1
|
Uemura T, Kawashima A, Jingushi K, Motooka D, Saito T, Sassi N, Horibe Y, Yamamoto A, Liu Y, Tani M, Yoshimura A, Oka T, Okuda Y, Yamamichi G, Ishizuya Y, Yamamoto Y, Kato T, Hatano K, Tsujikawa K, Wada H, Nonomura N. Bacterial information in serum extracellular vesicles reflects the inflammation of adherent perinephric fat. Cancer Sci 2025; 116:338-349. [PMID: 39566543 PMCID: PMC11786307 DOI: 10.1111/cas.16410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/18/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024] Open
Abstract
Adipose tissue and bacterial flora are involved in metabolism in the human body. However, the relationship between the two remains unclear. Recently, the presence of circulating bacterial DNAs has been reported. We previously reported the utility of bacterial DNA in serum extracellular vesicles (EVs) for diagnosing patients with renal cell carcinoma (RCC). In this study, we aimed to assess whether there is a correlation between bacterial DNA in serum EVs and inflammation in adipose tissue. We undertook 16S rRNA metagenomic analysis of bacterial DNA in serum EVs from 77 patients with RCC (the derivation cohort). We discovered that DNAs from Enterobacteriaceae, Polaromonas, and Coxiellaceae were highly expressed in patients with low Mayo adhesive probability (MAP) scores. A lower MAP score reflects a reduced risk of dense adipose tissue and adhesions. Additionally, we combined these bacterial DNAs to create the EPC (Enterobacteriaceae, Polaromonas, Coxiellaceae) index that predicts a MAP score of 0. Subsequently, we undertook 16S rRNA metagenomic analysis of bacterial DNA in serum EVs from 32 patients with RCC (the validation cohort). The EPC index could distinguish patients with low MAP scores from those with high MAP scores in the derivation (area under the curve [AUC], 0.76; sensitivity, 56%; specificity, 85%) and validation (AUC, 0.81; sensitivity, 100%; specificity, 62%) cohorts. These results suggest that bacterial DNA in serum EVs could reflect the inflammation of adherent perinephric fat around the kidney.
Collapse
Affiliation(s)
- Toshihiro Uemura
- Department of UrologyGraduate School of Medicine, Osaka UniversitySuitaJapan
| | - Atsunari Kawashima
- Department of UrologyGraduate School of Medicine, Osaka UniversitySuitaJapan
| | - Kentaro Jingushi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuitaJapan
| | - Daisuke Motooka
- Department of Infection MetagenomicsGenome Information Research Center, Osaka University Research Institute for Microbial DiseasesSuitaJapan
| | - Takuro Saito
- Department of SurgeryGraduate School of Medicine, Osaka UniversitySuitaJapan
- Department of Clinical Research in Tumor ImmunologyGraduate School of Medicine, Osaka UniversitySuitaJapan
| | - Nesrine Sassi
- Department of UrologyGraduate School of Medicine, Osaka UniversitySuitaJapan
| | - Yuki Horibe
- Department of UrologyGraduate School of Medicine, Osaka UniversitySuitaJapan
| | - Akinaru Yamamoto
- Department of UrologyGraduate School of Medicine, Osaka UniversitySuitaJapan
| | - Yutong Liu
- Department of UrologyGraduate School of Medicine, Osaka UniversitySuitaJapan
| | - Masaru Tani
- Department of UrologyGraduate School of Medicine, Osaka UniversitySuitaJapan
| | - Akihiro Yoshimura
- Department of UrologyGraduate School of Medicine, Osaka UniversitySuitaJapan
| | - Toshiki Oka
- Department of UrologyGraduate School of Medicine, Osaka UniversitySuitaJapan
| | - Yohei Okuda
- Department of UrologyGraduate School of Medicine, Osaka UniversitySuitaJapan
| | - Gaku Yamamichi
- Department of UrologyGraduate School of Medicine, Osaka UniversitySuitaJapan
| | - Yu Ishizuya
- Department of UrologyGraduate School of Medicine, Osaka UniversitySuitaJapan
| | - Yoshiyuki Yamamoto
- Department of UrologyGraduate School of Medicine, Osaka UniversitySuitaJapan
| | - Taigo Kato
- Department of UrologyGraduate School of Medicine, Osaka UniversitySuitaJapan
| | - Koji Hatano
- Department of UrologyGraduate School of Medicine, Osaka UniversitySuitaJapan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuitaJapan
| | - Hisashi Wada
- Department of Clinical Research in Tumor ImmunologyGraduate School of Medicine, Osaka UniversitySuitaJapan
| | - Norio Nonomura
- Department of UrologyGraduate School of Medicine, Osaka UniversitySuitaJapan
| |
Collapse
|
2
|
Gul A, Yilmaz R. Determination of inflammation by TNF-alpha and IL-10 levels in obese children and adolescents. NUTR HOSP 2024; 41:788-792. [PMID: 38967308 DOI: 10.20960/nh.05064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
Introduction Background: childhood obesity is one of the major health problem worldwide. Obesity is associated with low-level chronic inflammation resulting from inflammatory cytokine release in white adipose tissue. We aim to specify inflammatory markers tumor necrosis factor-alpha (TNF-alpha) and interleukin-10 (IL-10) in children and adolescents to determine their relationship with obesity. Materials and methods: forty obese patients and 46 controls were included in the study from the pediatric clinic. Blood samples from the study group were centrifuged, and the sera were stored at -80 °C after separation. Serum levels of TNF-alpha and IL-10 were determined using Human ELISA kits for TNF-alpha and IL-10. Results: serum samples from 86 children, including 45 girls (52.3 %) in the study group, were analyzed for TNF-alpha and IL-10 levels. TNF-alpha levels in the obese and control groups were 1.04 ± 0.79 and 0.60 ± 0.72 pg/ml, respectively (p = 0.010). Also, IL-10 levels in the obese and control groups were 0.76 ± 0.62 and 1.54 ± 0.71 pg/ml, respectively (p < 0.001). Gender was not identified as a factor for serum TNF-alpha and IL-10 levels (p = 0.281 and p = 0.477, respectively). Moreover, white blood cell (WBC) and serum C-reactive protein (CRP) levels were higher in the obese patient group than in the control group (p = 0.002 and p = 0.010, respectively). Conclusion: TNF-alpha levels were higher than control in obese patients and it was important in terms of showing that obesity triggers inflammation in the body. IL-10 levels, which inhibit inflammation, were lower in obese patients than controls.
Collapse
Affiliation(s)
- Ali Gul
- Department of Pediatrics. Gaziosmanpasa University School of Medicine
| | - Resul Yilmaz
- Department of Pediatrics. Division of Pediatric Intensive Care Unit. Selcuklu University School of Medicine
| |
Collapse
|
3
|
Makihara H, Maezawa M, Kaiga K, Satake T, Muto M, Tsunoda Y, Shimada T, Akase T. mRNA expression levels of cytochrome P450 CYP1A2, CYP3A4, and CYP3A5 in the epidermis: a focus on individual differences among Japanese individuals. Xenobiotica 2024; 54:226-232. [PMID: 38646717 DOI: 10.1080/00498254.2024.2344664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Various cytochrome P450 enzymes (CYPs) that contribute to drug metabolism are expressed in the skin. However, variation among individuals in CYP expression profiles is not well-understood.To investigate CYPs related to the metabolism of transdermal preparations in Japan, multiple skin tissue specimens of individuals of Japanese descent were prepared, and the mRNA expression levels of CYP1A2, CYP3A4, and CYP3A5 were measured. Associations between the expression patterns of these CYPs and body mass index (BMI) were also investigated.There were considerable individual differences in epidermal CYP1A2 mRNA expression levels, and CYP1A2 showed a weak positive correlation with CYP3A4 mRNA expression levels. In contrast to previous results for other organs, epidermal CYP3A4 mRNA expression levels showed a weak positive correlation with BMI.CYP3A4 in the epidermis may have been locally enhanced as a defence mechanism against xenobiotics in response to impaired barrier function. These differences in mRNA expression in the skin may affect the transdermal absorption of drugs, such as lidocaine and fentanyl, which are metabolised by multiple overlapping CYPs.Our study provides new insights into drug metabolism in the skin. These results are valuable for predicting drug effects and transdermal drug transfer rates in Japanese patients.
Collapse
Affiliation(s)
- Hiroko Makihara
- Department of Biological Science and Nursing, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Mika Maezawa
- Department of Biological Science and Nursing, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kazusa Kaiga
- Department of Biological Science and Nursing, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Toshihiko Satake
- Department of Plastic, Reconstructive and Aesthetic Surgery, Toyama University Hospital, Toyama, Toyama, Japan
- Department of Plastic and Reconstructive Surgery, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Mayu Muto
- Department of Plastic and Reconstructive Surgery, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Yui Tsunoda
- Department of Plastic and Reconstructive Surgery, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Tsutomu Shimada
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tomoko Akase
- Department of Biological Science and Nursing, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
4
|
Iso H. Prevention of cardiovascular disease, a major non-communicable disease, in a super-aging society: Health success and unsolved issues in Japan. Glob Health Med 2024; 6:33-39. [PMID: 38450114 PMCID: PMC10912808 DOI: 10.35772/ghm.2023.01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
As far as non-communicable disease is concerned, Japan is unique in showing a substantial decline in stroke mortality and the lowest and declining mortality from ischemic heart disease during the past half century, which contributed to the elongation of a 4-year average life expectancy, leading to top longevity in the world. However, several issues have remained in the prevention of cardiovascular disease with super-aging: i) how to manage the screening and lifestyle modification for both individuals with metabolic syndrome and those with non-overweight/ obesity plus metabolic risk factors, and ii) how to enhance the referral of very high-risk individuals screened at health checks to physicians for seeking treatment and examine whether an early clinical visit was associated with a lower risk of cardiovascular disease and total mortality. Health counseling is needed for both persons with metabolic syndrome and high-risk individuals with non-obese/overweight because the population attributable risk fraction of ischemic cardiovascular disease was similar for both high-risk individuals. Standardized counseling for very high-risk individuals accelerated clinical visits and reduced levels of risk factors. In health counseling, public health nurses were more effective in increasing clinic visits. Furthermore, the earlier clinic visit after the counseling suggested a lower risk of hospitalization for stroke, coronary heart disease, heart failure, and all-cause mortality. This article reviews these epidemiological findings for health practitioners and policymakers to perform further prevention and control for cardiovascular disease in Japan and other Asian and African countries with emerging cardiovascular burden and aging.
Collapse
Affiliation(s)
- Hiroyasu Iso
- Institute of Global Health Policy Research (iGHP), Bureau of International Health Cooperation, National Center for Global Health and Medicine, Tokyo, Japan
- Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Gutmann D, Dressler M, Eickmeier O, Herrmann E, Kirwil M, Schubert R, Zielen S, Zissler UM. Proinflammatory pattern in the lower airways of non-asthmatic obese adolescents. Cytokine 2024; 173:156452. [PMID: 38039695 DOI: 10.1016/j.cyto.2023.156452] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Obesity is known to be a pro-inflammatory condition affecting multiple organs. Obesity as a systemic pro-inflammatory state, might be associated with bronchial inflammation in non-smoking adolescents with a BMI ≥ 30 kg/m2 without evidence of concomitant chronic diseases. MATERIALS AND METHODS We studied non-asthmatic obese patients (n = 20; median age 15.8 years; BMI 35.0 kg/m2) compared to age matched healthy control subjects (n = 20; median age 17.5 years; BMI 21.5 kg/m2). Induced sputum differential cell counts and sputum mRNA levels were assessed for all study subjects. Serum levels of CRP, IL-6, and IL-8 were measured. Further, IL-5, IL-6, IL-8, IL-13, IL-17, TNF-α, IFN-γ, and IP-10 protein levels were analyzed in induced sputum was. RESULTS Serum CRP levels, sputum inflammatory cell load and sputum eosinophils differed significantly between obese and non-obese subjects, for sputum neutrophils, a correlation was shown with BMI ≥ 30 kg/m2. Differences were also observed for sputum mRNA expression of IL6, IL8, IL13, IL17, IL23, and IFN-γ, as well as the transcription factors T-bet, GATA3, and FoxP3. CONCLUSIONS Increased bronchial inflammation, triggered by systemic or local inflammatory effects of obesity itself, may account for the higher rates of airway disease in obese adolescents.
Collapse
Affiliation(s)
- Desiree Gutmann
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe University, Frankfurt
| | - Melanie Dressler
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe University, Frankfurt
| | - Olaf Eickmeier
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe University, Frankfurt
| | - Eva Herrmann
- Institute of Biostatistics and Mathematical Modeling, Goethe-University, Frankfurt, Germany
| | - Marta Kirwil
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe University, Frankfurt
| | - Ralf Schubert
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe University, Frankfurt
| | - Stefan Zielen
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe University, Frankfurt
| | - Ulrich M Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Center for Environmental Health (HMGU), Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.
| |
Collapse
|
6
|
Udagawa H, Funahashi N, Nishimura W, Uebanso T, Kawaguchi M, Asahi R, Nakajima S, Nammo T, Hiramoto M, Yasuda K. Glucocorticoid receptor-NECAB1 axis can negatively regulate insulin secretion in pancreatic β-cells. Sci Rep 2023; 13:17958. [PMID: 37863964 PMCID: PMC10589354 DOI: 10.1038/s41598-023-44324-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023] Open
Abstract
The mechanisms of impaired glucose-induced insulin secretion from the pancreatic β-cells in obesity have not yet been completely elucidated. Here, we aimed to assess the effects of adipocyte-derived factors on the functioning of pancreatic β-cells. We prepared a conditioned medium using 3T3-L1 cell culture supernatant collected at day eight (D8CM) and then exposed the rat pancreatic β-cell line, INS-1D. We found that D8CM suppressed insulin secretion in INS-1D cells due to reduced intracellular calcium levels. This was mediated by the induction of a negative regulator of insulin secretion-NECAB1. LC-MS/MS analysis results revealed that D8CM possessed steroid hormones (cortisol, corticosterone, and cortisone). INS-1D cell exposure to cortisol or corticosterone increased Necab1 mRNA expression and significantly reduced insulin secretion. The increased expression of Necab1 and reduced insulin secretion effects from exposure to these hormones were completely abolished by inhibition of the glucocorticoid receptor (GR). NECAB1 expression was also increased in the pancreatic islets of db/db mice. We demonstrated that the upregulation of NECAB1 was dependent on GR activation, and that binding of the GR to the upstream regions of Necab1 was essential for this effect. NECAB1 may play a novel role in the adipoinsular axis and could be potentially involved in the pathophysiology of obesity-related diabetes mellitus.
