1
|
Morani AH, Saeed MM, Aslam M, Mehmoud A, Shokri A, Mukalazi H. Local and global stability analysis of HIV/AIDS by using a nonstandard finite difference scheme. Sci Rep 2025; 15:4502. [PMID: 39915504 PMCID: PMC11802842 DOI: 10.1038/s41598-024-82872-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 12/10/2024] [Indexed: 02/09/2025] Open
Abstract
This study presents a mathematical model incorporating both asymptomatic and symptomatic HIV-infected individuals to analyze the dynamics of HIV/AIDS. This expanded model offers a more comprehensive understanding of the epidemic's spread. We calculate the basic reproduction number (R0) to quantify the virus's transmission potential. To achieve accurate and robust simulations, we introduce the Nonstandard Finite Difference Scheme (NSFD). Compared to traditional methods like RK-4, NSFD offers improved dynamical consistency and numerical precision, leading to enhanced stability and efficiency in simulating infectious diseases like HIV/AIDS. Local and global stability analysis are performed using the Routh-Hurwitz method. The NSFD method effectively captures the dynamics of HIV propagation under various scenarios, providing valuable insights into HIV/AIDS progression. We demonstrate the superiority of the NSFD approach compared to existing methods, paving the way for further research in modeling viral infections.
Collapse
Affiliation(s)
- Amjid Hussain Morani
- Department of Mathematics, Institute of Numerical Sciences, Gomal University, Dera Ismail Khan, KPK, 29050, Pakistan
| | - Maha Mohammed Saeed
- Department of Mathematics, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Muhammad Aslam
- Department of Mathematics, College of Sciences, King Khalid University, Abha, 61413, Saudi Arabia
| | - Atif Mehmoud
- Department of Mathematics, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Ali Shokri
- Department of Mathematics, Faculty of Science, University of Maragheh, Maragheh, 83111-55181, Iran
| | - Herbert Mukalazi
- Department of Mathematics and Statistics, Kyambogo University, Kampala, Uganda.
| |
Collapse
|
2
|
Silva MJA, Marinho RL, Rodrigues YC, Brasil TP, Dos Santos PAS, Silva CS, Sardinha DM, Lima KVB, Lima LNGC. Molecular Role of HIV-1 Human Receptors (CCL5-CCR5 Axis) in neuroAIDS: A Systematic Review. Microorganisms 2024; 12:782. [PMID: 38674726 PMCID: PMC11051963 DOI: 10.3390/microorganisms12040782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic HIV-1 infection can cause neurological illness, also known as HIV-associated neurocognitive disorders (HAND). The elevated level of pro-inflammatory cytokines and chemokines, such as C-C Chemokine Ligand 5 (CCL5/RANTES), is one of the ways of causing HIV-1-mediated neuroinflammation. C-C Chemokine Receptor 5 (CCR5) is the main coreceptor for viral entry into host cells and for mediating induction of CCL5/RANTES. CCR5 and CCL5 are part of a correlated axis of immune pathways used for effective protection against the HIV-1 virus. The purpose of this paper was to review the literary knowledge about the immunopathological relationship between this immune complex and neuroAIDS. A systematic review of the literature was conducted based on the selection and search of articles, available in English, Spanish, or Portuguese in the time frame of 1990-2022, of primary and secondary types in the PUBMED, Science Direct, SciELO, and LILACS databases through descriptors (MeSH) together with "AND": "CCR5"; "CCL5"; "neurological manifestations"; or "HIV". The methodological quality of the articles was assessed using the JBI Checklists and the PRISMA 2020 writing guidelines were followed. A total of 36 articles were included in the final composition of the review. The main cells of the CNS affected by neuroAIDS are: neurons; microglia; astrocytes; and oligodendrocytes. Molecular devices and their associations with cellular injuries have been described from the entry of the virus into the host's CNS cell to the generation of mental disorders. Furthermore, divergent results were found about the levels of CCL5/RANTES secretion and the generation of immunopathogenesis, while all condensed research for CCR5 indicated that elevation of this receptor causes more neurodegenerative manifestations. Therefore, new therapeutic and interventional strategies can be conditioned on the immunological direction proposed in this review for the disease.
