1
|
Kono Y, Kajiya H, Nagano R, Tominaga C, Maeda H, Fujita T, Tamaoki S. Piezo1 promotes double-directional differentiation from human periodontal ligament progenitor cells. J Oral Biosci 2025:100651. [PMID: 40090520 DOI: 10.1016/j.job.2025.100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025]
Abstract
OBJECTIVES Human periodontal ligament (PDL) progenitor cells (hPDLPCs) sense mechanical stress and differentiate into osteoblasts, cementoblasts, and fibroblasts during orthodontic tooth movement. The mechanosensitive ion channel Piezo1 has been known to be present in PDL tissues and is involved in mineralization during bone regeneration. However, the functional role and underlying mechanisms of Piezo1 in osteogenesis and cementogenesis are unknown. We hypothesize that Piezo proteins are expressed in and regulate the differentiation of hPDLPCs. METHODS We examined the effects of Piezo1 activation, by agonist and mechanical stretching, on the expression of osteogenesis- and cementogenesis-related molecules in hPDLPCs using RT-PCR, western blotting, and immunofluorescence methods. RESULTS hPDLPCs showed calcium influx in Piezo1 and Piezo2, but not in TRPV4 and its channels. In hPDLPCs, the Piezo1 agonist Yoda1 significantly upregulated osteogenesis- and cementogenesis-related molecules through the Ca2+/CREB pathway. To investigate the role of Piezo1 in hPDLPC-mediated differentiation, knockout (KO) of Piezo1 in hPDLPCs was generated; significant downregulation of osteogenesis- and cementogenesis-related molecules was observed in KO hPDLPCs. Furthermore, Piezo1 enhanced the mineralization of hPDLPCs. CONCLUSIONS hPDLPCs expressed Piezo1 and Piezo2. Yoda1, Piezo1 agonist, significantly upregulated osteogenesis- and cementogenesis-related molecules through the Ca2+/CREB signaling pathway.
Collapse
Affiliation(s)
- Yuri Kono
- Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan; Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Hiroshi Kajiya
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan; Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan.
| | - Riko Nagano
- Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| | - Chisato Tominaga
- Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| | - Hidefumi Maeda
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tsugumi Fujita
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Sachio Tamaoki
- Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| |
Collapse
|
2
|
Li S, Liu H, Li M, Zhang C. Multiscale simulation of the effect of low-intensity pulsed ultrasound on the mechanical properties distribution of osteocytes. Comput Methods Biomech Biomed Engin 2024; 27:2058-2070. [PMID: 37842824 DOI: 10.1080/10255842.2023.2270103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
Low-intensity pulsed ultrasound (LIPUS) is a potential effective means for the prevention and treatment of disuse osteoporosis. In this paper, the effect of LIPUS exposure on the mechanical properties distribution of the osteocyte system (osteocyte body contains nucleus, osteocyte process, and primary cilia) is simulated. The results demonstrate that the mechanical micro-environment of the osteocyte is significantly improved by ultrasound exposure, and the mean von Mises stress of the osteocyte system increases linearly with the excitation sound pressure amplitude. The mechanical effect of LIPUS on osteocytes is enhanced by the stress amplification mechanism of the primary cilia and osteocyte processes.
Collapse
Affiliation(s)
- Shenggang Li
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, People's Republic of China
| | - Haiying Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, People's Republic of China
| | - Mingzhi Li
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, People's Republic of China
| | - Chunqiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, People's Republic of China
| |
Collapse
|
3
|
Gilbert SJ, Jones R, Egan BJ, Bonnet CS, Evans SL, Mason DJ. Investigating mechanical and inflammatory pathological mechanisms in osteoarthritis using MSC-derived osteocyte-like cells in 3D. Front Endocrinol (Lausanne) 2024; 15:1359052. [PMID: 39157681 PMCID: PMC11328832 DOI: 10.3389/fendo.2024.1359052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Changes to bone physiology play a central role in the development of osteoarthritis with the mechanosensing osteocyte releasing factors that drive disease progression. This study developed a humanised in vitro model to detect osteocyte responses to either interleukin-6, a driver of degeneration and bone remodelling in animal and human joint injury, or mechanical loading, to mimic osteoarthritis stimuli in joints. Methods Human MSC cells (Y201) were differentiated in 3-dimensional type I collagen gels in osteogenic media and osteocyte phenotype assessed by RTqPCR and immunostaining. Gels were subjected to a single pathophysiological load or stimulated with interleukin-6 with unloaded or unstimulated cells as controls. RNA was extracted 1-hour post-load and assessed by RNAseq. Markers of pain, bone remodelling, and inflammation were quantified by RT-qPCR and ELISA. Results Y201 cells embedded within 3D collagen gels assumed dendritic morphology and expressed mature osteocytes markers. Mechanical loading of the osteocyte model regulated 7564 genes (Padj p<0.05, 3026 down, 4538 up). 93% of the osteocyte transcriptome signature was expressed in the model with 38% of these genes mechanically regulated. Mechanically loaded osteocytes regulated 26% of gene ontology pathways linked to OA pain, 40% reflecting bone remodelling and 27% representing inflammation. Load regulated genes associated with osteopetrosis, osteoporosis and osteoarthritis. 42% of effector genes in a genome-wide association study meta-analysis were mechanically regulated by osteocytes with 10 genes representing potential druggable targets. Interleukin-6 stimulation of osteocytes at concentrations reported in human synovial fluids from patients with OA or following knee injury, regulated similar readouts to mechanical loading including markers of pain, bone remodelling, and inflammation. Discussion We have developed a reproducible model of human osteocyte like cells that express >90% of the genes in the osteocyte transcriptome signature. Mechanical loading and inflammatory stimulation regulated genes and proteins implicated in osteoarthritis symptoms of pain as well as inflammation and degeneration underlying disease progression. Nearly half of the genes classified as 'effectors' in GWAS were mechanically regulated in this model. This model will be useful in identifying new mechanisms underlying bone and joint pathologies and testing drugs targeting those mechanisms.
Collapse
Affiliation(s)
- Sophie J. Gilbert
- Biomechanics and Bioengineering Centre Versus Arthritis, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Ryan Jones
- Biomechanics and Bioengineering Centre Versus Arthritis, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Ben J. Egan
- Biomechanics and Bioengineering Centre Versus Arthritis, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Cleo Selina Bonnet
- Biomechanics and Bioengineering Centre Versus Arthritis, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Sam L. Evans
- Biomechanics and Bioengineering Centre Versus Arthritis, School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Biomechanics and Bioengineering Centre Versus Arthritis, School of Engineering, Cardiff University, Cardiff, United Kingdom
| | - Deborah J. Mason
- Biomechanics and Bioengineering Centre Versus Arthritis, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
4
|
Shimonty A, Pin F, Prideaux M, Peng G, Huot J, Kim H, Rosen CJ, Spiegelman BM, Bonewald LF. Deletion of FNDC5/irisin modifies murine osteocyte function in a sex-specific manner. eLife 2024; 12:RP92263. [PMID: 38661340 PMCID: PMC11045224 DOI: 10.7554/elife.92263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Irisin, released from exercised muscle, has been shown to have beneficial effects on numerous tissues but its effects on bone are unclear. We found significant sex and genotype differences in bone from wildtype (WT) mice compared to mice lacking Fndc5 (knockout [KO]), with and without calcium deficiency. Despite their bone being indistinguishable from WT females, KO female mice were partially protected from osteocytic osteolysis and osteoclastic bone resorption when allowed to lactate or when placed on a low-calcium diet. Male KO mice have more but weaker bone compared to WT males, and when challenged with a low-calcium diet lost more bone than WT males. To begin to understand responsible molecular mechanisms, osteocyte transcriptomics was performed. Osteocytes from WT females had greater expression of genes associated with osteocytic osteolysis and osteoclastic bone resorption compared to WT males which had greater expression of genes associated with steroid and fatty acid metabolism. Few differences were observed between female KO and WT osteocytes, but with a low-calcium diet, the KO females had lower expression of genes responsible for osteocytic osteolysis and osteoclastic resorption than the WT females. Male KO osteocytes had lower expression of genes associated with steroid and fatty acid metabolism, but higher expression of genes associated with bone resorption compared to male WT. In conclusion, irisin plays a critical role in the development of the male but not the female skeleton and protects male but not female bone from calcium deficiency. We propose irisin ensures the survival of offspring by targeting the osteocyte to provide calcium in lactating females, a novel function for this myokine.
Collapse
Affiliation(s)
| | | | | | - Gang Peng
- Indiana UniversityIndianapolisUnited States
| | | | - Hyeonwoo Kim
- Korea Advanced Institute of Science and TechnologyDaejonRepublic of Korea
| | | | | | - Lynda F Bonewald
- Indiana UniversityIndianapolisUnited States
- Indiana Center for Musculoskeletal HealthIndianapolisUnited States
| |
Collapse
|
5
|
Shimonty A, Pin F, Prideaux M, Peng G, Huot JR, Kim H, Rosen CJ, Spiegelman BM, Bonewald LF. Deletion of FNDC5/Irisin modifies murine osteocyte function in a sex-specific manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.06.565774. [PMID: 37986762 PMCID: PMC10659274 DOI: 10.1101/2023.11.06.565774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Irisin, released from exercised muscle, has been shown to have beneficial effects on numerous tissues but its effects on bone are unclear. We found significant sex and genotype differences in bone from wildtype (WT) mice compared to mice lacking Fndc5 (KO), with and without calcium deficiency. Despite their bone being indistinguishable from WT females, KO female mice were partially protected from osteocytic osteolysis and osteoclastic bone resorption when allowed to lactate or when placed on a low-calcium diet. Male KO mice have more but weaker bone compared to WT males, and when challenged with a low-calcium diet lost more bone than WT males. To begin to understand responsible molecular mechanisms, osteocyte transcriptomics was performed. Osteocytes from WT females had greater expression of genes associated with osteocytic osteolysis and osteoclastic bone resorption compared to WT males which had greater expression of genes associated with steroid and fatty acid metabolism. Few differences were observed between female KO and WT osteocytes, but with a low calcium diet, the KO females had lower expression of genes responsible for osteocytic osteolysis and osteoclastic resorption than the WT females. Male KO osteocytes had lower expression of genes associated with steroid and fatty acid metabolism, but higher expression of genes associated with bone resorption compared to male WT. In conclusion, irisin plays a critical role in the development of the male but not the female skeleton and protects male but not female bone from calcium deficiency. We propose irisin ensures the survival of offspring by targeting the osteocyte to provide calcium in lactating females, a novel function for this myokine.