Collapse
Affiliation(s)
- Haruhide Udagawa
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, 1100 Namegaya, Chigasaki, Kanagawa, 253-8550, Japan
| | - Nobuaki Funahashi
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Wataru Nishimura
- Department of Molecular Biology, International University of Health and Welfare School of Medicine, Narita, Chiba, 286-8686, Japan
- Division of Anatomy, Bio-Imaging and Neuro-Cell Science, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Takashi Uebanso
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Miho Kawaguchi
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Riku Asahi
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, 1100 Namegaya, Chigasaki, Kanagawa, 253-8550, Japan
| | - Shigeru Nakajima
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, 1100 Namegaya, Chigasaki, Kanagawa, 253-8550, Japan
| | - Takao Nammo
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Kazuki Yasuda
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan.
- Department of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| |
Collapse
|
7
|
Huang T, Wang X, Mi Y, Liu T, Li Y, Zhang R, Qian Z, Wen Y, Li B, Sun L, Wu W, Li J, Wang S, Liang M. Identification and Analysis of a Four-Gene Set for Diagnosing SFTS Virus Infection Based on Machine Learning Methods and Its Association with Immune Cell Infiltration. Viruses 2023; 15:2126. [PMID: 37896902 PMCID: PMC10612101 DOI: 10.3390/v15102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Severe Fever with thrombocytopenia syndrome (SFTS) is a highly fatal viral infectious disease that poses a significant threat to public health. Currently, the phase and pathogenesis of SFTS are not well understood, and there are no specific vaccines or effective treatment available. Therefore, it is crucial to identify biomarkers for diagnosing acute SFTS, which has a high mortality rate. In this study, we conducted differentially expressed genes (DEGs) analysis and WGCNA module analysis on the GSE144358 dataset, comparing the acute phase of SFTSV-infected patients with healthy individuals. Through the LASSO-Cox and random forest algorithms, a total of 2128 genes were analyzed, leading to the identification of four genes: ADIPOR1, CENPO, E2F2, and H2AC17. The GSEA analysis of these four genes demonstrated a significant correlation with immune cell function and cell cycle, aligning with the functional enrichment findings of DEGs. Furthermore, we also utilized CIBERSORT to analyze the immune cell infiltration and its correlation with characteristic genes. The results indicate that the combination of ADIPOR1, CENPO, E2F2, and H2AC17 genes has the potential as characteristic genes for diagnosing and studying the acute phase of SFTS virus (SFTSV) infection.
Collapse
Affiliation(s)
- Tao Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China; (T.H.); (T.L.); (R.Z.); (Z.Q.); (Y.W.); (B.L.); (L.S.); (W.W.); (J.L.)
| | - Xueqi Wang
- Capital Institute of Pediatrics, Beijing 100020, China;
| | - Yuqian Mi
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China;
| | - Tiezhu Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China; (T.H.); (T.L.); (R.Z.); (Z.Q.); (Y.W.); (B.L.); (L.S.); (W.W.); (J.L.)
| | - Yang Li
- Chongqing Research Institute of Big Data, Peking University, Chongqing 400039, China;
| | - Ruixue Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China; (T.H.); (T.L.); (R.Z.); (Z.Q.); (Y.W.); (B.L.); (L.S.); (W.W.); (J.L.)
| | - Zhen Qian
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China; (T.H.); (T.L.); (R.Z.); (Z.Q.); (Y.W.); (B.L.); (L.S.); (W.W.); (J.L.)
| | - Yanhan Wen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China; (T.H.); (T.L.); (R.Z.); (Z.Q.); (Y.W.); (B.L.); (L.S.); (W.W.); (J.L.)
| | - Boyang Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China; (T.H.); (T.L.); (R.Z.); (Z.Q.); (Y.W.); (B.L.); (L.S.); (W.W.); (J.L.)
| | - Lina Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China; (T.H.); (T.L.); (R.Z.); (Z.Q.); (Y.W.); (B.L.); (L.S.); (W.W.); (J.L.)
| | - Wei Wu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China; (T.H.); (T.L.); (R.Z.); (Z.Q.); (Y.W.); (B.L.); (L.S.); (W.W.); (J.L.)
| | - Jiandong Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China; (T.H.); (T.L.); (R.Z.); (Z.Q.); (Y.W.); (B.L.); (L.S.); (W.W.); (J.L.)
| | - Shiwen Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China; (T.H.); (T.L.); (R.Z.); (Z.Q.); (Y.W.); (B.L.); (L.S.); (W.W.); (J.L.)
| | - Mifang Liang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China; (T.H.); (T.L.); (R.Z.); (Z.Q.); (Y.W.); (B.L.); (L.S.); (W.W.); (J.L.)
| |
Collapse
|
8
|
Lim JY, Kim E. The Role of Organokines in Obesity and Type 2 Diabetes and Their Functions as Molecular Transducers of Nutrition and Exercise. Metabolites 2023; 13:979. [PMID: 37755259 PMCID: PMC10537761 DOI: 10.3390/metabo13090979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Maintaining systemic homeostasis requires the coordination of different organs and tissues in the body. Our bodies rely on complex inter-organ communications to adapt to perturbations or changes in metabolic homeostasis. Consequently, the liver, muscle, and adipose tissues produce and secrete specific organokines such as hepatokines, myokines, and adipokines in response to nutritional and environmental stimuli. Emerging evidence suggests that dysregulation of the interplay of organokines between organs is associated with the pathophysiology of obesity and type 2 diabetes (T2D). Strategies aimed at remodeling organokines may be effective therapeutic interventions. Diet modification and exercise have been established as the first-line therapeutic intervention to prevent or treat metabolic diseases. This review summarizes the current knowledge on organokines secreted by the liver, muscle, and adipose tissues in obesity and T2D. Additionally, we highlighted the effects of diet/nutrition and exercise on the remodeling of organokines in obesity and T2D. Specifically, we investigated the ameliorative effects of caloric restriction, selective nutrients including ω3 PUFAs, selenium, vitamins, and metabolites of vitamins, and acute/chronic exercise on the dysregulation of organokines in obesity and T2D. Finally, this study dissected the underlying molecular mechanisms by which nutrition and exercise regulate the expression and secretion of organokines in specific tissues.
Collapse
Affiliation(s)
- Ji Ye Lim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| |
Collapse
|
9
|
Shibata M, Ozato N, Tsuda H, Mori K, Kinoshita K, Katashima M, Katsuragi Y, Nakaji S, Maeda H. Mouse Model of Anti-Obesity Effects of Blautia hansenii on Diet-Induced Obesity. Curr Issues Mol Biol 2023; 45:7147-7160. [PMID: 37754236 PMCID: PMC10528399 DOI: 10.3390/cimb45090452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Reportedly, a relationship exists between intestinal microflora and obesity-related lifestyle diseases. Blautia spp. a major intestinal microbiota, accounts for 3-11% of human intestinal microflora. Epidemiological reports have described that people with more visceral fat have less Blautia hansenii in their intestinal tract irrespective of age or gender. However, the effect of oral administration of heat-sterilized Blautia hansenii on obesity has not been clarified. Therefore, the aim of this study was to evaluate the effects of dietary Blautia hansenii administration on obesity in high-fat-diet-induced obesity in a mouse model. Heat-sterilized cells of Blautia hansenii were used. C57BL/6J mice (normal mice, n = 7) were fed with each experimental diet for nine weeks. Diets for experimentation were: normal-fat (NF) diets, high-fat (HF) diets, and high-fat + Blautia hansenii (HF + Blautia) diets. The HF + Blautia group was administered about 1 × 109 (CFU/mouse/day) of Blautia hansenii. During the periods of experimentation, body weight, food intake, water consumption, and fecal weight were recorded, and glucose tolerance tests were performed. Subsequently, the white adipose tissue (WAT) weight and serum components were measured. Short-chain fatty acid contents in the feces and cecum were analyzed. Furthermore, changes in the intestinal microflora were analyzed using meta-genomics analysis. Results showed that the total weight of WAT in the HF + Blautia group was significantly lower (13.2%) than that of the HF group. Moreover, the HF + Blautia group exhibited better glucose tolerance than the HF group. Productivity of short-chain fatty acids in the intestinal tract was at a significantly (p < 0.05) low level in the HF group; on the other hand, it recovered in the HF + Blautia group. Furthermore, there was a higher ratio of Blautia (p < 0.05) in the intestinal tracts of the HF + Blautia group than in the HF group. These results suggest that Blautia hansenii administration suppresses obesity induced by a high-fat diet.
Collapse
Affiliation(s)
- Masaki Shibata
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan; (M.S.); (H.T.)
- The United Graduate School of Agricultural Sciences, Iwate University, 3-18 Ueda, Morioka 020-0066, Japan
| | - Naoki Ozato
- Health & Wellness Products Research Laboratories, Kao Corp., 2-1-3 Bunka, Sumida-ku 131-8501, Japan; (N.O.); (K.M.); (K.K.); (M.K.); (Y.K.)
| | - Harutoshi Tsuda
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan; (M.S.); (H.T.)
- The United Graduate School of Agricultural Sciences, Iwate University, 3-18 Ueda, Morioka 020-0066, Japan
| | - Kenta Mori
- Health & Wellness Products Research Laboratories, Kao Corp., 2-1-3 Bunka, Sumida-ku 131-8501, Japan; (N.O.); (K.M.); (K.K.); (M.K.); (Y.K.)
| | - Keita Kinoshita
- Health & Wellness Products Research Laboratories, Kao Corp., 2-1-3 Bunka, Sumida-ku 131-8501, Japan; (N.O.); (K.M.); (K.K.); (M.K.); (Y.K.)
| | - Mitsuhiro Katashima
- Health & Wellness Products Research Laboratories, Kao Corp., 2-1-3 Bunka, Sumida-ku 131-8501, Japan; (N.O.); (K.M.); (K.K.); (M.K.); (Y.K.)
| | - Yoshihisa Katsuragi
- Health & Wellness Products Research Laboratories, Kao Corp., 2-1-3 Bunka, Sumida-ku 131-8501, Japan; (N.O.); (K.M.); (K.K.); (M.K.); (Y.K.)
| | - Shigeyuki Nakaji
- Department of Social Medicine, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki 036-8562, Japan;
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan; (M.S.); (H.T.)
- The United Graduate School of Agricultural Sciences, Iwate University, 3-18 Ueda, Morioka 020-0066, Japan
- Institute of Regional Innovation, Hirosaki University, 2-1-1 Yanagawa, Aomori 038-0012, Japan
| |
Collapse
|
10
|
Kaburagi T, Otsuka Y, Oshiro S. Antiobesity Effect of N-Acetylneuraminic Acid by Enhancing Antioxidative Capacity in Mice Fed a High-Fat Diet. J Med Food 2023; 26:550-559. [PMID: 37335945 DOI: 10.1089/jmf.2023.k.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
The sialic acid N-acetylneuraminic acid (NANA), an essential factor in bioregulation, is a functional food component that is known to have beneficial health effects, but its antiobesity effect has not been clearly understood. Adipocyte dysfunction in obesity involves a decrease in the level of NANA sialylation. In this study, we investigated the antiobesity effect of NANA in mice fed a high-fat diet (HFD) and in 3T3-L1 adipocytes. Male C57BL/6J mice were randomly divided into three groups and administered the following diets: a normal diet, an HFD, and an HFD with 1% NANA supplementation for 12 weeks. NANA supplementation significantly reduced body weight gain; epididymal adipose tissue hypertrophy; and serum lipid, fasting glucose, and aspartate transaminase levels compared with those in HFD mice. The percentage of lipid droplets in hepatic tissue was also decreased by NANA supplementation in HFD mice. The downregulation of Adipoq expression and upregulation of Fabp4 expression induced by HFD in epididymal adipocytes were improved by NANA supplementation. The downregulation of Sod1 expression and increase in malondialdehyde level were induced by HFD, and they were significantly improved in the liver by NANA supplementation, but not in epididymal adipocytes. However, NANA supplementation had no effect on sialylation and antioxidant enzyme levels in mouse epididymal adipocytes and 3T3-L1 adipocytes. Overall, NANA exerts antiobesity and antihypolipidemic effects and may be beneficial in suppressing obesity-related diseases.
