1
|
Arya AK, Kumari P, Singh P, Bhadada SK. Molecular basis of symptomatic sporadic primary hyperparathyroidism: New frontiers in pathogenesis. Best Pract Res Clin Endocrinol Metab 2025; 39:101985. [PMID: 40057423 DOI: 10.1016/j.beem.2025.101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Primary hyperparathyroidism is a common endocrine disorder characterized by inappropriate elevation of parathyroid hormone and hypercalcemia. While predominantly an asymptomatic disease in Western populations, symptomatic presentations are more prevalent in Eastern countries. The molecular pathogenesis of sporadic PHPT primarily involves genetic and epigenetic alterations leading to abnormal parathyroid cell proliferation and altered calcium sensing mechanism. To date, MEN1 and cyclin D1 are the only established drivers of sporadic PHPT. Somatic MEN1 gene mutations occur in 30-40 % of sporadic parathyroid adenomas (PA), with a recent study on symptomatic cases reporting germline variants.Cyclin D1 overexpression in sporadic PA has been observed in 20-40 % of cases in Western populations and 80 % of cases in Eastern populations, with an inverse association with cyclin-dependent kinase inhibitors CDKN2A and CDKN2B expression. The calcium-sensing receptor expression was significantly lower in symptomatic compared to asymptomatic PHPT, strongly supported by epigenetic deregulation (promoter hypermethylation and histone methylation). Recent studies have highlighted the potential involvement of EZH2, a histone methyltransferase, in parathyroid tumorigenesis. Additionally, parathyroid-specific transcription factors like GCM2, PAX1, and GATA3 are emerging as putative tumor suppressors, especially from the symptomatic PHPT. Next-generation sequencing has identified novel potential drivers such as PIK3CA, MTOR, and NF1 in sporadic PC, alongside CDC73. The molecular landscape of sporadic PHPT appears to differ between Eastern and Western populations. This heterogeneity underscores the need for further large-scale studies, particularly in symptomatic cases from developing nations, to comprehensively elucidate the molecular drivers of parathyroid tumorigenesis.
Collapse
Affiliation(s)
- Ashutosh Kumar Arya
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Poonam Kumari
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Priyanka Singh
- Department of Systems Biology, City of Hope, Monrovia, CA 91016, USA.
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India.
| |
Collapse
|
2
|
Venkat A, Carlino MJ, Lawton BR, Prasad ML, Amodio M, Gibson CE, Zeiss CJ, Youlten SE, Krishnaswamy S, Krause DS. Single-cell analysis reveals transcriptional dynamics in healthy primary parathyroid tissue. Genome Res 2024; 34:837-850. [PMID: 38977309 PMCID: PMC11293540 DOI: 10.1101/gr.278215.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 06/03/2024] [Indexed: 07/10/2024]
Abstract
Studies on human parathyroids are generally limited to hyperfunctioning glands owing to the difficulty in obtaining normal human tissue. We therefore obtained non-human primate (NHP) parathyroids to provide a suitable alternative for sequencing that would bear a close semblance to human organs. Single-cell RNA expression analysis of parathyroids from four healthy adult M. mulatta reveals a continuous trajectory of epithelial cell states. Pseudotime analysis based on transcriptomic signatures suggests a progression from GCM2 hi progenitors to mature parathyroid hormone (PTH)-expressing epithelial cells with increasing core mitochondrial transcript abundance along pseudotime. We sequenced, as a comparator, four histologically characterized hyperfunctioning human parathyroids with varying oxyphil and chief cell abundance and leveraged advanced computational techniques to highlight similarities and differences from non-human primate parathyroid expression dynamics. Predicted cell-cell communication analysis reveals abundant endothelial cell interactions in the parathyroid cell microenvironment in both human and NHP parathyroid glands. We show abundant RARRES2 transcripts in both human adenoma and normal primate parathyroid cells and use coimmunostaining to reveal high levels of RARRES2 protein (also known as chemerin) in PTH-expressing cells, which could indicate that RARRES2 plays an unrecognized role in parathyroid endocrine function. The data obtained are the first single-cell RNA transcriptome to characterize nondiseased parathyroid cell signatures and to show a transcriptomic progression of cell states within normal parathyroid glands, which can be used to better understand parathyroid cell biology.
Collapse
Affiliation(s)
- Aarthi Venkat
- Computational Biology and Bioinformatics Program, Yale University, New Haven, Connecticut 06511, USA
| | - Maximillian J Carlino
- Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Betty R Lawton
- Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Manju L Prasad
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520-8023, USA
| | - Matthew Amodio
- Department of Computer Science, Yale University, New Haven, Connecticut 06511, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Courtney E Gibson
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Caroline J Zeiss
- Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Scott E Youlten
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Smita Krishnaswamy
- Computational Biology and Bioinformatics Program, Yale University, New Haven, Connecticut 06511, USA;
- Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Department of Computer Science, Yale University, New Haven, Connecticut 06511, USA
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Diane S Krause
- Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut 06520, USA;
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut 06510, USA
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520-8023, USA
| |
Collapse
|
3
|
Jung YL, Zhao W, Li I, Jain D, Epstein CB, Bernstein BE, Parangi S, Sherwood R, Robinson-Cohen C, Hsu YH, Park PJ, Mannstadt M. Epigenetic profiling reveals key genes and cis-regulatory networks specific to human parathyroids. Nat Commun 2024; 15:2106. [PMID: 38453887 PMCID: PMC10920874 DOI: 10.1038/s41467-024-46181-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
In all terrestrial vertebrates, the parathyroid glands are critical regulators of calcium homeostasis and the sole source of parathyroid hormone (PTH). Hyperparathyroidism and hypoparathyroidism are clinically important disorders affecting multiple organs. However, our knowledge regarding regulatory mechanisms governing the parathyroids has remained limited. Here, we present the comprehensive maps of the chromatin landscape of the human parathyroid glands, identifying active regulatory elements and chromatin interactions. These data allow us to define regulatory circuits and previously unidentified genes that play crucial roles in parathyroid biology. We experimentally validate candidate parathyroid-specific enhancers and demonstrate their integration with GWAS SNPs for parathyroid-related diseases and traits. For instance, we observe reduced activity of a parathyroid-specific enhancer of the Calcium Sensing Receptor gene, which contains a risk allele associated with higher PTH levels compared to the wildtype allele. Our datasets provide a valuable resource for unraveling the mechanisms governing parathyroid gland regulation in health and disease.
Collapse
Affiliation(s)
- Youngsook Lucy Jung
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
| | - Wenping Zhao
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ian Li
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dhawal Jain
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | | | - Bradley E Bernstein
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Sareh Parangi
- Department of Surgery, Newton Wellesley Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard Sherwood
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA, USA
| | - Cassianne Robinson-Cohen
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yi-Hsiang Hsu
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew Senior Life, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Michael Mannstadt
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Abstract
Endocrine pathology comprises a spectrum of disorders originating in various sites throughout the body. Some disorders affect endocrine glands, and others arise from endocrine cells that are dispersed in non-endocrine tissues. Endocrine cells can broadly be classified as neuroendocrine, steroidogenic, or thyroid follicular cells; these three families have distinct embryologic origins, morphologic structure, and biochemical hormone synthetic pathways. Lesions affecting the endocrine system include developmental abnormalities, inflammatory processes that can be infectious or autoimmune, hypofunction with atrophy or hyperfunction caused by hyperplasia secondary to pathology in other sites, and neoplasia of many types. Understanding endocrine pathology requires knowledge of both structure and function, including the biochemical signaling pathways that regulate hormone synthesis and secretion. Molecular genetics has clarified sporadic and hereditary disease that is common in this field.
Collapse
Affiliation(s)
- Sylvia L. Asa
- Department of Pathology, Institute of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, 11100 Euclid Avenue, Room 204, Cleveland, OH 44106 USA
| | - Lori A. Erickson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55901 USA
| | - Guido Rindi
- Department of Life Sciences and Public Health, Section of Anatomic Pathology, Universita Cattolica del Sacro Cuore, Rome, Italy
- Department of Woman and Child Health Sciences and Public Health, Anatomic Pathology Unit, Fondazione Policlinico Universitario A. Gemelli – IRCCS, Largo A. Gemelli, 00168 Rome, Italy
- ENETS Center of Excellence, Rome, Italy
| |
Collapse
|
5
|
Hamel BL, Kumar S, Heidenreich L, Joshi A, DaSilva C, Asumda FZ. A novel case of homozygous PAX1 mutation associated with hypoparathyroidism. THERAPEUTIC ADVANCES IN RARE DISEASE 2023; 4:26330040231158776. [PMID: 37197558 PMCID: PMC10184197 DOI: 10.1177/26330040231158776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/31/2023] [Indexed: 05/19/2023]
Abstract
The PAX1 gene plays an important role in the development of the parathyroid glands and the thymus. Mouse knockout models of PAX1, PAX3, and PAX9 have been found to have hypoplastic or absent parathyroid glands. To our knowledge, there are no reported cases of PAX1-associated hypoparathyroidism in humans. We present a case of hypoparathyroidism in a 23-month-old boy with a homozygous pathogenic variant in the PAX1 gene (PAX1 NM_006192.5 c.463_465del variant), predicted to cause an in-frame deletion of asparagine at position 155 (p.Asn155del) of the PAX1 protein. The hypoparathyroidism was unmasked after the patient developed significant hypocalcemia while receiving GoLYTELY (polyethylene glycol 3350, sodium sulfate anhydrous, sodium bicarbonate, sodium chloride, potassium chloride) for bowel cleanout. The patient had mild and asymptomatic hypocalcemia prior to hospitalization. The patient was noted to have inappropriately normal parathyroid hormone (PTH) level at the time of documented hypocalcemia thereby suggesting a diagnosis of hypoparathyroidism. Plain language summary The first human case of hypoparathyroidism associated with a rare genetic disorder: a case report of PAX1 gene mutation The paired box (PAX) gene family is important for embryo development. One subfamily, PAX1, is necessary for development of the spinal column, thymus (important for the immune system development), and parathyroid (helps regulate the amount of calcium in the body). We present the case of a 23-month-old boy with known PAX1 gene mutation who came in with episodes of vomiting and poor growth. His presentation was thought to be most likely related to constipation. He was started on bowel cleanout medication and intravenous fluids. However, his calcium that had been mildly low subsequently dropped to very low levels. The level of parathyroid hormone (which helps regulate calcium levels) was inappropriately normal, meaning that his body was unable to make more, and was consistent with hypoparathyroidism. He was treated with calcium supplements and vitamin D and calcium levels normalized. He continues to be on calcium and vitamin D and calcium levels have remained stable. Doctors should keep this complication in mind when treating patients with PAX1 gene mutation.
