1
|
Askarizadeh F, Butler AE, Kesharwani P, Sahebkar A. Regulatory effect of curcumin on CD40:CD40L interaction and therapeutic implications. Food Chem Toxicol 2025; 200:115369. [PMID: 40043936 DOI: 10.1016/j.fct.2025.115369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/24/2025] [Accepted: 03/02/2025] [Indexed: 04/21/2025]
Abstract
Natural compounds have garnered significant attention as potential therapeutic agents due to their inherent properties. Their notable qualities, including safety, efficacy, favorable pharmacokinetic properties, and heightened effectiveness against certain diseases, particularly inflammatory conditions, make them particularly appealing. Among these compounds, curcumin has attracted considerable interest for its unique therapeutic properties and has therefore been extensively studied as a potential therapeutic agent for treating various diseases. Curcumin exhibits diverse anti-inflammatory, antioxidant, and antimicrobial effects. Curcumin's immune system regulatory ability has made it a promising compound for treatment of various inflammatory diseases, such as psoriasis, atherosclerosis, asthma, colitis, IBD, and arthritis. Among the signaling pathways implicated in these conditions, the CD40 receptor together with its ligand, CD40L, are recognized as central players. Studies have demonstrated that the interaction between CD40 and CD40L interaction acts as the primary mediator of the immune response in inflammatory diseases. Numerous studies have explored the impact of curcumin on the CD40:CD40L pathway, highlighting its regulatory effects on this inflammatory pathway and its potential therapeutic use in related inflammatory conditions. In this review, we will consider the evidence concerning curcumin's modulatory effects in inflammatory disease and its potential therapeutic role in regulating the CD40:CD40L pathway.
Collapse
Affiliation(s)
- Fatemeh Askarizadeh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Pan YQ, Yang K, Zhang X, Li YX, Guo C, Chen ZH, Du Y. Construction and validation of a necroptosis-related prognostic signature in acute myeloid leukemia. Medicine (Baltimore) 2024; 103:e38432. [PMID: 39259061 PMCID: PMC11142778 DOI: 10.1097/md.0000000000038432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/31/2023] [Accepted: 05/10/2024] [Indexed: 09/12/2024] Open
Abstract
Acute myeloid leukemia (AML), an uncommonly low 5-year survival and high mortality rate, is a potentially catastrophic diagnosed subtype of leukemia. The development of new prognostic markers is urgently needed to guide its treatment. Necroptosis is a newly defined biological process for regulating cell death, and previous studies have confirmed that the abnormality of the physical function can lead to multiple malignancies. Here, we performed necroptosis-related genes (NRGs) to build a predictive model in the Cancer Genome Atlas (TCGA)-AML patients, thus exploring the correlation between the NRG prognosis signature (NRG score) of this model and immune infiltration, pathway activity, clinical features, and immunotherapy. Besides, we computed the statistical measure Spearman rank correlation between the NRG score and the Log IC50 values of therapeutic agents. Subsequently, we divided the TCGA-AML cohort into 2 groups, one with high scores and the other with low scores depending on the model score. AML patients with high NRG scores exhibited a lower estimated overall survival (OS) rate than those with low NRG scores, which was confirmed in the validation set. The prognostic value of the constructed NRG signature to the AML, independent of other variables, was demonstrated by uni- and multivariate stepwise regression analysis. When comparing the infiltrating states of specialized cells associated with immune system from the 2 groups, B cells naive, Plasma cells, and monocytes represented significant differences among various subgroups of samples. Moreover, the 30 hallmark-related pathways related to necroptosis characteristics were remarkably different between the high/low NRG score groups. And patients showed remarkable NRG score distribution in clinical features of bone marrow lymphocyte, category, and FAB classifications. Besides, we found that the BIRB0796, VX680, Vorinostat, and Axitinib positively related with NRG score, whereas CI. 1040, PD. 0325901, Z.L LNle. CHO, and AZD6244 negatively correlated with the NRG score. These drugs may provide a reference for subsequent treatment.
Collapse
Affiliation(s)
- Yu-Qing Pan
- Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan, P.R. China
- Yunnan Innovation Team of Clinical Laboratory and Diagnosis, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, Yunnan, P.R. China
| | - Kai Yang
- Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan, P.R. China
- Yunnan Innovation Team of Clinical Laboratory and Diagnosis, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, Yunnan, P.R. China
| | - Xi Zhang
- Department of Clinical Laboratory, the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Yi-Xun Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan, P.R. China
- Yunnan Innovation Team of Clinical Laboratory and Diagnosis, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, Yunnan, P.R. China
| | - Chong Guo
- Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan, P.R. China
- Yunnan Innovation Team of Clinical Laboratory and Diagnosis, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, Yunnan, P.R. China
| | - Zheng-Hui Chen
- Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan, P.R. China
- Yunnan Innovation Team of Clinical Laboratory and Diagnosis, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, Yunnan, P.R. China
| | - Yan Du
- Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan, P.R. China
- Yunnan Innovation Team of Clinical Laboratory and Diagnosis, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, Yunnan, P.R. China
| |
Collapse
|
3
|
Serag E, Helal M, El Nemr A. Curcumin Loaded onto Folic acid Carbon dots as a Potent drug Delivery System for Antibacterial and Anticancer Applications. J CLUST SCI 2024; 35:519-532. [DOI: 10.1007/s10876-023-02491-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/11/2023] [Indexed: 01/12/2025]
Abstract
AbstractNumerous malignancies have been shown to be successfully treated with Curcumin. Despite its promising effects, Curcumin has limitations in clinical studies because of its stability, low water solubility, and adsorption. Carbon quantum dots with high biocompatibility can be employed as nanostructured material carriers to enhance Curcumin availability. In this study, folic acid was used as the raw material for the hydrothermal preparation of carbon dots, followed by the loading of Curcumin onto the carbon dots to form a folic acid carbon dot/Curcumin nanocomposite. The morphology and the chemical structure of the synthesized carbon dots were investigated. Folic acid carbon dots displayed robust emission peaks with a quantum yield of 41.8%. Moreover, the adsorption effectiveness of Curcumin on carbon dots was determined to be 83.11%. The liberating pattern of Curcumin was pH-dependent and reached 36 and 27% after a few hours at pH 5 and 7.4, respectively. The release occurs via the Fickiann diffusion mechanism with ah n value less than 0.45.The nanocomposite was tested for antibacterial activity against gram-negative Pseudomonas aeruginosa ATCC 27,853 and gram-positive Staphylococcus aureus ATCC 25,923. The nanocomposite displayed antibacterial behavior with MIC 12.5 µg/mL. The anticancer activities of the nanocomposite were further tested against high-folate receptor-expressing Hela cells (cervical malignancy) and low-folate receptor-expressing HepG2 cells (hepatocellular carcinoma). Folic acid carbon dot/Curcumin nanocomposite reduced Hela cell viability at an IC50 of 88.723 ± 0.534 g/mL. On the other hand, HepG2 cells showed no toxicity response.
Collapse
|
4
|
Yu Y, Liu Q, Ran Q, Cao F. Overexpression of PPM1B inhibited chemoresistance to temozolomide and proliferation in glioma cells. Cell Biol Int 2024; 48:143-153. [PMID: 37798941 DOI: 10.1002/cbin.12092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 08/02/2023] [Accepted: 09/16/2023] [Indexed: 10/07/2023]
Abstract
Protein phosphatase magnesium-dependent 1B (PPM1B) functions as IKKβ phosphatases to terminate nuclear factor kappa B (NF-κB) signaling. NF-κB signaling was constitutively activated in glioma cells. At present, little is known about the role of PPM1B in glioma. In the current study, we found that the expression of PPM1B was reduced in glioma tissues and cells, and decreased expression of PPM1B was related to poor overall survival of patients. Overexpression of PPM1B inhibited the proliferation and promoted apoptosis of glioma cells. Moreover, PPM1B overexpression reduced the phosphorylation of IKKβ and inhibited the nuclear localization of NF-κBp65. PDTC, an inhibitor of NF-κB signaling, reversed PPM1B-knockdown-induced cell proliferation. Furthermore, overexpression of PPM1B enhanced the sensitivity of glioma cells to temozolomide. In vivo experiments showed that overexpression of PPM1B could inhibit tumor growth, improve the survival rate of nude mice, and enhance the sensitivity to temozolomide. In conclusion, PPM1B suppressed glioma cell proliferation and the IKKβ-NF-κB signaling pathway, and enhanced temozolomide sensitivity of glioma cells.
Collapse
Affiliation(s)
- Yunhu Yu
- Neurosurgery Department, People's Hospital of Honghuagang District of Zunyi, Zunyi, China
- Department of Neurosurgery, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qian Liu
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qishan Ran
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Fang Cao
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
5
|
Miao K, Liu W, Xu J, Qian Z, Zhang Q. Harnessing the power of traditional Chinese medicine monomers and compound prescriptions to boost cancer immunotherapy. Front Immunol 2023; 14:1277243. [PMID: 38035069 PMCID: PMC10684919 DOI: 10.3389/fimmu.2023.1277243] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
At present, cancer is the largest culprit that endangers human health. The current treatment options for cancer mainly include surgical resection, adjuvant radiotherapy and chemotherapy, but their therapeutic effects and long-term prognosis are unsatisfactory. Immunotherapy is an emerging therapy that has completely transformed the therapeutic landscape of advanced cancers, and has tried to occupy a place in the neoadjuvant therapy of resectable tumors. However, not all patients respond to immunotherapy due to the immunological and molecular features of the tumors. Traditional Chinese Medicine (TCM) provides a new perspective for cancer treatment and is considered to have the potential as promising anti-tumor drugs considering its immunoregulatory properties. This review concludes commonly used TCM monomers and compounds from the perspective of immune regulatory pathways, aiming to clearly introduce the basic mechanisms of TCM in boosting cancer immunotherapy and mechanisms of several common TCM. In addition, we also summarized closed and ongoing trials and presented prospects for future development. Due to the significant role of immunotherapy in the treatment of non-small cell lung cancer (NSCLC), TCM combined with immunotherapy should be emphasized in NSCLC.
Collapse
Affiliation(s)
- Keyan Miao
- Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Weici Liu
- Department of Thoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jingtong Xu
- The First School of Clinical Medicine, Nanjing Medical University. Nanjing, Jiangsu, China
| | - Zhengtao Qian
- Department of Clinical Laboratory, Changshu Medicine Examination Institute, Changshu, Jiangsu, China
| | - Qinglin Zhang
- Department of Gastroenterology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|
6
|
He X, Lin F, Jia R, Xia Y, Liang Z, Xiao X, Hu Q, Deng X, Li Q, Sheng W. Coordinated modulation of long non-coding RNA ASBEL and curcumin co-delivery through multicomponent nanocomplexes for synchronous triple-negative breast cancer theranostics. J Nanobiotechnology 2023; 21:397. [PMID: 37904215 PMCID: PMC10617238 DOI: 10.1186/s12951-023-02168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Abnormally regulated long non-coding RNAs (lncRNAs) functions in cancer emphasize their potential to serve as potential targets for cancer therapeutic intervention. LncRNA ASBEL has been identified as oncogene and an anti-sense transcript of tumor-suppressor gene of BTG3 in triple-negative breast cancer (TNBC). RESULTS Herein, multicomponent self-assembled polyelectrolyte nanocomplexes (CANPs) based on the polyelectrolytes of bioactive hyaluronic acid (HA) and chitosan hydrochloride (CS) were designed and prepared for the collaborative modulation of oncogenic lncRNA ASBEL with antago3, an oligonucleotide antagonist targeting lncRNA ASBEL and hydrophobic curcumin (Cur) co-delivery for synergetic TNBC therapy. Antago3 and Cur co-incorporated CANPs were achieved via a one-step assembling strategy with the cooperation of noncovalent electrostatic interactions, hydrogen-bonding, and hydrophobic interactions. Moreover, the multicomponent assembled CANPs were ulteriorly decorated with a near-infrared fluorescence (NIRF) Cy-5.5 dye (FCANPs) for synchronous NIRF imaging and therapy monitoring performance. Resultantly, MDA-MB-231 cells proliferation, migration, and invasion were efficiently inhibited, and the highest apoptosis ratio was induced by FCANPs with coordination patterns. At the molecular level, effective regulation of lncRNA ASBEL/BTG3 and synchronous regulation of Bcl-2 and c-Met pathways could be observed. CONCLUSION As expected, systemic administration of FCANPs resulted in targeted and preferential accumulation of near-infrared fluorescence signal and Cur in the tumor tissue. More attractively, systemic FCANPs-mediated collaborative modulating lncRNA ASBEL/BTG3 and Cur co-delivery significantly suppressed the MDA-MB-231 xenograft tumor growth, inhibited metastasis and extended survival rate with negligible systemic toxicity. Our present study represented an effective approach to developing a promising theranostic platform for combating TNBC in a combined therapy pattern.
