1
|
Poluektov YM, Lopina OD, Strelkova MA, Kuleshova ID, Makarov AA, Petrushanko IY. Mechanisms mediating effects of cardiotonic steroids in mammalian blood cells. Front Pharmacol 2025; 16:1520927. [PMID: 40196366 PMCID: PMC11973394 DOI: 10.3389/fphar.2025.1520927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/21/2025] [Indexed: 04/09/2025] Open
Abstract
Cardiotonic steroids (CTSs) were known as steroidal plant compounds that exert cellular effects by the binding to Na,K-ATPase. Earlier, plant (exogenous) CTSs were used to treat chronic heart failure. By now, endogenous CTS have been identified in mammals, and their concentrations in the blood, normally in a subnanomolar range, are altered in numerous pathologies. This indicates their role as endogenous regulators of physiological processes. CTS transport occurs primarily in the blood, yet the CTS effects on blood cells remain poorly understood. This review summarizes the CTS effects on blood cells of animals and humans under normal and pathological conditions, and analyzes their action based on known mechanisms of action in mammalian cells. At high concentrations (greater than 10-9 M), CTS binding to Na,K-ATPase inhibits the enzyme, whereas lower concentrations of CTSs induce signaling cascades or activate the enzyme. All these mechanisms are shown to be present in blood cells. The particular CTS effect is determined by the CTS type, its concentration, the isoform composition of the catalytic α-subunit of Na,K-ATPase in the cell, and other cell features. It has been demonstrated that all blood cell types (erythrocytes, leukocytes, and platelets) expressed both ubiquitously distributed α1-isoform and tissue-specific α3-subunit, which exhibits a different ion and CTS affinity compared to α1. This results in a wide spectrum of blood cell responses to fluctuations in CTS levels in the blood. In particular, an increase in the level of endogenous CTSs by a more twofold is sufficient to induce a decline in the activity of erythrocyte Na,K-ATPase. The administration of exogenous CTSs is able to modulate the proinflammatory activity of leukocytes, which is attributed to the activation of signaling cascades, and to exert an influence on platelet activation. Hence, alterations of CTS levels in bloodstream significantly affect the functionality of blood cells, contributing to the organism's adaptive response. On top of this, a comparison of the effects of CTSs on human leukocytes and rodent leukocytes carrying the CTS-resistant α1-isoform often reveals opposite effects, thus indicating that rodents are an unsuitable model for studying CTS effects on these cells.
Collapse
Affiliation(s)
- Yuri M. Poluektov
- Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Moscow, Russia
| | - Olga D. Lopina
- Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria A. Strelkova
- Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Moscow, Russia
| | - Iuliia D. Kuleshova
- Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Moscow, Russia
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Moscow, Russia
| | - Irina Yu. Petrushanko
- Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Chkadua G, Nozadze E, Tsakadze L, Shioshvili L, Leladze M, Arutinova N, Dzneladze S, Javakhishvili M, Jariashvili T. Cytochrome c and Ouabain Binding Site of Na,K-ATPase. Cell Biochem Biophys 2025:10.1007/s12013-025-01716-3. [PMID: 40072830 DOI: 10.1007/s12013-025-01716-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2025] [Indexed: 03/14/2025]
Abstract
Na,K-ATPase is an electrogenic pump found in cell plasma membranes that acts as the basic unit of animal life. This enzyme is highly susceptible to cardiotonic steroid (CTS) inhibition. The role of Na,K-ATPase in signaling has introduced a novel viewpoint regarding the enzyme's function, as the ouabain-binding site is involved in several physiological processes. At high concentrations, ouabain blocks Na+ and K+ ion transport by Na,K-ATPase, whereas at low concentrations, it activates the signaling function of the enzyme. Notably, Na,K-ATPase does not fit into the categories of G protein-coupled receptors or ligand-gated ion channels. This indicates that it may be a distinct cell surface receptor that interacts with signaling molecules through allosteric regulation. In the present study, we have identified new modulators of Na,K-ATPase sensitivity to ouabain, and studied the kinetic effects of physiological concentrations of ouabain on Na,K-ATPase in the hippocampus. Specifically, Cytochrome c (Cytc) increases an affinity for ouabain and the maximal velocity (Vmax) of the enzyme. After binding to Na,K-ATPase, ouabain induces conformational changes that drive shifts between enzymatic cycles.
Collapse
Affiliation(s)
- Gvantsa Chkadua
- Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Str., Tbilisi, Georgia.
- Georgian National University, 9 Tsinandali Str., Tbilisi, Georgia.
| | - Eka Nozadze
- Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Str., Tbilisi, Georgia
| | - Leila Tsakadze
- Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Str., Tbilisi, Georgia
| | - Lia Shioshvili
- Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Str., Tbilisi, Georgia
| | - Marine Leladze
- Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Str., Tbilisi, Georgia
| | - Nana Arutinova
- Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Str., Tbilisi, Georgia
| | - Sopio Dzneladze
- Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Str., Tbilisi, Georgia
| | - Maia Javakhishvili
- Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Str., Tbilisi, Georgia
| | | |
Collapse
|
3
|
Ren Y, Anderson AT, Meyer G, Lauber KM, Gallucci JC, Douglas Kinghorn A. Digoxin and its Na +/K +-ATPase-targeted actions on cardiovascular diseases and cancer. Bioorg Med Chem 2024; 114:117939. [PMID: 39396465 PMCID: PMC11527570 DOI: 10.1016/j.bmc.2024.117939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Na+/K+-ATPase (NKA) is a plasma membrane ion-transporting protein involved in the generation and maintenance of Na+ and K+ gradients across the cell membrane, which can produce a driving force for the secondary transport of metabolic substrates. NKA also regulates intracellular calcium that is responsible for modulating numerous cellular processes, while it interacts with many other proteins and functions as a signal transducer, with several signaling pathways being involved. Thus, NKA has become an important target for the treatment of human diseases. Cardiac glycosides are well-known NKA inhibitors, of which (+)-digoxin or digoxin has been long used for the treatment of congestive heart failure. Also, digoxin has exhibited potential antitumor activity, by targeting directly HIF-1α, NKA, and NF-κB. Thus, the function of NKA in human cardiovascular diseases and cancer and the therapeutic effects of digoxin on these diseases are summarized in the present review, with the correlations among digoxin, NKA, cardiovascular diseases, and cancer being discussed. Presented herein are also the antitumor potential of monosaccharide cardiac glycoside analogues of digoxin, including (-)-cryptanoside A, (-)-oleandrin, (-)-ouabain, and (+)-strebloside. It is hoped that this contribution will provide some helpful information for the design and discovery of new cardiac glycoside-type therapeutic agents for the treatment of cardiovascular diseases and cancer.
Collapse
Affiliation(s)
- Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States.
| | - Andrew T Anderson
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Gunnar Meyer
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Kaitlyn M Lauber
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Judith C Gallucci
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
4
|
Zhao JZ, Xu LM, Li LF, Ren GM, Shao YZ, Liu Q, Lu TY. Traditional Chinese medicine bufalin inhibits infectious hematopoietic necrosis virus infection in vitro and in vivo. Microbiol Spectr 2024; 12:e0501622. [PMID: 38289115 PMCID: PMC10913368 DOI: 10.1128/spectrum.05016-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 11/23/2023] [Indexed: 03/06/2024] Open
Abstract
Infectious hematopoietic necrosis virus (IHNV) causes infectious hematopoietic necrosis and severe economic losses to salmon and trout aquaculture worldwide. Currently, the only commercial vaccine against IHNV is a DNA vaccine with some biosafety concerns. Hence, more effective vaccines and antiviral drugs are needed to prevent IHNV infection. In this study, 1,483 compounds were screened from a traditional Chinese medicine monomer library, and bufalin showed potential antiviral activity against IHNV. The 50% cytotoxic concentration of bufalin was >20 µM, and the 50% inhibitory concentration was 0.1223 µΜ against IHNV. Bufalin showed the inhibition of diverse IHNV strains in vitro, which confirmed that it had an inhibitory effect against all IHNV strains, rather than random activity against a single strain. The bufalin-mediated block of IHNV infection occurred at the viral attachment and RNA replication stages, but not internalization. Bufalin also inhibited IHNV infection in vivo and significantly increased the survival of rainbow trout compared with the mock drug-treated group, and this was confirmed by in vivo viral load monitoring. Our data showed that the anti-IHNV activity of bufalin was proportional to extracellular Na+ concentration and inversely proportional to extracellular K+ concentration, and bufalin may inhibit IHNV infection by targeting Na+/K+-ATPase. The in vitro and in vivo studies showed that bufalin significantly inhibited IHNV infection and may be a promising candidate drug against the disease in rainbow trout. IMPORTANCE Infectious hematopoietic necrosis virus (IHNV) is the pathogen of infectious hematopoietic necrosis (IHN) which outbreak often causes huge economic losses and hampers the healthy development of salmon and trout farming. Currently, there is only one approved DNA vaccine for IHN worldwide, but it faces some biosafety problems. Hence, more effective vaccines and antiviral drugs are needed to prevent IHNV infection. In this study, we report that bufalin, a traditional Chinese medicine, shows potential antiviral activity against IHNV both in vitro and in vivo. The bufalin-mediated block of IHNV infection occurred at the viral attachment and RNA replication stages, but not internalization, and bufalin inhibited IHNV infection by targeting Na+/K+-ATPase. The in vitro and in vivo studies showed that bufalin significantly inhibited IHNV infection and may be a promising candidate drug against the disease in rainbow trout.