Collapse
Affiliation(s)
- Anika Shimonty
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, IN, 46202, Indianapolis
| | - Fabrizio Pin
- Indiana Center for Musculoskeletal Health, Department of Anatomy, School of Medicine, Indiana University, IN, 46202, Indianapolis
| | - Matt Prideaux
- Indiana Center for Musculoskeletal Health, Department of Anatomy, School of Medicine, Indiana University, IN, 46202, Indianapolis
| | - Gang Peng
- Indiana Center for Musculoskeletal Health, Department of Medicine and Molecular Genetics, School of Medicine, Indiana University, IN, 46202, Indianapolis
| | - Joshua R Huot
- Indiana Center for Musculoskeletal Health, Department of Anatomy, School of Medicine, Indiana University, IN, 46202, Indianapolis
| | - Hyeonwoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Clifford J Rosen
- Maine Medical Center Research Institute, ME, 04074, Scarborough, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana Farber Cancer Institute and Department of Cell Biology, Harvard University Medical School, MA, 02115, Boston, USA
| | - Lynda F Bonewald
- Department of Anatomy, Cell Biology and Physiology, Orthopaedic Surgery, School of Medicine, Indiana Center for Musculoskeletal Health, Indiana Center for Musculoskeletal Health, Indiana University, IN, 46202, Indianapolis
| |
Collapse
|
6
|
Zhao F, Zhang Y, Pei S, Wang S, Hu L, Wang L, Qian A, Yang TL, Guo Y. Mechanobiological crosstalk among bone cells and between bone and other organs. BONE CELL BIOMECHANICS, MECHANOBIOLOGY AND BONE DISEASES 2024:215-247. [DOI: 10.1016/b978-0-323-96123-3.00015-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Moraes de Lima Perini M, Pugh JN, Scott EM, Bhula K, Chirgwin A, Reul ON, Berbari NF, Li J. Primary cilia in osteoblasts and osteocytes are required for skeletal development and mechanotransduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.570609. [PMID: 38318207 PMCID: PMC10843151 DOI: 10.1101/2023.12.15.570609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Primary cilia have been involved in the development and mechanosensation of various tissue types, including bone. In this study, we explored the mechanosensory role of primary cilia in bone growth and adaptation by examining two cilia specific genes, IFT88 and MKS5, required for proper cilia assembly and function. To analyze the role of primary cilia in osteoblasts, Osx1-GFP:Cre mice were bred with IFT88 LoxP/LoxP to generate mice with a conditional knockout of primary cilia in osteoblasts. A significant decrease in body weight was observed in both male (p=0.0048) and female (p=0.0374) conditional knockout (cKO) mice compared to the wild type (WT) controls. The femurs of cKO mice were significantly shorter than that of the WT mice of both male (p=0.0003) and female (p=0.0019) groups. Histological analysis revealed a significant difference in MAR (p=0.0005) and BFR/BS (p<0.0001) between female cKO and WT mice. The BFR/BS of male cKO mice was 58.03% lower compared to WT mice. To further investigate the role of primary cilia in osteocytes, Dmp1-8kb-Cre mice were crossed with MKS5 LoxP/LoxP to generate mice with defective cilia in osteocytes. In vivo axial ulnar loading was performed on 16-week-old mice for 3 consecutive days. The right ulnae were loaded for 120 cycles/day at a frequency of 2Hz with a peak force of 2.9N for female mice and 3.2N for male mice. Load-induced bone formation was measured using histomorphometry. The relative values of MS/BS, MAR and BFR/BS (loaded ulnae minus nonloaded ulnae) in male MKS5 cKO mice were decreased by 24.88%, 46.27% and 48.24%, respectively, compared to the controls. In the female groups, the rMS/BS was 52.5% lower, the rMAR was 27.58% lower, and the rBFR/BS was 41.54% lower in MKS5 cKO mice than the WT group. Histological analysis indicated that MKS5 cKO mice showed significantly decreased response to mechanical loading compared to the controls. Taken together, these data highlight a critical role of primary cilia in bone development and mechanotransduction, suggesting that the presence of primary cilia in osteoblasts play an important role in skeletal development, and primary cilia in osteocytes mediate mechanically induced bone formation.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide a background on osteocytes and the primary cilium, discussing the role it plays in osteocyte mechanosensing. RECENT FINDINGS Osteocytes are thought to be the primary mechanosensing cells in bone tissue, regulating bone adaptation in response to exercise, with the primary cilium suggested to be a key mechanosensing mechanism in bone. More recent work has suggested that, rather than being direct mechanosensors themselves, primary cilia in bone may instead form a key chemo-signalling nexus for processing mechanoregulated signalling pathways. Recent evidence suggests that pharmacologically induced lengthening of the primary cilium in osteocytes may potentiate greater mechanotransduction, rather than greater mechanosensing. While more research is required to delineate the specific osteocyte mechanobiological molecular mechanisms governed by the primary cilium, it is clear from the literature that the primary cilium has significant potential as a therapeutic target to treat mechanoregulated bone diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Stefaan W Verbruggen
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK.
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK.
- Centre for Predictive in vitro Models, Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK.
| | - Anuphan Sittichokechaiwut
- Department of Preventive Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok, Thailand
- Center of Excellence in Biomaterials, Naresuan University, Phitsanulok, Thailand
| | - Gwendolen C Reilly
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
- Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
9
|
Packard M, Gilbert MC, Tetrault E, Albertson RC. Zebrafish crocc2 mutants exhibit divergent craniofacial shape, misregulated variability, and aberrant cartilage morphogenesis. Dev Dyn 2023; 252:1026-1045. [PMID: 37032317 PMCID: PMC10524572 DOI: 10.1002/dvdy.591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Phenotypic variation is of paramount importance in development, evolution, and human health; however, the molecular mechanisms that influence organ shape and shape variability are not well understood. During craniofacial development, the behavior of skeletal precursors is regulated by both biochemical and environmental inputs, and the primary cilia play critical roles in transducing both types of signals. Here, we examine a gene that encodes a key constituent of the ciliary rootlets, crocc2, and its role in cartilage morphogenesis in larval zebrafish. RESULTS Geometric morphometric analysis of crocc2 mutants revealed altered craniofacial shapes and expanded variation. At the cellular level, we observed altered chondrocyte shapes and planar cell polarity across multiple stages in crocc2 mutants. Notably, cellular defects were specific to areas that experience direct mechanical input. Cartilage cell number, apoptosis, and bone patterning were not affected in crocc2 mutants. CONCLUSIONS Whereas "regulatory" genes are widely implicated in patterning the craniofacial skeleton, genes that encode "structural" aspects of the cell are increasingly implicated in shaping the face. Our results add crocc2 to this list, and demonstrate that it affects craniofacial geometry and canalizes phenotypic variation. We propose that it does so via mechanosensing, possibly through the ciliary rootlet. If true, this would implicate a new organelle in skeletal development and evolution.
Collapse
Affiliation(s)
- Mary Packard
- Department of Biology, University of Massachusetts, Amherst, MA 01003, U.S.A
| | - Michelle C. Gilbert
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, U.S.A
- Current address, Department of Biology, Penn State University, University Park, PA 16802, U.S.A
| | - Emily Tetrault
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, U.S.A
| | - R. Craig Albertson
- Department of Biology, University of Massachusetts, Amherst, MA 01003, U.S.A
| |
Collapse
|
10
|
Alghamdi B, Jeon HH, Ni J, Qiu D, Liu A, Hong JJ, Ali M, Wang A, Troka M, Graves DT. Osteoimmunology in Periodontitis and Orthodontic Tooth Movement. Curr Osteoporos Rep 2023; 21:128-146. [PMID: 36862360 PMCID: PMC10696608 DOI: 10.1007/s11914-023-00774-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE OF REVIEW To review the role of the immune cells and their interaction with cells found in gingiva, periodontal ligament, and bone that leads to net bone loss in periodontitis or bone remodeling in orthodontic tooth movement. RECENT FINDINGS Periodontal disease is one of the most common oral diseases causing inflammation in the soft and hard tissues of the periodontium and is initiated by bacteria that induce a host response. Although the innate and adaptive immune response function cooperatively to prevent bacterial dissemination, they also play a major role in gingival inflammation and destruction of the connective tissue, periodontal ligament, and alveolar bone characteristic of periodontitis. The inflammatory response is triggered by bacteria or their products that bind to pattern recognition receptors that induce transcription factor activity to stimulate cytokine and chemokine expression. Epithelial, fibroblast/stromal, and resident leukocytes play a key role in initiating the host response and contribute to periodontal disease. Single-cell RNA-seq (scRNA-seq) experiments have added new insight into the roles of various cell types in the response to bacterial challenge. This response is modified by systemic conditions such as diabetes and smoking. In contrast to periodontitis, orthodontic tooth movement (OTM) is a sterile inflammatory response induced by mechanical force. Orthodontic force application stimulates acute inflammatory responses in the periodontal ligament and alveolar bone stimulated by cytokines and chemokines that produce bone resorption on the compression side. On the tension side, orthodontic forces induce the production of osteogenic factors, stimulating new bone formation. A number of different cell types, cytokines, and signaling/pathways are involved in this complex process. Inflammatory and mechanical force-induced bone remodeling involves bone resorption and bone formation. The interaction of leukocytes with host stromal cells and osteoblastic cells plays a key role in both initiating the inflammatory events as well as inducing a cellular cascade that results in remodeling in orthodontic tooth movement or in tissue destruction in periodontitis.
Collapse
Affiliation(s)
- Bushra Alghamdi
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
- Department of Restorative Dental Sciences, College of Dentistry, Taibah University, Medina, 42353, Kingdom of Saudi Arabia
| | - Hyeran Helen Jeon
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jia Ni
- Department of Periodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Dongxu Qiu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Alyssia Liu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Julie J Hong
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Mamoon Ali
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Albert Wang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Michael Troka
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA.
| |
Collapse
|
11
|
Brent MB. Pharmaceutical treatment of bone loss: From animal models and drug development to future treatment strategies. Pharmacol Ther 2023; 244:108383. [PMID: 36933702 DOI: 10.1016/j.pharmthera.2023.108383] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Animal models are fundamental to advance our knowledge of the underlying pathophysiology of bone loss and to study pharmaceutical countermeasures against it. The animal model of post-menopausal osteoporosis from ovariectomy is the most widely used preclinical approach to study skeletal deterioration. However, several other animal models exist, each with unique characteristics such as bone loss from disuse, lactation, glucocorticoid excess, or exposure to hypobaric hypoxia. The present review aimed to provide a comprehensive overview of these animal models to emphasize the importance and significance of investigating bone loss and pharmaceutical countermeasures from perspectives other than post-menopausal osteoporosis only. Hence, the pathophysiology and underlying cellular mechanisms involved in the various types of bone loss are different, and this might influence which prevention and treatment strategies are the most effective. In addition, the review sought to map the current landscape of pharmaceutical countermeasures against osteoporosis with an emphasis on how drug development has changed from being driven by clinical observations and enhancement or repurposing of existing drugs to today's use of targeted anti-bodies that are the result of advanced insights into the underlying molecular mechanisms of bone formation and resorption. Moreover, new treatment combinations or repurposing opportunities of already approved drugs with a focus on dabigatran, parathyroid hormone and abaloparatide, growth hormone, inhibitors of the activin signaling pathway, acetazolamide, zoledronate, and romosozumab are discussed. Despite the considerable progress in drug development, there is still a clear need to improve treatment strategies and develop new pharmaceuticals against various types of osteoporosis. The review also highlights that new treatment indications should be explored using multiple animal models of bone loss in order to ensure a broad representation of different types of skeletal deterioration instead of mainly focusing on primary osteoporosis from post-menopausal estrogen deficiency.