Collapse
Affiliation(s)
| | - Seema Kumar
- Department of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | | | - Avni Joshi
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
6
|
Singh P, Bhadada SK, Arya AK, Saikia UN, Sachdeva N, Dahiya D, Kaur J, Brandi ML, Rao SD. Aberrant Epigenetic Alteration of PAX1 Expression Contributes to Parathyroid Tumorigenesis. J Clin Endocrinol Metab 2022; 107:e783-e792. [PMID: 34453169 PMCID: PMC8764231 DOI: 10.1210/clinem/dgab626] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Indexed: 12/22/2022]
Abstract
CONTEXT Primary hyperparathyroidism (PHPT) results from the hypersecretion of parathyroid hormone from parathyroid tumors. A transcription factor, namely Paired box1 (PAX1), is active in parathyroid gland development. OBJECTIVE We aimed to study potential epigenetic-mediated mechanism of PAX1 gene in sporadic parathyroid adenomas. METHODS In parathyroid adenomas tissues, we analyzed the DNA methylation via bisulfite-specific polymerase chain reaction (BSP) and histone modifications via chromatin immunoprecipitation in regulating the differential expression of PAX1. RESULTS The results showed that mRNA and protein expression of PAX1 was significantly reduced in parathyroid adenomas. Bisulfite sequencing demonstrated hypermethylation in the promoter region of PAX1 (35%; 14/40) and lower levels of histone 3 lysine 9 acetylation (H3K9ac) were observed on the promoter region of PAX1 (6-fold; P < .004) in parathyroid adenomas. Furthermore, upon treatment with a pharmacologic inhibitor, namely 5'aza-2 deoxycytidine, in rat parathyroid continuous cells, we found re-expression of PAX1 gene. CONCLUSION Our study not only reveals expression of PAX1 is epigenetically deregulated but also paves a way for clinical and therapeutic implications in patients with PHPT.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Ashutosh Kumar Arya
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Uma Nahar Saikia
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Naresh Sachdeva
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Divya Dahiya
- Department of General Surgery, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50121, Italy
| | | |
Collapse
|
7
|
Singh P, Bhadada SK, Dahiya D, Saikia UN, Arya AK, Sachdeva N, Kaur J, Behera A, Brandi ML, Rao SD. GCM2 Silencing in Parathyroid Adenoma Is Associated With Promoter Hypermethylation and Gain of Methylation on Histone 3. J Clin Endocrinol Metab 2021; 106:e4084-e4096. [PMID: 34077544 PMCID: PMC8475237 DOI: 10.1210/clinem/dgab374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT Glial cells missing 2 (GCM2), a zinc finger-transcription factor, is essentially required for the development of the parathyroid glands. OBJECTIVE We sought to identify whether the epigenetic alterations in GCM2 transcription are involved in the pathogenesis of sporadic parathyroid adenoma. In addition, we examined the association between promoter methylation and histone modifications with disease indices. METHODS Messenger RNA (mRNA) and protein expression of GCM2 were analyzed by reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry in 33 adenomatous and 10 control parathyroid tissues. DNA methylation and histone methylation/acetylation of the GCM2 promoter were measured by bisulfite sequencing and chromatin immunoprecipitation-qPCR. Additionally, we investigated the role of epigenetic modifications on GCM2 and DNA methyltransferase 1 (DNMT1) expression in parathyroid (PTH)-C1 cells by treating with 5-aza-2'-deoxycytidine (DAC) and BRD4770 and assessed for GCM2 mRNA and DNMT1 protein levels. RESULTS mRNA and protein expression of GCM2 were lower in sporadic adenomatous than in control parathyroid tissues. This reduction correlated with hypermethylation (P < .001) and higher H3K9me3 levels in the GCM2 promoter (P < .04) in adenomas. In PTH-C1 cells, DAC treatment resulted in increased GCM2 transcription and decreased DNMT1 protein expression, while cells treated with the BRD4770 showed reduced H3K9me3 levels but a nonsignificant change in GCM2 transcription. CONCLUSION These findings suggest the concurrent association of promoter hypermethylation and higher H3K9me3 with the repression of GCM2 expression in parathyroid adenomas. Treatment with DAC restored GCM2 expression in PTH-C1 cells. Our results showed a possible epigenetic landscape in the tumorigenesis of parathyroid adenoma and also that DAC may be a promising avenue of research for parathyroid adenoma therapeutics.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Divya Dahiya
- Department of General Surgery, PGIMER, Chandigarh, 160012, India
| | | | - Ashutosh Kumar Arya
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Jyotdeep Kaur
- Department of Biochemistry, PGIMER, Chandigarh, 160012, India
| | - Arunanshu Behera
- Department of General Surgery, PGIMER, Chandigarh, 160012, India
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50121, Italy
| | - Sudhaker Dhanwada Rao
- Bone and Mineral Research Laboratory, Henry Ford Hospital, Detroit, Michigan 48202, USA
| |
Collapse
|
8
|
Ковалева ЕВ, Еремкина АК, Крупинова ЮА, Мирная СС, Ким ИВ, Кузнецов НС, Андреева ЕН, Каронова ТЛ, Крюкова ИВ, Мудунов АМ, Слепцов ИВ, Мельниченко ГА, Мокрышева НГ, Дедов ИИ. [Review of clinical practice guidelines for hypoparathyroidism]. PROBLEMY ENDOKRINOLOGII 2021; 67:68-83. [PMID: 34533015 PMCID: PMC9753818 DOI: 10.14341/probl12800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/06/2022]
Abstract
Hypoparathyroidism is a rare disorder characterized by the absent or inappropriately decreased serum parathyroid hormone in the parathyroid glands, which is accompanied by impaired calcium-phosphorus metabolism.The main etiology of hypoparathyroidism remains damage or removal of the parathyroid glands during neck surgery. In view of the incidence of thyroid cancer, primary hyperparathyroidism and other pathologies of the neck organs, which radical treatment can lead to the parathyroid gland impairment, an increased number of patients with hypoparathyroidism is expected. Autoimmune hypoparathyroidism is the second most common form of the disease, usually occurring as part of type 1 autoimmune polyglandular syndrome. Autoimmune hypoparathyroidism usually occurs in childhood and is characterized by a severe course of the disease, especially in the case of concomitant malabsorption syndrome.Chronic hypoparathyroidism of any etiology requires lifelong multicomponent therapy, as well as careful monitoring and an individual approach to choose the optimal treatment strategy. In the absence of adequate follow-up, the risks of long-term complications significantly increase, particularly in the renal, cardiovascular systems; in the soft tissues and in the brain, it could lead to visual disturbances; pathology of the musculoskeletal system with a decreased bone remodeling and a potential risk of fractures, as well as to the neurocognitive disorders and an impaired health-related quality of life.Timely diagnosis, rational medical therapy and management strategy may reduce the risks of short-term and long-term complications, frequency of hospitalizations and disability of patients, as well as improve the prognosis.This review covers the main issues of Russian guidelines for the management of chronic hypoparathyroidism, approved in 2021, including laboratory and instrumental evaluation, treatment approaches and follow-up. This guidelines also include the recommendations for special groups of patients: with acute hypocalcemia, hypoparathyroidism during pregnancy.