Collapse
Affiliation(s)
- Jing-Zhuang Zhao
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Department of Aquatic Animal Diseases and Control, Harbin, China
| | - Li-Ming Xu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Lin-Fang Li
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Guang-Ming Ren
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Yi-Zhi Shao
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Qi Liu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Tong-Yan Lu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| |
Collapse
|
5
|
Krampert L, Ossner T, Schröder A, Schatz V, Jantsch J. Simultaneous Increases in Intracellular Sodium and Tonicity Boost Antimicrobial Activity of Macrophages. Cells 2023; 12:2816. [PMID: 38132136 PMCID: PMC10741518 DOI: 10.3390/cells12242816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Inflamed and infected tissues can display increased local sodium (Na+) levels, which can have various effects on immune cells. In macrophages, high salt (HS) leads to a Na+/Ca2+-exchanger 1 (NCX1)-dependent increase in intracellular Na+ levels. This results in augmented osmoprotective signaling and enhanced proinflammatory activation, such as enhanced expression of type 2 nitric oxide synthase and antimicrobial function. In this study, the role of elevated intracellular Na+ levels in macrophages was investigated. Therefore, the Na+/K+-ATPase (NKA) was pharmacologically inhibited with two cardiac glycosides (CGs), ouabain (OUA) and digoxin (DIG), to raise intracellular Na+ without increasing extracellular Na+ levels. Exposure to HS conditions and treatment with both inhibitors resulted in intracellular Na+ accumulation and subsequent phosphorylation of p38/MAPK. The CGs had different effects on intracellular Ca2+ and K+ compared to HS stimulation. Moreover, the osmoprotective transcription factor nuclear factor of activated T cells 5 (NFAT5) was not upregulated on RNA and protein levels upon OUA and DIG treatment. Accordingly, OUA and DIG did not boost nitric oxide (NO) production and showed heterogeneous effects toward eliminating intracellular bacteria. While HS environments cause hypertonic stress and ionic perturbations, cardiac glycosides only induce the latter. Cotreatment of macrophages with OUA and non-ionic osmolyte mannitol (MAN) partially mimicked the HS-boosted antimicrobial macrophage activity. These findings suggest that intracellular Na+ accumulation and hypertonic stress are required but not sufficient to mimic boosted macrophage function induced by increased extracellular sodium availability.
Collapse
Affiliation(s)
- Luka Krampert
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany; (L.K.)
| | - Thomas Ossner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany; (L.K.)
| | - Agnes Schröder
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany; (L.K.)
- Institute of Orthodontics, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany
| | - Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany; (L.K.)
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany; (L.K.)
- Institute for Medical Microbiology, Immunology, and Hygiene, Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne and Faculty of Medicine, University of Cologne, 50935 Cologne, Germany
| |
Collapse
|
6
|
The physical exercise-induced oxidative/inflammatory response in peripheral blood mononuclear cells: Signaling cellular energetic stress situations. Life Sci 2023; 321:121440. [PMID: 36921686 DOI: 10.1016/j.lfs.2023.121440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/14/2023] [Accepted: 01/22/2023] [Indexed: 03/14/2023]
Abstract
Peripheral blood mononuclear cells (PBMCs) are a variety of specialized immune cells produced in the bone marrow from hematopoietic stem cells (HSCs) that work together to protect our bodies from harmful pathogens. From a metabolic point of view, these cells can serve as sentinel tissue source for distinguishing multiple types of whole-body physiological perturbations. The significant interaction of PBMCs with systemic physiology makes these cells an attractive target for several interventions such as physical exercise. Analyses of oxidative/inflammatory and metabolic markers of PBMCs obtained from unhealthy and healthy humans have been used in monitoring immune response in different exercise conditions. It is already a common consensus that regular practice of physical exercise, that is planned, structured, and repetitive, influences personal health by altering the metabolic state and the immune system. However, the role of distinct metabolic processes responsible for maintaining metabolic balance during physical exercise in PBMCs is not fully understood. Furthermore, a complete dose-response analysis between different exercise protocols and biomarkers capable of predicting physical performance needs to be better elucidated. The absence of published reviews on this topic compromises the understanding of the crosstalk between the metabolic adaptations of PBMCs and exercise-induced changes in the immune system. Given the above, this review highlights the main findings in the literature involving the responses of PBMCs in the inflammatory/oxidative stress induced by physical exercise. The present review also highlights how distinct phenotypes and functional diversity of PBMCs make these cells an accessible alternative for assessing exercise-induced metabolic adaptations.
Collapse
|
7
|
Galvão JGFM, Cavalcante-Silva LHA, de Almeida Lima É, Carvalho DC, Alves AF, Mascarenhas SR. Ouabain modulates airway remodeling caused by Th2-high asthma in mice. Int Immunopharmacol 2022; 109:108808. [DOI: 10.1016/j.intimp.2022.108808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/05/2022] [Accepted: 04/24/2022] [Indexed: 11/05/2022]
|
8
|
Analyzing the Systems Biology Effects of COVID-19 mRNA Vaccines to Assess Their Safety and Putative Side Effects. Pathogens 2022; 11:pathogens11070743. [PMID: 35889989 PMCID: PMC9320269 DOI: 10.3390/pathogens11070743] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/11/2022] [Accepted: 06/25/2022] [Indexed: 01/25/2023] Open
Abstract
COVID-19 vaccines have been instrumental tools in reducing the impact of SARS-CoV-2 infections around the world by preventing 80% to 90% of hospitalizations and deaths from reinfection, in addition to preventing 40% to 65% of symptomatic illnesses. However, the simultaneous large-scale vaccination of the global population will indubitably unveil heterogeneity in immune responses as well as in the propensity to developing post-vaccine adverse events, especially in vulnerable individuals. Herein, we applied a systems biology workflow, integrating vaccine transcriptional signatures with chemogenomics, to study the pharmacological effects of mRNA vaccines. First, we derived transcriptional signatures and predicted their biological effects using pathway enrichment and network approaches. Second, we queried the Connectivity Map (CMap) to prioritize adverse events hypotheses. Finally, we accepted higher-confidence hypotheses that have been predicted by independent approaches. Our results reveal that the mRNA-based BNT162b2 vaccine affects immune response pathways related to interferon and cytokine signaling, which should lead to vaccine success, but may also result in some adverse events. Our results emphasize the effects of BNT162b2 on calcium homeostasis, which could be contributing to some frequently encountered adverse events related to mRNA vaccines. Notably, cardiac side effects were signaled in the CMap query results. In summary, our approach has identified mechanisms underlying both the expected protective effects of vaccination as well as possible post-vaccine adverse effects. Our study illustrates the power of systems biology approaches in improving our understanding of the comprehensive biological response to vaccination against COVID-19.
Collapse
|
9
|
Leite JA, Cavalcante-Silva LHA, Ribeiro MR, de Morais Lima G, Scavone C, Rodrigues-Mascarenhas S. Neuroinflammation and Neutrophils: Modulation by Ouabain. Front Pharmacol 2022; 13:824907. [PMID: 35173621 PMCID: PMC8841582 DOI: 10.3389/fphar.2022.824907] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiotonic steroids are natural compounds that present many physiological and pharmacological functions. They bind Na+/K+-ATPase (NKA) modifying cellular ion concentration and trigger cell signaling mechanisms without altering ion balance. These steroids are known to modulate some immune responses, including cytokine production, neutrophil migration, and inflammation (peripherally and in the nervous system). Inflammation can occur in response to homeostasis perturbations and is related to the development of many diseases, including immune-mediated diseases and neurodegenerative disorders. Considering the neutrophils role in the general neuroinflammatory response and that these cells can be modulated by cardiac steroids, this work aims to review the possible regulation of neutrophilic neuroinflammation by the cardiac steroid ouabain.
