of translation initiation, elongation, and termination complexes. These conclusions were largely confirmed by the analysis of proteomic data. Finally, we paid attention to sexual dimorphism in the repertoire of translation factors encoded in sex chromosomes (eIF1A, eIF2γ, and DDX3), and identified the testis and brain as organs with the most diverged expression of translation-associated genes.
Collapse
Affiliation(s)
- Aleksandra S. Anisimova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Natalia M. Kolyupanova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Nadezhda E. Makarova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Artyom A. Egorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ivan V. Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 117971 Moscow, Russia;
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Laboratory of Regulatory Genomics, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Sergey E. Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
8
|
Wątor E, Wilk P, Biela A, Rawski M, Zak KM, Steinchen W, Bange G, Glatt S, Grudnik P. Cryo-EM structure of human eIF5A-DHS complex reveals the molecular basis of hypusination-associated neurodegenerative disorders. Nat Commun 2023; 14:1698. [PMID: 36973244 PMCID: PMC10042821 DOI: 10.1038/s41467-023-37305-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
Hypusination is a unique post-translational modification of the eukaryotic translation factor 5A (eIF5A) that is essential for overcoming ribosome stalling at polyproline sequence stretches. The initial step of hypusination, the formation of deoxyhypusine, is catalyzed by deoxyhypusine synthase (DHS), however, the molecular details of the DHS-mediated reaction remained elusive. Recently, patient-derived variants of DHS and eIF5A have been linked to rare neurodevelopmental disorders. Here, we present the cryo-EM structure of the human eIF5A-DHS complex at 2.8 Å resolution and a crystal structure of DHS trapped in the key reaction transition state. Furthermore, we show that disease-associated DHS variants influence the complex formation and hypusination efficiency. Hence, our work dissects the molecular details of the deoxyhypusine synthesis reaction and reveals how clinically-relevant mutations affect this crucial cellular process.
Collapse
Affiliation(s)
- Elżbieta Wątor
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Piotr Wilk
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Artur Biela
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Michał Rawski
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Krzysztof M Zak
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Wieland Steinchen
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Marburg, Germany
| | - Gert Bange
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, Molecular Physiology of Microbes, Marburg, Germany
| | - Sebastian Glatt
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Przemysław Grudnik
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
9
|
Schultz CR, Sheldon RD, Xie H, Demireva EY, Uhl KL, Agnew DW, Geerts D, Bachmann AS. New K50R mutant mouse models reveal impaired hypusination of eif5a2 with alterations in cell metabolite landscape. Biol Open 2023; 12:bio059647. [PMID: 36848144 PMCID: PMC10084858 DOI: 10.1242/bio.059647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/21/2023] [Indexed: 03/01/2023] Open
Abstract
The eukaryotic translation initiation factor 5A1 (eIF5A1) and 5A2 (eIF5A2) are important proteins in a variety of physiological and pathophysiological processes and their function has been linked to neurodevelopmental disorders, cancer, and viral infections. Here, we report two new genome-edited mouse models, generated using a CRISPR-Cas9 approach, in which the amino acid residue lysine 50 is replaced with arginine 50 (K50R) in eIF5A1 or in the closely related eIF5A2 protein. This mutation prevents the spermidine-dependent post-translational formation of hypusine, a unique lysine derivative that is necessary for activation of eIF5A1 and eIF5A2. Mouse brain lysates from homozygous eif5a2-K50R mutant mice (eif5a2K50R/K50R) confirmed the absence of hypusine formation of eIF5A2, and metabolomic analysis of primary mouse dermal fibroblasts revealed significant alterations in the metabolite landscape compared to controls including increased levels of tryptophan, kyrunenine, pyridoxine, nicotinamide adenine dinucleotide, riboflavin, flavin adenine dinucleotide, pantothenate, and coenzyme A. Further supported by new publicly available bioinformatics data, these new mouse models represent excellent in vivo models to study hypusine-dependent biological processes, hypusination-related disorders caused by eIF5A1 and eIF5A2 gene aberrations or mRNA expression dysregulation, as well as several major human cancer types and potential therapies.
Collapse
Affiliation(s)
- Chad R. Schultz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Ryan D. Sheldon
- Core Technologies and Services, Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Huirong Xie
- Transgenic and Genome Editing Facility, Institute for Quantitative Health Science and Engineering, Research Technology Support Facility, Michigan State University, East Lansing, MI 48824, USA
| | - Elena Y. Demireva
- Transgenic and Genome Editing Facility, Institute for Quantitative Health Science and Engineering, Research Technology Support Facility, Michigan State University, East Lansing, MI 48824, USA
| | - Katie L. Uhl
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Dalen W. Agnew
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Dirk Geerts
- Department of Hematology, Amsterdam University Medical Center, Location VUMC, 1081 HV Amsterdam, The Netherlands
| | - André S. Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| |
Collapse
|
10
|
Martínez-Férriz A, Gandía C, Pardo-Sánchez JM, Fathinajafabadi A, Ferrando A, Farràs R. Eukaryotic Initiation Factor 5A2 localizes to actively translating ribosomes to promote cancer cell protrusions and invasive capacity. Cell Commun Signal 2023; 21:54. [PMID: 36915194 PMCID: PMC10009989 DOI: 10.1186/s12964-023-01076-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/11/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Eukaryotic Initiation Factor 5A (eIF-5A), an essential translation factor, is post-translationally activated by the polyamine spermidine. Two human genes encode eIF-5A, being eIF5-A1 constitutively expressed whereas eIF5-A2 is frequently found overexpressed in human tumours. The contribution of both isoforms with regard to cellular proliferation and invasion in non-small cell lung cancer remains to be characterized. METHODS We have evaluated the use of eIF-5A2 gene as prognosis marker in lung adenocarcinoma (LUAD) patients and validated in immunocompromised mice. We have used cell migration and cell proliferation assays in LUAD lines after silencing each eIF-5A isoform to monitor their contribution to both phenotypes. Cytoskeleton alterations were analysed in the same cells by rhodamine-phalloidin staining and fluorescence microscopy. Polysome profiles were used to monitor the effect of eIF-5A2 overexpression on translation. Western blotting was used to study the levels of eIF-5A2 client proteins involved in migration upon TGFB1 stimulation. Finally, we have co-localized eIF-5A2 with puromycin to visualize the subcellular pattern of actively translating ribosomes. RESULTS We describe the differential functions of both eIF-5A isoforms, to show that eIF5-A2 properties on cell proliferation and migration are coincident with its features as a poor prognosis marker. Silencing of eIF-5A2 leads to more dramatic consequences of cellular proliferation and migration compared to eIF-5A1. Overexpression of eIF-5A2 leads to enhanced global translation. We also show that TGFβ signalling enhances the expression and activity of eIF-5A2 which promotes the translation of polyproline rich proteins involved in cytoskeleton and motility features as it is the case of Fibronectin, SNAI1, Ezrin and FHOD1. With the use of puromycin labelling we have co-localized active ribosomes with eIF-5A2 not only in cytosol but also in areas of cellular protrusion. We have shown the bulk invasive capacity of cells overexpressing eIF-5A2 in mice. CONCLUSIONS We propose the existence of a coordinated temporal and positional interaction between TFGB and eIF-5A2 pathways to promote cell migration in NSCLC. We suggest that the co-localization of actively translating ribosomes with hypusinated eIF-5A2 facilitates the translation of key proteins not only in the cytosol but also in areas of cellular protrusion. Video Abstract.
Collapse
Affiliation(s)
| | | | | | | | - Alejandro Ferrando
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas. Universidad Politécnica de Valencia, 46022, Valencia, Spain
| | - Rosa Farràs
- Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
11
|
Zhang L, Zhang Y, Zhang S, Qiu L, Zhang Y, Zhou Y, Han J, Xie J. Translational Regulation by eIFs and RNA Modifications in Cancer. Genes (Basel) 2022; 13:2050. [PMID: 36360287 PMCID: PMC9690228 DOI: 10.3390/genes13112050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/04/2023] Open
Abstract
Translation is a fundamental process in all living organisms that involves the decoding of genetic information in mRNA by ribosomes and translation factors. The dysregulation of mRNA translation is a common feature of tumorigenesis. Protein expression reflects the total outcome of multiple regulatory mechanisms that change the metabolism of mRNA pathways from synthesis to degradation. Accumulated evidence has clarified the role of an increasing amount of mRNA modifications at each phase of the pathway, resulting in translational output. Translation machinery is directly affected by mRNA modifications, influencing translation initiation, elongation, and termination or altering mRNA abundance and subcellular localization. In this review, we focus on the translation initiation factors associated with cancer as well as several important RNA modifications, for which we describe their association with cancer.
Collapse
Affiliation(s)
- Linzhu Zhang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- The Third People’s Hospital of Chengdu, Clinical College of Southwest Jiao Tong University, Chengdu 610014, China
| | - Yaguang Zhang
- State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-Related Molecular Network and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Su Zhang
- State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-Related Molecular Network and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Qiu
- State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-Related Molecular Network and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Zhang
- State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-Related Molecular Network and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Zhou
- State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-Related Molecular Network and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-Related Molecular Network and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiang Xie
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- The Third People’s Hospital of Chengdu, Clinical College of Southwest Jiao Tong University, Chengdu 610014, China
| |
Collapse
|
12
|
Sobočan M, Brunialti D, Sprung S, Schatz C, Knez J, Kavalar R, Takač I, Haybaeck J. Initiation and elongation factor co-expression correlates with recurrence and survival in epithelial ovarian cancer. J Ovarian Res 2022; 15:73. [PMID: 35718769 PMCID: PMC9208098 DOI: 10.1186/s13048-022-00998-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Abstract
High grade epithelial ovarian cancer (EOC) represents a diagnostic and therapeutic challenge due to its aggressive features and short recurrence free survival (RFS) after primary treatment. Novel targets to inform our understanding of the EOC carcinogenesis in the translational machinery can provide us with independent prognostic markers and provide drugable targets. We have identified candidate eukaryotic initiation factors (eIF) and eukaryotic elongation factors (eEF) in the translational machinery for differential expression in EOC through in-silico analysis. We present the analysis of 150 ovarian tissue microarray (TMA) samples on the expression of the translational markers eIF2α, eIF2G, eIF5 (eIF5A and eIF5B), eIF6 and eEF1A1. All translational markers were differentially expressed among non-neoplastic ovarian samples and tumour samples (borderline tumours and EOC). In EOC, expression of eIF5A was found to be significantly correlated with recurrence free survival (RFS) and expression of eIF2G and eEF1A1 with overall survival (OS). Expression correlation among factor subunits showed that the correlation of eEF1A1, eIF2G, EIF2α and eIF5A were significantly interconnected. eIF5A was also correlated with eIF5B and eIF6. Our study demonstrates that EOCs have different translational profile compared to benign ovarian tissue and that eIF5A is a central dysregulated factor of the translation machinery.
Collapse
Affiliation(s)
- Monika Sobočan
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Maribor, Slovenia.
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Maribor, Maribor, Slovenia.