Collapse
Affiliation(s)
- Е. В. Ковалева
- Национальный медицинский исследовательский центр эндокринологии
| | - А. К. Еремкина
- Национальный медицинский исследовательский центр эндокринологии
| | - Ю. А. Крупинова
- Национальный медицинский исследовательский центр эндокринологии
| | | | - И. В. Ким
- Национальный медицинский исследовательский центр эндокринологии
| | - Н. С. Кузнецов
- Национальный медицинский исследовательский центр эндокринологии
| | - Е. Н. Андреева
- Национальный медицинский исследовательский центр эндокринологии
| | - Т. Л. Каронова
- Национальный медицинский исследовательский центр эндокринологии
| | - И. В. Крюкова
- Московский областной научно-исследовательский клинический институт им. М. Ф. Владимирского
| | - А. М. Мудунов
- Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина
| | - И. В. Слепцов
- Клиника высоких медицинских технологий им. Н.И. Пирогова Санкт-Петербургского государственного университета
| | | | - Н. Г. Мокрышева
- Национальный медицинский исследовательский центр эндокринологии
| | - И. И. Дедов
- Национальный медицинский исследовательский центр эндокринологии
| |
Collapse
|
9
|
Goliusova DV, Klementieva NV, Panova AV, Mokrysheva NG, Kiselev SL. The Role of Genetic Factors in Endocrine Tissues Development and Its Regulation In Vivo and In Vitro. RUSS J GENET+ 2021; 57:273-281. [DOI: 10.1134/s102279542103008x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 02/05/2023]
|
10
|
Taylor-Miller T, Allgrove J. Endocrine Diseases of Newborn: Epidemiology, Pathogenesis, Therapeutic Options, and Outcome "Current Insights Into Disorders of Calcium and Phosphate in the Newborn". Front Pediatr 2021; 9:600490. [PMID: 33614549 PMCID: PMC7892781 DOI: 10.3389/fped.2021.600490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/13/2021] [Indexed: 11/13/2022] Open
Abstract
The physiology and regulation of bone minerals in the fetus and the newborn is significantly different from children and adults. The bone minerals calcium, phosphate and magnesium are all maintained at higher concentrations in utero to achieve adequate bone accretion. This is an integral component of normal fetal development which facilitates safe neonatal transition to post-natal life. When deciphering the cause of bone mineral disorders in newborns, the potential differential diagnosis list is broad and complex, including several extremely rare conditions. Also, significant discoveries including new embryological molecular genetic transcription factors, the role of active placental mineral transport, and hormone regulation factors have changed the understanding of calcium and phosphate homeostasis in the fetus and the newborn. This article will guide clinicians through an updated review of calcium and phosphate physiology, then review specific conditions pertinent to successful neonatal care. Furthermore, with the advancement of increasingly rapid molecular genetic testing, genomics will continue to play a greater role in this area of fetal diagnostics and prognostication.
Collapse
Affiliation(s)
- Tashunka Taylor-Miller
- Department of Endocrinology and Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Jeremy Allgrove
- Department of Endocrinology and Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
11
|
Fabbri S, Zonefrati R, Galli G, Gronchi G, Perigli G, Borrelli A, Brandi ML. In Vitro Control of Genes Critical for Parathyroid Embryogenesis by Extracellular Calcium. J Endocr Soc 2020; 4:bvaa058. [PMID: 32666007 PMCID: PMC7326476 DOI: 10.1210/jendso/bvaa058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Background The expression of the parathyroid transcription factors, encoded by the genes GATA3, GCM2, and MAFB, persists after parathyroid morphogenesis. This suggests a role of these genes in the regulatory program that governs parathyroid function in the adult. Indeed, these 3 genes form a transcriptional cascade able to activate PTH gene expression. Materials and Methods Adult adenoma parathyroid tissues were put in primary cell culture to evaluate the messenger ribonucleic acid (mRNA) expression of the PTH gene, of the genes involved in the calcium regulatory signaling pathway (CaSR, GNA11, and AP2S1), and of the 3 genes (GATA3, GCM2, and MAFB) involved in the parathyroid morphogenesis in the presence of different extracellular calcium concentrations from 0.1 mM to 3.0 mM. Aim The aim of the study was to investigate whether different extracellular calcium conditions could control the expression of transcription factors critical for parathyroid embryogenesis. Results The results of the experiments showed that the mRNA expression of GATA3, GCM2, and MAFB genes follows the same response as the PTH gene to extracellular calcium concentrations, with the highest expression at low calcium (0.1 mM) and the lowest at high calcium (3.0 mM). Conversely, the genes involved in the calcium signaling in the parathyroid cells showed a variable response to the extracellular calcium concentrations, with the CaSR and GNA11 genes exhibiting a sensitivity to low calcium concentrations. Conclusions These findings indicate that transcription factors recognized for their role in parathyroid embryogenesis show a response to extracellular calcium later in adulthood that parallels the behavior of the PTH gene.
Collapse
Affiliation(s)
- Sergio Fabbri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Roberto Zonefrati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Gianna Galli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Giorgio Gronchi
- Department of Neuroscience, Psychology, Drug Research & Child Health, University of Florence, Florence, Italy
| | - Giuliano Perigli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Andrea Borrelli
- Bariatric, General Surgery and Metabolic Department, Santa Maria Nuova Hospital, Florence, Italy
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
12
|
The Nervous System Relevance of the Calcium Sensing Receptor in Health and Disease. Molecules 2019; 24:molecules24142546. [PMID: 31336912 PMCID: PMC6680999 DOI: 10.3390/molecules24142546] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 02/08/2023] Open
Abstract
The calcium sensing receptor (CaSR) was first identified in parathyroid glands, and its primary role in controlling systemic calcium homeostasis by the regulation of parathyroid hormone (PTH) secretion has been extensively described in literature. Additionally, the receptor has also been investigated in cells and tissues not directly involved in calcium homeostasis, e.g., the nervous system (NS), where it plays crucial roles in early neural development for the differentiation of neurons and glial cells, as well as in the adult nervous system for synaptic transmission and plasticity. Advances in the knowledge of the CaSR's function in such physiological processes have encouraged researchers to further broaden the receptor's investigation in the neuro-pathological conditions of the NS. Interestingly, pre-clinical data suggest that receptor inhibition by calcilytics might be effective in counteracting the pathomechanism underlying Alzheimer's disease and ischemia, while a CaSR positive modulation with calcimimetics has been proposed as a potential approach for treating neuroblastoma. Importantly, such promising findings led to the repurposing of CaSR modulators as novel pharmacological alternatives for these disorders. Therefore, the aim of this review article is to critically appraise evidence which, so far, has been yielded from the investigation of the role of the CaSR in physiology of the nervous system and to focus on the most recent emerging concepts which have reported the receptor as a therapeutic target for neurodegeneration and neuroblastic tumors.
Collapse
|
13
|
Abstract
Hypocalcemia and hyperphosphatemia are the pathognomonic biochemical features of hypoparathyroidism, and result directly from lack of parathyroid hormone (PTH) action on the kidney. In the absence of PTH action, the renal mechanisms transporting calcium and phosphate reabsorption deregulate, resulting in hypocalcemia and hyperphosphatemia. Circulating calcium negatively regulates PTH secretion. Hypocalcemia causes neuromuscular disturbances ranging from epilepsy and tetany to mild paresthesia. Circulating phosphate concentration does not directly regulate PTH secretion. Hyperphosphatemia is subclinical, but chronically promotes ectopic mineralization disease. Vitamin D-thiazide treatment leads to ectopic mineralization and renal damage. PTH treatment has the potential for fewer side effects.
Collapse
Affiliation(s)
- Munro Peacock
- Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, 1120 West Michigan Street Cl 365, Indianapolis, IN 46202, USA.
| |
Collapse
|
14
|
Abstract
The parathyroid glands are essential for regulating calcium homeostasis in the body. The genetic programs that control parathyroid fate specification, morphogenesis, differentiation, and survival are only beginning to be delineated, but are all centered around a key transcription factor, GCM2. Mutations in the Gcm2 gene as well as in several other genes involved in parathyroid organogenesis have been found to cause parathyroid disorders in humans. Therefore, understanding the normal development of the parathyroid will provide insight into the origins of parathyroid disorders.
Collapse
Affiliation(s)
- Kristen Peissig
- Department of Genetics, University of Georgia, 500 DW Brooks Drive, Coverdell Building Suite 270, Athens, GA 30602, USA
| | - Brian G Condie
- Department of Genetics, University of Georgia, 500 DW Brooks Drive, Coverdell Building Suite 270, Athens, GA 30602, USA
| | - Nancy R Manley
- Department of Genetics, University of Georgia, 500 DW Brooks Drive, Coverdell Building Suite 270, Athens, GA 30602, USA.
| |
Collapse
|
15
|
Abstract
Hypoparathyroidism, a disorder characterized by hypocalcemia ensuing from inadequate parathyroid hormone secretion, is a rather rare disorder caused by multiple etiologies. When not caused by inadvertent damage or removal of the parathyroids during neck surgery, it is usually genetically determined. Epidemiological figures of this disease are still scarce and mainly limited to countries where non-anonymous databases are available and to surgical case series. Both the surgical and non-surgical forms pose diagnostic challenges. For surgical hypoparathyroidism, transient forms have to be ruled out even in the long term, in order to avoid unnecessary chronic replacement therapy with calcium and calcitriol. Regarding non-surgical hypoparathyroidism, once referred to as idiopathic, a systematic clinically and genetically-driven approach to define the precise diagnosis have to be pursued. In the case of syndromic hypoparathyroidism, patients have to be screened for associated abnormalities. Autoimmune, non-genetic hypoparathyroidism is still a diagnosis of exclusion, since no specific autoantibodies are specific for this condition.
Collapse
Affiliation(s)
- Luisella Cianferotti
- Department of Surgery and Translational Medicine, University of Florence, Bone Metabolic Diseases Unit, University Hospital of Florence, Italy.
| | - Gemma Marcucci
- Department of Surgery and Translational Medicine, University of Florence, Bone Metabolic Diseases Unit, University Hospital of Florence, Italy.