Collapse
Affiliation(s)
- Tomoko Kaburagi
- Department of Health Science, Daito Bunka University, Saitama, Japan
- Graduate School of Sports and Health Science, Division of Nutritional Physiology, Daito Bunka University, Saitama, Japan
| | - Yuko Otsuka
- Department of Health Science, Daito Bunka University, Saitama, Japan
| | - Satoru Oshiro
- Department of Health Science, Daito Bunka University, Saitama, Japan
- Graduate School of Sports and Health Science, Division of Nutritional Physiology, Daito Bunka University, Saitama, Japan
| |
Collapse
|
11
|
Komic L, Kumric M, Urlic H, Rizikalo A, Grahovac M, Kelam J, Tomicic M, Rusic D, Ticinovic Kurir T, Bozic J. Obesity and Clonal Hematopoiesis of Indeterminate Potential: Allies in Cardiovascular Diseases and Malignancies. Life (Basel) 2023; 13:1365. [PMID: 37374147 PMCID: PMC10304718 DOI: 10.3390/life13061365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The clonal hematopoiesis of indeterminate potential (CHIP) is a term used to describe individuals who have detectable somatic mutations in genes commonly found in individuals with hematologic cancers but without any apparent evidence of such conditions. The mortality rate in individuals with CHIP is remarkably higher than the influence ascribed to hematologic malignancies, and it is plausible that cardiovascular diseases (CVD) could elucidate the apparent disparity. Studies have shown that the most frequently altered genes in CHIP are associated with the increased incidence of CVDs, type 2 diabetes mellitus (T2DM) and myeloid malignancies, as well as obesity. Additionally, multiple research studies have confirmed that obesity is also independently associated with these conditions, particularly the development and progression of atherosclerotic CVD. Considering the shared pathogenetic mechanisms of obesity and CHIP, our objective in this review was to investigate both preclinical and clinical evidence regarding the correlation between obesity and CHIP and the resulting implications of this interaction on the pathophysiology of CVDs and malignancies. The pro-inflammatory condition induced by obesity and CHIP enhances the probability of developing both diseases and increases the likelihood of developing CVDs, T2DM and malignancies, suggesting that a dangerous vicious loop may exist. However, it is vital to conduct additional research that will suggest targeted treatment options for obese individuals with CHIP in order to reduce harmful effects connected to these conditions.
Collapse
Affiliation(s)
- Luka Komic
- Department of Family Medicine, Split-Dalmatia County Health Center, 21000 Split, Croatia; (L.K.); (J.K.); (M.T.)
| | - Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (H.U.); (T.T.K.)
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, 21000 Split, Croatia
| | - Hrvoje Urlic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (H.U.); (T.T.K.)
| | - Azer Rizikalo
- Department of Anatomy, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina;
| | - Marko Grahovac
- Department of Pharmacology, University of Split School of Medicine, 21000 Split, Croatia;
| | - Jelena Kelam
- Department of Family Medicine, Split-Dalmatia County Health Center, 21000 Split, Croatia; (L.K.); (J.K.); (M.T.)
| | - Marion Tomicic
- Department of Family Medicine, Split-Dalmatia County Health Center, 21000 Split, Croatia; (L.K.); (J.K.); (M.T.)
- Department of Family Medicine, University of Split School of Medicine, 21000 Split, Croatia
| | - Doris Rusic
- Department of Pharmacy, University of Split School of Medicine, 21000 Split, Croatia;
| | - Tina Ticinovic Kurir
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (H.U.); (T.T.K.)
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Hospital of Split, 21000 Split, Croatia
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (H.U.); (T.T.K.)
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
12
|
Manapurath R, Strand TA, Chowdhury R, Kvestad I, Yajnik CS, Bhandari N, Taneja S. Daily Folic Acid and/or Vitamin B12 Supplementation Between 6 and 30 Months of Age and Cardiometabolic Risk Markers After 6-7 Years: A Follow-Up of a Randomized Controlled Trial. J Nutr 2023; 153:1493-1501. [PMID: 36889645 PMCID: PMC10196576 DOI: 10.1016/j.tjnut.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Deficiencies of vitamin B12 and folate are associated with elevated concentrations of metabolic markers related to CVDs. OBJECTIVES We investigated the effect of supplementation of vitamin B12 with or without folic acid for 6 mo in early childhood on cardiometabolic risk markers after 6-7 y. METHODS This is a follow-up study of a 2 × 2 factorial, double-blind, randomized controlled trial of vitamin B12 and/or folic acid supplementation in 6-30-mo-old children. The supplement contained 1.8 μg of vitamin B12, 150 μg of folic acid, or both, constituting >1 AI or recommended daily allowances for a period of 6 mo. Enrolled children were contacted again after 6 y (September 2016-November 2017), and plasma concentrations of tHcy, leptin, high molecular weight adiponectin, and total adiponectin were measured (N = 791). RESULTS At baseline, 32% of children had a deficiency of either vitamin B12 (<200 pmol/L) or folate (<7.5 nmol/L). Combined supplementation of vitamin B12 and folic acid resulted in 1.19 μmol/L (95% CI: 0.09; 2.30 μmol/L) lower tHcy concentration 6 y later compared to placebo. We also found that vitamin B12 supplementation was associated with a lower leptin-adiponectin ratio in subgroups based on their nutritional status. CONCLUSIONS Supplementation with vitamin B12 and folic acid in early childhood was associated with a decrease in plasma tHcy concentrations after 6 y. The results of our study provide some evidence of persistent beneficial metabolic effects of vitamin B12 and folic acid supplementation in impoverished populations. The original trial was registered at www. CLINICALTRIALS gov as NCT00717730, and the follow-up study at www.ctri.nic.in as CTRI/2016/11/007494.
Collapse
Affiliation(s)
- Rukman Manapurath
- Centre for Health Research and Development, Society for Applied Studies, Delhi, India; Centre for International Health, University of Bergen, Norway
| | - Tor A Strand
- Centre for International Health, University of Bergen, Norway; Department of Research, Innlandet Hospital Trust, Lillehammer, Norway.
| | - Ranadip Chowdhury
- Centre for Health Research and Development, Society for Applied Studies, Delhi, India
| | - Ingrid Kvestad
- Department of Research, Innlandet Hospital Trust, Lillehammer, Norway; Regional Centre for Child and Youth Mental Health and Child Welfare, West, Norwegian Research Centre, Bergen, Norway
| | | | - Nita Bhandari
- Centre for Health Research and Development, Society for Applied Studies, Delhi, India
| | - Sunita Taneja
- Centre for Health Research and Development, Society for Applied Studies, Delhi, India
| |
Collapse
|
13
|
Ruan GT, Xie HL, Hu CL, Liu CA, Zhang HY, Zhang Q, Wang ZW, Zhang X, Ge YZ, Lin SQ, Tang M, Song MM, Zhang XW, Liu XY, Zhang KP, Yang M, Yu KY, Wang KH, Hu W, Deng L, Cong MH, Shi HP. Comprehensive prognostic effects of systemic inflammation and Insulin resistance in women with breast cancer with different BMI: a prospective multicenter cohort. Sci Rep 2023; 13:4303. [PMID: 36922570 PMCID: PMC10017691 DOI: 10.1038/s41598-023-31450-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
To investigate the prognostic value of systemic inflammation and insulin resistance in women with breast cancer with different body mass index (BMI). This multicenter, prospective study included 514 women with breast cancer. Multivariate survival analysis showed that patients with high C-reactive protein (CRP), high CRP to albumin ratio (CAR), high lymphocyte to CRP ratio (LCR), high low-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio (LHR), and high triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-c) were significantly associated with worse prognosis. The mortality rate of patients with both high CAR and high LHR or both low LCR and high LHR were 3.91-fold or 3.89-fold higher than patients with both low CAR and low LHR or both high LCR and low LHR, respectively. Furthermore, the combination of LCR and LHR significantly predicted survival in patients within the high BMI group. The CRP, CAR, LCR, LHR, and TG/HDL-c were associated with poor survival in women with breast cancer. The combination of CAR and LHR or LCR and LHR could better predict the prognostic outcomes of women with breast cancer, while the combination of LCR and LHR could better predict the prognosis of those patients with overweight or obese patients.
Collapse
Affiliation(s)
- Guo-Tian Ruan
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
| | - Hai-Lun Xie
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
| | - Chun-Lei Hu
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
| | - Chen-An Liu
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
| | - He-Yang Zhang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
| | - Qi Zhang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
| | - Zi-Wen Wang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
| | - Xi Zhang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
| | - Yi-Zhong Ge
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
| | - Shi-Qi Lin
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
| | - Meng Tang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
| | - Meng-Meng Song
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
| | - Xiao-Wei Zhang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
| | - Xiao-Yue Liu
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
| | - Kang-Ping Zhang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
| | - Ming Yang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
| | - Kai-Ying Yu
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
| | - Kun-Hua Wang
- Yunnan University, Kunming, 650091, China
- General Surgery Clinical Medical Center of Yunnan Province, Kunming, 650032, China
| | - Wen Hu
- Clinical Nutrition Department, Sichuan University West China Hospital, Chengdu, 610041, Sichuan, China
| | - Li Deng
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China.
| | - Ming-Hua Cong
- Comprehensive Oncology Department, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100038, China.
| | - Han-Ping Shi
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China.
| |
Collapse
|
14
|
Sanchis P, Calvo P, Pujol A, Rivera R, Berga F, Fortuny R, Costa-Bauza A, Grases F, Masmiquel L. Daily phytate intake increases adiponectin levels among patients with diabetes type 2: a randomized crossover trial. Nutr Diabetes 2023; 13:2. [PMID: 36854678 PMCID: PMC9975181 DOI: 10.1038/s41387-023-00231-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 01/13/2023] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
AIM Adiponectin, a major adipokine secreted by adipose tissue, has been shown to improve insulin sensitivity. Myo-inositol hexaphosphate (phytate; InsP6) is a natural compound that is abundant in cereals, legumes, and nuts that has demonstrated to have different beneficial properties in patients with diabetes type 2. METHODS We performed a randomized crossover trial to investigate the impact of daily consumption of InsP6 on serum levels of adiponectin, TNF-alpha, IL-6, and IL-1beta in patients with type 2 diabetes mellitus (T2DM; n = 39). Thus, we measure serum levels of these inflammatory markers, classic vascular risk factors, and urinary InsP6 at baseline and at the end of the intervention period. RESULTS Patients who consumed InsP6 supplements for 3 months had higher levels of adiponectin and lower HbA1c than those who did not consume InsP6. No differences were found in TNF-alpha, IL-6, and IL-1beta. CONCLUSION This is the first report to show that consumption of InsP6 increases plasma adiponectin concentration in patients with T2DM. Consequently, our findings indicate that following a phytate-rich diet has beneficial effects on adiponectin and HbA1c concentrations and it could help to prevent or minimize diabetic-related complications.
Collapse
Affiliation(s)
- Pilar Sanchis
- Laboratory of Renal Lithiasis Research, Department of Chemistry, University of Balearic Islands, Institute of Health Sciences Research [IUNICS- IdISBa], 07122, Palma of Mallorca, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain.
- Vascular and Metabolic Diseases Research Group, Endocrinology Department, Son Llàtzer University Hospital, Institute of Health Sciences Research [IdISBa], 07198, Palma of Mallorca, Spain.
| | - Paula Calvo
- Laboratory of Renal Lithiasis Research, Department of Chemistry, University of Balearic Islands, Institute of Health Sciences Research [IUNICS- IdISBa], 07122, Palma of Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Antelm Pujol
- Vascular and Metabolic Diseases Research Group, Endocrinology Department, Son Llàtzer University Hospital, Institute of Health Sciences Research [IdISBa], 07198, Palma of Mallorca, Spain
| | - Rosmeri Rivera
- Vascular and Metabolic Diseases Research Group, Endocrinology Department, Son Llàtzer University Hospital, Institute of Health Sciences Research [IdISBa], 07198, Palma of Mallorca, Spain
| | - Francisco Berga
- Laboratory of Renal Lithiasis Research, Department of Chemistry, University of Balearic Islands, Institute of Health Sciences Research [IUNICS- IdISBa], 07122, Palma of Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Regina Fortuny
- Vascular and Metabolic Diseases Research Group, Endocrinology Department, Son Llàtzer University Hospital, Institute of Health Sciences Research [IdISBa], 07198, Palma of Mallorca, Spain
| | - Antonia Costa-Bauza
- Laboratory of Renal Lithiasis Research, Department of Chemistry, University of Balearic Islands, Institute of Health Sciences Research [IUNICS- IdISBa], 07122, Palma of Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Felix Grases
- Laboratory of Renal Lithiasis Research, Department of Chemistry, University of Balearic Islands, Institute of Health Sciences Research [IUNICS- IdISBa], 07122, Palma of Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis Masmiquel
- Vascular and Metabolic Diseases Research Group, Endocrinology Department, Son Llàtzer University Hospital, Institute of Health Sciences Research [IdISBa], 07198, Palma of Mallorca, Spain.
| |
Collapse
|
15
|
Yoshino H, Matsumoto T, Yoshino G. Influence of Metabolic Syndrome on Small, Dense LDL, and Subclinical Atherosclerosis in Older Subjects. Gerontol Geriatr Med 2023; 9:23337214231179847. [PMID: 37324641 PMCID: PMC10262642 DOI: 10.1177/23337214231179847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Aging is known as one of the important risk factors for coronary artery disease (CAD). We explore whether an association of metabolic syndrome (Met-S) increases subclinical atherosclerosis among elderly diabetic subjects estimating the plaque score (PS) of the carotid artery. A total of 187 subjects were enrolled. Middle-aged and older groups were divided into two groups. T-test and Chi-square test were also employed. Simple regression analysis for the PS was performed with respective risk factors as independent variables. After selection of independent variables, multiple regression analysis was performed to estimated the association of PS and dependent variable of the study. There were significant differences in body mass index (BMI) (p < .001), HbA1c (p < .01), TG (p < .05), and PS (p < .001) . Multiple regression analysis in middle-aged subjects showed that the determinant of PS were age (p < .001), BMI (p = .006), Met-S (p = .004), and hs-CRP (p = .019). Multiple regression analysis in older subjects showed that neither age nor Met-S was included as significant determinant of PS. An association of Met-S is an important factor for progression of subclinical atherosclerosis, but it cannot be a significant determinant of PS if the subjects are limited within older group.