- Division of Gynecology and Perinatology, University Medical Centre Maribor, Maribor, Slovenia.
| | - Daniela Brunialti
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sussanne Sprung
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Schatz
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jure Knez
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Rajko Kavalar
- Department of Pathology, University Medical Centre Maribor, Maribor, Slovenia
| | - Iztok Takač
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
- Diagnostic & Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| |
Collapse
|
13
|
Barba‐Aliaga M, Alepuz P. The activator/repressor Hap1 binds to the yeast eIF5A‐encoding gene
TIF51A
to adapt its expression to the mitochondrial functional status. FEBS Lett 2022; 596:1809-1826. [DOI: 10.1002/1873-3468.14366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Marina Barba‐Aliaga
- Instituto de Biotecnología y Biomedicina (Biotecmed) Universitat de València 46100 València Spain
- Departamento de Bioquímica y Biología Molecular Facultad de Ciencias Biológicas Universitat de València 46100 València Spain
| | - Paula Alepuz
- Instituto de Biotecnología y Biomedicina (Biotecmed) Universitat de València 46100 València Spain
- Departamento de Bioquímica y Biología Molecular Facultad de Ciencias Biológicas Universitat de València 46100 València Spain
| |
Collapse
|
14
|
Kulkarni A, Anderson CM, Mirmira RG, Tersey SA. Role of Polyamines and Hypusine in β Cells and Diabetes Pathogenesis. Metabolites 2022; 12:344. [PMID: 35448531 PMCID: PMC9028953 DOI: 10.3390/metabo12040344] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
The polyamines-putrescine, spermidine, and spermine-are polycationic, low molecular weight amines with cellular functions primarily related to mRNA translation and cell proliferation. Polyamines partly exert their effects via the hypusine pathway, wherein the polyamine spermidine provides the aminobutyl moiety to allow posttranslational modification of the translation factor eIF5A with the rare amino acid hypusine (hydroxy putrescine lysine). The "hypusinated" eIF5A (eIF5Ahyp) is considered to be the active form of the translation factor necessary for the translation of mRNAs associated with stress and inflammation. Recently, it has been demonstrated that activity of the polyamines-hypusine circuit in insulin-producing islet β cells contributes to diabetes pathogenesis under conditions of inflammation. Elevated levels of polyamines are reported in both exocrine and endocrine cells of the pancreas, which may contribute to endoplasmic reticulum stress, oxidative stress, inflammatory response, and autophagy. In this review, we have summarized the existing research on polyamine-hypusine metabolism in the context of β-cell function and diabetes pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Sarah A. Tersey
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA; (A.K.); (C.M.A.); (R.G.M.)
| |
Collapse
|
15
|
Park MH, Kar RK, Banka S, Ziegler A, Chung WK. Post-translational formation of hypusine in eIF5A: implications in human neurodevelopment. Amino Acids 2022; 54:485-499. [PMID: 34273022 PMCID: PMC9117371 DOI: 10.1007/s00726-021-03023-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/15/2021] [Indexed: 01/04/2023]
Abstract
Hypusine [Nε-(4-amino-2-hydroxybutyl)lysine] is a derivative of lysine that is formed post-translationally in the eukaryotic initiation factor 5A (eIF5A). Its occurrence at a single site in one cellular protein defines hypusine synthesis as one of the most specific post-translational modifications. Synthesis of hypusine involves two enzymatic steps: first, deoxyhypusine synthase (DHPS) cleaves the 4-aminobutyl moiety of spermidine and transfers it to the ε-amino group of a specific lysine residue of the eIF5A precursor protein to form an intermediate, deoxyhypusine [Nε-(4-aminobutyl)lysine]. This intermediate is subsequently hydroxylated by deoxyhypusine hydroxylase (DOHH) to form hypusine in eIF5A. eIF5A, DHPS, and DOHH are highly conserved in all eukaryotes, and both enzymes exhibit a strict specificity toward eIF5A substrates. eIF5A promotes translation elongation globally by alleviating ribosome stalling and it also facilitates translation termination. Hypusine is required for the activity of eIF5A, mammalian cell proliferation, and animal development. Homozygous knockout of any of the three genes, Eif5a, Dhps, or Dohh, leads to embryonic lethality in mice. eIF5A has been implicated in various human pathological conditions. A recent genetic study reveals that heterozygous germline EIF5A variants cause Faundes-Banka syndrome, a craniofacial-neurodevelopmental malformations in humans. Biallelic variants of DHPS were identified as the genetic basis underlying a rare inherited neurodevelopmental disorder. Furthermore, biallelic DOHH variants also appear to be associated with neurodevelopmental disorder. The clinical phenotypes of these patients include intellectual disability, developmental delay, seizures, microcephaly, growth impairment, and/or facial dysmorphisms. Taken together, these findings underscore the importance of eIF5A and the hypusine modification pathway in neurodevelopment in humans.
Collapse
Affiliation(s)
- Myung Hee Park
- Molecular and Cellular Biochemistry Section, NIDCR, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Rajesh Kumar Kar
- Molecular and Cellular Biochemistry Section, NIDCR, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Siddharth Banka
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, M13 9WL, UK
| | - Alban Ziegler
- Department of Genetics, University of Angers, Angers, France
| | | |
Collapse
|
16
|
Kim HI, Schultz CR, Chandramouli GVR, Geerts D, Risinger JI, Bachmann AS. Pharmacological targeting of polyamine and hypusine biosynthesis reduces tumor activity of endometrial cancer. J Drug Target 2022; 30:623-633. [PMID: 35100927 DOI: 10.1080/1061186x.2022.2036164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Endometrial cancer (EC) is a common and deadly cancer in women and novel therapeutic approaches are urgently needed. Polyamines (putrescine, spermidine, spermine) are critical for mammalian cell proliferation and MYC coordinately regulates polyamine metabolism through ornithine decarboxylase (ODC). ODC is a MYC target gene and rate-limiting enzyme of polyamine biosynthesis and the FDA-approved anti-protozoan drug α-difluoromethylornithine (DFMO) inhibits ODC activity and induces polyamine depletion that leads to tumor growth arrest. Spermidine is required for the hypusine-dependent activation of eukaryotic translation initiation factors 5A1 (eIF5A1) and 5A2 (eIF5A2) and connects the MYC/ODC-induced deregulation of spermidine to eIF5A1/2 protein translation, which is increased during cancer cell proliferation. We show that the eIF5A1 is significantly upregulated in EC cells compared to control cells (p = 0.000038) and that combined pharmacological targeting of ODC and eIF5A hypusination with cytostatic drugs DFMO and N1-guanyl-1,7-diaminoheptane (GC7), respectively, reduces eIF5A1 activation and synergistically induces apoptosis in EC cells. In vivo, DFMO/GC7 suppressed xenografted EC tumor growth in mice more potently than each drug alone compared to control (p = 0.002) and decreased putrescine (p = 0.045) and spermidine levels in tumor tissues. Our data suggest DFMO and GC7 combination therapy may be useful in the treatment or prevention of EC.
Collapse
Affiliation(s)
- Hong Im Kim
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids MI
| | - Chad R Schultz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids MI
| | | | - Dirk Geerts
- Glycostem Therapeutics, Oss, The Netherlands
| | - John I Risinger
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids MI
| | - André S Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids MI
| |
Collapse
|
17
|
Xu B, Liu L, Song G. Functions and Regulation of Translation Elongation Factors. Front Mol Biosci 2022; 8:816398. [PMID: 35127825 PMCID: PMC8807479 DOI: 10.3389/fmolb.2021.816398] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Translation elongation is a key step of protein synthesis, during which the nascent polypeptide chain extends by one amino acid residue during one elongation cycle. More and more data revealed that the elongation is a key regulatory node for translational control in health and disease. During elongation, elongation factor Tu (EF-Tu, eEF1A in eukaryotes) is used to deliver aminoacyl-tRNA (aa-tRNA) to the A-site of the ribosome, and elongation factor G (EF-G, EF2 in eukaryotes and archaea) is used to facilitate the translocation of the tRNA2-mRNA complex on the ribosome. Other elongation factors, such as EF-Ts/eEF1B, EF-P/eIF5A, EF4, eEF3, SelB/EFsec, TetO/Tet(M), RelA and BipA, have been found to affect the overall rate of elongation. Here, we made a systematic review on the canonical and non-canonical functions and regulation of these elongation factors. In particular, we discussed the close link between translational factors and human diseases, and clarified how post-translational modifications control the activity of translational factors in tumors.
Collapse
Affiliation(s)
- Benjin Xu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
- *Correspondence: Benjin Xu, ; Guangtao Song,
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
| | - Guangtao Song
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Benjin Xu, ; Guangtao Song,
| |
Collapse
|
18
|
Tauc M, Cougnon M, Carcy R, Melis N, Hauet T, Pellerin L, Blondeau N, Pisani DF. The eukaryotic initiation factor 5A (eIF5A1), the molecule, mechanisms and recent insights into the pathophysiological roles. Cell Biosci 2021; 11:219. [PMID: 34952646 PMCID: PMC8705083 DOI: 10.1186/s13578-021-00733-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022] Open
Abstract
Since the demonstration of its involvement in cell proliferation, the eukaryotic initiation factor 5A (eIF5A) has been studied principally in relation to the development and progression of cancers in which the isoform A2 is mainly expressed. However, an increasing number of studies report that the isoform A1, which is ubiquitously expressed in normal cells, exhibits novel molecular features that reveal its new relationships between cellular functions and organ homeostasis. At a first glance, eIF5A can be regarded, among other things, as a factor implicated in the initiation of translation. Nevertheless, at least three specificities: (1) its extreme conservation between species, including plants, throughout evolution, (2) its very special and unique post-translational modification through the activating-hypusination process, and finally (3) its close relationship with the polyamine pathway, suggest that the role of eIF5A in living beings remains to be uncovered. In fact, and beyond its involvement in facilitating the translation of proteins containing polyproline residues, eIF5A is implicated in various physiological processes including ischemic tolerance, metabolic adaptation, aging, development, and immune cell differentiation. These newly discovered physiological properties open up huge opportunities in the clinic for pathologies such as, for example, the ones in which the oxygen supply is disrupted. In this latter case, organ transplantation, myocardial infarction or stroke are concerned, and the current literature defines eIF5A as a new drug target with a high level of potential benefit for patients with these diseases or injuries. Moreover, the recent use of genomic and transcriptomic association along with metadata studies also revealed the implication of eIF5A in genetic diseases. Thus, this review provides an overview of eIF5A from its molecular mechanism of action to its physiological roles and the clinical possibilities that have been recently reported in the literature.