Collapse
Affiliation(s)
- Marcos Jessé Abrahão Silva
- Postgraduate Program in Parasite Biology in the Amazon (PPGBPA), Evandro Chagas Institute (IEC), Ananindeua 67030-000, PA, Brazil;
| | - Rebecca Lobato Marinho
- Institute of Biological and Health Sciences (ICB), University of Pará State (UEPA), Belém 66087-670, PA, Brazil; (R.L.M.); (P.A.S.D.S.); (C.S.S.); (D.M.S.)
| | - Yan Corrêa Rodrigues
- Institute of Biological and Health Sciences (ICB), University of Pará State (UEPA), Belém 66087-670, PA, Brazil; (R.L.M.); (P.A.S.D.S.); (C.S.S.); (D.M.S.)
| | - Thiago Pinto Brasil
- Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza 60441-750, CE, Brazil;
| | - Pabllo Antonny Silva Dos Santos
- Institute of Biological and Health Sciences (ICB), University of Pará State (UEPA), Belém 66087-670, PA, Brazil; (R.L.M.); (P.A.S.D.S.); (C.S.S.); (D.M.S.)
| | - Caroliny Soares Silva
- Institute of Biological and Health Sciences (ICB), University of Pará State (UEPA), Belém 66087-670, PA, Brazil; (R.L.M.); (P.A.S.D.S.); (C.S.S.); (D.M.S.)
| | - Daniele Melo Sardinha
- Institute of Biological and Health Sciences (ICB), University of Pará State (UEPA), Belém 66087-670, PA, Brazil; (R.L.M.); (P.A.S.D.S.); (C.S.S.); (D.M.S.)
| | - Karla Valéria Batista Lima
- Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua 67030-000, PA, Brazil; (K.V.B.L.); (L.N.G.C.L.)
| | | |
Collapse
|
3
|
Magaki S, Zhang T, Han K, Hilda M, Yong WH, Achim C, Fishbein G, Fishbein MC, Garner O, Salamon N, Williams CK, Valdes-Sueiras MA, Hsu JJ, Kelesidis T, Mathisen GE, Lavretsky H, Singer EJ, Vinters HV. HIV and COVID-19: two pandemics with significant (but different) central nervous system complications. FREE NEUROPATHOLOGY 2024; 5:5. [PMID: 38469363 PMCID: PMC10925920 DOI: 10.17879/freeneuropathology-2024-5343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/02/2024] [Indexed: 03/13/2024]
Abstract
Human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause significant neurologic disease. Central nervous system (CNS) involvement of HIV has been extensively studied, with well-documented invasion of HIV into the brain in the initial stage of infection, while the acute effects of SARS-CoV-2 in the brain are unclear. Neuropathologic features of active HIV infection in the brain are well characterized whereas neuropathologic findings in acute COVID-19 are largely non-specific. On the other hand, neuropathologic substrates of chronic dysfunction in both infections, as HIV-associated neurocognitive disorders (HAND) and post-COVID conditions (PCC)/long COVID are unknown. Thus far, neuropathologic studies on patients with HAND in the era of combined antiretroviral therapy have been inconclusive, and autopsy studies on patients diagnosed with PCC have yet to be published. Further longitudinal, multidisciplinary studies on patients with HAND and PCC and neuropathologic studies in comparison to controls are warranted to help elucidate the mechanisms of CNS dysfunction in both conditions.
Collapse
Affiliation(s)
- Shino Magaki
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Ting Zhang
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Karam Han
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Mirbaha Hilda
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - William H. Yong
- Department of Pathology and Laboratory Medicine, University of California-Irvine School of Medicine, Irvine, CA, USA
| | - Cristian Achim
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Gregory Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael C. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Omai Garner
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher K. Williams
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Miguel A. Valdes-Sueiras
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeffrey J. Hsu
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Glenn E. Mathisen
- Department of Infectious Diseases, Olive View-University of California Los Angeles Medical Center, Sylmar, CA, USA
| | - Helen Lavretsky
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Elyse J. Singer
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Harry V. Vinters
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
4
|
Abstract
Studying neurological diseases have long been hampered by the lack of physiologically relevant models to resemble the complex human brain and the associated pathologies. Three-dimensional brain organoids have emerged as cutting-edge technology providing an alternative in vitro model to study healthy neural development and function as well as pathogenesis of neurological disorders and neuropathologies induced by pathogens. Nonetheless, the absence of immune cells in current models poses a barrier to fully recapitulate brain microenvironment during the onset of HIV-1-associated neuropathogenesis. To address this and to further the brain organoid technology, we have incorporated HIV-target microglia into brain organoids, generating a complex multicellular interaction, which mimics the HIV-1-infected brain environment. Here we describe the method to generate a brain organoid consisting on neurons, astrocytes, and microglia (with and without HIV infection) that recapitulate the HIV-associated neuropathology. This model has tremendous potential to expand our knowledge on neuronal dysfunction associated with HIV-1 infection of glia.