Collapse
Affiliation(s)
- Xuesong He
- Department of Environment and Life Science, Beijing International Science and Technology, Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, 100124, China
| | - Fengjuan Lin
- Department of Oncology, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Runqing Jia
- Department of Environment and Life Science, Beijing International Science and Technology, Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, 100124, China
| | - Yang Xia
- Department of Environment and Life Science, Beijing International Science and Technology, Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, 100124, China
| | - Zhaoyuan Liang
- Department of Environment and Life Science, Beijing International Science and Technology, Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, 100124, China
| | - Xiangqian Xiao
- Department of Environment and Life Science, Beijing International Science and Technology, Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, 100124, China
| | - Qin Hu
- Department of Environment and Life Science, Beijing International Science and Technology, Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, 100124, China
| | - Xiongwei Deng
- Department of Environment and Life Science, Beijing International Science and Technology, Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, 100124, China.
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100049, China.
| | - Qun Li
- Department of Oncology, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200123, China.
| | - Wang Sheng
- Department of Environment and Life Science, Beijing International Science and Technology, Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, 100124, China.
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100049, China.
| |
Collapse
|
7
|
Liu Y, Chen X, Yang JY, Guo ZJ, Wu Q, Zhang LD, Zhou XW. RNA-seq analysis reveals an immunomodulatory peptide from highland barley activating RAW264.7 macrophages via TNF/NF-κB signaling pathway. Funct Integr Genomics 2023; 23:253. [PMID: 37488420 DOI: 10.1007/s10142-023-01180-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Highland barley (HB) is an important cereal crop distributed in the plateau region. Bioactive peptides (BAPs) derived from cereal proteins have shown biological functions. However, the knowledge of highland barley peptide (HBP) is limited. This study aims to explore the immunomodulatory activity of HBP and the relationship between immunomodulatory activity and related gene expression through RNA-seq. Firstly, HBP is isolated from protease hydrolysates of HB protein, yielding 12.04% of crude HB protein. The molecular weight of HBP is about 1702 Da analyzed by gel filtration chromatography, and HBP has a specific amino acid sequence as Gln-Pro-Gln-Gln-Pro-Phe-Pro-Gln (QPQPFPQ) analyzed by LC-MS. Besides, HBP contains 42.20% hydrophobic amino acids and 10.86% basic amino acids. Next, the immunomodulatory activity of HBP in vitro shows that HBP enhances the phagocytosis of RAW264.7 macrophages, promotes nitric oxide (NO) production and the mRNA expression of pro-inflammatory genes including tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and inducible nitric oxide synthase (iNOS), and decreases the mRNA expression of anti-inflammatory gene, transforming growth factor β1 (TGF-β1). RNA-seq analysis reveals TNF and nuclear factor kappa B (NF-κB) pathways are upregulated, and RT-qPCR is performed to verify RNA-seq analysis. In conclusion, HBP activates RAW264.7 macrophages via TNF/NF-κB signaling pathway. HBP, as a significant immunomodulatory peptide, might be a promising resource for future functional foods.
Collapse
Affiliation(s)
- Yan Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Chen
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jia-Yi Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhi Jian Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qin Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li-Da Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuan-Wei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
8
|
Ge Q, Shi Z, Zou KA, Ying J, Chen J, Yuan W, Wang W, Xiao L, Lin X, Chen D, Feng XH, Wang PE, Tong P, Jin H. Protein phosphatase PPM1A inhibition attenuates osteoarthritis via regulating TGF-β/Smad2 signaling in chondrocytes. JCI Insight 2023; 8:166688. [PMID: 36752205 PMCID: PMC9926971 DOI: 10.1172/jci.insight.166688] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/21/2022] [Indexed: 02/09/2023] Open
Abstract
TGF-β signaling is crucial for modulating osteoarthritis (OA), and protein phosphatase magnesium-dependent 1A (PPM1A) has been reported as a phosphatase of SMAD2 and regulates TGF-β signaling, while the role of PPM1A in cartilage homeostasis and OA development remains largely unexplored. In this study, we found increased PPM1A expression in OA chondrocytes and confirmed the interaction between PPM1A and phospho-SMAD2 (p-SMAD2). Importantly, our data show that PPM1A KO substantially protected mice treated with destabilization of medial meniscus (DMM) surgery against cartilage degeneration and subchondral sclerosis. Additionally, PPM1A ablation reduced the cartilage catabolism and cell apoptosis after the DMM operation. Moreover, p-SMAD2 expression in chondrocytes from KO mice was higher than that in WT controls with DMM induction. However, intraarticular injection with SD-208, repressing TGF-β/SMAD2 signaling, dramatically abolished protective phenotypes in PPM1A-KO mice. Finally, a specific pharmacologic PPM1A inhibitor, Sanguinarine chloride (SC) or BC-21, was able to ameliorate OA severity in C57BL/6J mice. In summary, our study identified PPM1A as a pivotal regulator of cartilage homeostasis and demonstrated that PPM1A inhibition attenuates OA progression via regulating TGF-β/SMAD2 signaling in chondrocytes and provided PPM1A as a potential target for OA treatment.
Collapse
Affiliation(s)
- Qinwen Ge
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhenyu Shi
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Kai-ao Zou
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun Ying
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiali Chen
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenhua Yuan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Weidong Wang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Luwei Xiao
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xia Lin
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute and
| | - Ping-er Wang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Peijian Tong
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Life Sciences Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Bilajac E, Mahmutović L, Glamočlija U, Osmanović A, Hromić-Jahjefendić A, Tambuwala MM, Suljagić M. Curcumin Decreases Viability and Inhibits Proliferation of Imatinib-Sensitive and Imatinib-Resistant Chronic Myeloid Leukemia Cell Lines. Metabolites 2022; 13:58. [PMID: 36676983 PMCID: PMC9863870 DOI: 10.3390/metabo13010058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative haematological malignancy characterized by constitutive activation of BCR-ABL1 tyrosine kinase in the majority of patients. BCR-ABL1 expression activates signaling pathways involved in cell proliferation and survival. Current treatment options for CML include tyrosine kinase inhibitors (TKI) with resistance as a major issue. Various treatment options for overcoming resistance are being investigated. Among them, phytochemical curcumin could play an important role. Curcumin has been found to exhibit anti-cancerous effects in various models, including CML, through regulation of multiple molecular signaling pathways contributing to tumorigenesis. We have evaluated curcumin's effects on imatinib-sensitive LAMA84S and K562, as well as imatinib-resistant LAMA84R cell lines. Our results indicate a significant dose-dependent decrease in cell viability and proliferation of imatinib-sensitive and imatinib-resistant cell lines after curcumin treatment. Suppression of key signaling molecules regulating metabolic and proliferative events, such as Akt, P70S6K and NF-kB, was observed. Increased expression of caspase-3 suggests the potential pro-apoptotic effect of curcumin in the imatinib-resistant CML model. Additional in silico molecular docking studies revealed binding modes and affinities of curcumin with different targets and the results are in accordance with in vitro findings. Altogether, these results indicate the potential role of curcumin in the treatment of CML.
Collapse
Affiliation(s)
- Esma Bilajac
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnička cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Lejla Mahmutović
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnička cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Una Glamočlija
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
- School of Medicine, University of Mostar, Zrinskog Frankopana 34, 88000 Mostar, Bosnia and Herzegovina
- Scientific-Research Unit, Bosnalijek JSC, Jukićeva 53, 71000 Sarajevo, Bosnia and Herzegovina
| | - Amar Osmanović
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnička cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Murtaza M. Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Mirza Suljagić
- 3DBioLabs, FabLab B&H, University of Sarajevo Campus, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
10
|
Brockmueller A, Mueller AL, Kunnumakkara AB, Aggarwal BB, Shakibaei M. Multifunctionality of Calebin A in inflammation, chronic diseases and cancer. Front Oncol 2022; 12:962066. [PMID: 36185259 PMCID: PMC9523377 DOI: 10.3389/fonc.2022.962066] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic diseases including cancer have high case numbers as well as mortality rates. The efficient treatment of chronic diseases is a major ongoing medical challenge worldwide, because of their complexity and many inflammatory pathways such as JNK, p38/MAPK, MEK/ERK, JAK/STAT3, PI3K and NF-κB among others being implicated in their pathogenesis. Together with the versatility of chronic disease classical mono-target therapies are often insufficient. Therefore, the anti-inflammatory as well as anti-cancer capacities of polyphenols are currently investigated to complement and improve the effect of classical anti-inflammatory drugs, chemotherapeutic agents or to overcome drug resistance of cancer cells. Currently, research on Calebin A, a polyphenolic component of turmeric (Curcuma longa), is becoming of growing interest with regard to novel treatment strategies and has already been shown health-promoting as well as anti-tumor properties, including anti-oxidative and anti-inflammatory effects, in diverse cancer cells. Within this review, we describe already known anti-inflammatory activities of Calebin A via modulation of NF-κB and its associated signaling pathways, linked with TNF-α, TNF-β and COX-2 and further summarize Calebin A's tumor-inhibiting properties that are known up to date such as reduction of cancer cell viability, proliferation as well as metastasis. We also shed light on possible future prospects of Calebin A as an anti-cancer agent.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | | | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
11
|
Mirzaei A, Jahanshahi F, Khatami F, Reis LO, Aghamir SMK. Human prostate cancer cell epithelial-to-mesenchymal transition as a novel target of arsenic trioxide and curcumin therapeutic approach. Tissue Cell 2022; 76:101805. [PMID: 35487055 DOI: 10.1016/j.tice.2022.101805] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Arsenic trioxide (As2O3) as an inorganic compound is used to treat various cancers and other diseases. It has been reported that arsenic trioxide induced cellular apoptosis in certain kinds of cancers, including prostate cancers. The present study aimed to elucidate the crucial cooperative role of arsenic trioxide and Curcumin and their ability to protect against prostate cancers by targeting the epithelial-to-mesenchymal transition and expression of apoptosis-related genes. MATERIAL AND METHODS The human prostate cell lines (LNCaP and PC3) were treated with different concentrations of Curcumin and As2O3 alone and combined to find effective doses and IC50 values. Percentages of apoptotic cells were evaluated by Annexin/P.I. staining, the proliferative inhibitory effect was assessed by Micro Culture Tetrazolium Test (MTT), and mRNA levels of KLK2, E-cadherin, SNAIL, angiogenesis genes (VEGFA and VEGFC), and apoptosis genes (BAX, Bcl2, and P53) expression were investigated by the real-time PCR method. ANOVA and t-test were used to appraise the results. RESULTS For the first time, we presented that the combination therapy of Curcumin and As2O3 increases prostate cancer cell apoptosis and inhibits proliferation; Our data displayed that Curcumin (15 μM and 10 μM in PC3 and LNCap), As2O3 (8 μM and 5 μM in PC3 and LNCap), and also their combination (15 μM Curcumin and 8 μM As2O3 in PC3, 10 μM Curcumin and 5 μM As2O3 in LNCap cell lines) significantly increased the percentage of apoptotic cells and inhibited cell growth (P < 0.05) compared with each drug alone. Generally, both cell lines treated with the combination of Curcumin and As2O3 displayed decreased angiogenesis genes (VEGFA and VEGFC), apoptosis genes (BAX and Bcl2), and prostate cancer marker (KLK2), the zinc-finger protein (SNAIL); and an increase in expression (P < 0.05) of cell-cell adhesion molecule (E-cadherin) and tumor suppressor gene (P53) genes. CONCLUSIONS The antitumor effects of combination therapy with As2O3 and Curcumin have been displayed on prostate cancer cell lines (LNCaP and PC3), which probably originates from their potential to induce apoptosis and inhibit the growth of prostate cancer cells simultaneously.