Collapse
Affiliation(s)
- Jacqueline Alves Leite
- Department of Pharmacology, Institute of Biomedical Science, Federal University of Goiás, Goiânia, Brazil
| | | | - Martina Raissa Ribeiro
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Geovanni de Morais Lima
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- *Correspondence: Cristoforo Scavone,
| | | |
Collapse
|
10
|
Zhang Z, Tang Y, Li L, Yang W, Xu Y, Zhou J, Ma K, Zhang K, Zhuang H, Gong Y, Gong K. Downregulation of FXYD2 Is Associated with Poor Prognosis and Increased Regulatory T Cell Infiltration in Clear Cell Renal Cell Carcinoma. J Immunol Res 2022; 2022:4946197. [PMID: 36313180 PMCID: PMC9606837 DOI: 10.1155/2022/4946197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/15/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND FXYD2, a gene coding for the γ subunit of Na+/K+-ATPase, was demonstrated to involve in carcinogenesis recently. However, the specific role of FXYD2 in clear cell renal cell carcinoma (ccRCC) remains unknown. The current study was conducted to investigate the expression, biological function, and potentially immune-related mechanisms of FXYD2 in ccRCC. Materials and methods. The data from TCGA-KIRC, ICGC, GEO, Oncomine, ArrayExpress, TIMER, HPA datasets, and our clinical samples were used to determine and validate the expression level, prognostic roles, and potentially immune-related mechanisms in ccRCC. Cell function assays were performed to investigate the biological role of FXYD2 in vitro. RESULTS FXYD2 was identified to be downregulated in ccRCC tissue compared to normal tissue, which was confirmed by our RT-PCR, WB, and IHC analyses. Kaplan-Meier survival analysis and Cox regression analysis suggested that downregulated FXYD2 could independently predict poor survival of ccRCC patients. Through the ESTIMATE algorithm, ssGSEA algorithm, CIBERSORT algorithm, TIMER database, and our laboratory experiment, FXYD2 was found to correlate with the immune landscape, especially regulatory T cells (Treg), in ccRCC. Gain-of-function experiment revealed that FXYD2 could restrain cell proliferation, migration, and invasion in vitro. Functional enrichment analysis illustrated that TGF-β-SMAD2/3, Notch, and PI3K-Akt-mTOR signaling pathways may be potential signaling pathways of FXYD2 in ccRCC. CONCLUSIONS Downregulation of FXYD2 is associated with ccRCC tumorigenesis, poor prognosis, and increased Treg infiltration in ccRCC, which may be related to TGF-β-SMAD2/3, Notch, and PI3K-Akt-mTOR signaling pathways. This will probably provide a novel prognostic marker and potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Zedan Zhang
- Department of Urology, Peking University First Hospital, Beijing, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Yanlin Tang
- Shantou University Medical College, Shantou, China
| | - Lei Li
- Department of Urology, Peking University First Hospital, Beijing, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Wuping Yang
- Department of Urology, Peking University First Hospital, Beijing, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Yawei Xu
- Department of Urology, Peking University First Hospital, Beijing, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Jingcheng Zhou
- Department of Urology, Peking University First Hospital, Beijing, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Kaifang Ma
- Department of Urology, Peking University First Hospital, Beijing, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Kenan Zhang
- Department of Urology, Peking University First Hospital, Beijing, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Hongkai Zhuang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, Beijing, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Kan Gong
- Department of Urology, Peking University First Hospital, Beijing, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| |
Collapse
|
11
|
Cavalcante-Silva LHA, Carvalho DCM, de Almeida Lima É, Rodrigues-Mascarenhas S. Ouabain inhibits p38 activation in mice neutrophils. Inflammopharmacology 2021; 29:1829-1833. [PMID: 34792671 PMCID: PMC8600101 DOI: 10.1007/s10787-021-00882-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/10/2021] [Indexed: 12/28/2022]
Abstract
Ouabain is a cardiac steroid hormone with immunomodulatory effects. It inhibits neutrophils migration induced by different stimuli, but little is known about the mechanisms involved in this effect. Thus, the aim of this study was to evaluate the ouabain effect on chemotactic signaling pathways in neutrophils. For that, mice neutrophils were isolated from bone marrow, treated with ouabain (1, 10, and 100 nM) for 2 h, submitted to transwell chemotaxis assay and flow cytometry analysis of Akt, ERK, JNK, and p38 phosphorylation induced by zymosan. Ouabain treatment (1, 10 and, 100 nM) reduces neutrophil chemotaxis induced by chemotactic peptide fMLP, but this substance did not inhibit Akt, ERK, and JNK activation induced by zymosan. However, ouabain (1 and 10 nM) reduced p38 phosphorylation in zymosan-stimulated neutrophils. These results suggest that ouabain may interfere in neutrophil migration through p38 MAPK inhibition.
Collapse
Affiliation(s)
| | | | - Éssia de Almeida Lima
- Immunobiotechnology Laboratory, Biotechnology Center, Federal University of Paraíba, João Pessoa, 58051‑900, Brazil
| | - Sandra Rodrigues-Mascarenhas
- Immunobiotechnology Laboratory, Biotechnology Center, Federal University of Paraíba, João Pessoa, 58051‑900, Brazil.
| |
Collapse
|
12
|
Souza E Souza KFC, Moraes BPT, Paixão ICNDP, Burth P, Silva AR, Gonçalves-de-Albuquerque CF. Na +/K +-ATPase as a Target of Cardiac Glycosides for the Treatment of SARS-CoV-2 Infection. Front Pharmacol 2021; 12:624704. [PMID: 33935717 PMCID: PMC8085498 DOI: 10.3389/fphar.2021.624704] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), identified for the first time in Wuhan, China, causes coronavirus disease 2019 (COVID-19), which moved from epidemic status to becoming a pandemic. Since its discovery in December 2019, there have been countless cases of mortality and morbidity due to this virus. Several compounds such as chloroquine, hydroxychloroquine, lopinavir-ritonavir, and remdesivir have been tested as potential therapies; however, no effective treatment is currently recommended by regulatory agencies. Some studies on respiratory non-enveloped viruses such as adenoviruses and rhinovirus and some respiratory enveloped viruses including human respiratory syncytial viruses, influenza A, parainfluenza, SARS-CoV, and SARS-CoV-2 have shown the antiviral activity of cardiac glycosides, correlating their effect with Na+/K+-ATPase (NKA) modulation. Cardiac glycosides are secondary metabolites used to treat patients with cardiac insufficiency because they are the most potent inotropic agents. The effects of cardiac glycosides on NKA are dependent on cell type, exposure time, and drug concentration. They may also cause blockage of Na+ and K+ ionic transport or trigger signaling pathways. The antiviral activity of cardiac glycosides is related to cell signaling activation through NKA inhibition. Nuclear factor kappa B (NFκB) seems to be an essential transcription factor for SARS-CoV-2 infection. NFκB inhibition by cardiac glycosides interferes directly with SARS-CoV-2 yield and inflammatory cytokine production. Interestingly, the antiviral effect of cardiac glycosides is associated with tyrosine kinase (Src) activation, and NFκB appears to be regulated by Src. Src is one of the main signaling targets of the NKA α-subunit, modulating other signaling factors that may also impair viral infection. These data suggest that Src-NFκB signaling modulated by NKA plays a crucial role in the inhibition of SARS-CoV-2 infection. Herein, we discuss the antiviral effects of cardiac glycosides on different respiratory viruses, SARS-CoV-2 pathology, cell signaling pathways, and NKA as a possible molecular target for the treatment of COVID-19.