Collapse
Affiliation(s)
- Michel Tauc
- LP2M, CNRS, Université Côte d'Azur, Nice, France. .,Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France. .,Laboratoire de Physiomédecine Moléculaire, UMR7370, Faculté de Médecine, CNRS, Université Côte d'Azur, 28 Avenue de Valombrose, 06107, Nice Cedex, France.
| | - Marc Cougnon
- LP2M, CNRS, Université Côte d'Azur, Nice, France.,Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Romain Carcy
- Service de Réanimation Polyvalente et Service de Réanimation des Urgences Vitales, CHU Nice, Hôpital Pasteur 2, Nice, France
| | - Nicolas Melis
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Thierry Hauet
- INSERM, IRTOMIT, CHU de Poitiers, Université de Poitiers, La Milétrie, Poitiers, France
| | - Luc Pellerin
- INSERM, IRTOMIT, CHU de Poitiers, Université de Poitiers, La Milétrie, Poitiers, France
| | - Nicolas Blondeau
- Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France.,IPMC, CNRS, Université Côte d'Azur, Valbonne, France
| | - Didier F Pisani
- LP2M, CNRS, Université Côte d'Azur, Nice, France.,Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| |
Collapse
|
19
|
Becker AE, Wu PK, Park JI. eIF5A-Independent Role of DHPS in p21 CIP1 and Cell Fate Regulation. Int J Mol Sci 2021; 22:13187. [PMID: 34947982 PMCID: PMC8707118 DOI: 10.3390/ijms222413187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022] Open
Abstract
Deoxyhypusine synthase (DHPS) catalyzes the first step of hypusination of the elongation translation factor 5A (eIF5A), and these two proteins have an exclusive enzyme-substrate relationship. Here we demonstrate that DHPS has a role independent of eIF5A hypusination in A375 and SK-MEL-28 human melanoma cells, in which the extracellular signal regulated kinase 1/2 (ERK1/2) pathway is deregulated. We found that RNA interference of DHPS induces G0/G1 cell cycle arrest in association with increased p21CIP1 expression in these cells whereas eIF5A knockdown induces cell death without increasing p21CIP1 expression. Interestingly, p21CIP1 knockdown switched DHPS knockdown-induced growth arrest to cell death in these cells, suggesting a specific relation between DHPS and p21CIP1 in determining cell fate. Surprisingly, ectopic expression of DHPS-K329R mutant that cannot hypusinate eIF5A abrogated DHPS knockdown-induced p21CIP1 expression in these cells, suggesting a non-canonical role of DHPS underlying the contrasting effects of DHPS and eIF5A knockdowns. We also show that DHPS knockdown induces p21CIP1 expression in these cells by increasing CDKN1A transcription through TP53 and SP1 in an ERK1/2-dependent manner. These data suggest that DHPS has a role independent of its ability to hypusinate eIF5A in cells, which appears to be important for regulating p21CIP1 expression and cell fate.
Collapse
Affiliation(s)
| | | | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.E.B.); (P.-K.W.)
| |
Collapse
|
20
|
Zheng Y, Li P, Huang H, Ye X, Chen W, Xu G, Zhang F. Androgen receptor regulates eIF5A2 expression and promotes prostate cancer metastasis via EMT. Cell Death Discov 2021; 7:373. [PMID: 34864817 PMCID: PMC8643356 DOI: 10.1038/s41420-021-00764-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022] Open
Abstract
Androgen receptor (AR) is an androgen-activated transcription factor of the nuclear receptor superfamily. AR plays a role in the development and progression of prostate cancer (PCa). However, the exact role of AR in PCa metastasis remains unclear. In the present study, we aimed to elucidate the function of AR in PCa. We found that eukaryotic translation initiation factor (EIF) 5A2, an elongation factor that induces epithelial-to-mesenchymal transition (EMT) in PCa cells, was significantly upregulated after 5α-dihydrotestosterone (DHT) stimulation and downregulated after anti‐androgen bicalutamide treatment in PCa cells with high AR expression, but not in cells with low AR expression. Moreover, eIF5A2 knockdown could eliminate DHT-induced invasion and migration of AR-positive PCa cells. DHT treatment decreased epithelial expression of E‐cadherin and β-catenin but increased the expression of the mesenchymal marker proteins Vimentin and N-cadherin. DHT therefore induced EMT, and knockdown of eIF5A2 inhibited DHT-induced EMT. Moreover, in vivo study, Luciferase signals from the lungs of the eIF5A2 plasmid group indicated higher metastasis ability, and the eIF5A2 siRNA group had lower metastasis ability. Our results suggest that AR positively regulates eIF5A2 expression in androgen-dependent cells, and stimulation of AR expression and signaling in prostate tumors promotes PCa metastasis by EMT induction and upregulation of eIF5A2.
Collapse
Affiliation(s)
- Yuancai Zheng
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ping Li
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hang Huang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xueting Ye
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Guodong Xu
- Department of Cardiothoracic Surgery, The Affiliated Hospital, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315041, China
| | - Fangyi Zhang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
21
|
Liu X, Li C, Li X, Ehsan M, Lu M, Li K, Xu L, Yan R, Song X, Li X. Proteomics analysis reveals that the proto-oncogene eIF-5A indirectly influences the growth, invasion and replication of Toxoplasma gondii tachyzoite. Parasit Vectors 2021; 14:283. [PMID: 34039408 PMCID: PMC8157420 DOI: 10.1186/s13071-021-04791-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The proliferative stage (tachyzoite) of Toxoplasma gondii (T. gondii) is critical for its transmission and pathogenesis, and a proto-oncogene eukaryotic translation initiation factor (eIF-5A) plays an important role in various cellular processes such as cell multiplication. METHODS We performed a proteomic study to evaluate the specific roles of eIF-5A involved in invasion and replication of T. gondii, and both in vivo and in vitro trials using eIF-5A-interfered and wild tachyzoites were performed to verify the proteomic results. RESULTS The results of our study showed that T. gondii eIF-5A affected tachyzoite growth and also participated in the synthesis of proteins through regulation of both ribosomal and splicing pathways. Inhibition of eIF-5A in T. gondii resulted in the downregulated expression of soluble adhesions, such as microneme protein 1 (MIC1) and MIC4, which in turn decreased the parasite population that adhered to the surface of host cells. The reduced attachment, combined with lower expression of some rhoptry proteins (ROPs) and dense granule antigens (GRAs) involved in different stages of T. gondii invasion such as ROP4 and GRA3, ultimately reduce the invasion efficiency. These processes regulated by eIF-5A eventually affect the replication of tachyzoites. CONCLUSIONS Our findings showed that eIF-5A influenced tachyzoite survival and was also involved in the process of parasite invasion and replication. These results will provide new clues for further development of targeted drugs to control T. gondii infection.
Collapse
Affiliation(s)
- Xinchao Liu
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100 People’s Republic of China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Chunjing Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Xiaoyu Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Muhammad Ehsan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 Gansu People’s Republic of China
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Ke Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
- Poultry and Poultry Diseases Institute, Yunnan Animal Science and Veterinary Institute, Kunming, 650224 People’s Republic of China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - XiangRui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| |
Collapse
|
22
|
Jeelani G, Nozaki T. Eukaryotic translation initiation factor 5A and its posttranslational modifications play an important role in proliferation and potentially in differentiation of the human enteric protozoan parasite Entamoeba histolytica. PLoS Pathog 2021; 17:e1008909. [PMID: 33592076 PMCID: PMC7909649 DOI: 10.1371/journal.ppat.1008909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 02/26/2021] [Accepted: 01/19/2021] [Indexed: 11/19/2022] Open
Abstract
The eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein and is essential in all eukaryotes. However, the specific roles of eIF5A in translation and in other biological processes remain elusive. In the present study, we described the role of eIF5A, its posttranslational modifications (PTM), and the biosynthetic pathway needed for the PTM in Entamoeba histolytica, the protozoan parasite responsible for amoebic dysentery and liver abscess in humans. E. histolytica encodes two isotypes of eIF5A and two isotypes of enzymes, deoxyhypusine synthase (DHS), responsible for their PTM. Both of the two eIF5A isotypes are functional, whereas only one DHS (EhDHS1, but not EhDHS2), is catalytically active. The DHS activity increased ~2000-fold when EhDHS1 was co-expressed with EhDHS2 in Escherichia coli, suggesting that the formation of a heteromeric complex is needed for full enzymatic activity. Both EhDHS1 and 2 genes were required for in vitro growth of E. histolytica trophozoites, indicated by small antisense RNA-mediated gene silencing. In trophozoites, only eIF5A2, but not eIF5A1, gene was actively transcribed. Gene silencing of eIF5A2 caused compensatory induction of expression of eIF5A1 gene, suggesting interchangeable role of the two eIF5A isotypes and also reinforcing the importance of eIF5As for parasite proliferation and survival. Furthermore, using a sibling species, Entamoeba invadens, we found that eIF5A1 gene was upregulated during excystation, while eIF5A2 was downregulated, suggesting that eIF5A1 gene plays an important role during differentiation. Taken together, these results have underscored the essentiality of eIF5A and DHS, for proliferation and potentially in the differentiation of this parasite, and suggest that the hypusination associated pathway represents a novel rational target for drug development against amebiasis.
Collapse
Affiliation(s)
- Ghulam Jeelani
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Japan
| |
Collapse
|
23
|
Zulkefli KL, Mahmoud IS, Williamson NA, Gosavi PK, Houghton FJ, Gleeson PA. A role for Rab30 in retrograde trafficking and maintenance of endosome-TGN organization. Exp Cell Res 2021; 399:112442. [PMID: 33359467 DOI: 10.1016/j.yexcr.2020.112442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
Rab30 is a poorly characterized small GTPase. Here we show that Rab30 is localised primarily to the TGN and recycling endosomes in a range of cell types, including primary neurons; minor levels of Rab30 were also detected throughout the Golgi stack and early endosomes. Silencing of Rab30 resulted in the dispersal of both early and recycling endosomes and TGN compartments in HeLa cells. By analyzing cargo trafficking in Rab30-silenced and Rab30-overexpressing HeLa cells, we demonstrate that Rab30 plays a role in retrograde trafficking of TGN38 from endosomes to the Golgi, but has no apparent role in the endocytic recycling of the transferrin receptor to the plasma membrane. Five interactive partners with Rab30 were identified by pull-down and MS analysis using GFP-tagged Rab30 mutant, Rab30(Q68L). Two of the interactive partners identified were Arf1 and Arf4, known regulators of endosome to TGN retrograde transport. Knockdown of Arf1 and Arf4 results in GFP-Rab30 decorated tubules arising from the recycling endosomes, suggesting association of Rab30 with tubular carriers. Overall our data demonstrates a role for Rab30 in regulating retrograde transport to the TGN and maintenance of endosomal-TGN organization.
Collapse
Affiliation(s)
- Khalisah L Zulkefli
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Ismail S Mahmoud
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Nicholas A Williamson
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia; The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Prajakta Kulkarni Gosavi
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Fiona J Houghton
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
24
|
Neelagandan N, Lamberti I, Carvalho HJF, Gobet C, Naef F. What determines eukaryotic translation elongation: recent molecular and quantitative analyses of protein synthesis. Open Biol 2020; 10:200292. [PMID: 33292102 PMCID: PMC7776565 DOI: 10.1098/rsob.200292] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
Protein synthesis from mRNA is an energy-intensive and tightly controlled cellular process. Translation elongation is a well-coordinated, multifactorial step in translation that undergoes dynamic regulation owing to cellular state and environmental determinants. Recent studies involving genome-wide approaches have uncovered some crucial aspects of translation elongation including the mRNA itself and the nascent polypeptide chain. Additionally, these studies have fuelled quantitative and mathematical modelling of translation elongation. In this review, we provide a comprehensive overview of the key determinants of translation elongation. We discuss consequences of ribosome stalling or collision, and how the cells regulate translation in case of such events. Next, we review theoretical approaches and widely used mathematical models that have become an essential ingredient to interpret complex molecular datasets and study translation dynamics quantitatively. Finally, we review recent advances in live-cell reporter and related analysis techniques, to monitor the translation dynamics of single cells and single-mRNA molecules in real time.
