1
|
Warnecke K, Muche B, Krause A, Hoff P. [Pregnancy and lactation-associated osteoporosis: risk factors and treatment]. Z Rheumatol 2025; 84:121-127. [PMID: 39976715 DOI: 10.1007/s00393-025-01619-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2025] [Indexed: 02/27/2025]
Abstract
Pregnancy and lactation-associated osteoporosis (PLO) is a rare but serious condition. Multiple fractures often occur, mostly in the form of vertebral fractures, the mother is severely restricted and caring for the infant is barely possible without assistance. The fractures causing the complaints usually occur in the last trimester of the first pregnancy or in the first weeks of lactation. Magnetic resonance imaging (MRI) can be used to detect vertebral fractures and also edematous vertebrae. Bone densitometry is helpful for the diagnostics and assessment of progression. It is extremely important to distinguish PLO from other secondary forms of osteoporosis that can also be manifested during pregnancy and lactation. The mother is advised to stop breastfeeding immediately in order to interrupt calcium mobilization from bone and to achieve a normalization of hormone levels. Calcium and vitamin D should be supplemented and adequate pain treatment and physiotherapy should be initiated. The quality of data is poor due to the rarity of the disease, all available anti-osteoporotic drugs have been used in case reports but overall, in the last decade off-label treatment with teriparatide has been proven to be helpful and safe.
Collapse
Affiliation(s)
- Katja Warnecke
- Fachabteilung für Innere Medizin - Rheumatologie, Klinische Immunologie und Osteologie, Immanuel-Krankenhaus Berlin-Wannsee, Berlin, Deutschland
| | - Burkhard Muche
- Med. Klinik mit Schwerpunkt Rheumatologie und klinische Immunologie und Interdisziplinäres Zentrum für Osteologie der Charité, Charité Universitätsmedizin Berlin (Campus Mitte), Berlin, Deutschland
| | - Andreas Krause
- Fachabteilung für Innere Medizin - Rheumatologie, Klinische Immunologie und Osteologie, Immanuel-Krankenhaus Berlin-Wannsee, Berlin, Deutschland
| | - Paula Hoff
- Med. Klinik mit Schwerpunkt Rheumatologie und klinische Immunologie und Interdisziplinäres Zentrum für Osteologie der Charité, Charité Universitätsmedizin Berlin (Campus Mitte), Berlin, Deutschland.
- Endokrinologikum Berlin, Medizinisches Versorgungszentrum (MVZ) am Gendarmenmarkt, Friedrichstr. 76/Jägerstr. 61 (Q 207), 10117, Berlin, Deutschland.
| |
Collapse
|
2
|
Connelly MK, Rodney RM, Kuehnl J, Andrade JPN, Sonnewend Andrade F, Henschel S, Block E, Lean IJ, Hernandez LL. The effects of magnitude of calcium decline at the onset of lactation on serotonin dynamics and the serotonin-calcium axis. J Dairy Sci 2025; 108:1992-2004. [PMID: 39477066 DOI: 10.3168/jds.2024-24836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/07/2024] [Indexed: 01/25/2025]
Abstract
The onset of lactation is characterized by marked increases in calcium (Ca) metabolism. Recently emphasis was placed on understanding the profile and dynamics of blood Ca and serotonin in the peripartal cow in response to this change using a randomized 2 × 2 factorial design. The aims of our study were to determine (1) how a prepartum DCAD diet and the magnitude of Ca decline at the onset of lactation alter circulating blood serotonin and ionized Ca concentration dynamics in the periparturient cow, and (2) the relationship of Ca versus serotonin during the peripartal period. Thirty-two multiparous Holstein cows were blocked by parity (2 vs. >2) to ensure equal parity number across the experiment, previous 305 d milk yield, and expected parturition date and randomly allocated to positive (+120 mEq/kg; +DCAD) or negative (-120 mEq/kg; -DCAD) DCAD diets from 251 d of gestation until parturition (n = 16/diet). Immediately after calving cows were continuously infused for 24 h with (1) an intravenous solution of 10% dextrose or (2) Ca gluconate (CaGlc) to maintain blood ionized Ca concentrations at 1.2 mM (normocalcemia), forming the following 4 treatment groups: negative DCAD and CaGlc (NCa), negative DCAD and dextrose (NDex), positive DCAD and CaGlc (PCa), and positive DCAD and dextrose (PDex; n = 8/treatment). Blood was sampled every 6 h from 102 h before parturition until 96 h postparturition. During the continuous infusion period (the 24 h immediately following parturition) cows were sampled every 30 min. Cows fed a -DCAD diet prepartum had greater circulating serotonin concentrations pre- and postpartum. Time series analyses demonstrated that the pooled mean effect size (ES) of the relationship between ionized Ca and serotonin 36 h before parturition was significantly positive (ES = 0.164) prepartum. We also observed that the overall pooled mean ES of the relationship between prepartum blood pH 24 h prior and serotonin was significantly positive (ES = 0.111); however, for individual treatment groups, relationships were identified between blood pH and serotonin 18 and 6 h before only for the NDex group. Our data suggest that serotonin is an important factor in the regulation of Ca homeostasis during the prepartal period and that the mechanism may be integrated with blood pH.
Collapse
Affiliation(s)
- M K Connelly
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - R M Rodney
- Australian National University, Canberra 2601, Australia
| | - J Kuehnl
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - J P N Andrade
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - F Sonnewend Andrade
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - S Henschel
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - E Block
- Arm & Hammer Animal Nutrition, Princeton, NJ 08543
| | - I J Lean
- Scibus, Camden, NSW 2570, Australia
| | - L L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706.
| |
Collapse
|
3
|
Couchot M, Schmitt F, Mermet M, Fassot C, Mabilleau G. Effects of Pregnancy and Lactation on Bone Microstructure and Material Properties in a Rat Model of Bariatric Surgery. Calcif Tissue Int 2025; 116:23. [PMID: 39755793 DOI: 10.1007/s00223-024-01321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/05/2024] [Indexed: 01/06/2025]
Abstract
Obesity is a major public health issue worldwide. Despite various approaches to weight loss, the most effective technique for reducing obesity, as well as diabetes and associated diseases, is bariatric surgery. Increasingly, young women without children are undergoing bariatric surgery, vertical sleeve gastrectomy (VSG) being the most common procedure nowadays. However, despite several reports suggesting bone loss after VSG, little is known about the potential additive effects of gestation and lactation after VSG to bone health. This study investigated the combined effects of pre-gestational VSG and subsequent gestation/lactation on bone metabolism in a rat model fed a high fat high sugar (HFHS) diet, with a focus on bone biomechanics, mass, microarchitecture and material properties. Furthermore, bone mass and remodelling were followed longitudinally by microCT prior to surgery, 4 weeks post-surgery, after weaning and at sacrifice. Significant alterations in bone mass and microarchitecture, characterized by changes in trabecular thickness and number, as well as changes in bone formation and resorption were influenced by both surgery and reproductive demands. Mechanical testing at sacrifice demonstrated compromised long bone fragility, in rat with HFHS regardless of the surgical procedure (Sham or VSG). Furthermore, analysis of bone material properties highlighted potential disruptions in the pattern of bone mineralization in sham and VSG animals fed a HFHS diet. These findings underscore the complex interplay between pre-gestational VSG and subsequent gestation/lactation in modulating bone metabolism in the investigated rat model. The preclinical rat model may help with optimizing surgical strategies and developing targeted interventions to mitigate potential bone-related complications associated with VSG in reproductive-aged individuals.
Collapse
Affiliation(s)
- Malory Couchot
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, 49000, Angers, France
| | - Françoise Schmitt
- Univ Angers, HIFIH, 49000, Angers, France
- Paediatric Surgery Department, CHU Angers, 49933, Angers, France
| | - Morgane Mermet
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, 49000, Angers, France
| | - Céline Fassot
- Univ Angers, Inserm, CNRS, MITOVASC, 49000, Angers, France
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, 49000, Angers, France.
- Cell and Tissue Pathology, CHU Angers, 49933, Angers, France.
| |
Collapse
|
4
|
Wu D, Cline-Smith A, Chrisler B, Lubeck B, Perla A, Banerjee S, Fan I, Aurora R. Memory T-Cells Contribute to Calcium Release from Bones during Lactation in Mice. Nutrients 2024; 16:3289. [PMID: 39408256 PMCID: PMC11478898 DOI: 10.3390/nu16193289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/08/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Objective: Milk production during lactation places a high demand for calcium that is fulfilled both from maternal bone resorption and diet. While it is known that mammary gland-derived PTHrP drives bone resorption during lactation, the impact of postpartum estrogen loss on bone has been unclear. Methods: We used a case-control study design to test the effect of estrogen loss in lactating mice. Results: In the present study, we show for the first time that estrogen loss during lactation activates memory T-cells (TM) to produce TNFα and IL-17A to aid in bone resorption and calcium release. Our studies reveal a new mechanism for the release of calcium from bone postpartum. The findings provide several new insights. First, the immune system plays a critical role in milk production postpartum. Second, evolutionarily, the pathway serves the physiological purpose of increasing bone resorption to release calcium for breastmilk production postpartum but becomes maladaptive postmenopause, leading to osteoporosis. Finally, these results highlight the crosstalk between the brain-bone-breast-endocrine axis and the immune system during lactation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rajeev Aurora
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S Grand Blvd, Saint Louis, MO 63104, USA; (D.W.); (A.C.-S.); (B.C.); (B.L.); (A.P.); (S.B.); (I.F.)
| |
Collapse
|
5
|
Hua R, Truong VA, Fajardo RJ, Guda T, Gu S, Jiang JX. Connexin hemichannels drive lactation-induced osteocyte acidification and perilacunar-canalicular remodeling. Cell Rep 2024; 43:114363. [PMID: 38935505 PMCID: PMC11318086 DOI: 10.1016/j.celrep.2024.114363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/30/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
The maternal skeleton experiences significant bone loss during lactation, followed by rapid restoration post weaning. Parathyroid-related protein (PTHrP)-induced acidification of the perilacunar matrix by osteocytes is crucial in this process, yet its mechanism remains unclear. Here, we identify Cx43 hemichannels (HCs) as key mediators of osteocyte acidification and perilacunar-canalicular remodeling (PLR). Utilizing transgenic mouse models expressing dominant-negative Cx43 mutants, we show that mice with impaired Cx43 HCs exhibit attenuated lactation-induced responses compared to wild-type and only gap junction-impaired groups, including lacunar enlargement, upregulation of PLR genes, and bone loss with compromised mechanical properties. Furthermore, inhibition of HCs by a Cx43 antibody blunts PTHrP-induced calcium influx and protein kinase A activation, followed by impaired osteocyte acidification. Additionally, impeded HCs suppress bone recovery during the post-lactation period. Our findings highlight the pivotal role of Cx43 HCs in orchestrating dynamic bone changes during lactation and recovery by regulating acidification and remodeling enzyme expression.
Collapse
Affiliation(s)
- Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Vu A Truong
- School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX 78209, USA
| | - Roberto J Fajardo
- School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX 78209, USA
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
6
|
Nerius L, Vogel M, Ceglarek U, Kiess W, Biemann R, Stepan H, Kratzsch J. Bone turnover in lactating and nonlactating women. Arch Gynecol Obstet 2023; 308:1853-1862. [PMID: 37707552 PMCID: PMC10579129 DOI: 10.1007/s00404-023-07189-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023]
Abstract
PURPOSE During lactation, bone turnover increases, reflecting the mobilization of Calcium from maternal skeletal stores and resulting in bone loss. However, mechanisms are not yet fully understood, and previous studies have been comparatively small. We aim to assess bone metabolism during lactation by comparing bone-metabolism-related-parameters between large cohorts of lactating and nonlactating women. METHODS In a retrospective cohort study, we recruited 779 postpartum women and 742 healthy, nonpregnant, nonlactating controls. Postpartum women were examined 3 and 6 months after delivery and retrospectively assigned to either the exclusively breastfeeding (exc-bf) group if they had exclusively breastfed or the nonexclusively breastfeeding (nonexc-bf) group if they had not exclusively breastfed up to the respective visit. Serum levels of PTH, Estradiol, total Calcium, Phosphate, and bone turnover markers (ßCTX, P1NP, Osteocalcin) were compared between the groups. RESULTS Bone turnover markers were significantly increased in exc-bf and nonexc-bf women compared with the controls (all ps < .001). ßCTX was approximately twice as high in exc-bf women than in the controls. PTH levels were marginally higher in exc-bf (p < .001) and nonexc-bf women (p = .003) compared with the controls (6 months). Estradiol was suppressed in exc-bf women compared with the controls (p < .001, 3 months). CONCLUSION Exc-bf and even nonexc-bf states are characterized by an increase in bone formation and resorption markers. The PTH data distribution of exc-bf, nonexc-bf, and control groups in the underpart of the reference range suggest that lactational bone loss is relatively independent of PTH.