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University of Florence, Bone Metabolic Diseases Unit, University Hospital of Florence, Italy.
| |
Collapse
|
16
|
Li D, Gordon CT, Oufadem M, Amiel J, Kanwar HS, Bakay M, Wang T, Hakonarson H, Levine MA. Heterozygous Mutations in TBX1 as a Cause of Isolated Hypoparathyroidism. J Clin Endocrinol Metab 2018; 103:4023-4032. [PMID: 30137364 PMCID: PMC6194809 DOI: 10.1210/jc.2018-01260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022]
Abstract
Context Most cases of autosomal dominant isolated hypoparathyroidism are caused by gain-of-function mutations in CASR or GNA11 or dominant negative mutations in GCM2 or PTH. Objective To identify the genetic etiology for dominantly transmitted isolated hypoparathyroidism in two multigenerational families with 14 affected family members. Methods We performed whole exome sequencing of DNA from two families and examined the consequences of mutations by minigene splicing assay. Results We discovered disease-causing mutations in both families. A splice-altering mutation in TBX1 (c.1009+1G>C) leading to skipping of exon 8 (101 bp) was identified in 10 affected family members and five unaffected subjects of family A, indicating reduced penetrance for this point mutation. In a second family from France (family B), we identified another splice-altering mutation (c.1009+2T>C) adjacent to the mutation identified in family A that results in skipping of the same exon; two subjects in family B had isolated hypoparathyroidism, whereas a third subject manifested the clinical triad of the 22q11.2 deletion syndrome, indicative of variable expressivity. Conclusions We report evidence that heterozygous TBX1 mutations can cause isolated hypoparathyroidism. This study adds knowledge to the increasingly expanding list of causative and candidate genes in isolated hypoparathyroidism.
Collapse
Affiliation(s)
- Dong Li
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Institut Imagine, Paris, France
- Paris Descartes, Sorbonne Paris Cité Université, Institut Imagine, Paris, France
| | - Myriam Oufadem
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Institut Imagine, Paris, France
- Paris Descartes, Sorbonne Paris Cité Université, Institut Imagine, Paris, France
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Institut Imagine, Paris, France
- Paris Descartes, Sorbonne Paris Cité Université, Institut Imagine, Paris, France
- Service de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique ‒ Hôpitaux de Paris, Paris, France
| | - Harsh S Kanwar
- Center for Bone Health, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Marina Bakay
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Tiancheng Wang
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Michael A Levine
- Center for Bone Health, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Abstract
Pathologists are usually readily able to diagnose parathyroid tissues and diseases, particularly when they have knowledge of the clinical information, laboratory findings, and radiographic imaging studies. However, the identification of parathyroid tissue or lesions can be difficult in small biopsies, ectopic locations, supranumerary glands, and in some oxyphil/oncocytic lesions. Widely available immunohistochemical studies such as chromogranin-A, synaptophysin, keratin, parathyroid hormone, thyroglobulin, and thyroid transcription factor-1 can help in difficult cases. One of the most difficult diagnostic aspects faced by the pathologist in evaluating parathyroid is distinguishing between parathyroid adenoma, particularly atypical adenoma, and parathyroid carcinoma. Many markers have and continue to be evaluated for diagnostic utility, and are even beginning to be studied for prognostic utility. Single immunohistochemical markers such as parafibromin and Ki-67 are among the most studied and most utilized, but many additional markers have and continue to be evaluated such as galectin-3, PGP9.5, Rb, bcl2, p27, hTERT, mdm2, and APC. Although not widely available in many laboratories, a panel of immunohistochemical markers may prove most useful as an adjunct in the evaluation of challenging parathyroid tumors.
Collapse
Affiliation(s)
- Lori A Erickson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Ozgur Mete
- Department of Pathology, Laboratory Medicine Program, University Health System, Toronto, Canada
| |
Collapse
|
18
|
Gucer H, Mete O. Positivity for GATA3 and TTF-1 (SPT24), and Negativity for Monoclonal PAX8 Expand the Biomarker Profile of the Solid Cell Nests of the Thyroid Gland. Endocr Pathol 2018; 29:49-58. [PMID: 29313264 DOI: 10.1007/s12022-017-9511-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Solid cell nests (SCNs) are usually distinguished on conventional H&E-stained sections; however, the morphological heterogeneity in SCNs and hyperplasia of these ultimobranchial body remnants can mimic other diagnostic entities including but not limited to papillary microcarcinoma. In order to confirm the thyroid follicular epithelial origin and exclude the possibility of SCNs, most diagnosticians use immunohistochemical biomarkers of thyroid follicular epithelial cells and/or those of SCNs. While the expression profile of monoclonal PAX8 has not been reported previously in SCNs, the status of TTF-1 expression using the 8G7G3/1 clone has been inconsistent among several studies. Given the potential diagnostic pitfalls, this series investigated the expression profile of GATA3, monoclonal PAX8, and TTF-1 (SPT24), along with p63, p40, monoclonal calcitonin, monoclonal CEA, and HBME-1 in a tissue microarray (TMA) of 56 SCNs. SCNs were all diffusely and strongly positive for TTF-1 (SPT24), p63, and p40, and were negative for monoclonal PAX8 and calcitonin. Positivity for GATA3 and monoclonal CEA was identified in 41 (73.2%) and 36 (64.3%) of SCNs. In addition, 18 (32.1%) SCNs displayed HBME-1 reactivity. These findings expand the immunohistochemical correlates of SCNs by demonstrating positivity for GATA3 and TTF-1 (SPT24), and negativity for monoclonal PAX8. The identification of monoclonal CEA expression and HBME-1 in SCNs also underscores the limitations of these select biomarkers in the distinction of C cell proliferations and papillary microcarcinoma, respectively. The findings of this series also suggest that positivity for TTF-1 (SPT24) alone should not be used to confirm the thyroid follicular epithelial origin. Therefore, the combined use of TTF-1 (SPT24) and monoclonal PAX8 in association with p63 or p40 provides an accurate distinction of SCNs.
Collapse
Affiliation(s)
- Hasan Gucer
- Department of Pathology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey.
| | - Ozgur Mete
- Department of Pathology, University Health Network, 200 Elizabeth Street, 11th floor, Toronto, Ontario, M5G 2C4, Canada.
- Endocrine Oncology Site Group, The Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Horta M, Lino C, Lemos MC. Hypoparathyroidism, deafness and renal dysplasia (HDR) syndrome and GATA3. QJM 2017; 110:837-838. [PMID: 29025137 DOI: 10.1093/qjmed/hcx176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 08/14/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- M Horta
- From the CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã 6200-506, Portugal
| | - C Lino
- Serviço de Medicina Interna, Centro Hospitalar Cova da Beira, Covilhã 6200-251, Portugal
| | - M C Lemos
- From the CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã 6200-506, Portugal
| |
Collapse
|
20
|
Abstract
Hypoparathyroidism is a disease characterized by inadequately low circulating concentrations of parathyroid hormone (PTH) resulting in low calcium levels and increased phosphate levels in the blood. Symptoms of the disease result from increased neuromuscular irritability caused by hypocalcaemia and include tingling, muscle cramps and seizures. The most common cause of the disease is inadvertent removal of, or injury to, the parathyroid glands during neck surgery, followed by genetic, idiopathic and autoimmune aetiologies. Conventional treatment includes activated vitamin D and/or calcium supplements, but this treatment does not fully replace the functions of PTH and can lead to short-term problems (such as hypocalcaemia, hypercalcaemia and increased urinary calcium excretion) and long-term complications (which include nephrocalcinosis, kidney stones and brain calcifications). PTH replacement has emerged as a new treatment option. Clinical trials using human PTH(1-34) and PTH(1-84) showed that this treatment was safe and effective in studies lasting up to 6 years. Recombinant human PTH(1-84) has been approved in the United States and Europe for the management of hypoparathyroidism; however, its effect on long-term complications is still being evaluated. Clinical practice guidelines, which describe the consensus of experts in the field, have been published and recognize the need for more research to optimize care. In this Primer, we summarize current knowledge of the prevalence, pathophysiology, clinical presentation and management of hypoparathyroidism.
Collapse
|
21
|
Marchiori E, Pelizzo MR, Herten M, Townsend DM, Rubello D, Boschin IM. Specifying the molecular pattern of sporadic parathyroid tumorigenesis-The Y282D variant of the GCM2 gene. Biomed Pharmacother 2017; 92:843-848. [PMID: 28609842 DOI: 10.1016/j.biopha.2017.05.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Sporadic carcinoma of the parathyroid glands is a rare malignant neoplasia. The GCM2 gene encodes a transcription factor that is crucial to embryonic parathyroid development. The Y282D variant of GCM2 exhibits increased transcriptional activity, and the presence of this variant is significantly associated with a higher prevalence of primitive hyperparathyroidism. The present study investigated the prevalence of the Y282D variant of the GCM2 gene and its association with clinical parameters in patients with a definitive histological diagnosis of sporadic parathyroid carcinoma (SPC) or atypical adenoma (AA).