Collapse
Affiliation(s)
- Akram Mirzaei
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Jahanshahi
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khatami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Leonardo Oliveira Reis
- UroScience and Department of Surgery (Urology), School of Medical Sciences, University of Campinas, Unicamp, and Pontifical Catholic University of Campinas, PUC-Campinas, Campinas, São Paulo, Brazil
| | | |
Collapse
|
12
|
Koszałka P, Stasiłojć G, Miękus-Purwin N, Niedźwiecki M, Purwin M, Grabowski S, Bączek T. The Cooperative Anti-Neoplastic Activity of Polyphenolic Phytochemicals on Human T-Cell Acute Lymphoblastic Leukemia Cell Line MOLT-4 In Vitro. Int J Mol Sci 2022; 23:ijms23094753. [PMID: 35563141 PMCID: PMC9099961 DOI: 10.3390/ijms23094753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 01/01/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common hematological malignancy affecting pediatric patients. ALL treatment regimens with cytostatics manifest substantial toxicity and have reached the maximum of well-tolerated doses. One potential approach for improving treatment efficiency could be supplementation of the current regimen with naturally occurring phytochemicals with anti-cancer properties. Nutraceuticals such as quercetin, curcumin, resveratrol, and genistein have been studied in anti-cancer therapy, but their application is limited by their low bioavailability. However, their cooperative activity could potentially increase their efficiency at low, bioavailable doses. We studied their cooperative effect on the viability of a human ALL MOLT-4 cell line in vitro at the concentration considered to be in the bioavailable range in vivo. To analyze their potential side effect on the viability of non-tumor cells, we evaluated their toxicity on a normal human foreskin fibroblast cell line (BJ). In both cell lines, we also measured specific indicators of cell death, changes in cell membrane permeability (CMP), and mitochondrial membrane potential (MMP). Even at a low bioavailable concentration, genistein and curcumin decreased MOLT-4 viability, and their combination had a significant interactive effect. While resveratrol and quercetin did not affect MOLT-4 viability, together they enhanced the effect of the genistein/curcumin mix, significantly inhibiting MOLT-4 population growth in vitro. Moreover, the analyzed phytochemicals and their combinations did not affect the BJ cell line. In both cell lines, they induced a decrease in MMP and correlating CMP changes, but in non-tumor cells, both metabolic activity and cell membrane continuity were restored in time. (4) Conclusions: The results indicate that the interactive activity of analyzed phytochemicals can induce an anti-cancer effect on ALL cells without a significant effect on non-tumor cells. It implies that the application of the combinations of phytochemicals an anti-cancer treatment supplement could be worth further investigation regardless of their low bioavailability.
Collapse
Affiliation(s)
- Patrycja Koszałka
- Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki Street 1, 80-211 Gdańsk, Poland; (P.K.); (G.S.)
| | - Grzegorz Stasiłojć
- Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki Street 1, 80-211 Gdańsk, Poland; (P.K.); (G.S.)
| | - Natalia Miękus-Purwin
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera Street 107, 80-416 Gdańsk, Poland; (N.M.-P.); (M.P.)
| | - Maciej Niedźwiecki
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, Debinki Street 7, 80-211 Gdańsk, Poland;
| | - Maciej Purwin
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera Street 107, 80-416 Gdańsk, Poland; (N.M.-P.); (M.P.)
| | - Szymon Grabowski
- GetResponse Cares Foundation, Arkońska Street 6/A3, 80-387 Gdańsk, Poland;
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera Street 107, 80-416 Gdańsk, Poland; (N.M.-P.); (M.P.)
- Correspondence:
| |
Collapse
|
13
|
Recent advances in immunotherapy, immunoadjuvant, and nanomaterial-based combination immunotherapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Zoi V, Galani V, Lianos GD, Voulgaris S, Kyritsis AP, Alexiou GA. The Role of Curcumin in Cancer Treatment. Biomedicines 2021; 9:1086. [PMID: 34572272 PMCID: PMC8464730 DOI: 10.3390/biomedicines9091086] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022] Open
Abstract
Curcumin is a polyphenol extracted from the rhizomes of the turmeric plant, Curcuma longa which has anti-inflammatory, and anticancer properties. Chronic inflammation is associated with the development of cancer. Curcumin acts on the regulation of various immune modulators, including cytokines, cyclooxygenase-2 (COX-2), and reactive oxygen species (ROS), which partly explains its anticancer effects. It also takes part in the downregulation of growth factors, protein kinases, oncogenic molecules and various signaling pathways, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), c-Jun N-terminal kinase (JNK) and signal transducer and activator of transcription 3 (STAT3) signaling. Clinical trials of curcumin have been completed or are ongoing for various types of cancer. This review presents the molecular mechanisms of curcumin in different types of cancer and the evidence from the most recent clinical trials.
Collapse
Affiliation(s)
- Vasiliki Zoi
- Neurosurgical Institute, School of Medicine, University of Ioannina, 45500 Ioannina, Greece; (V.Z.); (S.V.); (A.P.K.)
- Department of Anatomy Histology-Embryology, School of Medicine, University of Ioannina, 45500 Ioannina, Greece;
| | - Vasiliki Galani
- Department of Anatomy Histology-Embryology, School of Medicine, University of Ioannina, 45500 Ioannina, Greece;
| | - Georgios D. Lianos
- Department of Surgery, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Spyridon Voulgaris
- Neurosurgical Institute, School of Medicine, University of Ioannina, 45500 Ioannina, Greece; (V.Z.); (S.V.); (A.P.K.)
- Department of Neurosurgery, School of Medicine Ioannina, University of Ioannina, 45500 Ioannina, Greece
| | - Athanasios P. Kyritsis
- Neurosurgical Institute, School of Medicine, University of Ioannina, 45500 Ioannina, Greece; (V.Z.); (S.V.); (A.P.K.)
| | - George A. Alexiou
- Neurosurgical Institute, School of Medicine, University of Ioannina, 45500 Ioannina, Greece; (V.Z.); (S.V.); (A.P.K.)
- Department of Neurosurgery, School of Medicine Ioannina, University of Ioannina, 45500 Ioannina, Greece
| |
Collapse
|
15
|
Ganamé HT, Karanga Y, Tapsoba I, Dicato M, Diederich MF, Cerella C, Sawadogo RW. Phytochemical Screening and Antioxidant and Cytotoxic Effects of Acacia macrostachya. PLANTS 2021; 10:plants10071353. [PMID: 34371557 PMCID: PMC8309326 DOI: 10.3390/plants10071353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022]
Abstract
Acacia macrostachya is used in Burkina Faso folk medicine for the treatment of inflammation and cancer. The purpose of this study was to evaluate the antioxidant and cytotoxic effects of this plant. The cytotoxic effects of root (dichloromethane B1 and methanol B2) and stem (dichloromethane B3 and methanol B4) bark extracts of A. macrostachya were assessed on chronic K562 and acute U937 myeloid leukemia cancer cells using trypan blue, Hoechst, and MitoTracker Red staining methods. The antioxidant content of extracts was evaluated using DPPH (2,2-diphenyl-1-picryl-hydrazyl) and FRAP (ferric reducing antioxidant power) methods. The root bark extracts B1 and B2 of A. macrostachya demonstrated higher cytotoxicity with IC50 values in a low µg/mL range on both U937 and K562 cells, while the stem bark B4 extract selectively affected U937 cells. Overall, healthy proliferating peripheral blood mononuclear cells (pPBMCs) were not or barely impacted in the range of concentrations cytotoxic to cancer cells. In addition, A. macrostachya exhibited significant antioxidant content with 646.06 and 428.08 µg ET/mg of extract for the B4 and B2 extracts, respectively. Phytochemical screening showed the presence of flavonoids, tannins, alkaloids, and terpenoids/steroids. The results of this study highlight the interest of A. macrostachya extracts for the isolation of anticancer molecules.
Collapse
Affiliation(s)
- Hamidou Têeda Ganamé
- Laboratoire de Chimie Analytique, Environnementale et Bio-Organique (LCAEBiO), Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso; (H.T.G.); (Y.K.); (I.T.)
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Hôpital Kirchberg, L-2540 Luxembourg, Luxembourg;
| | - Yssouf Karanga
- Laboratoire de Chimie Analytique, Environnementale et Bio-Organique (LCAEBiO), Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso; (H.T.G.); (Y.K.); (I.T.)
- Laboratoire de Chimie des Matériaux et de l’Environnement (LCME), Université Norbert ZONGO, Avce Maurice Yameogo, Koudougou BP 376, Burkina Faso
| | - Issa Tapsoba
- Laboratoire de Chimie Analytique, Environnementale et Bio-Organique (LCAEBiO), Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso; (H.T.G.); (Y.K.); (I.T.)
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Hôpital Kirchberg, L-2540 Luxembourg, Luxembourg;
| | | | - Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Hôpital Kirchberg, L-2540 Luxembourg, Luxembourg;
- Correspondence: (C.C.); (R.W.S.); Tel.: +352-2468-4050 (C.C.); +226-70-24-57-96 (R.W.S.)
| | - Richard Wamtinga Sawadogo
- Institut de Recherche en Sciences de la Santé (IRSS/CNRST), Ouagadougou 03 BP 7192, Burkina Faso
- Correspondence: (C.C.); (R.W.S.); Tel.: +352-2468-4050 (C.C.); +226-70-24-57-96 (R.W.S.)
| |
Collapse
|
16
|
Li Y, Jiao J, Qi Y, Yu W, Yang S, Zhang J, Zhao J. Curcumin: A review of experimental studies and mechanisms related to periodontitis treatment. J Periodontal Res 2021; 56:837-847. [PMID: 34173676 DOI: 10.1111/jre.12914] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/14/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Curcumin is the main active ingredient of turmeric, which has a wide range of pharmacological effects, including antitumor, antibacterial, anti-inflammatory, anti-oxidation, immune regulation, and so on. Periodontitis is a prevalent oral inflammatory disease caused by a variety of factors. In recent years, many studies have shown that curcumin has a potential role on the treatment of periodontitis. Curcumin has been used in research related to the treatment of periodontitis in the form of solution, chip, gel, and capsule. Combined with other periodontitis treatment methods, such as scaling and root planing (SRP) and photodynamic therapy (PDT), can enhance curcumin's efficacy in treating periodontitis. In addition to natural curcumin, chemically modified curcumin, such as 4-phenylaminocarbonyl bis-demethoxy curcumin (CMC 2.24) and 4-methoxycarbonyl curcumin (CMC 2.5), have also been used in animal models of periodontitis. Here, this paper reviews the research progress of curcumin on the treatment of periodontitis and its related mechanisms.