Collapse
|
5
|
Wallace DR. HIV-associated neurotoxicity and cognitive decline: Therapeutic implications. Pharmacol Ther 2021; 234:108047. [PMID: 34848202 DOI: 10.1016/j.pharmthera.2021.108047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022]
Abstract
As our understanding of changes to the neurological system has improved, it has become clear that patients who have contracted human immunodeficiency virus type 1 (HIV-1) can potentially suffer from a cascade of neurological issues, including neuropathy, dementia, and declining cognitive function. The progression from mild to severe symptoms tends to affect motor function, followed by cognitive changes. Central nervous system deficits that are observed as the disease progresses have been reported as most severe in later-stage HIV infection. Examining the full spectrum of neuronal damage, generalized cortical atrophy is a common hallmark, resulting in the death of multiple classes of neurons. With antiretroviral therapy (ART), we can partially control disease progression, slowing the onset of the most severe symptoms such as, reducing viral load in the brain, and developing HIV-associated dementia (HAD). HAD is a severe and debilitating outcome from HIV-related neuropathologies. HIV neurotoxicity can be direct (action directly on the neuron) or indirect (actions off-site that affect normal neuronal function). There are two critical HIV-associated proteins, Tat and gp120, which bear responsibility for many of the neuropathologies associated with HAD and HIV-associated neurocognitive disorder (HAND). A cascade of systems is involved in HIV-related neurotoxicity, and determining a critical point where therapeutic strategies can be employed is of the utmost importance. This review will provide an overview of the existing hypotheses on HIV-neurotoxicity and the potential for the development of therapeutics to aid in the treatment of HIV-related nervous system dysfunction.
Collapse
Affiliation(s)
- David R Wallace
- Oklahoma State University Center for Health Sciences, School of Biomedical Science, 1111 West 17(th) Street, Tulsa, OK 74107-1898, USA.
| |
Collapse
|
6
|
Finkelstein A, Faiyaz A, Weber MT, Qiu X, Uddin MN, Zhong J, Schifitto G. Fixel-Based Analysis and Free Water Corrected DTI Evaluation of HIV-Associated Neurocognitive Disorders. Front Neurol 2021; 12:725059. [PMID: 34803875 PMCID: PMC8600320 DOI: 10.3389/fneur.2021.725059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Background: White matter (WM) damage is a consistent finding in HIV-infected (HIV+) individuals. Previous studies have evaluated WM fiber tract-specific brain regions in HIV-associated neurocognitive disorders (HAND) using diffusion tensor imaging (DTI). However, DTI might lack an accurate biological interpretation, and the technique suffers from several limitations. Fixel-based analysis (FBA) and free water corrected DTI (fwcDTI) have recently emerged as useful techniques to quantify abnormalities in WM. Here, we sought to evaluate FBA and fwcDTI metrics between HIV+ and healthy controls (HIV−) individuals. Using machine learning classifiers, we compared the specificity of both FBA and fwcDTI metrics in their ability to distinguish between individuals with and without cognitive impairment in HIV+ individuals. Methods: Forty-two HIV+ and 52 HIV– participants underwent MRI exam, clinical, and neuropsychological assessments. FBA metrics included fiber density (FD), fiber bundle cross section (FC), and fiber density and cross section (FDC). We also obtained fwcDTI metrics such as fractional anisotropy (FAT) and mean diffusivity (MDT). Tract-based spatial statistics (TBSS) was performed on FAT and MDT. We evaluated the correlations between MRI metrics with cognitive performance and blood markers, such as neurofilament light chain (NfL), and Tau protein. Four different binary classifiers were used to show the specificity of the MRI metrics for classifying cognitive impairment in HIV+ individuals. Results: Whole-brain FBA showed significant reductions (up to 15%) in various fiber bundles, specifically the cerebral peduncle, posterior limb of internal capsule, middle cerebellar peduncle, and superior corona radiata. TBSS of fwcDTI metrics revealed decreased FAT in HIV+ individuals compared to HIV– individuals in areas consistent with those observed in FBA, but these were not significant. Machine learning classifiers were consistently better able to distinguish between cognitively normal patients and those with cognitive impairment when using fixel-based metrics as input features as compared to fwcDTI metrics. Conclusion: Our findings lend support that FBA may serve as a potential in vivo biomarker for evaluating and monitoring axonal degeneration in HIV+ patients at risk for neurocognitive impairment.