Collapse
Affiliation(s)
- Mikkel Bo Brent
- Department of Biomedicine, Aarhus University, Denmark, Wilhelm Meyers Allé 3, 8000 Aarhus C, Denmark.
| |
Collapse
|
12
|
Chen Y, Lu C, Shang X, Wu K, Chen K. Primary cilia: The central role in the electromagnetic field induced bone healing. Front Pharmacol 2022; 13:1062119. [DOI: 10.3389/fphar.2022.1062119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Primary cilia have emerged as the cellular “antenna” that can receive and transduce extracellular chemical/physical signals, thus playing an important role in regulating cellular activities. Although the electromagnetic field (EMF) is an effective treatment for bone fractures since 1978, however, the detailed mechanisms leading to such positive effects are still unclear. Primary cilia may play a central role in receiving EMF signals, translating physical signals into biochemical information, and initiating various signalingsignaling pathways to transduce signals into the nucleus. In this review, we elucidated the process of bone healing, the structure, and function of primary cilia, as well as the application and mechanism of EMF in treating fracture healing. To comprehensively understand the process of bone healing, we used bioinformatics to analyze the molecular change and associated the results with other studies. Moreover, this review summarizedsummarized some limitations in EMFs-related research and provides an outlook for ongoing studies. In conclusion, this review illustrated the primary cilia and related molecular mechanisms in the EMF-induced bone healing process, and it may shed light on future research.
Collapse
|
13
|
Zhang K, Ogando C, Filip A, Zhang T, Horton JA, Soman P. In vitromodel to study confined osteocyte networks exposed to flow-induced mechanical stimuli. Biomed Mater 2022; 17:10.1088/1748-605X/aca37c. [PMID: 36384043 PMCID: PMC10642715 DOI: 10.1088/1748-605x/aca37c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Osteocytes are considered the primary mechanical sensor in bone tissue and orchestrate the coupled bone remodeling activity of adjacent osteoblast and osteoclast cells.In vivoinvestigation of mechanically induced signal propagation through networks of interconnected osteocytes is confounded by their confinement within the mineralized bone matrix, which cannot be modeled in conventional culture systems. In this study, we developed a new model that mimics thisin vivoconfinement using gelatin methacrylate (GelMA) hydrogel or GelMA mineralized using osteoblast-like model cells. This model also enables real-time optical examination of osteocyte calcium (Ca2+) signaling dynamics in response to fluid shear stimuli cultured under confined conditions. Using this system, we discovered several distinct and previously undescribed patterns of Ca2+responses that vary across networks of interconnected osteocytes as a function of space, time and connectivity. Heterogeneity in Ca2+signaling may provide new insights into bone remodeling in response to mechanical loading. Overall, such a model can be extended to study signaling dynamics within cell networks exposed to flow-induced mechanical stimuli under confined conditions.
Collapse
Affiliation(s)
- Kairui Zhang
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA, 13244
- Syracuse Biomaterials Institute, Syracuse, NY, USA, 13244
| | - Courtney Ogando
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA, 13244
- Syracuse Biomaterials Institute, Syracuse, NY, USA, 13244
| | - Alex Filip
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA, 13244
- Syracuse Biomaterials Institute, Syracuse, NY, USA, 13244
| | - Teng Zhang
- Syracuse Biomaterials Institute, Syracuse, NY, USA, 13244
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY, USA, 13244
| | - Jason A. Horton
- Syracuse Biomaterials Institute, Syracuse, NY, USA, 13244
- Dept. of Orthopedic Surgery, SUNY Upstate Medical University, Syracuse, NY, USA 13210
| | - Pranav Soman
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA, 13244
- Syracuse Biomaterials Institute, Syracuse, NY, USA, 13244
| |
Collapse
|
14
|
Jeon HH, Kang J, Li J(M, Kim D, Yuan G, Almer N, Liu M, Yang S. The Effect of IFT80 Deficiency in Osteocytes on Orthodontic Loading-Induced and Physiologic Bone Remodeling: In Vivo Study. Life (Basel) 2022; 12:1147. [PMID: 36013326 PMCID: PMC9410307 DOI: 10.3390/life12081147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Osteocytes are the main mechanosensory cells during orthodontic and physiologic bone remodeling. However, the question of how osteocytes transmit mechanical stimuli to biological responses remains largely unanswered. Intraflagellar transport (IFT) proteins are important for the formation and function of cilia, which are proposed to be mechanical sensors in osteocytes. In particular, IFT80 is highly expressed in mouse skulls and essential for ciliogenesis. This study aims to investigate the short- and long-term effects of IFT80 deletion in osteocytes on orthodontic bone remodeling and physiological bone remodeling in response to masticatory force. We examined 10-week-old experimental DMP1 CRE+.IFT80f/f and littermate control DMP1 CRE-.IFT80f/f mice. After 5 and 12 days of orthodontic force loading, the orthodontic tooth movement distance and bone parameters were evaluated using microCT. Osteoclast formation was assessed using TRAP-stained paraffin sections. The expression of sclerostin and RANKL was examined using immunofluorescence stain. We found that the deletion of IFT80 in osteocytes did not significantly impact either orthodontic or physiologic bone remodeling, as demonstrated by similar OTM distances, osteoclast numbers, bone volume fractions (bone volume/total volume), bone mineral densities, and the expressions of sclerostin and RANKL. Our findings suggest that there are other possible mechanosensory systems in osteocytes and anatomic limitations to cilia deflection in osteocytes in vivo.
Collapse
Affiliation(s)
- Hyeran Helen Jeon
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.); (J.L.); (D.K.); (N.A.)
| | - Jessica Kang
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.); (J.L.); (D.K.); (N.A.)
| | - Jiahui (Madelaine) Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.); (J.L.); (D.K.); (N.A.)
| | - Douglas Kim
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.); (J.L.); (D.K.); (N.A.)
| | - Gongsheng Yuan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Nicolette Almer
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.); (J.L.); (D.K.); (N.A.)
| | - Min Liu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Shuying Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- The Penn Center for Musculoskeletal Disorders, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Abstract
Disuse osteoporosis describes a state of bone loss due to local skeletal unloading or systemic immobilization. This review will discuss advances in the field that have shed light on clinical observations, mechanistic insights and options for the treatment of disuse osteoporosis. Clinical settings of disuse osteoporosis include spinal cord injury, other neurological and neuromuscular disorders, immobilization after fractures and bed rest (real or modeled). Furthermore, spaceflight-induced bone loss represents a well-known adaptive process to microgravity. Clinical studies have outlined that immobilization leads to immediate bone loss in both the trabecular and cortical compartments accompanied by relatively increased bone resorption and decreased bone formation. The fact that the low bone formation state has been linked to high levels of the osteocyte-secreted protein sclerostin is one of the many findings that has brought matrix-embedded, mechanosensitive osteocytes into focus in the search for mechanistic principles. Previous basic research has primarily involved rodent models based on tail suspension, spaceflight and other immobilization methods, which have underlined the importance of osteocytes in the pathogenesis of disuse osteoporosis. Furthermore, molecular-based in vitro and in vivo approaches have revealed that osteocytes sense mechanical loading through mechanosensors that translate extracellular mechanical signals to intracellular biochemical signals and regulate gene expression. Osteocytic mechanosensors include the osteocyte cytoskeleton and dendritic processes within the lacuno-canalicular system (LCS), ion channels (e.g., Piezo1), extracellular matrix, primary cilia, focal adhesions (integrin-based) and hemichannels and gap junctions (connexin-based). Overall, disuse represents one of the major factors contributing to immediate bone loss and osteoporosis, and alterations in osteocytic pathways appear crucial to the bone loss associated with unloading.
Collapse
Affiliation(s)
- Tim Rolvien
- Division of Orthopaedics, Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany.
| |
Collapse
|
16
|
Choi JUA, Kijas AW, Lauko J, Rowan AE. The Mechanosensory Role of Osteocytes and Implications for Bone Health and Disease States. Front Cell Dev Biol 2022; 9:770143. [PMID: 35265628 PMCID: PMC8900535 DOI: 10.3389/fcell.2021.770143] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Bone homeostasis is a dynamic equilibrium between bone-forming osteoblasts and bone-resorbing osteoclasts. This process is primarily controlled by the most abundant and mechanosensitive bone cells, osteocytes, that reside individually, within chambers of porous hydroxyapatite bone matrix. Recent studies have unveiled additional functional roles for osteocytes in directly contributing to local matrix regulation as well as systemic roles through endocrine functions by communicating with distant organs such as the kidney. Osteocyte function is governed largely by both biochemical signaling and the mechanical stimuli exerted on bone. Mechanical stimulation is required to maintain bone health whilst aging and reduced level of loading are known to result in bone loss. To date, both in vivo and in vitro approaches have been established to answer important questions such as the effect of mechanical stimuli, the mechanosensors involved, and the mechanosensitive signaling pathways in osteocytes. However, our understanding of osteocyte mechanotransduction has been limited due to the technical challenges of working with these cells since they are individually embedded within the hard hydroxyapatite bone matrix. This review highlights the current knowledge of the osteocyte functional role in maintaining bone health and the key regulatory pathways of these mechanosensitive cells. Finally, we elaborate on the current therapeutic opportunities offered by existing treatments and the potential for targeting osteocyte-directed signaling.
Collapse
Affiliation(s)
- Jung Un Ally Choi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda W Kijas
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Jan Lauko
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Lewis KJ. Osteocyte calcium signaling - A potential translator of mechanical load to mechanobiology. Bone 2021; 153:116136. [PMID: 34339908 DOI: 10.1016/j.bone.2021.116136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/25/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
Osteocytes are embedded dendritic bone cells; by virtue of their position in bone tissue, ability to coordinate bone building osteoblasts and resorbing osteoclasts, and sensitivity to tissue level mechanical loading, they serve as the resident bone mechanosensor. The mechanisms osteocytes use to change mechanical loading into biological signals that drive tissue level changes has been well studied over the last 30 years, however the ways loading parameters are encoded at the cellular level are still not fully understood. Calcium signaling is a first messenger signal exhibited by osteocytes in response to mechanical forces. A body of work interrogating the mechanisms of osteocyte calcium signaling exists and is presently expanding, presenting the opportunity to better understand the relationship between calcium signaling characteristics and tuned osteocyte responses to tissue level strain features (e.g. magnitude, duration, frequency). This review covers the history of osteocyte load induced calcium signaling and highlights potential cellular mechanisms used by osteocytes to turn details about loading parameters into biological events.
Collapse
Affiliation(s)
- Karl J Lewis
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America.
| |
Collapse
|
18
|
Gould NR, Torre OM, Leser JM, Stains JP. The cytoskeleton and connected elements in bone cell mechano-transduction. Bone 2021; 149:115971. [PMID: 33892173 PMCID: PMC8217329 DOI: 10.1016/j.bone.2021.115971] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/30/2021] [Accepted: 04/17/2021] [Indexed: 02/07/2023]
Abstract
Bone is a mechano-responsive tissue that adapts to changes in its mechanical environment. Increases in strain lead to increased bone mass acquisition, whereas decreases in strain lead to a loss of bone mass. Given that mechanical stress is a regulator of bone mass and quality, it is important to understand how bone cells sense and transduce these mechanical cues into biological changes to identify druggable targets that can be exploited to restore bone cell mechano-sensitivity or to mimic mechanical load. Many studies have identified individual cytoskeletal components - microtubules, actin, and intermediate filaments - as mechano-sensors in bone. However, given the high interconnectedness and interaction between individual cytoskeletal components, and that they can assemble into multiple discreet cellular structures, it is likely that the cytoskeleton as a whole, rather than one specific component, is necessary for proper bone cell mechano-transduction. This review will examine the role of each cytoskeletal element in bone cell mechano-transduction and will present a unified view of how these elements interact and work together to create a mechano-sensor that is necessary to control bone formation following mechanical stress.