Collapse
|
16
|
Nishikai-Shen T, Hosono-Fukao T, Ariga T, Hosono T, Seki T. Cinnamon extract improves abnormalities in glucose tolerance by decreasing Acyl-CoA synthetase long-chain family 1 expression in adipocytes. Sci Rep 2022; 12:12574. [PMID: 35869105 PMCID: PMC9307619 DOI: 10.1038/s41598-022-13421-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/24/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractWe previously demonstrated that cinnamon extract (CE) alleviates streptozotocin-induced type 1 diabetes in rats. The present study aimed to elucidate the detailed molecular target of cinnamon in cultured adipocytes and epididymal adipose tissue of type 2 diabetes model mice. Two-dimensional gel electrophoresis was employed to determine the molecular target of cinnamon in adipocytes. The function of Acyl-CoA synthetase long-chain family-1 (ACSL1), a molecular target of cinnamon that was identified in this study, was further investigated in 3T3-L1 adipocytes using specific inhibitors. Type 2 diabetes model mice (KK-Ay/TaJcl) were used to investigate the effect of CE on glucose tolerance, ACSL1 expression, and related signal molecules in vivo. CE decreased ACSL1 mRNA and protein expression in 3T3-L1 adipocytes but increased glucose uptake and AMPK signaling activation; moreover, a similar effect was observed with an ACSL1 inhibitor. CE improved glucose tolerance and downregulated ACSL1 in mice adipose tissue in vivo. ACSL1 was demonstrated as a molecular target of CE in type 2 diabetes both in a cell culture system and diabetic mouse model.
Collapse
|
17
|
Yamada Y, Saito H, Araki M, Tsuchimoto Y, Muroi SI, Suzuki K, Toume K, Kim JD, Matsuzaka T, Sone H, Shimano H, Nakagawa Y. Wogonin, a Compound in Scutellaria baicalensis, Activates ATF4–FGF21 Signaling in Mouse Hepatocyte AML12 Cells. Nutrients 2022; 14:nu14193920. [PMID: 36235573 PMCID: PMC9572861 DOI: 10.3390/nu14193920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21), which is mainly synthesized and secreted by the liver, plays a crucial role in systemic glucose and lipid metabolism, ameliorating metabolic diseases. In this study, we screened the WAKANYAKU library derived from medicinal herbs to identify compounds that can activate Fgf21 expression in mouse hepatocyte AML12 cells. We identified Scutellaria baicalensis root extract and one of its components, wogonin, as an activator of Fgf21 expression. Wogonin also enhanced the expression of activating transcription factor 4 (ATF4) by a mechanism other than ER stress. Knockdown of ATF4 by siRNA suppressed wogonin-induced Fgf21 expression, highlighting its essential role in wogonin’s mode of action. Thus, our results indicate that wogonin would be a strong candidate for a therapeutic to improve metabolic diseases by enhancing hepatic FGF21 production.
Collapse
Affiliation(s)
- Yasunari Yamada
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Hodaka Saito
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Masaya Araki
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Yuhei Tsuchimoto
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Shin-ichi Muroi
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Kyohei Suzuki
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Kazufumi Toume
- Section of Pharmacognosy, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Jun-Dal Kim
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
- Transborder Medical Research Center (TMRC), University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, Niigata 951-8510, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan
| | - Yoshimi Nakagawa
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo 100-0004, Japan
- Correspondence: ; Tel.: +81-76-434-7610
| |
Collapse
|
18
|
Lee JC, Joung KH, Kim JM, Kang SM, Kim HJ, Ku BJ. Effect of cholesterol-lowering agents on soluble epidermal growth factor receptor level in type 2 diabetes and hypercholesterolemia. Medicine (Baltimore) 2022; 101:e30287. [PMID: 36042588 PMCID: PMC9410686 DOI: 10.1097/md.0000000000030287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Soluble epidermal growth factor receptor (sEGFR) levels are elevated in patients with type 2 diabetes mellitus (T2DM) and positively correlate with blood glucose and cholesterol levels. However, how cholesterol-lowering treatment in patients with T2DM affects the sEGFR level is unknown. Therefore, we investigated the change of serum sEGFR after cholesterol-lowering treatment in type 2 diabetic patients with hypercholesterolemia. This study is a non-randomized, prospective observational study. A total of 115 patients were treated in either the rosuvastatin monotherapy group (R group, 5 mg/day, n = 59) or the rosuvastatin/ezetimibe combination therapy group (RE group, 5 mg/10 mg/day, n = 56) for 12 weeks. We measured serum levels of lipids and sEGFR using an ELISA kit before and after 12 weeks of treatment in each group. The low-density lipoprotein cholesterol (LDL-C) level was significantly reduced (from 130.27 ± 27.09 to 76.24 ± 26.82 mg/dL; P < .001) after 12 weeks of treatment and more so in the RE group than in the R group (from 131.68 ± 28.72 to 87.13 ± 27.04 mg/dL, P < .001 in the R group; from 128.78 ± 25.58 to 64.75 ± 21.52 mg/dL, P < .001 in the RE group; R vs RE group, P < .001). The sEGFR level was significantly decreased after 12 weeks of treatment (from 50.34 ± 13.31 to 45.75 ± 11.54 ng/mL; P = .007). The RE group only showed a significant reduction in the sEGFR level after treatment (from 50.94 ± 12.10 to 44.80 ± 11.36 ng/mL; P = .007). Moreover, the sEGFR level was significantly reduced only when the LDL-C level was significantly reduced (from 50.46 ± 10.66 to 46.24 ± 11.86 ng/mL; P = .043). The serum sEGFR level was significantly reduced by cholesterol-lowering treatment with rosuvastatin alone or rosuvastatin/ezetimibe. We suggested that sEGFR may play a significant role in insulin resistance (IR) and inflammation, which are central pathophysiological mechanisms. We confirmed the possibility of using sEGFR as a biomarker to predict a good response to lipid-lowering treatment in type 2 diabetes patients with hypercholesterolemia.
Collapse
Affiliation(s)
- Jun Choul Lee
- Department of Internal Medicine, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Kyong Hye Joung
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, South Korea
- Department of Endocrinology, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - Ji Min Kim
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, South Korea
- Department of Endocrinology, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - Seon Mee Kang
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
- Department of Internal Medicine, Kangwon National University Hospital, Chuncheon, Republic of Korea
| | - Hyun Jin Kim
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Bon Jeong Ku
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, South Korea
- *Correspondence: Bon Jeong Ku, Department of Internal Medicine, Chungnam National University College of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea (e-mail: )
| |
Collapse
|
19
|
Basak S, Banerjee A, Pathak S, Duttaroy AK. Dietary Fats and the Gut Microbiota: Their impacts on lipid-induced metabolic syndrome. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
20
|
Lee JC, Kim JM, Joung KH, Kang SM, Kim HJ, Ku BJ. Serum MIG6 concentration is increased by cholesterol-lowering treatment in patients with type 2 diabetes mellitus and hypercholesterolemia. J Int Med Res 2022; 50:3000605221085079. [PMID: 35301888 PMCID: PMC8943322 DOI: 10.1177/03000605221085079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective The protein encoded by mitogen-inducible gene 6 (MIG6) plays an essential role in the regulation of cholesterol homeostasis and bile acid synthesis in mice. However, the physiological functions of MIG6 remain poorly understood in humans. Therefore, we aimed to evaluate the relationship between the serum MIG6 concentration and low-density lipoprotein (LDL)-cholesterol in patients undergoing cholesterol-lowering treatment. Methods We performed a non-randomized, prospective controlled trial. In total, 63 patients with type 2 diabetes and hypercholesterolemia were treated using either rosuvastatin monotherapy or rosuvastatin/ezetimibe combination therapy for 12 weeks. We then compared their serum lipid and MIG6 concentrations before and after treatment. Results The serum LDL-cholesterol concentration of the participants significantly decreased and the concentration of MIG6 significantly increased during treatment. In addition, higher pre-treatment serum concentrations of MIG6 were associated with larger reductions in LDL-cholesterol, regardless of the therapeutic agent used. Conclusions Serum MIG6 concentration significantly increases alongside the reduction in LDL-cholesterol achieved using cholesterol-lowering therapies in patients with diabetes and hypercholesterolemia. This is the first study to provide evidence that MIG6 may be involved in human cholesterol metabolism. CRIS registration number: KCT0003477. https://cris.nih.go.kr.
Collapse
Affiliation(s)
- Jun Choul Lee
- Department of Internal Medicine, Eulji University School of Medicine, Daejeon 35233, Republic of Korea
| | - Ji Min Kim
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea.,Department of Endocrinology, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
| | - Kyong Hye Joung
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea.,Department of Endocrinology, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
| | - Seon Mee Kang
- Department of Internal Medicine, Kangwon National University Hospital, Chuncheon 24289, Republic of Korea
| | - Hyun Jin Kim
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea
| | - Bon Jeong Ku
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea
| |
Collapse
|
21
|
Fujimori K, Uno S, Kuroda K, Matsumoto C, Maehara T. Leukotriene C 4 synthase is a novel PPARγ target gene, and leukotriene C 4 and D 4 activate adipogenesis through cysteinyl LT1 receptors in adipocytes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119203. [PMID: 34968576 DOI: 10.1016/j.bbamcr.2021.119203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/07/2021] [Accepted: 12/18/2021] [Indexed: 01/22/2023]
Abstract
Leukotriene (LT) C4 synthase (LTC4S) catalyzes the conversion from LTA4 to LTC4, which is a proinflammatory lipid mediator in asthma and other inflammatory diseases. LTC4 is metabolized to LTD4 and LTE4, all of which are known as cysteinyl (Cys) LTs and exert physiological functions through CysLT receptors. LTC4S is expressed in adipocytes. However, the function of CysLTs and the regulatory mechanism in adipocytes remain unclear. In this study, we investigated the expression of LTC4S and production of CysLTs in murine adipocyte 3T3-L1 cells and their underlying regulatory mechanisms. Expression of LTC4S and production of LTC4 and CysLTs increased during adipogenesis, whereas siRNA-mediated suppression of LTC4S expression repressed adipogenesis by reducing adipogenic gene expression. The CysLT1 receptor, one of the two LTC4 receptors, was expressed in adipocytes. LTC4 and LTD4 increased the intracellular triglyceride levels and adipogenic gene expression, and their enhancement was suppressed by co-treatment with pranlukast, a CysLT1 receptor antagonist. Moreover, the expression profiles of LTC4S gene/protein during adipogenesis resembled those of peroxisome proliferator-activated receptor (PPAR) γ. LTC4S expression was further upregulated by treatment with troglitazone, a PPARγ agonist. Promoter-luciferase and chromatin immunoprecipitation assays showed that PPARγ directly bound to the PPAR response element of the LTC4S gene promoter in adipocytes. These results indicate that the LTC4S gene expression was enhanced by PPARγ, and LTC4 and LTD4 activated adipogenesis through CysLT1 receptors in 3T3-L1 cells. Thus, LTC4S and CysLT1 receptors are novel potential targets for the treatment of obesity.
Collapse
Affiliation(s)
- Ko Fujimori
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Saki Uno
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kyohei Kuroda
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Chihiro Matsumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Toko Maehara
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
22
|
Tsao CK, Hsiao HY, Cheng MH, Zhong WB. Tracheal reconstruction with the scaffolded cartilage sheets in an orthotopic animal model. Tissue Eng Part A 2022; 28:685-699. [PMID: 35137630 DOI: 10.1089/ten.tea.2021.0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tracheal reconstruction remains challenged in clinical. We aimed to fabricate scaffolded cartilage sheets with rigid and elastic supports for tracheal reconstruction. The chondrocyte cell-infiltration activity was examined in the polycaprolactone sheet scaffolds with various thicknesses and pore sizes after seeding cells on the top surface of the sheet scaffolds. The expression of cartilage-related genes and accumulation of sulfated glycosaminoglycans was elevated in the cells-scaffold composites upon the chondrogenic induction. Mechanical properties of the cartilage sheets were measured by the 3-point flexural test and vertical compression test. Two tracheal defects were replaced with and cartilage sheets implants in a rabbit model for 16 weeks. The formation of the cartilaginous tissues, fibrous tissues, and airway epithelium was observed by Safranin O, Masson trichrome, and hematoxylin & eosin Y histological stains, respectively. The generation of micro-vessels, granulation tissue, and adipose tissues in the tracheal explants were analyzed with immunohistochemistry staining. Finally, cartilage sheets could be a reconstructive therapy candidate applying in reconstructing defects in the trachea and other tissues composed of cartilage.