Collapse
Affiliation(s)
- Lena Nerius
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, 04103, Leipzig, Germany
| | - Mandy Vogel
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, 04103, Leipzig, Germany
| | - Uta Ceglarek
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (ILM), University of Leipzig, Paul-List-Str. 13-15, 04103, Leipzig, Germany
| | - Wieland Kiess
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, 04103, Leipzig, Germany
- Department of Women and Child Health, Hospital for Children and Adolescents and Center for Pediatric Research, University of Leipzig, 04103, Leipzig, Germany
| | - Ronald Biemann
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (ILM), University of Leipzig, Paul-List-Str. 13-15, 04103, Leipzig, Germany
| | - Holger Stepan
- Department of Obstetrics, University of Leipzig, 04103, Leipzig, Germany
| | - Jürgen Kratzsch
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (ILM), University of Leipzig, Paul-List-Str. 13-15, 04103, Leipzig, Germany.
| |
Collapse
|
7
|
Lu AX, Lin Y, Li J, Liu JX, Yan CH, Zhang L. Effects of food-borne docosahexaenoic acid supplementation on bone lead mobilisation, mitochondrial function and serum metabolomics in pre-pregnancy lead-exposed lactating rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122613. [PMID: 37757928 DOI: 10.1016/j.envpol.2023.122613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/01/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Large bone lead (Pb) resulting from high environmental exposure during childhood is an important source of endogenous Pb during pregnancy and lactation. Docosahexaenoic acid (DHA) attenuates Pb toxicity, however, the effect of DHA on bone Pb mobilisation during lactation has not been investigated. We aimed to study the effects of DHA supplementation during pregnancy and lactation on bone Pb mobilisation during lactation and its potential mechanisms. Weaning female rats were randomly divided into control (0.05% sodium acetate) and Pb-exposed (0.05% Pb acetate) groups, after a 4-week exposure by ad libitum drinking and a subsequent 4-week washout period, all female rats were mated with healthy males until pregnancy. Then exposed rats were randomly divided into Pb and Pb + DHA groups, and the latter was given a 0.14% DHA diet, while the remaining groups were given normal feed until the end of lactation. Pb and calcium levels, bone microarchitecture, bone turnover markers, mitochondrial function and serum metabolomics were analyzed. The results showed that higher blood and bone Pb levels were observed in the Pb group compared to the control, and there was a significant negative correlation between blood and bone Pb. Also, Pb increased trabecular bone loss along with slightly elevated serum C-telopeptide of type I collagen (CTX-I) levels. However, DHA reduced CTX-I levels and improved trabecular bone microarchitecture. Metabolomics showed that Pb affected mitochondrial function, which was further demonstrated in bone tissue by significant reductions in ATP levels, Na+-K+-ATPase, Ca2+-Mg2+-ATPase and CAT activities, and elevated levels of MDA, IL-1β and IL-18. However, these alterations were partially mitigated by DHA. In conclusion, DHA supplementation during pregnancy and lactation improved bone Pb mobilisation and mitochondrial dysfunction in lactating rats induced by pre-pregnancy Pb exposure, providing potential means of mitigating bone Pb mobilisation levels during lactation, but the mechanism still needs further study.
Collapse
Affiliation(s)
- An-Xin Lu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yin Lin
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jing Li
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun-Xia Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Chong-Huai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lin Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
8
|
Athonvarangkul D, Wysolmerski JJ. Crosstalk within a brain-breast-bone axis regulates mineral and skeletal metabolism during lactation. Front Physiol 2023; 14:1121579. [PMID: 36875035 PMCID: PMC9979219 DOI: 10.3389/fphys.2023.1121579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
To support the increased calcium demands for milk production during lactation, a dramatic and reversible physiological response occurs to alter bone and mineral metabolism. This coordinated process involves a brain-breast-bone axis that integrates hormonal signals that allow for adequate calcium delivery to milk yet also protects the maternal skeletal from excessive bone loss or decreases in bone quality or function. Here, we review the current knowledge on the crosstalk between the hypothalamus, mammary gland, and skeleton during lactation. We discuss the rare entity of pregnancy and lactation associated osteoporosis and consider how the physiology of bone turnover in lactation may impact the pathophysiology of postmenopausal osteoporosis. Further understanding of the regulators of bone loss during lactation, particularly in humans, may provide insights into new therapies for osteoporosis and other diseases of excess bone loss.
Collapse
Affiliation(s)
- Diana Athonvarangkul
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | | |
Collapse
|
9
|
Sheftel CM, Sartori LC, Hunt ER, Manuel RSJ, Bell AM, Domingues RR, Wake LA, Scharpf BR, Vezina CM, Charles JF, Hernandez LL. Peripartal treatment with low-dose sertraline accelerates mammary gland involution and has minimal effects on maternal and offspring bone. Physiol Rep 2022; 10:e15204. [PMID: 35234346 PMCID: PMC8889862 DOI: 10.14814/phy2.15204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Women mobilize up to 10% of their bone mass during lactation to provide milk calcium. About 8%–13% of mothers use selective serotonin reuptake inhibitors (SSRI) to treat peripartum depression, but SSRIs independently decrease bone mass. Previously, peripartal use of the SSRI fluoxetine reduced maternal bone mass sustained post‐weaning and reduced offspring bone length. To determine whether these effects were fluoxetine‐specific or consistent across SSRI compounds, we examined maternal and offspring bone health using the most prescribed SSRI, sertraline. C57BL/6 mice were given 10 mg/kg/day sertraline, from the beginning of pregnancy through the end of lactation. Simultaneously, we treated nulliparous females on the same days as the primiparous groups, resulting in age‐matched nulliparous groups. Dams were euthanized at lactation day 10 (peak lactation, n = 7 vehicle; n = 9 sertraline), lactation day 21 (weaning, n = 9 vehicle; n = 9 sertraline), or 3m post‐weaning (n = 10 vehicle; n = 10 sertraline) for analysis. Offspring were euthanized at peak lactation or weaning for analysis. We determined that peripartum sertraline treatment decreased maternal circulating calcium concentrations across the treatment period, which was also seen in nulliparous treated females. Sertraline reduced the bone formation marker, procollagen 1 intact N‐terminal propeptide, and tended to reduce maternal BV/TV at 3m post‐weaning but did not impact maternal or offspring bone health otherwise. Similarly, sertraline did not reduce nulliparous female bone mass. However, sertraline reduced immunofluorescence staining of the tight junction protein, zona occludens in the mammary gland, and altered alveoli morphology, suggesting sertraline may accelerate mammary gland involution. These findings indicate that peripartum sertraline treatment may be a safer SSRI for maternal and offspring bone rather than fluoxetine.
Collapse
Affiliation(s)
- Celeste M Sheftel
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Luma C Sartori
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Emily R Hunt
- Department of Orthopedic Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Robbie S J Manuel
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Autumn M Bell
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rafael R Domingues
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lella A Wake
- Department of Orthopedic Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Brandon R Scharpf
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chad M Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Julia F Charles
- Department of Orthopedic Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Laura L Hernandez
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Lykking EK, Kammerlander H, van Dijk FS, Prieto-Alhambra D, Abrahamsen B, Folkestad L. Fractures following pregnancy in Osteogenesis imperfecta - A self-controlled case series using Danish Health Registers. Bone 2022; 154:116177. [PMID: 34508880 DOI: 10.1016/j.bone.2021.116177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/23/2021] [Accepted: 09/04/2021] [Indexed: 11/26/2022]
Abstract
Osteogenesis imperfecta (OI) is a rare inherited connective tissue disorder with considerable clinical and genetic heterogeneity. The clinical hallmark of OI is liability to fractures due to reduced bone strength. Pregnancy and lactation are periods of increased calcium demand resulting in a decrease in maternal bone mineral density (BMD). This self-controlled case series evaluates fracture risk 12- and 19-months prior to conception compared to a period of 12- and 19 months following childbirth in women with OI. This study is based on data from the Danish National Patient Register collected between 1995 and 2018. Modified Poisson models were fitted to estimate Incidence Rate Ratio in the post/pre-pregnancy period/s, adjusted by parity and age. The 12-month observation group included 111 women with 205 pregnancies, and the 19-month observation 108 women with 197 pregnancies. We calculated fracture rates (IR) of 48.78 [95%CI 18.55-79.01] per 1000 person years 12 months prior to conception, and of 27.87 [95%CI 10.60-45.14] in the 12 months post-delivery. Comparing pre- and post-pregnancy period we found an incidence rate ratio (IRR) of 1.00 [95%CI 0.42-2.40]. When adjusting for parity and age at delivery no significant change in the IRR was noted. In the 19 months observation-period, the IR per 1000 person years prior to conception was 74.84 [95%CI 44.25-105.43] and the IR postpartum was 36.86 [95%CI 17.55-56.17], leading to an IRR of 0.61 [95%CI 0.31-1.18]. We could not identify any increased risk of fractures when comparing fracture rates during pregnancy and 12 or 19 months postpartum to fracture rates 12 or 19 months prior to conception.
Collapse
Affiliation(s)
- Emilie Karense Lykking
- Department of Endocrinology, Odense University Hospital, Odense, Denmark; Institute of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Heidi Kammerlander
- Department of Gynecology and Obstetrics, Lillebælt Hospital Kolding, Denmark
| | - Fleur S van Dijk
- North West Thames Regional Genetics Service, London North West Health Care University NHS Trust, Harrow, UK; Department of Metabolism, Digestion and Reproduction, Section of Genetics and Genomics, Imperial College London, London, UK
| | - Daniel Prieto-Alhambra
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK
| | - Bo Abrahamsen
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK; Department of Medicine, Holbæk Hospital, Holbæk, Denmark; Open Data Explorative Network, University of Southern Denmark, Odense, Denmark
| | - Lars Folkestad
- Department of Endocrinology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
11
|
McAlpine MD, Yumol JL, Ward WE. Pregnancy and Lactation in Sprague-Dawley Rats Result in Permanent Reductions of Tibia Trabecular Bone Mineral Density and Structure but Consumption of Red Rooibos Herbal Tea Supports the Partial Recovery. Front Nutr 2021; 8:798936. [PMID: 34950693 PMCID: PMC8689395 DOI: 10.3389/fnut.2021.798936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022] Open
Abstract
During pregnancy and lactation, maternal bone mineral density (BMD) is reduced as calcium is mobilized to support offspring bone development. In humans, BMD returns to pre-pregnancy levels shortly after delivery, shifting from a high rate of bone resorption during pregnancy and lactation, into a rapid phase of bone formation post-lactation. This rapid change in bone turnover may provide an opportunity to stimulate a greater gain in BMD and stronger trabecular and cortical structure than present pre-pregnancy. Providing polyphenols present in red rooibos herbal tea may promote such an effect. In vitro, red rooibos polyphenols stimulate osteoblast activity, reduce osteoclastic resorption, and increase mineral production. The study objective was to determine if consuming red rooibos from pre-pregnancy through to 4 months post-lactation resulted in a higher BMD and improved trabecular and cortical bone structure in a commonly used rat model. Female Sprague-Dawley rats (n = 42) were randomized to one of the following groups: PREG TEA (pregnant, received supplemental level of red rooibos in water: ~2.6 g /kg body weight/day in water), PREG WATER (pregnant, received water), or NONPREG CON (age-matched, non-pregnant control, received water) from 2 weeks pre-pregnancy (age 8 weeks) through to 4 months post-lactation. Rats were fed AIN-93G (pre-pregnancy through to the end of lactation) and AIN-93M (post-lactation onwards). BMD and trabecular structure (bone volume fraction, trabecular number, trabecular separation) were improved (p < 0.05) by 1- or 2-months post-lactation when comparing PREG TEA to PREG CON, though neither group recovered to the level of NONPREG CON. Cortical outcomes (cortical area fraction, cortical thickness, tissue mineral density) for PREG TEA and PREG CON were reduced (p < 0.05) following lactation but returned to the level of NONPREG CON by 2-months post-lactation, with the exception of cortical thickness. The lack of recovery of BMD and key outcomes of trabecular bone structure was unexpected. While consumption of red rooibos did not result in stronger bone post-lactation, red rooibos did support the partial recovery of trabecular BMD and bone structure following pregnancy and lactation. The findings also provide insight into the timing and dose of polyphenols to study in future interventions.