Collapse
Affiliation(s)
- Nicole R Gould
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Olivia M Torre
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jenna M Leser
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA..
| |
Collapse
|
19
|
Ciliary Signalling and Mechanotransduction in the Pathophysiology of Craniosynostosis. Genes (Basel) 2021; 12:genes12071073. [PMID: 34356089 PMCID: PMC8306115 DOI: 10.3390/genes12071073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
Craniosynostosis (CS) is the second most prevalent inborn craniofacial malformation; it results from the premature fusion of cranial sutures and leads to dimorphisms of variable severity. CS is clinically heterogeneous, as it can be either a sporadic isolated defect, more frequently, or part of a syndromic phenotype with mendelian inheritance. The genetic basis of CS is also extremely heterogeneous, with nearly a hundred genes associated so far, mostly mutated in syndromic forms. Several genes can be categorised within partially overlapping pathways, including those causing defects of the primary cilium. The primary cilium is a cellular antenna serving as a signalling hub implicated in mechanotransduction, housing key molecular signals expressed on the ciliary membrane and in the cilioplasm. This mechanical property mediated by the primary cilium may also represent a cue to understand the pathophysiology of non-syndromic CS. In this review, we aimed to highlight the implication of the primary cilium components and active signalling in CS pathophysiology, dissecting their biological functions in craniofacial development and in suture biomechanics. Through an in-depth revision of the literature and computational annotation of disease-associated genes we categorised 18 ciliary genes involved in CS aetiology. Interestingly, a prevalent implication of midline sutures is observed in CS ciliopathies, possibly explained by the specific neural crest origin of the frontal bone.
Collapse
|
20
|
Günhan Ö, Kahraman D, Yalçın ÜK. The possible pathogenesis of cemento-osseous dysplasia: A case series and discussion. ADVANCES IN ORAL AND MAXILLOFACIAL SURGERY 2021. [DOI: 10.1016/j.adoms.2021.100105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Roth DM, Baddam P, Lin H, Vidal-García M, Aponte JD, De Souza ST, Godziuk D, Watson AES, Footz T, Schachter NF, Egan SE, Hallgrímsson B, Graf D, Voronova A. The Chromatin Regulator Ankrd11 Controls Palate and Cranial Bone Development. Front Cell Dev Biol 2021; 9:645386. [PMID: 33996804 PMCID: PMC8117352 DOI: 10.3389/fcell.2021.645386] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/31/2021] [Indexed: 11/19/2022] Open
Abstract
Epigenetic and chromatin regulation of craniofacial development remains poorly understood. Ankyrin Repeat Domain 11 (ANKRD11) is a chromatin regulator that has previously been shown to control neural stem cell fates via modulation of histone acetylation. ANKRD11 gene variants, or microdeletions of the 16q24.3 chromosomal region encompassing the ANKRD11 gene, cause KBG syndrome, a rare autosomal dominant congenital disorder with variable neurodevelopmental and craniofacial involvement. Craniofacial abnormalities include a distinct facial gestalt, delayed bone age, tooth abnormalities, delayed fontanelle closure, and frequently cleft or submucosal palate. Despite this, the dramatic phenotype and precise role of ANKRD11 in embryonic craniofacial development remain unexplored. Quantitative analysis of 3D images of KBG syndromic subjects shows an overall reduction in the size of the middle and lower face. Here, we report that mice with heterozygous deletion of Ankrd11 in neural crest cells (Ankrd11nchet) display a mild midfacial hypoplasia including reduced midfacial width and a persistent open fontanelle, both of which mirror KBG syndrome patient facial phenotypes. Mice with a homozygous Ankrd11 deletion in neural crest cells (Ankrd11ncko) die at birth. They show increased severity of several clinical manifestations described for KBG syndrome, such as cleft palate, retrognathia, midfacial hypoplasia, and reduced calvarial growth. At E14.5, Ankrd11 expression in the craniofacial complex is closely associated with developing bony structures, while expression at birth is markedly decreased. Conditional deletion of Ankrd11 leads to a reduction in ossification of midfacial bones, with several ossification centers failing to expand and/or fuse. Intramembranous bones show features of delayed maturation, with bone remodeling severely curtailed at birth. Palatal shelves remain hypoplastic at all developmental stages, with a local reduction in proliferation at E13.5. Our study identifies Ankrd11 as a critical regulator of intramembranous ossification and palate development and suggests that Ankrd11nchet and Ankrd11ncko mice may serve as pre-clinical models for KBG syndrome in humans.
Collapse
Affiliation(s)
- Daniela Marta Roth
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Pranidhi Baddam
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Haiming Lin
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Marta Vidal-García
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Jose David Aponte
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Sarah-Thea De Souza
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Devyn Godziuk
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Adrianne Eve Scovil Watson
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tim Footz
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Nathan F. Schachter
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sean E. Egan
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Benedikt Hallgrímsson
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Daniel Graf
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
22
|
Geoghegan IP, McNamara LM, Hoey DA. Estrogen withdrawal alters cytoskeletal and primary ciliary dynamics resulting in increased Hedgehog and osteoclastogenic paracrine signalling in osteocytes. Sci Rep 2021; 11:9272. [PMID: 33927279 PMCID: PMC8085225 DOI: 10.1038/s41598-021-88633-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/12/2021] [Indexed: 01/02/2023] Open
Abstract
Estrogen deficiency during post-menopausal osteoporosis leads to osteoclastogenesis and bone loss. Increased pro-osteoclastogenic signalling (RANKL/OPG) by osteocytes occurs following estrogen withdrawal (EW) and is associated with impaired focal adhesions (FAs) and a disrupted actin cytoskeleton. RANKL production is mediated by Hedgehog signalling in osteocytes, a signalling pathway associated with the primary cilium, and the ciliary structure is tightly coupled to the cytoskeleton. Therefore, the objective of this study was to investigate the role of the cilium and associated signalling in EW-mediated osteoclastogenic signalling in osteocytes. We report that EW leads to an elongation of the cilium and increase in Hedgehog and osteoclastogenic signalling. Significant trends were identified linking cilia elongation with reductions in cell area and % FA area/cell area, indicating that cilia elongation is associated with disruption of FAs and actin contractility. To verify this, we inhibited FA assembly via αvβ3 antagonism and inhibited actin contractility and demonstrated an elongated cilia and increased expression of Hh markers and Rankl expression. Therefore, our results suggest that the EW conditions associated with osteoporosis lead to a disorganisation of αvβ3 integrins and reduced actin contractility, which were associated with an elongation of the cilium, activation of the Hh pathway and osteoclastogenic paracrine signalling.
Collapse
Affiliation(s)
- Ivor P Geoghegan
- Mechanobiology and Medical Devices Research Group, Biomedical Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Laoise M McNamara
- Mechanobiology and Medical Devices Research Group, Biomedical Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - David A Hoey
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland. .,Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 R590, Ireland. .,Department of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland. .,Advanced Materials and Bioengineering Research Centre, Trinity College Dublin & RCSI, Dublin 2, Ireland.
| |
Collapse
|
23
|
Jeon HH, Teixeira H, Tsai A. Mechanistic Insight into Orthodontic Tooth Movement Based on Animal Studies: A Critical Review. J Clin Med 2021; 10:jcm10081733. [PMID: 33923725 PMCID: PMC8072633 DOI: 10.3390/jcm10081733] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 01/09/2023] Open
Abstract
Alveolar bone remodeling in orthodontic tooth movement (OTM) is a highly regulated process that coordinates bone resorption by osteoclasts and new bone formation by osteoblasts. Mechanisms involved in OTM include mechano-sensing, sterile inflammation-mediated osteoclastogenesis on the compression side and tensile force-induced osteogenesis on the tension side. Several intracellular signaling pathways and mechanosensors including the cilia and ion channels transduce mechanical force into biochemical signals that stimulate formation of osteoclasts or osteoblasts. To date, many studies were performed in vitro or using human gingival crevicular fluid samples. Thus, the use of transgenic animals is very helpful in examining a cause and effect relationship. Key cell types that participate in mediating the response to OTM include periodontal ligament fibroblasts, mesenchymal stem cells, osteoblasts, osteocytes, and osteoclasts. Intercellular signals that stimulate cellular processes needed for orthodontic tooth movement include receptor activator of nuclear factor-κB ligand (RANKL), tumor necrosis factor-α (TNF-α), dickkopf Wnt signaling pathway inhibitor 1 (DKK1), sclerostin, transforming growth factor beta (TGF-β), and bone morphogenetic proteins (BMPs). In this review, we critically summarize the current OTM studies using transgenic animal models in order to provide mechanistic insight into the cellular events and the molecular regulation of OTM.
Collapse
|
24
|
Loss of primary cilia promotes mitochondria-dependent apoptosis in thyroid cancer. Sci Rep 2021; 11:4181. [PMID: 33602982 PMCID: PMC7893175 DOI: 10.1038/s41598-021-83418-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
The primary cilium is well-preserved in human differentiated thyroid cancers such as papillary and follicular carcinoma. Specific thyroid cancers such as Hürthle cell carcinoma, oncocytic variant of papillary thyroid carcinoma (PTC), and PTC with Hashimoto’s thyroiditis show reduced biogenesis of primary cilia; these cancers are often associated the abnormalities in mitochondrial function. Here, we examined the association between primary cilia and the mitochondria-dependent apoptosis pathway. Tg-Cre;Ift88flox/flox mice (in which thyroid follicles lacked primary cilia) showed irregularly dilated follicles and increased apoptosis of thyrocytes. Defective ciliogenesis caused by deleting the IFT88 and KIF3A genes from thyroid cancer cell lines increased VDAC1 oligomerization following VDAC1 overexpression, thereby facilitating upregulation of mitochondria-dependent apoptosis. Furthermore, VDAC1 localized with the basal bodies of primary cilia in thyroid cancer cells. These results demonstrate that loss-of-function of primary cilia results in apoptogenic stimuli, which are responsible for mitochondrial-dependent apoptotic cell death in differentiated thyroid cancers. Therefore, regulating primary ciliogenesis might be a therapeutic approach to targeting differentiated thyroid cancers.
Collapse
|
25
|
Bonatto Paese CL, Brooks EC, Aarnio-Peterson M, Brugmann SA. Ciliopathic micrognathia is caused by aberrant skeletal differentiation and remodeling. Development 2021; 148:148/4/dev194175. [PMID: 33589509 DOI: 10.1242/dev.194175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
Ciliopathies represent a growing class of diseases caused by defects in microtubule-based organelles called primary cilia. Approximately 30% of ciliopathies are characterized by craniofacial phenotypes such as craniosynostosis, cleft lip/palate and micrognathia. Patients with ciliopathic micrognathia experience a particular set of difficulties, including impaired feeding and breathing, and have extremely limited treatment options. To understand the cellular and molecular basis for ciliopathic micrognathia, we used the talpid2 (ta2 ), a bona fide avian model for the human ciliopathy oral-facial-digital syndrome subtype 14. Histological analyses revealed that the onset of ciliopathic micrognathia in ta2 embryos occurred at the earliest stages of mandibular development. Neural crest-derived skeletal progenitor cells were particularly sensitive to a ciliopathic insult, undergoing unchecked passage through the cell cycle and subsequent increased proliferation. Furthermore, whereas neural crest-derived skeletal differentiation was initiated, osteoblast maturation failed to progress to completion. Additional molecular analyses revealed that an imbalance in the ratio of bone deposition and resorption also contributed to ciliopathic micrognathia in ta2 embryos. Thus, our results suggest that ciliopathic micrognathia is a consequence of multiple aberrant cellular processes necessary for skeletal development, and provide potential avenues for future therapeutic treatments.
