1
|
Schulte T, Chaves-Sanjuan A, Speranzini V, Sicking K, Milazzo M, Mazzini G, Rognoni P, Caminito S, Milani P, Marabelli C, Corbelli A, Diomede L, Fiordaliso F, Anastasia L, Pappone C, Merlini G, Bolognesi M, Nuvolone M, Fernández-Busnadiego R, Palladini G, Ricagno S. Helical superstructures between amyloid and collagen in cardiac fibrils from a patient with AL amyloidosis. Nat Commun 2024; 15:6359. [PMID: 39069558 PMCID: PMC11284220 DOI: 10.1038/s41467-024-50686-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Systemic light chain (LC) amyloidosis (AL) is a disease where organs are damaged by an overload of a misfolded patient-specific antibody-derived LC, secreted by an abnormal B cell clone. The high LC concentration in the blood leads to amyloid deposition at organ sites. Indeed, cryogenic electron microscopy (cryo-EM) has revealed unique amyloid folds for heart-derived fibrils taken from different patients. Here, we present the cryo-EM structure of heart-derived AL amyloid (AL59) from another patient with severe cardiac involvement. The double-layered structure displays a u-shaped core that is closed by a β-arc lid and extended by a straight tail. Noteworthy, the fibril harbours an extended constant domain fragment, thus ruling out the variable domain as sole amyloid building block. Surprisingly, the fibrils were abundantly concatenated with a proteinaceous polymer, here identified as collagen VI (COLVI) by immuno-electron microscopy (IEM) and mass-spectrometry. Cryogenic electron tomography (cryo-ET) showed how COLVI wraps around the amyloid forming a helical superstructure, likely stabilizing and protecting the fibrils from clearance. Thus, here we report structural evidence of interactions between amyloid and collagen, potentially signifying a distinct pathophysiological mechanism of amyloid deposits.
Collapse
Affiliation(s)
- Tim Schulte
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097, San Donato Milanese, Italy
- Dept of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Box 1031, SE-17121, Solna, Sweden
| | | | - Valentina Speranzini
- Department of Biosciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Kevin Sicking
- University Medical Center Göttingen, Institute for Neuropathology, Göttinge, 37077, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Melissa Milazzo
- Department of Biosciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Giulia Mazzini
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia, 27100, Italy
| | - Paola Rognoni
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia, 27100, Italy
| | - Serena Caminito
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia, 27100, Italy
| | - Paolo Milani
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia, 27100, Italy
| | - Chiara Marabelli
- Department of Biosciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Alessandro Corbelli
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, Milano, 20156, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, Milano, 20156, Italy
| | - Fabio Fiordaliso
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, Milano, 20156, Italy
| | - Luigi Anastasia
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097, San Donato Milanese, Italy
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, 20132, Italy
| | - Carlo Pappone
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097, San Donato Milanese, Italy
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, 20132, Italy
- Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, San Donato, Milan, 20097, Italy
| | - Giampaolo Merlini
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia, 27100, Italy
| | - Martino Bolognesi
- Department of Biosciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Mario Nuvolone
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia, 27100, Italy
| | - Rubén Fernández-Busnadiego
- University Medical Center Göttingen, Institute for Neuropathology, Göttinge, 37077, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, 37077, Germany
- Faculty of Physics, University of Göttingen, Göttingen, 37077, Germany
| | - Giovanni Palladini
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia, 27100, Italy
| | - Stefano Ricagno
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097, San Donato Milanese, Italy.
- Department of Biosciences, Università degli Studi di Milano, Milan, 20133, Italy.
| |
Collapse
|
2
|
Di Martino A, Cescon M, D’Agostino C, Schilardi F, Sabatelli P, Merlini L, Faldini C. Collagen VI in the Musculoskeletal System. Int J Mol Sci 2023; 24:5095. [PMID: 36982167 PMCID: PMC10049728 DOI: 10.3390/ijms24065095] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Collagen VI exerts several functions in the tissues in which it is expressed, including mechanical roles, cytoprotective functions with the inhibition of apoptosis and oxidative damage, and the promotion of tumor growth and progression by the regulation of cell differentiation and autophagic mechanisms. Mutations in the genes encoding collagen VI main chains, COL6A1, COL6A2 and COL6A3, are responsible for a spectrum of congenital muscular disorders, namely Ullrich congenital muscular dystrophy (UCMD), Bethlem myopathy (BM) and myosclerosis myopathy (MM), which show a variable combination of muscle wasting and weakness, joint contractures, distal laxity, and respiratory compromise. No effective therapeutic strategy is available so far for these diseases; moreover, the effects of collagen VI mutations on other tissues is poorly investigated. The aim of this review is to outline the role of collagen VI in the musculoskeletal system and to give an update about the tissue-specific functions revealed by studies on animal models and from patients' derived samples in order to fill the knowledge gap between scientists and the clinicians who daily manage patients affected by collagen VI-related myopathies.
Collapse
Affiliation(s)
- Alberto Di Martino
- I Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Claudio D’Agostino
- I Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy
| | - Francesco Schilardi
- I Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy
| | - Patrizia Sabatelli
- Unit of Bologna, CNR-Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, 40136 Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Luciano Merlini
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy
| | - Cesare Faldini
- I Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy
| |
Collapse
|
3
|
Williams L, Layton T, Yang N, Feldmann M, Nanchahal J. Collagen VI as a driver and disease biomarker in human fibrosis. FEBS J 2021; 289:3603-3629. [PMID: 34109754 DOI: 10.1111/febs.16039] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/19/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Fibrosis of visceral organs such as the lungs, heart, kidneys and liver remains a major cause of morbidity and mortality and is also associated with many other disorders, including cancer and metabolic disease. In this review, we focus upon the microfibrillar collagen VI, which is present in the extracellular matrix (ECM) of most tissues. However, expression is elevated in numerous fibrotic conditions, such as idiopathic pulmonary disease (IPF), and chronic liver and kidney diseases. Collagen VI is composed of three subunits α1, α2 and α3, which can be replaced with alternate chains of α4, α5 or α6. The C-terminal globular domain (C5) of collagen VI α3 can be proteolytically cleaved to form a biologically active fragment termed endotrophin, which has been shown to actively drive fibrosis, inflammation and insulin resistance. Tissue biopsies have long been considered the gold standard for diagnosis and monitoring of progression of fibrotic disease. The identification of neoantigens from enzymatically processed collagen chains have revolutionised the biomarker field, allowing rapid diagnosis and evaluation of prognosis of numerous fibrotic conditions, as well as providing valuable clinical trial endpoint determinants. Collagen VI chain fragments such as endotrophin (PRO-C6), C6M and C6Mα3 are emerging as important biomarkers for fibrotic conditions.
Collapse
Affiliation(s)
- Lynn Williams
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Thomas Layton
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Nan Yang
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Marc Feldmann
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Jagdeep Nanchahal
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| |
Collapse
|
4
|
Mereness JA, Mariani TJ. The critical role of collagen VI in lung development and chronic lung disease. Matrix Biol Plus 2021; 10:100058. [PMID: 34195595 PMCID: PMC8233475 DOI: 10.1016/j.mbplus.2021.100058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/20/2023] Open
Abstract
Type VI collagen (collagen VI) is an obligate extracellular matrix component found mainly in the basement membrane region of many mammalian tissues and organs, including skeletal muscle and throughout the respiratory system. Collagen VI is probably most recognized in medicine as the genetic cause of a spectrum of muscular dystrophies, including Ullrich Congenital Myopathy and Bethlem Myopathy. Collagen VI is thought to contribute to myopathy, at least in part, by mediating muscle fiber integrity by anchoring myoblasts to the muscle basement membrane. Interestingly, collagen VI myopathies present with restrictive respiratory insufficiency, thought to be due primarily to thoracic muscular weakening. Although it was recently recognized as one of the (if not the) most abundant collagens in the mammalian lung, there is a substantive knowledge gap concerning its role in respiratory system development and function. A few studies have suggested that collagen VI insufficiency is associated with airway epithelial cell survival and altered lung function. Our recent work suggested collagen VI may be a genomic risk factor for chronic lung disease in premature infants. Using this as motivation, we thoroughly assessed the role of collagen VI in lung development and in lung epithelial cell biology. Here, we describe the state-of-the-art for collagen VI cell and developmental biology within the respiratory system, and reveal its essential roles in normal developmental processes and airway epithelial cell phenotype and intracellular signaling.
Collapse
Affiliation(s)
- Jared A. Mereness
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Thomas J. Mariani
- Corresponding author. Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester Medical Center, 601 Elmwood Ave, Box 850, Rochester, NY 14642, USA.
| |
Collapse
|
5
|
Ros M, Nguyen AT, Chia J, Le Tran S, Le Guezennec X, McDowall R, Vakhrushev S, Clausen H, Humphries MJ, Saltel F, Bard FA. ER-resident oxidoreductases are glycosylated and trafficked to the cell surface to promote matrix degradation by tumour cells. Nat Cell Biol 2020; 22:1371-1381. [PMID: 33077910 DOI: 10.1038/s41556-020-00590-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022]
Abstract
Tumour growth and invasiveness require extracellular matrix (ECM) degradation and are stimulated by the GALA pathway, which induces protein O-glycosylation in the endoplasmic reticulum (ER). ECM degradation requires metalloproteases, but whether other enzymes are required is unclear. Here, we show that GALA induces the glycosylation of the ER-resident calnexin (Cnx) in breast and liver cancer. Glycosylated Cnx and its partner ERp57 are trafficked to invadosomes, which are sites of ECM degradation. We find that disulfide bridges are abundant in connective and liver ECM. Cell surface Cnx-ERp57 complexes reduce these extracellular disulfide bonds and are essential for ECM degradation. In vivo, liver cancer cells but not hepatocytes display cell surface Cnx. Liver tumour growth and lung metastasis of breast and liver cancer cells are inhibited by anti-Cnx antibodies. These findings uncover a moonlighting function of Cnx-ERp57 at the cell surface that is essential for ECM breakdown and tumour development.
Collapse
Affiliation(s)
- Manon Ros
- Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000 Bordeaux, France, Bordeaux, France
| | - Anh Tuan Nguyen
- Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore
| | - Joanne Chia
- Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore
| | - Son Le Tran
- Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore
| | | | - Ruth McDowall
- Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sergey Vakhrushev
- Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Clausen
- Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin James Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Frederic Saltel
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000 Bordeaux, France, Bordeaux, France
| | - Frederic André Bard
- Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore.