Collapse
Affiliation(s)
- Michael D. McAlpine
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Jenalyn L. Yumol
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Wendy E. Ward
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
12
|
Li Y, de Bakker CMJ, Lai X, Zhao H, Parajuli A, Tseng WJ, Pei S, Meng T, Chung R, Wang L, Liu XS. Maternal bone adaptation to mechanical loading during pregnancy, lactation, and post-weaning recovery. Bone 2021; 151:116031. [PMID: 34098162 PMCID: PMC8504362 DOI: 10.1016/j.bone.2021.116031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/25/2021] [Accepted: 06/01/2021] [Indexed: 12/16/2022]
Abstract
The maternal skeleton undergoes dramatic bone loss during pregnancy and lactation, and substantial bone recovery post-weaning. The structural adaptations of maternal bone during reproduction and lactation exert a better protection of the mechanical integrity at the critical load-bearing sites, suggesting the importance of physiological load-bearing in regulating reproduction-induced skeletal alterations. Although it is suggested that physical exercise during pregnancy and breastfeeding improves women's physical and psychological well-being, its effects on maternal bone health remain unclear. Therefore, the objective of this study was to investigate the maternal bone adaptations to external mechanical loading during pregnancy, lactation, and post-weaning recovery. By utilizing an in vivo dynamic tibial loading protocol in a rat model, we demonstrated improved maternal cortical bone structure in response to dynamic loading at tibial midshaft, regardless of reproductive status. Notably, despite the minimal loading responses detected in the trabecular bone in virgins, rat bone during lactation experienced enhanced mechano-responsiveness in both trabecular and cortical bone compartments when compared to rats at other reproductive stages or age-matched virgins. Furthermore, our study showed that the lactation-induced elevation in osteocyte peri-lacunar/canalicular remodeling (PLR) activities led to enlarged osteocyte lacunae. This may result in alterations in interstitial fluid flow-mediated mechanical stimulation on osteocytes and an elevation in solute transport through the lacunar-canalicular system (LCS) during high-frequency dynamic loading, thus enhancing mechano-responsiveness of maternal bone during lactation. Taken together, findings from this study provide important insights into the relationship between reproduction- and lactation-induced skeletal changes and external mechanical loading, emphasizing the importance of weight-bearing exercise on maternal bone health during reproduction and postpartum.
Collapse
Affiliation(s)
- Yihan Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Chantal M J de Bakker
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Radiology, Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
| | - Xiaohan Lai
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongbo Zhao
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ashutosh Parajuli
- Center for Biomechanical Research, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Wei-Ju Tseng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Shaopeng Pei
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Biomechanical Research, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Tan Meng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Rebecca Chung
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Liyun Wang
- Center for Biomechanical Research, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
13
|
Grizzo FMF, de Andrade Pereira M, Marchiotti LBM, Guilhem F, da Silva Santos T, Dell' Agnolo CM, de Melo WA, de Medeiros Pinheiro M, de Barros Carvalho MD, Pelloso SM. The influence of lactation on BMD measurements and TBS: a 12-month follow-up study. Osteoporos Int 2021; 32:1351-1358. [PMID: 33479846 DOI: 10.1007/s00198-021-05851-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/14/2021] [Indexed: 11/29/2022]
Abstract
UNLABELLED Although lactation is associated with transient bone loss and body weight changes, the unchanged TBS could highlight a limited effectiveness in detecting dynamic bone properties in the first year postpartum. PURPOSE To evaluate trabecular bone score (TBS) and bone mineral density (BMD) in postpartum women. METHODS This was a 12-month prospective cohort study with 40 lactating postpartum women and 44 non-pregnant women. The inclusion criteria were as follows: aged between 18 and 35 years old, an uncomplicated term (≥37 weeks) pregnancy with a single fetus, and no intention of becoming pregnant within 12 months. BMD measurements, including spine, hip, forearm and whole body, were performed by DXA at four different time points after delivery: (1) 1st month, (2) 3rd-4th month, (3) 6th-9th month, and (4) ≥ 12th month postpartum. RESULTS BMD measurements showed a statistically significant decrease at spine (1.134 vs. 1.088 g/cm2, p < 0.01), femoral neck (0.988 vs. 0.946 g/cm2, p < 0.01), total femur (0.971 vs. 0.933 g/cm2, p < 0.01), and whole body (1.132 vs. 1.119 g/cm2, p = 0.03) at the 2nd assessment (peak of lactation). There was early spinal recovery after the 3rd assessment with complete recovery in all skeletal sites. Although it has had significant weight loss (67.3 vs. 63.2 kg, p < 0.01) and body mass index reduction (25.2 vs. 23.4, p < 0.01), there was significant increment of spine BMD (1.134 vs. 1.165 g/cm2, p < 0.01) after 12-month follow-up. The TBS did not change over time. CONCLUSIONS Although lactation is associated with transient bone loss and body weight changes, the unchanged TBS could highlight a limited effectiveness in detecting dynamic bone properties in the first year postpartum.
Collapse
Affiliation(s)
- F M F Grizzo
- Post Graduate Program in Health Sciences, Maringá State University, Avenida Colombo, 5790, Maringa, Parana, 87020-900, Brazil.
| | | | | | - F Guilhem
- Paulista University, São José do Rio Preto, Sao Paulo, Brazil
| | - T da Silva Santos
- Post Graduate Program in Biosciences and Physiopathology, Maringa State University, Maringa, Parana, Brazil
| | | | - W A de Melo
- Department of Health Sciences, State University of Paraná, Paranavaí, Parana, Brazil
| | - M de Medeiros Pinheiro
- Rheumatology Division, Bone and Mineral Section and Spondyloarthritis Section, Federal University of São Paulo (Unifesp/EPM), Sao Paulo, Brazil
| | | | - S M Pelloso
- Department of Health Sciences, State University of Maringá, Maringa, Parana, Brazil
| |
Collapse
|
14
|
Connelly MK, Weaver SR, Kuehnl JM, Fricke HP, Klister M, Hernandez L. Elevated serotonin coordinates mammary metabolism in dairy cows. Physiol Rep 2021; 9:e14798. [PMID: 33835711 PMCID: PMC8034258 DOI: 10.14814/phy2.14798] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Serotonin plays a diverse role in maternal and mammary metabolism. Recent research in the dairy cow has shown a relationship between serotonin and calcium, with increased serotonin concentrations improving calcium homeostasis in the peri‐partum dairy cow. Therefore, the objective was to elucidate how administration of 5‐hydroxy‐l‐tryptophan (5‐HTP), the immediate precursor to serotonin, altered serotonin and calcium metabolism in lactating dairy cows. Twelve mid‐late lactation multiparous cows were blocked by parity, production and days in milk and allocated to a daily intravenous infusion of (i) 1.5 mg/kg of 5‐HTP (n = 6) or (ii) saline (n = 6) for 3 consecutive days. Milk samples were collected daily. Blood samples were collected before and after each infusion with mammary biopsies and blood samples collected at 48, 56, and 72 h relative to termination of first infusion. Infusion of 5‐HTP increased (p = 0.001) circulating serotonin concentrations and decreased blood calcium via a transient hypocalcemia immediately after each infusion (p = 0.02). Treatment with 5‐HTP increased milk calcium concentrations (p = 0.02) and calcium release‐activated channel protein 1 (ORAI1) mRNA at 56 h and protein at 48 h relative to termination of first infusion (p = 0.008 and p = 0.09, respectively). Fifty‐six hours from termination of the first infusion mRNA of parathyroid hormone‐related protein and mammary serotonin content were increased relative to control (p = 0.03 and p = 0.05, respectively). These findings demonstrate the ability of 5‐HTP infusion to increase circulating serotonin concentrations and alter endocrine and mammary autocrine/paracrine calcium and serotonin metabolism in the lactating dairy cow.
Collapse
Affiliation(s)
- Meghan K Connelly
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, USA
| | - Samantha R Weaver
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, USA
| | - Jordan M Kuehnl
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, USA
| | - Hannah P Fricke
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, USA
| | - Marisa Klister
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, USA
| | - Laura Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
15
|
Grinman D, Athonvarungkul D, Wysolmerski J, Jeong J. Calcium Metabolism and Breast Cancer: Echoes of Lactation? ACTA ACUST UNITED AC 2020; 15:63-70. [PMID: 33299957 DOI: 10.1016/j.coemr.2020.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lactation requires a series of adaptations in maternal calcium and bone metabolism to ensure a steady supply of calcium to the lactating mammary gland. The alterations in systemic metabolism are accompanied by alterations in the expression of calcium receptors, channels, binding proteins, pumps and transporters in mammary epithelial cells to increase the uptake of calcium from the extracellular fluid and to transport it into milk. Intracellular calcium regulates signaling pathways that mediate changes in cell proliferation, differentiation and death and many of the molecules involved in supporting and coordinating calcium secretion into milk are re-expressed and redeployed to support malignant behavior in breast cancer cells. In this article, we review adaptations of systemic calcium homeostasis during lactation, as well as the mechanisms of milk calcium transport. We then discuss how reactivation of these pathways contributes to the pathophysiology of breast cancer.
Collapse
Affiliation(s)
- Diego Grinman
- Section of Endocrinology and Metabolism, Department of Medicine, Yale School of Medicine
| | - Diana Athonvarungkul
- Section of Endocrinology and Metabolism, Department of Medicine, Yale School of Medicine
| | - John Wysolmerski
- Section of Endocrinology and Metabolism, Department of Medicine, Yale School of Medicine
| | - Jaekwang Jeong
- Section of Endocrinology and Metabolism, Department of Medicine, Yale School of Medicine
| |
Collapse
|
16
|
Sheftel CM, Hernandez LL. Serotonin stimulated parathyroid hormone related protein induction in the mammary epithelia by transglutaminase-dependent serotonylation. PLoS One 2020; 15:e0241192. [PMID: 33095824 PMCID: PMC7584195 DOI: 10.1371/journal.pone.0241192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/10/2020] [Indexed: 12/26/2022] Open
Abstract
Mammary-derived serotonin has been implicated in breast-to-bone communication during lactation by increasing parathyroid hormone related-protein (PTHrP) in the mammary gland. It is well established that PTHrP acts on the bone to liberate calcium for milk synthesis during lactation; however, the mechanism of serotonin’s regulation of PTHrP has not been fully elucidated. Recently, serotonylation has been shown to be involved in a variety of physiological processes mediated by serotonin. Therefore, we investigated whether serotonylation is involved in serotonin’s regulation of PTHrP in the mammary gland using lactogenically differentiated mouse mammary epithelial cells. We investigated the effect of increased intracellular serotonin using the antidepressant fluoxetine or 5-hydroxytryptophan (serotonin precursor), with or without transglutaminase inhibition and the corresponding action on PTHrP induction and activity. Treatment with fluoxetine or 5-hydroxytryptophan significantly increased intracellular serotonin concentrations and subsequently increased PTHrP gene expression, which was reduced with transglutaminase inhibition. Furthermore, we determined that transglutaminase activity is increased with lactogenic differentiation and 5-hydroxytryptophan or fluoxetine treatment. We investigated whether RhoA, Rac1, and Rab4 were potential serotonylation target proteins. We speculate that RhoA is potentially a serotonylation target protein. Our data suggest that serotonin regulates PTHrP induction in part through the process of serotonylation under lactogenic conditions in mouse mammary epithelial cells.
Collapse
Affiliation(s)
- Celeste M. Sheftel
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Laura L. Hernandez
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
17
|
Atypical pregnancy-associated osteoporosis of the patella: a case report. CURRENT ORTHOPAEDIC PRACTICE 2020. [DOI: 10.1097/bco.0000000000000910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Jia P, Wang R, Yuan J, Chen H, Bao L, Feng F, Tang H. A case of pregnancy and lactation-associated osteoporosis and a review of the literature. Arch Osteoporos 2020; 15:94. [PMID: 32583122 DOI: 10.1007/s11657-020-00768-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/04/2020] [Indexed: 02/03/2023]
Abstract
INTRODUCTION The pregnancy and lactation-associated osteoporosis (PLO) is a rare disease whose precise pathophysiological mechanisms remain mostly unknown. CASE REPORT We reported here a case of PLO that occurred in the early postpartum period and led to multiple compression fractures. Combination therapy with alendronate, calcium carbonate, and vitamin D was used to treat the patient and a marked but gradual increase in the density of bone mineral was observed. Moreover, no further fractures have occurred. CONCLUSION PLO is a very rare type of osteoporosis associated with severe chronic back pain. Increased bone resorption significantly increases the risk of bone fractures in women with PLO. Early diagnosis, stopping breastfeeding, treatment of calcium and vitamin D, bisphosphonates, or other antiosteoporosis medicine and regular follow-ups of these cases are particularly important in the prevention of fractures and to increase the quality of life of patients.