Collapse
Affiliation(s)
- Kauê Francisco Corrêa Souza E Souza
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Laboratório de Imunofarmacologia, Departamento de Bioquímica, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca Portugal Tavares Moraes
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Em Neurociências (PPGNEURO), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Izabel Christina Nunes de Palmer Paixão
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Ciências e Biotecnologia (PPBI), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Neûrologia/Neurociências, Hospital Antônio Pedro Universidade Federal Fluminense, Niterói, Brazil
| | - Patrícia Burth
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Ciências e Biotecnologia (PPBI), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Em Neurociências (PPGNEURO), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Em Neurociências (PPGNEURO), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Ciências e Biotecnologia (PPBI), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Biologia Celular e Molecular (PPGBMC), Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Chávez-Reyes J, Escárcega-González CE, Chavira-Suárez E, León-Buitimea A, Vázquez-León P, Morones-Ramírez JR, Villalón CM, Quintanar-Stephano A, Marichal-Cancino BA. Susceptibility for Some Infectious Diseases in Patients With Diabetes: The Key Role of Glycemia. Front Public Health 2021; 9:559595. [PMID: 33665182 PMCID: PMC7921169 DOI: 10.3389/fpubh.2021.559595] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/12/2021] [Indexed: 01/08/2023] Open
Abstract
Uncontrolled diabetes results in several metabolic alterations including hyperglycemia. Indeed, several preclinical and clinical studies have suggested that this condition may induce susceptibility and the development of more aggressive infectious diseases, especially those caused by some bacteria (including Chlamydophila pneumoniae, Haemophilus influenzae, and Streptococcus pneumoniae, among others) and viruses [such as coronavirus 2 (CoV2), Influenza A virus, Hepatitis B, etc.]. Although the precise mechanisms that link glycemia to the exacerbated infections remain elusive, hyperglycemia is known to induce a wide array of changes in the immune system activity, including alterations in: (i) the microenvironment of immune cells (e.g., pH, blood viscosity and other biochemical parameters); (ii) the supply of energy to infectious bacteria; (iii) the inflammatory response; and (iv) oxidative stress as a result of bacterial proliferative metabolism. Consistent with this evidence, some bacterial infections are typical (and/or have a worse prognosis) in patients with hypercaloric diets and a stressful lifestyle (conditions that promote hyperglycemic episodes). On this basis, the present review is particularly focused on: (i) the role of diabetes in the development of some bacterial and viral infections by analyzing preclinical and clinical findings; (ii) discussing the possible mechanisms by which hyperglycemia may increase the susceptibility for developing infections; and (iii) further understanding the impact of hyperglycemia on the immune system.
Collapse
Affiliation(s)
- Jesús Chávez-Reyes
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Carlos E Escárcega-González
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico
| | - Erika Chavira-Suárez
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Angel León-Buitimea
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico
| | - Priscila Vázquez-León
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - José R Morones-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico
| | - Carlos M Villalón
- Departamento de Farmacobiología, Cinvestav-Coapa, Mexico City, Mexico
| | - Andrés Quintanar-Stephano
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
14
|
Blaustein MP, Hamlyn JM. Ouabain, endogenous ouabain and ouabain-like factors: The Na + pump/ouabain receptor, its linkage to NCX, and its myriad functions. Cell Calcium 2020; 86:102159. [PMID: 31986323 DOI: 10.1016/j.ceca.2020.102159] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/12/2022]
Abstract
In this brief review we discuss some aspects of the Na+ pump and its roles in mediating the effects of ouabain and endogenous ouabain (EO): i) in regulating the cytosolic Ca2+ concentration ([Ca2+]CYT) via Na/Ca exchange (NCX), and ii) in activating a number of protein kinase (PK) signaling cascades that control a myriad of cell functions. Importantly, [Ca2+]CYT and the other signaling pathways intersect at numerous points because of the influence of Ca2+ and calmodulin in modulating some steps in those other pathways. While both mechanisms operate in virtually all cells and tissues, this article focuses primarily on their functions in the cardiovascular system, the central nervous system (CNS) and the kidneys.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
15
|
Marinobufagenin Inhibits Neutrophil Migration and Proinflammatory Cytokines. J Immunol Res 2019; 2019:1094520. [PMID: 31236418 PMCID: PMC6545758 DOI: 10.1155/2019/1094520] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/28/2019] [Indexed: 12/12/2022] Open
Abstract
Cardiotonic steroids, such as ouabain and digoxin, are known to bind to Na+/K+-ATPase and to promote several biological activities, including anti-inflammatory activity. However, there are still no reports in the literature about inflammation and marinobufagenin, a cardiotonic steroid from the bufadienolide family endogenously found in mammals. Therefore, the aim of this work was to analyze, in vivo and in vitro, the role of marinobufagenin in acute inflammation. Swiss mice were treated with 0.56 mg/kg of marinobufagenin intraperitoneally (i.p.) and zymosan (2 mg/mL, i.p.) was used to induce peritoneal inflammation. Peritoneal fluid was collected and used for counting cells by optical microscopy and proinflammatory cytokine quantification (IL-1β, IL-6, and TNF-α) by immunoenzymatic assay (ELISA). Zymosan stimulation, as expected, induced increased cell migration and proinflammatory cytokine levels in the peritoneum. Marinobufagenin treatment reduced polymorphonuclear cell migration and IL-1β and IL-6 levels in the peritoneal cavity, without interfering in TNF-α levels. In addition, the effect of marinobufagenin was evaluated using peritoneal macrophages stimulated by zymosan (0.2 mg/mL) in vitro. Marinobufagenin treatment at different concentrations (10, 100, 1000, and 10000 nM) showed no cytotoxic effect on peritoneal macrophages. Interestingly, the lowest concentration, which did not inhibit Na+/K+-ATPase activity, attenuated proinflammatory cytokines IL-1β, IL-6, and TNF-α levels. To investigate the putative mechanism of action of marinobufagenin, the expression of surface molecules (TLR2 and CD69) and P-p38 MAPK were also evaluated, but no significant effect was observed. Thus, our results suggest that marinobufagenin has an anti-inflammatory role in vivo and in vitro and reveals a novel possible endogenous function of this steroid in mammals.
Collapse
|
16
|
Kennedy DJ, Khalaf FK, Sheehy B, Weber ME, Agatisa-Boyle B, Conic J, Hauser K, Medert CM, Westfall K, Bucur P, Fedorova OV, Bagrov AY, Tang WHW. Telocinobufagin, a Novel Cardiotonic Steroid, Promotes Renal Fibrosis via Na⁺/K⁺-ATPase Profibrotic Signaling Pathways. Int J Mol Sci 2018; 19:ijms19092566. [PMID: 30158457 PMCID: PMC6164831 DOI: 10.3390/ijms19092566] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 12/24/2022] Open
Abstract
Cardiotonic steroids (CTS) are Na+/K+-ATPase (NKA) ligands that are elevated in volume-expanded states and associated with cardiac and renal dysfunction in both clinical and experimental settings. We test the hypothesis that the CTS telocinobufagin (TCB) promotes renal dysfunction in a process involving signaling through the NKA α-1 in the following studies. First, we infuse TCB (4 weeks at 0.1 µg/g/day) or a vehicle into mice expressing wild-type (WT) NKA α-1, as well as mice with a genetic reduction (~40%) of NKA α-1 (NKA α-1+/−). Continuous TCB infusion results in increased proteinuria and cystatin C in WT mice which are significantly attenuated in NKA α-1+/− mice (all p < 0.05), despite similar increases in blood pressure. In a series of in vitro experiments, 24-h treatment of HK2 renal proximal tubular cells with TCB results in significant dose-dependent increases in both Collagens 1 and 3 mRNA (2-fold increases at 10 nM, 5-fold increases at 100 nM, p < 0.05). Similar effects are seen in primary human renal mesangial cells. TCB treatment (100 nM) of SYF fibroblasts reconstituted with cSrc results in a 1.5-fold increase in Collagens 1 and 3 mRNA (p < 0.05), as well as increases in both Transforming Growth factor beta (TGFb, 1.5 fold, p < 0.05) and Connective Tissue Growth Factor (CTGF, 2 fold, p < 0.05), while these effects are absent in SYF cells without Src kinase. In a patient study of subjects with chronic kidney disease, TCB is elevated compared to healthy volunteers. These studies suggest that the pro-fibrotic effects of TCB in the kidney are mediated though the NKA-Src kinase signaling pathway and may have relevance to volume-overloaded conditions, such as chronic kidney disease where TCB is elevated.