- Department of Biochemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Solomon-Degefa H, Gebauer JM, Jeffries CM, Freiburg CD, Meckelburg P, Bird LE, Baumann U, Svergun DI, Owens RJ, Werner JM, Behrmann E, Paulsson M, Wagener R. Structure of a collagen VI α3 chain VWA domain array: adaptability and functional implications of myopathy causing mutations. J Biol Chem 2020; 295:12755-12771. [PMID: 32719005 DOI: 10.1074/jbc.ra120.014865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/16/2020] [Indexed: 12/23/2022] Open
Abstract
Collagen VI is a ubiquitous heterotrimeric protein of the extracellular matrix (ECM) that plays an essential role in the proper maintenance of skeletal muscle. Mutations in collagen VI lead to a spectrum of congenital myopathies, from the mild Bethlem myopathy to the severe Ullrich congenital muscular dystrophy. Collagen VI contains only a short triple helix and consists primarily of von Willebrand factor type A (VWA) domains, protein-protein interaction modules found in a range of ECM proteins. Disease-causing mutations occur commonly in the VWA domains, and the second VWA domain of the α3 chain, the N2 domain, harbors several such mutations. Here, we investigate structure-function relationships of the N2 mutations to shed light on their possible myopathy mechanisms. We determined the X-ray crystal structure of N2, combined with monitoring secretion efficiency in cell culture of selected N2 single-domain mutants, finding that mutations located within the central core of the domain severely affect secretion efficiency. In longer α3 chain constructs, spanning N6-N3, small-angle X-ray scattering demonstrates that the tandem VWA array has a modular architecture and samples multiple conformations in solution. Single-particle EM confirmed the presence of multiple conformations. Structural adaptability appears intrinsic to the VWA domain region of collagen VI α3 and has implications for binding interactions and modulating stiffness within the ECM.
Collapse
Affiliation(s)
| | - Jan M Gebauer
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Cy M Jeffries
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Carolin D Freiburg
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | | | - Louise E Bird
- The Research Complex at Harwell, Rutherford Appleton Laboratory Harwell, Oxford, United Kingdom.,Structural Biology Division, Wellcome Human Genetics Centre, University of Oxford, Oxford, United Kingdom
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Raymond J Owens
- The Research Complex at Harwell, Rutherford Appleton Laboratory Harwell, Oxford, United Kingdom.,Structural Biology Division, Wellcome Human Genetics Centre, University of Oxford, Oxford, United Kingdom
| | - Jörn M Werner
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Elmar Behrmann
- Institute of Biochemistry, University of Cologne, Cologne, Germany.,Max Planck Research Group Structural Dynamics of Proteins, Center of Advanced European Studies and Research (caesar), Bonn, Germany
| | - Mats Paulsson
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany
| | - Raimund Wagener
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany .,Center for Molecular Medicine (CMMC), Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany
| |
Collapse
|
7
|
Wang J, Pan W. The Biological Role of the Collagen Alpha-3 (VI) Chain and Its Cleaved C5 Domain Fragment Endotrophin in Cancer. Onco Targets Ther 2020; 13:5779-5793. [PMID: 32606789 PMCID: PMC7319802 DOI: 10.2147/ott.s256654] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
The collagen alpha-3 (VI) chain encoded by the gene COL6A3 is one of the 3 subunits of collagen VI which is a microfibrillar component of the extracellular matrix and is essential for the stable assembly process of collagen VI. The collagen alpha-3 (VI) chain and the cleaved C5 domain fragment, called endotrophin, are highly expressed in a variety of cancers and play a crucial role in cancer progression. The biological functions of endotrophin in tumors can be driven by adipocytes. Studies have demonstrated that endotrophin can directly affect the malignancy of cancer cells through TGF-β-dependent mechanisms, inducing epithelial–mesenchymal transition and fibrosis of the tumor microenvironment. In addition, endotrophin can also recruit macrophages and endothelial cells through chemotaxis to regulate the tumor microenvironment and ultimately promote tumor inflammation and angiogenesis. Furthermore, COL6A3 and endotrophin serve as novel diagnostic and prognostic biomarkers in cancer and contribute to clinical therapeutic applications in the future. In summary, in this review, we discuss the importance of the collagen alpha-3 (VI) chain and endotrophin in cancer progression, the future clinical applications of endotrophin and the remaining challenges in this field.
Collapse
Affiliation(s)
- Jingya Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Wensheng Pan
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
8
|
Delbaere S, Dhooge T, Syx D, Petit F, Goemans N, Destrée A, Vanakker O, De Rycke R, Symoens S, Malfait F. Novel defects in collagen XII and VI expand the mixed myopathy/Ehlers-Danlos syndrome spectrum and lead to variant-specific alterations in the extracellular matrix. Genet Med 2019; 22:112-123. [PMID: 31273343 DOI: 10.1038/s41436-019-0599-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/19/2019] [Indexed: 12/26/2022] Open
Abstract
PURPOSE To date, heterozygous or homozygous COL12A1 variants have been reported in 13 patients presenting with a clinical phenotype overlapping with collagen VI-related myopathies and Ehlers-Danlos syndrome (EDS). The small number of reported patients limits thorough investigation of this newly identified syndrome, currently coined as myopathic EDS. METHODS DNA from 78 genetically unresolved patients fulfilling the clinical criteria for myopathic EDS was sequenced using a next-generation panel of COL12A1, COL6A1, COL6A2, and COL6A3. RESULTS Among this cohort, we identified four pathogenic heterozygous in-frame exon skipping (∆) defects in COL12A1, clustering to the thrombospondin N-terminal region and the adjacent collagenous domain (Δ52, Δ53, Δ54, and Δ56 respectively), one heterozygous COL12A1 arginine-to-cysteine substitution of unclear significance (p.(Arg1863Cys)), and compound heterozygous pathogenic COL6A1 variants (c.[98-6G>A];[301C>T]) in one proband. Variant-specific intracellular accumulation of collagen XII chains, extracellular overmodification of the long isoform and near-absence of the short isoform of collagen XII, and extracellular decrease of decorin and tenascin-X were observed for the COL12A1 variants. In contrast, the COL6A1 variants abolished collagen VI and V deposition and increased tenascin-X levels. CONCLUSION Our data further support the significant clinical overlap between myopathic EDS and collagen VI-related myopathies, and emphasize the variant-specific consequences of collagen XII defects.
Collapse
Affiliation(s)
- Sarah Delbaere
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Tibbe Dhooge
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Delfien Syx
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Florence Petit
- Department of Clinical Genetics, CHU Lille, Université Lille, Lille, France
| | - Nathalie Goemans
- Department of Child Neurology, University Hospital Leuven, Leuven, Belgium.,Department of Development and Regeneration, University of Leuven, Leuven, Belgium
| | - Anne Destrée
- Center for Human Genetics, Institute of Pathology and Genetics, Gosselies, Belgium
| | - Olivier Vanakker
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology and Expertise Centre for Transmission Electron Microscopy, Ghent University, Ghent, Belgium.,Center for Inflammation Research and BioImaging Core, VIB, Ghent, Belgium
| | - Sofie Symoens
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Fransiska Malfait
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
9
|
Bolduc V, Foley AR, Solomon-Degefa H, Sarathy A, Donkervoort S, Hu Y, Chen GS, Sizov K, Nalls M, Zhou H, Aguti S, Cummings BB, Lek M, Tukiainen T, Marshall JL, Regev O, Marek-Yagel D, Sarkozy A, Butterfield RJ, Jou C, Jimenez-Mallebrera C, Li Y, Gartioux C, Mamchaoui K, Allamand V, Gualandi F, Ferlini A, Hanssen E, Wilton SD, Lamandé SR, MacArthur DG, Wagener R, Muntoni F, Bönnemann CG. A recurrent COL6A1 pseudoexon insertion causes muscular dystrophy and is effectively targeted by splice-correction therapies. JCI Insight 2019; 4:124403. [PMID: 30895940 DOI: 10.1172/jci.insight.124403] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/12/2019] [Indexed: 12/27/2022] Open
Abstract
The clinical application of advanced next-generation sequencing technologies is increasingly uncovering novel classes of mutations that may serve as potential targets for precision medicine therapeutics. Here, we show that a deep intronic splice defect in the COL6A1 gene, originally discovered by applying muscle RNA sequencing in patients with clinical findings of collagen VI-related dystrophy (COL6-RD), inserts an in-frame pseudoexon into COL6A1 mRNA, encodes a mutant collagen α1(VI) protein that exerts a dominant-negative effect on collagen VI matrix assembly, and provides a unique opportunity for splice-correction approaches aimed at restoring normal gene expression. Using splice-modulating antisense oligomers, we efficiently skipped the pseudoexon in patient-derived fibroblast cultures and restored a wild-type matrix. Similarly, we used CRISPR/Cas9 to precisely delete an intronic sequence containing the pseudoexon and efficiently abolish its inclusion while preserving wild-type splicing. Considering that this splice defect is emerging as one of the single most frequent mutations in COL6-RD, the design of specific and effective splice-correction therapies offers a promising path for clinical translation.
Collapse
Affiliation(s)
- Véronique Bolduc
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Herimela Solomon-Degefa
- Center for Biochemistry, Faculty of Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Apurva Sarathy
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Ying Hu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Grace S Chen
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Katherine Sizov
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Matthew Nalls
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Haiyan Zhou
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health & Great Ormond Street Hospital for Children, London, United Kingdom.,Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Sara Aguti
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health & Great Ormond Street Hospital for Children, London, United Kingdom
| | - Beryl B Cummings
- Analytical and Translation Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Monkol Lek
- Analytical and Translation Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Taru Tukiainen
- Analytical and Translation Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jamie L Marshall
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Oded Regev
- Courant Institute of Mathematical Sciences, New York University, New York, USA
| | - Dina Marek-Yagel
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - Anna Sarkozy
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health & Great Ormond Street Hospital for Children, London, United Kingdom
| | - Russell J Butterfield
- Department of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Cristina Jou
- Pathology Department and Biobanc de l'Hospital Infantil Sant Joan de Déu per a la Investigació, Hospital Sant Joan de Déu, Barcelona, Spain.,Neuromuscular Unit, Neuropediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.,CIBERER (ISCIII), Madrid, Spain
| | - Cecilia Jimenez-Mallebrera
- Neuromuscular Unit, Neuropediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.,CIBERER (ISCIII), Madrid, Spain
| | - Yan Li
- Peptide/Protein Sequencing Facility, National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland, USA
| | - Corine Gartioux
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| | - Valérie Allamand
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| | - Francesca Gualandi
- Medical Genetics Unit, Department of Medical Science, University of Ferrara, Ferrara, Italy
| | - Alessandra Ferlini
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health & Great Ormond Street Hospital for Children, London, United Kingdom.,Medical Genetics Unit, Department of Medical Science, University of Ferrara, Ferrara, Italy
| | - Eric Hanssen
- Bio21 Advanced Microscopy Facility, The University of Melbourne, Melbourne, Australia
| | | | - Steve D Wilton
- Centre for Molecular Medicine and Therapeutics, Murdoch University, Perth, Australia.,Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, Australia
| | - Shireen R Lamandé
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Daniel G MacArthur
- Analytical and Translation Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Raimund Wagener
- Center for Biochemistry, Faculty of Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health & Great Ormond Street Hospital for Children, London, United Kingdom.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Lansky Z, Mutsafi Y, Houben L, Ilani T, Armony G, Wolf SG, Fass D. 3D mapping of native extracellular matrix reveals cellular responses to the microenvironment. JOURNAL OF STRUCTURAL BIOLOGY-X 2019; 1:100002. [PMID: 32055794 PMCID: PMC7001979 DOI: 10.1016/j.yjsbx.2018.100002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/23/2018] [Accepted: 12/07/2018] [Indexed: 01/23/2023]
Abstract
Cells and extracellular matrix (ECM) are mutually interdependent: cells guide self-assembly of ECM precursors, and the resulting ECM architecture supports and instructs cells. Though bidirectional signaling between ECM and cells is fundamental to cell biology, it is challenging to gain high-resolution structural information on cellular responses to the matrix microenvironment. Here we used cryo-scanning transmission electron tomography (CSTET) to reveal the nanometer- to micron-scale organization of major fibroblast ECM components in a native-like context, while simultaneously visualizing internal cell ultrastructure including organelles and cytoskeleton. In addition to extending current models for collagen VI fibril organization, three-dimensional views of thick cell regions and surrounding matrix showed how ECM networks impact the structures and dynamics of intracellular organelles and how cells remodel ECM. Collagen VI and fibronectin were seen to distribute in fundamentally different ways in the cell microenvironment and perform distinct roles in supporting and interacting with cells. This work demonstrates that CSTET provides a new perspective for the study of ECM in cell biology, highlighting labeled extracellular elements against a backdrop of unlabeled but morphologically identifiable cellular features with nanometer resolution detail.