Collapse
Affiliation(s)
- Pu Jia
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, China.
| | - RuiDeng Wang
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, China
| | - Jing Yuan
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaominxiang, Dongcheng District, Beijing, China
| | - Hao Chen
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, China
| | - Li Bao
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, China
| | - Fei Feng
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, China
| | - Hai Tang
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, China
| |
Collapse
|
19
|
Le Henaff C, Ricarte F, Finnie B, He Z, Johnson J, Warshaw J, Kolupaeva V, Partridge NC. Abaloparatide at the Same Dose Has the Same Effects on Bone as PTH (1-34) in Mice. J Bone Miner Res 2020; 35:714-724. [PMID: 31793033 PMCID: PMC7145759 DOI: 10.1002/jbmr.3930] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/18/2019] [Accepted: 11/24/2019] [Indexed: 12/25/2022]
Abstract
Abaloparatide, a novel analog of parathyroid hormone-related protein (PTHrP 1-34), became in 2017 the second osteoanabolic therapy for the treatment of osteoporosis. This study aims to compare the effects of PTH (1-34), PTHrP (1-36), and abaloparatide on bone remodeling in male mice. Intermittent daily subcutaneous injections of 80 μg/kg/d were administered to 4-month-old C57Bl/6J male mice for 6 weeks. During treatment, mice were followed by DXA-Piximus to assess changes in bone mineral density (BMD) in the whole body, femur, and tibia. At either 4 or 18 hours after the final injection, femurs were harvested for μCT analyses and histomorphometry, sera were assayed for bone turnover marker levels, and tibias were separated into cortical, trabecular, and bone marrow fractions for gene expression analyses. Our results showed that, compared with PTH (1-34), abaloparatide resulted in a similar increase in BMD at all sites, whereas no changes were found with PTHrP (1-36). With both PTH (1-34) and abaloparatide, μCT and histomorphometry analyses revealed similar increases in bone volume associated with an increased trabecular thickness, in bone formation rate as shown by P1NP serum level and in vivo double labeling, and in bone resorption as shown by CTX levels and osteoclast number. Gene expression analyses of trabecular and cortical bone showed that PTH (1-34) and abaloparatide led to different actions in osteoblast differentiation and activity, with increased Runx2, Col1A1, Alpl, Bsp, Ocn, Sost, Rankl/Opg, and c-fos at different time points. Abaloparatide seems to generate a faster response on osteoblastic gene expression than PTH (1-34). Taken together, abaloparatide at the same dose is as effective as PTH (1-34) as an osteoanabolic, with an increase in bone formation but also an increase in bone resorption in male mice. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Carole Le Henaff
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Florante Ricarte
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Brandon Finnie
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Zhiming He
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Joshua Johnson
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Johanna Warshaw
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Victoria Kolupaeva
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Nicola C Partridge
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| |
Collapse
|
20
|
Jin L, Sun H, Dan S, Li S, Zhang C, Zhang C, Ren X, Shan D, Ling S. Serotonin regulates maternal calcium homeostasis during the perinatal period of sheep. J Anim Sci 2020; 97:5009-5015. [PMID: 31697833 DOI: 10.1093/jas/skz346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/06/2019] [Indexed: 01/29/2023] Open
Abstract
The goal of this experiment was to demonstrate the ability of an infusion of serotonin (5-HT; 5-hydroxytryptamine) precursors to increase 5-HT production during the transition from pregnancy to lactation and its effects on gene expression related to calcium (Ca) transporters in the mammary gland and bone resorption markers in the femur. Thirty pregnant Bamei mutton sheep were randomly assigned to 3 experimental groups. All groups received a daily intravenous infusion of saline (control group; n = 10), saline containing 0.178 mg of L-tryptophan/kg body weight (BW) (TRP group, n = 10) or 0.178 mg of 5-hydroxytryptophan/kg BW (5-HTP group, n = 10), beginning on day 7 of prepartum and continuing until delivery. Serum (pre- and postpartum), milk (postpartum), and femur and mammary gland tissue (day 9) were collected. Sheep infused with 5-HTP had a larger total serum Ca concentration on days 3, 6, 15, and 30 of lactation and total milk Ca concentration on days 3, 6, 12, and 15 of lactation compared with that of the control group. Sheep infused with 5-HTP and TRP increased blood and milk concentrations of 5-HT on days 3, 6, 9, and 30 of lactation and parathyroid hormone-related protein (PTHrP) on day 3 of prepartum and on days 3, 6, and 15 of lactation (P < 0.05). In addition, compared to that of the control group, the TRP or 5-HTP infusion upregulated PTHrP, a sodium/calcium exchanger, plasma membrane Ca2+ ATPase 2, secretory pathway Ca2+ ATPase 1, and calcium sensing receptor mRNA expression in mammary gland and receptor-activated nuclear factor kappa-B ligand mRNA expression in the femur, but had no effect on receptor-activated nuclear factor kappa-B and osteoprotegerin mRNA expression in the femur (P < 0.05). This suggests that 5-HT and PTHrP may be involved in regulating maternal Ca homeostasis during the transition from pregnancy to lactation in the sheep.
Collapse
Affiliation(s)
- Lu Jin
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agriculture and Animal Sciences, Hohhot, China
| | - Haizhou Sun
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agriculture and Animal Sciences, Hohhot, China
| | - Sang Dan
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agriculture and Animal Sciences, Hohhot, China
| | - Shengli Li
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agriculture and Animal Sciences, Hohhot, China
| | - Chongzhi Zhang
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agriculture and Animal Sciences, Hohhot, China
| | - Chunhua Zhang
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agriculture and Animal Sciences, Hohhot, China
| | - Xiaoping Ren
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agriculture and Animal Sciences, Hohhot, China
| | - Dan Shan
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agriculture and Animal Sciences, Hohhot, China
| | - Shuli Ling
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agriculture and Animal Sciences, Hohhot, China
| |
Collapse
|
21
|
Wilkens MR, Nelson CD, Hernandez LL, McArt JA. Symposium review: Transition cow calcium homeostasis—Health effects of hypocalcemia and strategies for prevention. J Dairy Sci 2020; 103:2909-2927. [DOI: 10.3168/jds.2019-17268] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022]
|
22
|
Grizzo FMF, Alarcão ACJ, Dell' Agnolo CM, Pedroso RB, Santos TS, Vissoci JRN, Pinheiro MM, Carvalho MDB, Pelloso SM. How does women's bone health recover after lactation? A systematic review and meta-analysis. Osteoporos Int 2020; 31:413-427. [PMID: 31897544 DOI: 10.1007/s00198-019-05236-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/14/2019] [Indexed: 01/11/2023]
Abstract
This is a systematic review aiming to evaluate the recovery of bone mass after lactation-related loss. Bone loss is transitory with recovery depending on the return of menstruation and weaning, and several compensatory homeostatic mechanisms are involved to minimize any significant damage to the maternal skeleton. Lactation has been associated with significant temporary bone loss, especially during the exclusive breastfeeding period. In the bone recovery phase, there is wide methodological heterogeneity among clinical trials, including follow-up timing, methods and sites of bone measurements, and body composition changes. The purpose of this study is to perform a systematic review and meta-analysis aiming to evaluate the recovery rate of bone mass after lactation-related loss, including the PubMed, Web of Science, and Scopus databases, with no publication date restrictions. The following MeSH terms were used: "bone diseases," "bone resorption," "bone density," "osteoporosis," "calcium," "postpartum period," "weaning," "breast feeding," and "lactation." The inclusion criteria were as follows: prospective human studies in women of reproductive age and bone measurements with two assessments in the postpartum period at least: the first one within the first weeks of lactation and another one 12 months after delivery, 3 months following the return of menses or 3 months postweaning. This research was recorded on the Prospero database (CRD42018096586Bone). A total of 9455 studies were found and 32 papers met the inclusion criteria. The follow-up period ranged from one to 3.6 years postpartum. Lactation was associated with transient bone loss, with a strong tendency to recover in all the sites studied, depending on the return of menstruation and weaning. Small deficits in the microarchitecture of the peripheral skeleton may be present, especially in women with prolonged breastfeeding, but with no deficit regarding the hip geometry was found. Women with a successive gestation after prolonged lactation and women who had breastfed when adolescents had no significant bone loss. Bone loss related to lactation is transitory, and several compensatory homeostatic mechanisms are involved to minimize any significant damage to the maternal skeleton.
Collapse
Affiliation(s)
- F M F Grizzo
- Post Graduate Program in Health Sciences, Maringá State University, Avenida Colombo, 5790, Maringá, Paraná, 87020-900, Brazil.
| | - A C J Alarcão
- Post Graduate Program in Health Sciences, Maringá State University, Avenida Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | | | - R B Pedroso
- Post Graduate Program in Health Sciences, Maringá State University, Avenida Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | - T S Santos
- Post Graduate Program in Biosciences and Physiopathology, Maringa State University, Maringá, Paraná, Brazil
| | - J R N Vissoci
- Global Neurosurgery and Neuroscience Division, Duke Global Health Institute, Duke University, Durham, NC, USA
| | - M M Pinheiro
- Rheumatology Division, Bone and Mineral Section and Spondyloarthritis Section, Federal University of São Paulo (Unifesp/EPM), São Paulo, Brazil
| | - M D B Carvalho
- Department of Health Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - S M Pelloso
- Department of Health Sciences, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
23
|
Liu XS, Wang L, de Bakker CMJ, Lai X. Mechanical Regulation of the Maternal Skeleton during Reproduction and Lactation. Curr Osteoporos Rep 2019; 17:375-386. [PMID: 31755029 PMCID: PMC7373497 DOI: 10.1007/s11914-019-00555-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW This review summarizes recently published data on the effects of pregnancy and lactation on bone structure, mechanical properties, and mechano-responsiveness in an effort to elucidate how the balance between the structural and metabolic functions of the skeleton is achieved during these physiological processes. RECENT FINDINGS While pregnancy and lactation induce significant changes in bone density and structure to provide calcium for fetal/infant growth, the maternal physiology also comprises several innate compensatory mechanisms that allow for the maintenance of skeletal mechanical integrity. Both clinical and animal studies suggest that pregnancy and lactation lead to adaptations in cortical bone structure to allow for rapid calcium release from the trabecular compartment while maintaining whole bone stiffness and strength. Moreover, extents of lactation-induced bone loss and weaning-induced recovery are highly dependent on a given bone's load-bearing function, resulting in better protection of the mechanical integrity at critical load-bearing sites. The recent discovery of lactation-induced osteocytic perilacunar/canalicular remodeling (PLR) indicates a new means for osteocytes to modulate mineral homeostasis and tissue-level mechanical properties of the maternal skeleton. Furthermore, lactation-induced PLR may also play an important role in maintaining the maternal skeleton's load-bearing capacity by altering osteocyte's microenvironment and modulating the transmission of anabolic mechanical signals to osteocytes. Both clinical and animal studies show that parity and lactation have no adverse, or a positive effect on bone strength later in life. The skeletal effects during pregnancy and lactation reflect an optimized balance between the mechanical and metabolic functions of the skeleton.
Collapse
Affiliation(s)
- X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 332A Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA, USA.
| | - Liyun Wang
- Center for Biomechanical Research, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Chantal M J de Bakker
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Xiaohan Lai
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
24
|
Sprenger-Mähr H, Zitt E, Kronbichler A, Cejna M, Lhotta K. A hemodialysis patient with bone disease after pregnancy: a case report. BMC Nephrol 2019; 20:425. [PMID: 31752733 PMCID: PMC6873679 DOI: 10.1186/s12882-019-1603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/28/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pregnancy is rare in women on hemodialysis. Recommendations for the treatment of secondary hyperparathyroidism (sHPT) and preservation of bone health in pregnant dialysis patients are lacking. CASE PRESENTATION We present the case of a young woman with end-stage kidney disease (ESKD) due to lupus nephritis, who developed multiple brown tumors while on hemodialysis during her second pregnancy. During her first pregnancy sHPT was well controlled and no skeletal complications occurred. Before the second pregnancy she developed severe sHPT. During pregnancy, dialysis time was increased to 24 h per week, the patient was given oral calcitriol, and the dialysate calcium concentration was set at 1.5 mmol/l. In week 20 the patient complained about bone pain in her left hip. Magnetic resonance imaging revealed a cystic lesion compatible with a brown tumor. The baby was delivered in the 36th week by cesarean section. Further assessment identified multiple brown tumors of her skeleton, including the acetabulum, tibia, ribs, skull, thoracic spine and thumb. She required multiple orthopedic surgeries. Three months after pregnancy, etelcalcetide was started, which brought about a gradual improvement in her sHPT. CONCLUSIONS This case demonstrates that the combination of pregnancy and severe sHPT in dialysis patients can have deleterious consequences for bone health.
Collapse
Affiliation(s)
- Hannelore Sprenger-Mähr
- Department of Internal Medicine III, Academic Teaching Hospital Feldkirch, Carinagasse 47, Feldkirch, Austria
| | - Emanuel Zitt
- Department of Internal Medicine III, Academic Teaching Hospital Feldkirch, Carinagasse 47, Feldkirch, Austria
| | - Andreas Kronbichler
- Department of Internal Medicine IV, Medical University of Innsbruck, Innsbruck, Austria
| | - Manfred Cejna
- Institute for Diagnostic and Interventional Radiology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Karl Lhotta
- Department of Internal Medicine III, Academic Teaching Hospital Feldkirch, Carinagasse 47, Feldkirch, Austria.
| |
Collapse
|
25
|
Canul-Medina G, Fernandez-Mejia C. Morphological, hormonal, and molecular changes in different maternal tissues during lactation and post-lactation. J Physiol Sci 2019; 69:825-835. [PMID: 31564033 PMCID: PMC10717399 DOI: 10.1007/s12576-019-00714-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022]
Abstract
Milk supply and quality during lactation are critical for progeny survival. Maternal tissues and metabolism, influenced by hormonal changes, undergo modification during lactation to sustain breastfeeding. Two organs that suffer essential adjustment are the mammary glands and the bone; however, renal calcium conservation and calcium absorption from the intestine are also modified. Lactation leads to a transient loss of bone minerals to provide adequate amounts of minerals, including calcium for milk production. Physiological, metabolic, and molecular changes in different tissues participate in providing nutrients for milk production. After weaning, the histological, metabolic, and hormonal modifications that take place in lactation are reverted, and bone remineralization is a central function at this time. This study focuses on the hormonal, metabolic, molecular, and tissue modifications that occur in mammary glands, bone, intestine, and kidneys in the mother during lactation and post-weaning periods.