Collapse
Affiliation(s)
- David J Kennedy
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA.
| | - Fatimah K Khalaf
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA.
| | - Brendan Sheehy
- Department of Cellular and Molecular Medicine, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44106, USA.
| | - Malory E Weber
- Department of Cellular and Molecular Medicine, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44106, USA.
| | - Brendan Agatisa-Boyle
- Department of Cellular and Molecular Medicine, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44106, USA.
| | - Julijana Conic
- Department of Cellular and Molecular Medicine, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44106, USA.
| | - Kayla Hauser
- Department of Cellular and Molecular Medicine, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44106, USA.
| | - Charles M Medert
- Department of Cellular and Molecular Medicine, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44106, USA.
| | - Kristen Westfall
- Department of Cellular and Molecular Medicine, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44106, USA.
| | - Philip Bucur
- Department of Cellular and Molecular Medicine, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44106, USA.
| | - Olga V Fedorova
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Alexei Y Bagrov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg 194223, Russia.
| | - W H Wilson Tang
- Department of Cellular and Molecular Medicine, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44106, USA.
- Center for Cardiovascular Diagnostics and Prevention, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44106, USA.
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
17
|
Cavalcante-Silva LHA, Lima ÉDA, Carvalho DCM, de Sales-Neto JM, Alves AKDA, Galvão JGFM, da Silva JSDF, Rodrigues-Mascarenhas S. Much More than a Cardiotonic Steroid: Modulation of Inflammation by Ouabain. Front Physiol 2017; 8:895. [PMID: 29176951 PMCID: PMC5686084 DOI: 10.3389/fphys.2017.00895] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/24/2017] [Indexed: 12/22/2022] Open
Abstract
Since the discovery of ouabain as a cardiotonic steroid hormone present in higher mammals, research about it has progressed rapidly and several of its physiological and pharmacological effects have been described. Ouabain can behave as a stress hormone and adrenal cortex is its main source. Direct effects of ouabain are originated due to the binding to its receptor, the Na+/K+-ATPase, on target cells. This interaction can promote Na+ transport blockade or even activation of signaling transduction pathways (e.g., EGFR/Src-Ras-ERK pathway activation), independent of ion transport. Besides the well-known effect of ouabain on the cardiovascular system and blood pressure control, compelling evidence indicates that ouabain regulates a number of immune functions. Inflammation is a tightly coordinated immunological function that is also affected by ouabain. Indeed, this hormone can modulate many inflammatory events such as cell migration, vascular permeability, and cytokine production. Moreover, ouabain also interferes on neuroinflammation. However, it is not clear how ouabain controls these events. In this brief review, we summarize the updates of ouabain effect on several aspects of peripheral and central inflammation, bringing new insights into ouabain functions on the immune system.
Collapse
Affiliation(s)
- Luiz H A Cavalcante-Silva
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunobiotecnologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Éssia de Almeida Lima
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Deyse C M Carvalho
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - José M de Sales-Neto
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunobiotecnologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Anne K de Abreu Alves
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - José G F M Galvão
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunobiotecnologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Juliane S de França da Silva
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunobiotecnologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Sandra Rodrigues-Mascarenhas
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunobiotecnologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil.,Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil.,Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| |
Collapse
|
18
|
Nguyen CH, Huttary N, Atanasov AG, Chatuphonprasert W, Brenner S, Fristiohady A, Hong J, Stadler S, Holzner S, Milovanovic D, Dirsch VM, Kopp B, Saiko P, Krenn L, Jäger W, Krupitza G. Fenofibrate inhibits tumour intravasation by several independent mechanisms in a 3-dimensional co-culture model. Int J Oncol 2017; 50:1879-1888. [PMID: 28393180 DOI: 10.3892/ijo.2017.3956] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 01/16/2017] [Indexed: 11/06/2022] Open
Abstract
Lymph node metastasis of breast cancer is a clinical marker of poor prognosis. Yet, there exist no therapies targeting mechanisms of intravasation into lymphatics. Herein we report on an effect of the antidyslipidemic drug fenofibrate with vasoprotective activity, which attenuates breast cancer intravasation in vitro, and describe the potential mechanisms. To measure intravasation in a 3-dimensional co-culture model MDA-MB231 and MCF-7 breast cancer spheroids were placed on immortalised lymphendothelial cell (LEC) monolayers. This provokes the formation of circular chemorepellent induced defects (CCIDs) in the LEC barrier resembling entry ports for the intravasating tumour. Furthermore, the expression of adhesion molecules ICAM-1, CD31 and FAK was investigated in LECs by western blotting as well as cell-cell adhesion and NF-κB activity by respective assays. In MDA-MB231 cells the activity of CYP1A1 was measured by EROD assay. Fenofibrate inhibited CCID formation in the MDA-MB231/LEC- and MCF-7/LEC models and the activity of NF-κB, which in turn downregulated ICAM-1 in LECs and the adhesion of cancer cells to LECs. Furthermore, CD31 and the activity of FAK were inhibited. In MDA-MB231 cells, fenofibrate attenuated CYP1A1 activity. Combinations with other FDA-approved drugs, which reportedly inhibit different ion channels, attenuated CCID formation additively or synergistically. In summary, fenofibrate inhibited NF-κB and ICAM-1, and inactivated FAK, thereby attenuating tumour intravasation in vitro. A combination with other FDA-approved drugs further improved this effect. Our new concept may lead to a novel therapy for cancer patients.
Collapse
Affiliation(s)
- Chi Huu Nguyen
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Nicole Huttary
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | | | | | - Stefan Brenner
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Adryan Fristiohady
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Junli Hong
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Serena Stadler
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Silvio Holzner
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Daniela Milovanovic
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Brigitte Kopp
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Philipp Saiko
- Department of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, Vienna, Austria
| | - Liselotte Krenn
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Georg Krupitza
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Lima DB, Valente RC, Capella MAM. Ouabain-induced alterations in ABCB1 of mesenteric lymph nodes and thymocytes of rats and mice. Oncol Lett 2017; 12:5275-5280. [PMID: 28105236 DOI: 10.3892/ol.2016.5366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 06/27/2016] [Indexed: 11/06/2022] Open
Abstract
Ouabain is a glycoside with immunomodulating properties, and recent studies have suggested its use in adjuvant therapy for cancer treatment. Ouabain is known to modulate the immune system in vitro, and previous studies have revealed that ouabain can modulate the expression and activity of ABCB1, a protein associated with multidrug resistance present in immune system. Therefore, the present study investigated alterations in the expression and activity of ABCB1 in the thymi, peripheral blood monocytes and lymph nodes of Wistar rats and Swiss mice treated acutely or chronically with ouabain. A decrease of almost 45% in the monocyte count and an increase of 55% in the basophil count were observed. A significant decrease (75% reduction) in the amount of cells with ABCB1 activity was found in the thymocytes of ouabain-treated rats and mice. The possible implications of these results for cancer treatment are discussed.
Collapse
Affiliation(s)
- Daniel Boff Lima
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21949-900, Brazil
| | - Raphael Carmo Valente
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21949-900, Brazil
| | - Marcia Alves Marques Capella
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21949-900, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21949-900, Brazil
| |
Collapse
|
20
|
Liu H, Zhao ZG, Xing LQ, Zhang LM, Niu CY. Post-shock mesenteric lymph drainage ameliorates cellular immune function in rats following hemorrhagic shock. Inflammation 2015; 38:584-94. [PMID: 24986445 DOI: 10.1007/s10753-014-9965-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Disturbance of immunity is an important factor to modulate inflammatory responses after severe shock. Post-shock mesenteric lymph (PSML) return plays an adverse role in multiple organ injuries induced by the hemorrhagic shock, and the inflammatory factors are involved in this process. However, whether the PSML can exacerbate immune dysfunctions that modulate inflammatory response to the hemorrhagic shock remains unknown. In the present study, the effects of PSML drainage on the distribution of T lymphocyte subgroup, the release of inflammatory factors, and apoptosis of thymocytes were investigated; the effect of PSML on the specific parameters of cellular immune function was also determined. Results showed that PSML drainage reduced the increased levels of CD3+, CD3+CD4+, CD4+CD25+ lymphocytes, IFN-γ, and the ratios of CD3 + CD4+/CD3 + CD4- in blood of the shocked rats at 3 h after resuscitation; PSML drainage also abolished the decreased IL-4 level and restored the higher ratio of IFN-γ/IL-4 to normal levels. Tissue injury, including enlarged intermembrance space and edema with congestion in the medulla, increased apoptotic cells and bax expression, decreased number of cells in the S phase, and bcl-2 expression were observed in the thymus after hemorrhagic shock. PSML drainage reversed these effects. In particular, PSML drainage increased the proliferation index and decreased p53 expression of thymocytes. These results suggest that hyperimmunity occurred at early stages of hemorrhagic shock with resuscitation and that PSML drainage could markedly improve cellular immune function that is responsible for the reduced inflammatory responses.