Collapse
Affiliation(s)
- Zipora Lansky
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Mutsafi
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lothar Houben
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Ilani
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gad Armony
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon G. Wolf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
- Corresponding author.
| |
Collapse
|
11
|
Evans DJ, Wasinger AM, Brey RN, Dunleavey JM, St Croix B, Bann JG. Seneca Valley Virus Exploits TEM8, a Collagen Receptor Implicated in Tumor Growth. Front Oncol 2018; 8:506. [PMID: 30460197 PMCID: PMC6232524 DOI: 10.3389/fonc.2018.00506] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/16/2018] [Indexed: 12/25/2022] Open
Abstract
Recent studies reveal that Seneca Valley Virus (SVV) exploits tumor endothelial marker 8 (TEM8) for cellular entry, the same surface receptor pirated by bacterial-derived anthrax toxin. This observation is particularly significant as SVV is a known oncolytic virus which selectively infects and kills tumor cells, particularly those of neuroendocrine origin. TEM8 is a transmembrane glycoprotein that is preferentially upregulated in some tumor cell and tumor-associated stromal cell populations. Both TEM8 and SVV have been evaluated for targeting of tumors of multiple origins, but the connection between the two was previously unknown. Here, we review currently understood interactions between TEM8 and SVV, anthrax protective antigen (PA), and collagen VI, a native binding partner of TEM8, with an emphasis on potential therapeutic directions moving forward.
Collapse
Affiliation(s)
- David J Evans
- Department of Chemistry, Wichita State University, Wichita, KS, United States
| | - Alexa M Wasinger
- Department of Chemistry, Wichita State University, Wichita, KS, United States
| | | | - James M Dunleavey
- Tumor Angiogenesis Unit, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Brad St Croix
- Tumor Angiogenesis Unit, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - James G Bann
- Department of Chemistry, Wichita State University, Wichita, KS, United States
| |
Collapse
|
12
|
Endicott J, Holden P, Fitzgerald J. Authentication of collagen VI antibodies. BMC Res Notes 2017; 10:358. [PMID: 28755659 PMCID: PMC5534245 DOI: 10.1186/s13104-017-2674-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 07/22/2017] [Indexed: 11/11/2022] Open
Abstract
Background Collagen VI is a ubiquitously-expressed macromolecule that forms unique microfibrillar assemblies in the extracellular matrix. Mutations in the COL6A1, COL6A2 and COL6A3 genes result in congenital muscular dystrophy, arguing that collagen is critical for skeletal muscle development and function. Antibodies against collagen VI are important clinical and diagnostic tools in muscular dystrophy. They are used to confirm genetic findings by detecting abnormalities in the distribution, organization and overall levels of collagen VI in cells and tissues isolated from patients. Methods Many antibodies have been raised against tissue-purified collagen VI and individual collagen VI chains, however few have been properly validated for sensitivity and chain specificity. To address this deficiency, we compared the ability of 23 commercially-available antibodies to detect extracellular collagen VI by immunohistochemistry on frozen tissue sections. To determine chain specificity, immunoblot analyses were conducted on cell lysates isolated from cells transfected with cDNAs for each individual chain and cells expressing all three chains together. Results Our analyses identified 15 antibodies that recognized tissue collagen VI by immunohistochemistry at varying intensities and 20 that successfully detected collagen VI by immunoblotting. Three antibodies failed to recognize collagen VI by either method under the conditions tested. All chain-specific antibodies that worked by immunoblotting specifically recognized their correct chain, and no other chains. Conclusions This series of side-by-side comparisons reveal at least two antibodies specific for each chain that work well for immunohistochemistry on frozen sections. This validation study expands the repertoire of antibodies available for muscular dystrophy studies caused by defects in collagen VI. Electronic supplementary material The online version of this article (doi:10.1186/s13104-017-2674-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jamie Endicott
- Bone and Joint Center, Department of Orthopedic Surgery, Henry Ford Hospital System, Integrative Biosciences Building, 6135 Woodward Ave, Detroit, MI, 48202, USA
| | - Paul Holden
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Jamie Fitzgerald
- Bone and Joint Center, Department of Orthopedic Surgery, Henry Ford Hospital System, Integrative Biosciences Building, 6135 Woodward Ave, Detroit, MI, 48202, USA. .,Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
13
|
Böer U, Buettner FFR, Schridde A, Klingenberg M, Sarikouch S, Haverich A, Wilhelmi M. Antibody formation towards porcine tissue in patients implanted with crosslinked heart valves is directed to antigenic tissue proteins and αGal epitopes and is reduced in healthy vegetarian subjects. Xenotransplantation 2017; 24. [DOI: 10.1111/xen.12288] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/14/2016] [Accepted: 12/27/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Ulrike Böer
- Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE); Hannover Medical School; Hannover Germany
- Division for Cardiothoracic-, Transplantation- and Vascular Surgery; Hannover Medical School; Hannover Germany
| | | | - Ariane Schridde
- Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE); Hannover Medical School; Hannover Germany
| | - Melanie Klingenberg
- Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE); Hannover Medical School; Hannover Germany
- Division for Cardiothoracic-, Transplantation- and Vascular Surgery; Hannover Medical School; Hannover Germany
| | - Samir Sarikouch
- Division for Cardiothoracic-, Transplantation- and Vascular Surgery; Hannover Medical School; Hannover Germany
| | - Axel Haverich
- Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE); Hannover Medical School; Hannover Germany
- Division for Cardiothoracic-, Transplantation- and Vascular Surgery; Hannover Medical School; Hannover Germany
| | - Mathias Wilhelmi
- Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE); Hannover Medical School; Hannover Germany
- Division for Cardiothoracic-, Transplantation- and Vascular Surgery; Hannover Medical School; Hannover Germany
| |
Collapse
|
14
|
Izu Y, Ezura Y, Koch M, Birk DE, Noda M. Collagens VI and XII form complexes mediating osteoblast interactions during osteogenesis. Cell Tissue Res 2016; 364:623-635. [PMID: 26753503 PMCID: PMC4875952 DOI: 10.1007/s00441-015-2345-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 12/10/2015] [Indexed: 12/17/2022]
Abstract
Bone formation is precisely regulated by cell-cell communication in osteoblasts. We have previously demonstrated that genetic deletion of Col6a1 or Col12a1 impairs osteoblast connections and/or communication in mice, resulting in bone mass reduction and bone fragility. Mutations of the genes encoding collagen VI cause Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM), which have overlapping phenotypes involving connective tissue and muscle. Recent studies have identified COL12A1 gene mutations in patients with UCMD- and BM-like disorders harboring no COL6 mutations, indicating the shared functions of these collagens in connective tissue homeostasis. The purpose of this investigation has been to test the hypothesis that collagens VI and XII have coordinate regulatory role(s) during bone formation. We analyzed the localization of collagens VI and XII relative to primary osteoblasts during osteogenesis. Immunofluorescence analysis demonstrated that collagens VI and XII colocalized in matrix bridges between adjacent cells during periods when osteoblasts were establishing cell-cell connections. Quantification of cells harboring collagen bridges demonstrated that matrix bridges were composed of collagens VI and XII but not collagen I. Interestingly, matrix bridge formation was impaired in osteoblasts deficient in either Col6a1 or Col12a1, suggesting that both collagens were indispensable for matrix bridge formation. These data demonstrate, for the first time, a functional relationship between collagens VI and XII during osteogenesis and indicate that a complex containing collagens VI and XII is essential for the formation of a communicating cellular network during bone formation.
Collapse
Affiliation(s)
- Yayoi Izu
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, M&D Tower 24th, 5-45 1-Chome Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Yoichi Ezura
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, M&D Tower 24th, 5-45 1-Chome Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Manuel Koch
- Institute for Dental Research and Musculoskeletal Biology, Center for Biochemistry, University of Cologne, Cologne, Germany
| | - David E Birk
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Masaki Noda
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, M&D Tower 24th, 5-45 1-Chome Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| |
Collapse
|
15
|
Ramanoudjame L, Rocancourt C, Lainé J, Klein A, Joassard L, Gartioux C, Fleury M, Lyphout L, Kabashi E, Ciura S, Cousin X, Allamand V. Two novel COLVI long chains in zebrafish that are essential for muscle development. Hum Mol Genet 2015; 24:6624-39. [PMID: 26362255 DOI: 10.1093/hmg/ddv368] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/04/2015] [Indexed: 12/25/2022] Open
Abstract
Collagen VI (COLVI), a protein ubiquitously expressed in connective tissues, is crucial for structural integrity, cellular adhesion, migration and survival. Six different genes are recognized in mammalians, encoding six COLVI-chains that assemble as two 'short' (α1, α2) and one 'long' chain (theoretically any one of α3-6). In humans, defects in the most widely expressed heterotrimer (α123), due to mutations in the COL6A1-3 genes, cause a heterogeneous group of neuromuscular disorders, collectively termed COLVI-related muscle disorders. Little is known about the function(s) of the recently described α4-6 chains and no mutations have been detected yet. In this study, we characterized two novel COLVI long chains in zebrafish that are most homologous to the mammalian α4 chain; therefore, we named the corresponding genes col6a4a and col6a4b. These orthologues represent ancestors of the mammalian Col6a4-6 genes. By in situ hybridization and RT-qPCR, we unveiled a distinctive expression kinetics for col6a4b, compared with the other col6a genes. Using morpholino antisense oligonucleotides targeting col6a4a, col6a4b and col6a2, we modelled partial and complete COLVI deficiency, respectively. All morphant embryos presented altered muscle structure and impaired motility. While apoptosis was not drastically increased, autophagy induction was defective in all morphants. Furthermore, motoneuron axon growth was abnormal in these morphants. Importantly, some phenotypical differences emerged between col6a4a and col6a4b morphants, suggesting only partial functional redundancy. Overall, our results further confirm the importance of COLVI in zebrafish muscle development and may provide important clues for potential human phenotypes associated with deficiency of the recently described COLVI-chains.