Collapse
Affiliation(s)
| | | | | | | | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| |
Collapse
|
25
|
Tanaka Y, Kurasawa O, Yokota A, Klein MG, Saito B, Matsumoto S, Okaniwa M, Ambrus-Aikelin G, Uchiyama N, Morishita D, Kimura H, Imamura S. New Series of Potent Allosteric Inhibitors of Deoxyhypusine Synthase. ACS Med Chem Lett 2020; 11:1645-1652. [PMID: 34345355 PMCID: PMC8323115 DOI: 10.1021/acsmedchemlett.0c00331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
![]()
Deoxyhypusine synthase (DHPS) is
the primary enzyme responsible
for the hypusine modification and, thereby, activation of the eukaryotic
translation initiation factor 5A (eIF5A), which is key in regulating
the protein translation processes associated with tumor proliferation.
Although DHPS inhibitors could be a promising therapeutic option for
treating cancer, only a few studies reported druglike compounds with
this inhibition property. Thus, in this work, we designed and synthesized
a new chemical series possessing fused ring scaffolds designed from
high-throughput screening hit compounds, discovering a 5,6-dihydrothieno[2,3-c]pyridine derivative (26d) with potent inhibitory
activity; furthermore, the X-ray crystallographic analysis of the
DHPS complex with 26d demonstrated a distinct allosteric
binding mode compared to a previously reported inhibitor. These findings
could be significantly useful in the functional analysis of conformational
changes in DHPS as well as the structure-based design of allosteric
inhibitors.
Collapse
Affiliation(s)
- Yuta Tanaka
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Osamu Kurasawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Akihiro Yokota
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Michael G. Klein
- Department of Structural Biology, Takeda California, 10410 Science Center Drive, San Diego, California 92121, United States
| | - Bunnai Saito
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shigemitsu Matsumoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masanori Okaniwa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Geza Ambrus-Aikelin
- Department of Structural Biology, Takeda California, 10410 Science Center Drive, San Diego, California 92121, United States
| | - Noriko Uchiyama
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Daisuke Morishita
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiromichi Kimura
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shinichi Imamura
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
26
|
Lenz J, Michal M, Svajdler M, Ptakova N, Lenz D, Konecna P, Kavka M. Novel EIF5A-USP6 Gene Fusion in Nodular Fasciitis Associated With Unusual Pathologic Features: A Report of a Case and Review of the Literature. Am J Dermatopathol 2020; 42:539-543. [PMID: 31880592 DOI: 10.1097/dad.0000000000001602] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nodular fasciitis (NF) is a benign self-limiting soft tissue lesion that has long been considered a reactive process. Recently, however, the USP6 gene rearrangement has been discovered, and the neoplastic nature of this tumor was suggested. Since then, many fusion partners of the USP6 gene have been reported, with the MYH9 gene as the most common. In this article, we describe a case of NF with a novel EIF5A-USP6 gene fusion associated with unusual pathological features. A 41-year-old healthy woman with a painful, rapidly growing subcutaneous mass on the left forearm with a size of 0.8 cm is presented. A soft tissue fragment measuring 1 cm was surgically excised. Owing to positive surgical margins, re-excision was performed, yielding another 2-cm fragment. The lesion was extensively histologically investigated. Immunohistochemical and molecular-genetic analysis, namely fluorescence in situ hybridization, next-generation sequencing, and reverse transcriptase-polymerase chain reaction, were also performed. Histology revealed a dermally located, mitotically active myofibroblastic proliferation with myxoid areas that ulcerated the overlying epidermis. One atypical mitotic figure was also found. The lesion showed positive immunohistochemical staining with smooth muscle actin, whereas S100 protein and CD34 stains were negative. Using fluorescence in situ hybridization, the USP6 gene rearrangement was detected and subsequent analysis using the Archer fusionPlex Sarcoma kit revealed a novel EIF5A-USP6 gene fusion. In the appropriate clinicopathological context, the detection of USP6 gene rearrangement is extremely useful when diagnosing NF, significantly reducing the risk of misdiagnosis and inappropriate overtreatment.
Collapse
Affiliation(s)
- Jiri Lenz
- Department of Pathology, Znojmo Hospital, Znojmo, Czech Republic
- Cytohisto s.r.o., Breclav, Czech Republic
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Michael Michal
- Department of Pathology, Charles University, Faculty of Medicine in Pilsen, Pilsen, Czech Republic
- Bioptical Laboratory, Ltd, Pilsen, Czech Republic
- Biomedical Center, Charles University, Faculty of Medicine in Pilsen, Pilsen, Czech Republic
| | - Marian Svajdler
- Department of Pathology, Charles University, Faculty of Medicine in Pilsen, Pilsen, Czech Republic
- Bioptical Laboratory, Ltd, Pilsen, Czech Republic
| | | | - David Lenz
- Department of Orthopaedics, Breclav Hospital, Breclav, Czech Republic; and
| | - Petra Konecna
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Miroslav Kavka
- Department of Surgery, Znojmo Hospital, Znojmo, Czech Republic
| |
Collapse
|
27
|
Dom M, Vanden Berghe W, Van Ostade X. Broad-spectrum antitumor properties of Withaferin A: a proteomic perspective. RSC Med Chem 2020; 11:30-50. [PMID: 33479603 PMCID: PMC7523023 DOI: 10.1039/c9md00296k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
The multifunctional antitumor properties of Withaferin A (WA), the manifold studied bioactive compound of the plant Withania somnifera, have been well established in many different in vitro and in vivo cancer models. This undoubtedly has led to a much better insight in the underlying mechanisms of WAs broad antitumor activity range, but also raises additional challenging questions on how all these antitumor properties could be explained on a molecular level. Therefore, a lot of effort was made to characterize the cellular WA target proteins, since these binding events will lead and initiate the observed downstream effects. Based on a proteomic perspective, this review provides novel insights in the molecular chain of events by which WA potentially exercises its antitumor activities. We illustrate that WA triggers multiple cellular stress pathways such as the NRF2-mediated oxidative stress response, the heat shock response and protein translation events and at the same time inhibits these cellular protection mechanisms, driving stressed cancer cells towards a fatal state of collapse. If cancer cells manage to restore homeostasis and survive, a stress-independent WA antitumor response comes into play. These include the known inhibition of cytoskeleton proteins, NFκB pathway inhibition and cell cycle inhibition, among others. This review therefore provides a comprehensive overview which integrates the numerous WA-protein binding partners to formulate a general WA antitumor mechanism.
Collapse
Affiliation(s)
- Martin Dom
- Laboratory of Protein Chemistry , Proteomics and Epigenetic Signalling (PPES) , Department of Biomedical Sciences , University of Antwerp (UA) , Universiteitsplein 1 , 2610 Wilrijk , Belgium . ; Tel: +3232562319
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry , Proteomics and Epigenetic Signalling (PPES) , Department of Biomedical Sciences , University of Antwerp (UA) , Universiteitsplein 1 , 2610 Wilrijk , Belgium . ; Tel: +3232562319
| | - Xaveer Van Ostade
- Laboratory of Protein Chemistry , Proteomics and Epigenetic Signalling (PPES) , Department of Biomedical Sciences , University of Antwerp (UA) , Universiteitsplein 1 , 2610 Wilrijk , Belgium . ; Tel: +3232562319
| |
Collapse
|
28
|
Tu C, Chen W, Wang S, Tan W, Guo J, Shao C, Wang W. MicroRNA-383 inhibits doxorubicin resistance in hepatocellular carcinoma by targeting eukaryotic translation initiation factor 5A2. J Cell Mol Med 2019; 23:7190-7199. [PMID: 30801960 PMCID: PMC6815770 DOI: 10.1111/jcmm.14197] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 12/19/2022] Open
Abstract
Drug resistance occurs commonly in cancers, especially in hepatocellular carcinoma (HCC). Accumulating evidence has demonstrated that microRNAs (miRNAs) play a vital role in tumour chemoresistance. However, little is known about the role of miR-383 in HCC chemoresistance. In the present study, RT-PCR and western blotting were used to identify the expression profile of miR-383 and eukaryotic translation initiation factor 5A2 (EIF5A2). The bioinformatics website Targetscan was used to predict the target genes of miR-383. In vitro and in vivo loss- and gain-of-function studies were performed to reveal the effects and potential mechanism of the miR-383/EIF5A2 axis in chemoresistance of HCC cells. The expression level of miR-383 correlated negatively with doxorubicin (Dox) sensitivity. Overexpression of miR-383 promoted HCC cells to undergo Dox-induced cytotoxicity and apoptosis, whereas miR-383 knockdown had the opposite effects. EIF5A2 was predicted as a target gene of miR-383. EIF5A2 knockdown sensitized HCC cells to Dox. Moreover, miR-383 inhibition-mediated HCC Dox resistance could be reversed by silencing EIF5A2. Finally, we demonstrated that miR-383 inhibition could enhance Dox sensitivity by targeting EIF5A2 in vivo. The results indicated that miR-383 inhibited Dox resistance in HCC cells by targeting EIF5A2. Targeting the miR-383/EIF5A2 axis might help to alleviate the chemoresistance of HCC cells.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Proliferation
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- Peptide Initiation Factors/genetics
- Peptide Initiation Factors/metabolism
- Prognosis
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Eukaryotic Translation Initiation Factor 5A
Collapse
Affiliation(s)
- Chaoyong Tu
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangP.R. China
- Department of Hepatobiliary and Pancreatic Surgery, Lishui HospitalZhejiang University School of Medicine, The Fifth Affiliated Hospital of Wenzhou Medical UniversityLishuiZhejiangP.R. China
| | - Wei Chen
- Tongde Hospital of Zhejiang ProvinceCancer Institute of Integrated traditional Chinese and Western MedicineZhejiang Academy of Traditional Chinese MedicineHangzhouZhejiangChina
| | - Shuqian Wang
- Division of Breast Surgery, Department of SurgeryThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangP.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangP.R. China
| | - Wei Tan
- Department of Hepatobiliary and Pancreatic Surgery, Lishui HospitalZhejiang University School of Medicine, The Fifth Affiliated Hospital of Wenzhou Medical UniversityLishuiZhejiangP.R. China
| | - Jingqiang Guo
- Department of Hepatobiliary and Pancreatic Surgery, Lishui HospitalZhejiang University School of Medicine, The Fifth Affiliated Hospital of Wenzhou Medical UniversityLishuiZhejiangP.R. China
| | - Chuxiao Shao
- Department of Hepatobiliary and Pancreatic Surgery, Lishui HospitalZhejiang University School of Medicine, The Fifth Affiliated Hospital of Wenzhou Medical UniversityLishuiZhejiangP.R. China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangP.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangP.R. China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, School of MedicineThe First Affiliated Hospital, Zhejiang UniversityHangzhouZhejiangP.R. China
- State Key Laboratory & Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseaseZhejiang UniversityHangzhouZhejiangP.R. China
| |
Collapse
|
29
|
Meng QB, Peng JJ, Qu ZW, Zhu XM, Wen Z, Kang WM. Eukaryotic initiation factor 5A2 and human digestive system neoplasms. World J Gastrointest Oncol 2019; 11:449-458. [PMID: 31236196 PMCID: PMC6580320 DOI: 10.4251/wjgo.v11.i6.449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/17/2019] [Accepted: 05/04/2019] [Indexed: 02/05/2023] Open
Abstract
Eukaryotic initiation factor 5A2 (eIF5A2), as one of the two isoforms in the family, is reported to be a novel oncogenic protein that is involved in multiple aspects of many types of human cancer. Overexpression or gene amplification of EIF5A2 has been demonstrated in many cancers. Accumulated evidence shows that eIF5A2 initiates tumor formation, enhances cancer cell growth, increases cancer cell metastasis, and promotes treatment resistance through multiple means, including inducing epithelial–mesenchymal transition, cytoskeletal rearrangement, angiogenesis, and metabolic reprogramming. Expression of eIF5A2 in cancer correlates with poor survival, advanced disease stage, as well as metastasis, suggesting that eIF5A2 function is crucial for tumor development and maintenance but not for normal tissue homeostasis. All these studies suggest that eIF5A2 is a useful biomarker in the prediction of cancer prognosis and serves as an anticancer molecular target. This review focuses on the expression, subcellular localization, post-translational modifications, and regulatory networks of eIF5A2, as well as its biochemical functions and evolving clinical applications in cancer, especially in human digestive system neoplasms.