Collapse
Affiliation(s)
- Yongli Li
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Junjie Jiao
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Yuanzheng Qi
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Wanqi Yu
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Shihui Yang
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Jingjie Zhang
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Jinghui Zhao
- Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
17
|
Harikrishnan A, Khanna S, Veena V. Design of New Improved Curcumin Derivatives to Multi-targets of Cancer and Inflammation. Curr Drug Targets 2021; 22:573-589. [PMID: 32753008 DOI: 10.2174/1389450121666200804113745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Curcumin is a major active principle of Curcuma longa. There are more than 1700 citations in the Medline, reflecting various biological effects of curcumin. Most of these biological activities are associated with the antioxidant, anti-inflammatory and antitumor activity of the molecule. Several reports suggest various targets of natural curcumin that include growth factors, growth factor receptor, cytokines, enzymes and gene regulators of apoptosis. This review focuses on the improved curcumin derivatives that target the cancer and inflammation. METHODOLOGY In this present review, we explored the anticancer drugs with curcumin-based drugs under pre-clinical and clinical studies with critical examination. Based on the strong scientific reports of patentable and non-patented literature survey, we have investigated the mode of the interactions of curcumin-based molecules with the target molecules. RESULTS Advanced studies have added new dimensions of the molecular response of cancer cells to curcumin at the genomic level. However, poor bioavailability of the molecule seems to be the major limitation of the curcumin. Several researchers have been involved to improve the curcumin derivatives to overcome this limitation. Sufficient data of clinical trials to various cancers that include multiple myeloma, pancreatic cancer and colon cancer, have also been discussed. CONCLUSION The detailed analysis of the structure-activity relationship (SAR) and common synthesis of curcumin-based derivatives have been discussed in the review. Utilising the predictions of in silico coupled with validation reports of in vitro and in vivo studies have concluded many targets for curcumin. Among them, cancer-related inflammation genes regulating curcumin-based molecules are a very promising target to overcome hurdles in the multimodality therapy of cancer.
Collapse
Affiliation(s)
- A Harikrishnan
- Department of Chemistry, School of Arts and Sciences, Vinayaka Mission Research Foundation-Aarupadai Veedu (VMRF-AV) campus, Paiyanoor, Chennai-603104, Tamil Nadu, India
| | - Sunali Khanna
- Nair Hospital Dental College, Municipal Corporation of Greater Mumbai, Mumbai, 400 008, India
| | - V Veena
- Department of Biotechnology, School of Applied Sciences, REVA University, Rukmini knowledge park, Kattigenahalli, Yelahanka, Bengaluru - 5600 064. Karnataka State, India
| |
Collapse
|
18
|
Kötting C, Hofmann L, Lotfi R, Engelhardt D, Laban S, Schuler PJ, Hoffmann TK, Brunner C, Theodoraki MN. Immune-Stimulatory Effects of Curcumin on the Tumor Microenvironment in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13061335. [PMID: 33809574 PMCID: PMC8001767 DOI: 10.3390/cancers13061335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Head and neck squamous cell carcinoma has been shown to downregulate the host’s antitumor immune response as well as inherent anticancer immunity, inter alia, via increased activation of nuclear factor kappa of activated B-cells (NF-κB). The aim of this study is to examine curcumin’s effects on certain pro- and antitumoral chemokines via NF-κB, as well as the combined effects of curcumin and toll-like receptor 3 agonist Poly I:C on NF-κB and regulatory T-cell attraction. Furthermore, we compare curcumin with established NF-κB inhibitors caffeic acid phenethyl ester and BAY 11-7082. We demonstrate that curcumin has immune-modulating effects, with potent inhibition of the regulatory T-cell-attracting effects of Poly I:C. Therefore, curcumin presents an adjuvant that not only improves the effects of established therapies but also holds the potential to reduce negative side effects in tumor entities with increased NF-κB activation. Abstract Curcumin is known to have immune-modulatory and antitumor effects by interacting with more than 30 different proteins. An important feature of curcumin is the inhibition of nuclear factor kappa of activated B-cells (NF-κB). Here, we evaluate the potential of curcumin to reverse the epithelial to mesenchymal transition (EMT) of head and neck squamous cell carcinoma (HNSCC) cells as a part of tumor escape mechanisms. We examined the impact of curcumin on the expression of different pro- and antitumoral chemokines in ex vivo HNSCC tumor tissue and primary macrophage cultures. Further, we evaluated the combinatorial effect of curcumin and toll-like receptor 3 (TLR3) agonist Poly I:C (PIC) on NF-κB inhibition and regulatory T-cell (Treg) attraction. Mesenchymal markers were significantly reduced in cancer specimens after incubation with curcumin, with simultaneous reduction of key transcription factors of EMT, Snail, and Twist. Furthermore, a decrease of the Treg-attracting chemokine CCL22 was observed. Additionally, curcumin-related inhibition of NF-κB nuclear translocation was evident. The combination of PIC with curcumin resulted in further NF-κB inhibition, whereas PIC alone contrarily resulted in NF-κB activation. Furthermore, curcumin was more effective in inhibiting PIC-dependent NF-κB activation and Treg attraction compared to known NF-κB inhibitors BAY 11-7082 or caffeic acid phenethyl ester (CAPE). The presented results show, for the first time, the immune-modulating effects of curcumin in HNSCC, with potent inhibition of the Treg-attracting effects of PIC. Hence, curcumin presents a promising drug in cancer therapy as a supplement to already established treatments.
Collapse
Affiliation(s)
- Charlotte Kötting
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
| | - Linda Hofmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
| | - Ramin Lotfi
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Services Baden-Württemberg-Hessen, 89081 Ulm, Germany;
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany
| | - Daphne Engelhardt
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
| | - Simon Laban
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
| | - Patrick J. Schuler
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
| | - Thomas K. Hoffmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
| | - Cornelia Brunner
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
| | - Marie-Nicole Theodoraki
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
- Correspondence: ; Tel.: +49-731-500-59521
| |
Collapse
|
19
|
Autoantibodies against Protein Phosphatase Magnesium-Dependent 1A as a Biomarker for Predicting Radiographic Progression in Ankylosing Spondylitis Treated with Anti-Tumor Necrosis Factor Agents. J Clin Med 2020; 9:jcm9123968. [PMID: 33297507 PMCID: PMC7762424 DOI: 10.3390/jcm9123968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Patients with ankylosing spondylitis (AS) have increased levels of protein phosphatase magnesium-dependent 1A (PPM1A) and autoantibodies. We evaluated the usefulness of serum anti-PPM1A antibodies as a biomarker for AS. METHODS Serum samples from 58 AS patients were obtained from a multicenter registry prior to the initiation of anti-TNF agents. The serum levels of anti-PPM1A antibodies were measured using ELISA. Spinal radiographic progression was defined as an increase in the modified stoke ankylosing spondylitis spinal score (mSASSS) by ≥2 units or a newly developed syndesmophyte. The role of exogenous PPM1A on bone mineralization was evaluated using primary osteoprogenitors acquired from patients with AS and non-inflammatory controls. RESULTS The baseline levels of anti-PPM1A antibodies and mSASSS were higher in the radiographic progression group than in the non-progression group. In logistic regression analysis, baseline mSASSS and serum anti-PPM1A antibodies were associated with a higher risk of progression. The level of anti-PPM1A antibodies for predicting progression had an AUC of 0.716 (cut-off value: 43.77 ng/mL). PPM1A stimulation increased matrix mineralization in AS-osteoprogenitors but not in controls. CONCLUSION Along with mSASSS, the serum levels of anti-PPM1A antibodies might be useful as a predictor of radiographic progression after treatment with anti-TNF agents.
Collapse
|
20
|
Roshdy WH, Rashed HA, Kandeil A, Mostafa A, Moatasim Y, Kutkat O, Abo Shama NM, Gomaa MR, El-Sayed IH, El Guindy NM, Naguib A, Kayali G, Ali MA. EGYVIR: An immunomodulatory herbal extract with potent antiviral activity against SARS-CoV-2. PLoS One 2020; 15:e0241739. [PMID: 33206688 PMCID: PMC7673558 DOI: 10.1371/journal.pone.0241739] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Due to the challenges for developing vaccines in devastating pandemic situations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), developing and screening of novel antiviral agents are peremptorily demanded. Herein, we developed EGYVIR as a potent immunomodulatory herbal extract with promising antiviral activity against SARS-CoV-2. It constitutes of a combination of black pepper extract with curcumin extract. The antiviral effect of EGYVIR extract is attributed to the two key phases of the disease in severe cases. First, the inhibition of the nuclear translocation of NF-kβ p50, attenuating the SARS-CoV-2 infection-associated cytokine storm. Additionally, the EGYVIR extract has an in vitro virucidal effect for SARS-CoV-2. The in vitro study of EGYVIR extract against SARS-CoV-2 on Huh-7 cell lines, revealed the potential role of NF-kβ/TNFα/IL-6 during the infection process. EGYVIR antagonizes the NF-kβ pathway in-silico and in-vitro studies. Consequently, it has the potential to hinder the release of IL-6 and TNFα, decreasing the production of essential cytokines storm elements.
Collapse
Affiliation(s)
- Wael H. Roshdy
- Central Public Health Laboratory, Ministry of Health and Population, Cairo, Egypt
| | - Helmy A. Rashed
- Central Public Health Laboratory, Ministry of Health and Population, Cairo, Egypt
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Noura M. Abo Shama
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mokhtar R. Gomaa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Ibrahim H. El-Sayed
- Biochemistry Department, Faculty of Science, Kafr El Sheikh University, Kafr El-Shaikh, Egypt
| | - Nancy M. El Guindy
- Central Public Health Laboratory, Ministry of Health and Population, Cairo, Egypt
| | - Amal Naguib
- Central Public Health Laboratory, Ministry of Health and Population, Cairo, Egypt
| | - Ghazi Kayali
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas, Houston, Texas, United States of America
- Human Link, Baabda, Lebanon
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| |
Collapse
|
21
|
Curcumin: an inflammasome silencer. Pharmacol Res 2020; 159:104921. [DOI: 10.1016/j.phrs.2020.104921] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/24/2022]
|
22
|
Varshosaz J, Jandaghian S, Mirian M, Sajjadi SE. Co-delivery of rituximab targeted curcumin and imatinib nanostructured lipid carriers in non-Hodgkin lymphoma cells. J Liposome Res 2020; 31:64-78. [PMID: 32138557 DOI: 10.1080/08982104.2020.1720718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of the present study was production of nanostructured lipid carriers (NLCs) of curcumin and imatinib for co-administration in non-Hodgkin lymphoma cells. NLCs were prepared and conjugated to rituximab to target CD20 receptors of lymphoma cell lines. Oleic acid or Labrafac and glyceryl monostearate or lecithin were used for production of NLCs. The antibody coupling efficiency to NLCs and their physical characteristics were studied. The cytotoxicity of NLCs on Jurkat T cells (CD20 receptor negative) and Ramos B cells (CD20 receptor positive) was studied by MTT assay. The cellular uptake was determined by fluorescent microscopy. The results indicated both curcumin and imatinib targeted NLCs had a significant cytotoxic effect much higher than the free drugs and non-targeted NLCs on Ramos cells. In both cell lines, the cytotoxicity of the co-administrated drugs was significantly higher than each drug alone. In Ramos cells the co-administration of curcumin (15 μg/ml)/imatinib (5 μg/ml) decreased the free curcumin IC50 from 8.3 ± 0.9 to 1.9 ± 0.2 μg/ml, and curcumin targeted NLCs from 6.7 ± 0.1 to 1.3 ± 0.2 μg/ml. In this case the IC50 of imatinib was reduced from 11.1 ± 0.7 to 2.3 ± 0.1 μg/ml and imatinib targeted NLCs from 4.3 ± 0.1 to 1.4 ± 0.0 μg/ml. The co-administration of ritoximab conjugated NLCs of curcumin and imatinib may enhance cytotoxicity of imatinib in treatment of non-Hodgkin lymphoma.