Collapse
Affiliation(s)
- Laetitia Ramanoudjame
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris F-75013, France, Institut de Myologie, Paris F-75013, France
| | | | - Jeanne Lainé
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris F-75013, France, Institut de Myologie, Paris F-75013, France, Département de Physiologie, Sorbonne Universités UPMC Paris 06, Site Pitié-Salpêtrière, Paris F-75013, France
| | - Arnaud Klein
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris F-75013, France, Institut de Myologie, Paris F-75013, France
| | | | - Corine Gartioux
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris F-75013, France, Institut de Myologie, Paris F-75013, France
| | - Marjory Fleury
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris F-75013, France, Institut de Myologie, Paris F-75013, France
| | - Laura Lyphout
- Fish Ecophysiology Group, Ifremer, L'Houmeau F-17137, France
| | - Edor Kabashi
- Sorbonne Universités Paris VI, UMR CNRS 1127 UPMC, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière-ICM, Paris, France and
| | - Sorana Ciura
- Sorbonne Universités Paris VI, UMR CNRS 1127 UPMC, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière-ICM, Paris, France and
| | - Xavier Cousin
- Fish Ecophysiology Group, Ifremer, L'Houmeau F-17137, France, INRA LPGP, Campus de Beaulieu, Rennes F-35042, France
| | - Valérie Allamand
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris F-75013, France, Institut de Myologie, Paris F-75013, France,
| |
Collapse
|
16
|
Abstract
BACKGROUND Idiopathic epiretinal membrane (iERM) is a fibrocellular membrane that proliferates on the inner surface of the retina at the macular area. Membrane contraction is an important sight-threatening event and is due to fibrotic remodeling. METHODS Analysis of the current literature regarding the epidemiology, clinical features, and pathogenesis of iERM and fibrotic tissue contraction. RESULTS Epidemiologic studies report a relationship between iERM prevalence, increasing age, and posterior vitreous detachment. Clinically, iERM progresses through different stages characterized by an increased thickness and wrinkling of the membrane. Pathophysiologically, iERM formation is a fibrotic process in which myofibroblast formation and the deposition of newly formed collagens play key roles. Anomalous posterior vitreous detachment may be a key event initiating the formation of iERM. The age-related accumulation of advanced glycation end products may contribute to anomalous posterior vitreous detachment formation and may also influence the mechanical properties of the iERM. CONCLUSION Remodeling of the extracellular matrix at the vitreoretinal interface by aging and fibrotic changes, plays a significant role in the pathogenesis of iERM. A better understanding of molecular mechanisms underlying this process may eventually lead to the development of effective and nonsurgical approaches to treat and prevent vitreoretinal fibrotic diseases.
Collapse
|
17
|
Cescon M, Gattazzo F, Chen P, Bonaldo P. Collagen VI at a glance. J Cell Sci 2015; 128:3525-31. [DOI: 10.1242/jcs.169748] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/10/2015] [Indexed: 12/17/2022] Open
Abstract
Collagen VI represents a remarkable extracellular matrix molecule, and in the past few years, studies of this molecule have revealed its involvement in a wide range of tissues and pathological conditions. In addition to its complex multi-step pathway of biosynthesis and assembly that leads to the formation of a characteristic and distinctive network of beaded microfilaments in the extracellular matrix, collagen VI exerts several key roles in different tissues. These range from unique biomechanical roles to cytoprotective functions in different cells, including myofibers, chondrocytes, neurons, fibroblasts and cardiomyocytes. Indeed, collagen VI has been shown to exert a surprisingly broad range of cytoprotective effects, which include counteracting apoptosis and oxidative damage, favoring tumor growth and progression, regulating autophagy and cell differentiation, and even contributing to the maintenance of stemness. In this Cell Science at a Glance article and the accompanying poster, we present the current knowledge of collagen VI, and in particular, discuss its relevance in stemness and in preserving the mechanical properties of tissues, as well as its links with human disorders.
Collapse
Affiliation(s)
- Matilde Cescon
- Department of Molecular Medicine, University of Padova, Padova 35131, Italy
| | - Francesca Gattazzo
- Department of Molecular Medicine, University of Padova, Padova 35131, Italy
| | - Peiwen Chen
- Department of Molecular Medicine, University of Padova, Padova 35131, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Padova 35131, Italy
| |
Collapse
|
18
|
Immunogenicity of intensively decellularized equine carotid arteries is conferred by the extracellular matrix protein collagen type VI. PLoS One 2014; 9:e105964. [PMID: 25157402 PMCID: PMC4144968 DOI: 10.1371/journal.pone.0105964] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/30/2014] [Indexed: 12/16/2022] Open
Abstract
The limited biocompatibility of decellularized scaffolds is an ongoing challenge in tissue engineering. Here, we demonstrate the residual immunogenicity of an extensively decellularized equine carotid artery (dEACintens) and identify the involved immunogenic components. EAC were submitted to an elaborated intensified decellularization protocol with SDS/sodium desoxycholate for 72 h using increased processing volumes (dEACintens), and compared to dEACord prepared by an ordinary protocol (40 h, normal volumes). Matrix integrity was checked via correlative volumetric visualization which revealed only minor structural changes in the arterial wall. In dEACintens, a substantial depletion of cellular components was obvious for smooth muscle actin (100%), MHC I complexes (97.8%), alphaGal epitops (98.4% and 91.3%) and for DNA (final concentration of 0.34±0.16 ng/mg tissue). However, dEACintens still evoked antibody formation in mice after immunization with dEACintens extracts, although to a lower extent than dEACord. Mouse plasma antibodies recognized a 140 kDa band which was revealed to contain collagen VI alpha1 and alpha2 chains via mass spectrometry of both 2D electrophoretically separated and immunoprecipitated proteins. Thus, even the complete removal of cellular proteins did not yield non-immunogenic dEAC as the extracellular matrix still conferred immunogenicity by collagen VI. However, as lower antibody levels were achieved by the intensified decellularization protocol, this seems to be a promising basis for further development.
Collapse
|
19
|
Voiles L, Lewis DE, Han L, Lupov IP, Lin TL, Robertson MJ, Petrache I, Chang HC. Overexpression of type VI collagen in neoplastic lung tissues. Oncol Rep 2014; 32:1897-904. [PMID: 25176343 PMCID: PMC4203334 DOI: 10.3892/or.2014.3438] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/18/2014] [Indexed: 01/19/2023] Open
Abstract
Type VI collagen (COL6), an extracellular matrix protein, is important in maintaining the integrity of lung tissue. An increase in COL6 mRNA and protein deposition was found in the lungs of patients with pulmonary fibrosis, a chronic inflammatory condition with a strong association with lung cancer. In the present study, we demonstrated overexpression of COL6 in the lungs of non-small cell lung cancers. We hypothesized that excessive COL6 in the lung interstitium may exert stimulatory effects on the adjacent cells. In vitro stimulation of monocytes with COL6 resulted in the production of IL-23, which may promote tumor development in an environment of IL-23-mediated lung inflammation, where tissue modeling occurs concurrently with excessive COL6 production. In addition, COL6 was capable of stimulating signaling pathways that activate focal adhesion kinase and extracellular signal-regulated kinase 1/2 in lung epithelial cells, which may also facilitate the development of lung neoplasms. Taken together, our data suggest the potential role of COL6 in promoting lung neoplasia in diseased lungs where COL6 is overexpressed.
Collapse
Affiliation(s)
- Larry Voiles
- Department of Biology, Indiana University-Purdue University Indianapolis School of Science, Indianapolis, IN, USA
| | - David E Lewis
- Department of Biology, Indiana University-Purdue University Indianapolis School of Science, Indianapolis, IN, USA
| | - Ling Han
- Department of Biology, Indiana University-Purdue University Indianapolis School of Science, Indianapolis, IN, USA
| | - Ivan P Lupov
- Department of Biology, Indiana University-Purdue University Indianapolis School of Science, Indianapolis, IN, USA
| | - Tsang-Long Lin
- Department of Comparative Pathobiology, Animal Disease Diagnostic Laboratory, Purdue University College of Veterinary Medicine, West Lafayette, IN, USA
| | - Michael J Robertson
- The Bone Marrow and Stem Cell Transplantation Program, Lymphoma Program and the Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Irina Petrache
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine, Department of Medicine, Indiana University School of Medicine and the ̔Richard L. Roudebush' VA Medical Center, Indianapolis, IN, USA
| | - Hua-Chen Chang
- Department of Biology, Indiana University-Purdue University Indianapolis School of Science, Indianapolis, IN, USA
| |
Collapse
|
20
|
Dubey K, Kar K. Type I collagen prevents amyloid aggregation of hen egg white lysozyme. Biochem Biophys Res Commun 2014; 448:480-4. [DOI: 10.1016/j.bbrc.2014.04.135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 04/25/2014] [Indexed: 10/25/2022]
|
21
|
Pan TC, Zhang RZ, Arita M, Bogdanovich S, Adams SM, Gara SK, Wagener R, Khurana TS, Birk DE, Chu ML. A mouse model for dominant collagen VI disorders: heterozygous deletion of Col6a3 Exon 16. J Biol Chem 2014; 289:10293-10307. [PMID: 24563484 DOI: 10.1074/jbc.m114.549311] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dominant and recessive mutations in collagen VI genes, COL6A1, COL6A2, and COL6A3, cause a continuous spectrum of disorders characterized by muscle weakness and connective tissue abnormalities ranging from the severe Ullrich congenital muscular dystrophy to the mild Bethlem myopathy. Herein, we report the development of a mouse model for dominant collagen VI disorders by deleting exon 16 in the Col6a3 gene. The resulting heterozygous mouse, Col6a3(+/d16), produced comparable amounts of normal Col6a3 mRNA and a mutant transcript with an in-frame deletion of 54 bp of triple-helical coding sequences, thus mimicking the most common molecular defect found in dominant Ullrich congenital muscular dystrophy patients. Biosynthetic studies of mutant fibroblasts indicated that the mutant α3(VI) collagen protein was produced and exerted a dominant-negative effect on collagen VI microfibrillar assembly. The distribution of the α3(VI)-like chains of collagen VI was not altered in mutant mice during development. The Col6a3(+/d16) mice developed histopathologic signs of myopathy and showed ultrastructural alterations of mitochondria and sarcoplasmic reticulum in muscle and abnormal collagen fibrils in tendons. The Col6a3(+/d16) mice displayed compromised muscle contractile functions and thereby provide an essential preclinical platform for developing treatment strategies for dominant collagen VI disorders.