Collapse
Affiliation(s)
- Elena Marchiori
- Department of Oncological Surgical and Gastroenterological Sciences (DiSCOG), University of Padova, Padova, Italy; Department of Vascular and Endovascular Surgery, University Hospital Münster, Münster, Germany.
| | - Maria Rosa Pelizzo
- Department of Oncological Surgical and Gastroenterological Sciences (DiSCOG), University of Padova, Padova, Italy
| | - Monika Herten
- Department of Vascular and Endovascular Surgery, University Hospital Münster, Münster, Germany
| | - Danyelle M Townsend
- Department of Drug Discovery and Pharmaceutical Sciences, Medical University of South Carolina, USA
| | - Domenico Rubello
- Department of Nuclear Medicine, Radiology and Clinical Pathology, Medicine, Santa Maria della Misericordia Hospital, Rovigo, Italy
| | - Isabella Merante Boschin
- Department of Oncological Surgical and Gastroenterological Sciences (DiSCOG), University of Padova, Padova, Italy
| |
Collapse
|
22
|
Uchida K, Tanaka Y, Ichikawa H, Watanabe M, Mitani S, Morita K, Fujii H, Ishikawa M, Yoshino G, Okinaga H, Nagae G, Aburatani H, Ikeda Y, Susa T, Tamamori-Adachi M, Fukusato T, Uozaki H, Okazaki T, Iizuka M. An Excess of CYP24A1, Lack of CaSR, and a Novel lncRNA Near the PTH Gene Characterize an Ectopic PTH-Producing Tumor. J Endocr Soc 2017; 1:691-711. [PMID: 29264523 PMCID: PMC5686629 DOI: 10.1210/js.2017-00063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022] Open
Abstract
Thus far, only 23 cases of the ectopic production of parathyroid hormone (PTH) have been reported. We have characterized the genome-wide transcription profile of an ectopic PTH-producing tumor originating from a retroperitoneal histiocytoma. We found that the calcium-sensing receptor (CaSR) was barely expressed in the tumor. Lack of CaSR, a crucial braking apparatus in the presence of both intraparathyroid and, probably, serendipitous PTH expression, might contribute strongly to the establishment and maintenance of the ectopic transcriptional activation of the PTH gene in nonparathyroid cells. Along with candidate drivers with a crucial frameshift mutation or copy number variation at specific chromosomal areas obtained from whole exome sequencing, we identified robust tumor-specific cytochrome P450 family 24 subfamily A member 1 (CYP24A1) overproduction, which was not observed in other non–PTH-expressing retroperitoneal histiocytoma and parathyroid adenoma samples. We then found a 2.5-kb noncoding RNA in the PTH 3′-downstream region that was exclusively present in the parathyroid adenoma and our tumor. Such a co-occurrence might act as another driver of ectopic PTH-producing tumorigenesis; both might release the control of PTH gene expression by shutting down the other branches of the safety system (e.g., CaSR and the vitamin D3–vitamin D receptor axis).
Collapse
Affiliation(s)
- Kosuke Uchida
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo 173-0003, Japan.,Department of General Practice, National Defense Medical College, Saitama 359-0042, Japan
| | - Yuji Tanaka
- Department of General Practice, National Defense Medical College, Saitama 359-0042, Japan
| | - Hitoshi Ichikawa
- Genetics Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Masato Watanabe
- Department of Pathology, Teikyo University School of Medicine, Tokyo 173-0003, Japan
| | - Sachiyo Mitani
- Genetics Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Koji Morita
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-0003, Japan
| | - Hiroko Fujii
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo 173-0003, Japan.,Department of Internal Medicine, Self-Defense Forces Central Hospital, Tokyo 154-8532, Japan
| | - Mayumi Ishikawa
- Diabetes and Arteriosclerosis, Nippon Medical School, Musashikosugi Hospital, Kanagawa 211-8533, Japan
| | - Gen Yoshino
- Center for Diabetes, Shinsuma General Hospital, Hyogo 654-0047, Japan
| | - Hiroko Okinaga
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-0003, Japan
| | - Genta Nagae
- Genome Science Laboratory Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Hiroyuki Aburatani
- Genome Science Laboratory Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Yoshifumi Ikeda
- Department of Surgery, Teikyo University School of Medicine, Tokyo 173-0003, Japan
| | - Takao Susa
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo 173-0003, Japan
| | - Mimi Tamamori-Adachi
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo 173-0003, Japan
| | - Toshio Fukusato
- Department of Pathology, Teikyo University School of Medicine, Tokyo 173-0003, Japan
| | - Hiroshi Uozaki
- Department of Pathology, Teikyo University School of Medicine, Tokyo 173-0003, Japan
| | - Tomoki Okazaki
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo 173-0003, Japan
| | - Masayoshi Iizuka
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo 173-0003, Japan
| |
Collapse
|
23
|
Guan B, Welch JM, Sapp JC, Ling H, Li Y, Johnston JJ, Kebebew E, Biesecker LG, Simonds WF, Marx SJ, Agarwal SK. GCM2-Activating Mutations in Familial Isolated Hyperparathyroidism. Am J Hum Genet 2016; 99:1034-1044. [PMID: 27745835 DOI: 10.1016/j.ajhg.2016.08.018] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/29/2016] [Indexed: 02/05/2023] Open
Abstract
Primary hyperparathyroidism (PHPT) is a common endocrine disease characterized by parathyroid hormone excess and hypercalcemia and caused by hypersecreting parathyroid glands. Familial PHPT occurs in an isolated nonsyndromal form, termed familial isolated hyperparathyroidism (FIHP), or as part of a syndrome, such as multiple endocrine neoplasia type 1 or hyperparathyroidism-jaw tumor syndrome. The specific genetic or other cause(s) of FIHP are unknown. We performed exome sequencing on germline DNA of eight index-case individuals from eight unrelated kindreds with FIHP. Selected rare variants were assessed for co-segregation in affected family members and screened for in an additional 32 kindreds with FIHP. In eight kindreds with FIHP, we identified three rare missense variants in GCM2, a gene encoding a transcription factor required for parathyroid development. Functional characterization of the GCM2 variants and deletion analyses revealed a small C-terminal conserved inhibitory domain (CCID) in GCM2. Two of the three rare variants were recurrent, located in the GCM2 CCID, and found in seven of the 40 (18%) kindreds with FIHP. These two rare variants acted as gain-of-function mutations that increased the transcriptional activity of GCM2, suggesting that GCM2 is a parathyroid proto-oncogene. Our results demonstrate that germline-activating mutations affecting the CCID of GCM2 can cause FIHP.
Collapse
|
24
|
Hendy GN, Canaff L. Calcium-Sensing Receptor Gene: Regulation of Expression. Front Physiol 2016; 7:394. [PMID: 27679579 PMCID: PMC5020072 DOI: 10.3389/fphys.2016.00394] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/23/2016] [Indexed: 12/13/2022] Open
Abstract
The human calcium-sensing receptor gene (CASR) has 8 exons, and localizes to chromosome 3q. Exons 1A and 1B encode alternative 5′-untranslated regions (UTRs) that splice to exon 2 encoding the AUG initiation codon. Exons 2–7 encode the CaSR protein of 1078 amino acids. Promoter P1 has TATA and CCAAT boxes upstream of exon 1A, and promoter P2 has Sp1/3 motifs at the start site of exon 1B. Exon 1A transcripts from the P1 promoter are reduced in parathyroid tumors and colon carcinomas. Studies of colon carcinomas and neuroblastomas have emphasized the importance of epigenetic changes—promoter methylation of the GC-rich P2 promoter, histone acetylation—as well as involvement of microRNAs in bringing about CASR gene silencing and reduced CaSR expression. Functional cis-elements in the CASR promoters responsive to 1,25-dihydroxyvitamin D [1,25(OH)2D], proinflammatory cytokines, and the transcription factor glial cells missing-2 (GCM2) have been characterized. Reduced levels of CaSR and reduced responsiveness to active vitamin D in parathyroid neoplasia and colon carcinoma may blunt the “tumor suppressor” activity of the CaSR. The hypocalcemia of critically ill patients with burn injury or sepsis is associated with CASR gene upregulation by TNF-alpha and IL-1beta via kappaB elements, and by IL-6 via Stat1/3 and Sp1/3 elements in the CASR gene promoters, respectively. The CASR is transactivated by GCM2—the expression of which is essential for parathyroid gland development. Hyperactive forms of GCM2 may contribute to later parathyroid hyperactivity or tumorigenesis. The expression of the CaSR—the calciostat—is regulated physiologically and pathophysiologically at the gene level.
Collapse
Affiliation(s)
- Geoffrey N Hendy
- Experimental Therapeutics and Metabolism, McGill University Health Centre-Research Institute, Departments of Medicine, Physiology, and Human Genetics, McGill University Montréal, QC, Canada
| | - Lucie Canaff
- Experimental Therapeutics and Metabolism, McGill University Health Centre-Research Institute, Departments of Medicine, Physiology, and Human Genetics, McGill University Montréal, QC, Canada
| |
Collapse
|
25
|
GATA3 Expression in Normal Skin and in Benign and Malignant Epidermal and Cutaneous Adnexal Neoplasms. Am J Dermatopathol 2016; 37:885-91. [PMID: 26595821 PMCID: PMC4894790 DOI: 10.1097/dad.0000000000000306] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Initial investigations reported GATA3 to be a sensitive and relatively specific marker for mammary and urothelial carcinomas. Recently, GATA3 expression has been described in several other epithelial tumors. However, there has been only limited investigation of GATA3 expression in cutaneous epithelial tumors. The objective of this study was to examine the immunohistochemical expression of GATA3 in a wide variety of cutaneous epithelial neoplasms. GATA3 expression was evaluated in 99 benign and 63 malignant cutaneous epithelial tumors. GATA3 was consistently and usually strongly expressed in clear cell acanthoma, trichofolliculoma, trichoepithelioma, trichilemmoma, sebaceous adenoma, sebaceoma, apocrine hidrocystoma, apocrine tubular papillary adenoma, hidradenoma papilliferum, and syringocystadenoma papilliferum. Hidradenomas exhibited variable positive staining. Most poromas, syringomas, chondroid syringomas, cylindromas, and spiradenomas were negative or only focally and weakly positive. Focal staining was present in all pilomatrixomas. Thirteen of 14 basal cell carcinomas, 21 of 24 squamous carcinomas, and all 6 sebaceous carcinomas exhibited positive staining. The 1 apocrine carcinoma, both mucinous carcinomas, and 2 of 3 microcystic adnexal carcinomas also exhibited positive staining, whereas the 1 eccrine porocarcinoma and the 1 adenoid cystic carcinoma were negative. One of 11 Merkel cell carcinomas exhibited focal weak staining. Our findings demonstrate that GATA3 is expressed in a wide variety of benign and malignant cutaneous epithelial neoplasms. In addition to carcinomas of breast and urothelial origin and other more recently described GATA3-positive tumors, the differential diagnosis of a metastatic tumor of unknown primary origin that expresses GATA3 should also include a carcinoma of cutaneous epithelial origin.