Collapse
Affiliation(s)
- Hua Liu
- Institute of Microcirculation, Hebei North University, 11 Diamond South Road, Hebei, 075000, Zhangjiakou, People's Republic of China
| | | | | | | | | |
Collapse
|
21
|
da Silva JMC, das Neves Azevedo A, dos Santos Barbosa RP, Vianna TAG, Fittipaldi J, Teixeira MP, do Canto FB, da Costa KM, Pozzatti RR, Cabral VR, Rumjanek VM, de Paiva LS. Dynamics of murine B lymphocytes is modulated by in vivo treatment with steroid ouabain. Immunobiology 2015; 221:368-76. [PMID: 26439835 DOI: 10.1016/j.imbio.2015.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/16/2015] [Indexed: 02/09/2023]
Abstract
Ouabain (OUA) is a steroid hormone capable of inhibiting the protein Na+K+ATPase present in the plasma membrane of cells. Ouabain was initially extracted from the roots of African trees such as Acocanthera ouabaio and Strophantus gratus seeds and later described as an endogenous component found in higher mammals. The adrenal gland is the main site of synthesis of ouabain and it is released in stressful situations, conditions similar to those where there is secretion of corticosteroids. Immunological functions have been shown to be regulated by ouabain. In order to understand the effects of ouabain on B lymphocyte populations in different lymphoid organs, mice received intraperitoneal injections of ouabain for 3 consecutive days. Twenty-four hours after the last injection, cells were analyzed by flow cytometry. In the spleen, ouabain modulated especially follicular B cells, inducing a significant decrease in the percentage and absolute numbers of those cells. Ouabain also reduced the absolute number of marginal zone B lymphocytes. No difference in the percentage or absolute number of B lymphocytes in the spleen forty-eight hours after the last injection was observed. An increase in the number of B cells was seen in mesenteric lymph nodes and this retention appears to be directly related to increased expression of CXCR5 chemokine receptor and reduction of CD62L, which also explains the observed reduction of B cells in the spleen. Our results indicate that ouabain regulates the dynamics of B lymphocytes in peripheral organs but production of total IgM and IgG in the serum of animals treated in vivo with ouabain was not affected.
Collapse
Affiliation(s)
- Joyle Moreira Carvalho da Silva
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil; Programa de Pós Graduação em Patologia/UFF, Niterói, Brazil
| | - Augusto das Neves Azevedo
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | | | | | - Juliana Fittipaldi
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Mariana Pires Teixeira
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Fábio Barrozo do Canto
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Kelli Monteiro da Costa
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil; Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Rodrigo Roitman Pozzatti
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Vinicius Ribeiro Cabral
- Faculdade de Educação, Departamento de Fundamentos Pedagógicos, Universidade Federal Fluminense, Niterói, Brazil
| | - Vivian Mary Rumjanek
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Luciana Souza de Paiva
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.
| |
Collapse
|
22
|
Dan C, Jinjun B, Zi-Chun H, Lin M, Wei C, Xu Z, Ri Z, Shun C, Wen-Zhu S, Qing-Cai J, Wu Y. Modulation of TNF-α mRNA stability by human antigen R and miR181s in sepsis-induced immunoparalysis. EMBO Mol Med 2015; 7:140-57. [PMID: 25535255 PMCID: PMC4328645 DOI: 10.15252/emmm.201404797] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Immunoparalysis is an important pathological mechanism in sepsis. However, an effective small molecule therapy is lacking. Here, we show that ouabain, a Na+,K+-ATPase ligand, can reverse immunoparalysis in vitro, in vivo, and in clinical samples. Notably, the effect of ouabain was critically dependent on TNF-α expression. However, ouabain had opposing effects on the stability of TNF-α mRNA: Ouabain triggered miR-181 transcription, which promoted TNF-α mRNA degradation and induced immunoparalysis, and ouabain triggered the nuclear export of human antigen R (HuR), which stabilized TNF-α mRNA and suppressed immuno-paralysis. Interestingly, because the miR-181 binding site is located within the HuR binding site in the 3′-untranslated region of TNF-α, in ouabain-treated cells, HuR competed with miR-181 for binding to TNF-α mRNA and recruited TNF-α mRNA to stress granules, thereby stabilizing TNF-α mRNA and reversing immunoparalysis. Ouabain also induced GM-CSF and interferon-γ expression in a HuR-dependent manner. Hence, the fine-tuning of TNF-α mRNA stability by HuR and miR181 plays a crucial role in immunoparalysis, and Na+,K+-ATPase ligands are promising agents for immunoparalysis therapy.
Collapse
Affiliation(s)
- Cao Dan
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences Nanjing University, Nanjing, China
| | - Bian Jinjun
- Department of Anesthesiology and Intensive Care Unit, Changhai Hospital Affiliated Hospital of the Second Military Medical University, Shanghai, China
| | - Hua Zi-Chun
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences Nanjing University, Nanjing, China
| | - Ma Lin
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences Nanjing University, Nanjing, China
| | - Chen Wei
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences Nanjing University, Nanjing, China
| | - Zhang Xu
- Department of Anesthesiology and Intensive Care Unit, Changhai Hospital Affiliated Hospital of the Second Military Medical University, Shanghai, China
| | - Zhou Ri
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences Nanjing University, Nanjing, China
| | - Cheng Shun
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences Nanjing University, Nanjing, China
| | - Sun Wen-Zhu
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences Nanjing University, Nanjing, China
| | - Jiao Qing-Cai
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences Nanjing University, Nanjing, China
| | - Yin Wu
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences Nanjing University, Nanjing, China The State Key Lab of Natural Medicine, China Pharmaceutical University, Nanjing, China Jiangsu Key Lab of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
23
|
Ouabain Modulates Zymosan-Induced Peritonitis in Mice. Mediators Inflamm 2015; 2015:265798. [PMID: 26078492 PMCID: PMC4442290 DOI: 10.1155/2015/265798] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/22/2015] [Indexed: 11/29/2022] Open
Abstract
Ouabain, a potent inhibitor of the Na+, K+-ATPase, was identified as an endogenous substance. Recently, ouabain was shown to affect various immunological processes. We have previously demonstrated the ability of ouabain to modulate inflammation, but little is known about the mechanisms involved. Thus, the aim of the present work is to evaluate the immune modulatory role of ouabain on zymosan-induced peritonitis in mice. Our results show that ouabain decreased plasma exudation (33%). After induction of inflammation, OUA treatment led to a 46% reduction in the total number of cells, as a reflex of a decrease of polymorphonuclear leukocytes, which does not appear to be due to cell death. Furthermore, OUA decreased TNF-α (57%) and IL-1β (58%) levels, without interfering with IL-6 and IL-10. Also, in vitro experiments show that ouabain did not affect endocytic capacity. Moreover, electrophoretic mobility shift assay (EMSA) shows that zymosan treatment increased (85%) NF-κB binding activity and that ouabain reduced (30%) NF-κB binding activity induced by zymosan. Therefore, our data suggest that ouabain modulated acute inflammatory response, reducing the number of cells and cytokines levels in the peritoneal cavity, as well as NFκB activation, suggesting a new mode of action of this substance.
Collapse
|
24
|
The influence of Ouabain on human dendritic cells maturation. Mediators Inflamm 2014; 2014:494956. [PMID: 25609892 PMCID: PMC4291013 DOI: 10.1155/2014/494956] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 12/01/2014] [Indexed: 11/17/2022] Open
Abstract
Although known as a Na,K-ATPase inhibitor, several other cellular and systemic actions have been ascribed to the steroid Ouabain (Oua). Particularly in the immune system, our group showed that Ouabain acts on decreasing lymphocyte proliferation, synergizing with glucocorticoids in spontaneous thymocyte apoptosis, and also lessening CD14 expression and blocking CD16 upregulation on human monocytes. However, Ouabain effects on dendritic cells (DCs) were not explored so far. Considering the peculiar plasticity and the importance of DCs in immune responses, the aim of our study was to investigate DC maturation under Ouabain influence. To generate immature DCs, human monocytes were cultured with IL-4 and GM-CSF (5 days). To investigate Ouabain role on DC activation, DCs were stimulated with TNF-α for 48 h in the presence or absence of Ouabain. TNF-induced CD83 expression and IL-12 production were abolished in DCs incubated with 100 nM Ouabain, though DC functional capacity concerning lymphocyte activation remained unaltered. Nevertheless, TNF-α-induced antigen capture downregulation, another maturation marker, occurred even in the presence of Ouabain. Besides, Ouabain increased HLA-DR and CD86 expression, whereas CD80 expression was maintained. Collectively, our results suggest that DCs respond to Ouabain maturating into a distinct category, possibly contributing to the balance between immunity and tolerance.