Collapse
Affiliation(s)
- Gustavo Canul-Medina
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México/Instituto Nacional de Pediatría, Av. del Iman #1, 4th Floor, 04530, Mexico City, Mexico
| | - Cristina Fernandez-Mejia
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México/Instituto Nacional de Pediatría, Av. del Iman #1, 4th Floor, 04530, Mexico City, Mexico.
| |
Collapse
|
26
|
Horst EA, Kvidera SK, Abuajamieh M, Mayorga EJ, Al-Qaisi M, Baumgard LH. Short communication: Ketosis, feed restriction, and an endotoxin challenge do not affect circulating serotonin in lactating dairy cows. J Dairy Sci 2019; 102:11736-11743. [PMID: 31606210 DOI: 10.3168/jds.2019-17105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/20/2019] [Indexed: 11/19/2022]
Abstract
Circulating serotonin (5-hydroxytryptamine; 5-HT) appears to be associated with various energetic disorders and hypocalcemia during the transition period. The objective of this study was to evaluate the effects of ketosis, feed restriction (FR), and endotoxin challenge (models in which energetic and calcium metabolism are markedly altered) on circulating 5-HT in lactating Holstein cows. Blood samples were obtained from 3 separate experiments; circulating β-hydroxybutyrate (BHB), nonesterified fatty acids (NEFA), and glucose were measured in all 3 experiments, whereas ionized calcium (iCa2+) was measured only in the endotoxin challenge. In the ketosis study, blood samples from cows clinically diagnosed with ketosis (n = 9) or classified as healthy (n = 9) were obtained from a commercial dairy farm at d -7, 3, and 7 relative to calving. Ketosis was diagnosed using a urine-based test starting at 5 d in milk. There was no effect of health status on circulating 5-HT and no association between 5-HT and BHB, NEFA, or glucose; however, 5-HT concentrations progressively decreased following calving. In the FR experiment, mid-lactation cows were either fed ad libitum (n = 3) or restricted to 20% of their ad libitum intake (n = 5) for 5 d. There were no FR effects on circulating 5-HT, nor was FR correlated with energetic metabolites. In the immune activation model, mid-lactation cows were intravenously challenged with either lipopolysaccharide (LPS; 1.5 µg/kg of BW; n = 6) or sterile saline (control; n = 6). Administering LPS decreased (56%) blood iCa2+ but had no effect on circulating 5-HT, nor was there a correlation between circulating 5-HT and NEFA, BHB, or iCa2+. Circulating 5-HT tended to be positively correlated (r = 0.54) with glucose in Holstein cows administered LPS. In summary, in contrast to expectations, circulating 5-HT was unaffected in models of severely disturbed energetic and Ca2+ homeostasis.
Collapse
Affiliation(s)
- E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | - S K Kvidera
- Department of Animal Science, Iowa State University, Ames 50011
| | - M Abuajamieh
- Department of Animal Science, Iowa State University, Ames 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames 50011
| | - M Al-Qaisi
- Department of Animal Science, Iowa State University, Ames 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
27
|
Stieglitz J, Trumble BC, Finch CE, Li D, Budoff MJ, Kaplan H, Gurven MD. Computed tomography shows high fracture prevalence among physically active forager-horticulturalists with high fertility. eLife 2019; 8:48607. [PMID: 31418688 PMCID: PMC6726459 DOI: 10.7554/elife.48607] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/14/2019] [Indexed: 12/25/2022] Open
Abstract
Modern humans have more fragile skeletons than other hominins, which may result from physical inactivity. Here, we test whether reproductive effort also compromises bone strength, by measuring using computed tomography thoracic vertebral bone mineral density (BMD) and fracture prevalence among physically active Tsimane forager-horticulturalists. Earlier onset of reproduction and shorter interbirth intervals are associated with reduced BMD for women. Tsimane BMD is lower versus Americans, but only for women, contrary to simple predictions relying on inactivity to explain skeletal fragility. Minimal BMD differences exist between Tsimane and American men, suggesting that systemic factors other than fertility (e.g. diet) do not easily explain Tsimane women's lower BMD. Tsimane fracture prevalence is also higher versus Americans. Lower BMD increases Tsimane fracture risk, but only for women, suggesting a role of weak bone in women's fracture etiology. Our results highlight the role of sex-specific mechanisms underlying skeletal fragility that operate long before menopause.
Collapse
Affiliation(s)
- Jonathan Stieglitz
- Université Toulouse 1 Capitole, Toulouse, France.,Institute for Advanced Study in Toulouse, Toulouse, France
| | - Benjamin C Trumble
- Center for Evolution and Medicine, Arizona State University, Tempe, United States.,School of Human Evolution and Social Change, Arizona State University, Tempe, United States
| | | | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, United States
| | - Dong Li
- School of Medicine, Emory University, Atlanta, United States
| | - Matthew J Budoff
- Los Angeles Biomedical Research Institute, Harbor-University of California at Los Angeles Medical Center, Torrance, United States
| | - Hillard Kaplan
- Economic Science Institute, Chapman University, Orange, United States
| | - Michael D Gurven
- Department of Anthropology, University of California, Santa Barbara, Santa Barbara, United States
| |
Collapse
|
28
|
Lotinun S, Ishihara Y, Nagano K, Kiviranta R, Carpentier VT, Neff L, Parkman V, Ide N, Hu D, Dann P, Brooks D, Bouxsein ML, Wysolmerski J, Gori F, Baron R. Cathepsin K-deficient osteocytes prevent lactation-induced bone loss and parathyroid hormone suppression. J Clin Invest 2019; 129:3058-3071. [PMID: 31112135 PMCID: PMC6668688 DOI: 10.1172/jci122936] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 05/10/2019] [Indexed: 02/02/2023] Open
Abstract
Lactation induces bone loss to provide sufficient calcium in the milk, a process that involves osteoclastic bone resorption but also osteocytes and perilacunar resorption. The exact mechanisms by which osteocytes contribute to bone loss remain elusive. Osteocytes express genes required in osteoclasts for bone resorption, including cathepsin K (Ctsk), and lactation elevates their expression. We show that Ctsk deletion in osteocytes prevented the increase in osteocyte lacunar area seen during lactation, as well as the effects of lactation to increase osteoclast numbers and decrease trabecular bone volume, cortical thickness and mechanical properties. In addition, Ctsk deletion in osteocytes increased bone Parathyroid Hormone related Peptide (PTHrP), prevented the decrease in serum Parathyroid Hormone (PTH) induced by lactation, but amplified the increase in serum 1,25(OH)2D. The net result of these changes is to maintain serum and milk calcium levels in the normal range, ensuring normal offspring skeletal development. Our studies confirm the fundamental role of osteocytic perilacunar remodeling in physiological states of lactation and provides genetic evidence that osteocyte-derived Ctsk contributes not only to osteocyte perilacunar remodeling, but also to the regulation of PTH, PTHrP, 1,25-Dyhydroxyvitamin D (1,25(OH)2D), osteoclastogenesis and bone loss in response to the high calcium demand associated with lactation.
Collapse
Affiliation(s)
- Sutada Lotinun
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Department of Physiology and Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Yoshihito Ishihara
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Kenichi Nagano
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Riku Kiviranta
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Departments of Medical Biochemistry and Genetics and Medicine, University of Turku, Turku, Finland
| | - Vincent T. Carpentier
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Lynn Neff
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Virginia Parkman
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Noriko Ide
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Dorothy Hu
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Pamela Dann
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Daniel Brooks
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Mary L. Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - John Wysolmerski
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Francesca Gori
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Roland Baron
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Harvard Medical School, Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Amundson LA, Rowson AD, Crump PM, Prichard AP, Cheng AA, Wimmler CE, Klister M, Weaver SR, Bascom SS, Nuzback DE, Zanzalari KP, Hernandez LL. Effect of induced hypocalcemia in nonlactating, nonpregnant Holstein cows fed negative DCAD with low, medium, or high concentrations of calcium. J Anim Sci 2019; 96:5010-5023. [PMID: 30321366 DOI: 10.1093/jas/sky371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/28/2018] [Indexed: 01/24/2023] Open
Abstract
The main objective of this study was to determine how feeding different dietary calcium (Ca) concentrations in combination with a negative dietary cation-anion difference (DCAD) would affect the cow's response to induced hypocalcemia. We conducted an experiment with multiparous, nonlactating, nonpregnant Holstein cows fed a negative DCAD (average -18.2 across all diets) for 21 d with low (LC; 0.45% Ca; n = 5), medium (MC; 1.13% Ca; n = 6), or high (HC; 2.02% Ca; n = 6) concentrations of dietary Ca. Urine and blood samples were collected and urine pH measured daily during the 21-d feeding period prior to hypocalcemia challenge. Cows were then subjected to a controlled induction of hypocalcemia to determine how dietary Ca intake affected the response to a hypocalcemia challenge. On days 22, 23, and 24, hypocalcemia was induced with an intravenous infusion of 5% EGTA in 2 different cows from each treatment daily. During infusion, blood samples were collected every 15 min until 60% of prechallenge ionized calcium (iCa) concentrations were achieved. Samples were collected postinfusion at 0, 2.5, 5, 10, 15, 30, and every 30 min thereafter until 90% of prechallenge iCa was reached. Blood pH, hematocrit, and serum total Ca (tCa), sodium (Na), potassium (K), phosphorous (P), magnesium (Mg), and serotonin did not differ (P > 0.05) among treatments during the feeding period. Blood iCa (P = 0.04) and glucose (P = 0.03) were significantly elevated in HC compared with LC and MC cows during the feeding period. Urine pH was less than 6.0 in all cows, but was lowest in LC (P = 0.02) compared with MC and HC cows during the feeding period. Urine Ca, P, Mg, and deoxypyridinoline did not differ among treatments (P > 0.05). Cows fed HC maintained higher concentrations of iCa (P = 0.03) during the challenge period than MC (P = 0.04), and LC (P = 0.004), and required a longer time to reach 60% of whole blood iCa, and required more EGTA to reach 60% iCa than MC or LC cows (P = 0.01). Serum tCa decreased in all cows during infusion (P < 0.0001) but did not differ among treatments. Serotonin concentrations were elevated in MC cows compared with HC and LC cows during EGTA infusion (P = 0.05), suggesting an interdependent relationship between iCa and serotonin. Cows fed HC had a slower rate of decrease in iCa, but not tCa, when induced with hypocalcemia, indicating potential metabolic benefits of feeding higher dietary Ca in combination with a negative DCAD.
Collapse
Affiliation(s)
- Laura A Amundson
- Department of Dairy Science, University of Wisconsin-Madison, Madison.,Department of Animal Science, University of Wisconsin-Madison, Madison
| | | | - Peter M Crump
- Department of Dairy Science, University of Wisconsin-Madison, Madison
| | - Austin P Prichard
- Department of Dairy Science, University of Wisconsin-Madison, Madison
| | - Adrienne A Cheng
- Department of Dairy Science, University of Wisconsin-Madison, Madison
| | - Collin E Wimmler
- Department of Dairy Science, University of Wisconsin-Madison, Madison
| | - Marisa Klister
- Department of Dairy Science, University of Wisconsin-Madison, Madison
| | - Samantha R Weaver
- Department of Dairy Science, University of Wisconsin-Madison, Madison
| | | | | | | | - Laura L Hernandez
- Department of Dairy Science, University of Wisconsin-Madison, Madison
| |
Collapse
|
30
|
Weaver SR, Fricke HP, Xie C, Aiello RJ, Charles JF, Hernandez LL. Peripartum dietary supplementation of a small-molecule inhibitor of tryptophan hydroxylase 1 compromises infant, but not maternal, bone. Am J Physiol Endocrinol Metab 2018; 315:E1133-E1142. [PMID: 30351987 PMCID: PMC6336963 DOI: 10.1152/ajpendo.00198.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/28/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022]
Abstract
Long-term effects of breastfeeding on maternal bone are not fully understood. Excessive maternal bone loss stimulated by serotonin signaling during lactation may increase bone fragility later in life. We hypothesized that inhibiting nonneuronal serotonin activity by feeding a small-molecule inhibitor of the rate-limiting enzyme in serotonin synthesis [tryptophan hydroxylase 1 (TPH1)] would preserve maternal bone postweaning without affecting neonatal bone. Chow supplemented with the small-molecule TPH1 inhibitor LP778902 (~100 mg/kg) or control chow was fed to C57BL/6 dams throughout pregnancy and lactation, and blood was collected on days 1 and 21 of lactation. Dams returned to a common diet postweaning and were aged to 3 or 9 mo postweaning. Pups were euthanized at weaning. The effect of TPH1 inhibition on dam and pup femoral bone was determined by micro-computed tomography. Peripartum dietary supplementation with LP778902 decreased maternal serum serotonin concentrations ( P = 0.0007) and reduced bone turnover, indicated by serum NH2-terminal propeptide of type I collagen ( P = 0.01) and COOH-terminal collagen cross-links ( P = 0.02) concentrations, on day 21 of lactation. Repressed bone turnover from TPH1 inhibition was not associated with structural changes in maternal femur at 3 or 9 mo postweaning. By contrast, neonates exposed to peripartum LP778902 demonstrated differences in trabecular and cortical femoral bone compared with pups from control dams, with fewer ( P = 0.02) and thinner ( P = 0.001) trabeculae as well as increased trabecular spacing ( P = 0.04). Additionally, cortical porosity was increased ( P = 0.007) and cortical tissue mineral density was decreased ( P = 0.005) in pups of LP778902-treated dams. Small-molecule TPH1 inhibitors should be carefully considered in pregnant and lactating women, given potential risks to neonatal bone development.