Collapse
Affiliation(s)
- Te-Cheng Pan
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Rui-Zhu Zhang
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Machiko Arita
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Sasha Bogdanovich
- Department of Physiology and Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Sheila M Adams
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida 33612
| | - Sudheer Kumar Gara
- Center for Biochemistry, Medical Faculty Cologne, University of Cologne, Cologne D-50931, Germany
| | - Raimund Wagener
- Center for Biochemistry, Medical Faculty Cologne, University of Cologne, Cologne D-50931, Germany; Center for Molecular Medicine, Medical Faculty Cologne, University of Cologne, Cologne D-50931, Germany
| | - Tejvior S Khurana
- Department of Physiology and Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida 33612
| | - Mon-Li Chu
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
| |
Collapse
|
22
|
siRNA-mediated Allele-specific Silencing of a COL6A3 Mutation in a Cellular Model of Dominant Ullrich Muscular Dystrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e147. [PMID: 24518369 PMCID: PMC3950771 DOI: 10.1038/mtna.2013.74] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/07/2013] [Indexed: 12/16/2022]
Abstract
Congenital muscular dystrophy type Ullrich (UCMD) is a severe disorder of early childhood onset for which currently there is no effective treatment. UCMD commonly is caused by dominant-negative mutations in the genes coding for collagen type VI, a major microfibrillar component of the extracellular matrix surrounding the muscle fibers. To explore RNA interference (RNAi) as a potential therapy for UCMD, we designed a series of small interfering RNA (siRNA) oligos that specifically target the most common mutations resulting in skipping of exon 16 in the COL6A3 gene and tested them in UCMD-derived dermal fibroblasts. Transcript analysis by semiquantitative and quantitative reverse transcriptase PCR showed that two of these siRNAs were the most allele-specific, i.e., they efficiently knocked down the expression from the mutant allele, without affecting the normal allele. In HEK293T cells, these siRNAs selectively suppressed protein expression from a reporter construct carrying the mutation, with no or minimal suppression of the wild-type (WT) construct, suggesting that collagen VI protein levels are as also reduced in an allele-specific manner. Furthermore, we found that treating UCMD fibroblasts with these siRNAs considerably improved the quantity and quality of the collagen VI matrix, as assessed by confocal microscopy. Our current study establishes RNAi as a promising molecular approach for treating dominant COL6-related dystrophies.
Collapse
|
23
|
A structure of a collagen VI VWA domain displays N and C termini at opposite sides of the protein. Structure 2013; 22:199-208. [PMID: 24332716 PMCID: PMC3919171 DOI: 10.1016/j.str.2013.06.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 05/27/2013] [Accepted: 11/07/2013] [Indexed: 11/23/2022]
Abstract
Von Willebrand factor A (VWA) domains are versatile protein interaction domains with N and C termini in close proximity placing spatial constraints on overall protein structure. The 1.2 Å crystal structures of a collagen VI VWA domain and a disease-causing point mutant show C-terminal extensions that place the N and C termini at opposite ends. This allows a “beads-on-a-string” arrangement of multiple VWA domains as observed for ten N-terminal domains of the collagen VI α3 chain. The extension is linked to the core domain by a salt bridge and two hydrophobic patches. Comparison of the wild-type and a muscular dystrophy-associated mutant structure identifies a potential perturbation of a protein interaction interface and indeed, the secretion of mutant collagen VI tetramers is affected. Homology modeling is used to locate a number of disease-associated mutations and analyze their structural impact, which will allow mechanistic analysis of collagen-VI-associated muscular dystrophy phenotypes. The structure of a VWA domain (N5) of collagen VI at 1.2 Å is presented N and C termini of the domain are at opposite ends The structure with a myopathy-causing mutation shows altered interaction interface The impact of mutations in collagen VI VWA domains was analyzed
Collapse
|
24
|
Boudko SP, Engel J, Bächinger HP. The crucial role of trimerization domains in collagen folding. Int J Biochem Cell Biol 2012; 44:21-32. [DOI: 10.1016/j.biocel.2011.09.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 09/27/2011] [Accepted: 09/27/2011] [Indexed: 10/17/2022]
|
25
|
Saminathan A, Vinoth KJ, Wescott DC, Pinkerton MN, Milne TJ, Cao T, Meikle MC. The effect of cyclic mechanical strain on the expression of adhesion-related genes by periodontal ligament cells in two-dimensional culture. J Periodontal Res 2011; 47:212-21. [PMID: 22010885 DOI: 10.1111/j.1600-0765.2011.01423.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Cell adhesion plays important roles in maintaining the structural integrity of connective tissues and sensing changes in the biomechanical environment of cells. The objective of the present investigation was to extend our understanding of the effect of cyclic mechanical strain on the expression of adhesion-related genes by human periodontal ligament cells. MATERIAL AND METHODS Cultured periodontal ligament cells were subjected to a cyclic in-plane tensile deformation of 12% for 5 s (0.2 Hz) every 90 s for 6-24 h in a Flexercell FX-4000 Strain Unit. The following parameters were measured: (i) cell viability by the MTT assay; (ii) caspase-3 and -7 activity; and (iii) the expression of 84 genes encoding adhesion-related molecules using real-time RT-PCR microarrays. RESULTS Mechanical stress reduced the metabolic activity of deformed cells at 6 h, and caspase-3 and -7 activity at 6 and 12 h. Seventy-three genes were detected at critical threshold values < 35. Fifteen showed a significant change in relative expression: five cell adhesion molecules (ICAM1, ITGA3, ITGA6, ITGA8 and NCAM1), three collagen α-chains (COL6A1, COL8A1 and COL11A1), four MMPs (ADAMTS1, MMP8, MMP11 and MMP15), plus CTGF, SPP1 and VTN. Four genes were upregulated (ADAMTS1, CTGF, ICAM1 and SPP1) and 11 downregulated, with the range extending from a 1.76-fold induction of SPP1 at 12 h to a 2.49-fold downregulation of COL11A1 at 24 h. CONCLUSION The study has identified several mechanoresponsive adhesion-related genes, and shown that onset of mechanical stress was followed by a transient reduction in overall cellular activity, including the expression of two apoptosis 'executioner' caspases.
Collapse
Affiliation(s)
- A Saminathan
- Faculty of Dentistry, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
26
|
ColVI myopathies: where do we stand, where do we go? Skelet Muscle 2011; 1:30. [PMID: 21943391 PMCID: PMC3189202 DOI: 10.1186/2044-5040-1-30] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 09/23/2011] [Indexed: 02/08/2023] Open
Abstract
Collagen VI myopathies, caused by mutations in the genes encoding collagen type VI (ColVI), represent a clinical continuum with Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM) at each end of the spectrum, and less well-defined intermediate phenotypes in between. ColVI myopathies also share common features with other disorders associated with prominent muscle contractures, making differential diagnosis difficult. This group of disorders, under-recognized for a long time, has aroused much interest over the past decade, with important advances made in understanding its molecular pathogenesis. Indeed, numerous mutations have now been reported in the COL6A1, COL6A2 and COL6A3 genes, a large proportion of which are de novo and exert dominant-negative effects. Genotype-phenotype correlations have also started to emerge, which reflect the various pathogenic mechanisms at play in these disorders: dominant de novo exon splicing that enables the synthesis and secretion of mutant tetramers and homozygous nonsense mutations that lead to premature termination of translation and complete loss of function are associated with early-onset, severe phenotypes. In this review, we present the current state of diagnosis and research in the field of ColVI myopathies. The past decade has provided significant advances, with the identification of altered cellular functions in animal models of ColVI myopathies and in patient samples. In particular, mitochondrial dysfunction and a defect in the autophagic clearance system of skeletal muscle have recently been reported, thereby opening potential therapeutic avenues.
Collapse
|
27
|
Beecher N, Roseman AM, Jowitt TA, Berry R, Troilo H, Kammerer RA, Shuttleworth CA, Kielty CM, Baldock C. Collagen VI, conformation of A-domain arrays and microfibril architecture. J Biol Chem 2011; 286:40266-75. [PMID: 21908605 PMCID: PMC3220584 DOI: 10.1074/jbc.m111.265595] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Collagen VI is a ubiquitous extracellular matrix protein that assembles into beaded microfibrils that form networks linking cells to the matrix. Collagen VI microfibrils are typically formed from a heterotrimer of the α1, α2, and α3 chains. The α3 chain is distinct as it contains an extended N terminus with up to 10 consecutive von Willebrand factor type A-domains (VWA). Here, we use solution small angle x-ray scattering (SAXS) and single particle analysis EM to determine the nanostructure of nine of these contiguous A-domains. Both techniques reveal a tight C-shape conformation for the A-domains. Furthermore, using biophysical approaches, we demonstrate that the N-terminal region undergoes a conformational change and a proportion forms dimers in the presence of Zn2+. This is the first indication that divalent cations interact with collagen VI A-domains. A three-dimensional reconstruction of tissue-purified collagen VI microfibrils was generated using EM and single particle image analysis. The reconstruction showed the intricate architecture of the collagen VI globular regions, in particular the highly structurally conserved C-terminal region and variations in the appearance of the N-terminal region. The N-terminal domains project out from the globular beaded region like angled radial spokes. These could potentially provide interactive surfaces for other cell matrix molecules.
Collapse
Affiliation(s)
- Nicola Beecher
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Krieg T, Aumailley M. The extracellular matrix of the dermis: flexible structures with dynamic functions. Exp Dermatol 2011; 20:689-95. [PMID: 21615511 DOI: 10.1111/j.1600-0625.2011.01313.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The current understanding of the role of extracellular matrix proteins is mainly based on their structural properties and their assembly into complex networks. The multiplicity of interactions between cells, cytokines and growth factors within the networks determines functional units dictating the biophysical properties of tissues. This review focuses on the understanding how alterations in the genes, modifying enzymes or biological functions of extracellular matrix molecules, lead to inborn or acquired skin disorders. Analysis of the disease mechanisms provides the basis for the emerging concept that not solely structural defects of single extracellular matrix proteins are at fault, but rather that the functional unit as a whole is not working properly, causing similar clinical symptoms although the causative genes are entirely different. The understanding of these disease-causing pathways has already led to surprising new therapeutic developments applied to rare inborn disorders. They now permit to design new concepts for the treatment of more common diseases associated with the accumulation of connective tissue and alterations of the biomechanical properties of the extracellular matrix.