Collapse
Affiliation(s)
- Alan Finkelstein
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Abrar Faiyaz
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States
| | - Miriam T Weber
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Md Nasir Uddin
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Jianhui Zhong
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States.,Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States.,Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
| | - Giovanni Schifitto
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States.,Department of Neurology, University of Rochester, Rochester, NY, United States.,Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
| |
Collapse
|
7
|
HIV-Associated Neurotoxicity: The Interplay of Host and Viral Proteins. Mediators Inflamm 2021; 2021:1267041. [PMID: 34483726 PMCID: PMC8410439 DOI: 10.1155/2021/1267041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/12/2021] [Accepted: 08/09/2021] [Indexed: 11/18/2022] Open
Abstract
HIV-1 can incite activation of chemokine receptors, inflammatory mediators, and glutamate receptor-mediated excitotoxicity. The mechanisms associated with such immune activation can disrupt neuronal and glial functions. HIV-associated neurocognitive disorder (HAND) is being observed since the beginning of the AIDS epidemic due to a change in the functional integrity of cells from the central nervous system (CNS). Even with the presence of antiretroviral therapy, there is a decline in the functioning of the brain especially movement skills, noticeable swings in mood, and routine performance activities. Under the umbrella of HAND, various symptomatic and asymptomatic conditions are categorized and are on a rise despite the use of newer antiretroviral agents. Due to the use of long-lasting antiretroviral agents, this deadly disease is becoming a manageable chronic condition with the occurrence of asymptomatic neurocognitive impairment (ANI), symptomatic mild neurocognitive disorder, or HIV-associated dementia. In-depth research in the pathogenesis of HIV has focused on various mechanisms involved in neuronal dysfunction and associated toxicities ultimately showcasing the involvement of various pathways. Increasing evidence-based studies have emphasized a need to focus and explore the specific pathways in inflammation-associated neurodegenerative disorders. In the current review, we have highlighted the association of various HIV proteins and neuronal cells with their involvement in various pathways responsible for the development of neurotoxicity.
Collapse
|
8
|
Yarandi SS, Duggan MR, Sariyer IK. Emerging Role of Nef in the Development of HIV Associated Neurological Disorders. J Neuroimmune Pharmacol 2021; 16:238-250. [PMID: 33123948 PMCID: PMC8081738 DOI: 10.1007/s11481-020-09964-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/08/2020] [Indexed: 01/13/2023]
Abstract
Despite adherence to treatment, individuals living with HIV have an increased risk for developing cognitive impairments, referred to as HIV-associated neurological disorders (HAND). Due to continued growth in the HIV population, particularly amongst the aging cohort, the neurobiological mechanisms of HAND are increasingly relevant. Similar to other viral proteins (e.g. Tat, Gp120, Vpr), the Negative Factor (Nef) is associated with numerous adverse effects in the CNS as well as cognitive impairments. In particular, emerging data indicate the consequences of Nef may be facilitated by the modulation of cellular autophagy as well as its inclusion into extracellular vesicles (EVs). The present review examines evidence for the molecular mechanisms by which Nef might contribute to neuronal dysfunction underlying HAND, with a specific focus on autophagy and EVs. Based on the these data, we propose an integrated model by which Nef may contribute to underlying neuronal dysfunction in HAND and highlight potentially novel therapeutic targets for HAND. Graphical abstract.