Collapse
|
26
|
Clarke BL, Brown EM, Collins MT, Jüppner H, Lakatos P, Levine MA, Mannstadt MM, Bilezikian JP, Romanischen AF, Thakker RV. Epidemiology and Diagnosis of Hypoparathyroidism. J Clin Endocrinol Metab 2016; 101:2284-99. [PMID: 26943720 PMCID: PMC5393595 DOI: 10.1210/jc.2015-3908] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
CONTEXT Hypoparathyroidism is a disorder characterized by hypocalcemia due to insufficient secretion of PTH. Pseudohypoparathyroidism is a less common disorder due to target organ resistance to PTH. This report summarizes the results of the findings and recommendations of the Working Group on Epidemiology and Diagnosis of Hypoparathyroidism. EVIDENCE ACQUISITION Each contributing author reviewed the recent published literature regarding epidemiology and diagnosis of hypoparathyroidism using PubMed and other medical literature search engines. EVIDENCE SYNTHESIS The prevalence of hypoparathyroidism is an estimated 37 per 100 000 person-years in the United States and 22 per 100 000 person-years in Denmark. The incidence in Denmark is approximately 0.8 per 100 000 person-years. Estimates of prevalence and incidence of hypoparathyroidism are currently lacking in most other countries. Hypoparathyroidism increases the risk of renal insufficiency, kidney stones, posterior subcapsular cataracts, and intracerebral calcifications, but it does not appear to increase overall mortality, cardiovascular disease, fractures, or malignancy. The diagnosis depends upon accurate measurement of PTH by second- and third-generation assays. The most common etiology is postsurgical hypoparathyroidism, followed by autoimmune disorders and rarely genetic disorders. Even more rare are etiologies including parathyroid gland infiltration, external radiation treatment, and radioactive iodine therapy for thyroid disease. Differentiation between these different etiologies is aided by the clinical presentation, serum biochemistries, and in some cases, genetic testing. CONCLUSIONS Hypoparathyroidism is often associated with complications and comorbidities. It is important for endocrinologists and other physicians who care for these patients to be aware of recent advances in the epidemiology, diagnosis, and genetics of this disorder.
Collapse
Affiliation(s)
- Bart L Clarke
- Mayo Clinic (B.L.C.), Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, Minnesota 55905; Harvard Medical School (E.M.B.), Division of Endocrinology, Diabetes and Hypertension, Boston, Massachusetts 02115; Skeletal Clinical Studies Unit (M.T.C.), Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892; Endocrine Unit and Pediatric Nephrology Unit (H.J.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; First Department of Medicine (P.L.), Semmelweis University Medical School, Budapest 1085, Hungary; Division of Endocrinology and Diabetes (M.A.L.), Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; Massachusetts General Hospital (M.M.M.), Boston, Massachusetts 02114; Columbia University College of Physicians & Surgeons (J.P.B.), New York, New York 10032; Department of Hospital Surgery and Oncology of St Petersburg State Pediatric Medical Academy (A.F.R.), St. Petersburg 194100, Russia; and Academic Endocrine Unit (R.V.T.), Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom
| | - Edward M Brown
- Mayo Clinic (B.L.C.), Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, Minnesota 55905; Harvard Medical School (E.M.B.), Division of Endocrinology, Diabetes and Hypertension, Boston, Massachusetts 02115; Skeletal Clinical Studies Unit (M.T.C.), Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892; Endocrine Unit and Pediatric Nephrology Unit (H.J.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; First Department of Medicine (P.L.), Semmelweis University Medical School, Budapest 1085, Hungary; Division of Endocrinology and Diabetes (M.A.L.), Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; Massachusetts General Hospital (M.M.M.), Boston, Massachusetts 02114; Columbia University College of Physicians & Surgeons (J.P.B.), New York, New York 10032; Department of Hospital Surgery and Oncology of St Petersburg State Pediatric Medical Academy (A.F.R.), St. Petersburg 194100, Russia; and Academic Endocrine Unit (R.V.T.), Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom
| | - Michael T Collins
- Mayo Clinic (B.L.C.), Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, Minnesota 55905; Harvard Medical School (E.M.B.), Division of Endocrinology, Diabetes and Hypertension, Boston, Massachusetts 02115; Skeletal Clinical Studies Unit (M.T.C.), Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892; Endocrine Unit and Pediatric Nephrology Unit (H.J.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; First Department of Medicine (P.L.), Semmelweis University Medical School, Budapest 1085, Hungary; Division of Endocrinology and Diabetes (M.A.L.), Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; Massachusetts General Hospital (M.M.M.), Boston, Massachusetts 02114; Columbia University College of Physicians & Surgeons (J.P.B.), New York, New York 10032; Department of Hospital Surgery and Oncology of St Petersburg State Pediatric Medical Academy (A.F.R.), St. Petersburg 194100, Russia; and Academic Endocrine Unit (R.V.T.), Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom
| | - Harald Jüppner
- Mayo Clinic (B.L.C.), Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, Minnesota 55905; Harvard Medical School (E.M.B.), Division of Endocrinology, Diabetes and Hypertension, Boston, Massachusetts 02115; Skeletal Clinical Studies Unit (M.T.C.), Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892; Endocrine Unit and Pediatric Nephrology Unit (H.J.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; First Department of Medicine (P.L.), Semmelweis University Medical School, Budapest 1085, Hungary; Division of Endocrinology and Diabetes (M.A.L.), Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; Massachusetts General Hospital (M.M.M.), Boston, Massachusetts 02114; Columbia University College of Physicians & Surgeons (J.P.B.), New York, New York 10032; Department of Hospital Surgery and Oncology of St Petersburg State Pediatric Medical Academy (A.F.R.), St. Petersburg 194100, Russia; and Academic Endocrine Unit (R.V.T.), Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom
| | - Peter Lakatos
- Mayo Clinic (B.L.C.), Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, Minnesota 55905; Harvard Medical School (E.M.B.), Division of Endocrinology, Diabetes and Hypertension, Boston, Massachusetts 02115; Skeletal Clinical Studies Unit (M.T.C.), Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892; Endocrine Unit and Pediatric Nephrology Unit (H.J.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; First Department of Medicine (P.L.), Semmelweis University Medical School, Budapest 1085, Hungary; Division of Endocrinology and Diabetes (M.A.L.), Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; Massachusetts General Hospital (M.M.M.), Boston, Massachusetts 02114; Columbia University College of Physicians & Surgeons (J.P.B.), New York, New York 10032; Department of Hospital Surgery and Oncology of St Petersburg State Pediatric Medical Academy (A.F.R.), St. Petersburg 194100, Russia; and Academic Endocrine Unit (R.V.T.), Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom
| | - Michael A Levine
- Mayo Clinic (B.L.C.), Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, Minnesota 55905; Harvard Medical School (E.M.B.), Division of Endocrinology, Diabetes and Hypertension, Boston, Massachusetts 02115; Skeletal Clinical Studies Unit (M.T.C.), Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892; Endocrine Unit and Pediatric Nephrology Unit (H.J.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; First Department of Medicine (P.L.), Semmelweis University Medical School, Budapest 1085, Hungary; Division of Endocrinology and Diabetes (M.A.L.), Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; Massachusetts General Hospital (M.M.M.), Boston, Massachusetts 02114; Columbia University College of Physicians & Surgeons (J.P.B.), New York, New York 10032; Department of Hospital Surgery and Oncology of St Petersburg State Pediatric Medical Academy (A.F.R.), St. Petersburg 194100, Russia; and Academic Endocrine Unit (R.V.T.), Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom
| | - Michael M Mannstadt
- Mayo Clinic (B.L.C.), Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, Minnesota 55905; Harvard Medical School (E.M.B.), Division of Endocrinology, Diabetes and Hypertension, Boston, Massachusetts 02115; Skeletal Clinical Studies Unit (M.T.C.), Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892; Endocrine Unit and Pediatric Nephrology Unit (H.J.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; First Department of Medicine (P.L.), Semmelweis University Medical School, Budapest 1085, Hungary; Division of Endocrinology and Diabetes (M.A.L.), Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; Massachusetts General Hospital (M.M.M.), Boston, Massachusetts 02114; Columbia University College of Physicians & Surgeons (J.P.B.), New York, New York 10032; Department of Hospital Surgery and Oncology of St Petersburg State Pediatric Medical Academy (A.F.R.), St. Petersburg 194100, Russia; and Academic Endocrine Unit (R.V.T.), Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom
| | - John P Bilezikian
- Mayo Clinic (B.L.C.), Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, Minnesota 55905; Harvard Medical School (E.M.B.), Division of Endocrinology, Diabetes and Hypertension, Boston, Massachusetts 02115; Skeletal Clinical Studies Unit (M.T.C.), Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892; Endocrine Unit and Pediatric Nephrology Unit (H.J.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; First Department of Medicine (P.L.), Semmelweis University Medical School, Budapest 1085, Hungary; Division of Endocrinology and Diabetes (M.A.L.), Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; Massachusetts General Hospital (M.M.M.), Boston, Massachusetts 02114; Columbia University College of Physicians & Surgeons (J.P.B.), New York, New York 10032; Department of Hospital Surgery and Oncology of St Petersburg State Pediatric Medical Academy (A.F.R.), St. Petersburg 194100, Russia; and Academic Endocrine Unit (R.V.T.), Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom
| | - Anatoly F Romanischen
- Mayo Clinic (B.L.C.), Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, Minnesota 55905; Harvard Medical School (E.M.B.), Division of Endocrinology, Diabetes and Hypertension, Boston, Massachusetts 02115; Skeletal Clinical Studies Unit (M.T.C.), Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892; Endocrine Unit and Pediatric Nephrology Unit (H.J.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; First Department of Medicine (P.L.), Semmelweis University Medical School, Budapest 1085, Hungary; Division of Endocrinology and Diabetes (M.A.L.), Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; Massachusetts General Hospital (M.M.M.), Boston, Massachusetts 02114; Columbia University College of Physicians & Surgeons (J.P.B.), New York, New York 10032; Department of Hospital Surgery and Oncology of St Petersburg State Pediatric Medical Academy (A.F.R.), St. Petersburg 194100, Russia; and Academic Endocrine Unit (R.V.T.), Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom
| | - Rajesh V Thakker
- Mayo Clinic (B.L.C.), Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, Minnesota 55905; Harvard Medical School (E.M.B.), Division of Endocrinology, Diabetes and Hypertension, Boston, Massachusetts 02115; Skeletal Clinical Studies Unit (M.T.C.), Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892; Endocrine Unit and Pediatric Nephrology Unit (H.J.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; First Department of Medicine (P.L.), Semmelweis University Medical School, Budapest 1085, Hungary; Division of Endocrinology and Diabetes (M.A.L.), Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; Massachusetts General Hospital (M.M.M.), Boston, Massachusetts 02114; Columbia University College of Physicians & Surgeons (J.P.B.), New York, New York 10032; Department of Hospital Surgery and Oncology of St Petersburg State Pediatric Medical Academy (A.F.R.), St. Petersburg 194100, Russia; and Academic Endocrine Unit (R.V.T.), Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom
| |
Collapse
|
27
|
Monis EL, Mannstadt M. Hypoparathyroidism - disease update and emerging treatments. ANNALES D'ENDOCRINOLOGIE 2015; 76:84-8. [PMID: 25882889 DOI: 10.1016/j.ando.2015.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/17/2015] [Indexed: 01/21/2023]
Abstract
Parathyroid hormone (PTH) is the primary regulator of blood calcium levels and bone metabolism. Insufficient levels of PTH lead to hypoparathyroidism, characterized by low serum calcium and elevated serum phosphate levels. It is most commonly caused by the inadvertent damage to the parathyroid glands during thyroid surgery. Patients with hypoparathyroidism are currently being treated with oral calcium and active vitamin D, and to avoid worsening hypercalciuria, target serum calcium levels are within the lower end of normal. With current treatment, patients may suffer from large swings in serum calcium and are at a substantial risk of chronic renal failure, nephrocalcinosis, and kidney stones. The recent FDA approval of recombinant human (rh) PTH(1-84) for the treatment of hypoparathyroidism adds PTH replacement therapy to the endocrinologist's armamentarium to treat this chronic disease.
Collapse
Affiliation(s)
- Elizabeth L Monis
- Massachusetts General Hospital, Endocrine Unit, Thier 1051, 50 Blossom St, 02114 Boston, USA
| | - Michael Mannstadt
- Massachusetts General Hospital, Endocrine Unit, Thier 1051, 50 Blossom St, 02114 Boston, USA.
| |
Collapse
|
28
|
Bonny O, Bochud M. Genetics of calcium homeostasis in humans: continuum between monogenic diseases and continuous phenotypes. Nephrol Dial Transplant 2014; 29 Suppl 4:iv55-62. [PMID: 25165186 DOI: 10.1093/ndt/gfu195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Extracellular calcium participates in several key physiological functions, such as control of blood coagulation, bone calcification or muscle contraction. Calcium homeostasis in humans is regulated in part by genetic factors, as illustrated by rare monogenic diseases characterized by hypo or hypercalcaemia. Both serum calcium and urinary calcium excretion are heritable continuous traits in humans. Serum calcium levels are tightly regulated by two main hormonal systems, i.e. parathyroid hormone and vitamin D, which are themselves also influenced by genetic factors. Recent technological advances in molecular biology allow for the screening of the human genome at an unprecedented level of detail and using hypothesis-free approaches, such as genome-wide association studies (GWAS). GWAS identified novel loci for calcium-related phenotypes (i.e. serum calcium and 25-OH vitamin D) that shed new light on the biology of calcium in humans. The substantial overlap (i.e. CYP24A1, CASR, GATA3; CYP2R1) between genes involved in rare monogenic diseases and genes located within loci identified in GWAS suggests a genetic and phenotypic continuum between monogenic diseases of calcium homeostasis and slight disturbances of calcium homeostasis in the general population. Future studies using whole-exome and whole-genome sequencing will further advance our understanding of the genetic architecture of calcium homeostasis in humans. These findings will likely provide new insight into the complex mechanisms involved in calcium homeostasis and hopefully lead to novel preventive and therapeutic approaches. Keyword: calcium, monogenic, genome-wide association studies, genetics.
Collapse
Affiliation(s)
- Olivier Bonny
- Service of Nephrology, Lausanne University Hospital, Lausanne, Switzerland Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Murielle Bochud
- Community Prevention Unit, Institute for Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
29
|
Betts G, Beckett E, Nonaka D. GATA3 shows differential immunohistochemical expression across thyroid and parathyroid lesions. Histopathology 2014; 65:288-90. [DOI: 10.1111/his.12388] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Guy Betts
- Department of Histopathology; The Christie NHS Foundation Trust; Manchester UK
| | - Elizabeth Beckett
- Department of Histopathology; The Christie NHS Foundation Trust; Manchester UK
| | - Daisuke Nonaka
- Department of Histopathology; The Christie NHS Foundation Trust; Manchester UK
| |
Collapse
|
30
|
O'Seaghdha CM, Wu H, Yang Q, Kapur K, Guessous I, Zuber AM, Köttgen A, Stoudmann C, Teumer A, Kutalik Z, Mangino M, Dehghan A, Zhang W, Eiriksdottir G, Li G, Tanaka T, Portas L, Lopez LM, Hayward C, Lohman K, Matsuda K, Padmanabhan S, Firsov D, Sorice R, Ulivi S, Brockhaus AC, Kleber ME, Mahajan A, Ernst FD, Gudnason V, Launer LJ, Mace A, Boerwinckle E, Arking DE, Tanikawa C, Nakamura Y, Brown MJ, Gaspoz JM, Theler JM, Siscovick DS, Psaty BM, Bergmann S, Vollenweider P, Vitart V, Wright AF, Zemunik T, Boban M, Kolcic I, Navarro P, Brown EM, Estrada K, Ding J, Harris TB, Bandinelli S, Hernandez D, Singleton AB, Girotto G, Ruggiero D, d'Adamo AP, Robino A, Meitinger T, Meisinger C, Davies G, Starr JM, Chambers JC, Boehm BO, Winkelmann BR, Huang J, Murgia F, Wild SH, Campbell H, Morris AP, Franco OH, Hofman A, Uitterlinden AG, Rivadeneira F, Völker U, Hannemann A, Biffar R, Hoffmann W, Shin S, Lescuyer P, Henry H, Schurmann C, The SUNLIGHT consortium, The GEFOS consortium, Munroe PB, Gasparini P, Pirastu N, Ciullo M, Gieger C, März W, Lind L, Spector TD, Smith AV, Rudan I, Wilson JF, Polasek O, Deary IJ, Pirastu M, et alO'Seaghdha CM, Wu H, Yang Q, Kapur K, Guessous I, Zuber AM, Köttgen A, Stoudmann C, Teumer A, Kutalik Z, Mangino M, Dehghan A, Zhang W, Eiriksdottir G, Li G, Tanaka T, Portas L, Lopez LM, Hayward C, Lohman K, Matsuda K, Padmanabhan S, Firsov D, Sorice R, Ulivi S, Brockhaus AC, Kleber ME, Mahajan A, Ernst FD, Gudnason V, Launer LJ, Mace A, Boerwinckle E, Arking DE, Tanikawa C, Nakamura Y, Brown MJ, Gaspoz JM, Theler JM, Siscovick DS, Psaty BM, Bergmann S, Vollenweider P, Vitart V, Wright AF, Zemunik T, Boban M, Kolcic I, Navarro P, Brown EM, Estrada K, Ding J, Harris TB, Bandinelli S, Hernandez D, Singleton AB, Girotto G, Ruggiero D, d'Adamo AP, Robino A, Meitinger T, Meisinger C, Davies G, Starr JM, Chambers JC, Boehm BO, Winkelmann BR, Huang J, Murgia F, Wild SH, Campbell H, Morris AP, Franco OH, Hofman A, Uitterlinden AG, Rivadeneira F, Völker U, Hannemann A, Biffar R, Hoffmann W, Shin S, Lescuyer P, Henry H, Schurmann C, The SUNLIGHT consortium, The GEFOS consortium, Munroe PB, Gasparini P, Pirastu N, Ciullo M, Gieger C, März W, Lind L, Spector TD, Smith AV, Rudan I, Wilson JF, Polasek O, Deary IJ, Pirastu M, Ferrucci L, Liu Y, Kestenbaum B, Kooner JS, Witteman JCM, Nauck M, Kao WHL, Wallaschofski H, Bonny O, Fox CS, Bochud M. Meta-analysis of genome-wide association studies identifies six new Loci for serum calcium concentrations. PLoS Genet 2013; 9:e1003796. [PMID: 24068962 PMCID: PMC3778004 DOI: 10.1371/journal.pgen.1003796] [Show More Authors] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 07/29/2013] [Indexed: 01/08/2023] Open
Abstract
Calcium is vital to the normal functioning of multiple organ systems and its serum concentration is tightly regulated. Apart from CASR, the genes associated with serum calcium are largely unknown. We conducted a genome-wide association meta-analysis of 39,400 individuals from 17 population-based cohorts and investigated the 14 most strongly associated loci in ≤ 21,679 additional individuals. Seven loci (six new regions) in association with serum calcium were identified and replicated. Rs1570669 near CYP24A1 (P = 9.1E-12), rs10491003 upstream of GATA3 (P = 4.8E-09) and rs7481584 in CARS (P = 1.2E-10) implicate regions involved in Mendelian calcemic disorders: Rs1550532 in DGKD (P = 8.2E-11), also associated with bone density, and rs7336933 near DGKH/KIAA0564 (P = 9.1E-10) are near genes that encode distinct isoforms of diacylglycerol kinase. Rs780094 is in GCKR. We characterized the expression of these genes in gut, kidney, and bone, and demonstrate modulation of gene expression in bone in response to dietary calcium in mice. Our results shed new light on the genetics of calcium homeostasis.