Collapse
Affiliation(s)
- Chung-Kan Tsao
- Chang Gung Memorial Hospital, 38014, Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Taoyuan, Taiwan.,Chang Gung Memorial Hospital, 38014, Center for Tissue Engineering, Taoyuan, Taiwan;
| | - Hui-Yi Hsiao
- Chang Gung Memorial Hospital, Center for Tissue Enginering, 7F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, Taoyuan, N/A = Not Applicable, Taiwan, 333;
| | - Ming-Huei Cheng
- Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Department of Plastic and Reconstructive Surgery, 5, Fu-Hsing Street, Kweishan,, Taoyuan, Taiwan, 333;
| | - Wen-Bin Zhong
- CGMH, 38014, 5, Fuxing Stree,, Guishan Dist., , Taiwan, 244;
| |
Collapse
|
23
|
Iso H, Cui R, Takamoto I, Kiyama M, Saito I, Okamura T, Miyamoto Y, Higashiyama A, Kiyohara Y, Ninomiya T, Yamada M, Nakagawa H, Sakurai M, Shimabukuro M, Higa M, Shimamoto K, Saito S, Daimon M, Kayama T, Noda M, Ito S, Yokote K, Ito C, Nakao K, Yamauchi T, Kadowaki T. Risk Classification for Metabolic Syndrome and the Incidence of Cardiovascular Disease in Japan With Low Prevalence of Obesity: A Pooled Analysis of 10 Prospective Cohort Studies. J Am Heart Assoc 2021; 10:e020760. [PMID: 34796738 PMCID: PMC9075363 DOI: 10.1161/jaha.121.020760] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022]
Abstract
Background It is uncertain whether risk classification under the nationwide program on screening and lifestyle modification for metabolic syndrome captures well high-risk individuals who could benefit from lifestyle interventions. We examined the validity of risk classification by linking the incidence of cardiovascular disease (CVD). Methods and Results Individual-level data of 29 288 Japanese individuals aged 40 to 74 years without a history of CVD from 10 prospective cohort studies were used. Metabolic syndrome was defined as the presence of high abdominal obesity and/or overweight plus risk factors such as high blood pressure, high triglyceride or low high-density lipoprotein cholesterol levels, and high blood glucose levels. The risk categories for lifestyle intervention were information supply only, motivation-support intervention, and intensive support intervention. Sex- and age-specific hazard ratios and population attributable fractions of CVD, which were also further adjusted to consider non-high density lipoprotein cholesterol levels, were estimated with reference to nonobese/overweight individuals, using Cox proportional hazard regression. Since the reference category included those with risk factors, we set a supernormal group (nonobese/overweight with no risk factor) as another reference. We documented 1023 incident CVD cases (565 men and 458 women). The adjusted CVD risk was 60% to 70% higher in men and women aged 40 to 64 years receiving an intensive support intervention, and 30% higher in women aged 65 to 74 years receiving a motivation-support intervention, compared with nonobese/overweight individuals. The population attributable fractions in men and women aged 40 to 64 years receiving an intensive support intervention were 17.7% and 6.6%, respectively, while that in women aged 65 to 74 years receiving a motivation-support intervention was 9.4%. Compared with the supernormal group, nonobese/overweight individuals with risk factors had similar hazard ratios and population attributable fractions as individuals with metabolic syndrome. Conclusions Similar CVD excess and attributable risks among individuals with metabolic syndrome components in the absence and presence of obesity/overweight imply the need for lifestyle modification in both high-risk groups.
Collapse
Affiliation(s)
- Hiroyasu Iso
- Public HealthDepartment of Social MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Renzhe Cui
- Public HealthDepartment of Social MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Iseki Takamoto
- Department of Diabetes and Metabolic DiseasesGraduate School of MedicineThe University of Tokyo HospitalTokyoJapan
- Department of Diabetes, Metabolism and EndocrinologyIchikawa HospitalInternational University of Health and WelfareChibaJapan
| | - Masahiko Kiyama
- Osaka Center for Cancer and Cardiovascular Disease PreventionOsakaJapan
| | - Isao Saito
- Department of Public Health and EpidemiologyFaculty of MedicineOita UniversityOitaJapan
| | - Tomonori Okamura
- Department of Preventive Medicine and Public HealthKeio University School of MedicineTokyoJapan
| | - Yoshihiro Miyamoto
- Preventive CardiologyNational Cerebral and Cardiovascular CenterOsakaJapan
| | - Aya Higashiyama
- Preventive CardiologyNational Cerebral and Cardiovascular CenterOsakaJapan
| | - Yutaka Kiyohara
- Hisayama Research Institute for Lifestyle DiseasesFukuokaJapan
- Department of Epidemiology and Public HealthGraduate School of MedicineKyushu UniversityFukuokaJapan
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public HealthGraduate School of MedicineKyushu UniversityFukuokaJapan
| | - Michiko Yamada
- Department of Clinical StudiesRadiation Effects Research FoundationHiroshimaJapan
| | - Hideaki Nakagawa
- Department of Social and Environmental MedicineKanazawa Medical UniversityIshikawaJapan
| | - Masaru Sakurai
- Department of Social and Environmental MedicineKanazawa Medical UniversityIshikawaJapan
| | - Michio Shimabukuro
- Department of Diabetes, Endocrinology and MetabolismFukushima Medical UniversityFukushimaJapan
| | - Moritake Higa
- Diabetes and Life‐Style Related Disease CenterTomishiro Central HospitalOkinawaJapan
| | | | | | - Makoto Daimon
- Global Center of Excellence Program Study GroupYamagata University School of MedicineYamagataJapan
- Department of Endocrinology and MetabolismHirosaki University Graduate School of MedicineAomoriJapan
| | - Takamasa Kayama
- Department of Advanced MedicineYamagata University School of MedicineYamagataJapan
| | - Mitsuhiko Noda
- Department of Diabetes, Metabolism and EndocrinologyIchikawa HospitalInternational University of Health and WelfareChibaJapan
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology and Vascular MedicineDepartment of MedicineTohoku University HospitalMiyagiJapan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and GerontologyGraduate School of MedicineChiba UniversityChibaJapan
| | - Chikako Ito
- Grand Tower Medical Court Life Care ClinicHiroshimaJapan
| | - Kazuwa Nakao
- Medical Innovation CenterKyoto University Graduate School of MedicineKyotoJapan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic DiseasesGraduate School of MedicineThe University of Tokyo HospitalTokyoJapan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic DiseasesGraduate School of MedicineThe University of Tokyo HospitalTokyoJapan
- PresidentTranomon HospitalTokyoJapan
| |
Collapse
|
24
|
Three in One: The Potential of Brassica By-Products against Economic Waste, Environmental Hazard, and Metabolic Disruption in Obesity. Nutrients 2021; 13:nu13124194. [PMID: 34959745 PMCID: PMC8708897 DOI: 10.3390/nu13124194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
A large amount of waste is generated within the different steps of the food supply chain, representing a significant loss of natural resources, plant material, and economic value for producers and consumers. During harvesting and processing, many parts of edible plants are not sold for consumption and end up as massive waste, adding environmental hazards to the list of concerns regarding food wastage. Examples are Brassica oleracea var. Italica (broccoli) by-products, which represent 75% of the plant mass. A growing concern in the Western world is obesity, which results from incorrect lifestyles and comprises an extensive array of co-morbidities. Several studies have linked these co-morbidities to increased oxidative stress; thus, naturally occurring and readily available antioxidant compounds are an attractive way to mitigate metabolic diseases. The idea of by-products selected for their biomedical value is not novel. However, there is innovation underlying the use of Brassica by-products in the context of obesity. For this reason, Brassica by-products are prime candidates to be used in the treatment of obesity due to its bioactive compounds, such as sulforaphane, which possess antioxidant activity. Here, we review the economic and health potential of Brassica bioactive compounds in the context of obesity.
Collapse
|
25
|
Akhigbe R, Ajayi A. The impact of reactive oxygen species in the development of cardiometabolic disorders: a review. Lipids Health Dis 2021; 20:23. [PMID: 33639960 PMCID: PMC7916299 DOI: 10.1186/s12944-021-01435-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress, an alteration in the balance between reactive oxygen species (ROS) generation and antioxidant buffering capacity, has been implicated in the pathogenesis of cardiometabolic disorders (CMD). At physiological levels, ROS functions as signalling mediators, regulates various physiological functions such as the growth, proliferation, and migration endothelial cells (EC) and smooth muscle cells (SMC); formation and development of new blood vessels; EC and SMC regulated death; vascular tone; host defence; and genomic stability. However, at excessive levels, it causes a deviation in the redox state, mediates the development of CMD. Multiple mechanisms account for the rise in the production of free radicals in the heart. These include mitochondrial dysfunction and uncoupling, increased fatty acid oxidation, exaggerated activity of nicotinamide adenine dinucleotide phosphate oxidase (NOX), reduced antioxidant capacity, and cardiac metabolic memory. The purpose of this study is to discuss the link between oxidative stress and the aetiopathogenesis of CMD and highlight associated mechanisms. Oxidative stress plays a vital role in the development of obesity and dyslipidaemia, insulin resistance and diabetes, hypertension via various mechanisms associated with ROS-led inflammatory response and endothelial dysfunction.
Collapse
Affiliation(s)
- Roland Akhigbe
- Department of Physiology, College of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Oyo State Nigeria
- Reproductive Biology and Toxicology Research Laboratories, Oasis of Grace Hospital, Osogbo, Osun State Nigeria
- Department of Chemical Sciences, Kings University, Odeomu, Osun Nigeria
| | - Ayodeji Ajayi
- Department of Physiology, College of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Oyo State Nigeria
| |
Collapse
|
26
|
Han JC, Weiss R. Obesity, Metabolic Syndrome and Disorders of Energy Balance. SPERLING PEDIATRIC ENDOCRINOLOGY 2021:939-1003. [DOI: 10.1016/b978-0-323-62520-3.00024-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
27
|
Wang X, Ma B, Chen J, You H, Sheng C, Yang P, Qu S. Glucagon-like Peptide-1 Improves Fatty Liver and Enhances Thermogenesis in Brown Adipose Tissue via Inhibiting BMP4-Related Signaling Pathway in High-Fat-Diet-Induced Obese Mice. Int J Endocrinol 2021; 2021:6620289. [PMID: 33986800 PMCID: PMC8093078 DOI: 10.1155/2021/6620289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/03/2021] [Accepted: 04/04/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Glucagon-like peptide-1 (GLP-1) receptor agonist is effective in decreasing blood glucose and body weight. It could improve fatty liver with unclear mechanisms. Hence, we aimed to explore whether GLP-1 could improve fatty liver by regulating the BMP4-related signaling pathway. METHODS Fifteen C57BL/6 mice were randomly assigned to 3 groups. Group A and Group B were fed with a high-fat diet (HFD) to induce fatty liver while Group C was fed with a regular diet (RD) for 24 weeks. Group A and Group B received a subcutaneous injection of exenatide and vehicle (0.9% NaCl), respectively, once daily at doses of 10 nmol/kg during the last 8 weeks. Bodyweight, liver weight, and lipid levels were measured. Histological analyses of liver tissue were performed. The expression of protein and gene measured by western blotting and real-time polymerase chain reaction (RT-PCR) was compared. RESULTS Eight-week exenatide treatment significantly decreased body weight in Group A (from 44.08 ± 2.89 g to 39.22 ± 1.88 g, P = 0.045). Group A had lower body weight and liver weight than Group B at 24 weeks (39.22 ± 1.88 g vs. 47.34 ± 2.43 g, P = 0.001 and 1.70 ± 0.20 g vs. 2.48 ± 0.19 g, P = 0.001, respectively). Moreover, Group A showed significantly less liver steatosis than Group B. Additionally, Group A led to slightly decreased serum triglyceride (TG) and cholesterol (TC) levels compared to Group B. Western blotting showed that exenatide could prevent HFD-induced upregulation of BMP4 levels and downstream activation of Smad1/5/8 and the P38 MAPK signaling pathway in the liver. Furthermore, exenatide treatment could reduce BMP4 and enhance UCP-1 (an important thermogenin) in brown adipose tissue (BAT). CONCLUSION Exenatide could improve HFD-induced hepatic steatosis and enhance thermogenesis in BAT, which may be partly attributed to the inhibition of the BMP4-related signaling pathway.
Collapse
Affiliation(s)
- Xingchun Wang
- Thyriod Research Center of Shanghai, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200072, China
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200072, China
| | - Bingwei Ma
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200072, China
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jiaqi Chen
- Suzhou Municipal Hospital, Suzhou 215000, Jiangsu, China
| | - Hui You
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200072, China
| | - Chunjun Sheng
- Thyriod Research Center of Shanghai, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200072, China
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200072, China
| | - Peng Yang
- Thyriod Research Center of Shanghai, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200072, China
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200072, China
| | - Shen Qu
- Thyriod Research Center of Shanghai, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200072, China
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
28
|
Biological Activities of Paprika Carotenoids, Capsanthin and Capsorubin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1261:285-293. [PMID: 33783751 DOI: 10.1007/978-981-15-7360-6_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Paprika Capsicum annuum L. (Solanaceae) contains various carotenoids such as capsanthin, capsorubin, cryptocapsin cucurbitaxanthin A, β-cryptoxanthin, capsanthin epoxide, zeaxanthin, and β-carotene. Especially, capsanthin and capsorubin are characteristic carotenoid in paprika. They show strong antioxidative effect. Furthermore, these carotenoids show preventive effect of obesity-related diseases. Dietary paprika carotenoids are absorbed in blood, and they are detected in erythrocytes. It contributes to upregulate endurance performance of athletes by reducing oxygen consumption (VO2) and the heart rate.
Collapse
|
29
|
Catestatin peptide of chromogranin A as a potential new target for several risk factors management in the course of metabolic syndrome. Biomed Pharmacother 2020; 134:111113. [PMID: 33341043 DOI: 10.1016/j.biopha.2020.111113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity, lipodystrophy, diabetes, and hypertension collectively constitute the main features of Metabolic Syndrome (MetS), together with insulin resistance (IR), which is considered as a defining element. MetS generally leads to the development of cardiovascular disease (CVD), which is a determinant cause of mortality and morbidity in humans and animals. Therefore, it is essential to implement and put in place adequate management strategies for the treatment of this disease. Catestatin is a bioactive peptide with 21 amino acids, which is derived through cleaving of the prohormone chromogranin A (CHGA/CgA) that is co-released with catecholamines from secretory vesicles and, which is responsible for hepatic/plasma lipids and insulin levels regulation, improves insulin sensitivity, reduces hypertension and attenuates obesity in murine models. In humans, there were few published studies, which showed that low levels of catestatin are significant risk factors for hypertension in adult patients. These accumulating evidence documents clearly that catestatin peptide (CST) is linked to inflammatory and metabolic syndrome diseases and can be a novel regulator of insulin and lipid levels, blood pressure, and cardiac function. The goal of this review is to provide an overview of the CST effects in metabolic syndrome given its role in metabolic regulation and thus, provide new insights into the use of CST as a diagnostic marker and therapeutic target.