Collapse
Affiliation(s)
- Shadan S Yarandi
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, 3500 North Broad Street, Medical Education and Research Building Room 753, 7th Floor, Philadelphia, PA, 19140, USA
| | - Michael R Duggan
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, 3500 North Broad Street, Medical Education and Research Building Room 753, 7th Floor, Philadelphia, PA, 19140, USA
| | - Ilker K Sariyer
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, 3500 North Broad Street, Medical Education and Research Building Room 753, 7th Floor, Philadelphia, PA, 19140, USA.
| |
Collapse
|
9
|
Royo-Rubio E, Rodríguez-Izquierdo I, Moreno-Domene M, Lozano-Cruz T, de la Mata FJ, Gómez R, Muñoz-Fernández MA, Jiménez JL. Promising PEGylated cationic dendrimers for delivery of miRNAs as a possible therapy against HIV-1 infection. J Nanobiotechnology 2021; 19:158. [PMID: 34049570 PMCID: PMC8161934 DOI: 10.1186/s12951-021-00899-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/18/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The appearance of resistance against new treatments and the fact that HIV-1 can infect various cell types and develop reservoirs and sanctuaries makes it necessary to develop new therapeutic approaches to overcome those failures. RESULTS Studies of cytotoxicity, genotoxicity, complexes formation, stability, resistance, release and particle size distribution confirmed that G2-SN15-PEG, G3-SN31-PEG, G2-SN15-PEG-FITC and G3-SN31-PEG-FITC dendrimers can form complexes with miRNAs being biocompatible, stable and conferring protection to these nucleic acids. Confocal microscopy and flow cytometry showed effective delivery of these four dendrimers into the target cells, confirming their applicability as delivery systems. Dendriplexes formed with the dendrimers and miRNAs significantly inhibited HIV-1 infection in PBMCs. CONCLUSIONS These dendrimers are efficient delivery systems for miRNAs and they specifically and significantly improved the anti-R5-HIV-1 activity of these RNA molecules.
Collapse
Affiliation(s)
- E Royo-Rubio
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV HGM BioBanco, Madrid, Spain
- Plataforma de Laboratorio (Inmunología), HGUGM, IiSGM, Spanish HIV HGM BioBank, Madrid, Spain
| | - I Rodríguez-Izquierdo
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV HGM BioBanco, Madrid, Spain
- Plataforma de Laboratorio (Inmunología), HGUGM, IiSGM, Spanish HIV HGM BioBank, Madrid, Spain
| | - M Moreno-Domene
- Laboratorio Dosimetría Biológica, HGUGM, IiSGM, Madrid, Spain
| | - T Lozano-Cruz
- Departmento Química Orgánica Y Química Inorgánica E Instituto de Investigación Química "Andrés M. del Río″ (IQAR), Universidad de Alcalá (IRYCIS), Campus Universitario, 28871, Madrid, Spain
- Networking Research Center On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN, Madrid, Spain
| | - F J de la Mata
- Departmento Química Orgánica Y Química Inorgánica E Instituto de Investigación Química "Andrés M. del Río″ (IQAR), Universidad de Alcalá (IRYCIS), Campus Universitario, 28871, Madrid, Spain
- Networking Research Center On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN, Madrid, Spain
| | - R Gómez
- Departmento Química Orgánica Y Química Inorgánica E Instituto de Investigación Química "Andrés M. del Río″ (IQAR), Universidad de Alcalá (IRYCIS), Campus Universitario, 28871, Madrid, Spain
- Networking Research Center On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN, Madrid, Spain
| | - M A Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV HGM BioBanco, Madrid, Spain.
| | - J L Jiménez
- Plataforma de Laboratorio (Inmunología), HGUGM, IiSGM, Spanish HIV HGM BioBank, Madrid, Spain.