Collapse
Affiliation(s)
- Qing-Bin Meng
- Department of Gastrointestinal Surgery, the First Hospital of Wuhan City, Wuhan 430022, Hubei Province, China
| | - Jing-Jing Peng
- Department of Gastroenterology, General Hospital of the Yangtze River Shipping, Wuhan 430015, Hubei Province, China
| | - Zi-Wei Qu
- Department of Gastrointestinal Surgery, the First Hospital of Wuhan City, Wuhan 430022, Hubei Province, China
| | | | - Zhang Wen
- Department of Hepato-Biliary-Pancreatic Surgery and Liver Transplantation, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Wei-Ming Kang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
30
|
Fang Y, Cen JJ, Cao JZ, Huang Y, Feng ZH, Lu J, Wei JH, Chen ZH, Liang YP, Liao B, Luo JH, Chen W. Overexpression of EIF5A2 in upper urinary tract urothelial carcinoma is a new independent prognostic marker of survival. Future Oncol 2019; 15:2009-2018. [PMID: 30931608 DOI: 10.2217/fon-2018-0748] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: To study the expression of EIF5A2 in urinary tract urothelial carcinoma and its clinicopathological features and prognosis. Methods: EIF5A2 expression was detected via immunohistochemistry in 101 patients. Results: Kaplan-Meier analysis showed that the EIF5A2 low expression group had significantly longer overall survival (OS; p < 0.001) and progression-free survival (PFS; p < 0.001) than the EIF5A2 high expression group. The high expression of EIF5A2 significantly predict poor OS and PFS in the subset patients (p < 0.05). EIF5A2 was an independent prognostic factor for OS and PFS (p = 0.003 and p = 0.001). The established nomogram model and its calibration curve predicted the probability of survival accurately. Conclusion: EIF5A2 is a potential molecular marker of poor prognosis in urinary tract urothelial carcinoma.
Collapse
Affiliation(s)
- Yong Fang
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Jun-Jie Cen
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Jia-Zheng Cao
- Department of Urology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, PR China
| | - Yong Huang
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Zi-Hao Feng
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Jun Lu
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Jin-Huan Wei
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Zhen-Hua Chen
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Yan-Ping Liang
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Bing Liao
- Department of Pathology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Jun-Hang Luo
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| |
Collapse
|
31
|
MicroRNA-9 Enhanced Cisplatin Sensitivity in Nonsmall Cell Lung Cancer Cells by Regulating Eukaryotic Translation Initiation Factor 5A2. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1769040. [PMID: 30175116 PMCID: PMC6098893 DOI: 10.1155/2018/1769040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 06/11/2018] [Indexed: 01/14/2023]
Abstract
We determined the role of microRNA (miR)-9 in regulating cisplatin chemoresistance in nonsmall cell lung cancer (NSCLC) cells. miR-9 and eukaryotic translation initiation factor 5A2 (eIF5A2) levels were examined by reverse transcription–quantitative PCR. Cell Counting Kit-8 and the 5-ethynyl-2′-deoxyuridine (EdU) assay were used to determine the effects of miR-9 mimic or inhibitor on NSCLC cell proliferation and viability, respectively. Bioinformatics was used to analyze the relationship between miR-9 and eIF5A2. Flow cytometry was used to analyze the percentage of apoptotic cells. miR-9 mimic enhanced cisplatin sensitivity, while miR-9 inhibitor produced the opposite result. eIF5A2 was identified as a potential target of miR-9, where miR-9 regulated eIF5A2 expression at mRNA and protein level. miR-9 mimic decreased the expression of eIF5A2 mRNA and protein, while miR-9 inhibitor increased eIF5A2 expression. eIF5A2 knockdown resolved the effects of miR-9 mimic or inhibitor on cisplatin sensitivity. miR-9 may be a potential biomarker for enhancing cisplatin sensitivity by regulating eIF5A2 in NSCLC cells.
Collapse
|
32
|
Turpaev KT. Translation Factor eIF5A, Modification with Hypusine and Role in Regulation of Gene Expression. eIF5A as a Target for Pharmacological Interventions. BIOCHEMISTRY. BIOKHIMIIA 2018; 83:863-873. [PMID: 30208826 DOI: 10.1134/s0006297918080011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/09/2018] [Indexed: 12/22/2022]
Abstract
Translation factor eIF5A participates in protein synthesis at the stage of polypeptide chain elongation. Two eIF5A isoforms are known that are encoded by related genes whose expression varies significantly in different tissues. The eIF5A1 isoform is a constitutively and ubiquitously expressed gene, while the eIF5A2 isoform is expressed in few normal tissues and is an oncogene by a number of parameters. Unique feature of eIF5A isoforms is that they are the only two proteins that contain amino acid hypusine. Modification with hypusine is critical requirement for eIF5A activity. Another distinctive feature of eIF5A is its involvement in the translation of only a subset of the total population of cell mRNAs. The genes for which mRNAs translation requires eIF5A are the members of certain functional groups and are involved in cell proliferation, apoptosis, inflammatory processes, and regulation of transcription and RNA metabolism. The involvement of eIF5A is necessary for the translation of proteins containing oligoproline fragments and some other structures. Modification of eIF5A by hypusine is implemented by two highly specialized enzymes, deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH), which are not involved in other biochemical reactions. Intracellular activity of these enzymes is closely associated with systems of protein acetylation, polyamine metabolism and other biochemical processes. Inhibition of DHS and DOHH activity provides the possibility of pharmacological control of eIF5A activity and expression of eIF5A-dependent genes.
Collapse
Affiliation(s)
- K T Turpaev
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
33
|
Schultz CR, Geerts D, Mooney M, El-Khawaja R, Koster J, Bachmann AS. Synergistic drug combination GC7/DFMO suppresses hypusine/spermidine-dependent eIF5A activation and induces apoptotic cell death in neuroblastoma. Biochem J 2018; 475:531-545. [PMID: 29295892 DOI: 10.1042/bcj20170597] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/19/2017] [Accepted: 01/01/2018] [Indexed: 12/17/2023]
Abstract
The eukaryotic initiation factor 5A (eIF5A), which contributes to several crucial processes during protein translation, is the only protein that requires activation by a unique post-translational hypusine modification. eIF5A hypusination controls cell proliferation and has been linked to cancer. eIF5A hypusination requires the enzymes deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase and uniquely depends on the polyamine (PA) spermidine as the sole substrate. Ornithine decarboxylase (ODC) is the rate-limiting enzyme in PA biosynthesis. Both ODC and PAs control cell proliferation and are frequently dysregulated in cancer. Since only spermidine can activate eIF5A, we chose the hypusine-PA nexus as a rational target to identify new drug combinations with synergistic antiproliferative effects. We show that elevated mRNA levels of the two target enzymes DHPS and ODC correlate with poor prognosis in a large cohort of neuroblastoma (NB) tumors. The DHPS inhibitor GC7 (N1-guanyl-1,7-diaminoheptane) and the ODC inhibitor α-difluoromethylornithine (DFMO) are target-specific and in combination induced synergistic effects in NB at concentrations that were not individually cytotoxic. Strikingly, while each drug alone at higher concentrations is known to induce p21/Rb- or p27/Rb-mediated G1 cell cycle arrest, we found that the drug combination induced caspase 3/7/9, but not caspase 8-mediated apoptosis, in NB cells. Hypusinated eIF5A levels and intracellular spermidine levels correlated directly with drug treatments, signifying specific drug targeting effects. This two-pronged GC7/DFMO combination approach specifically inhibits both spermidine biosynthesis and post-translational, spermidine-dependent hypusine-eIF5A activation, offering an exciting clue for improved NB drug therapy.
Collapse
Affiliation(s)
- Chad R Schultz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, U.S.A
| | - Dirk Geerts
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Marie Mooney
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, U.S.A
| | | | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - André S Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, U.S.A.
| |
Collapse
|
34
|
Xue F, Liang Y, Li Z, Liu Y, Zhang H, Wen Y, Yan L, Tang Q, Xiao E, Zhang D. MicroRNA-9 enhances sensitivity to cetuximab in epithelial phenotype hepatocellular carcinoma cells through regulation of the eukaryotic translation initiation factor 5A-2. Oncol Lett 2017; 15:813-820. [PMID: 29399149 PMCID: PMC5772877 DOI: 10.3892/ol.2017.7399] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 09/22/2017] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most widespread malignant human tumors worldwide. Treatment options include radiotherapy, surgical intervention and chemotherapy; however, drug resistance is an ongoing treatment concern. In the present study, the effects of a microRNA (miR/miRNA), miR-9, on the sensitivity of HCC cell lines to the epidermal growth factor receptor inhibitor, cetuximab, were examined. miR-9 has been proposed to serve a role in tumorigenesis and tumor progression. In the present study, bioinformatics analyses identified the eukaryotic translation initiation factor 5A2 (eIF-5A-2) as a target of miR-9. The expression levels of miR-9 and eIF-5A-2 were examined by reverse transcription-quantitative polymerase chain reaction and HCC cell lines were transfected with miR-9 mimics and inhibitors to determine the effects of the miRNA on cell proliferation and viability. The miR-9 mimic was revealed to significantly increase the sensitivity of epithelial phenotype HCC cells (Hep3B and Huh7) to cetuximab, while the miR-9 inhibitor triggered the opposite effect. There were no significant differences in sensitivity to cetuximab observed in mesenchymal phenotype HCC cells (SNU387 and SNU449). Cells lines displaying high expression levels of eIF-5A-2 were more resistant to cetuximab. Transfection of cells with a miR-9 mimic resulted in downregulation of the expression of eIF-5A-2 mRNA, while an miR-9 inhibitor increased expression. When expression of eIF-5A-2 was knocked down with siRNA, the effects of miR-9 on cetuximab sensitivity were no longer observed. Taken together, these data support a role for miR-9 in enhancing the sensitivity of epithelial phenotype HCC cells to cetuximab through regulation of eIF-5A-2.