Collapse
|
30
|
Sato T, Aizawa Y, Yuasa S, Fujita S, Ikeda Y, Okabe M. The Effect of Dapagliflozin Treatment on Epicardial Adipose Tissue Volume and P-Wave Indices: An Ad-hoc Analysis of The Previous Randomized Clinical Trial. J Atheroscler Thromb 2020; 27:1348-1358. [PMID: 32115470 PMCID: PMC7840164 DOI: 10.5551/jat.48009] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
AIM Epicardial adipose tissue (EAT) may be associated with arrhythmogenesis. P-wave indices such as P-wave dispersion and P-wave variation indicated a slowed conduction velocity within the atria. This study investigated the effect of dapagliflozin on EAT volume and P-wave indices. METHODS In the present ad hoc analysis, 35 patients with type 2 diabetes mellitus and coronary artery disease were classified into dapagliflozin group (n=18) and conventional treatment group (n=17). At baseline, EAT volume, HbA1c and plasma level of tumor necrotic factor-α (TNF-α) levels, echocardiography, and 12-lead electrocardiogram (ECG) were performed. EAT volume was measured using computed tomography. Using 12-lead ECG, P-wave indices were measured. RESULTS At baseline, EAT volumes in the dapagliflozin and conventional treatment groups were 113±20 and 110±27 cm3, respectively. Not only HbA1c and plasma level of TNF-α but also echocardiography findings including left atrial dimension and P-wave indices were comparable between the two groups. After 6 months, plasma level of TNF-α as well as EAT volume significantly decreased in the dapagliflozin group only. P-wave dispersion and P-wave variation significantly decreased in the dapagliflozin group only (-9.2±8.7 vs. 5.9±19.9 ms, p=0.01; -3.5±3.5 vs. 1.7±5.9 ms, p=0.01). The change in P-wave dispersion correlated with changes in EAT volume and plasma level of TNF-α. In multivariate analysis, the change in EAT volume was an independent determinant of the change in P-wave dispersion. CONCLUSION Dapagliflozin reduced plasma level of TNF-α, EAT volume, and P-wave indices, such as P-wave dispersion. The changes in P-wave indices were especially associated with changes in EAT volume.The number and date of registration: UMIN000035660, 24/Jan/2019.
Collapse
Affiliation(s)
- Takao Sato
- Cardiology, Tachikawa General Hospital, Nagaoka, Japan
| | | | - Sho Yuasa
- Cardiology, Tachikawa General Hospital, Nagaoka, Japan
| | | | - Yoshio Ikeda
- Cardiology, Tachikawa General Hospital, Nagaoka, Japan
| | - Masaaki Okabe
- Cardiology, Tachikawa General Hospital, Nagaoka, Japan
| |
Collapse
|
31
|
Flavonoids in adipose tissue inflammation and atherosclerosis: one arrow, two targets. Clin Sci (Lond) 2020; 134:1403-1432. [PMID: 32556180 DOI: 10.1042/cs20200356] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
Flavonoids are polyphenolic compounds naturally occurring in fruits and vegetables, in addition to beverages such as tea and coffee. Flavonoids are emerging as potent therapeutic agents for cardiovascular as well as metabolic diseases. Several studies corroborated an inverse relationship between flavonoid consumption and cardiovascular disease (CVD) or adipose tissue inflammation (ATI). Flavonoids exert their anti-atherogenic effects by increasing nitric oxide (NO), reducing reactive oxygen species (ROS), and decreasing pro-inflammatory cytokines. In addition, flavonoids alleviate ATI by decreasing triglyceride and cholesterol levels, as well as by attenuating inflammatory mediators. Furthermore, flavonoids inhibit synthesis of fatty acids and promote their oxidation. In this review, we discuss the effect of the main classes of flavonoids, namely flavones, flavonols, flavanols, flavanones, anthocyanins, and isoflavones, on atherosclerosis and ATI. In addition, we dissect the underlying molecular and cellular mechanisms of action for these flavonoids. We conclude by supporting the potential benefit for flavonoids in the management or treatment of CVD; yet, we call for more robust clinical studies for safety and pharmacokinetic values.
Collapse
|
32
|
Fetal Growth Trajectories and Their Association with Maternal, Cord Blood, and 5-year Child Adipokines. J Nutr Metab 2020; 2020:4861523. [PMID: 33029393 PMCID: PMC7530496 DOI: 10.1155/2020/4861523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/22/2020] [Accepted: 08/23/2020] [Indexed: 11/18/2022] Open
Abstract
Background The growth of the fetus is a complex process influenced by multiple factors. Studies have highlighted the important role of biochemical growth markers such as leptin and adiponectin on fetal growth. Objective To compare fetal growth trajectories with biochemical growth markers from maternal blood samples at 28 weeks' gestation, cord blood samples at birth, and in child blood samples at 5 years of age from mother-infant pairs who were part of the longitudinal ROLO study. Methods 781 mother-infant pairs from the ROLO and ROLO Kids study were included. Ultrasound measurements and birth weight were used to develop fetal growth trajectory groups for estimated abdominal circumference and estimated weight. Blood serum levels of leptin, adiponectin, insulin, TNF-alpha, and IL-6 from maternal, cord, and 5-year child samples were recorded. ANOVA and chi-square tests were applied to test the associations between fetal growth trajectory membership and maternal and child biochemical growth indicators. The influence of child sex was also investigated. Results Male sex was associated with a faster weight trajectory compared to females (p=0.001). At 28 weeks' gestation, maternal leptin levels were significantly higher in mothers with a fetus on a slower estimated abdominal circumference trajectory compared to fast (25616 [IQR: 11656.0 to 35341.0] vs. 14753.8 [IQR: 8565.4 to 24308.1], p < 0.001) and maternal adiponectin levels were lower in fetuses on a slower estimated abdominal circumference trajectory compared to a fast trajectory (22.4 [IQR: 13.6 to 35.9] vs. 27.6 [IQR: 17.6 to 46.3], p=0.027). No associations were noted with inflammatory markers. No associations were identified between fetal growth trajectories and growth markers at 5 years of age. Conclusions This study shows that male sex is associated with an accelerated estimated weight trajectory. Furthermore, high leptin and low adiponectin in maternal serum in late gestation are associated with a slower fetal growth trajectory. No associations were identified with blood growth markers after pregnancy.
Collapse
|
33
|
Abstract
Accurate, rapid and simple detection methods are required to facilitate early diagnosis of various disorders including infectious and lifestyle diseases as well as cancer. These detection approaches reduce the window of infection, i.e., the period between infection and reliable detection. Optimally, these methods should target protein as an indicator of pathogenic microbes as well as other biomarkers. For example, although nucleic acid is easily detected by polymerase chain reaction (PCR), these markers are also present in dead microbes, and, in the case of mRNA, it is not known whether this target was successfully translated. Accordingly, early diagnostic approaches require the development of ultrasensitive protein detection methods. In this chapter, we introduce an ultrasensitive enzyme-linked immunosorbent assay (ELISA) which combines a traditional sandwich-based immunoassay with thionicotinamide adenine dinucleotide (thio-NAD) cycling. The performance characteristics of this unique approach are reviewed as well as its potential role in providing a novel and ultrasensitive diagnostic tool in the clinical laboratory.
Collapse
Affiliation(s)
- Etsuro Ito
- Department of Biology, Waseda University, Tokyo, Japan; Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan; Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Kanako Iha
- Department of Biology, Waseda University, Tokyo, Japan
| | - Teruki Yoshimura
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Sapporo, Hokkaido, Japan
| | - Kazunari Nakaishi
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan; R&D Headquarters, TAUNS Laboratories, Inc., Izunokuni, Japan
| | - Satoshi Watabe
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan; R&D Headquarters, TAUNS Laboratories, Inc., Izunokuni, Japan
| |
Collapse
|
34
|
Zheng Y, Wu Y, Tao L, Chen X, Jones TJ, Wang K, Hu F. Chinese Propolis Prevents Obesity and Metabolism Syndromes Induced by a High Fat Diet and Accompanied by an Altered Gut Microbiota Structure in Mice. Nutrients 2020; 12:nu12040959. [PMID: 32235581 PMCID: PMC7230861 DOI: 10.3390/nu12040959] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/12/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
The increasing incidence of obesity poses a great threat to public health worldwide. Recent reports also indicate the relevance of obesity in metabolic diseases. Chinese propolis (CP), as a well-studied natural nutraceutical, has shown a beneficial effect on alleviating diabetes mellitus. However, few studies have investigated the effect of CP on weight management and energy balance. We examined the beneficial effects of dietary CP on weight in high-fat diet-fed female and male mice and determined whether CP alters gut microbiota. In this study, dietary CP supplementation reduces body weight and improves insulin resistance in high-fat diet (HFD)-fed mice in a dose-dependent manner. CP treatment also reverses liver weight loss and triglyceride accumulation in association with hepatic steatosis. The 16S rRNA analysis of gut microbiota demonstrated that CP treatment modulates the composition in HFD-fed mice. Our study also suggests that male mice were more sensitive to CP treatment than female mice. Taken together, CP supplementation reduces weight gain and reverses gut microbiome dysbiosis induced by HFD. Further, the effects of CP treatment on metabolic biomarkers and microbiome structure differ by gender.
Collapse
Affiliation(s)
- Yufei Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (Y.W.); (L.T.); (X.C.)
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA;
| | - Yuqi Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (Y.W.); (L.T.); (X.C.)
| | - Lingchen Tao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (Y.W.); (L.T.); (X.C.)
| | - Xi Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (Y.W.); (L.T.); (X.C.)
| | - Trevor Joseph Jones
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA;
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China;
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (Y.W.); (L.T.); (X.C.)
- Correspondence: ; Tel.: +86-571-889-829-52
| |
Collapse
|
35
|
Lai YH, Lin YL, Wang CH, Kuo CH, Hsu BG. Negative correlation of serum adiponectin level with peripheral artery occlusive disease in hemodialysis patients. Tzu Chi Med J 2020; 32:70-74. [PMID: 32110524 PMCID: PMC7015003 DOI: 10.4103/tcmj.tcmj_19_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/24/2018] [Accepted: 01/14/2018] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE Adiponectin is a fat-derived hormone that secretes exclusively by adipocytes and has antiatherosclerotic effects. Peripheral arterial occlusive disease (PAOD) is associated with an increased risk of death in hemodialysis (HD) patients. The aim of this study was to evaluate the relationship between serum adiponectin levels and PAOD by ankle-brachial index (ABI) in HD patients. MATERIALS AND METHODS Blood samples were obtained from 100 HD patients. Serum adiponectin levels were measured using a commercial enzyme-linked immunosorbent assay kit. ABI values were measured using the automated oscillometric method (VaSera VS-1000). ABI values that <0.9 were included in the low ABI group. RESULTS Among the 100 HD patients, 18 of them (18.0%) were in the low ABI group. Compared with patients in the normal ABI group, the patients in the low ABI group had a higher prevalence of diabetes (P = 0.043), older age (P = 0.027), and lower serum adiponectin level (P = 0.003). In addition, the multivariable logistic regression analysis showed that adiponectin (Odds ratio [OR]: 0.927, 95% confidence interval [CI]: 0.867-0.990, P = 0.025) and age (OR: 1.054, 95% CI: 1.002-1.109, P = 0.043) were the independently associated with PAOD in HD patients. CONCLUSION In this study, serum adiponectin level was found to be associated with PAOD in HD patients.
Collapse
Affiliation(s)
- Yu-Hsien Lai
- Division of Nephrology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- PhD Program in Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan
| | - Yu-Li Lin
- Division of Nephrology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Chih-Hsien Wang
- Division of Nephrology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Chiu-Huang Kuo
- Division of Nephrology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Bang-Gee Hsu
- Division of Nephrology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
36
|
Ibrahim SM, Bastawy AA. The Relevance of Single-nucleotide Polymorphism +62 G>A to the Expression of Resistin Gene Affecting Serum Resistin Levels in Metabolic Syndrome in the Egyptian Population. Curr Pharm Biotechnol 2019; 21:626-634. [PMID: 31820685 DOI: 10.2174/1389201021666191210122851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Metabolic Syndrome (MS) is a clinical condition consisting of risk factors associated with type two diabetes and developing cardiovascular disease. It has been suggested that resistin is a linkage between obesity, inflammation and type two diabetes. This study aims to investigate whether Resistin Gene (RETN) polymorphism (+62G>A) is linked to MS and resistin levels among the Egyptian population. METHODS This study was performed with 310 Egyptian volunteers: 160 MS subjects and 150 controls. Anthropometric parameters and biochemical variables were determined. The RETN +62G>A polymorphism was genotyped by PCR-RFLP technique. RESULTS The resistin levels of the MS group were significantly higher than those of the control group. Resistin levels were positively correlated with anthropometric parameters and liver biomarkers in the MS group. According to RETN +62G>A polymorphism, carriers with the A allele (GA/AA) had significantly increased resistin levels than subjects with the GG genotype, consequently, the RETN +62G >A polymorphism was found to be related to MS, biochemical parameters and anthropometric variables. CONCLUSION These findings propose that the RETN +62G>A polymorphism has a great impact on the circulating resistin concentrations, and that resistin levels are strongly related to MS. Therefore, this RETN polymorphism is related to the risk of the prevalence of MS in the Egyptians.