| |
Collapse
|
10
|
Yandrapally S, Mohareer K, Arekuti G, Vadankula GR, Banerjee S. HIV co-receptor-tropism: cellular and molecular events behind the enigmatic co-receptor switching. Crit Rev Microbiol 2021; 47:499-516. [PMID: 33900141 DOI: 10.1080/1040841x.2021.1902941] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recognition of cell-surface receptors and co-receptors is a crucial molecular event towards the establishment of HIV infection. HIV exists as several variants that differentially recognize the principal co-receptors, CCR5 and CXCR4, in different cell types, known as HIV co-receptor-tropism. The relative levels of these variants dynamically adjust to the changing host selection pressures to infect a vast repertoire of cells in a stage-specific manner. HIV infection sets in through immune cells such as dendritic cells, macrophages, and T-lymphocytes in the acute stage, while a wide range of other cells, including astrocytes, glial cells, B-lymphocytes, and epithelial cells, are infected during chronic stages. A change in tropism occurs during the transition from acute to a chronic phase, termed as co-receptor switching marked by a change in disease severity. The cellular and molecular events leading to co-receptor switching are poorly understood. This review aims to collate our present understanding of the dynamics of HIV co-receptor-tropism vis-à-vis host and viral factors, highlighting the cellular and molecular events involved therein. We present the possible correlations between virus entry, cell tropism, and co-receptor switching, speculating its consequences on disease progression, and proposing new scientific pursuits to help in an in-depth understanding of HIV biology.
Collapse
Affiliation(s)
| | | | - Geethika Arekuti
- Department of Biochemistry, University of Hyderabad, Hyderabad, India
| | | | | |
Collapse
|
11
|
HIV Infection and Related Mental Disorders. Brain Sci 2021; 11:brainsci11020248. [PMID: 33671125 PMCID: PMC7922767 DOI: 10.3390/brainsci11020248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/13/2023] Open
Abstract
Over the more than thirty-year period of the human immunodeficiency virus type 1 (HIV-1) epidemic, many data have been accumulated indicating that HIV infection predisposes one to the development of mental pathologies. It has been proven that cognitive disorders in HIV-positive individuals are the result of the direct exposure of the virus to central nervous system (CNS) cells. The use of antiretroviral therapy has significantly reduced the number of cases of mental disorders among people infected with HIV. However, the incidence of moderate to mild cognitive impairment at all stages of HIV infection is still quite high. This review describes the most common forms of mental pathology that occur in people living with HIV and presents the current concepts on the possible pathogenetic mechanisms of the influence of human immunodeficiency virus (HIV-1) and its viral proteins on the cells of the CNS and the CNS’s functions. This review also provides the current state of knowledge on the impact of the antiretroviral therapy on the development of mental pathologies in people living with HIV, as well as current knowledge on the interactions between antiretroviral and psychotropic drugs that occur under their simultaneous administration.
Collapse
|
12
|
Gupta S, Kesarla R, Omri A. Approaches for CNS delivery of drugs - nose to brain targeting of antiretroviral agents as a potential attempt for complete elimination of major reservoir site of HIV to aid AIDS treatment. Expert Opin Drug Deliv 2020; 16:287-300. [PMID: 30779602 DOI: 10.1080/17425247.2019.1583206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Human immune-deficiency virus (HIV) infection causing acquired immune-deficiency syndrome (AIDS) is one of the most life-threatening infections. The central nervous system (CNS) is reported to be the most important HIV reservoir site where the antiretroviral drugs are unable to reach. AREAS COVERED This article includes the review about HIV infections, its pathogenesis, HIV infections in CNS, its consequences, current therapies, challenges associated with the existing therapies, approaches to overcome them, CNS delivery of drugs - barriers, transport routes, approaches for transporting drugs across the blood-brain barrier, nasal route of drug delivery, and nose to brain targeting of antiretroviral agents as a potential approach for complete cure of AIDS. EXPERT OPINION Various approaches are exploited to enhance the drug delivery to the brain for various categories of drugs. However, very few have investigated on the delivery of antiretrovirals to the brain. Targeting antiretrovirals to CNS through oral/nasal routes along with oral/parenteral delivery of drug to the plasma can be a promising approach for an attempt to completely eradicate HIV reservoir and cure AIDS, after clinical trials. Further research is required to identify the exact location of the HIV reservoir in CNS and developing good animal models for evaluation of different newly developed formulations.