Collapse
|
25
|
Wang ZJ, Sun L, Heinbockel T. Resibufogenin and cinobufagin activate central neurons through an ouabain-like action. PLoS One 2014; 9:e113272. [PMID: 25420080 PMCID: PMC4242513 DOI: 10.1371/journal.pone.0113272] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 10/26/2014] [Indexed: 02/06/2023] Open
Abstract
Cinobufagin and resibufogenin are two major effective bufadienolides of Chan su (toad venom), which is a Chinese medicine obtained from the skin venom gland of toads and is used as a cardiotonic and central nervous system (CNS) respiratory agent, an analgesic and anesthetic, and as a remedy for ulcers. Many clinical cases showed that Chan su has severe side-effects on the CNS, causing shortness of breath, breathlessness, seizure, coma and cardiac arrhythmia. We used whole-cell recordings from brain slices to determine the effects of bufadienolides on excitability of a principal neuron in main olfactory bulb (MOB), mitral cells (MCs), and the cellular mechanism underlying the excitation. At higher concentrations, cinobufagin and resibufogenin induced irreversible over-excitation of MCs indicating a toxic effect. At lower concentrations, they concentration-dependently increased spontaneous firing rate, depolarized the membrane potential of MCs, and elicited inward currents. The excitatory effects were due to a direct action on MCs rather than an indirect phasic action. Bufadienolides and ouabain had similar effects on firing of MCs which suggested that bufadienolides activated neuron through a ouabain-like effect, most likely by inhibiting Na+/K+-ATPase. The direct action of bufadienolide on brain Na+ channels was tested by recordings from stably Nav1.2-transfected cells. Bufadienolides failed to make significant changes of the main properties of Nav1.2 channels in current amplitude, current-voltage (I-V) relationships, activation and inactivation. Our results suggest that inhibition of Na+/K+-ATPase may be involved in both the pharmacological and toxic effects of bufadienolide-evoked CNS excitation.
Collapse
Affiliation(s)
- Ze-Jun Wang
- Department of Anatomy, College of Medicine, Howard University, Washington, DC, United States of America
- * E-mail: (ZW); (TH)
| | - Liqin Sun
- Department of Anatomy, College of Medicine, Howard University, Washington, DC, United States of America
| | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC, United States of America
- * E-mail: (ZW); (TH)
| |
Collapse
|
26
|
Ouabain affects the expression of activation markers, cytokine production, and endocytosis of human monocytes. Mediators Inflamm 2014; 2014:760368. [PMID: 24904197 PMCID: PMC4034513 DOI: 10.1155/2014/760368] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 03/03/2014] [Indexed: 11/18/2022] Open
Abstract
Ouabain is a steroid capable of binding to and inhibiting Na+,-K+-ATPase. Studies have demonstrated some actions of ouabain on immune cells, which indicated both pro- and anti-inflammatory properties of this molecule. Nevertheless, its effects on human monocytes are still poorly understood. Thus, the present work investigated effects of ouabain in the activation and function of human adherent monocytes. Our results show that there is an increase in intracellular calcium levels already 5 minutes following monocyte treatment with 10−7 M of ouabain. Furthermore, monocytes expressed increased amounts of surface activation markers such as CD69, HLA-DR, CD86, and CD80 and also presented an augmented endocytic activity of dextran-FITC particles after 24 hours of culture in the presence of ouabain. However, monocytes treated with ouabain did not have an increased stimulatory capacity in allogeneic mixed leukocyte reaction. Ouabain-treated monocytes produced higher levels of IL-1β and TNF-α as reported before. A novel observation was the fact that ouabain induced IL-10 and VEGF as well. Collectively, these results suggest that ouabain impacts monocyte activation and modulates monocyte functions, implying that this steroid could act as an immunomodulator of these cells.
Collapse
|
27
|
Smolyaninova LV, Dergalev AA, Kulebyakin KY, Carpenter DO, Boldyrev AA. Carnosine prevents necrotic and apoptotic death of rat thymocytes via ouabain-sensitive Na/K-ATPase. Cell Biochem Funct 2013; 31:30-5. [PMID: 22763713 PMCID: PMC3481008 DOI: 10.1002/cbf.2856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/08/2012] [Indexed: 11/11/2022]
Abstract
It is known that ouabain, a selective inhibitor of Na/K-ATPase, not only can cause the activation of signal cascades, which regulate the cell viability, but also can cause the accumulation of free radicals, which can evoke the oxidative stress. We have shown that the nanomolar concentrations of ouabain result in the temporary increase in the level of intracellular free radicals, but the millimolar concentration of ouabain induces a stable intracellular accumulation of free radicals in rat thymocytes. The increasing level of free radicals resulting from both low and high concentrations of ouabain can be attenuated by the antioxidant, carnosine. Moreover, the long-term incubation with ouabain leads to the cell death by necrosis and apoptosis. Ouabain-mediated apoptosis and necrosis were also abolished by carnosine.
Collapse
|
28
|
Leptospira and inflammation. Mediators Inflamm 2012; 2012:317950. [PMID: 23132959 PMCID: PMC3485547 DOI: 10.1155/2012/317950] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/25/2012] [Accepted: 09/27/2012] [Indexed: 12/21/2022] Open
Abstract
Leptospirosis is an important zoonosis and has a worldwide impact on public health. This paper will discuss both the role of immunogenic and pathogenic molecules during leptospirosis infection and possible new targets for immunotherapy against leptospira components. Leptospira, possess a wide variety of mechanisms that allow them to evade the host immune system and cause infection. Many molecules contribute to the ability of Leptospira to adhere, invade, and colonize. The recent sequencing of the Leptospira genome has increased our knowledge about this pathogen. Although the virulence factors, molecular targets, mechanisms of inflammation, and signaling pathways triggered by leptospiral antigens have been studied, some questions are still unanswered. Toll-like receptors (TLRs) are the primary sensors of invading pathogens. TLRs recognize conserved microbial pattern molecules and activate signaling pathways that are pivotal to innate and adaptive immune responses. Recently, a new molecular target has emerged—the Na/K-ATPase—which may contribute to inflammatory and metabolic alteration in this syndrome. Na/K-ATPase is a target for specific fatty acids of host origin and for bacterial components such as the glycolipoprotein fraction (GLP) that may lead to inflammasome activation. We propose that in addition to TLRs, Na/K-ATPase may play a role in the innate response to leptospirosis infection.
Collapse
|
29
|
Jacob PL, Leite JA, Alves AKA, Rodrigues YKS, Amorim FM, Néris PLN, Oliveira MR, Rodrigues-Mascarenhas S. Immunomodulatory activity of ouabain in Leishmania leishmania amazonensis-infected Swiss mice. Parasitol Res 2012; 112:1313-21. [PMID: 23052777 DOI: 10.1007/s00436-012-3146-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/20/2012] [Indexed: 11/29/2022]
Abstract
Ouabain is a cardiotonic steroid identified as an endogenous substance of human plasma, being produced by the adrenal, pituitary, and hypothalamus. Despite the studies demonstrating the ability of ouabain to modulate inflammation and other aspects of the immune response, the effects of this substance in Leishmaniasis is unknown. The purpose of this work was to understand the immunomodulatory activity of ouabain in experimental Leishmaniasis in Swiss mice. It was demonstrated that ouabain reduced total cell numbers in the peritoneal cavity as a reflex of the inhibition of neutrophil migration induced by Leishmania (L.) Amazonensis. Furthermore, ouabain reduced TNF-α and IFN-γ levels, without cytotoxicity against peritoneal macrophages. These data showed the anti-inflammatory role of ouabain in the early events of the immune response triggered by Leishmania (L.) Amazonensis infection in murine model.