Collapse
Affiliation(s)
- Christian Louis Bonatto Paese
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Evan C Brooks
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Megan Aarnio-Peterson
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Samantha A Brugmann
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA .,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Shriners Children's Hospital, Cincinnati, OH 45229, USA
| |
Collapse
|
26
|
Rao VG, Kulkarni SS. Xenopus to the rescue: A model to validate and characterize candidate ciliopathy genes. Genesis 2021; 59:e23414. [PMID: 33576572 DOI: 10.1002/dvg.23414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
Cilia are present on most vertebrate cells and play a central role in development, growth, and homeostasis. Thus, cilia dysfunction can manifest into an array of diseases, collectively termed ciliopathies, affecting millions of lives worldwide. Yet, our understanding of the gene regulatory networks that control cilia assembly and functions remain incomplete. With the advances in next-generation sequencing technologies, we can now rapidly predict pathogenic variants from hundreds of ciliopathy patients. While the pace of candidate gene discovery is exciting, most of these genes have never been previously implicated in cilia assembly or function. This makes assigning the disease causality difficult. This review discusses how Xenopus, a genetically tractable and high-throughput vertebrate model, has played a central role in identifying, validating, and characterizing candidate ciliopathy genes. The review is focused on multiciliated cells (MCCs) and diseases associated with MCC dysfunction. MCCs harbor multiple motile cilia on their apical surface to generate extracellular fluid flow inside the airway, the brain ventricles, and the oviduct. In Xenopus, these cells are external and present on the embryonic epidermal epithelia, facilitating candidate genes analysis in MCC development in vivo. The ability to introduce patient variants to study their effects on disease progression makes Xenopus a powerful model to improve our understanding of the underlying disease mechanisms and explain the patient phenotype.
Collapse
Affiliation(s)
- Venkatramanan G Rao
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Saurabh S Kulkarni
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.,Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
27
|
Peng Z, Resnick A, Young YN. Primary cilium: a paradigm for integrating mathematical modeling with experiments and numerical simulations in mechanobiology. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:1215-1237. [PMID: 33757184 PMCID: PMC8552149 DOI: 10.3934/mbe.2021066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Primary cilia are non-motile, solitary (one per cell) microtubule-based organelles that emerge from the mother centriole after cells have exited the mitotic cycle. Identified as a mechanosensing organelle that responds to both mechanical and chemical stimuli, the primary cilium provides a fertile ground for integrative investigations of mathematical modeling, numerical simulations, and experiments. Recent experimental findings revealed considerable complexity to the underlying mechanosensory mechanisms that transmit extracellular stimuli to intracellular signaling many of which include primary cilia. In this invited review, we provide a brief survey of experimental findings on primary cilia and how these results lead to various mathematical models of the mechanics of the primary cilium bent under an external forcing such as a fluid flow or a trap. Mathematical modeling of the primary cilium as a fluid-structure interaction problem highlights the importance of basal anchorage and the anisotropic moduli of the microtubules. As theoretical modeling and numerical simulations progress, along with improved state-of-the-art experiments on primary cilia, we hope that details of ciliary regulated mechano-chemical signaling dynamics in cellular physiology will be understood in the near future.
Collapse
Affiliation(s)
- Zhangli Peng
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan St., Chicago, IL 60607, USA
| | - Andrew Resnick
- Department of Physics, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA
| | - Y.-N. Young
- Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| |
Collapse
|
28
|
Tambutté E, Ganot P, Venn AA, Tambutté S. A role for primary cilia in coral calcification? Cell Tissue Res 2020; 383:1093-1102. [PMID: 33330957 PMCID: PMC7960582 DOI: 10.1007/s00441-020-03343-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Cilia are evolutionarily conserved organelles that extend from the surface of cells and are found in diverse organisms from protozoans to multicellular organisms. Motile cilia play various biological functions by their beating motion, including mixing fluids and transporting food particles. Non-motile cilia act as sensors that signal cells about their microenvironment. In corals, cilia have been described in some of the cell layers but never in the calcifying epithelium, which is responsible for skeleton formation. In the present study, we used scanning electron microscopy and immunolabelling to investigate the cellular ciliature of the different tissue layers of the coral Stylophora pistillata, with a focus on the calcifying calicoblastic ectoderm. We show that the cilium of the calcifying cells is different from the cilium of the other cell layers. It is much shorter, and more importantly, its base is structurally distinct from the base observed in cilia of the other tissue layers. Based on these structural observations, we conclude that the cilium of the calcifying cells is a primary cilium. From what is known in other organisms, primary cilia are sensors that signal cells about their microenvironment. We discuss the implications of the presence of a primary cilium in the calcifying epithelium for our understanding of the cellular physiology driving coral calcification and its environmental sensitivity.
Collapse
Affiliation(s)
- Eric Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1°, 98000, Monaco, Monaco
| | - Philippe Ganot
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1°, 98000, Monaco, Monaco
| | - Alexander A Venn
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1°, 98000, Monaco, Monaco
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1°, 98000, Monaco, Monaco.
| |
Collapse
|
29
|
Saternos H, Ley S, AbouAlaiwi W. Primary Cilia and Calcium Signaling Interactions. Int J Mol Sci 2020; 21:E7109. [PMID: 32993148 PMCID: PMC7583801 DOI: 10.3390/ijms21197109] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
The calcium ion (Ca2+) is a diverse secondary messenger with a near-ubiquitous role in a vast array of cellular processes. Cilia are present on nearly every cell type in either a motile or non-motile form; motile cilia generate fluid flow needed for a variety of biological processes, such as left-right body patterning during development, while non-motile cilia serve as the signaling powerhouses of the cell, with vital singling receptors localized to their ciliary membranes. Much of the research currently available on Ca2+-dependent cellular actions and primary cilia are tissue-specific processes. However, basic stimuli-sensing pathways, such as mechanosensation, chemosensation, and electrical sensation (electrosensation), are complex processes entangled in many intersecting pathways; an overview of proposed functions involving cilia and Ca2+ interplay will be briefly summarized here. Next, we will focus on summarizing the evidence for their interactions in basic cellular activities, including the cell cycle, cell polarity and migration, neuronal pattering, glucose-mediated insulin secretion, biliary regulation, and bone formation. Literature investigating the role of cilia and Ca2+-dependent processes at a single-cellular level appears to be scarce, though overlapping signaling pathways imply that cilia and Ca2+ interact with each other on this level in widespread and varied ways on a perpetual basis. Vastly different cellular functions across many different cell types depend on context-specific Ca2+ and cilia interactions to trigger the correct physiological responses, and abnormalities in these interactions, whether at the tissue or the single-cell level, can result in diseases known as ciliopathies; due to their clinical relevance, pathological alterations of cilia function and Ca2+ signaling will also be briefly touched upon throughout this review.
Collapse
Affiliation(s)
| | | | - Wissam AbouAlaiwi
- Department of Pharmacology and Experimental Therapeutics, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (H.S.); (S.L.)
| |
Collapse
|
30
|
Bahmaee H, Owen R, Boyle L, Perrault CM, Garcia-Granada AA, Reilly GC, Claeyssens F. Design and Evaluation of an Osteogenesis-on-a-Chip Microfluidic Device Incorporating 3D Cell Culture. Front Bioeng Biotechnol 2020; 8:557111. [PMID: 33015017 PMCID: PMC7509430 DOI: 10.3389/fbioe.2020.557111] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Microfluidic-based tissue-on-a-chip devices have generated significant research interest for biomedical applications, such as pharmaceutical development, as they can be used for small volume, high throughput studies on the effects of therapeutics on tissue-mimics. Tissue-on-a-chip devices are evolving from basic 2D cell cultures incorporated into microfluidic devices to complex 3D approaches, with modern designs aimed at recapitulating the dynamic and mechanical environment of the native tissue. Thus far, most tissue-on-a-chip research has concentrated on organs involved with drug uptake, metabolism and removal (e.g., lung, skin, liver, and kidney); however, models of the drug metabolite target organs will be essential to provide information on therapeutic efficacy. Here, we develop an osteogenesis-on-a-chip device that comprises a 3D environment and fluid shear stresses, both important features of bone. This inexpensive, easy-to-fabricate system based on a polymerized High Internal Phase Emulsion (polyHIPE) supports proliferation, differentiation and extracellular matrix production of human embryonic stem cell-derived mesenchymal progenitor cells (hES-MPs) over extended time periods (up to 21 days). Cells respond positively to both chemical and mechanical stimulation of osteogenesis, with an intermittent flow profile containing rest periods strongly promoting differentiation and matrix formation in comparison to static and continuous flow. Flow and shear stresses were modeled using computational fluid dynamics. Primary cilia were detectable on cells within the device channels demonstrating that this mechanosensory organelle is present in the complex 3D culture environment. In summary, this device aids the development of ‘next-generation’ tools for investigating novel therapeutics for bone in comparison with standard laboratory and animal testing.
Collapse
Affiliation(s)
- Hossein Bahmaee
- Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Robert Owen
- Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom.,Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Liam Boyle
- Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Cecile M Perrault
- INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom.,Eden Microfluidics, Paris, France
| | | | - Gwendolen C Reilly
- Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
31
|
Ponzetti M, Rucci N. Switching Homes: How Cancer Moves to Bone. Int J Mol Sci 2020; 21:E4124. [PMID: 32527062 PMCID: PMC7313057 DOI: 10.3390/ijms21114124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Bone metastases (BM) are a very common complication of the most prevalent human cancers. BM are extremely painful and may be life-threatening when associated with hypercalcaemia. BM can lead to kidney failure and cardiac arrhythmias and arrest, but why and how do cancer cells decide to "switch homes" and move to bone? In this review, we will present what answers science has provided so far, with focus on the molecular mechanisms and cellular aspects of well-established findings, such as the concept of "vicious cycle" and "osteolytic" vs. "osteosclerotic" bone metastases; as well as on novel concepts, such as cellular dormancy and extracellular vesicles. At the molecular level, we will focus on hypoxia-associated factors and angiogenesis, the Wnt pathway, parathyroid hormone-related peptide (PTHrP) and chemokines. At the supramolecular/cellular level, we will discuss tumour dormancy, id est the mechanisms through which a small contingent of tumour cells coming from the primary site may be kept dormant in the endosteal niche for many years. Finally, we will present a potential role for the multimolecular mediators known as extracellular vesicles in determining bone-tropism and establishing a premetastatic niche by influencing the bone microenvironment.