Collapse
Affiliation(s)
- Shweta Gupta
- a Department of Pharmaceutics, Ideal College of Pharmacy and Research , University of Mumbai , Mumbai, Maharashtra , India
| | - Rajesh Kesarla
- b Corporate Quality Assurance , Zydus Cadila , Ahmedabad , Gujarat , India
| | - Abdelwahab Omri
- c The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry , Laurentian University , Sudbury , ON , Canada
| |
Collapse
|
13
|
Pérez PS, Romaniuk MA, Duette GA, Zhao Z, Huang Y, Martin-Jaular L, Witwer KW, Théry C, Ostrowski M. Extracellular vesicles and chronic inflammation during HIV infection. J Extracell Vesicles 2019; 8:1687275. [PMID: 31998449 PMCID: PMC6963413 DOI: 10.1080/20013078.2019.1687275] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/16/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a hallmark of HIV infection. Among the multiple stimuli that can induce inflammation in untreated infection, ongoing viral replication is a primary driver. After initiation of effective combined antiretroviral therapy (cART), HIV replication is drastically reduced or halted. However, even virologically controlled patients may continue to have abnormal levels of inflammation. A number of factors have been proposed to cause inflammation in HIV infection: among others, residual (low-level) HIV replication, production of HIV protein or RNA in the absence of replication, microbial translocation from the gut to the circulation, co-infections, and loss of immunoregulatory responses. Importantly, chronic inflammation in HIV-infected individuals increases the risk for a number of non-infectious co-morbidities, including cancer and cardiovascular disease. Thus, achieving a better understanding of the underlying mechanisms of HIV-associated inflammation in the presence of cART is of utmost importance. Extracellular vesicles have emerged as novel actors in intercellular communication, involved in a myriad of physiological and pathological processes, including inflammation. In this review, we will discuss the role of extracellular vesicles in the pathogenesis of HIV infection, with particular emphasis on their role as inducers of chronic inflammation.
Collapse
Affiliation(s)
- Paula Soledad Pérez
- Instituto INBIRS, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | | | - Gabriel A. Duette
- Instituto INBIRS, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Zezhou Zhao
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yiyao Huang
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lorena Martin-Jaular
- INSERM U932, Institut Curie Centre de Recherche, PSL Research University, Paris, France
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clotilde Théry
- INSERM U932, Institut Curie Centre de Recherche, PSL Research University, Paris, France
| | - Matías Ostrowski
- Instituto INBIRS, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
14
|
Yoder KE. Absence of LEDGF/p75 Expression in Astrocytes May Affect HIV-1 Integration Efficiency. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2019; 34:81-83. [PMID: 33867663 DOI: 10.3103/s0891416819020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In spite of effective anti-retroviral therapy, HIV-1 infection may still lead to neurological impairment in patients. The underlying mechanism of neurodegeneration remains mysterious. HIV-1 does not infect neurons, but does infect microglia cells in the brain. It is controversial whether HIV-1 productively infects astrocytes, an abundant glial cell type in the brain. Thirty years of investigation have led to conflicting reports concerning the entry, infection, and production of progeny virions from astrocytes. New models from studies in primary human fetal astrocytes suggest phagocytosis of HIV-1 with little productive infection. The retroviral life cycle requires integration of the viral genome to the host genome. The host protein LEDGF/p75 is required for efficient HIV-1 integration. In the absence of LEDGF/p75, HIV-1 integration and infection efficiency is reduced ten fold. Differentiated astrocytes do not appear to express LEDGF/p75, which suggests these cells are disabled for efficient integration. Phagocytosis of HIV-1 virions and the lack of LEDGF/p75 expression in astrocytes suggest that this cell type is not efficiently infected in vivo.
Collapse
Affiliation(s)
- K E Yoder
- Ohio State University College of Medicine, Columbus, Ohio, 43210 USA
| |
Collapse
|
15
|
Eradication of Human Immunodeficiency Virus Type-1 (HIV-1)-Infected Cells. Pharmaceutics 2019; 11:pharmaceutics11060255. [PMID: 31159417 PMCID: PMC6631149 DOI: 10.3390/pharmaceutics11060255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/01/2019] [Accepted: 05/24/2019] [Indexed: 01/04/2023] Open
Abstract
Predictions made soon after the introduction of human immunodeficiency virus type-1 (HIV-1) protease inhibitors about potentially eradicating the cellular reservoirs of HIV-1 in infected individuals were too optimistic. The ability of the HIV-1 genome to remain in the chromosomes of resting CD4+ T cells and macrophages without being expressed (HIV-1 latency) has prompted studies to activate the cells in the hopes that the immune system can recognize and clear these cells. The absence of natural clearance of latently infected cells has led to the recognition that additional interventions are necessary. Here, we review the potential of utilizing suicide gene therapy to kill infected cells, excising the chromosome-integrated HIV-1 DNA, and targeting cytotoxic liposomes to latency-reversed HIV-1-infected cells.