Collapse
Affiliation(s)
- Fei Xue
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 410003, P.R. China
| | - Yuntian Liang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 410003, P.R. China
| | - Zhenrong Li
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 410003, P.R. China
| | - Yanhui Liu
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 410003, P.R. China
| | - Hongwei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 410003, P.R. China
| | - Yu Wen
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 410003, P.R. China
| | - Lei Yan
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 410003, P.R. China
| | - Qiang Tang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 410003, P.R. China
| | - Erhui Xiao
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 410003, P.R. China
| | - Dongyi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 410003, P.R. China
| |
Collapse
|
35
|
Liu Y, Xue F, Zhang Y, Lei P, Wang Z, Zhu Z, Sun K. N1-guanyl-1,7-diaminoheptane enhances the chemosensitivity of acute lymphoblastic leukemia cells to vincristine through inhibition of eif5a-2 activation. Anticancer Drugs 2017; 28:1097-1105. [PMID: 28885268 DOI: 10.1097/cad.0000000000000550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
N1-guanyl-1,7-diaminoheptane (GC7), a deoxyhypusine synthase inhibitor, has been shown to exert antiproliferation effects in many solid tumors by regulating eukaryotic translation initiation factor 5a2 (eif5a-2). However, little is known about the role of GC7 and eif5a-2 in drug resistance in acute lymphoblastic leukemia (ALL). In the present study, we investigated the effect of GC7 on drug-resistant ALL and its potential mechanism. We found that using the CCK-8 assay that combined treatment with GC7 and vincristine (VCR) significantly inhibited the cell viability of two ALL cell lines. Using EdU incorporation assays and flow cytometry, we also showed that GC7 could markedly enhance the VCR sensitivity of ALL cells by suppressing cell proliferation and promoting apoptosis. Furthermore, we showed that GC7 could downregulate eif5a-2 and myeloid cell leukemia-1 (Mcl-1) expression. Knockdown of eif5a-2 inhibited the expression of Mcl-1 and significantly enhanced the VCR sensitivity. Moreover, eif5a-2 knockdown decreased the regulatory role of GC7 in increasing VCR sensitivity. Thus, our findings indicate that combined treatment with GC7 could enhance VCR sensitivity of ALL cells by regulating the eif5a-2/Mcl-1 axis. Together, our results highlight the potential clinical application of GC7 in VCR-based chemotherapy for the treatment of ALL.
Collapse
Affiliation(s)
- Yanhui Liu
- Departments of aHemotology bHepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
36
|
Davidson MA, Shanks EJ. 3q26-29 Amplification in head and neck squamous cell carcinoma: a review of established and prospective oncogenes. FEBS J 2017; 284:2705-2731. [PMID: 28317270 DOI: 10.1111/febs.14061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/23/2017] [Accepted: 03/15/2017] [Indexed: 12/22/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is significantly underrepresented in worldwide cancer research, yet survival rates for the disease have remained static for over 50 years. Distant metastasis is often present at the time of diagnosis, and is the primary cause of death in cancer patients. In the absence of routine effective targeted therapies, the standard of care treatment remains chemoradiation in combination with (often disfiguring) surgery. A defining characteristic of HNSCC is the amplification of a region of chromosome 3 (3q26-29), which is consistently associated with poorer patient outcome. This review provides an overview of the role the 3q26-29 region plays in HNSCC, in terms of both known and as yet undiscovered processes, which may have potential clinical relevance.
Collapse
|
37
|
Park MH, Mandal A, Mandal S, Wolff EC. A new non-radioactive deoxyhypusine synthase assay adaptable to high throughput screening. Amino Acids 2017; 49:1793-1804. [PMID: 28819816 DOI: 10.1007/s00726-017-2477-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/01/2017] [Indexed: 02/07/2023]
Abstract
Deoxyhypusine synthase (DHS) catalyzes the post-translational modification of eukaryotic translation factor 5A (eIF5A) by the polyamine, spermidine, that converts one specific lysine residue to deoxyhypusine [N ε -4-aminobutyl(lysine)], which is subsequently hydroxylated to hypusine [N ε -4-amino-2-hydroxybutyl(lysine)]. Hypusine synthesis represents the most critical function of polyamine. As eIF5A has been implicated in various human diseases, identification of specific inhibitors of hypusine modification is of vital importance. DHS catalyzes a complex reaction that occurs in two stages, first, the NAD-dependent cleavage of spermidine to form an enzyme-butylimine intermediate and enzyme-bound NADH, and second, the transfer of the butylimine moiety from the enzyme intermediate to the eIF5A precursor and subsequent reduction of the eIF5A-butylimine intermediate by enzyme-bound NADH to form deoxyhypusine [N ε -4-aminobutyl(lysine)]. Our data demonstrate that there is a measurable release of enzyme-bound NADH in the absence of eIF5A precursor and that the DHS activity can be determined by coupling the first phase reaction with the NADH-Glo assay in which the generation of luminescence is dependent on NADH derived from the DHS partial reaction. The conventional DHS assay that measures the incorporation of radioactivity from [1,8-3H]spermidine into the eIF5A precursor in the complete reaction cannot be readily adapted for high throughput screening (HTS). In contrast, the non-radioactive DHS/NADH-Glo coupled assay is highly specific, sensitive and reproducible and could be configured for HTS of small molecule libraries for the identification of new inhibitors of DHS. Furthermore, the coupled assay provides new insights into the dynamics of the DHS reaction especially regarding the fate of NADH.
Collapse
Affiliation(s)
- Myung Hee Park
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, 20892-4340, USA.
| | - Ajeet Mandal
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, 20892-4340, USA
| | - Swati Mandal
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, 20892-4340, USA
| | - Edith C Wolff
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, 20892-4340, USA
| |
Collapse
|
38
|
Ali MU, Ur Rahman MS, Jia Z, Jiang C. Eukaryotic translation initiation factors and cancer. Tumour Biol 2017; 39:1010428317709805. [PMID: 28653885 DOI: 10.1177/1010428317709805] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent technological advancements have shown tremendous mechanistic accomplishments in our understanding of the mechanism of messenger RNA translation in eukaryotic cells. Eukaryotic messenger RNA translation is very complex process that includes four phases (initiation, elongation, termination, and ribosome recycling) and diverse mechanisms involving protein and non-protein molecules. Translation regulation is principally achieved during initiation step of translation, which is organized by multiple eukaryotic translation initiation factors. Eukaryotic translation initiation factor proteins help in stabilizing the formation of the functional ribosome around the start codon and provide regulatory mechanisms in translation initiation. Dysregulated messenger RNA translation is a common feature of tumorigenesis. Various oncogenic and tumor suppressive genes affect/are affected by the translation machinery, making the components of the translation apparatus promising therapeutic targets for the novel anticancer drug. This review provides details on the role of eukaryotic translation initiation factors in messenger RNA translation initiation, their contribution to onset and progression of tumor, and how dysregulated eukaryotic translation initiation factors can be used as a target to treat carcinogenesis.
Collapse
Affiliation(s)
- Muhammad Umar Ali
- 1 Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Muhammad Saif Ur Rahman
- 1 Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenyu Jia
- 2 Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Cao Jiang
- 1 Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
39
|
Yang SS, Gao Y, Wang DY, Xia BR, Liu YD, Qin Y, Ning XM, Li GY, Hao LX, Xiao M, Zhang YY. Overexpression of eukaryotic initiation factor 5A2 (EIF5A2) is associated with cancer progression and poor prognosis in patients with early-stage cervical cancer. Histopathology 2016; 69:276-87. [PMID: 26799253 DOI: 10.1111/his.12933] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/16/2016] [Indexed: 02/06/2023]
Abstract
AIMS As one of the only two isoforms of the eukaryotic initiation factor (EIF)5A family, EIF5A2 plays an important role in tumour progression and prognosis evaluation. The aim of this study was to investigate EIF5A2 expression in International Federation of Gynecology and Obstetrics (FIGO) stage I-II cervical cancer and to evaluate its clinical significance. METHODS AND RESULTS The mRNA and protein expression levels of EIF5A2 were analysed in 20 tissue samples of FIGO stage I-II cervical cancer and paired surrounding non-tumour cervical tissues by real-time polymerase chain reaction and western blot analysis. Immunohistochemistry was performed to examine EIF5A2 protein expression in paraffin-embedded tissues from 314 patients with cervical cancer. The mRNA and protein expression levels of EIF5A2 were significantly elevated in tumour tissues. The increased EIF5A2 expression was correlated with higher FIGO stage (P < 0.001), deep cervical stromal invasion (P = 0.026), lymphovascular space involvement (P = 0.002), pelvic lymph node metastasis (P < 0.001) and postoperative recurrence (P < 0.001) in patients with cervical cancer. Patients with tumours showing high EIF5A2 expression had a poorer survival time than those with normal EIF5A2 expression, especially the patients with negative pelvic lymph nodes and FIGO stage II. In addition, multivariate Cox analysis showed that high EIF5A2 expression was an independent prognostic factor for overall survival [hazard ratio 1.949; 95% confidence interval (CI) 1.116-3.404; P = 0.019] and disease-free survival (hazard ratio 1.980; 95% CI 1.189-3.297; P = 0.009). CONCLUSIONS EIF5A2 overexpression may contribute to cancer progression and poor prognosis. Therefore, EIF5A2 could be a novel potential prognostic marker for FIGO stage I-II cervical cancer.
Collapse
Affiliation(s)
- Shan-Shan Yang
- Department of Gynaecological Radiotherapy, The Affiliated Tumour Hospital of Harbin Medical University, Harbin, China
| | - Ying Gao
- Department of Gynaecology, The Affiliated Tumour Hospital of Harbin Medical University, Harbin, China
| | - De-Ying Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bai-Rong Xia
- Department of Gynaecology, The Affiliated Tumour Hospital of Harbin Medical University, Harbin, China
| | - Yun-Duo Liu
- Department of Gynaecology, The Affiliated Tumour Hospital of Harbin Medical University, Harbin, China
| | - Yu Qin
- Department of Pathology, The Affiliated Tumour Hospital of Harbin Medical University, Harbin, China
| | - Xiao-Ming Ning
- Department of Pathology, The Affiliated Tumour Hospital of Harbin Medical University, Harbin, China
| | - Gen-Ying Li
- Department of Gynaecological Radiotherapy, The Affiliated Tumour Hospital of Harbin Medical University, Harbin, China
| | - Li-Xiao Hao
- Department of Gynaecological Radiotherapy, The Affiliated Tumour Hospital of Harbin Medical University, Harbin, China
| | - Min Xiao
- Department of Breast Surgery, The Affiliated Tumour Hospital of Harbin Medical University, Harbin, China
| | - Yun-Yan Zhang
- Department of Gynaecology, The Affiliated Tumour Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
40
|
Chu J, Cargnello M, Topisirovic I, Pelletier J. Translation Initiation Factors: Reprogramming Protein Synthesis in Cancer. Trends Cell Biol 2016; 26:918-933. [PMID: 27426745 DOI: 10.1016/j.tcb.2016.06.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/03/2016] [Accepted: 06/13/2016] [Indexed: 12/11/2022]
Abstract
Control of mRNA translation plays a crucial role in the regulation of gene expression and is critical for cellular homeostasis. Dysregulation of translation initiation factors has been documented in several pathologies including cancer. Aberrant function of translation initiation factors leads to translation reprogramming that promotes proliferation, survival, angiogenesis, and metastasis. In such context, understanding how altered levels (and presumably activity) of initiation factors can contribute to tumor initiation and/or maintenance is of major interest for the development of novel therapeutic strategies. In this review we provide an overview of translation initiation mechanisms and focus on recent findings describing the role of individual initiation factors and their aberrant activity in cancer.