Collapse
Affiliation(s)
- Thomas Krieg
- Department of Dermatology, Medical Faculty, University of Cologne, Cologne, Germany.
| | | |
Collapse
|
29
|
Chen CP. Pathophysiology of Increased Fetal Nuchal Translucency Thickness. Taiwan J Obstet Gynecol 2010; 49:133-8. [DOI: 10.1016/s1028-4559(10)60029-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2009] [Indexed: 10/19/2022] Open
|
30
|
Reed UC. Congenital muscular dystrophy. Part II: a review of pathogenesis and therapeutic perspectives. ARQUIVOS DE NEURO-PSIQUIATRIA 2010; 67:343-62. [PMID: 19547838 DOI: 10.1590/s0004-282x2009000200035] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 03/14/2009] [Indexed: 11/22/2022]
Abstract
The congenital muscular dystrophies (CMDs) are a group of genetically and clinically heterogeneous hereditary myopathies with preferentially autosomal recessive inheritance, that are characterized by congenital hypotonia, delayed motor development and early onset of progressive muscle weakness associated with dystrophic pattern on muscle biopsy. The clinical course is broadly variable and can comprise the involvement of the brain and eyes. From 1994, a great development in the knowledge of the molecular basis has occurred and the classification of CMDs has to be continuously up dated. In the last number of this journal, we presented the main clinical and diagnostic data concerning the different subtypes of CMD. In this second part of the review, we analyse the main reports from the literature concerning the pathogenesis and the therapeutic perspectives of the most common subtypes of CMD: MDC1A with merosin deficiency, collagen VI related CMDs (Ullrich and Bethlem), CMDs with abnormal glycosylation of alpha-dystroglycan (Fukuyama CMD, Muscle-eye-brain disease, Walker Warburg syndrome, MDC1C, MDC1D), and rigid spine syndrome, another much rare subtype of CMDs not related with the dystrophin/glycoproteins/extracellular matrix complex.
Collapse
|
31
|
|
32
|
Abstract
The collagens represent a family of trimeric extracellular matrix molecules used by cells for structural integrity and other functions. The three alpha chains that form the triple helical part of the molecule are composed of repeating peptide triplets of glycine-X-Y. X and Y can be any amino acid but are often proline and hydroxyproline, respectively. Flanking the triple helical regions (i.e., Col domains) are non-glycine-X-Y regions, termed non-collagenous domains. These frequently contain recognizable peptide modules found in other matrix molecules. Proper tissue function depends on correctly assembled molecular aggregates being incorporated into the matrix. This review highlights some of the structural characteristics of collagen types I-XXVIII.
Collapse
|
33
|
Pace RA, Peat RA, Baker NL, Zamurs L, Mörgelin M, Irving M, Adams NE, Bateman JF, Mowat D, Smith NJC, Lamont PJ, Moore SA, Mathews KD, North KN, Lamandé SR. Collagen VI glycine mutations: perturbed assembly and a spectrum of clinical severity. Ann Neurol 2008; 64:294-303. [PMID: 18825676 PMCID: PMC2743946 DOI: 10.1002/ana.21439] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The collagen VI muscular dystrophies, Bethlem myopathy and Ullrich congenital muscular dystrophy, form a continuum of clinical phenotypes. Glycine mutations in the triple helix have been identified in both Bethlem and Ullrich congenital muscular dystrophy, but it is not known why they cause these different phenotypes. METHODS We studied eight new patients who presented with a spectrum of clinical severity, screened the three collagen VI messenger RNA for mutations, and examined collagen VI biosynthesis and the assembly pathway. RESULTS All eight patients had heterozygous glycine mutations toward the N-terminal end of the triple helix. The mutations produced two assembly phenotypes. In the first patient group, collagen VI dimers accumulated in the cell but not the medium, microfibril formation in the medium was moderately reduced, and the amount of collagen VI in the extracellular matrix was not significantly altered. The second group had more severe assembly defects: some secreted collagen VI tetramers were not disulfide bonded, microfibril formation in the medium was severely compromised, and collagen VI in the extracellular matrix was reduced. INTERPRETATION These data indicate that collagen VI glycine mutations impair the assembly pathway in different ways and disease severity correlates with the assembly abnormality. In mildly affected patients, normal amounts of collagen VI were deposited in the fibroblast matrix, whereas in patients with moderate-to-severe disability, assembly defects led to a reduced collagen VI fibroblast matrix. This study thus provides an explanation for how different glycine mutations produce a spectrum of clinical severity.
Collapse
Affiliation(s)
- Rishika A Pace
- Murdoch Childrens Research Institute and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kar K, Wang YH, Brodsky B. Sequence dependence of kinetics and morphology of collagen model peptide self-assembly into higher order structures. Protein Sci 2008; 17:1086-95. [PMID: 18441232 DOI: 10.1110/ps.083441308] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The process of self-assembly of the triple-helical peptide (Pro-Hyp-Gly)(10) into higher order structure resembles the nucleation-growth mechanism of collagen fibril formation in many features, but the irregular morphology of the self-assembled peptide contrasts with the ordered fibers and networks formed by collagen in vivo. The amino acid sequence in the central region of the (Pro-Hyp-Gly)(10) peptide was varied and found to affect the kinetics of self-assembly and nature of the higher order structure formed. Single amino acid changes in the central triplet produced irregular higher order structures similar to (Pro-Hyp-Gly)(10), but the rate of self-association was markedly delayed by a single change in one Pro to Ala or Leu. The introduction of a Hyp-rich hydrophobic sequence from type IV collagen resulted in a more regular suprastructure of extended fibers that sometimes showed supercoiling and branching features similar to those seen for type IV collagen in the basement membrane network. Several peptides, where central Pro-Hyp sequences were replaced by charged residues or a nine-residue hydrophobic region from type III collagen, lost the ability to self-associate under standard conditions. The inability to self-assemble likely results from loss of imino acids, and lack of an appropriate distribution of hydrophobic/electrostatic residues. The effect of replacement of a single Gly residue was also examined, as a model for collagen diseases such as osteogenesis imperfecta and Alport syndrome. Unexpectedly, the Gly to Ala replacement interfered with self-assembly of (Pro-Hyp-Gly)(10), while the peptide with a Gly to Ser substitution self-associated to form a fibrillar structure.
Collapse
Affiliation(s)
- Karunakar Kar
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
35
|
Abstract
Mutations in the genes encoding collagen VI (COL6A1, COL6A2, and COL6A3) cause Bethlem myopathy (BM) and Ullrich congenital muscular dystrophy (UCMD), two conditions which were previously believed to be completely separate entities. BM is a relatively mild dominantly inherited disorder characterised by proximal weakness and distal joint contractures. UCMD was originally described as an autosomal recessive condition causing severe muscle weakness with proximal joint contractures and distal hyperlaxity. Here we review the clinical phenotypes of BM and UCMD and their diagnosis and management, and provide an overview of the current knowledge of the pathogenesis of collagen VI related disorders.
Collapse
Affiliation(s)
- A K Lampe
- Institute of Human Genetics, University of Newcastle upon Tyne, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ.
| | | |
Collapse
|
36
|
Lamandé SR, Mörgelin M, Adams NE, Selan C, Allen JM. The C5 domain of the collagen VI alpha3(VI) chain is critical for extracellular microfibril formation and is present in the extracellular matrix of cultured cells. J Biol Chem 2006; 281:16607-14. [PMID: 16613849 DOI: 10.1074/jbc.m510192200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagen VI, a microfibrillar protein found in virtually all connective tissues, is composed of three distinct subunits, alpha1(VI), alpha2(VI), and alpha3(VI), which associate intracellularly to form triple helical heterotrimeric monomers then dimers and tetramers. The secreted tetramers associate end-to-end to form beaded microfibrils. Although the basic steps in assembly and the structure of the tetramers and microfibrils are well defined, details of the interacting protein domains involved in assembly are still poorly understood. To explore the role of the C-terminal globular regions in assembly, alpha3(VI) cDNA expression constructs with C-terminal truncations were stably transfected into SaOS-2 cells. Control alpha3(VI) N6-C5 chains with an intact C-terminal globular region (subdomains C1-C5), and truncated alpha3(VI) N6-C1, N6-C2, N6-C3, and N6-C4 chains, all associated with endogenous alpha1(VI) and alpha2(VI) to form collagen VI monomers, dimers and tetramers, which were secreted. These data demonstrate that subdomains C2-C5 are not required for monomer, dimer or tetramer assembly, and suggest that the important chain selection interactions involve the C1 subdomains. In contrast to tetramers containing control alpha3(VI) N6-C5 chains, tetramers containing truncated alpha3(VI) chains were unable to associate efficiently end-to-end in the medium and did not form a significant extracellular matrix, demonstrating that the alpha3(VI) C5 domain plays a crucial role in collagen VI microfibril assembly. The alpha3(VI) C5 domain is present in the extracellular matrix of SaOS-2 N6-C5 expressing cells and fibroblasts demonstrating that processing of the C-terminal region of the alpha3(VI) chain is not essential for microfibril formation.
Collapse
Affiliation(s)
- Shireen R Lamandé
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Victoria, Australia.
| | | | | | | | | |
Collapse
|
37
|
Rada JAS, Shelton S, Norton TT. The sclera and myopia. Exp Eye Res 2006; 82:185-200. [PMID: 16202407 DOI: 10.1016/j.exer.2005.08.009] [Citation(s) in RCA: 366] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 08/03/2005] [Accepted: 08/10/2005] [Indexed: 11/28/2022]
Abstract
Myopia is a very common ocular problem, affecting perhaps one billion people worldwide. Most myopia is produced by lengthening of the vitreous chamber of the ocular globe. High myopia is characterized by scleral thinning and localized ectasia of the posterior sclera. The sclera is a dense, fibrous, viscoelastic connective tissue that forms the outer coat of the eye and consists of irregularly arranged lamellae of collagen fibrils interspersed with proteoglycans and non-collagenous glycoproteins. Scleral fibroblasts are located between scleral lamellae, and are responsible for synthesizing the extracellular matrix in which they reside. Research highlighted in this review clearly demonstrates that the sclera is not a static container of the eye, but rather is a dynamic tissue, capable of altering extracellular matrix composition and its biomechanical properties in response to changes in the visual environment to regulate ocular size and refraction. Based on these studies, a strategy directed at reversing myopia-associated scleral extracellular matrix remodeling events would be warranted, particularly in cases of high myopia in humans.