Collapse
Affiliation(s)
- Samantha R Weaver
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison , Madison, Wisconsin
| | - Hannah P Fricke
- Department of Dairy Science, University of Wisconsin-Madison , Madison, Wisconsin
| | - Cynthia Xie
- Departments of Orthopedics and Medicine, Brigham and Women's Hospital , Boston, Massachusetts
| | | | - Julia F Charles
- Departments of Orthopedics and Medicine, Brigham and Women's Hospital , Boston, Massachusetts
| | - Laura L Hernandez
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison , Madison, Wisconsin
- Department of Dairy Science, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
31
|
Weaver SR, Fricke HP, Xie C, Lipinski RJ, Vezina CM, Charles JF, Hernandez LL. Peripartum Fluoxetine Reduces Maternal Trabecular Bone After Weaning and Elevates Mammary Gland Serotonin and PTHrP. Endocrinology 2018; 159:2850-2862. [PMID: 29893816 PMCID: PMC6456925 DOI: 10.1210/en.2018-00279] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/04/2018] [Indexed: 12/28/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) have been linked to osteopenia and fracture risk; however, their long-term impact on bone health is not well understood. SSRIs are widely prescribed to pregnant and breastfeeding women who might be at particular risk of bone pathology because lactation is associated with considerable maternal bone loss. We used microCT and molecular approaches to test whether the SSRI fluoxetine, administered to C57BL/6 mice from conception through the end of lactation, causes persistent maternal bone loss. We found that peripartum fluoxetine increases serum calcium and reduces circulating markers of bone formation during lactation but does not affect osteoclastic resorption. Peripartum fluoxetine exposure also enhances mammary gland endocrine function during lactation by increasing synthesis of serotonin and PTHrP, a hormone that liberates calcium for milk synthesis and reduces bone mineral volume. Peripartum fluoxetine exposure reduces the trabecular bone volume fraction at 3 months after weaning. These findings raise new questions about the long-term consequences of peripartum SSRI use on maternal health.
Collapse
Affiliation(s)
- Samantha R Weaver
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin
| | - Hannah P Fricke
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin
| | - Cynthia Xie
- Department of Orthopedics, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Robert J Lipinski
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Chad M Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Julia F Charles
- Department of Orthopedics, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Laura L Hernandez
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
32
|
Hernandez L. ADSA Foundation Scholar Award: A role for serotonin in lactation physiology—Where do we go from here? J Dairy Sci 2018; 101:5671-5678. [DOI: 10.3168/jds.2018-14562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/21/2018] [Indexed: 12/13/2022]
|
33
|
Clinical characteristics and bisphosphonates treatment of rare pregnancy- and lactation-associated osteoporosis. Clin Rheumatol 2018; 37:3141-3150. [PMID: 29946989 DOI: 10.1007/s10067-018-4185-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022]
Abstract
Pregnancy- and lactation-associated osteoporosis (PLO) is a rare disorder with poorly known etiology, pathophysiology, and therapy. We aimed to investigate the clinical characteristics of PLO and evaluate the effectiveness and safety of bisphosphonates on it. A total of 12 patients were diagnosed with PLO on the basis of medical history, bone mineral density (BMD), and/or fragility fractures during pregnancy and lactation. We investigated the clinical, biochemical, and radiological characteristics of patients. We assessed the effects of alendronate or zoledronic acid through observing the changes of bone turnover biomarkers and BMD during the treatment. Secondary osteoporosis was excluded by comprehensive differential diagnosis. The mean age of these patients was 31 ± 5 years old. All of these patients presented severe back pain. Multiple vertebral compression fractures (VCFs) were found in 10 patients, and the median (P25th, P75th) number of compressed vertebra was 3 (3, 5). Ten patients had vitamin D insufficiency or deficiency. Serum level of bone resorption marker (β-CTX with mean of 0.68 ± 0.41 ng/ml) was moderately higher than the normal range. BMD at lumbar spine, femoral neck, and total hip were low as 0.894 ± 0.153 g/cm2, 0.728 ± 0.090 g/cm2, and 0.728 ± 0.080 g/cm2, respectively. Either alendronate or zoledronic acid could effectively relieve bone pain, reduce β-CTX level, and increase BMD. PLO is a rare type of osteoporosis, which was characterized by increased bone resorption and decreased BMD, even VCFs. Bisphosphonate therapy was well tolerated and effective in management of PLO, but needed to be further verified in randomized controlled trial.
Collapse
|
34
|
Weaver SR, Hernandez LL. Could use of Selective Serotonin Reuptake Inhibitors During Lactation Cause Persistent Effects on Maternal Bone? J Mammary Gland Biol Neoplasia 2018; 23:5-25. [PMID: 29603039 DOI: 10.1007/s10911-018-9390-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/13/2018] [Indexed: 02/07/2023] Open
Abstract
The lactating mammary gland elegantly coordinates maternal homeostasis to provide calcium for milk. During lactation, the monoamine serotonin regulates the synthesis and release of various mammary gland-derived factors, such as parathyroid hormone-related protein (PTHrP), to stimulate bone resorption. Recent evidence suggests that bone mineral lost during prolonged lactation is not fully recovered following weaning, possibly putting women at increased risk of fracture or osteoporosis. Selective Serotonin Reuptake Inhibitor (SSRI) antidepressants have also been associated with reduced bone mineral density and increased fracture risk. Therefore, SSRI exposure while breastfeeding may exacerbate lactational bone loss, compromising long-term bone health. Through an examination of serotonin and calcium homeostasis during lactation, lactational bone turnover and post-weaning recovery of bone mineral, and the effect of peripartum depression and SSRI on the mammary gland and bone, this review will discuss the hypothesis that peripartum SSRI exposure causes persistent reductions in bone mineral density through mammary-derived PTHrP signaling with bone.
Collapse
Affiliation(s)
- Samantha R Weaver
- Endocrine and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Laura L Hernandez
- Department of Dairy Science, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
35
|
Hernandez LL. TRIENNIAL LACTATION SYMPOSIUM/BOLFA: Serotonin and the regulation of calcium transport in dairy cows. J Anim Sci 2018; 95:5711-5719. [PMID: 29293773 DOI: 10.2527/jas2017.1673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mammary gland regulates maternal metabolism during lactation. Numerous factors within the tissue send signals to shift nutrients to the mammary gland for milk synthesis. Serotonin is a monoamine that has been well documented to regulate several aspects of lactation among species. Maintenance of maternal calcium homeostasis during lactation is a highly evolved process that is elegantly regulated by the interaction of the mammary gland with the bone, gut, and kidney tissues. It is well documented that dietary calcium is insufficient to maintain maternal calcium concentrations during lactation, and mammals must rely on bone resorption to maintain normocalcemia. Our recent work focused on the ability of the mammary gland to function as an accessory parathyroid gland during lactation. It was demonstrated that serotonin acts to stimulate parathyroid hormone-related protein (PTHrP) in the mammary gland during lactation. The main role of mammary-derived PTHrP during mammalian lactation is to stimulate bone resorption to maintain maternal calcium homeostasis during lactation. In addition to regulating PTHrP, it was shown that serotonin appears to directly affect calcium transporters and pumps in the mammary gland. Our current working hypothesis regarding the control of calcium during lactation is as follows: serotonin directly stimulates PTHrP production in the mammary gland through interaction with the sonic hedgehog signaling pathway. Simultaneously, serotonin directly increases calcium movement into the mammary gland and, subsequently, milk. These 2 direct actions of serotonin combine to induce a transient maternal hypocalcemia required to further stimulate PTHrP production and calcium mobilization from bone. Through these 2 routes, serotonin is able to improve maternal calcium concentrations. Furthermore, we have shown that Holstein and Jersey cows appear to regulate calcium in different manners and also respond differently to serotonergic stimulation of the calcium pathway. Our data in rodents and cows indicate that serotonin and calcium are working through a unique feedback loop with PTHrP during lactation to regulate milk calcium and maternal calcium homeostasis.
Collapse
|
36
|
Abstract
Vitamin D and calcium in the human milk is essential for the growth and the prevention of rickets in infants. In this review, we will discuss the physiology and the functions of vitamin D and calcium and the mechanisms of vitamin D and calcium transfer into the human breast milk. This review describes the recommended intake of vitamin D and calcium for infants and lactating mothers and the factors influencing the content of vitamin D and calcium in human milk. Furthermore, the measurement of vitamin D compounds and calcium in human breast milk is described in this review.
Collapse
Affiliation(s)
- Yoon Ju Bae
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Paul-List Strasse 13-15, D-04103, Leipzig, Germany.
| | - Juergen Kratzsch
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Paul-List Strasse 13-15, D-04103, Leipzig, Germany
| |
Collapse
|
37
|
Özçelik R, Bruckmaier RM, Hernández-Castellano LE. Prepartum daylight exposure increases serum calcium concentrations in dairy cows at the onset of lactation
1. J Anim Sci 2017; 95:4440-4447. [DOI: 10.2527/jas2017.1834] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Bado I, Gugala Z, Fuqua SAW, Zhang XHF. Estrogen receptors in breast and bone: from virtue of remodeling to vileness of metastasis. Oncogene 2017; 36:4527-4537. [PMID: 28368409 PMCID: PMC5552443 DOI: 10.1038/onc.2017.94] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 12/11/2022]
Abstract
Bone metastasis is a prominent cause of morbidity and mortality in cancer. High rates of bone colonization in breast cancer, especially in the subtype expressing estrogen receptors (ERs), suggest tissue-specific proclivities for metastatic tumor formation. The mechanisms behind this subtype-specific organ-tropism remains largely elusive. Interestingly, as the major driver of ER+ breast cancer, ERs also have important roles in bone development and homeostasis. Thus, any agents targeting ER will also inevitably affect the microenvironment, which involves the osteoblasts and osteoclasts. Yet, how such microenvironmental effects are integrated with direct therapeutic responses of cancer cells remain poorly understood. Recent findings on ER mutations, especially their enrichment in bone metastasis, raised even more provocative questions on the role of ER in cancer-bone interaction. In this review, we evaluate the importance of ERs in bone metastasis and discuss new avenues of investigation for bone metastasis treatment based on current knowledge.
Collapse
Affiliation(s)
- Igor Bado
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| | - Zbigniew Gugala
- Department of Orthopaedic Surgery and Rehabilitation, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555
| | - Suzanne A. W. Fuqua
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| | - Xiang H.-F. Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- McNair Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| |
Collapse
|
39
|
Hernández-Castellano LE, Hernandez LL, Sauerwein H, Bruckmaier RM. Endocrine and metabolic changes in transition dairy cows are affected by prepartum infusions of a serotonin precursor. J Dairy Sci 2017; 100:5050-5057. [DOI: 10.3168/jds.2016-12441] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/28/2017] [Indexed: 01/07/2023]
|
40
|
Anderson ST, Kidd LJ, Benvenutti MA, Fletcher MT, Dixon RM. New candidate markers of phosphorus status in beef breeder cows. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an17363] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Determining the phosphorus (P) status of cattle grazing P-deficient rangelands in northern Australia is important for improving animal production in these areas. Plasma inorganic P concentration is currently the best diagnostic marker of dietary P deficiency in growing cattle but is not suitable for assessing the P status of breeder cows, which often mobilise substantial bone and soft tissue reserves in late pregnancy and lactation. Markers of bone turnover offer potential as markers of P status in cattle, as they reflect bone mobilisation or bone formation. Recent experiments investigating the physiology of beef breeder cows during diet P deficiency have indicated that the ratio of plasma total calcium concentration to plasma inorganic P concentration might be suitable as a simple index of P deficiency. However, a more specific measure of increased bone mobilisation in P-deficient breeders is plasma concentration of C-terminal telopeptide of Type 1 collagen. Also, plasma concentration of bone alkaline phosphatase is a marker of defective bone mineralisation in dietary P deficiency. These candidate markers warrant further investigation to determine their predictive value for P deficiency in cattle.