Collapse
Affiliation(s)
- Jennifer Chu
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Marie Cargnello
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, Quebec, Canada; Gerald Bronfman Department of Oncology, McGill University, Quebec, Canada
| | - Ivan Topisirovic
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Lady Davis Institute, SMBD JGH, McGill University, Montreal, Quebec, Canada; Gerald Bronfman Department of Oncology, McGill University, Quebec, Canada.
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Gerald Bronfman Department of Oncology, McGill University, Quebec, Canada; The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
41
|
Yang Q, Ye Z, Zhang Q, Zhao Z, Yuan H. Expression of eukaryotic translation initiation factor 5A-2 (eIF5A-2) associated with poor survival in gastric cancer. Tumour Biol 2016; 37:1189-95. [PMID: 26282002 DOI: 10.1007/s13277-015-3894-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/05/2015] [Indexed: 02/08/2023] Open
Abstract
Altered expression of eukaryotic translation initiation factor 5A-2 (eIF5A-2) was associated with human carcinogenesis and progression. This study assessed eIF5A-2 expression in gastric cancer tissues for association with clinicopathological parameters and survival of patients. A total of 436 gastric cancer tissues and 92 normal mucosal blocks were collected for construction of tissue microarrays and immunohistochemical assessment of eIF5A-2 expression. The data were statistically analyzed for association with clinicopathological factors and survival of patients. Immunohistochemical data showed that eIF5A-2 protein was highly expressed in gastric cancer tissues (p < 0.001). Upregulated expression of eIF5A-2 protein was associated with tumor Lauren classification, size, location, invasion, TNM stages, and lymph node and distant metastases. The 3- and 5-year cumulative survival rates of these 436 patients were 88.5 and 58.1 %, respectively. In contrast, the mean survival time of patients with increased tumor eIF5A-2 was 30.22 ± 1.23 vs. 51.29 ± 0.86 months for those with low tumor eIF5A-2 (p < 0.001). Multivariate analysis showed that eIF5A-2 expression and related tumor parameters were independent indicators of overall survival in gastric cancer patients. In conclusion, the current study indicates that overexpression of eIF5A-2 protein was associated with poor overall survival of gastric cancer patients.
Collapse
Affiliation(s)
- Qiong Yang
- Wenzhou Medical University, Wenzhou, China
- Department of Gastrointestinal Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Zaiyuan Ye
- Wenzhou Medical University, Wenzhou, China.
- Department of Gastrointestinal Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China.
| | - Qi Zhang
- Department of Gastrointestinal Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Zhongsheng Zhao
- Department of Gastrointestinal Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China.
| | - Hongjun Yuan
- Department of Gastrointestinal Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
42
|
Eukaryotic translation initiation factor 5A2 (eIF5A2) regulates chemoresistance in colorectal cancer through epithelial mesenchymal transition. Cancer Cell Int 2015; 15:109. [PMID: 26581310 PMCID: PMC4650515 DOI: 10.1186/s12935-015-0250-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Chemoresistance is a major obstacle to successful chemotherapy for colorectal cancer. Eukaryotic translation initiation factor 5A2 (eIF5A2), one of the two isoforms in the eIF5A family, has been reported to be a new oncogene in many types of human cancer. In the present study, we aimed to investigate whether eIF5A2 was involved in the chemoresistance to doxorubicin in colorectal cancer. METHODS Cell viability was measured by CCK-8 assay with or without doxorubicin treatment. Protein expression was detected by western blot. Tumor cells were transfected with eIF5A2 siRNA or plasmid encoding eIF5A2 to down- or up regulate the expression of eIF5A2. RESULTS We found that eIF5A2-negtive colon cancer cells (HCT116 and HT29) were more sensitive to doxorubicin compare with the eIF5A2-positive cells (LOVO and SW480). Downregulation of eIF5A2 in LOVO and SW480 cells enhanced the chemosensitivity to doxorubicin. On the contrary, overexpression of eIF5A2 reduced doxorubicin sensitivity in colon cancer cells. In addition, eIF5A2 knockdown increased the protein level of E-cadherin and reduced vimentin expression in LOVO and SW480 cells. Meanwhile, upregulation of eIF5A2 potentiated epithelial mesenchymal transition (EMT) in colon cancer cells. Moreover, blockade of EMT with Twist siRNA abolished eIF5A2-regulated chemoresistance in colon cancer cells. CONCLUSION Our present study demonstrated that eIF5A2 promoted the chemoresistance to doxorubicin via regulation of EMT in colon cancer cells. Therefore, eIF5A2 inhibition may be a new potential strategy for the reversal of drug resistance in colorectal cancer therapy.
Collapse
|
43
|
Mathews MB, Hershey JWB. The translation factor eIF5A and human cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1849:836-44. [PMID: 25979826 PMCID: PMC4732523 DOI: 10.1016/j.bbagrm.2015.05.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 12/14/2022]
Abstract
The eukaryotic initiation factor eIF5A is a translation factor that, unusually, has been assigned functions in both initiation and elongation. Additionally, it is implicated in transcription, mRNA turnover and nucleocytoplasmic transport. Two eIF5A isoforms are generated from distinct but related genes. The major isoform, eIF5A1, is considered constitutive, is abundantly expressed in most cells, and is essential for cell proliferation. The second isoform, eIF5A2, is expressed in few normal tissues but is highly expressed in many cancers and has been designated a candidate oncogene. Elevated expression of either isoform carries unfavorable prognostic implications for several cancers, and both have been advanced as cancer biomarkers. The amino acid hypusine, a presumptively unique eIF5A post-translational modification, is required for most known eIF5A functions and it renders eIF5A susceptible to inhibitors of the modification pathway as therapeutic targets. eIF5A has been shown to regulate a number of gene products specifically, termed the eIF5A regulon, and its role in translating proline-rich sequences has recently been identified. A model is advanced that accommodates eIF5A in both the initiation and elongation phases of translation. We review here the biochemical functions of eIF5A, the relationship of its isoforms with human cancer, and evolving clinical applications. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Michael B Mathews
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
| | - John W B Hershey
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA.
| |
Collapse
|
44
|
Oliverio S, Corazzari M, Sestito C, Piredda L, Ippolito G, Piacentini M. The spermidine analogue GC7 (N1-guanyl-1,7-diamineoheptane) induces autophagy through a mechanism not involving the hypusination of eIF5A. Amino Acids 2014; 46:2767-76. [PMID: 25218134 DOI: 10.1007/s00726-014-1821-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/31/2014] [Indexed: 01/07/2023]
Abstract
The exogenous administration of spermidine promotes longevity in many model organisms. It has been proposed that this anti-age activity of spermidine is related to this polyamine's ability to promote autophagy. Since spermidine is the substrate for the eIF5A post-translational modification by hypusination, we asked ourselves whether mature eIF5A may represent the link between spermidine and autophagy induction. To test this hypothesis, we inhibited the conversion of native eIF5A by a pharmacological approach, using the N1-guanyl-1,7-diamineoheptane (GC7), a spermidine analogue which competitively and reversibly inhibits deoxyhypusine synthase (DHS). In addition, we also employed genetic approaches by ablating both the eIF5A protein itself and DHS, the rate limiting enzyme catalyzing the conversion of lysine to hypusine. Collectively the data presented in this study demonstrate that the mature eIF5A (hypusinated form) is not involved in the autophagic pathway and that the inhibitor of DHS, GC7, produces off-target effect(s) resulting in marked induction of basal autophagy. These data are relevant in light of the fact that GC7 is considered a potent and selective inhibitor of DHS and is a potential candidate drug for cancer, diabetes and HIV therapy.
Collapse
Affiliation(s)
- Serafina Oliverio
- Department of Biology, University of Rome 'Tor Vergata', Via Della Ricerca Scientifica, 00133, Rome, Italy
| | | | | | | | | | | |
Collapse
|
45
|
Fujimura K, Wright T, Strnadel J, Kaushal S, Metildi C, Lowy AM, Bouvet M, Kelber JA, Klemke RL. A hypusine-eIF5A-PEAK1 switch regulates the pathogenesis of pancreatic cancer. Cancer Res 2014; 74:6671-81. [PMID: 25261239 PMCID: PMC4233190 DOI: 10.1158/0008-5472.can-14-1031] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Deregulation of protein synthesis is a hallmark of cancer cell proliferation, survival, and metastatic progression. eIF5A1 and its highly related isoform eIF5A2 are translation initiation factors that have been implicated in a range of human malignancies, but how they control cancer development and disease progression is still poorly understood. Here, we investigated how eIF5A proteins regulate pancreatic ductal adenocarcinoma (PDAC) pathogenesis. eIF5A proteins are the only known proteins regulated by a distinct posttranslational modification termed hypusination, which is catalyzed by two enzymes, deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH). The highly selective nature of the hypusine modification and its amenability to pharmacologic inhibition make eIF5A proteins attractive therapeutic targets. We found that the expression and hypusination of eIF5A proteins are upregulated in human PDAC tissues and in premalignant pancreatic intraepithelial neoplasia tissues isolated from Pdx-1-Cre: LSL-KRAS(G12D) mice. Knockdown of eIF5A proteins in PDAC cells inhibited their growth in vitro and orthotopic tumor growth in vivo, whereas amplification of eIF5A proteins increased PDAC cell growth and tumor formation in mice. Small-molecule inhibitors of DHPS and DOHH both suppressed eIF5A hypusination, preventing PDAC cell growth. Interestingly, we found that eIF5A proteins regulate PDAC cell growth by modulating the expression of PEAK1, a nonreceptor tyrosine kinase essential for PDAC cell growth and therapy resistance. Our findings suggest that eIF5A proteins utilize PEAK1 as a downstream effector to drive PDAC pathogenesis and that pharmacologic inhibition of the eIF5A-hypusine-PEAK1 axis may provide a novel therapeutic strategy to combat this deadly disease.