Collapse
Affiliation(s)
- Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Setareh Jandaghian
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - S Ebrahim Sajjadi
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
23
|
Hassan FU, Rehman MSU, Khan MS, Ali MA, Javed A, Nawaz A, Yang C. Curcumin as an Alternative Epigenetic Modulator: Mechanism of Action and Potential Effects. Front Genet 2019; 10:514. [PMID: 31214247 PMCID: PMC6557992 DOI: 10.3389/fgene.2019.00514] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/10/2019] [Indexed: 12/21/2022] Open
Abstract
Curcumin (a polyphenolic compound in turmeric) is famous for its potent anti-inflammatory, anti-oxidant, and anti-cancer properties, and has a great potential to act as an epigenetic modulator. The epigenetic regulatory roles of curcumin include the inhibition of DNA methyltransferases (DNMTs), regulation of histone modifications via the regulation of histone acetyltransferases (HATs) and histone deacetylases (HDACs), regulation of microRNAs (miRNA), action as a DNA binding agent and interaction with transcription factors. These mechanisms are interconnected and play a vital role in tumor progression. The recent research has demonstrated the role of epigenetic inactivation of pivotal genes that regulate human pathologies such as cancers. Epigenetics helps to understand the mechanism of chemoprevention of cancer through different therapeutic agents. In this regard, dietary phytochemicals, such as curcumin, have emerged as a potential source to reverse epigenetic modifications and efficiently regulate the expression of genes and molecular targets that are involved in the promotion of tumorigenesis. The curcumin may also act as an epigenetic regulator in neurological disorders, inflammation, and diabetes. Moreover, curcumin can induce the modifications of histones (acetylation/deacetylation), which are among the most important epigenetic changes responsible for altered expression of genes leading to modulating the risks of cancers. Curcumin is an effective medicinal agent, as it regulates several important molecular signaling pathways that modulate survival, govern anti-oxidative properties like nuclear factor E2-related factor 2 (Nrf2) and inflammation pathways, e.g., nuclear factor kappa B (NF-κB). Curcumin is a potent proteasome inhibitor that increases p-53 level and induces apoptosis through caspase activation. Moreover, the disruption of 26S proteasome activity induced by curcumin through inhibiting DYRK2 in different cancerous cells resulting in the inhibition of cell proliferation opens up a new horizon for using curcumin as a potential preventive and treatment approach in proteasome-linked cancers. This review presents a brief summary of knowledge about the mechanism of epigenetic changes induced by curcumin and the potential effects of curcumin such as anti-oxidant activity, enhancement of wound healing, modulation of angiogenesis and its interaction with inflammatory cytokines. The development of curcumin as a clinical molecule for successful chemo-prevention and alternate therapeutic approach needs further mechanistic insights.
Collapse
Affiliation(s)
- Faiz-Ul Hassan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China.,Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Saif-Ur Rehman
- Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Sajjad Khan
- Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Amjad Ali
- Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Aroosa Javed
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ayesha Nawaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Chengjian Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
24
|
Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr 2019; 60:887-939. [PMID: 30632782 DOI: 10.1080/10408398.2018.1552244] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Curcumin is a naturally occurring polyphenolic compound present in rhizome of Curcuma longa belonging to the family zingiberaceae. Growing experimental evidence revealed that curcumin exhibit multitarget biological implications signifying its crucial role in health and disease. The current review highlights the recent progress and mechanisms underlying the wide range of pharmacological effects of curcumin against numerous diseases like neuronal, cardiovascular, metabolic, kidney, endocrine, skin, respiratory, infectious, gastrointestinal diseases and cancer. The ability of curcumin to modulate the functions of multiple signal transductions are linked with attenuation of acute and chronic diseases. Numerous preclinical and clinical studies have revealed that curcumin modulates several molecules in cell signal transduction pathway including PI3K, Akt, mTOR, ERK5, AP-1, TGF-β, Wnt, β-catenin, Shh, PAK1, Rac1, STAT3, PPARγ, EBPα, NLRP3 inflammasome, p38MAPK, Nrf2, Notch-1, AMPK, TLR-4 and MyD-88. Curcumin has a potential to prevent and/or manage various diseases due to its anti-inflammatory, anti-oxidant and anti-apoptotic properties with an excellent safety profile. In contrast, the anti-cancer effects of curcumin are reflected due to induction of growth arrest and apoptosis in various premalignant and malignant cells. This review also carefully emphasized the pharmacokinetics of curcumin and its interaction with other drugs. Clinical studies have shown that curcumin is safe at the doses of 12 g/day but exhibits poor systemic bioavailability. The use of adjuvant like piperine, liposomal curcumin, curcumin nanoparticles and curcumin phospholipid complex has shown enhanced bioavailability and therapeutic potential. Further studies are warranted to prove the potential of curcumin against various ailments.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ashish Acharya
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - R S Ray
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ritesh Agrawal
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ramsaneh Raghuwanshi
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Priyal Jain
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| |
Collapse
|
25
|
Kouhpeikar H, Butler AE, Bamian F, Barreto GE, Majeed M, Sahebkar A. Curcumin as a therapeutic agent in leukemia. J Cell Physiol 2019; 234:12404-12414. [PMID: 30609023 DOI: 10.1002/jcp.28072] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022]
Abstract
Leukemia comprises a group of hematological malignancies responsible for 8% of all cancers and is the most common cancer in children. Despite significant improvements in leukemia treatment, the efficacy of conventional chemotherapeutic agents is low and the disease carries a poor prognosis with frequent relapses and high mortality. Curcumin is a yellow polyphenol compound with diverse pharmacological actions including anticancer, antioxidant, antidiabetic, anti-inflammatory, immunomodulatory, hepatoprotective, lipid-regulating, antidepressant, and antiarthritic. Many cellular and experimental studies have reported the benefits of curcumin in treating leukemia. Curcumin's anticancer effects are exerted via various mechanisms. Here, we review the effects of curcumin on various types of leukemia whilst considering its mechanisms of action.
Collapse
Affiliation(s)
- Hamideh Kouhpeikar
- Department of Hematology and Blood Bank, Cancer Molecular Pathology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | - Faeze Bamian
- Department of Hematology and Blood Bank, Cancer Molecular Pathology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Wu HP, Lin YK. Effect of Eucommia ulmoides Oliv., Gynostemma pentaphyllum (Thunb.) Makino, and Curcuma longa L. on Th1- and Th2-cytokine responses and human leukocyte antigen-DR expression in peripheral blood mononuclear cells of septic patients. JOURNAL OF ETHNOPHARMACOLOGY 2018; 217:195-204. [PMID: 29462699 DOI: 10.1016/j.jep.2018.02.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Many traditional Chinese medicines (TCM), such as Eucommia ulmoides Oliv., Gynostemma pentaphyllum (Thunb.) Makino, and Curcuma longa L., have been reported to have various immune-modulatory effects. AIM OF THE STUDY To determine the effects of extracts from these three TCM on type 1 T help (Th1)- and Th2-cytokine responses and human leukocyte antigen (HLA)-DR expression in peripheral blood mononuclear cells (PBMCs) obtained from septic patients. MATERIALS AND METHODS Lipopolysaccharide (LPS)-stimulated PBMCs of healthy controls and septic patients were cultured for 48 hs with or without 0.05/0.1 mg/ml of TCM extract. HLA-DR expression in monocytes was detected using flow cytofluorimetry. The interferon [IFN]-γ, tumor necrosis factor [TNF]-α, interleukin (IL)- 2, IL-5, IL-10, and IL-13 levels in supernatants were measured with a human enzyme-linked immunosorbent assay. RESULTS Treatment with either 0.05 or 0.1 mg/ml of C. longa L. extract significantly restored the percentage of HLA-DR-positive monocytes, which was decreased by LPS in control and patient groups. Treatment with 0.05 or 0.1 mg/ml E. ulmoides Oliv. and C.longa L. extract decreased IL-10 production from LPS-stimulated PBMCs of controls and patients. In patients with sepsis, C. longa L. extract decreased IL-10 production to a greater degree than did E. ulmoides Oliv extract. Although IFN-γ, TNF-α, or IL-13 productions from LPS-stimulated PBMCs were influenced by E. ulmoides Oliv., G. pentaphyllum (Thunb.) Makino, or C. longa L. in control or sepsis groups in this study, only the influence of IL-10 was consistent in both control and sepsis groups. CONCLUSIONS By enhancing monocyte HLA-DR expression and decreasing IL-10 production, C. longa L. might help restore inflammatory responses in septic patients to eradicate pathogens.
Collapse
Affiliation(s)
- Huang-Pin Wu
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan; Chang Gung University College of Medicine, Taoyuan 333, Taiwan.
| | - Yin-Ku Lin
- Chang Gung University College of Medicine, Taoyuan 333, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan.
| |
Collapse
|
27
|
|
28
|
Carrà G, Torti D, Crivellaro S, Panuzzo C, Taulli R, Cilloni D, Guerrasio A, Saglio G, Morotti A. The BCR-ABL/NF-κB signal transduction network: a long lasting relationship in Philadelphia positive Leukemias. Oncotarget 2018; 7:66287-66298. [PMID: 27563822 PMCID: PMC5323234 DOI: 10.18632/oncotarget.11507] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 08/10/2016] [Indexed: 12/23/2022] Open
Abstract
The Nuclear Factor-kappa B (NF-κB) family of transcription factors plays a key role in cancer pathogenesis due to the ability to promote cellular proliferation and survival, to induce resistance to chemotherapy and to mediate invasion and metastasis. NF-κB is recruited through different mechanisms involving either canonical (RelA/p50) or non-canonical pathways (RelB/p50 or RelB/p52), which transduce the signals originated from growth-factors, cytokines, oncogenic stress and DNA damage, bacterial and viral products or other stimuli. The pharmacological inhibition of the NF-κB pathway has clearly been associated with significant clinical activity in different cancers. Almost 20 years ago, NF-κB was described as an essential modulator of BCR-ABL signaling in Chronic Myeloid Leukemia and Philadelphia-positive Acute Lymphoblastic Leukemia. This review summarizes the role of NF-κB in BCR-ABL-mediated leukemogenesis and provides new insights on the long lasting BCR-ABL/NF-κB connection.
Collapse
Affiliation(s)
- Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Davide Torti
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Sabrina Crivellaro
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Riccardo Taulli
- Department of Oncology, University of Turin, Orbassano, Italy
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Angelo Guerrasio
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| |
Collapse
|
29
|
Key roles of necroptotic factors in promoting tumor growth. Oncotarget 2017; 7:22219-33. [PMID: 26959742 PMCID: PMC5008357 DOI: 10.18632/oncotarget.7924] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/23/2016] [Indexed: 02/05/2023] Open
Abstract
Necroptotic factors are generally assumed to play a positive role in tumor therapy by eliminating damaged tumor cells. Here we show that, contrary to expectation, necroptotic factors RIPK1, RIPK3, and MLKL promote tumor growth. We demonstrate that genetic knockout of necroptotic genes RIPK1, RIPK3, or MLKL in cancer cells significantly attenuated their abilities to grow in an anchorage-independent manner. In addition, they exhibited significantly enhanced radiosensitivity. The knockout cells also showed greatly reduced ability to form tumors in mice. Moreover, necrosulfonamide (NSA), a previously identified chemical inhibitor of necroptosis, could significantly delay tumor growth in a xenograft model. Mechanistically, we show that necroptoic factors play a significant role in maintaining the activity of NF-κB. Finally, we found that high levels of phosphorylated MLKL in human esophageal and colon cancers are associated with poor overall survival. Taken together, we conclude that pro-necroptic factors such as RIPK1, RIPK3, and MLKL may play a role in supporting tumor growth, and MLKL may be a promising target for cancer treatment.