Collapse
|
41
|
Hernández-Castellano LE, Hernandez LL, Weaver S, Bruckmaier RM. Increased serum serotonin improves parturient calcium homeostasis in dairy cows. J Dairy Sci 2016; 100:1580-1587. [PMID: 27988124 DOI: 10.3168/jds.2016-11638] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 10/24/2016] [Indexed: 12/20/2022]
Abstract
Hypocalcemia in dairy cows is caused by the sudden increase in calcium demand by the mammary gland for milk production at the onset of lactation. Serotonin (5-HT) is a key factor for calcium homeostasis, modulating calcium concentration in blood. Therefore, it is hypothesized that administration of 5-hydroxy-l-tryptophan (5-HTP), a 5-HT precursor, can increase 5-HT concentrations in blood and, in turn, induce an increase in blood calcium concentration. In this study, 20 Holstein dairy cows were randomly assigned to 2 experimental groups. Both groups received a daily i.v. infusion of 1 L of either 0.9% NaCl (C group; n = 10) or 0.9% NaCl containing 1 mg of 5-HTP/kg of BW (5-HTP group, n = 10). Infusions started d 10 before the estimated parturition and ceased the day of parturition, resulting in at least 4 d of infusion (8.37 ± 0.74 d of infusion). Until parturition, blood samples were collected every morning before the infusions, after parturition samples were taken daily until d 7, and a final sample was collected on d 30. Milk yield was recorded during this period. No differences between groups were observed for blood glucose, magnesium, and β-hydroxybutyrate. Cows receiving the 5-HTP infusion showed an increase in fatty acid concentrations from d -3 to -1 before parturition. Serum 5-HT concentrations were increased at d -4 related to parturition until d 5 postpartum in the 5-HTP group compared with the C group. In addition, cows from the 5-HTP group had increased 5-HT concentrations in colostrum, but not in mature milk, on d 7 postpartum. Serum calcium concentrations decreased in both groups around parturition; however, calcium remained higher in the 5-HTP group than in controls, with a significant difference between groups on d 1 (1.62 ± 0.08 vs. 1.93 ± 0.09 mmol/L in control and 5-HTP groups, respectively) and d 2 (1.83 ± 0.06 vs. 2.07 ± 0.07 mmol/L in control and 5-HTP groups, respectively). Additionally, colostrum yield (first milking) was lower in the 5-HTP group compared with the C group, but without consequences on colostrum IgG concentrations. Milk yield did not differ between groups during the rest of the experiment. The study data were consistent with the concept that infusion of 5-HTP to dairy cows increases blood 5-HT concentrations, which in turn is a significant regulatory component in the chain of effectors that affect calcium status around parturition, hence the occurrence of clinical or subclinical hypocalcemia.
Collapse
Affiliation(s)
| | | | - Samantha Weaver
- Department of Dairy Science, University of Wisconsin, Madison 53706
| | - Rupert M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland.
| |
Collapse
|
42
|
Casteràs A, Darder L, Zafon C, Hueto JA, Alberola M, Caubet E, Mesa J. Brown tumor of the jaw after pregnancy and lactation in a MEN1 patient. Endocrinol Diabetes Metab Case Rep 2016; 2016:EDM160111. [PMID: 27933172 PMCID: PMC5118968 DOI: 10.1530/edm-16-0111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 10/27/2016] [Indexed: 01/31/2023] Open
Abstract
Skeletal manifestations of primary hyperparathyroidism (pHPT) include brown tumors (BT), which are osteoclastic focal lesions often localized in the jaws. Brown tumors are a rare manifestation of pHTP in Europe and USA; however, they are frequent in developing countries, probably related to vitamin D deficiency and longer duration and severity of disease. In the majority of cases, the removal of the parathyroid adenoma is enough for the bone to remineralize, but other cases require surgery. Hyperparathyroidism in MEN1 develops early, and is multiglandular and the timing of surgery remains questionable. To our knowledge, there are no reports of BT in MEN 1 patients. We present a 29-year-old woman with MEN 1 who developed a brown tumor of the jaw 24 months after getting pregnant, while breastfeeding. Serum corrected calcium remained under 2.7 during gestation, and at that point reached a maximum of 2.82 mmol/L. Concomitant PTH was 196 pg/mL, vitamin D 13.7 ng/mL and alkaline phosphatase 150 IU/L. Bone mineral density showed osteopenia on spine and femoral neck (both T-scores = −1.6). Total parathyroidectomy was performed within two weeks, with a failed glandular graft autotransplantation, leading to permanent hypoparathyroidism. Two months after removal of parathyroid glands, the jaw tumor did not shrink; thus, finally it was successfully excised. We hypothesize that higher vitamin D and mineral requirements during maternity may have triggered an accelerated bone resorption followed by appearance of the jaw BT. We suggest to treat pHPT before planning a pregnancy in MEN1 women or otherwise supplement with vitamin D, although this approach may precipitate severe hypercalcemia.
Collapse
Affiliation(s)
| | | | | | | | - Margarita Alberola
- Department of Endocrine Surgery , University Hospital Vall d'Hebron, Barcelona , Spain
| | | | | |
Collapse
|
43
|
Weaver SR, Laporta J, Moore SAE, Hernandez LL. Serotonin and calcium homeostasis during the transition period. Domest Anim Endocrinol 2016; 56 Suppl:S147-54. [PMID: 27345312 DOI: 10.1016/j.domaniend.2015.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 11/15/2022]
Abstract
The transition from pregnancy to lactation puts significant, sudden demands on maternal energy and calcium reserves. Although most mammals are able to effectively manage these metabolic adaptations, the lactating dairy cow is acutely susceptible to transition-related disorders because of the high amounts of milk being produced. Hypocalcemia is a common metabolic disorder that occurs at the onset of lactation. Hypocalcemia is also known to result in poor animal welfare conditions. In addition, cows that develop hypocalcemia are more susceptible to a host of other negative health outcomes. Different feeding tactics, including manipulating the dietary cation-anion difference and administering low-calcium diets, are commonly used preventative strategies. Despite these interventions, the incidence of hypocalcemia in the subclinical form is still as high as 25% to 30% in the United States dairy cow population, with a 5% to 10% incidence of clinical hypocalcemia. In addition, although there are various effective treatments in place, they are administered only after the cow has become noticeably ill, at which point there is already significant metabolic damage. This emphasizes the need for developing alternative prevention strategies, with the monoamine serotonin implicated as a potential therapeutic target. Our research in rodents has shown that serotonin is critical for the induction of mammary parathyroid hormone-related protein, which is necessary for the mobilization of bone tissue and subsequent restoration of maternal calcium stores during lactation. We have shown that circulating serotonin concentrations are positively correlated with serum total calcium on the first day of lactation in dairy cattle. Administration of serotonin's immediate precursor through feeding, injection, or infusion to various mammalian species has been shown to increase circulating serotonin concentrations, with positive effects on other components of maternal metabolism. Most recently, preliminary data suggest that manipulation of the serotonergic axis precalving may positively affect postcalving calcium dynamics. Combined, our research suggests a potential mechanism by which serotonin acts on the mammary gland to maintain circulating maternal calcium concentrations. Further research into serotonin's potential as a therapeutic target could contribute significantly as a preventive strategy against hypocalcemia in early lactation dairy cows.
Collapse
Affiliation(s)
- S R Weaver
- Department of Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - J Laporta
- Department of Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - S A E Moore
- Department of Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - L L Hernandez
- Department of Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
44
|
Weaver SR, Prichard AP, Endres EL, Newhouse SA, Peters TL, Crump PM, Akins MS, Crenshaw TD, Bruckmaier RM, Hernandez LL. Elevation of circulating serotonin improves calcium dynamics in the peripartum dairy cow. J Endocrinol 2016; 230:105-23. [PMID: 27390301 DOI: 10.1530/joe-16-0038] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 05/23/2016] [Indexed: 02/04/2023]
Abstract
Hypocalcemia is a metabolic disorder that affects dairy cows during the transition from pregnancy to lactation. Twelve multiparous Holstein cows and twelve multiparous Jersey cows were intravenously infused daily for approximately 7 days prepartum with either saline or 1.0mg/kg bodyweight of the immediate precursor to serotonin synthesis, 5hydroxy-l-tryptophan (5-HTP). On infusion days, blood was collected before, after, and at 2, 4, and 8h postinfusion. Blood and urine were collected daily before the infusion period, for 14 days postpartum and on day 30 postpartum. Milk was collected daily during the postpartum period. Feed intake and milk yield were unaffected by 5-HTP infusion postpartum. Cows infused with 5-HTP had elevated circulating serotonin concentrations prepartum. Infusion with 5-HTP induced a transient hypocalcemia in Jersey cows prepartum, but not in any other treatment. Holstein cows infused with saline had the highest milk calcium on the day of and day after parturition. Postpartum, circulating total calcium tended to be elevated, and urine deoxypyridinoline (DPD) concentrations were elevated in Holstein cows infused with 5-HTP. Overall, Jerseys had higher urine DPD concentrations postpartum when compared with Holsteins. Taken together, these data warrant further investigation of the potential therapeutic benefit of 5-HTP administration prepartum for prevention of hypocalcemia. Further research should focus on delineation of mechanisms associated with 5-HTP infusion that control calcium homeostasis during the peripartum period in Holstein and Jersey cows.
Collapse
Affiliation(s)
- Samantha R Weaver
- Department of Dairy ScienceUniversity of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Austin P Prichard
- Department of Dairy ScienceUniversity of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Elizabeth L Endres
- Department of Dairy ScienceUniversity of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Stefanie A Newhouse
- Department of Dairy ScienceUniversity of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tonia L Peters
- Department of Dairy ScienceUniversity of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Peter M Crump
- Department of Animal SciencesUniversity of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew S Akins
- Department of Dairy ScienceUniversity of Wisconsin-Madison, Marshfield, Wisconsin, USA
| | - Thomas D Crenshaw
- Department of Animal SciencesUniversity of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rupert M Bruckmaier
- Department of Veterinary PhysiologyVetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Laura L Hernandez
- Department of Dairy ScienceUniversity of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
45
|
Wendelboe MH, Thomsen JS, Henriksen K, Vegger JB, Brüel A. Zoledronate prevents lactation induced bone loss and results in additional post-lactation bone mass in mice. Bone 2016; 87:27-36. [PMID: 27021151 DOI: 10.1016/j.bone.2016.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 11/15/2022]
Abstract
In rodents, lactation is associated with a considerable and very rapid bone loss, which almost completely recovers after weaning. The aim of the present study was to investigate whether the bisphosphonate Zoledronate (Zln) can inhibit lactation induced bone loss, and if Zln interferes with recovery of bone mass after lactation has ceased. Seventy-six 10-weeks-old NMRI mice were divided into the following groups: Baseline, Pregnant, Lactation, Lactation+Zln, Recovery, Recovery+Zln, and Virgin Control (age-matched). The lactation period was 12days, then the pups were removed, and thereafter recovery took place for 28days. Zln, 100μg/kg, was given s.c. on the day of delivery, and again 4 and 8days later. Mechanical testing, μCT, and dynamic histomorphometry were performed. At L4, lactation resulted in a substantial loss of bone strength (-55% vs. Pregnant, p<0.01), BV/TV (-40% vs. Pregnant, p<0.01), and trabecular thickness (Tb.Th) (-29% vs. Pregnant, p<0.001). Treatment with Zln completely prevented lactation induced loss of bone strength, BV/TV, and Tb.Th at L4. Full recovery of micro-architectural and mechanical properties was found 28days after weaning in vehicle-treated mice. Interestingly, the recovery group treated with Zln during the lactation period had higher BV/TV (+45%, p<0.01) and Tb.Th (+16%, p<0.05) compared with virgin controls. Similar results were found at the proximal tibia and femur. This indicates that Zln did not interfere with the bone formation taking place after weaning. On this background, we conclude that post-lactation bone formation is not dependent on a preceding lactation induced bone loss.
Collapse
Affiliation(s)
- Mette Høegh Wendelboe
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, DK-8000 Aarhus C, Denmark.
| | - Jesper Skovhus Thomsen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, DK-8000 Aarhus C, Denmark.
| | - Kim Henriksen
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730 Herlev, Denmark.
| | - Jens Bay Vegger
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, DK-8000 Aarhus C, Denmark.
| | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
46
|
|
47
|
Kovacs CS, Ralston SH. Presentation and management of osteoporosis presenting in association with pregnancy or lactation. Osteoporos Int 2015; 26:2223-41. [PMID: 25939309 DOI: 10.1007/s00198-015-3149-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 04/22/2015] [Indexed: 01/15/2023]
Abstract
In this review, we summarize our current understanding of the pathophysiology of fragility fractures that occur for the first time during pregnancy and lactation, and provide guidance on appropriate investigations and treatment strategies. Most affected women will have had no prior bone density reading, and so the extent of bone loss that may have occurred during pregnancy or lactation is uncertain. During pregnancy, intestinal calcium absorption doubles in order to meet the fetal demand for calcium, but if maternal intake of calcium is insufficient to meet the combined needs of the mother and baby, the maternal skeleton will undergo resorption during the third trimester. During lactation, several hormonal changes, independent of maternal calcium intake, program a 5-10 % loss of trabecular mineral content in order to provide calcium to milk. After weaning the baby, the maternal skeleton is normally restored to its prior mineral content and strength. This physiological bone resorption during reproduction does not normally cause fractures; instead, women who do fracture are more likely to have additional secondary causes of bone loss and fragility. Transient osteoporosis of the hip may affect one or both femoral heads during pregnancy but it involves localized edema and not skeletal resorption. Case reports have described the use of calcitonin, bisphosphonates, strontium ranelate, teriparatide, vertebroplasty, and kyphoplasty to treat post-partum vertebral fractures. However, the need for such treatments is uncertain given that a progressive increase in bone mass subsequently occurs in most women who present with a fracture during pregnancy or lactation.