Collapse
Affiliation(s)
- Jody A Summers Rada
- Department of Cell Biology, University of Oklahoma Health Science Center, 940 Stanton L. Young Boulevard, BMSB, Room 553, Oklahoma City, 73104, USA.
| | | | | |
Collapse
|
38
|
Freitas RTLD, Zanoteli E, Morita MDPA, Oliveira ASB. Análise da expressão do colágeno VI na distrofia muscular congênita. ARQUIVOS DE NEURO-PSIQUIATRIA 2005; 63:514-8. [PMID: 16059608 DOI: 10.1590/s0004-282x2005000300027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A distrofia muscular congênita (DMC) compõe um grupo de miopatias caracterizadas por hipotonia e fraqueza muscular notadas já no primeiro ano de vida. A forma de Ullrich é caracterizada por retrações musculares proximais e hiperextensibilidade distal. Cerca de 40% destes pacientes apresentam mutações em um dos genes que codificam as três sub-unidades do colágeno VI (COL6), acarretando deficiência total ou parcial na marcação da proteína. Analisamos, através de imunofluorescência, a marcação do COL6 em fragmentos musculares de 50 pacientes com DMC, 20 deles com ausência da marcação para merosina. Identificamos 4 casos com deficiência total da marcação do COL6 (8% do total), representando 13% dos casos com marcação normal para merosina. As alterações histológicas musculares dos pacientes com COL6 deficiente eram indistinguíveis das outras formas de DMC, porém mais brandas que as observadas na DMC com deficiência de merosina. Em três dos pacientes com COL6 deficiente observou-se hipotonia e fraqueza muscular, notadas já no período neonatal, atraso do desenvolvimento motor, retrações musculares em joelhos e cotovelos, hiperextensibilidade distal e luxação congênita do quadril (dois pacientes). Um paciente perdeu a capacidade para a marcha, e outro faleceu por problemas respiratórios. A análise da marcação do COL6, assim como da merosina, no tecido muscular de pacientes com DMC pode auxiliar na identificação e caracterização fenotípica dos diversos subtipos de DMC.
Collapse
|
39
|
Liu Y, Ames B, Gorovits E, Prater BD, Syribeys P, Vernachio JH, Patti JM. SdrX, a serine-aspartate repeat protein expressed by Staphylococcus capitis with collagen VI binding activity. Infect Immun 2004; 72:6237-44. [PMID: 15501749 PMCID: PMC523036 DOI: 10.1128/iai.72.11.6237-6244.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus capitis (S. capitis) has been implicated in a large proportion of coagulase-negative staphylococcal infections in very-low-birth-weight infants. To identify potential therapeutic targets, the S. capitis genome was probed for the presence of genes encoding microbial surface components recognizing adhesive matrix molecules (MSCRAMM). By using Southern blot analysis, an S. capitis gene, designated sdrX, that contained sequence motifs consistent with the Sdr family of MSCRAMM proteins was identified. By using monospecific antisera in Western blot and flow cytometry, SdrX was demonstrated to be expressed on the surface of S. capitis. Human collagen type VI was found to bind both the recombinant A domain of SdrX and viable S. capitis expressing SdrX. SdrX is the first collagen-binding Sdr protein described and is the first MSCRAMM protein identified in S. capitis.
Collapse
Affiliation(s)
- Yule Liu
- Inhibitex Inc, 8995 Westside Pkwy, Alpharetta, GA 30004, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Rope AF, Hinton RB, Spicer RL, Blough-Pfau R, Saal HM. Dilated ascending aorta in a child with ring chromosome 21 syndrome. ACTA ACUST UNITED AC 2004; 130A:191-5. [PMID: 15372526 DOI: 10.1002/ajmg.a.30143] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ring chromosome 21 syndrome is a rare condition with a well-characterized phenotype. Affected individuals have recognizable dysmorphic features, developmental delays, growth retardation, and a predisposition for congenital malformations involving the neurologic, craniofacial, digestive, genitourinary, skeletal, and hematologic systems. Structural cardiac anomalies have also been described, but dilated ascending aorta has not been previously reported in association with ring 21 (r(21)). Although rarely seen in this syndrome, the presence of ectopia lentis, abdominal herniae, and dilated ascending aorta suggest an underlying connective tissue disorder. A possible explanation is haploinsufficiency of the COL6A1, COL6A2, and/or COL18A genes located on the distal portion of chromosome 21q, which are lost when the ring chromosome is formed. This article contains supplementary material, which may be viewed at the American Journal of Medical Genetics website at http://www.interscience.wiley.com/jpages/0148-7299/suppmat/index.html.
Collapse
Affiliation(s)
- Alan F Rope
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
| | | | | | | | | |
Collapse
|
41
|
Wiberg C, Klatt AR, Wagener R, Paulsson M, Bateman JF, Heinegård D, Mörgelin M. Complexes of matrilin-1 and biglycan or decorin connect collagen VI microfibrils to both collagen II and aggrecan. J Biol Chem 2003; 278:37698-704. [PMID: 12840020 DOI: 10.1074/jbc.m304638200] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Native supramolecular assemblies containing collagen VI microfibrils and associated extracellular matrix proteins were isolated from Swarm rat chondrosarcoma tissue. Their composition and spatial organization were characterized by electron microscopy and immunological detection of molecular constituents. The small leucine-rich repeat (LRR) proteoglycans biglycan and decorin were bound to the N-terminal region of collagen VI. Chondroadherin, another member of the LRR family, was identified both at the N and C termini of collagen VI. Matrilin-1, -3, and -4 were found in complexes with biglycan or decorin at the N terminus. The interactions between collagen VI, biglycan, decorin, and matrilin-1 were studied in detail and revealed a biglycan/matrilin-1 or decorin/matrilin-1 complex acting as a linkage between collagen VI microfibrils and aggrecan or alternatively collagen II. The complexes between matrilin-1 and biglycan or decorin were also reconstituted in vitro. Colocalization of collagen VI and the different ligands in the pericellular matrix of cultured chondrosarcoma cells supported the physiological relevance of the observed interactions in matrix assembly.
Collapse
Affiliation(s)
- Charlotte Wiberg
- Department of Cell and Molecular Biology, University of Lund, BMC, S-221 84 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
42
|
Ball S, Bella J, Kielty C, Shuttleworth A. Structural basis of type VI collagen dimer formation. J Biol Chem 2003; 278:15326-32. [PMID: 12473679 DOI: 10.1074/jbc.m209977200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have determined the interactive sites required for dimer formation in type VI collagen. Despite the fact that type VI collagen is a heterotrimer composed of alpha1(VI), alpha2(VI), and alpha3(VI) chains, the formation of dimers is determined principally by interactions of the alpha2(VI) chain. Key components of this interaction are the metal ion-dependent adhesion site (MIDAS) motif of the alpha2C2 A-domain and the GER sequence in the helical domain of another alpha2(VI) chain. Replacement of the alpha2(VI) C2 domain with the alpha3(VI) domain abolished dimer formation, whereas alterations in the alpha2(VI) C1 domain did not disrupt dimer formation. When the helical sequences were investigated, replacement of the alpha2(VI) sequence GSPGERGDQ with the alpha3(VI) sequence GEKGERGDV abolished dimer formation. Mutating the Pro-108 to a Lys-108 in this alpha2(VI) sequence did not influence dimer formation and suggests that, unlike the integrin I-domain/triple-helix interaction, hydroxyproline is not required in collagen VI A-domain/helix interaction. These results demonstrate that the alpha2(VI) chain position in the assembled triple-helical molecule is critical for antiparallel dimer formation and identify the interacting collagenous and MIDAS sequences involved. These interactions underpin the subsequent assembly of type VI collagen.
Collapse
Affiliation(s)
- Stephen Ball
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
43
|
Wiberg C, Heinegård D, Wenglén C, Timpl R, Mörgelin M. Biglycan organizes collagen VI into hexagonal-like networks resembling tissue structures. J Biol Chem 2002; 277:49120-6. [PMID: 12354766 DOI: 10.1074/jbc.m206891200] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of the leucine-rich repeat (LRR) proteins biglycan, decorin, and chondroadherin to interact with collagen VI and influence its assembly to supramolecular structures was studied by electron microscopy and surface plasmon resonance measurements in the BIAcore 2000 system. Biglycan showed a unique ability to organize collagen VI into extensive hexagonal-like networks over a time period of only a few minutes. Only the intact molecule, substituted with two dermatan sulfate chains, had this capacity. Intact decorin, with one dermatan sulfate chain only, was considerably less efficient, and aggregates of organized collagen VI were found only after several hours. Chondroadherin without glycosaminoglycan substitutions did not induce any ordered collagen VI organization. However, all three related LRR proteins were shown to interact with collagen VI using electron microscopy and surface plasmon resonance. Biglycan and decorin were exclusively found close to the N-terminal parts of the collagen VI tetramers, whereas chondroadherin was shown to bind close to both the N- and C-terminal parts of collagen VI. In the formed hexagonal networks, biglycan was localized to the intra-network junctions of the collagen VI filaments. This was demonstrated by electron microscopy after negative staining of gold-labeled biglycan in aggregation experiments with collagen VI.
Collapse
Affiliation(s)
- Charlotte Wiberg
- Department of Cell and Molecular Biology, University of Lund, BMC, S-221 84 Lund, Sweden
| | | | | | | | | |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Muscular dystrophy includes many genetically distinct disorders. The list of causative genes for muscular dystrophy has been expanding rapidly, including those for congenital muscular dystrophies. RECENT FINDINGS We review the newly identified causative genes and suggested molecular mechanisms, focusing on glycosylation abnormality of alpha-dystroglycan, collagen VI deficiency, four allelic diseases of caveolin-3 gene, and titin gene mutations. SUMMARY Several possible mechanisms causing muscular dystrophy were discussed. Defects in extracellular molecules have more significant effects resulting mainly in congenital muscular dystrophy, while intracellular molecular defects show milder effect on the phenotype. These hypotheses may provide a new paradigm in understanding the pathomechanism of muscular dystrophies.