Collapse
Affiliation(s)
- Sherine M Ibrahim
- Biochemistry Department, Faculty of Pharmacy, Modern Sciences and Arts University, Postal Code: 202, Cairo, Egypt
| | - Afaf A Bastawy
- Biochemistry Department, Faculty of Pharmacy, Modern Sciences and Arts University, Postal Code: 202, Cairo, Egypt
| |
Collapse
|
37
|
Wojciechowska-Kulik A, Blus E, Kowalczyk Z, Baj Z, Majewska E. The Effect of Noninvasive Bariatric Surgery on the Levels of Certain Adipokines and Atherosclerosis Risk Factors in Patients with Metabolic Syndrome. J Am Coll Nutr 2019; 39:481-487. [DOI: 10.1080/07315724.2019.1695017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | - Edyta Blus
- Department of Pathophysiology and Clinical Immunology, Medical University of Lodz, Lodz, Poland
| | | | - Zbigniew Baj
- Department of Pathophysiology and Clinical Immunology, Medical University of Lodz, Lodz, Poland
| | - Ewa Majewska
- Department of Pathophysiology and Clinical Immunology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
38
|
Barchetta I, Cimini FA, Ciccarelli G, Baroni MG, Cavallo MG. Sick fat: the good and the bad of old and new circulating markers of adipose tissue inflammation. J Endocrinol Invest 2019; 42:1257-1272. [PMID: 31073969 DOI: 10.1007/s40618-019-01052-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/29/2019] [Indexed: 01/08/2023]
Abstract
Adipose tissue (AT) is one of the largest endocrine organs contributing to metabolic homeostasis. The functional pleiotropism of AT depends on its ability to secrete a large number of hormones, cytokines, extracellular matrix proteins and growth factors, all influencing many local and systemic physiological and pathophysiological processes. In condition of chronic positive energy balance, adipocyte expansion, hypoxia, apoptosis and stress all lead to AT inflammation and dysfunction, and it has been demonstrated that this sick fat is a main risk factor for many metabolic disorders, such as type 2 diabetes mellitus, fatty liver, cardiovascular disease and cancer. AT dysfunction is tightly associated with aberrant secretion of bioactive peptides, the adipocytokines, and their blood concentrations often reflect the expression in the AT. Despite the existence of an association between AT dysfunction and systemic pro-inflammatory state, most of the circulating molecules detectable in obese and dysmetabolic individuals do not identify specifically the condition of sick fat. Based on this premise, this review provides a concise overview of "classic" and novel promising adipocytokines associated with AT inflammation and discusses possible critical approaches to their interpretation in clinical practice.
Collapse
Affiliation(s)
- I Barchetta
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | - F A Cimini
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | - G Ciccarelli
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | - M G Baroni
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy.
| | - M G Cavallo
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
39
|
Leptin and Adiponectin Signaling Pathways Are Involved in the Antiobesity Effects of Peanut Skin Extract. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2935315. [PMID: 31737168 PMCID: PMC6815585 DOI: 10.1155/2019/2935315] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/05/2019] [Indexed: 01/07/2023]
Abstract
Excessive food intake and metabolic disorder promote obesity and diabetes. In China, peanut skin is used as a herbal medicine to treat hemophilia, thrombocytopenic purpura, and hepatic hemorrhage. In the present study, we demonstrated that peanut skin extract (PSE) safely reduced appetite, body weight, fat tissue, plasma TG and TC, and blood glucose level in mice with diet-induced obesity (DIO). Moreover, the leptin/leptin receptor/neuropeptide Y (NPY) and adiponectin signaling pathways involved in the antiobesity effects of PSE are confirmed through leptin and adiponectin overexpression and leptin receptor silencing in mice. PSE consisted of oligosaccharide and polyphenol in a mass ratio of 45 : 55, and both parts were important for the antiobesity function of PSE. Our results suggested that PSE can be developed as functional medical food to treat metabolic disorders and obesity.
Collapse
|
40
|
Park KM, Park SC, Kang S. Effects of resistance exercise on adipokine factors and body composition in pre- and postmenopausal women. J Exerc Rehabil 2019; 15:676-682. [PMID: 31723556 PMCID: PMC6834705 DOI: 10.12965/jer.1938368.184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/06/2019] [Indexed: 01/09/2023] Open
Abstract
The objective of the present study was to examine effects of resistance exercise for 12 weeks on adipokine factors and body composition in postmenopausal (POM) women to provide basic data for preventing obesity or metabolic syndrome caused by menopause. Subjects of this study were 35 premenopausal (PRM) and POM women with body fat percentages of 30% or more. They were divided into PRM (n=15) and POM (n=20) groups. All subjects participated in resistance exercise training for 12 weeks. All serum samples were submitted for enzyme-linked immunosorbent assay measurements of adipokine factors. Body weight, muscle mass, body mass index, and waist-to-hip ration showed significant differences between the two groups after training. In contrast, body fat percentage did not differ between the groups, although it was significantly lower in the PRM group after exercise. Physical fitness was significant differences between the two groups after training, including grip strength (left and right), sit and reach, sit-ups, and standing long jump. In addition, grip strength (left), sit-up, and side step tests were significantly increased after exercise in the PRM group. There were the significant differences in interleukin-6 and leptin levels between the two groups after training. Interleukin-6, interleukin-15, and adiponectin levels were significantly higher in both groups after training compared to those before training, although leptin levels were significantly lower after exercise in the PRM group. Regular resistance exercise was found to be effective in decreasing body fat in PRM women, and decreased leptin and increased adiponectin were positively significant in both groups.
Collapse
Affiliation(s)
- Kyu Min Park
- Laboratory of Exercise Physiology, Department of Sport Science, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, Korea
| | - Sung Chul Park
- Department of Rehabilitation Exercise and Health, Busan Institute of Science and Technology, Busan, Korea
| | - Sunghwun Kang
- Laboratory of Exercise Physiology, Department of Sport Science, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
41
|
Ultrasensitive ELISA Developed for Diagnosis. Diagnostics (Basel) 2019; 9:diagnostics9030078. [PMID: 31323782 PMCID: PMC6787603 DOI: 10.3390/diagnostics9030078] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/04/2019] [Accepted: 07/16/2019] [Indexed: 01/18/2023] Open
Abstract
For the diagnosis of disease, the ability to quantitatively detect trace amounts of the causal proteins from bacteria/viruses as biomarkers in patient specimens is highly desirable. Here we introduce a simple, rapid, and colorimetric assay as a de novo, ultrasensitive detection method. This ultrasensitive assay consists of a sandwich enzyme-linked immunosorbent assay (ELISA) and thionicotinamide-adenine dinucleotide (thio-NAD) cycling, forming an ultrasensitive ELISA, in which the signal substrate (i.e., thio-NADH) accumulates in a triangular manner, and the accumulated thio-NADH is measured at its maximum absorption wavelength of 405 nm. We have successfully achieved a limit of detection of ca. 10−18 moles/assay for a target protein. As an example of infectious disease detection, HIV-1 p24 could be measured at 0.0065 IU/assay (i.e., 10−18 moles/assay), and as a marker for a lifestyle-related disease, adiponectin could be detected at 2.3 × 10−19 moles/assay. In particular, despite the long-held belief that the trace amounts of adiponectin in urine can only be detected using a radioisotope, our ultrasensitive ELISA was able to detect urinary adiponectin. This method is highly versatile because simply changing the antibody enables the detection of various proteins. This assay system requires only the measurement of absorbance, thus it requires equipment that is easily obtained by medical facilities, which facilitates diagnosis in hospitals and clinics. Moreover, we describe an expansion of our ultrasensitive ELISA to a non-amplification nucleic acid detection method for nucleic acids using hybridization. These de novo methods will enable simple, rapid, and accurate diagnosis.
Collapse
|
42
|
Tiongco RE, Cabrera FJ, Clemente B, Flake CC, Salunga MA, Pineda-Cortel MR. G276T polymorphism in the ADIPOQ gene is associated with a reduced risk of polycystic ovarian syndrome: A meta-analysis of Asian population. Taiwan J Obstet Gynecol 2019; 58:409-416. [PMID: 31122534 DOI: 10.1016/j.tjog.2018.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2018] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE The etiology of polycystic ovarian syndrome (PCOS) has not yet been fully explained. Several studies suggested an association between two single nucleotide polymorphisms (T45G and G276T) of the ADIPOQ gene that encodes for the hormone adiponectin and PCOS susceptibility. Hence, we performed a meta-analysis to investigate the relationship of the two further. MATERIALS AND METHODS Literature search was conducted in PubMed up to June 22, 2018, for related publications written in English. Selected data were extracted from the included studies and was subjected to analysis using Review Manager 5.3. Odds ratios (ORs) and 95% confidence intervals (CIs) were computed and pooled from the resulting studies. Subgroup analysis by ethnicity was also performed. RESULTS Overall analysis showed that women with the G276T polymorphism have reduced susceptibility to PCOS (OR: 0.68; 95% CI: 0.60-0.78; PA < 0.001). While no significant association was observed for the T45G polymorphism (OR: 1.07; 95% CI: 0.93-1.24; PA = 0.34). Subgroup analysis, on the other hand, showed significant associations among East Asians (OR: 0.69; 95% CI: 0.57-0.82; PA < 0.001) for the G276T association. CONCLUSION Results of this meta-analysis suggests that women with the G276T polymorphism are less likely to develop PCOS. However, more studies are needed to confirm the claims of this meta-analysis.
Collapse
Affiliation(s)
- Raphael Enrique Tiongco
- Department of Medical Technology, College of Allied Medical Professions, Angeles University Foundation, Angeles City, Philippines.
| | - Franzielle Jowe Cabrera
- Department of Medical Technology, College of Allied Medical Professions, Angeles University Foundation, Angeles City, Philippines; Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Benjie Clemente
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Chastene Christopher Flake
- Department of Medical Technology, College of Allied Medical Professions, Angeles University Foundation, Angeles City, Philippines
| | - Micah Angela Salunga
- Department of Medical Technology, College of Allied Medical Professions, Angeles University Foundation, Angeles City, Philippines
| | - Maria Ruth Pineda-Cortel
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines; Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines; The Graduate School, University of Santo Tomas, Manila, Philippines
| |
Collapse
|
43
|
Beneficial Effects of Adiponectin on Glucose and Lipid Metabolism and Atherosclerotic Progression: Mechanisms and Perspectives. Int J Mol Sci 2019; 20:ijms20051190. [PMID: 30857216 PMCID: PMC6429491 DOI: 10.3390/ijms20051190] [Citation(s) in RCA: 289] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/14/2022] Open
Abstract
Circulating adiponectin concentrations are reduced in obese individuals, and this reduction has been proposed to have a crucial role in the pathogenesis of atherosclerosis and cardiovascular diseases associated with obesity and the metabolic syndrome. We focus on the effects of adiponectin on glucose and lipid metabolism and on the molecular anti-atherosclerotic properties of adiponectin and also discuss the factors that increase the circulating levels of adiponectin. Adiponectin reduces inflammatory cytokines and oxidative stress, which leads to an improvement of insulin resistance. Adiponectin-induced improvement of insulin resistance and adiponectin itself reduce hepatic glucose production and increase the utilization of glucose and fatty acids by skeletal muscles, lowering blood glucose levels. Adiponectin has also β cell protective effects and may prevent the development of diabetes. Adiponectin concentration has been found to be correlated with lipoprotein metabolism; especially, it is associated with the metabolism of high-density lipoprotein (HDL) and triglyceride (TG). Adiponectin appears to increase HDL and decrease TG. Adiponectin increases ATP-binding cassette transporter A1 and lipoprotein lipase (LPL) and decreases hepatic lipase, which may elevate HDL. Increased LPL mass/activity and very low density lipoprotein (VLDL) receptor and reduced apo-CIII may increase VLDL catabolism and result in the reduction of serum TG. Further, adiponectin has various molecular anti-atherosclerotic properties, such as reduction of scavenger receptors in macrophages and increase of cholesterol efflux. These findings suggest that high levels of circulating adiponectin can protect against atherosclerosis. Weight loss, exercise, nutritional factors, anti-diabetic drugs, lipid-lowering drugs, and anti-hypertensive drugs have been associated with an increase of serum adiponectin level.
Collapse
|
44
|
High Carbohydrate High Fat Diet Induced Hepatic Steatosis and Dyslipidemia Were Ameliorated by Psidium guajava Leaf Powder Supplementation in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1897237. [PMID: 30854003 PMCID: PMC6378023 DOI: 10.1155/2019/1897237] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/15/2018] [Accepted: 12/27/2018] [Indexed: 12/23/2022]
Abstract
Psidium guajava leaf is reported to contain many bioactive polyphenols which play an important role in the prevention and treatment of various diseases. Our investigation aimed to study the effect of Psidium guajava leaf powder supplementation on obesity and liver status by using experimental rats. To study the effects of guava leaf supplementation in high fat diet induced obesity, rats were randomly divided into four experimental groups (n=7), control (group I), control + guava leaf (group II), HCHF (group III), and HCHF + guava leaf (group IV). At the end of the experimental period (56 days), glucose intolerance, liver enzymes activities, antioxidant enzymes activities, and lipid and cholesterol profiles were evaluated. Our results revealed that guava leaf powder supplementation showed a significant reduction in fat deposition in obese rats. Moreover, liver enzyme functions were increased in high fat diet fed rats compared to the control rats significantly which were further ameliorated by guava leaf powder supplementation in high fat diet fed rats. High fat diet feeding also decreased the antioxidant enzyme functions and increased the lipid peroxidation products compared to the control rats. Guava leaf powder supplementation in high fat diet fed rats reduced the oxidative stress markers and reestablished antioxidant enzyme system in experimental animals. Guava leaf powder supplementation in high fat diet fed rats also showed a relative decrease in inflammatory cells infiltration and collagen deposition in the liver compared to the high fat diet fed rats. The present study suggests that the supplementation of guava leaf powder prevents obesity, improves glucose intolerance, and decreases inflammation and oxidative stress in liver of high carbohydrate high fat diet fed rats.