Collapse
Affiliation(s)
- C S Kovacs
- Faculty of Medicine-Endocrinology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada, A1B 3V6,
| | | |
Collapse
|
48
|
Ardeshirpour L, Dumitru C, Dann P, Sterpka J, VanHouten J, Kim W, Kostenuik P, Wysolmerski J. OPG Treatment Prevents Bone Loss During Lactation But Does Not Affect Milk Production or Maternal Calcium Metabolism. Endocrinology 2015; 156:2762-73. [PMID: 25961842 PMCID: PMC4511126 DOI: 10.1210/en.2015-1232] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lactation is associated with increased bone turnover and rapid bone loss, which liberates skeletal calcium used for milk production. Previous studies suggested that an increase in the skeletal expression of receptor activator of nuclear factor kappa-light-chain-enhancer of activated B cells ligand (RANKL) coupled with a decrease in osteoprotegerin (OPG) levels likely triggered bone loss during lactation. In this study, we treated lactating mice with recombinant OPG to determine whether bone loss during lactation was dependent on RANKL signaling and whether resorption of the maternal skeleton was required to support milk production. OPG treatment lowered bone resorption rates and completely prevented bone loss during lactation but, surprisingly, did not decrease osteoclast numbers. In contrast, OPG was quite effective at lowering osteoblast numbers and inhibiting bone formation in lactating mice. Furthermore, treatment with OPG during lactation prevented the usual anabolic response associated with reversal of lactational bone loss after weaning. Preventing bone loss had no appreciable effect on milk production, milk calcium levels, or maternal calcium homeostasis when mice were on a standard diet. However, when dietary calcium was restricted, treatment with OPG caused maternal hypocalcemia, maternal death, and decreased milk production. These studies demonstrate that RANKL signaling is a requirement for bone loss during lactation, and suggest that osteoclast activity may be required to increase osteoblast numbers during lactation in preparation for the recovery of bone mass after weaning. These data also demonstrate that maternal bone loss is not absolutely required to supply calcium for milk production unless dietary calcium intake is inadequate.
Collapse
Affiliation(s)
- Laleh Ardeshirpour
- Section of Endocrinology (L.A.), Department of Pediatrics, and Section of Endocrinology and Metabolism (C.D., P.D., J.S., J.V., W.K., J.W.), Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520; and Department of Metabolic Disorders (P.K.), Amgen, Inc, Thousand Oaks, California 91320
| | - Cristina Dumitru
- Section of Endocrinology (L.A.), Department of Pediatrics, and Section of Endocrinology and Metabolism (C.D., P.D., J.S., J.V., W.K., J.W.), Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520; and Department of Metabolic Disorders (P.K.), Amgen, Inc, Thousand Oaks, California 91320
| | - Pamela Dann
- Section of Endocrinology (L.A.), Department of Pediatrics, and Section of Endocrinology and Metabolism (C.D., P.D., J.S., J.V., W.K., J.W.), Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520; and Department of Metabolic Disorders (P.K.), Amgen, Inc, Thousand Oaks, California 91320
| | - John Sterpka
- Section of Endocrinology (L.A.), Department of Pediatrics, and Section of Endocrinology and Metabolism (C.D., P.D., J.S., J.V., W.K., J.W.), Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520; and Department of Metabolic Disorders (P.K.), Amgen, Inc, Thousand Oaks, California 91320
| | - Joshua VanHouten
- Section of Endocrinology (L.A.), Department of Pediatrics, and Section of Endocrinology and Metabolism (C.D., P.D., J.S., J.V., W.K., J.W.), Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520; and Department of Metabolic Disorders (P.K.), Amgen, Inc, Thousand Oaks, California 91320
| | - Wonnam Kim
- Section of Endocrinology (L.A.), Department of Pediatrics, and Section of Endocrinology and Metabolism (C.D., P.D., J.S., J.V., W.K., J.W.), Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520; and Department of Metabolic Disorders (P.K.), Amgen, Inc, Thousand Oaks, California 91320
| | - Paul Kostenuik
- Section of Endocrinology (L.A.), Department of Pediatrics, and Section of Endocrinology and Metabolism (C.D., P.D., J.S., J.V., W.K., J.W.), Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520; and Department of Metabolic Disorders (P.K.), Amgen, Inc, Thousand Oaks, California 91320
| | - John Wysolmerski
- Section of Endocrinology (L.A.), Department of Pediatrics, and Section of Endocrinology and Metabolism (C.D., P.D., J.S., J.V., W.K., J.W.), Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520; and Department of Metabolic Disorders (P.K.), Amgen, Inc, Thousand Oaks, California 91320
| |
Collapse
|
49
|
Laporta J, Moore SAE, Weaver SR, Cronick CM, Olsen M, Prichard AP, Schnell BP, Crenshaw TD, Peñagaricano F, Bruckmaier RM, Hernandez LL. Increasing serotonin concentrations alter calcium and energy metabolism in dairy cows. J Endocrinol 2015; 226:43-55. [PMID: 26099356 DOI: 10.1530/joe-14-0693] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A 4×4 Latin square design in which varied doses (0, 0.5, 1.0, and 1.5 mg/kg) of 5-hydroxy-l-tryptophan (5-HTP, a serotonin precursor) were intravenously infused into late-lactation, non-pregnant Holstein dairy cows was used to determine the effects of serotonin on calcium and energy metabolism. Infusion periods lasted 4 days, with a 5-day washout between periods. Cows were infused at a constant rate for 1 h each day. Blood was collected pre- and 5, 10, 30, 60, 90, and 120 min post-infusion, urine was collected pre- and post-infusion, and milk was collected daily. All of the 5-HTP doses increased systemic serotonin as compared to the 0 mg/kg dose, and the 1.0 and 1.5 mg/kg doses increased circulating glucose and non-esterified fatty acids (NEFA) and decreased beta-hydroxybutyrate (βHBA) concentrations. Treatment of cows with either 1.0 or 1.5 mg/kg 5-HTP doses decreased urine calcium elimination, and the 1.5 mg/kg dose increased milk calcium concentrations. No differences were detected in the heart rates, respiration rates, or body temperatures of the cows; however, manure scores and defecation frequency were affected. Indeed, cows that received 5-HTP defecated more, and the consistency of their manure was softer. Treatment of late-lactation dairy cows with 5-HTP improved energy metabolism, decreased loss of calcium into urine, and increased calcium secretion into milk. Further research should target the effects of increasing serotonin during the transition period to determine any benefits for post-parturient calcium and glucose metabolism.
Collapse
Affiliation(s)
- Jimena Laporta
- Departments of Dairy ScienceAnimal SciencesUniversity of Wisconsin-Madison, 1675 Observatory Drive, Madison, Wisconsin 53706, USAVeterinary PhysiologyVetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Spencer A E Moore
- Departments of Dairy ScienceAnimal SciencesUniversity of Wisconsin-Madison, 1675 Observatory Drive, Madison, Wisconsin 53706, USAVeterinary PhysiologyVetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Samantha R Weaver
- Departments of Dairy ScienceAnimal SciencesUniversity of Wisconsin-Madison, 1675 Observatory Drive, Madison, Wisconsin 53706, USAVeterinary PhysiologyVetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Callyssa M Cronick
- Departments of Dairy ScienceAnimal SciencesUniversity of Wisconsin-Madison, 1675 Observatory Drive, Madison, Wisconsin 53706, USAVeterinary PhysiologyVetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Megan Olsen
- Departments of Dairy ScienceAnimal SciencesUniversity of Wisconsin-Madison, 1675 Observatory Drive, Madison, Wisconsin 53706, USAVeterinary PhysiologyVetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Austin P Prichard
- Departments of Dairy ScienceAnimal SciencesUniversity of Wisconsin-Madison, 1675 Observatory Drive, Madison, Wisconsin 53706, USAVeterinary PhysiologyVetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Brian P Schnell
- Departments of Dairy ScienceAnimal SciencesUniversity of Wisconsin-Madison, 1675 Observatory Drive, Madison, Wisconsin 53706, USAVeterinary PhysiologyVetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Thomas D Crenshaw
- Departments of Dairy ScienceAnimal SciencesUniversity of Wisconsin-Madison, 1675 Observatory Drive, Madison, Wisconsin 53706, USAVeterinary PhysiologyVetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Francisco Peñagaricano
- Departments of Dairy ScienceAnimal SciencesUniversity of Wisconsin-Madison, 1675 Observatory Drive, Madison, Wisconsin 53706, USAVeterinary PhysiologyVetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Rupert M Bruckmaier
- Departments of Dairy ScienceAnimal SciencesUniversity of Wisconsin-Madison, 1675 Observatory Drive, Madison, Wisconsin 53706, USAVeterinary PhysiologyVetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Laura L Hernandez
- Departments of Dairy ScienceAnimal SciencesUniversity of Wisconsin-Madison, 1675 Observatory Drive, Madison, Wisconsin 53706, USAVeterinary PhysiologyVetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| |
Collapse
|
50
|
Moore SAE, Laporta J, Crenshaw TD, Hernandez LL. Patterns of circulating serotonin and related metabolites in multiparous dairy cows in the peripartum period. J Dairy Sci 2015; 98:3754-65. [PMID: 25828664 DOI: 10.3168/jds.2014-8841] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dairy cows are challenged to maintain Ca and glucose homeostasis during the transition period. Serotonin (5-HT) is a monoamine that modulates Ca and glucose homeostasis in rodents. Serotonin is positively correlated with Ca and glucose status in dairy cows on d 1 of lactation. However, the pattern of circulating concentrations of 5-HT over the course of a 305-d lactation is unknown. In this observational, longitudinal study, we examined the metabolite patterns of 5-HT, Ca, glucose, parathyroid hormone-related protein, and β-hydroxybutyrate on 2 commercial dairy farms in south-central Wisconsin. Cows sampled on farm 1 were multiparous Jersey cows (n=30) that calved within a 23-d period; cows on farm 2 were multiparous Holstein cows (n=35) that calved within a 20-d period. Blood samples were collected daily between d -5 and d 10 relative to parturition and on d 30, 60, 90, 150, and 300 of lactation. Farms 1 and 2 were analyzed individually because of the presence of a farm effect in the initial analysis; a time effect was present on both farms. Concentrations of 5-HT decreased near parturition compared with prepartum by 57.9 and 29.5% on farm 1 and 2, respectively. Transition period 5-HT nadirs were observed on d 1 on farm 1, and on d 1 and 9 on farm 2. Serotonin recovered to prepartum concentrations by d 5 on farm 1. On farm 2, 5-HT recovered to prepartum concentrations by d 4, with a subsequent decrease of 34.6% on d 9 to a level similar to that observed on d 1. Furthermore, 5-HT increased markedly in cows on both farms near peak lactation (d 60, 90, and 150) and decreased on d 300. Compared with prepartum concentrations, Ca decreased by 34.2 and 11.2% on farms 1 and 2, respectively. Circulating total Ca nadir was observed on d 1 on both farms. Circulating 5-HT and circulating Ca were positively correlated during the early lactation period (d 1 to 5 and d 6 to 10) on farm 1 (r=0.31 and r=0.22, respectively) and d 6 to 10 on farm 2 (r=0.16). Circulating 5-HT and glucose were negatively correlated during the early lactation period (d 1 to 5) on farm 1 (r=-0.21) and during mid-lactation (d 30 to 150) on farm 2 (r=-0.26). Milk 5-HT and milk total Ca were positively correlated on farm 2 (r=0.34). These results demonstrate that 5-HT concentrations change dynamically throughout the transition period, with a pattern similar to that of total Ca concentrations. Further research using controlled experiments should be aimed at discerning the association between 5-HT and Ca and between 5-HT and glucose in dairy cows.
Collapse
Affiliation(s)
- S A E Moore
- Department of Dairy Science, University of Wisconsin-Madison, Madison 53706
| | - J Laporta
- Department of Dairy Science, University of Wisconsin-Madison, Madison 53706
| | - T D Crenshaw
- Department of Animal Science, University of Wisconsin-Madison, Madison 53706
| | - L L Hernandez
- Department of Dairy Science, University of Wisconsin-Madison, Madison 53706.
| |
Collapse
|