Collapse
|
30
|
Spontaneous vesicle formation by γ-aminobutyric acid derived steroidal surfactant: Curcumin loading, cytotoxicity and cellular uptake studies. J Colloid Interface Sci 2017; 507:1-10. [DOI: 10.1016/j.jcis.2017.07.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 01/09/2023]
|
31
|
Diederich M, Cerella C. Non-canonical programmed cell death mechanisms triggered by natural compounds. Semin Cancer Biol 2016; 40-41:4-34. [PMID: 27262793 DOI: 10.1016/j.semcancer.2016.06.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/11/2022]
Abstract
Natural compounds are the fundament of pharmacological treatments and more than 50% of all anticancer drugs are of natural origins or at least derived from scaffolds present in Nature. Over the last 25 years, molecular mechanisms triggered by natural anticancer compounds were investigated. Emerging research showed that molecules of natural origins are useful for both preventive and therapeutic purposes by targeting essential hallmarks and enabling characteristics described by Hanahan and Weinberg. Moreover, natural compounds were able to change the differentiation status of selected cell types. One of the earliest response of cells treated by pharmacologically active compounds is the change of its morphology leading to ultra-structural perturbations: changes in membrane composition, cytoskeleton integrity, alterations of the endoplasmic reticulum, mitochondria and of the nucleus lead to formation of morphological alterations that are a characteristic of both compound and cancer type preceding cell death. Apoptosis and autophagy were traditionally considered as the most prominent cell death or cell death-related mechanisms. By now multiple other cell death modalities were described and most likely involved in response to chemotherapeutic treatment. It can be hypothesized that especially necrosis-related phenotypes triggered by various treatments or evolving from apoptotic or autophagic mechanisms, provide a more efficient therapeutic outcome depending on cancer type and genetic phenotype of the patient. In fact, the recent discovery of multiple regulated forms of necrosis and the initial elucidation of the corresponding cell signaling pathways appear nowadays as important tools to clarify the immunogenic potential of non-canonical forms of cell death induction.
Collapse
Affiliation(s)
- Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea.
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| |
Collapse
|
32
|
Li R, Pavuluri S, Bruggeman K, Long BM, Parnell AJ, Martel A, Parnell SR, Pfeffer FM, Dennison AJC, Nicholas KR, Barrow CJ, Nisbet DR, Williams RJ. Coassembled nanostructured bioscaffold reduces the expression of proinflammatory cytokines to induce apoptosis in epithelial cancer cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1397-407. [PMID: 26961467 DOI: 10.1016/j.nano.2016.01.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/11/2016] [Accepted: 01/21/2016] [Indexed: 11/18/2022]
Abstract
The local inflammatory environment of the cell promotes the growth of epithelial cancers. Therefore, controlling inflammation locally using a material in a sustained, non-steroidal fashion can effectively kill malignant cells without significant damage to surrounding healthy cells. A promising class of materials for such applications is the nanostructured scaffolds formed by epitope presenting minimalist self-assembled peptides; these are bioactive on a cellular length scale, while presenting as an easily handled hydrogel. Here, we show that the assembly process can distribute an anti-inflammatory polysaccharide, fucoidan, localized to the nanofibers within the scaffold to create a biomaterial for cancer therapy. We show that it supports healthy cells, while inducing apoptosis in cancerous epithelial cells, as demonstrated by the significant down-regulation of gene and protein expression pathways associated with epithelial cancer progression. Our findings highlight an innovative material approach with potential applications in local epithelial cancer immunotherapy and drug delivery.
Collapse
Affiliation(s)
- Rui Li
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, Australia; Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Sivapriya Pavuluri
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, Australia; School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | - Kiara Bruggeman
- Research School of Engineering, The Australian National University, Canberra, Australia
| | - Benjamin M Long
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, Australia
| | - Andrew J Parnell
- Department of Physics and Astronomy, University of Sheffield, United Kingdom
| | | | - Steven R Parnell
- Low Energy Neutron Source (LENS), Indiana University, Bloomington, IN, USA
| | - Frederick M Pfeffer
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, Australia
| | - Andrew J C Dennison
- Institut Laue Langevin, Grenoble, France; TU Berlin, Institut für Chemie, Berlin, Germany
| | - Kevin R Nicholas
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, Australia; School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, Australia
| | - David R Nisbet
- Research School of Engineering, The Australian National University, Canberra, Australia
| | - Richard J Williams
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, Australia; School of Aerospace, Mechanical and Manufacturing Engineering and the Health Innovations Research Institute, RMIT University, Melbourne, Australia.
| |
Collapse
|
33
|
Okoye FBC, Sawadogo WR, Sendker J, Aly AH, Quandt B, Wray V, Hensel A, Esimone CO, Debbab A, Diederich M, Proksch P. Flavonoid glycosides from Olax mannii: Structure elucidation and effect on the nuclear factor kappa B pathway. JOURNAL OF ETHNOPHARMACOLOGY 2015; 176:27-34. [PMID: 26475120 DOI: 10.1016/j.jep.2015.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/07/2015] [Accepted: 10/10/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Olax mannii Oliv. (Olacaceae) is among the many medicinal plants used in Nigeria for the ethnomedicinal management of both cancer and inflammation. Such plants represent potential sources of innovative therapeutic agents for the treatment of cancer and other malignant disorders. While the majority of medicinal plants exert their anticancer effects by direct cytotoxicity on tumor cells, it is important that other mechanisms through which these plants can exhibit anticancer effects are investigated. Preliminary studies indicated that Olax mannii leaves are rich sources of novel flavonoid glycosides. The detailed chemistry as well the mechanisms through which these flavonoid constituents may exert their cancer chemo-preventive and therapeutic effects are, however, not yet investigated. AIM OF THE STUDY The aim of this study is to carry out a detailed chemical investigation of Olax mannii leaves and the effects of the isolated constituents on the nuclear factor kappa B (NF-κB) pathway. MATERIALS AND METHODS A methanol leaf extract was subjected to various chromatographic separations to achieve isolation of flavonoid glycosides and the structures of the isolated compounds were elucidated by a combination of 1D and 2D NMR and high resolution mass spectrometry. Biological activities were assessed by measurement of cellular viability and proliferation using quantitative IncuCyte videomicroscopy, trypan blue staining and by quantification of the number of metabolically active K562 cells based on quantitation of ATP. The effect of the compounds on the inhibition of the NF-κB pathway as well as toxicity towards peripheral blood mononuclear cells to evaluate differential toxicity was also assayed. RESULTS Chemical investigation of the methanol leaf extract of the plant material led to the isolation of three new flavonoid triglycosides, kaempferol 3-O-[α-D-apiofuranosyl-(1 → 2)-α-L-arabinofuranoside]-7-O-α-L-rhamnopyranoside (1), kaempferol 3-O-[β-D-glucopyranosyl-(1 → 2)-α-L-arabinofuranoside]-7-O-α-L-rhamnopyranoside (2), kaempferol 3-O-[β-D-arabinopyranosyl-(1→4)-α-L-rhamnopyranoside]-7-O-α-L-rhamnopyranoside (3), in addition to fourteen known flavonoid glycosides (4-17). Of all the tested compounds, only compound 9 (kaempferol 3-O-α-L-rhamnopyranoside) exhibited promising and specific antiproliferative activity on human K562 chronic myelogenous leukemia cells and dose-dependently inhibited NF-κB transactivation. CONCLUSION The presence of this flavonoid glycoside and derivatives may account for the reported efficacy of Olax mannii leaf extract in the ethnomedicinal management of cancer and inflammation.
Collapse
Affiliation(s)
- Festus B C Okoye
- Institut für Pharmazeutische Biologie und Biotechnologie, HHU-Universität, Düsseldorf, Germany; Department of Pharmaceutical and Medicinal Chemistry, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria.
| | | | - Jandirk Sendker
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Münster, Germany
| | - Amal H Aly
- Institut für Pharmazeutische Biologie und Biotechnologie, HHU-Universität, Düsseldorf, Germany
| | - Bettina Quandt
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Münster, Germany
| | - Victor Wray
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, d-38124 Braunschweig, Germany
| | - Andreas Hensel
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Münster, Germany
| | - Charles O Esimone
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Abdessamad Debbab
- Institut für Pharmazeutische Biologie und Biotechnologie, HHU-Universität, Düsseldorf, Germany
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Peter Proksch
- Institut für Pharmazeutische Biologie und Biotechnologie, HHU-Universität, Düsseldorf, Germany.
| |
Collapse
|
34
|
Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv 2015; 33:1582-1614. [PMID: 26281720 PMCID: PMC4748402 DOI: 10.1016/j.biotechadv.2015.08.001] [Citation(s) in RCA: 1444] [Impact Index Per Article: 144.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 07/16/2015] [Accepted: 08/07/2015] [Indexed: 01/01/2023]
Abstract
Medicinal plants have historically proven their value as a source of molecules with therapeutic potential, and nowadays still represent an important pool for the identification of novel drug leads. In the past decades, pharmaceutical industry focused mainly on libraries of synthetic compounds as drug discovery source. They are comparably easy to produce and resupply, and demonstrate good compatibility with established high throughput screening (HTS) platforms. However, at the same time there has been a declining trend in the number of new drugs reaching the market, raising renewed scientific interest in drug discovery from natural sources, despite of its known challenges. In this survey, a brief outline of historical development is provided together with a comprehensive overview of used approaches and recent developments relevant to plant-derived natural product drug discovery. Associated challenges and major strengths of natural product-based drug discovery are critically discussed. A snapshot of the advanced plant-derived natural products that are currently in actively recruiting clinical trials is also presented. Importantly, the transition of a natural compound from a "screening hit" through a "drug lead" to a "marketed drug" is associated with increasingly challenging demands for compound amount, which often cannot be met by re-isolation from the respective plant sources. In this regard, existing alternatives for resupply are also discussed, including different biotechnology approaches and total organic synthesis. While the intrinsic complexity of natural product-based drug discovery necessitates highly integrated interdisciplinary approaches, the reviewed scientific developments, recent technological advances, and research trends clearly indicate that natural products will be among the most important sources of new drugs also in the future.
Collapse
Affiliation(s)
- Atanas G. Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Eva-Maria Pferschy-Wenzig
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Universitätsplatz 4/I, 8010 Graz, Austria
| | - Thomas Linder
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, 1060 Vienna, Austria
| | - Christoph Wawrosch
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Pavel Uhrin
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Veronika Temml
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Limei Wang
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Stefan Schwaiger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Elke H. Heiss
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Judith M. Rollinger
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Daniela Schuster
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Johannes M. Breuss
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Valery Bochkov
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46/III, 8010 Graz, Austria
| | - Marko D. Mihovilovic
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, 1060 Vienna, Austria
| | - Brigitte Kopp
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Universitätsplatz 4/I, 8010 Graz, Austria
| | - Verena M. Dirsch
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
35
|
WANG KUNHAO, XU ZHIWEN, WANG NING, TIAN YE, SUN XIN, MA YONGGANG. Analysis of microRNA and gene networks in human chronic myelogenous leukemia. Mol Med Rep 2015; 13:453-60. [DOI: 10.3892/mmr.2015.4502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 09/16/2015] [Indexed: 11/05/2022] Open
|
36
|
Zhang Y, Hou Z, Ge Y, Deng K, Liu B, Li X, Li Q, Cheng Z, Ma P, Li C, Lin J. DNA-Hybrid-Gated Photothermal Mesoporous Silica Nanoparticles for NIR-Responsive and Aptamer-Targeted Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2015; 7:20696-20706. [PMID: 26325285 DOI: 10.1021/acsami.5b05522] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Near-infrared light is an attractive stimulus due to its noninvasive and deep tissue penetration. Particularly, NIR light is utilized for cancer thermotherapy and on-demand release of drugs by the disruption of the delivery carriers. Here we have prepared a novel NIR-responsive DNA-hybrid-gated nanocarrier based on mesoporous silica-coated Cu1.8S nanoparticles. Cu1.8S nanoparticles, possessing high photothermal conversion efficiency under a 980 nm laser, were chosen as photothermal agents. The mesoporous silica structure could be used for drug storage/delivery and modified with aptamer-modified GC-rich DNA-helix as gatekeepers, drug vectors, and targeting ligand. Simultaneously, the as-produced photothermal effect caused denaturation of DNA double strands, which triggered the drug release of the DNA-helix-loaded hydrophilic drug doxorubicin and mesopore-loaded hydrophobic drug curcumin, resulting in a synergistic therapeutic effect. The Cu1.8S@mSiO2 nanocomposites endocytosed by cancer cells through the aptamer-mediated mode are able to generate rational release of doxorubicin/curcumin under NIR irradiation, strongly enhancing the synergistic growth-inhibitory effect of curcumin against doxorubicin in MCF-7 cells, which is associated with a strong mitochondrial-mediated cell apoptosis progression. The underlying mechanism of apoptosis showed a strong synergistic inhibitory effect both on the expression of Bcl-2, Bcl-xL, Mcl-1, and upregulated caspase 3/9 activity and on the expression level of Bak and Bax. Therefore, Cu1.8S@mSiO2 with efficient synergistic therapeutic efficiency is a potential multifunctional cancer therapy nanoplatform.