Collapse
|
45
|
Yamakado S, Cho H, Inada M, Morikawa M, Jiang YH, Saito K, Nakaishi K, Watabe S, Takagi H, Kaneda M, Nakatsuma A, Ninomiya M, Imachi H, Arai T, Yoshimoto T, Murao K, Chang JH, Chen SM, Shih YC, Zeng MJ, Ke LY, Chen CH, Yoshimura T, Miura T, Ito E. Urinary adiponectin as a new diagnostic index for chronic kidney disease due to diabetic nephropathy. BMJ Open Diabetes Res Care 2019; 7:e000661. [PMID: 31245009 PMCID: PMC6557464 DOI: 10.1136/bmjdrc-2019-000661] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/18/2019] [Accepted: 05/03/2019] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE The chronic kidney disease (CKD) is widely diagnosed on the basis of albuminuria and the glomerular filtration rate. A more precise diagnosis of CKD, however, requires the assessment of other factors. Urinary adiponectin recently attracted attention for CKD assessment, but evaluation is difficult due to the very low concentration of urinary adiponectin in normal subjects. RESEARCH DESIGN AND METHODS We developed an ultrasensitive ELISA coupled with thionicotinamide-adenine dinucleotide cycling to detect trace amounts of proteins, which allows us to measure urinary adiponectin at the subattomole level. We measured urinary adiponectin levels in 59 patients with diabetes mellitus (DM) and 24 subjects without DM (normal) to test our hypothesis that urinary adiponectin levels increase with progression of CKD due to DM. RESULTS The urinary adiponectin levels were 14.88±3.16 (ng/mg creatinine, mean±SEM) for patients with DM, and 3.06±0.33 (ng/mg creatinine) for normal subjects. The threshold between them was 4.0 ng/mg creatinine. The urinary adiponectin levels increased with an increase in the CKD risk. Furthermore, urinary adiponectin mainly formed a medium-molecular weight multimer (a hexamer) in patients with DM, whereas it formed only a low-molecular weight multimer (a trimer) in normal subjects. That is, the increase in urinary adiponectin in patients with DM led to the emergence of a medium-molecular weight form in urine. CONCLUSIONS Our new assay showed that urinary adiponectin could be a new diagnostic index for CKD. This assay is a non-invasive test using only urine, thus reducing the patient burden.
Collapse
Affiliation(s)
| | - Hiroki Cho
- Department of Biology, Waseda University, Shinjuku, Tokyo, Japan
| | - Mikio Inada
- Department of Biology, Waseda University, Shinjuku, Tokyo, Japan
| | - Mika Morikawa
- R&D Headquarters, TAUNS Laboratories, Izunokuni, Shizuoka, Japan
| | - Yong-Huang Jiang
- R&D Headquarters, TAUNS Laboratories, Izunokuni, Shizuoka, Japan
| | - Kenji Saito
- R&D Headquarters, TAUNS Laboratories, Izunokuni, Shizuoka, Japan
| | | | - Satoshi Watabe
- R&D Headquarters, TAUNS Laboratories, Izunokuni, Shizuoka, Japan
| | - Hitomi Takagi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan
| | - Mugiho Kaneda
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan
| | - Akira Nakatsuma
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan
| | - Masaki Ninomiya
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan
| | - Hitomi Imachi
- Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Takeshi Arai
- Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | | | - Koji Murao
- Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Jyun-Hao Chang
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Min Chen
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Chen Shih
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Min-Jing Zeng
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Liang-Yin Ke
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chu-Huang Chen
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Teruki Yoshimura
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Toshiaki Miura
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Etsuro Ito
- Department of Biology, Waseda University, Shinjuku, Tokyo, Japan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
46
|
Naseri R, Farzaei F, Haratipour P, Nabavi SF, Habtemariam S, Farzaei MH, Khodarahmi R, Tewari D, Momtaz S. Anthocyanins in the Management of Metabolic Syndrome: A Pharmacological and Biopharmaceutical Review. Front Pharmacol 2018; 9:1310. [PMID: 30564116 PMCID: PMC6288909 DOI: 10.3389/fphar.2018.01310] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
The term "metabolic syndrome" (MetS) refers to a combination of diabetes, high blood pressure, and obesity. The origin of MetS includes a combination of multiple factors, such as sedentary lifestyle, unhealthy diet choice, and genetic factors. MetS is highly prevalent and adversely affects the general population by elevating risk of cardiovascular complications, organ failure, and much other pathology associated with late-stage diabetes. Anthocyanins (ANTs) are health-promoting bioactive compounds belonging to the flavonoids subclass of polyphenols. Numerous studies have reported the potential therapeutic benefits on MetS syndrome and diabetes from fruits rich in ANTs. This review summarizes the role of several dietary ANTs on preventing and managing MetS as well as the pharmacological mechanisms and biopharmaceutical features of their action. We also discuss potential nanoformulation and encapsulation approaches that may enhance the bioefficacy of ANTs in MetS. Experiments have demonstrated that ANTs may attenuate the symptoms of MetS via improving insulin resistance, impaired glucose tolerance, dyslipidaemia, cholesterol levels, hypertension, blood glucose, protecting β cells, and preventing free radical production. In brief, the intake of ANT-rich supplements should be considered due to their plausible ability for prevention and management of MetS. Additionally, randomized double-blind clinical trials are obligatory for evaluating the bioefficacy and pharmacological mechanisms of ANTs and their pharmaceutical formulations in patients with MetS.
Collapse
Affiliation(s)
- Rozita Naseri
- Internal Medicine Department, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pouya Haratipour
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
- Phyto Pharmacology Interest Group, Universal Scientific Education and Research Network, Los Angeles, CA, United States
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories, Medway School of Science, University of Greenwich, Kent, United Kingdom
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Devesh Tewari
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Nainital, India
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
The Effects of a 12-Week Combined Exercise Training Program on Arterial Stiffness, Vasoactive Substances, Inflammatory Markers, Metabolic Profile, and Body Composition in Obese Adolescent Girls. Pediatr Exerc Sci 2018; 30:480-486. [PMID: 30193554 DOI: 10.1123/pes.2017-0198] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE Childhood and adolescent obesity is a major international public health crisis. It is crucial to prevent the negative effects of obesity at an early age by implementing appropriate lifestyle interventions, such as exercise training. We evaluated the effects of a combined resistance and aerobic exercise training (CET) regimen on arterial stiffness, vasoactive substances, inflammatory markers, metabolic profile, and body composition in obese adolescent girls. METHODS A total of 30 obese adolescent girls were randomly assigned to a CET (n = 15) or a control group (n = 15). The CET group trained for 3 days per week. Plasma nitric oxide, endothelin-1, C-reactive protein, arterial stiffness, glucose, insulin, the adiponectin/leptin ratio, and body fat were measured before and after 12 weeks. RESULTS There were significant increases (P < .05) in nitric oxide (4.0 μM) and adiponectin/leptin ratio (0.33); and decreases (P < .05) in arterial stiffness (-1.0 m/s), C-reactive protein (-0.5 mg/L), glucose (-1.2 mmol/L), insulin (-17.1 μU/mL), and body fat (-3.6%) following CET compared with control. There were no significant changes in endothelin-1 after CET or control. CONCLUSIONS The findings of this study indicate that CET improves arterial stiffness, nitric oxide, and inflammatory and metabolic markers in obese adolescent girls. CET may have important health implications for the prevention of atherosclerosis at an early age.
Collapse
|
48
|
Zacharewicz E, Hesselink MKC, Schrauwen P. Exercise counteracts lipotoxicity by improving lipid turnover and lipid droplet quality. J Intern Med 2018; 284:505-518. [PMID: 29331050 DOI: 10.1111/joim.12729] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The incidence of obesity and metabolic disease, such as type 2 diabetes mellitus (T2D), is rising globally. Dietary lipid over supply leads to lipid accumulation at ectopic sites, such as skeletal muscle. Ectopic lipid storage is highly correlated with insulin resistance and T2D, likely due to a loss of metabolic flexibility - the capacity to switch between fat and glucose oxidation upon insulin stimulation - and cellular dysfunction because of lipotoxicity. However, muscle lipid levels are also elevated in endurance-trained athletes, presenting a paradoxical phenotype of increased intramuscular lipids along with high insulin sensitivity - the 'athletes' paradox'. This review focuses on recent human data to characterize intramuscular lipid species in order to elucidate some of the underlying mechanisms driving skeletal muscle lipotoxicity. There is evidence that lipotoxicity is characterized by an increase in bioactive lipid species, such as ceramide. The athletes' paradox supports the notion that regular physical exercise has health benefits that might originate from the alleviation of lipotoxicity. Indeed, exercise training alleviates intramuscular ceramide content in obese individuals without a necessary decrease in ectopic lipid storage. Furthermore, evidence shows that exercise training elevates markers of lipid droplet dynamics such as the PLIN proteins, and triglyceride lipases ATGL and HSL, as well as mitochondrial efficiency, potentially explaining the improved lipid turnover and a reduction in the accumulation of lipotoxic intermediates observed with the athelets' paradox.
Collapse
Affiliation(s)
- E Zacharewicz
- Department of Human Biology and Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - M K C Hesselink
- Department of Human Biology and Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - P Schrauwen
- Department of Human Biology and Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
49
|
Al-Rawaf HA. Circulating microRNAs and adipokines as markers of metabolic syndrome in adolescents with obesity. Clin Nutr 2018; 38:2231-2238. [PMID: 30309709 DOI: 10.1016/j.clnu.2018.09.024] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND Circulating microRNAs (miRNAs) as valuable biomarkers yielded important insights into the pathogenesis of obesity. AIM This study aimed to describe the circulating miRNA profile for adolescences and its association with the circulating levels leptin and adiponectin according to specific degree of obesity. METHODS RT-PCR and immunoassy analysis were used to study circulating miRNA profile, adipokines; adiponectin (A), leptin (L), and L/A ratio as well as other factors of metabolic syndrome (MS) in 250 adolescents with severe obesity. RESULTS In morbidly obese adolescents, we identified at least 10 circulating miRNAs, including increased concentrations of miRNAS; miR-142-3p, miR-140-5p, miR-222 miR-143, miR-130, and decreased concentrations of miR-532-5p, miR-423-5p, miR-520c-3p, miR-146a, and miR-15a, which were strongly linked to measures of BMI, WHtR, adipokines; adiponectin, leptin, L/A ratio, and other MS related biomarkers such as FBS, insulin, HOMA-IR, C-peptide, and circulated plasma lipids such as TG, HDL-C, and LDL-C. CONCLUSION Circulating miRNAs showed significant association with plasma levels of adipokines; adiponectin, leptin, and L/A ratios in adolescents with severe obesity. The study provides that regulation of miRNAs expression is associated with adipokines, and other related MS metabolic factors. Thus, early detection of any changes in circulating miRNAs profiles may play a promising role in identifying obese children or adolescents who may suffer from severe metabolic syndrome.
Collapse
Affiliation(s)
- Hadeel A Al-Rawaf
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
50
|
Kandhare AD, Bandyopadhyay D, Thakurdesai PA. Low molecular weight galactomannans-based standardized fenugreek seed extract ameliorates high-fat diet-induced obesity in mice via modulation of FASn, IL-6, leptin, and TRIP-Br2. RSC Adv 2018; 8:32401-32416. [PMID: 35547667 PMCID: PMC9086199 DOI: 10.1039/c8ra05204b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Obesity is a complex, chronic metabolic disorder and its prevalence is increasing throughout most of the world. Low molecular weight galactomannans-based standardized fenugreek seed extract (LMWGAL-TF) has previously shown anti-diabetic and anti-hyperlipidemic potential. Aim: To evaluate the efficacy and mechanism of action of LMWGAL-TF in treating high fat diet (HFD)-induced obesity and hyperlipidemia in mice. Materials and methods: Male C57BL/6 mice were fed the HFD for 12 weeks and were co-administered with LMWGAL-TF (10, 30 and 100 mg kg-1, p.o.). Variables measured were behavioral, biochemical, molecular and histopathological. In a separate in vitro experiment, copper-ascorbate (Cu-As)-induced mitochondrial oxidative damage was evaluated. Results: The HFD-induced increase (p < 0.001) in body weight, fat mass, lean mass, adipose tissue (brown, mesenteric, epididymal and retroperitoneal) and liver weight was significantly attenuated (p < 0.001) by LMWGAL-TF (30 and 100 mg kg-1). The HFD-induced elevated levels of serum lipid, interleukins (ILs)-6 and leptin were significantly decreased (p < 0.001) by LMWGAL-TF (30 and 100 mg kg-1). Elevated fatty acid synthase (FASn), IL-6, leptin and transcriptional regulator interacting with the PHD-bromodomain 2 (TRIP-Br2) mRNA expression in brown adipose tissue (BAT), liver, and epididymal fat were significantly down-regulated (p < 0.001) by LMWGAL-TF (30 and 100 mg kg-1). Additionally, HFD-induced histological alterations in skeletal muscle, liver, white adipose tissue (WAT) and BAT were also reduced by LMWGAL-TF. Furthermore, the Cu-As-induced alteration in mitochondria oxidative stress (lipid peroxidation, protein carbonylation, glutathione, glutathione reductase, glutathione peroxidase, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase) in skeletal muscle and BAT was significantly (p < 0.001) ameliorated by LMWGAL-TF (2, 4 and 6 mg mL-1) treatment. It also reduced the Cu-As-induced mitochondrial swelling. Conclusion: LMWGAL-TF showed its beneficial effect in reducing HFD-induced obesity via down-regulation of FASn, IL-6, leptin, and TRIP-Br2 in mice.
Collapse
Affiliation(s)
- Amit D Kandhare
- Department of Scientific Affairs, Indus Biotech Private Limited 1, Rahul Residency, Off Salunke Vihar Road, Kondhwa Pune 411048 Maharashtra India +91-9226164041
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science and Technology Kolkata 700 009 India
| | - Prasad A Thakurdesai
- Department of Scientific Affairs, Indus Biotech Private Limited 1, Rahul Residency, Off Salunke Vihar Road, Kondhwa Pune 411048 Maharashtra India +91-9226164041
| |
Collapse
|