Collapse
Affiliation(s)
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| |
Collapse
|
32
|
Qin L, Liu W, Cao H, Xiao G. Molecular mechanosensors in osteocytes. Bone Res 2020; 8:23. [PMID: 32550039 PMCID: PMC7280204 DOI: 10.1038/s41413-020-0099-y] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Osteocytes, the most abundant and long-lived cells in bone, are the master regulators of bone remodeling. In addition to their functions in endocrine regulation and calcium and phosphate metabolism, osteocytes are the major responsive cells in force adaptation due to mechanical stimulation. Mechanically induced bone formation and adaptation, disuse-induced bone loss and skeletal fragility are mediated by osteocytes, which sense local mechanical cues and respond to these cues in both direct and indirect ways. The mechanotransduction process in osteocytes is a complex but exquisite regulatory process between cells and their environment, between neighboring cells, and between different functional mechanosensors in individual cells. Over the past two decades, great efforts have focused on finding various mechanosensors in osteocytes that transmit extracellular mechanical signals into osteocytes and regulate responsive gene expression. The osteocyte cytoskeleton, dendritic processes, Integrin-based focal adhesions, connexin-based intercellular junctions, primary cilium, ion channels, and extracellular matrix are the major mechanosensors in osteocytes reported so far with evidence from both in vitro and in vitro studies. This review aims to give a systematic introduction to osteocyte mechanobiology, provide details of osteocyte mechanosensors, and discuss the roles of osteocyte mechanosensitive signaling pathways in the regulation of bone homeostasis.
Collapse
Affiliation(s)
- Lei Qin
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Wen Liu
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Huiling Cao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Guozhi Xiao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055 China
| |
Collapse
|
33
|
Schwebach CL, Kudryashova E, Zheng W, Orchard M, Smith H, Runyan LA, Egelman EH, Kudryashov DS. Osteogenesis imperfecta mutations in plastin 3 lead to impaired calcium regulation of actin bundling. Bone Res 2020; 8:21. [PMID: 32509377 PMCID: PMC7244493 DOI: 10.1038/s41413-020-0095-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/06/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022] Open
Abstract
Mutations in actin-bundling protein plastin 3 (PLS3) emerged as a cause of congenital osteoporosis, but neither the role of PLS3 in bone development nor the mechanisms underlying PLS3-dependent osteoporosis are understood. Of the over 20 identified osteoporosis-linked PLS3 mutations, we investigated all five that are expected to produce full-length protein. One of the mutations distorted an actin-binding loop in the second actin-binding domain of PLS3 and abolished F-actin bundling as revealed by cryo-EM reconstruction and protein interaction assays. Surprisingly, the remaining four mutants fully retained F-actin bundling ability. However, they displayed defects in Ca2+ sensitivity: two of the mutants lost the ability to be inhibited by Ca2+, while the other two became hypersensitive to Ca2+. Each group of the mutants with similar biochemical properties showed highly characteristic cellular behavior. Wild-type PLS3 was distributed between lamellipodia and focal adhesions. In striking contrast, the Ca2+-hyposensitive mutants were not found at the leading edge but localized exclusively at focal adhesions/stress fibers, which displayed reinforced morphology. Consistently, the Ca2+-hypersensitive PLS3 mutants were restricted to lamellipodia, while chelation of Ca2+ caused their redistribution to focal adhesions. Finally, the bundling-deficient mutant failed to co-localize with any F-actin structures in cells despite a preserved F-actin binding through a non-mutation-bearing actin-binding domain. Our findings revealed that severe osteoporosis can be caused by a mutational disruption of the Ca2+-controlled PLS3's cycling between adhesion complexes and the leading edge. Integration of the structural, biochemical, and cell biology insights enabled us to propose a molecular mechanism of plastin activity regulation by Ca2+.
Collapse
Affiliation(s)
- Christopher L. Schwebach
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 USA
- Molecular Cellular and Developmental Biology graduate program, The Ohio State University, Columbus, OH 43210 USA
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 USA
| | - Weili Zheng
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908 USA
| | - Matthew Orchard
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 USA
| | - Harper Smith
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 USA
- Biophysics graduate program, The Ohio State University, Columbus, OH 43210 USA
| | - Lucas A. Runyan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 USA
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908 USA
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 USA
- Molecular Cellular and Developmental Biology graduate program, The Ohio State University, Columbus, OH 43210 USA
- Biophysics graduate program, The Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
34
|
Biological Factors, Metals, and Biomaterials Regulating Osteogenesis through Autophagy. Int J Mol Sci 2020; 21:ijms21082789. [PMID: 32316424 PMCID: PMC7215394 DOI: 10.3390/ijms21082789] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 01/18/2023] Open
Abstract
Bone loss raises great concern in numerous situations, such as ageing and many diseases and in both orthopedic and dentistry fields of application, with an extensive impact on health care. Therefore, it is crucial to understand the mechanisms and the determinants that can regulate osteogenesis and ensure bone balance. Autophagy is a well conserved lysosomal degradation pathway, which is known to be highly active during differentiation and development. This review provides a revision of the literature on all the exogen factors that can modulate osteogenesis through autophagy regulation. Metal ion exposition, mechanical stimuli, and biological factors, including hormones, nutrients, and metabolic conditions, were taken into consideration for their ability to tune osteogenic differentiation through autophagy. In addition, an exhaustive overview of biomaterials, both for orthopedic and dentistry applications, enhancing osteogenesis by modulation of the autophagic process is provided as well. Already investigated conditions regulating bone regeneration via autophagy need to be better understood for finely tailoring innovative therapeutic treatments and designing novel biomaterials.
Collapse
|
35
|
Devlin LA, Ramsbottom SA, Overman LM, Lisgo SN, Clowry G, Molinari E, Powell L, Miles CG, Sayer JA. Embryonic and foetal expression patterns of the ciliopathy gene CEP164. PLoS One 2020; 15:e0221914. [PMID: 31990917 PMCID: PMC6986751 DOI: 10.1371/journal.pone.0221914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/03/2020] [Indexed: 01/20/2023] Open
Abstract
Nephronophthisis-related ciliopathies (NPHP-RC) are a group of inherited genetic disorders that share a defect in the formation, maintenance or functioning of the primary cilium complex, causing progressive cystic kidney disease and other clinical manifestations. Mutations in centrosomal protein 164 kDa (CEP164), also known as NPHP15, have been identified as a cause of NPHP-RC. Here we have utilised the MRC-Wellcome Trust Human Developmental Biology Resource (HDBR) to perform immunohistochemistry studies on human embryonic and foetal tissues to determine the expression patterns of CEP164 during development. Notably expression is widespread, yet defined, in multiple organs including the kidney, retina and cerebellum. Murine studies demonstrated an almost identical Cep164 expression pattern. Taken together, these data support a conserved role for CEP164 throughout the development of numerous organs, which, we suggest, accounts for the multi-system disease phenotype of CEP164-mediated NPHP-RC.
Collapse
Affiliation(s)
- L. A. Devlin
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, England, United Kingdom
| | - S. A. Ramsbottom
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, England, United Kingdom
| | - L. M. Overman
- MRC-Wellcome Trust Human Developmental Biology Resource, Institute of Genetic Medicine, International Centre for Life, Newcastle upon Tyne, England, United Kingdom
| | - S. N. Lisgo
- MRC-Wellcome Trust Human Developmental Biology Resource, Institute of Genetic Medicine, International Centre for Life, Newcastle upon Tyne, England, United Kingdom
| | - G. Clowry
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, England, United Kingdom
| | - E. Molinari
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, England, United Kingdom
| | - L. Powell
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, England, United Kingdom
| | - C. G. Miles
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, England, United Kingdom
| | - J. A. Sayer
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, England, United Kingdom
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Road, Newcastle upon Tyne, England, United Kingdom
- National Institute for Health Research Newcastle Biomedical Research Centre, Newcastle upon Tyne, England, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Choy MHV, Wong RMY, Li MC, Wang BY, Liu XD, Lee W, Cheng JCY, Chow SKH, Cheung WH. Can we enhance osteoporotic metaphyseal fracture healing through enhancing ultrastructural and functional changes of osteocytes in cortical bone with low-magnitude high-frequency vibration? FASEB J 2020; 34:4234-4252. [PMID: 31961009 DOI: 10.1096/fj.201901595r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 01/04/2023]
Abstract
Fragility fractures are related to the loss of bone integrity and deteriorated morphology of osteocytes. Our previous studies have reported that low-magnitude high-frequency vibration (LMHFV) promoted osteoporotic fracture healing. As osteocytes are known for mechanosensing and initiating bone repair, we hypothesized that LMHFV could enhance osteoporotic fracture healing through enhancing morphological changes in the osteocyte lacuna-canalicular network (LCN) and mineralization. A metaphyseal fracture model was established in female Sprague-Dawley rats to investigate changes in osteocytes and healing outcomes from early to late phase post-fracture. Our results showed that the LCN exhibited an exuberant outgrowth of canaliculi in the osteoporotic fractured bone at day 14 after LMHFV. LMHFV upregulated the E11, dentin matrix protein 1 (DMP1), and fibroblast growth factor 23 (FGF23), but downregulated sclerostin (Sost) in osteocytes. Moreover, LMHFV promoted mineralization with significant enhancements of Ca/P ratio, mineral apposition rate (MAR), mineralizing surface (MS/BS), and bone mineral density (BMD) in the osteoporotic group. Consistently, better healing was confirmed by microarchitecture and mechanical properties, whereas the enhancement in osteoporotic group was comparable or even greater than the normal group. This is the first report to reveal the enhancement effect of LMHFV on the osteocytes' morphology and functions in osteoporotic fracture healing.
Collapse
Affiliation(s)
- Man-Huen Victoria Choy
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ronald Man-Yeung Wong
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Meng-Chen Li
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bai Yan Wang
- School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao Dong Liu
- Department of Anaesthesia and Intensive Care, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wayne Lee
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jack Chun-Yiu Cheng
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
| | - Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
| |
Collapse
|
37
|
A distinct bone phenotype in ADPKD patients with end-stage renal disease. Kidney Int 2020; 95:412-419. [PMID: 30665572 DOI: 10.1016/j.kint.2018.09.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 12/31/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is among the most common hereditary nephropathies. Low bone turnover osteopenia has been reported in mice with conditional deletion of the PKD1 and PKD2 genes in osteoblasts, and preliminary clinical data also suggest suppressed bone turnover in patients with ADPKD. The present study compared the bone phenotype between patients with end stage renal disease (ESRD) due to ADPKD and controls with ESRD due to other causes. Laboratory parameters of bone mineral metabolism (fibroblast growth factor 23 and sclerostin), bone turnover markers (bone alkaline phosphatase, tartrate-resistant acid phosphatase 5b) and bone mineral density (BMD, by dual energy x-ray absorptiometry, DXA) were assessed in 518 patients with ESRD, including 99 with ADPKD. Bone histomorphometry data were available in 71 patients, including 10 with ADPKD. Circulating levels of bone alkaline phosphatase were significantly lower in patients with ADPKD (17.4 vs 22.6 ng/mL), as were histomorphometric parameters of bone formation. Associations between ADPKD and parameters of bone formation persisted after adjustment for classical determinants including parathyroid hormone, age, and sex. BMD was higher in skeletal sites rich in cortical bone in patients with ADPKD compared to non-ADPKD patients (Z-score midshaft radius -0.04 vs -0.14; femoral neck -0.72 vs -1.02). Circulating sclerostin levels were significantly higher in ADPKD patients (2.20 vs 1.84 ng/L). In conclusion, patients with ESRD due to ADPKD present a distinct bone and mineral phenotype, characterized by suppressed bone turnover, better preserved cortical BMD, and high sclerostin levels.