Collapse
Affiliation(s)
- Yuanxin Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
- College of Biology and Food Engineering, Jilin Institute of Chemical Technology , Jilin 132022, P. R. China
| | - Zhiyao Hou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Yakun Ge
- College of Biology and Food Engineering, Jilin Institute of Chemical Technology , Jilin 132022, P. R. China
| | - Kerong Deng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Bei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Xuejiao Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Quanshun Li
- School of Life Science, Jilin University , Changchun 130012, P. R. China
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Chunxia Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| |
Collapse
|
37
|
Yousefi A, Yousefi R, Panahi F, Sarikhani S, Zolghadr AR, Bahaoddini A, Khalafi-Nezhad A. Novel curcumin-based pyrano[2,3-d]pyrimidine anti-oxidant inhibitors for α-amylase and α-glucosidase: Implications for their pleiotropic effects against diabetes complications. Int J Biol Macromol 2015; 78:46-55. [DOI: 10.1016/j.ijbiomac.2015.03.060] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 02/01/2023]
|
38
|
Kim W, Kim HY, Woo J, Rhim HJ, Kang BR, Lee YD, Kim S, Kim JY, Choi EJ, Kim KS, Kim DJ, Kim Y. Real-Time Imaging Reveals Glioblastoma Suppression Effects of Curcumin in Mouse Brains. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Woong Kim
- Centers for Neuro-Medicine, Neuroscience and Theragnosis; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
- Biological Chemistry Program; Korea University of Science and Technology (UST); Daejeon 305-350 Republic of Korea
| | - Hye Yun Kim
- Centers for Neuro-Medicine, Neuroscience and Theragnosis; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
- Department of Biochemistry and Biomedical Sciences; Seoul National University College of Medicine; Seoul 110-799 Republic of Korea
| | - Jiwan Woo
- Centers for Neuro-Medicine, Neuroscience and Theragnosis; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
- Department of Life Sciences; Korea University; Seoul 136-701 Republic of Korea
| | - Hoo Jung Rhim
- Centers for Neuro-Medicine, Neuroscience and Theragnosis; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
- Yonsei University Wonju College of Medicine; Gangwon-do 220-701 Republic of Korea
| | - Bo Ram Kang
- Centers for Neuro-Medicine, Neuroscience and Theragnosis; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
- Biological Chemistry Program; Korea University of Science and Technology (UST); Daejeon 305-350 Republic of Korea
| | - Yong-Deok Lee
- Centers for Neuro-Medicine, Neuroscience and Theragnosis; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
| | - Sehoon Kim
- Centers for Neuro-Medicine, Neuroscience and Theragnosis; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
| | - Jung Young Kim
- Molecular Imaging Research Center; Korea Institute of Radiological & Medical Sciences (KIRAMS); Seoul 139-706 Republic of Korea
| | - Eun-Ju Choi
- Department of Life Sciences; Korea University; Seoul 136-701 Republic of Korea
| | - Key-Sun Kim
- Centers for Neuro-Medicine, Neuroscience and Theragnosis; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
| | - Dong Jin Kim
- Centers for Neuro-Medicine, Neuroscience and Theragnosis; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
| | - YoungSoo Kim
- Centers for Neuro-Medicine, Neuroscience and Theragnosis; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
- Biological Chemistry Program; Korea University of Science and Technology (UST); Daejeon 305-350 Republic of Korea
| |
Collapse
|
39
|
Cao L, Ding W, Du J, Jia R, Liu Y, Zhao C, Shen Y, Yin G. Effects of curcumin on antioxidative activities and cytokine production in Jian carp (Cyprinus carpio var. Jian) with CCl4-induced liver damage. FISH & SHELLFISH IMMUNOLOGY 2015; 43:150-157. [PMID: 25549934 DOI: 10.1016/j.fsi.2014.12.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 06/04/2023]
Abstract
We investigated the protective effects of curcumin on liver-damaged Cyprinus carpio var. Jian (Jian carp). The carp were fed 0.1%, 0.5%, or 1.0% curcumin for 60 days, then injected intraperitoneally with 30% carbon tetrachloride solution. Liver and blood samples were collected to measure the liver index, serum- and liver-associated enzymes, liver histology, nuclear factor-κB (NF-κB)/c-Rel, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and IL-12 mRNA expression, and the level of NF-κB/c-Rel protein in the liver, and for a comet assay. We found that 0.5% and 1.0% curcumin significantly reduced the CCl(4)-induced increase in the liver index. The comet assay showed that the tail moment, olive tail moment, tail length, and tail DNA% improved in fish pretreated with 0.5 or 1.0% curcumin. CCl(4)-induced histological changes, including extensive hepatocyte degeneration, indistinct cell borders, nuclear condensation, and karyolysis were clearly reduced after treatment with 0.5% and 1.0% curcumin. Moreover, 0.5% and 1.0% curcumin significantly inhibited the CCl(4)-induced increase in serum glutamic oxaloacetic transaminase and promoted the restoration of superoxide dismutase in the liver; 1.0% curcumin significantly reduced serum glutamic pyruvic transaminase and lactate dehydrogenase and hepatic malondialdehyde, but significantly increased the total antioxidant capacity and glutathione levels in the liver. The CCl(4)-induced upregulation of NF-κB/c-Rel, IL-1β, and TNF-α mRNAs and NF-κB/c-Rel protein levels was inhibited by 0.5% and 1.0% curcumin, and IL-12 mRNA was reduced by all three doses of curcumin. The effects of curcumin on the liver index, enzymes, histological changes, and cytokines were dose-dependent. Our results indicate that curcumin reduces CCl(4)-induced liver damage in Jian carp by upregulating antioxidative activities and inhibiting NF-κB, IL-1β, TNF-α, and IL-12 expression.
Collapse
Affiliation(s)
- Liping Cao
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resource Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Weidong Ding
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jingliang Du
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resource Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Rui Jia
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resource Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yingjuan Liu
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resource Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Caiyuan Zhao
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resource Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yujin Shen
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resource Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Guojun Yin
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resource Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
40
|
Teiten MH, Dicato M, Diederich M. Hybrid curcumin compounds: a new strategy for cancer treatment. Molecules 2014; 19:20839-63. [PMID: 25514225 PMCID: PMC6271749 DOI: 10.3390/molecules191220839] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 01/09/2023] Open
Abstract
Cancer is a multifactorial disease that requires treatments able to target multiple intracellular components and signaling pathways. The natural compound, curcumin, was already described as a promising anticancer agent due to its multipotent properties and huge amount of molecular targets in vitro. Its translation to the clinic is, however, limited by its reduced solubility and bioavailability in patients. In order to overcome these pharmacokinetic deficits of curcumin, several strategies, such as the design of synthetic analogs, the combination with specific adjuvants or nano-formulations, have been developed. By taking into account the risk-benefit profile of drug combinations, as well as the knowledge about curcumin's structure-activity relationship, a new concept for the combination of curcumin with scaffolds from different natural products or components has emerged. The concept of a hybrid curcumin molecule is based on the incorporation or combination of curcumin with specific antibodies, adjuvants or other natural products already used or not in conventional chemotherapy, in one single molecule. The high diversity of such conjugations enhances the selectivity and inherent biological activities and properties, as well as the efficacy of the parental compound, with particular emphasis on improving the efficacy of curcumin for future clinical treatments.
Collapse
Affiliation(s)
- Marie-Hélène Teiten
- Laboratory of Molecular and Cellular Biology of Cancer (LBMCC), Hôpital Kirchberg, 9, Rue Edward Steichen, Luxembourg L-2540, Luxembourg.
| | - Mario Dicato
- Laboratory of Molecular and Cellular Biology of Cancer (LBMCC), Hôpital Kirchberg, 9, Rue Edward Steichen, Luxembourg L-2540, Luxembourg.
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea.
| |
Collapse
|
41
|
Kim YG, Sohn DH, Zhao X, Sokolove J, Lindstrom TM, Yoo B, Lee CK, Reveille JD, Taurog JD, Robinson WH. Role of protein phosphatase magnesium-dependent 1A and anti-protein phosphatase magnesium-dependent 1A autoantibodies in ankylosing spondylitis. Arthritis Rheumatol 2014; 66:2793-2803. [PMID: 24980965 DOI: 10.1002/art.38763] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/24/2014] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Although ankylosing spondylitis (AS) is driven by immune-mediated processes, little is known about the presence and role of autoantibodies in this disease. This study was undertaken to investigate whether autoantibodies occur in and are involved in AS. METHODS We performed human protein microarray analysis of sera derived from patients with AS or other autoimmune disorders to identify autoantibodies associated specifically with AS, and identified autoantibody targeting of protein phosphatase magnesium-dependent 1A (PPM1A) in AS. We performed enzyme-linked immunosorbent assay (ELISA) analysis of sera from 2 independent AS cohorts to confirm autoantibody targeting of PPM1A, and to assess associations between levels of anti-PPM1A antibodies and AS disease severity or response to anti-tumor necrosis factor (anti-TNF) therapy (as measured by Bath AS Disease Activity Index [BASDAI] score). Levels of anti-PPM1A antibodies were also evaluated in sera from rats transgenic for HLA-B27 and human β2 -microglobulin. The expression of PPM1A was assessed by immunohistochemistry in synovial tissue samples from patients with AS, rheumatoid arthritis, or osteoarthritis. The role of PPM1A in osteoblast differentiation was investigated by gene knockdown and overexpression. RESULTS AS was associated with autoantibody targeting of PPM1A, and levels of anti-PPM1A autoantibodies were significantly higher in patients with more advanced sacroiliitis and correlated positively with BASDAI score after treatment with anti-TNF agents. The levels of anti-PPM1A autoantibodies were also higher in the sera of transgenic rats that are prone to develop spondyloarthritis than in those that are not. PPM1A was expressed in AS synovial tissue, and PPM1A overexpression promoted osteoblast differentiation, whereas PPM1A knockdown suppressed it. CONCLUSION Anti-PPM1A autoantibodies are present in AS, and our findings suggest that PPM1A may contribute to the pathogenic bone ankylosis characteristic of AS.