Collapse
Affiliation(s)
- Conall M. O'Seaghdha
- National Heart, Lung, and Blood Institute's Framingham Heart Study and Center for Population Studies, Framingham, Massachusetts, United States of America
- Renal Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Hongsheng Wu
- National Heart, Lung, and Blood Institute's Framingham Heart Study and Center for Population Studies, Framingham, Massachusetts, United States of America
- Department of Biostatistics, Boston University, Boston, Massachusetts, United States of America
- Department of Medical Biology, University of Split, School of Medicine, Split, Croatia
| | - Qiong Yang
- National Heart, Lung, and Blood Institute's Framingham Heart Study and Center for Population Studies, Framingham, Massachusetts, United States of America
- Department of Biostatistics, Boston University, Boston, Massachusetts, United States of America
| | - Karen Kapur
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Idris Guessous
- Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Lausanne, Switzerland
- Unit of Population Epidemiology, Division of Primary Care Medicine, Department of Community Medicine and Primary Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland
- Geriatric Unit, Azienda Sanitaria Firenze (ASF), Florence, Italy
| | - Annie Mercier Zuber
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Anna Köttgen
- Renal Division, Freiburg University Hospital, Freiburg, Germany
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Candice Stoudmann
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Alexander Teumer
- Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Zoltán Kutalik
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Massimo Mangino
- King's College London, St. Thomas' Hospital Campus, London, United Kingdom
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Weihua Zhang
- Catheter Lab, Cardiology, Ealing Hospital, Southall, Middlesex, United Kingdom
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | | | - Guo Li
- Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, United States of America
| | - Toshiko Tanaka
- Clinical Research Branch, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Laura Portas
- Institute of Population Genetics, CNR-Traversa La Crucca, Reg. Baldinca Li Punti, Sassari, Italy
| | - Lorna M. Lopez
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Caroline Hayward
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - Kurt Lohman
- Cardiology Group, ClinPhenomics GmbH&Co KG, Frankfurt-Sachsenhausen, Germany
| | - Koichi Matsuda
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Sandosh Padmanabhan
- BHF Glasgow Cardiovascular Research Centre, Division of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland
| | - Dmitri Firsov
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Rossella Sorice
- Institute of Genetics and Biophysics ‘Adriano-Buzzati Traverso’, CNR, Napoli, Italy
| | - Sheila Ulivi
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, Italy
| | - A. Catharina Brockhaus
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians University Munich, Munich, Germany
| | - Marcus E. Kleber
- Department of Internal Medicine II – Cardiology, University of Ulm Medical Centre, Ulm, Germany
- Mannheim Institute of Public Health, Social and Preventive Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, United Kingdom
| | - Florian D. Ernst
- Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Vilmundur Gudnason
- Icelandic Heart Association Research Institute, Kopavogur, Iceland
- University of Iceland, Reykjavik, Iceland
| | - Lenore J. Launer
- Laboratory of Epidemiology, Demography and Biometry, National Institute on Aging, Bethesda, Maryland, United States of America
| | - Aurelien Mace
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Eric Boerwinckle
- University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Dan E. Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Chizu Tanikawa
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yusuke Nakamura
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Morris J. Brown
- Cambridge Institute of Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Jean-Michel Gaspoz
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jean-Marc Theler
- Unit of Population Epidemiology, Division of Primary Care Medicine, Department of Community Medicine and Primary Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - David S. Siscovick
- Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, United States of America
- Departments of Medicine and Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, United States of America
- Group Health Research Institute, Group Health Cooperative, Seattle, Washington, United States of America
- Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, Washington, United States of America
| | - Sven Bergmann
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Veronique Vitart
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - Alan F. Wright
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Mladen Boban
- Department of Pharmacology, Faculty of Medicine, University of Split, Split, Croatia
| | - Ivana Kolcic
- Faculty of Medicine, University of Split, Split, Croatia
| | - Pau Navarro
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - Edward M. Brown
- Division of Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Karol Estrada
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Jingzhong Ding
- Division of Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Tamara B. Harris
- Laboratory of Epidemiology, Demography and Biometry, National Institute on Aging, Bethesda, Maryland, United States of America
| | - Stefania Bandinelli
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Dena Hernandez
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrew B. Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Giorgia Girotto
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Daniela Ruggiero
- Institute of Genetics and Biophysics ‘Adriano-Buzzati Traverso’, CNR, Napoli, Italy
| | - Adamo Pio d'Adamo
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Antonietta Robino
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Computer Science and Networking, Wentworth Institute of Technology, Boston, Massachusetts, United States of America
| | - Christa Meisinger
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Gail Davies
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom
| | - John C. Chambers
- Catheter Lab, Cardiology, Ealing Hospital, Southall, Middlesex, United Kingdom
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London, United Kingdom
| | - Bernhard O. Boehm
- Ulm University Medical Centre, Department of Internal Medicine I, Ulm University, Ulm, Germany
- LKC School of Medicine, Imperial College London and Nanyang Technological University, Singapore, Singapore
| | - Bernhard R. Winkelmann
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Jie Huang
- Division of Primary Care Medicine, Department of Community Medicine and Primary Care and Emergency Medicine , Geneva University Hospitals, Geneva, Switzerland
| | - Federico Murgia
- Institute of Population Genetics, CNR-Traversa La Crucca, Reg. Baldinca Li Punti, Sassari, Italy
| | - Sarah H. Wild
- Centre for Population Health Sciences, The University of Edinburgh Medical School, Edinburgh, Scotland, United Kingdom
| | - Harry Campbell
- Centre for Population Health Sciences, The University of Edinburgh Medical School, Edinburgh, Scotland, United Kingdom
| | - Andrew P. Morris
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, United Kingdom
| | - Oscar H. Franco
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Andre G. Uitterlinden
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Fernando Rivadeneira
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Anke Hannemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - Reiner Biffar
- Department of Prosthetic Dentistry, Gerostomatology and Dental Materials, University Medicine Greifswald, Greifswald, Germany
| | - Wolfgang Hoffmann
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - So–Youn Shin
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Pierre Lescuyer
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Hughes Henry
- Clinical Chemistry Laboratory, Lausanne University Hospital, Lausanne, Switzerland
| | - Claudia Schurmann
- Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | | | | | - Patricia B. Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Paolo Gasparini
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Nicola Pirastu
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Marina Ciullo
- Institute of Genetics and Biophysics ‘Adriano-Buzzati Traverso’, CNR, Napoli, Italy
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Winfried März
- Mannheim Institute of Public Health, Social and Preventive Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Synlab Centre of Laboratory Diagnostics, Heidelberg, Germany
| | - Lars Lind
- Institute of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden
| | - Tim D. Spector
- King's College London, St. Thomas' Hospital Campus, London, United Kingdom
| | - Albert V. Smith
- Icelandic Heart Association Research Institute, Kopavogur, Iceland
- University of Iceland, Reykjavik, Iceland
| | - Igor Rudan
- Centre for Population Health Sciences, The University of Edinburgh Medical School, Edinburgh, Scotland, United Kingdom
| | - James F. Wilson
- Centre for Population Health Sciences, The University of Edinburgh Medical School, Edinburgh, Scotland, United Kingdom
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Split, Croatia
| | - Ian J. Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Mario Pirastu
- Institute of Population Genetics, CNR-Traversa La Crucca, Reg. Baldinca Li Punti, Sassari, Italy
| | - Luigi Ferrucci
- Laboratory of Epidemiology, Demography and Biometry, National Institute on Aging, Bethesda, Maryland, United States of America
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Bryan Kestenbaum
- Department of Medicine, Division of Nephrology, University of Washington, Seattle, Washington, United States of America
| | - Jaspal S. Kooner
- Catheter Lab, Cardiology, Ealing Hospital, Southall, Middlesex, United Kingdom
- Faculty of Medicine, National Heart & Lung Institute, Cardiovascular Science, Hammersmith Hospital, Hammersmith Campus, Imperial College London, London, United Kingdom
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | | | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - W. H. Linda Kao
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Welch Center for Prevention, Epidemiology and Clinical Research, John Hopkins University, Baltimore, Maryland, United States of America
| | - Henri Wallaschofski
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
- Service of Nephrology, Lausanne University Hospital, Lausanne, Switzerland
| | - Caroline S. Fox
- National Heart, Lung, and Blood Institute's Framingham Heart Study and Center for Population Studies, Framingham, Massachusetts, United States of America
- Division of Endocrinology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Murielle Bochud
- Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|