Collapse
|
38
|
Abstract
Fibroblast growth factor 23 (FGF23) is a hormone with a central role in the regulation of phosphate homeostasis. This regulation is accomplished by the coordinated modulation of renal phosphate handling, vitamin D metabolism and parathyroid hormone secretion. Patients with kidney disease have increased circulating levels of FGF23 and in other patient populations and in healthy individuals, FGF23 levels also rise following an increase in dietary phosphate intake. Maladaptive increases in FGF23 have a detrimental effect on several organs and tissues and, importantly, these pathological changes most likely contribute to increased morbidity and mortality. For example, in the context of heart disease, FGF23 is involved in the development of pathological hypertrophy that can lead to congestive heart failure. Increased FGF23 concentrations can also lead to microcirculatory changes, in particular reduced vasodilatory capacity, and collectively these cardiovascular changes can compromise tissue perfusion. In addition, FGF23 is associated with inflammation and an increased risk of infection; other potentially detrimental effects of FGF23 are likely to emerge in the future. Most importantly, recent insights demonstrate that FGF23 can be therapeutically targeted, which holds promise for the treatment of many patients in a variety of clinical settings.
Collapse
|
39
|
Hu M, Lee W, Jiao J, Li X, Gibbons DE, Hassan CR, Tian GW, Qin YX. Mechanobiological modulation of in situ and in vivo osteocyte calcium oscillation by acoustic radiation force. Ann N Y Acad Sci 2019; 1460:68-76. [PMID: 31646646 DOI: 10.1111/nyas.14262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/16/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022]
Abstract
The biological effect of ultrasound on bone regeneration has been well documented, yet the underlying mechanotransduction mechanism is largely unknown. In relation to the mechanobiological modulation of the cytoskeleton and Ca2+ influx by short-term focused acoustic radiation force (FARF), the current study aimed to visualize and quantify Ca2+ oscillations in real-time of in situ and in vivo osteocytes in response to focused low-intensity pulsed ultrasound (FLIPUS). For in situ studies, fresh mice calvaria were subjected to FLIPUS stimulation at 0.05, 0.2, 0.3, and 0.7 W. For the in vivo study, 3-month-old C57BL/6J Ai38/Dmp1-Cre mice were subjected to FLIPUS at 0.15, 1, and 1.5 W. As observed via real-time confocal imaging, in situ FLIPUS led to more than 80% of cells exhibiting Ca2+ oscillations at 0.3-0.7 W and led to a higher number of Ca2+ spikes with larger values at >0.3 W. In vivo FLIPUS at 1-1.5 W led to more than 90% of cells exhibiting Ca2+ oscillations. Higher FLIPUS energies led to larger Ca2+ spike magnitudes. In conclusion, this study provided a pilot study of both in situ and in vivo osteocytic Ca2+ oscillations under noninvasive FARF, which aids further exploration of the mechanosensing mechanism of the controlled bone cell motility response to the stimulus.
Collapse
Affiliation(s)
- Minyi Hu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Wonsae Lee
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Jian Jiao
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Xiaofei Li
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Daniel E Gibbons
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Chaudhry Raza Hassan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Guo-Wei Tian
- CMIC-Two Photon Imaging Center, Stony Brook University, Stony Brook, New York
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| |
Collapse
|
40
|
Xie Y, Zhang L, Xiong Q, Gao Y, Ge W, Tang P. Bench-to-bedside strategies for osteoporotic fracture: From osteoimmunology to mechanosensation. Bone Res 2019; 7:25. [PMID: 31646015 PMCID: PMC6804735 DOI: 10.1038/s41413-019-0066-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis is characterized by a decrease in bone mass and strength, rendering people prone to osteoporotic fractures caused by low-energy forces. The primary treatment strategy for osteoporotic fractures is surgery; however, the compromised and comminuted bones in osteoporotic fracture sites are not conducive to optimum reduction and rigid fixation. In addition, these patients always exhibit accompanying aging-related disorders, including high inflammatory status, decreased mechanical loading and abnormal skeletal metabolism, which are disadvantages for fracture healing around sites that have undergone orthopedic procedures. Since the incidence of osteoporosis is expected to increase worldwide, orthopedic surgeons should pay more attention to comprehensive strategies for improving the poor prognosis of osteoporotic fractures. Herein, we highlight the molecular basis of osteoimmunology and bone mechanosensation in different healing phases of elderly osteoporotic fractures, guiding perioperative management to alleviate the unfavorable effects of insufficient mechanical loading, high inflammatory levels and pathogen infection. The well-informed pharmacologic and surgical intervention, including treatment with anti-inflammatory drugs and sufficient application of antibiotics, as well as bench-to-bedside strategies for bone augmentation and hardware selection, should be made according to a comprehensive understanding of bone biomechanical properties in addition to the remodeling status of osteoporotic bones, which is necessary for creating proper biological and mechanical environments for bone union and remodeling. Multidisciplinary collaboration will facilitate the improvement of overall osteoporotic care and reduction of secondary fracture incidence.
Collapse
Affiliation(s)
- Yong Xie
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Qi Xiong
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Yanpan Gao
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
41
|
Wittig NK, Laugesen M, Birkbak ME, Bach-Gansmo FL, Pacureanu A, Bruns S, Wendelboe MH, Brüel A, Sørensen HO, Thomsen JS, Birkedal H. Canalicular Junctions in the Osteocyte Lacuno-Canalicular Network of Cortical Bone. ACS NANO 2019; 13:6421-6430. [PMID: 31095362 DOI: 10.1021/acsnano.8b08478] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The osteocyte lacuno-canalicular network (LCN) is essential for bone remodeling because osteocytes regulate cell recruitment. This has been proposed to occur through liquid-flow-induced shear forces in the canaliculi. Models of the LCN have thus far assumed that it contains canaliculi connecting the osteocyte lacunae. However, here, we reveal that enlarged spaces occur at places where several canaliculi cross; we name these spaces canalicular junctions. We characterize them in detail within mice cortical bone using synchrotron nanotomography at two length scales, with 50 and 130 nm voxel size, and show that canalicular junctions occur at a density similar to that of osteocyte lacunae and that canalicular junctions tend to cluster. Through confocal laser scanning microscopy, we show that canalicular junctions are widespread as we have observed them in cortical bone from several species, even though the number density of the canalicular junctions was not universal. Fluid flow simulations of a simple model system with and without a canalicular junction clearly show that liquid mass transport and flow velocities are altered by the presence of canalicular junctions. We suggest that these canalicular junctions may play an important role in osteocyte communication and possibly also in canalicular fluid flow. Therefore, we believe that they constitute an important component in the bone osteocyte network.
Collapse
Affiliation(s)
| | | | | | | | | | - Stefan Bruns
- Department of Chemistry, University of Copenhagen , 2100 Copenhagen Ø , Denmark
| | | | | | | | | | | |
Collapse
|
42
|
Qing Y, Huang M, Cao Y, Du T, Song K. Effects of miRNA-342-3p in modulating Hedgehog signaling pathway of human umbilical cord mesenchymal stem cells by down-regulating Sufu. Oral Dis 2019; 25:1147-1157. [PMID: 30790389 DOI: 10.1111/odi.13068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/03/2019] [Accepted: 02/15/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Previously, we have shown that miRNA-342-3p was increased during osteogenic differentiation of human umbilical mesenchymal stem cells (hUCMSCs) via regulating the sonic hedgehog (Shh) pathway. In this study, our objective is to further investigate the role of miRNA-342-3p in activation of Shh pathway by targeting suppressor of fused protein (Sufu), a suppressor of transcriptional factor Gli, as well as the potential interaction with transforming growth factor beta (TGF-β) signaling pathway during osteogenic induction of hUCMSCs. MATERIALS AND METHODS HUCMSCs that stable overexpression or knockdown of miRNA-342-3p were established by infection with lentiviral vectors. mRNA and protein levels of Hedgehog signaling pathway and osteogenic genes were measured by RT-qPCR and western blot assays. Luciferase reporter assay was performed to test the direct binding site of Sufu 5'UTR targeted by miRNA-342-3p. RESULTS Overexpression of miRNA-342-3p in hUCMSCs enhanced the expression of osteogenic genes by targeting Sufu. And the potential of osteogenic differentiation of hUCMSCs was inhibited while knocking down miRNA-342-3p. Meanwhile, induced the TGF-β expression level was also observed upon overexpressing miRNA-342-3p, suggesting activation of TGF-β signaling pathway was a potential mechanism of miRNA-342-3p-mediated osteogenesis in hUCMSCs. CONCLUSIONS Our findings provide new mechanistic evidence that miRNA-342-3p might be a valuable therapeutic target in bone regeneration.
Collapse
Affiliation(s)
- Ying Qing
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengqi Huang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingguang Cao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianfeng Du
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Song
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
Hinton PV, Rackard SM, Kennedy OD. In Vivo Osteocyte Mechanotransduction: Recent Developments and Future Directions. Curr Osteoporos Rep 2018; 16:746-753. [PMID: 30406580 DOI: 10.1007/s11914-018-0485-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW Mechanical loading is an essential stimulus for skeletal tissues. Osteocytes are primarily responsible for sensing mechanical stimuli in bone and for orchestrating subsequent responses. This is critical for maintaining homeostasis, and responding to injury/disease. The osteocyte mechanotransduction pathway, and the downstream effects it mediates, is highly complex. In vivo models have proved invaluable in understanding this process. This review summarizes the commonly used models, as well as more recently developed ones, and describes how they are used to address emerging questions in the field. RECENT FINDINGS Minimally invasive animal models can be used to determine mechanisms of osteocyte mechanotransduction, at the cell and molecular level, while simultaneously reducing potentially confounding responses such as inflammation/wound-healing. The details of osteocyte mechanotransduction in bone are gradually becoming clearer. In vivo model systems are a key tool in pursing this question. Advances in this field are explored and discussed in this review.
Collapse
Affiliation(s)
- Paige V Hinton
- Department of Anatomy & Tissue Engineering Research Group, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland
| | - Susan M Rackard
- School of Veterinary Medicine, Veterinary Science Centre, University College Dublin, Dublin 4, Ireland
| | - Oran D Kennedy
- Department of Anatomy & Tissue Engineering Research Group, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland.
| |
Collapse
|
44
|
Uzbekov R, Garanina A, Bressac C. Centrioles without microtubules: a new morphological type of centriole. Biol Open 2018; 7:bio036012. [PMID: 29997243 PMCID: PMC6124565 DOI: 10.1242/bio.036012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022] Open
Abstract
The centrosome is the organizing center of microtubules in the cell, the basis for the origin of cilia and flagella and a site for the concentration of a regulatory proteins multitude. The centrosome comprises two centrioles surrounded by pericentriolar material. Centrioles in the cells of different organisms can contain nine triplets, doublets or singlets of microtubules. Here, we show that in somatic cells of male wasp larvae Anisopteromalus calandrae, centrioles do not contain microtubules and are composed of nine electron-dense prongs, which together form a cogwheel structure. These microtubule-free centrioles can be the platform for procentriole formation and form microtubule-free cilia-like structures. In nymph and imago cells centrioles have a microtubule triplet structure. Our study describes how centriole structure differs in a development-stage-dependent and a cell-type-dependent manner. The discovery of a centriole without microtubules casts a new light on the centriole formation process and the evolution of this organelle.