Collapse
Affiliation(s)
- Ichizo Nishino
- National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan.
| | | |
Collapse
|
45
|
Söder S, Hambach L, Lissner R, Kirchner T, Aigner T. Ultrastructural localization of type VI collagen in normal adult and osteoarthritic human articular cartilage. Osteoarthritis Cartilage 2002; 10:464-70. [PMID: 12056849 DOI: 10.1053/joca.2002.0512] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Type VI collagen is a major component of the pericellular matrix compartment in articular cartilage and shows severe alterations in osteoarthritic cartilage degeneration. In this study, we analysed the exact localization of type VI collagen in its relationship to the chondrocyte and the (inter)territorial cartilage matrix. Additionally, we were interested in its ultrastructural appearance in normal and osteoarthritic cartilage. DESIGN Distribution and molecular appearance was investigated by conventional immunostaining, by multilabeling confocal scanning microscopy, conventional transmission, and immunoelectron microscopy. RESULTS Our analysis confirmed the pericellular concentration of type VI collagen in normal and degenerated cartilage. Type VI collagen formed an interface in between the cell surface and the type II collagen network. The type VI collagen and the type II collagen networks appeared to have a slight physical overlap in both normal and diseased cartilage. Additionally, some epitope staining was observed in the cell-associated interterritorial cartilage matrix, which did not appear to have an immediate relation to the type II collagen fibrillar network as evaluated by immunoelectron microscopy. In osteoarthritic cartilage, significant differences were found compared with normal articular cartilage: the overall dimension of the lacunar volume increased, and a significantly increased type VI collagen epitope staining was observed in the interterritorial cartilage matrix. Also, the banded isoform of type VI collagen was found around many chondrocytes. CONCLUSIONS Our study confirms the close association of type VI collagen with both, the chondrocyte cell surface and the territorial cartilage matrix. They show severe alterations in type VI collagen distribution and appearance in osteoarthritic cartilage. Our immunohistochemical and ultrastructural data are compatible with two ways of degradation of type VI collagen in osteoarthritic cartilage: (1) the pathologically increased physiological molecular degradation leading to the complete loss of type VI collagen filaments from the pericellular chondrocyte matrix and (2) the transformation of the fine filaments to the band-like form of type VI collagen. Both might implicate a significant loss of function of the pericellular microenvironment in osteoarthritic cartilage.
Collapse
Affiliation(s)
- S Söder
- Cartilage Research, Department of Pathology, University of Erlangen-Nürnberg, Germany
| | | | | | | | | |
Collapse
|
46
|
Dziadek M, Kazenwadel JS, Hendrey JA, Pan TC, Zhang RZ, Chu ML. Alternative splicing of transcripts for the alpha 3 chain of mouse collagen VI: identification of an abundant isoform lacking domains N7-N10 in mouse and human. Matrix Biol 2002; 21:227-41. [PMID: 12009329 DOI: 10.1016/s0945-053x(02)00009-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Three distinct alpha chains form the collagen VI monomer, the alpha 3(VI) chain being much larger than the alpha 1(VI) and alpha 2(VI) chains. The alpha 3(VI) chain has 10 von Willebrand Factor type A domains of approximately 200 amino acids at the N-terminus (N1-N10) compared with only one such domain in the alpha 1(VI) and alpha 2(VI) chains. Domains N10, N9, N7 and N3 of the alpha 3(VI) chain are subject to alternative splicing in chick and/or human tissues, indicating the possibility of isoforms that have different functions depending on which N-terminal domains are included or excluded. In this study we have PCR amplified and sequenced mouse alpha 3(VI) cDNA encoding the N2-N10 domains. By reverse transcription-PCR using oligonucleotides spanning different regions of the cDNA we have undertaken a comprehensive analysis of alternative splicing of the alpha 3(VI) mRNA in embryonic and adult mouse tissues. We demonstrate that domains N10, N9 and N7 are also subject to alternative splicing in mouse tissues and in addition identify an abundant novel variant transcript that lacks all four N-terminal domains (N7-N10) in mouse tissues and human cells. We also identify less abundant transcripts that lack a large part of the N3 domain, and transcripts lacking the entire N5 domain. Using specific RNase protection assays we show that the shorter transcripts containing domains (N8+N7+N6), (N8+N6) and N6 are present at higher levels than transcripts containing the N10 and/or N9 domains, with tissue-specific variation in the levels of variant transcripts. These studies demonstrate a larger range of collagen VI protein variants than previously described.
Collapse
Affiliation(s)
- Marie Dziadek
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|
47
|
Lamandé SR, Mörgelin M, Selan C, Jöbsis GJ, Baas F, Bateman JF. Kinked collagen VI tetramers and reduced microfibril formation as a result of Bethlem myopathy and introduced triple helical glycine mutations. J Biol Chem 2002; 277:1949-56. [PMID: 11707460 DOI: 10.1074/jbc.m109932200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the genes that code for collagen VI subunits, COL6A1, COL6A2, and COL6A3, are the cause of the dominantly inherited disorder, Bethlem myopathy. Glycine mutations that interrupt the Gly-X-Y repetitive amino acid sequence that forms the characteristic collagen triple helix have been defined in four families; however, the effects of these mutations on collagen VI biosynthesis, assembly, and structure have not been determined. In this study, we examined the consequences of Bethlem myopathy triple helical glycine mutations in the alpha1(VI) and alpha2(VI) chains, as well as engineered alpha3(VI) triple helical glycine mutations. Although the Bethlem myopathy and introduced mutations that are toward the N terminus of the triple helix did not measurably affect collagen VI intracellular monomer, dimer, or tetramer assembly, or secretion, the introduced mutation toward the C terminus of the helix severely impaired association of the mutant alpha3(VI) chain with alpha1(VI) and alpha2(VI). Association of the three chains was not completely prevented, however; and some non-disulfide bonded tetramers were secreted. Examination of the secreted Bethlem myopathy and engineered mutant collagen VI by negative staining electron microscopy revealed the striking finding that in all the cell lines a significant proportion of the tetramers contained a kink in the supercoiled triple helical region. Collagen VI tetramers from all of the mutant cell lines also showed a reduced ability to form microfibrils. These results provide the first evidence of the biosynthetic consequences of collagen VI triple helical glycine mutations and indicate that Bethlem myopathy results not only from the synthesis of reduced amounts of structurally normal protein but also from the presence of mutant collagen VI in the extracellular matrix.
Collapse
Affiliation(s)
- Shireen R Lamandé
- Cell and Matrix Biology Research Unit, Department of Paediatrics, University of Melbourne, the Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
| | | | | | | | | | | |
Collapse
|
48
|
Aigner T, Hambach L, Söder S, Schlötzer-Schrehardt U, Pöschl E. The C5 domain of Col6A3 is cleaved off from the Col6 fibrils immediately after secretion. Biochem Biophys Res Commun 2002; 290:743-8. [PMID: 11785962 DOI: 10.1006/bbrc.2001.6227] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In articular cartilage, type VI collagen is concentrated in the pericellular matrix compartment. During protein synthesis and processing at least the alpha3(VI) chain undergoes significant posttranslational modification and cleavage. In this study, we investigated the processing of type VI collagen in articular cartilage. Immunostaining with a specific polyclonal antiserum against the C5 domain of alpha3(VI) showed strong cellular staining seen in nearly all chondrocytes of articular cartilage. Confocal laser-scanning microscopy and immunoelectron microscopy allowed localization of this staining mainly to the cytoplasm and the immediate pericellular matrix. Double-labeling experiments showed a narrow overlap of the C5 domain and the pericellular mature type VI collagen. Our results suggest that at least in human adult articular cartilage the C5 domain of alpha3(VI) collagen is synthesized and initially incorporated into the newly formed type VI collagen fibrils, but immediately after secretion is cut off and is not present in the mature pericellular type VI matrix of articular cartilage.
Collapse
Affiliation(s)
- T Aigner
- Cartilage Research Group, Department of Pathology, University of Erlangen-Nürnberg, Erlangen, Federal Republic of Germany.
| | | | | | | | | |
Collapse
|
49
|
Wiberg C, Hedbom E, Khairullina A, Lamandé SR, Oldberg A, Timpl R, Mörgelin M, Heinegård D. Biglycan and decorin bind close to the n-terminal region of the collagen VI triple helix. J Biol Chem 2001; 276:18947-52. [PMID: 11259413 DOI: 10.1074/jbc.m100625200] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding of native biglycan and decorin to pepsin-extracted collagen VI from human placenta was examined by solid phase assay and by measurement of surface plasmon resonance in the BIAcore(TM)2000 system. Both proteoglycans exhibited a strong affinity for collagen VI with dissociation constants (K(D)) of approximately 30 nm. Removal of the glycosaminoglycan chains by chondroitinase ABC digestion did not significantly affect binding. In coprecipitation experiments, biglycan and decorin bound to collagen VI and equally competed with the other, suggesting that biglycan and decorin bind to the same binding site on collagen VI. This was confirmed by electron microscopy after negative staining of complexes between gold-labeled proteoglycans and collagen VI, demonstrating that both biglycan and decorin bound exclusively to a domain close to the interface between the N terminus of the triple helical region and the following globular domain. In solid phase assay using recombinant collagen VI fragments, it was shown that the alpha2(VI) chain probably plays a role in the interaction.
Collapse
Affiliation(s)
- C Wiberg
- Department of Cell and Molecular Biology, University of Lund, BMC Plan C12, Lund S-221 84, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Reale E, Groos S, Luciano L, Eckardt C, Eckardt U. In the mammalian eye type VI collagen tetramers form three morphologically different aggregates. Matrix Biol 2001; 20:37-51. [PMID: 11246002 DOI: 10.1016/s0945-053x(00)00132-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The organization of the aggregates occurring in the stroma: (1) of the murine and human cornea after incubation in an ATP acidic solution; (2) of surgically excised epiretinal membranes (ERM); and (3) of the trabecular meshwork of monkey eyes was investigated morphologically and immunocytochemically on thin section electron microscopy. Morphology. The aggregates in the cornea appeared as cross-banded fibrils. The bands were uniformly electron dense (single banded form); they were separated from each other by interbands consisting of a bundle of filaments emerging in cross section as small areas of randomly assembled dot-like structures. In the ERM, most of the aggregates stood out as heteromorphic cross-banded bodies showing dense bands with electron denser borders (double banded form) and interbands composed of longitudinally oriented, parallel sheets or laminae of amorphous material enclosing thin, similarly oriented filaments. These extended, thinner and double in number (since interlacing with similar components of the opposite sheet), into the pale central zone of the dense band. The aggregates of the trabecular meshwork were heteromorphic, had uniformly dense bands (single banded form as in the cornea), but their interbands displayed longitudinal sheets (as the ERM aggregates). Immunocytochemistry revealed type VI collagen in the three eye aggregates with gold particles preferentially localized at the interbands. The specificity of the antibodies used was tested by Western blot analysis of type VI collagen samples extracted from human placenta and on homogenates of human cornea. In conclusion, the results indicate that the tetramers of type VI collagen may aggregate differently into structures with distinct supramolecular arrangements. These are illustrated in schematic drawings.
Collapse
Affiliation(s)
- E Reale
- Zentrum Anatomie, Abteilung Zellbiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| | | | | | | | | |
Collapse
|