Collapse
Affiliation(s)
- Yong-Gil Kim
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Division of Rheumatology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Dong Hyun Sohn
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Xiaoyan Zhao
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Jeremy Sokolove
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Tamsin M Lindstrom
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
| | - Bin Yoo
- Division of Rheumatology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Chang-Keun Lee
- Division of Rheumatology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - John D Reveille
- Division of Rheumatology, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Joel D Taurog
- Rheumatic Diseases Division, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - William H Robinson
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
42
|
Zhu HC, Qiu T, Dan C, Liu XH, Hu CH. Blockage of RelB expression by gene silencing enhances the radiosensitivity of androgen‑independent prostate cancer cells. Mol Med Rep 2014; 11:1167-73. [PMID: 25370388 DOI: 10.3892/mmr.2014.2857] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 08/29/2014] [Indexed: 11/05/2022] Open
Abstract
Levels of the nuclear factor‑kappa B (NF‑κB) alternative pathway member RelB have been shown to correlate with the effect of radiation therapy in prostate cancer. RelB expression was evaluated by immunohistochemistry in normal prostate, benign prostate hyperplasia and prostate cancer specimens. RM‑1 cells were pretreated with RelB siRNA prior to radiation therapy, and RelB expression in cytoplasmic and nuclear extracts was detected by real‑time polymerase chain reaction and western blot analysis. The apoptotic rates of experimental RM‑1 cell groups were assessed by flow cytometry. A clonogenic growth array was used to evaluate the radiosensitivity of RM‑1 cell groups. The NF‑κB family member RelB was expressed at a high level in prostate cancer specimens. Compared with irradiated control cells, RM‑1 cells transfected with RelB siRNA and treated with radiation therapy demonstrated a significant downregulation of RelB expression in the cytoplasm and nucleus. Notably, flow cytometry revealed that pretreatment of RM‑1 cells with RelB siRNA enhanced the apoptotic rate in response to radiation therapy compared with controls. Clonogenic growth assay results revealed enhanced radiosensitivity of RelB siRNA cells at various dosage points compared with control groups. Blockage of the alternative NF‑κB pathway via RelB silencing is a promising approach to enhance the radiosensitivity of prostate cancer.
Collapse
Affiliation(s)
- Heng-Cheng Zhu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Tao Qiu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chao Dan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiu-Heng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chun-Hai Hu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
43
|
From nature to bedside: Pro-survival and cell death mechanisms as therapeutic targets in cancer treatment. Biotechnol Adv 2014; 32:1111-22. [DOI: 10.1016/j.biotechadv.2014.03.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 12/11/2022]
|
44
|
Chen B, Wang H, Ding Y, Wild D. Semantic Breakthrough in Drug Discovery. SYNTHESIS LECTURES ON THE SEMANTIC WEB: THEORY AND TECHNOLOGY 2014; 4:1-142. [DOI: 10.2200/s00600ed1v01y201409web009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
45
|
Orlikova B, Chaouni W, Schumacher M, Aadil M, Diederich M, Kirsch G. Synthesis and bioactivity of novel amino-pyrazolopyridines. Eur J Med Chem 2014; 85:450-7. [DOI: 10.1016/j.ejmech.2014.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 08/01/2014] [Accepted: 08/04/2014] [Indexed: 12/23/2022]
|
46
|
Zhang J, Wei H, Lin M, Chen C, Wang C, Liu M. Curcumin protects against ischemic spinal cord injury: The pathway effect. Neural Regen Res 2014; 8:3391-400. [PMID: 25206661 PMCID: PMC4146004 DOI: 10.3969/j.issn.1673-5374.2013.36.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 11/10/2013] [Indexed: 01/04/2023] Open
Abstract
Inducible nitric oxide synthase and N-methyl-D-aspartate receptors have been shown to participate in nerve cell injury during spinal cord ischemia. This study observed a protective effect of curcumin on ischemic spinal cord injury. Models of spinal cord ischemia were established by ligating the lumbar artery from the left renal artery to the bifurcation of the abdominal aorta. At 24 hours after model establishment, the rats were intraperitoneally injected with curcumin. Reverse transcription-polymerase chain reaction and immunohistochemical results demonstrated that after spinal cord ischemia, inducible nitric oxide synthase and N-methyl-D-aspartate receptor mRNA and protein expression significantly increased. However, curcumin significantly decreased inducible nitric oxide synthase and N-methyl-D-aspartate receptor mRNA and protein expression in the ischemic spinal cord. Tarlov scale results showed that curcumin significantly improved motor function of the rat hind limb after spinal cord ischemia. The results demonstrate that curcumin exerts a neuroprotective fect against ischemic spinal cord injury by decreasing inducible nitric oxide synthase and N-methyl-D-aspartate receptor expression.
Collapse
Affiliation(s)
- Jinhua Zhang
- Department of Pharmacy, Union Hospital, Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Hao Wei
- Department of Neurosurgery, Union Hospital, Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Meimei Lin
- Department of Pharmacy, Union Hospital, Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Chunmei Chen
- Department of Neurosurgery, Union Hospital, Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Chunhua Wang
- Department of Neurosurgery, Union Hospital, Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Maobai Liu
- Department of Pharmacy, Union Hospital, Fujian Medical University, Fuzhou 350001, Fujian Province, China
| |
Collapse
|
47
|
Chapkin RS, DeClercq V, Kim E, Fuentes NR, Fan YY. Mechanisms by Which Pleiotropic Amphiphilic n-3 PUFA Reduce Colon Cancer Risk. CURRENT COLORECTAL CANCER REPORTS 2014; 10:442-452. [PMID: 25400530 DOI: 10.1007/s11888-014-0241-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Colorectal cancer is one of the major causes of cancer-related mortality in both men and women worldwide. Genetic susceptibility and diet are primary determinants of cancer risk and tumor behavior. Experimental, epidemiological, and clinical data substantiate the beneficial role of n-3 polyunsaturated fatty acids (PUFA) in preventing chronic inflammation and colon cancer. From a mechanistic perspective, n-3 PUFA are pleiotropic and multifaceted with respect to their molecular mechanisms of action. For example, this class of dietary lipid uniquely alters membrane structure/ cytoskeletal function, impacting membrane receptor function and downstream signaling cascades, including gene expression profiles and cell phenotype. In addition, n-3 PUFA can synergize with other potential anti-tumor agents, such as fermentable fiber and curcumin. With the rising prevalence of diet-induced obesity, there is also an urgent need to elucidate the link between chronic inflammation in adipose tissue and colon cancer risk in obesity. In this review, we will summarize recent developments linking n-3 PUFA intake, membrane alterations, epigenetic modulation, and effects on obesity-associated colon cancer risk.
Collapse
Affiliation(s)
- Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA. Center for Translational Environmental Health Research, Texas A&M University, College Station, TX 77843, USA. Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA. Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA. Faculty of Toxicity, Texas A&M University, College Station, TX 77843, USA
| | - Vanessa DeClercq
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA. Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Eunjoo Kim
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA. Molecular & Cellular Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Natividad Roberto Fuentes
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA. Faculty of Toxicity, Texas A&M University, College Station, TX 77843, USA
| | - Yang-Yi Fan
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA. Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
48
|
Sobolewski C, Muller F, Cerella C, Dicato M, Diederich M. Celecoxib prevents curcumin-induced apoptosis in a hematopoietic cancer cell model. Mol Carcinog 2014; 54:999-1013. [PMID: 24798089 DOI: 10.1002/mc.22169] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 12/26/2022]
Abstract
Molecules targeting pro-inflammatory pathways have demonstrated beneficial effects in cancer treatment. More recently, combination of natural and synthetic anti-inflammatory drugs was suggested as an appealing strategy to inhibit tumor growth. Herein, we show that curcumin, a polyphenol from Curcuma longa and celecoxib induce apoptosis in hematopoietic cancer cell lines (Hel, Jurkat, K562, Raji, and U937). Further investigations on the most sensitive cell line, U937, indicated that these effects were tightly associated with an accumulation of the cells in S and G2/M for curcumin and in G0/G1 phase of cell cycle for celecoxib, respectively. The effect of celecoxib on cell cycle is associated with an induction of p27 and the down-regulation of cyclin D1. However, in the case of combination experiments, the pretreatment of U937 cells with celecoxib at non-apoptogenic concentrations counteracted curcumin-induced apoptosis. We found that this effect correlated with the prevention of the accumulation in S and G2/M phase of cell cycle induced by curcumin. Similar results have been obtained when celecoxib and curcumin were co-administrated at the same time. Overall our data suggest that this natural and synthetic drug combination is detrimental for cell death induction.
Collapse
Affiliation(s)
- Cyril Sobolewski
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Florian Muller
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea
| |
Collapse
|
49
|
Barui S, Saha S, Mondal G, Haseena S, Chaudhuri A. Simultaneous delivery of doxorubicin and curcumin encapsulated in liposomes of pegylated RGDK-lipopeptide to tumor vasculature. Biomaterials 2013; 35:1643-56. [PMID: 24239109 DOI: 10.1016/j.biomaterials.2013.10.074] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/27/2013] [Indexed: 01/19/2023]
Abstract
Curcumin, because of its distinguishing ability to inhibit activation of transcription factor linked to chemoresistance and drug transporters, is now being co-administered with various potent anti-cancer drugs. In the present study, we report on such potentiating capabilities of curcumin in anti-angiogenic cancer therapy. With a view to simultaneously deliver curcumin and doxorubicin to tumor vasculature in anti-angiogenic cancer therapy, herein we report on the design & synthesis of a tumor vasculature targeting pegylated RGDK-lipopeptide. We show that curcumin & doxorubicin co-encapsulated within the liposomes of the presently described pegylated RGDK-lipopeptide exhibit synergism in inhibiting proliferation, invasion and migration of both tumor and endothelial cells presumably by inhibiting proliferation and metastasis related genes both at mRNA & protein levels. Pronounced tumor growth inhibition was observed in mice treated with formulations containing both the drugs. Tumor growth inhibition was found to be 2-3 folds less in mice treated with formulations containing only curcumin or only doxorubicin. The presently described liposomal system is expected to find future use for simultaneously delivering potentially any combinations of hydrophilic and hydrophobic potent small molecule cancer therapeutics to tumor vasculature in anti-angiogenic cancer therapy.
Collapse
Affiliation(s)
- Sugata Barui
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Soumen Saha
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Goutam Mondal
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Shaik Haseena
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Arabinda Chaudhuri
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.
| |
Collapse
|
50
|
Aggarwal BB, Gupta SC, Sung B. Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. Br J Pharmacol 2013; 169:1672-92. [PMID: 23425071 PMCID: PMC3753829 DOI: 10.1111/bph.12131] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/20/2013] [Accepted: 02/04/2013] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED TNFs are major mediators of inflammation and inflammation-related diseases, hence, the United States Food and Drug Administration (FDA) has approved the use of blockers of the cytokine, TNF-α, for the treatment of osteoarthritis, inflammatory bowel disease, psoriasis and ankylosis. These drugs include the chimeric TNF antibody (infliximab), humanized TNF-α antibody (Humira) and soluble TNF receptor-II (Enbrel) and are associated with a total cumulative market value of more than $20 billion a year. As well as being expensive ($15 000-20 000 per person per year), these drugs have to be injected and have enough adverse effects to be given a black label warning by the FDA. In the current report, we describe an alternative, curcumin (diferuloylmethane), a component of turmeric (Curcuma longa) that is very inexpensive, orally bioavailable and highly safe in humans, yet can block TNF-α action and production in in vitro models, in animal models and in humans. In addition, we provide evidence for curcumin's activities against all of the diseases for which TNF blockers are currently being used. Mechanisms by which curcumin inhibits the production and the cell signalling pathways activated by this cytokine are also discussed. With health-care costs and safety being major issues today, this golden spice may help provide the solution. LINKED ARTICLES This article is part of a themed section on Emerging Therapeutic Aspects in Oncology. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-8.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | | | |
Collapse
|