Collapse
Affiliation(s)
- Ken Fujimura
- Department of Pathology, University of California, San Diego, La Jolla, California. Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Tracy Wright
- Department of Pathology, University of California, San Diego, La Jolla, California. Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Jan Strnadel
- Department of Pathology, University of California, San Diego, La Jolla, California. Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Sharmeela Kaushal
- Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Cristina Metildi
- Moores Cancer Center, University of California, San Diego, La Jolla, California. Division of Surgical Oncology, Department of Surgery, University of California, San Diego, La Jolla, California
| | - Andrew M Lowy
- Moores Cancer Center, University of California, San Diego, La Jolla, California. Division of Surgical Oncology, Department of Surgery, University of California, San Diego, La Jolla, California
| | - Michael Bouvet
- Moores Cancer Center, University of California, San Diego, La Jolla, California. Division of Surgical Oncology, Department of Surgery, University of California, San Diego, La Jolla, California
| | - Jonathan A Kelber
- Department of Biology, California State University, Northridge, California
| | - Richard L Klemke
- Department of Pathology, University of California, San Diego, La Jolla, California. Moores Cancer Center, University of California, San Diego, La Jolla, California.
| |
Collapse
|
46
|
Xu G, Yu H, Shi X, Sun L, Zhou Q, Zheng D, Shi H, Li N, Zhang X, Shao G. Cisplatin sensitivity is enhanced in non-small cell lung cancer cells by regulating epithelial-mesenchymal transition through inhibition of eukaryotic translation initiation factor 5A2. BMC Pulm Med 2014; 14:174. [PMID: 25380840 PMCID: PMC4232729 DOI: 10.1186/1471-2466-14-174] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/16/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) has been believed to be related with chemotherapy resistance in non-small cell lung cancer (NSCLC). Recent studies have suggested eIF5A-2 may function as a proliferation-related oncogene in tumorigenic processes. METHODS We used cell viability assays, western blotting, immunofluorescence, transwell-matrigel invasion assay, wound-healing assay combined with GC7 (a novel eIF5A-2 inhibitor) treatment or siRNA interference to investigate the role of eIF5A-2 playing in NSCLC chemotherapy. RESULTS We found low concentrations of GC7 have little effect on NSCLC viability, but could enhance cisplatin cytotoxicity in NSCLC cells. GC7 also could reverse mesenchymal phenotype in NCI-H1299 and prevented A549 cells undergoing EMT after TGF-β1 inducement. eIF5A-2 knockdown resulted in EMT inhibition. CONCLUSION Our data indicated GC7 enhances cisplatin cytotoxicity and prevents the EMT in NSCLC cells by inhibiting eIF5A-2.
Collapse
Affiliation(s)
- Guodong Xu
- />Department of Thoracic & Cardiovascular Surgery, Lihuili Hospital, Ningbo Medical Center, Affiliated Hospital of Medical School of Ningbo University, NO 57 Xingning Road, Ningbo, 315041 China
| | - Hui Yu
- />Department of Pathology, Shanghai Pulmonary Hospital Tongji University School of Medical, Shanghai, 200065 China
| | - Xinbao Shi
- />Department of Thoracic & Cardiovascular Surgery, Lihuili Hospital, Ningbo Medical Center, Affiliated Hospital of Medical School of Ningbo University, NO 57 Xingning Road, Ningbo, 315041 China
| | - Lebo Sun
- />Department of Thoracic & Cardiovascular Surgery, Lihuili Hospital, Ningbo Medical Center, Affiliated Hospital of Medical School of Ningbo University, NO 57 Xingning Road, Ningbo, 315041 China
| | - Qingyun Zhou
- />Department of Thoracic & Cardiovascular Surgery, Lihuili Hospital, Ningbo Medical Center, Affiliated Hospital of Medical School of Ningbo University, NO 57 Xingning Road, Ningbo, 315041 China
| | - Dawei Zheng
- />Department of Thoracic & Cardiovascular Surgery, Lihuili Hospital, Ningbo Medical Center, Affiliated Hospital of Medical School of Ningbo University, NO 57 Xingning Road, Ningbo, 315041 China
| | - Huoshun Shi
- />Department of Thoracic & Cardiovascular Surgery, Lihuili Hospital, Ningbo Medical Center, Affiliated Hospital of Medical School of Ningbo University, NO 57 Xingning Road, Ningbo, 315041 China
| | - Ni Li
- />Department of Thoracic & Cardiovascular Surgery, Lihuili Hospital, Ningbo Medical Center, Affiliated Hospital of Medical School of Ningbo University, NO 57 Xingning Road, Ningbo, 315041 China
| | - Xianning Zhang
- />Department of Cell Biology and Medical Genetics, Research Center of Molecular Medicine, National Education Base for Basic Medical Sciences, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058 China
| | - Guofeng Shao
- />Department of Thoracic & Cardiovascular Surgery, Lihuili Hospital, Ningbo Medical Center, Affiliated Hospital of Medical School of Ningbo University, NO 57 Xingning Road, Ningbo, 315041 China
| |
Collapse
|
47
|
Singh S, Raju K, Jatekar D, Dinesh N, Paul MS, Sobhia ME. Leishmania donovani eukaryotic initiation factor 5A: molecular characterization, localization and homology modelling studies. Microb Pathog 2014; 73:37-46. [PMID: 24909104 DOI: 10.1016/j.micpath.2014.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/06/2014] [Accepted: 05/20/2014] [Indexed: 11/16/2022]
Abstract
Eukaryotic translation initiation factor 5A (eIF5A) is a small acidic protein highly conserved from archaea to mammals. eIF5A is the only protein which undergoes a unique lysine residue modification to hypusine. Hypusinylation is important for the function of eIF5A which is reported to be essential for cell viability. eIF5A promotes formation of the first peptide bond at the onset of protein synthesis. However, its function in Leishmania donovani is unclear. The present study focuses on the characterization and localization of L. donovani eIF5A protein. The eIF5A gene contains an ORF of 501×bp encoding 166 amino acid residues with a predicted molecular mass and isoelectric point of 17.8 kDa and 4.83 respectively. A phylogenetic tree analysis revealed its close proximity to trypanosomes however it is distantly located from Trichomonas vaginalis and Plasmodium falciparum. The L. donovani eIF5A was expressed as a 6× His tagged protein whose identity was confirmed by western blot and MALDI. Biophysical investigation by CD revealed the predominant presence of 49% β sheet structure which correlated well with secondary structure prediction. To gain insight into the role of eIF5A in L. donovani, we investigated the subcellular distribution of eIF5A. A GFP-fusion of L. donovani eIF5A was found to be localized in cytoplasm as confirmed by subcellular fractionation. Our studies indicated that eIF5A is primarily localized to cytoplasm and is undetectable in nuclear fraction. The homology model of eIF5A of L. donovani was built and the resulting model showed acceptable Ramachandran statistics. The model is reliable and can be used to study eIF5A binding with its effector molecules.
Collapse
Affiliation(s)
- Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali 160062, Punjab, India.
| | - K Raju
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali 160062, Punjab, India
| | - Deepika Jatekar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali 160062, Punjab, India
| | - Neeradi Dinesh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali 160062, Punjab, India
| | - M Stanley Paul
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, SAS Nagar Mohali 160062, Punjab, India
| | - M E Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, SAS Nagar Mohali 160062, Punjab, India
| |
Collapse
|
48
|
Mémin E, Hoque M, Jain MR, Heller DS, Li H, Cracchiolo B, Hanauske-Abel HM, Pe’ery T, Mathews MB. Blocking eIF5A modification in cervical cancer cells alters the expression of cancer-related genes and suppresses cell proliferation. Cancer Res 2014; 74:552-62. [PMID: 24220243 PMCID: PMC4745653 DOI: 10.1158/0008-5472.can-13-0474] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cancer etiology is influenced by alterations in protein synthesis that are not fully understood. In this study, we took a novel approach to investigate the role of the eukaryotic translation initiation factor eIF5A in human cervical cancers, where it is widely overexpressed. eIF5A contains the distinctive amino acid hypusine, which is formed by a posttranslational modification event requiring deoxyhypusine hydroxylase (DOHH), an enzyme that can be inhibited by the drugs ciclopirox and deferiprone. We found that proliferation of cervical cancer cells can be blocked by DOHH inhibition with either of these pharmacologic agents, as well as by RNA interference-mediated silencing of eIF5A, DOHH, or another enzyme in the hypusine pathway. Proteomic and RNA analyses in HeLa cervical cancer cells identified two groups of proteins in addition to eIF5A that were coordinately affected by ciclopirox and deferiprone. Group 1 proteins (Hsp27, NM23, and DJ-1) were downregulated at the translational level, whereas group 2 proteins (TrpRS and PRDX2) were upregulated at the mRNA level. Further investigations confirmed that eIF5A and DOHH are required for Hsp27 expression in cervical cancer cells and for regulation of its key target IκB and hence NF-κB. Our results argue that mature eIF5A controls a translational network of cancer-driving genes, termed the eIF5A regulon, at the levels of mRNA abundance and translation. In coordinating cell proliferation, the eIF5A regulon can be modulated by drugs such as ciclopirox or deferiprone, which might be repositioned to control cancer cell growth.
Collapse
Affiliation(s)
- Elisabeth Mémin
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Mainul Hoque
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Mohit R. Jain
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Debra S. Heller
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Hong Li
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Bernadette Cracchiolo
- Department of Obstetrics, Gynecology and Women’s Health, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Hartmut M. Hanauske-Abel
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey
- Department of Obstetrics, Gynecology and Women’s Health, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Tsafi Pe’ery
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Michael B. Mathews
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey
| |
Collapse
|
49
|
Lou B, Fan J, Wang K, Chen W, Zhou X, Zhang J, Lin S, Lv F, Chen Y. N1-guanyl-1,7-diaminoheptane (GC7) enhances the therapeutic efficacy of doxorubicin by inhibiting activation of eukaryotic translation initiation factor 5A2 (eIF5A2) and preventing the epithelial-mesenchymal transition in hepatocellular carcinoma cells. Exp Cell Res 2013; 319:2708-2717. [PMID: 23958463 DOI: 10.1016/j.yexcr.2013.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/09/2013] [Accepted: 08/02/2013] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) cells undergo the epithelial-mesenchymal transition (EMT) during chemotherapy, which reduces the efficacy of doxorubicin-based chemotherapy. We investigated N1-guanyl-1,7-diaminoheptane (GC7) which inhibits eukaryotic translation initiation factor 5A2 (eIF5A2) activation; eIF5A2 is associated with chemoresistance. GC7 enhanced doxorubicin cytotoxicity in epithelial HCC cells (Huh7, Hep3B and HepG2) but had little effect in mesenchymal HCC cells (SNU387, SNU449). GC7 suppressed the doxorubicin-induced EMT in epithelial HCC cells; knockdown of eIF5A2 inhibited the doxorubicin-induced EMT and enhanced doxorubicin cytotoxicity. GC7 combination therapy may enhance the therapeutic efficacy of doxorubicin in HCC by inhibiting eIF5A2 activation and preventing the EMT.
Collapse
Affiliation(s)
- Bin Lou
- Department of Laboratory Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wang FW, Guan XY, Xie D. Roles of eukaryotic initiation factor 5A2 in human cancer. Int J Biol Sci 2013; 9:1013-20. [PMID: 24250246 PMCID: PMC3831114 DOI: 10.7150/ijbs.7191] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/26/2013] [Indexed: 12/15/2022] Open
Abstract
Eukaryotic initiation factor 5A (eIF5A), the only known cellular protein containing the amino acid hypusine, is an essential component of translation elongation. eIF5A2, one of the two isoforms in the eIF5A family, is reported to be a novel oncogenic protein in many types of human cancer. Both in vitro and in vivo studies showed that eIF5A2 could initiate tumor formation, enhance cancer cell growth, and increase cancer cell motility and metastasis by inducing epithelial-mesenchymal transition. Accumulatied evidence suggests that eIF5A2 is a useful biomarker in the prediction of cancer prognoses and serves as an anticancer molecular target. In this review, we will focus on updating current knowledge of the EIF5A2 gene in human cancers. The molecular mechanisms of EIF5A2 related to tumorigenesis will also be discussed.
Collapse
Affiliation(s)
- Feng-wei Wang
- 1. Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China. Collaborative Innovation Center of Cancer Medicine
| | | | | |
Collapse
|