Collapse
Affiliation(s)
- Rustem Uzbekov
- Department of Microscopy, University of Tours, Tours 37032, France
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow 119992, Russia
| | | | - Christophe Bressac
- Institute of Research on Insect Biology, IMIP research team UMR CNRS 7261, University of AQ1 Tours, Tours 37200, France
| |
Collapse
|
45
|
Idiopathic Scoliosis Families Highlight Actin-Based and Microtubule-Based Cellular Projections and Extracellular Matrix in Disease Etiology. G3-GENES GENOMES GENETICS 2018; 8:2663-2672. [PMID: 29930198 PMCID: PMC6071588 DOI: 10.1534/g3.118.200290] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Idiopathic scoliosis (IS) is a structural lateral spinal curvature of ≥10° that affects up to 3% of otherwise healthy children and can lead to life-long problems in severe cases. It is well-established that IS is a genetic disorder. Previous studies have identified genes that may contribute to the IS phenotype, but the overall genetic etiology of IS is not well understood. We used exome sequencing to study five multigenerational families with IS. Bioinformatic analyses identified unique and low frequency variants (minor allele frequency ≤5%) that were present in all sequenced members of the family. Across the five families, we identified a total of 270 variants with predicted functional consequences in 246 genes, and found that eight genes were shared by two families. We performed GO term enrichment analyses, with the hypothesis that certain functional annotations or pathways would be enriched in the 246 genes identified in our IS families. Using three complementary programs to complete these analyses, we identified enriched categories that include stereocilia and other actin-based cellular projections, cilia and other microtubule-based cellular projections, and the extracellular matrix (ECM). Our results suggest that there are multiple paths to IS and provide a foundation for future studies of IS pathogenesis.
Collapse
|
46
|
Sreekumar V, Aspera-Werz R, Ehnert S, Strobel J, Tendulkar G, Heid D, Schreiner A, Arnscheidt C, Nussler AK. Resveratrol protects primary cilia integrity of human mesenchymal stem cells from cigarette smoke to improve osteogenic differentiation in vitro. Arch Toxicol 2018; 92:1525-1538. [PMID: 29264620 DOI: 10.1007/s00204-017-2149-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022]
Abstract
Several studies have explored the negative effects of cigarette smoke on bone healing; however, the complex pathogenesis still remains unclear. One crucial and primary factor determining effective fracture repair is the recruitment and differentiation of mesenchymal stem cells (MSCs) into bone-forming cells. Recently, primary cilia, microtubule-based sensory organelles, have been shown to be critical in lineage commitment and differentiation of MSCs. Our present study indicates that exposure to cigarette smoke extract (CSE 0.1-10%) impaired osteogenic differentiation of human mesenchymal stem cell line (SCP-1) and interestingly, also affected primary cilia distribution and integrity in these cells during the differentiation. Furthermore, significant amounts of free radicals generated by CSE could be causative of primary cilia loss since treatment with 0.01% of hydrogen peroxide, a prime free radical in CSE, destroyed primary cilia in these cells. The debilitated differentiation of CSE-exposed SCP-1 cells also correlated with the significantly reduced expression of transcription factor and target genes of primary cilia-specific hedgehog signalling, a key player in osteogenic differentiation. As a treatment strategy, co-incubation of the CSE-exposed SCP-1 cells with the antioxidant resveratrol (1 µM) had a protective effect as it significantly reduced free radical production, protected the primary cilia and enhanced osteogenic differentiation. The current study shows for the first time that cigarette smoke affects primary cilia in human MSCs during osteogenic differentiation and treatment with resveratrol could reverse the effects and enhance differentiation, thus opening up potential therapeutic alternatives to treat fracture healing in smokers, in particularly, when delayed fracture healing is assumed.
Collapse
Affiliation(s)
- Vrinda Sreekumar
- Department of Traumatology, BG Trauma Clinic, Siegfried Weller Institute for Trauma Research, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Romina Aspera-Werz
- Department of Traumatology, BG Trauma Clinic, Siegfried Weller Institute for Trauma Research, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Sabrina Ehnert
- Department of Traumatology, BG Trauma Clinic, Siegfried Weller Institute for Trauma Research, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Julius Strobel
- Department of Traumatology, BG Trauma Clinic, Siegfried Weller Institute for Trauma Research, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Gauri Tendulkar
- Department of Traumatology, BG Trauma Clinic, Siegfried Weller Institute for Trauma Research, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Daniel Heid
- Department of Traumatology, BG Trauma Clinic, Siegfried Weller Institute for Trauma Research, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Anna Schreiner
- Department of Traumatology, BG Trauma Clinic, Siegfried Weller Institute for Trauma Research, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Christian Arnscheidt
- Department of Traumatology, BG Trauma Clinic, Siegfried Weller Institute for Trauma Research, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Andreas K Nussler
- Department of Traumatology, BG Trauma Clinic, Siegfried Weller Institute for Trauma Research, Eberhard Karls Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
47
|
George EL, Lin YL, Saunders MM. Bisphosphonate-related osteonecrosis of the jaw: a mechanobiology perspective. Bone Rep 2018; 8:104-109. [PMID: 29955628 PMCID: PMC6020112 DOI: 10.1016/j.bonr.2018.03.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/04/2018] [Accepted: 03/13/2018] [Indexed: 01/02/2023] Open
Abstract
Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a dramatic disintegration of the jaw that affects patients treated with bisphosphonates (BPs) for diseases characterized by bone loss. These diseases are often metastasizing cancers (like multiple myeloma, breast cancer and prostate cancer (Aragon-Ching et al., 2009)) as well as osteoporosis. BRONJ is incompletely understood, although it is believed to arise from a defect in bone remodeling—the intricate process by which sensory osteocytes signal to osteoclasts and osteoblasts to resorb and form bone in response to stimuli. Further, tooth extraction and infection have been overwhelmingly linked to BRONJ (Ikebe, 2013). Because bone cells are highly networked, the importance of multicellular interactions and mechanotransduction during the onset of these risk factors cannot be overstated. As such, this perspective addresses current research on the effects of BPs, mechanical load and inflammation on bone remodeling and on development of BRONJ. Our investigation has led us to conclude that improved in vitro systems capable of adequately recapitulating multicellular communication and incorporating effects of osteocyte mechanosensing on bone resorption and formation are needed to elucidate the mechanism(s) by which BRONJ ensues. Current research on cofactors implicated in BRONJ is reviewed. BPs, load and inflammation work in tandem to contribute to BRONJ. Effects of cofactors on remodeling in the oral cavity are poorly understood. Osteocytes' ability to sense and respond to cofactors is likely central to BRONJ. Research is limited by a lack of multicellular systems integrating mechanosensing.
Collapse
Affiliation(s)
- Estee L George
- The University of Akron, Olson Research Center 319, 302 E. Buchtel Ave., Akron, OH 44325, USA
| | - Yi-Ling Lin
- University of California, Los Angeles School of Dentistry, 10833 Le Conte Ave., Los Angeles, CA 90095, USA
| | - Marnie M Saunders
- The University of Akron, Olson Research Center 319, 302 E. Buchtel Ave., Akron, OH 44325, USA
| |
Collapse
|
48
|
Cresswell EN, Nguyen TM, Horsfield MW, Alepuz AJ, Metzger TA, Niebur GL, Hernandez CJ. Mechanically induced bone formation is not sensitive to local osteocyte density in rat vertebral cancellous bone. J Orthop Res 2018; 36:672-681. [PMID: 28513889 DOI: 10.1002/jor.23606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 05/10/2017] [Indexed: 02/04/2023]
Abstract
Osteocytes play an integral role in bone by sensing mechanical stimuli and releasing signaling factors that direct bone formation. The importance of osteocytes in mechanotransduction suggests that regions of bone tissue with greater osteocyte populations are more responsive to mechanical stimuli. To determine the effects of osteocyte population on bone functional adaptation we applied mechanical loads to the 8th caudal vertebra of skeletally mature female Sprague Dawley rats (6 months of age, n = 8 loaded, n = 8 sham controls). The distribution of tissue stress/strain within cancellous bone was determined using high-resolution finite element models, osteocyte distribution was determined using nano-computed tomography, and locations of bone formation were determined using three-dimensional images of fluorescent bone formation markers. Loading increased bone formation (3D MS/BS 10.82 ± 2.09% in loaded v. 3.17 ± 2.05% in sham control, mean ± SD). Bone formation occurred at regions of cancellous bone experiencing greater tissue stress/strain, however stress/strain was only a modest predictor of bone formation; even at locations of greatest stress/strain the probability of observing bone formation did not exceed 41%. The local osteocyte population was not correlated with locations of new bone formation. The findings support the idea that local tissue stress/strain influence the locations of bone formation in cancellous bone, but suggest that the size of the osteocyte population itself is not influential. We conclude that other aspects of osteocytes such as osteocyte connectivity, lacunocanilicular nano-geometry, and/or fluid pressure/shear distributions within the marrow space may be more influential in regulating bone mechanotransduction than the number of osteocytes. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:672-681, 2018.
Collapse
Affiliation(s)
- Erin N Cresswell
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York.,Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Thu M Nguyen
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
| | - Michael W Horsfield
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Adrian J Alepuz
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
| | - Thomas A Metzger
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana
| | - Glen L Niebur
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana
| | - Christopher J Hernandez
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York.,Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York.,Hospital for Special Surgery, New York, New York
| |
Collapse
|
49
|
Arvind V, Huang AH. Mechanobiology of limb musculoskeletal development. Ann N Y Acad Sci 2017; 1409:18-32. [PMID: 28833194 DOI: 10.1111/nyas.13427] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 12/26/2022]
Abstract
While there has been considerable progress in identifying molecular regulators of musculoskeletal development, the role of physical forces in regulating induction, differentiation, and patterning events is less well understood. Here, we highlight recent findings in this area, focusing primarily on model systems that test the mechanical regulation of skeletal and tendon development in the limb. We also discuss a few of the key signaling pathways and mechanisms that have been implicated in mechanotransduction and highlight current gaps in knowledge and opportunities for further research in the field.
Collapse
Affiliation(s)
- Varun Arvind
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alice H Huang
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
50
|
Villette CC, Phillips ATM. Microscale poroelastic metamodel for efficient mesoscale bone remodelling simulations. Biomech Model Mechanobiol 2017; 16:2077-2091. [PMID: 28795282 PMCID: PMC5671577 DOI: 10.1007/s10237-017-0939-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/11/2017] [Indexed: 11/09/2022]
Abstract
Bone functional tissue adaptation is a multiaspect physiological process driven by interrelated mechanical and biological stimuli which requires the combined activity of osteoclasts and osteoblasts. In previous work, the authors developed a phenomenological mesoscale structural modelling approach capable of predicting internal structure of the femur based on daily activity loading, which relied on the iterative update of the cross-sectional areas of truss and shell elements representative of trabecular and cortical bones, respectively. The objective of this study was to introduce trabecular reorientation in the phenomenological model at limited computational cost. To this aim, a metamodel derived from poroelastic microscale continuum simulations was used to predict the functional adaptation of a simplified proximal structural femur model. Clear smooth trabecular tracts are predicted to form in the regions corresponding to the main trabecular groups identified in literature, at minimal computational cost.
Collapse
Affiliation(s)
- C C Villette
- Structural Biomechanics, Department of Civil and Environmental Engineering, Imperial College London, London, UK.
| | - A T M Phillips
- Structural Biomechanics, Department of Civil and Environmental Engineering, Imperial College London, London, UK
| |
Collapse
|