Collapse
Affiliation(s)
- P L Jacob
- Centro de Ciências Exatas e da Natureza, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Valente RC, Araujo EG, Rumjanek VM. Ouabain inhibits monocyte activation in vitro: prevention of the proinflammatory mCD14(+)/CD16(+) subset appearance and cell-size progression. J Exp Pharmacol 2012; 4:125-40. [PMID: 27186125 PMCID: PMC4863552 DOI: 10.2147/jep.s35507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Classically described as a potent inhibitor of the sodium-potassium adenosine triphosphatase enzyme, ouabain has been further shown to act as an effective immunomodulator in mammals. Recently, our group showed that this hormone downregulates membrane CD14 (mCD14) in human monocytes, though it is not known whether monocyte activation status could modify ouabain influence. Hence, we aimed to investigate ouabain effect during monocyte activation in vitro, analyzing mCD14, CD16 and CD69 expression in total monocytes after two periods of adhesion (2 hours and 24 hours) or in small and large monocyte subpopulations separately. Ouabain (100 nM) inhibited monocyte-size increase, characteristic of activation, only when added to cells immediately after 2 hours’ adhesion. Moreover, downregulation of both mCD14 and CD16 expression by ouabain was more effective in small monocytes and in cells after 2 hours’ adhesion. Since monocytes after 24 hours’ adhesion showed no lack of ouabain binding and no CD69 upregulation, it seems that ouabain is somehow incapable of triggering an appropriate cell-signaling induction once monocytes become activated. Furthermore, though p38 MAPK activation was crucial for the impairment in cell-size progression induced by ouabain, its inhibition did not alter ouabain-induced CD69 upregulation, suggesting that other molecules may participate in the response to this hormone by monocytes. Our data suggest that ouabain inhibits monocyte activation in vitro, preventing both cell-size increase and the appearance of the proinflammatory mCD14+/CD16+ subpopulation. Thus, the findings suggest that individuals suffering from disorders commonly associated with high ouabain plasma levels, like hypertension, may present defective monocyte activation under inflammation or infection.
Collapse
Affiliation(s)
- Raphael C Valente
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elizabeth G Araujo
- Departamento de Neurobiologia, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Vivian M Rumjanek
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Anti-inflammatory and antinociceptive activity of ouabain in mice. Mediators Inflamm 2011; 2011:912925. [PMID: 21772669 PMCID: PMC3136139 DOI: 10.1155/2011/912925] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/17/2011] [Accepted: 03/26/2011] [Indexed: 11/23/2022] Open
Abstract
Ouabain, an inhibitor of the Na+/K+-ATPase pump, was identified as an endogenous substance of human plasma. Ouabain has been studied for its ability to interfere with various regulatory mechanisms. Despite the studies portraying the ability of ouabain to modulate the immune response, little is known about the effect of this substance on the inflammatory process. The aim of this work was to study the effects triggered by ouabain on inflammation and nociceptive models. Ouabain produced a reduction in the mouse paw edema induced by carrageenan, compound 48/80 and zymosan. This anti-inflammatory potential might be related to the inhibition of prostaglandin E2, bradykinin, and mast-cell degranulation but not to histamine. Ouabain also modulated the inflammation induced by concanavalin A by inhibiting cell migration. Besides that, ouabain presented antinociceptive activity. Taken these data together, this work demonstrated, for the first time, that ouabain presented in vivo analgesic and anti-inflammatory effects.
Collapse
|
32
|
de Paiva LS, Costa KMD, Canto FBD, Cabral VR, Fucs R, Nobrega A, Rumjanek VM. Modulation of mature B cells in mice following treatment with ouabain. Immunobiology 2011; 216:1038-43. [PMID: 21514687 DOI: 10.1016/j.imbio.2011.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 02/22/2011] [Accepted: 03/05/2011] [Indexed: 12/30/2022]
Abstract
Ouabain (OUA) is an endogenous hormone released by the adrenal gland under stress situations. Steroid hormones and glucocorticoids have been characterized as selective inhibitors of lymphopoiesis. The present report shows in vivo modulation of mature B cells in bone marrow, spleen and peripheral blood by ouabain. Mice injected intraperitonially (i.p.) with ouabain 0.56 mg/kg for 3 consecutive days displayed, 24 h after last injection, a decreased cellularity in the bone marrow with diminution of the mature B cell subpopulation while the other B cell subpopulations were preserved. Percentually, the myeloid lineage in bone marrow was increased by ouabain. Numbers of mature B lymphocytes in spleen and peripheral blood were reduced following in vivo treatment. In vitro, the B cell populations were not affected. The effects appear to be independent of steroid hormones and strain. The presence of stable levels of glucocorticoids seems to be important because the effects could only be observed from the fourth week animal's life, when glucocorticoid levels are stable. These results open new perspectives for a potential use of ouabain as an immunomodulator.
Collapse
Affiliation(s)
- Luciana S de Paiva
- Laboratório de Imunorregulação, Instituto de Biologia, Departamento de Imunobiologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | | | | | | | | | | | | |
Collapse
|
33
|
Feng S, Chen W, Cao D, Bian J, Gong FY, Cheng W, Cheng S, Xu Q, Hua ZC, Yin W. Involvement of Na(+), K (+)-ATPase and its inhibitors in HuR-mediated cytokine mRNA stabilization in lung epithelial cells. Cell Mol Life Sci 2011; 68:109-24. [PMID: 20614158 PMCID: PMC11115110 DOI: 10.1007/s00018-010-0444-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 06/15/2010] [Accepted: 06/22/2010] [Indexed: 02/02/2023]
Abstract
Increasing evidence demonstrates that Na(+), K(+)-ATPase plays an important role in pulmonary inflammation, but the mechanism remains largely unknown. In this study, we used cardiotonic steroids as Na(+), K(+)-ATPase inhibitors to explore the possible involvement of Na(+), K(+)-ATPase in pulmonary epithelial inflammation. The results demonstrated that mice after ouabain inhalation developed cyclooxygenase-2-dependent acute lung inflammation. The in vitro experiments further confirmed that Na(+), K(+)-ATPase inhibitors significantly stimulated cyclooxygenase-2 expression in lung epithelial cells of human or murine origin, the process of which was participated by multiple cis-elements and trans-acting factors. Most importantly, we first described here that Na(+), K(+)-ATPase inhibitors could evoke a significant Hu antigen R nuclear export in lung epithelial cells, which stabilized cyclooxygenase-2 mRNA by binding with a proximal AU-rich element within its 3'-untranslated region. In conclusion, HuR-mediated mRNA stabilization opens new avenues in understanding the importance of Na(+), K(+)-ATPase, as well as its inhibitors in inflammation.
Collapse
Affiliation(s)
- Su Feng
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Wei Chen
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Dan Cao
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Jinjun Bian
- Department of Anesthesia and Intensive Care Unit, Changhai Hospital, Affiliated Hospital of the Second Military Medical University, Shanghai, 200433 China
| | - Fang-Yuan Gong
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Wei Cheng
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Shun Cheng
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Qiang Xu
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Zi-Chun Hua
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Wu Yin
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| |
Collapse
|
34
|
Death of ouabain-treated renal epithelial cells: evidence for p38 MAPK-mediated Na (i) (+) /K (i) (+) -independent signaling. Apoptosis 2010; 14:1266-73. [PMID: 19784777 DOI: 10.1007/s10495-009-0404-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent studies demonstrate that cytotoxic actions of ouabain and other cardiotonic steroids (CTS) on renal epithelial cells (REC) are triggered by their interaction with the Na(+),K(+)-ATPase alpha-subunit but not the result of inhibition of Na(+),K(+)-ATPase-mediated ion fluxes and inversion of the [Na(+)](i)/[K(+)](i) ratio. This study examined the role of mitogen-activated protein kinases (MAPK) in the death of ouabain-treated REC. Exposure of C7-MDCK cells that resembled principal cells from canine kidney to 3 microM ouabain led to phosphorylation of p38 without significant impact on phosphorylation of ERK and JNK MAPK. Maximal increment of p38 phosphorylation was observed at 4 h followed by cell death at 12 h of ouabain addition. In contrast to ouabain, neither cell death nor p38 MAPK phosphorylation were affected by elevation of the [Na(+)](i)/[K(+)](i) ratio triggered by Na(+),K(+)-ATPase inhibition in K(+)-free medium. p38 phosphorylation was noted in all other cell types exhibiting death in the presence of ouabain, such as intercalated cells from canine kidney and human colon rectal carcinoma cells. We did not observe any action of ouabain on p38 phosphorylation in ouabain-resistant smooth muscle cells from rat aorta and endothelial cells from human umbilical vein. Both p38 phosphorylation and death of ouabain-treated C7-MDCK cells were suppressed by p38 inhibitor SB 202190 but were resistant to its inactive analogue SB 202474. Our results demonstrate that death of CTS-treated REC is triggered by Na (i) (+) ,K (i) (+) -independent activation of p38 MAPK.
Collapse
|