Collapse
|
16
|
Irons DL, Meinhardt T, Allers C, Kuroda MJ, Kim WK. Overexpression and activation of colony-stimulating factor 1 receptor in the SIV/macaque model of HIV infection and neuroHIV. Brain Pathol 2019; 29:826-836. [PMID: 31033097 DOI: 10.1111/bpa.12731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/19/2019] [Indexed: 01/09/2023] Open
Abstract
In the present study, we investigated whether colony-stimulating factor 1 receptor (CSF1R) is expressed on brain macrophages and microglia in the human and macaque brain and whether it is upregulated and activated after lentivirus infection in vivo and contributes to development of encephalitic lesions. We examined, using multi-label and semi-quantitative immunofluorescence microscopy, the protein expression level and cellular localization of CSF1R in brain tissues from uninfected controls and SIV-infected adult macaques with or without encephalitis and also from uninfected controls, HIV-infected encephalitic subjects and virally suppressed subjects. In the normal uninfected brain, CSF1R protein was detected only on microglia and brain macrophages but not on neurons, astrocytes or oligodendrocytes. Microglia constitutively expressed CSF1R at low levels, and its expression was largely unchanged in non-encephalitic and encephalitic animals. Brain macrophages, including perivascular macrophages (PVMs), expressed higher levels of CSF1R compared to microglia. Interestingly, we found significantly increased expression of CSF1R on the infected PVMs and lesional macrophages in the brains of encephalitic macaques. Moreover, the per cell expression of CSF1R determined by its mean pixel intensity (MPI) correlated positively with the MPI of SIV Gag p28 in SIV-infected PVMs. Using phosphorylated CSF1R at tyrosine residue 723 and phosphorylated signal transducer and activator of transcription 5 at tyrosine reside 694 as markers for CSF1R activation, we found selective activation of CSF1R signaling in infected brain macrophages in encephalitis. We also found colocalization of CSF1R and its ligand CSF1 in PVMs and lesional macrophages in the brains of encephalitic macaques and humans. Notably, elevated brain CSF1R expression was found in virally suppressed subjects. These findings point to opportunities for developing a specific approach targeting infected brain macrophages, with several brain-penetrant CSF1R inhibitors that are available now, in order to eliminate central nervous system macrophage reservoirs, while not affecting resting uninfected microglia and PVMs that show no CSF1R activation.
Collapse
Affiliation(s)
- Derek L Irons
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA
| | - Timothy Meinhardt
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA
| | - Carolina Allers
- The Division of Immunology, Tulane National Primate Research Center, Covington, LA
| | - Marcelo J Kuroda
- The Division of Immunology, Tulane National Primate Research Center, Covington, LA
| | - Woong-Ki Kim
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA
| |
Collapse
|
17
|
eEF1A demonstrates paralog specific effects on HIV-1 reverse transcription efficiency. Virology 2019; 530:65-74. [DOI: 10.1016/j.virol.2019.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 11/23/2022]
|
18
|
Sagar V, Pilakka-Kanthikeel S, Martinez PC, Atluri VSR, Nair M. Common gene-network signature of different neurological disorders and their potential implications to neuroAIDS. PLoS One 2017; 12:e0181642. [PMID: 28792504 PMCID: PMC5549695 DOI: 10.1371/journal.pone.0181642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 07/05/2017] [Indexed: 12/22/2022] Open
Abstract
The neurological complications of AIDS (neuroAIDS) during the infection of human immunodeficiency virus (HIV) are symptomized by non-specific, multifaceted neurological conditions and therefore, defining a specific diagnosis/treatment mechanism(s) for this neuro-complexity at the molecular level remains elusive. Using an in silico based integrated gene network analysis we discovered that HIV infection shares convergent gene networks with each of twelve neurological disorders selected in this study. Importantly, a common gene network was identified among HIV infection, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and age macular degeneration. An mRNA microarray analysis in HIV-infected monocytes showed significant changes in the expression of several genes of this in silico derived common pathway which suggests the possible physiological relevance of this gene-circuit in driving neuroAIDS condition. Further, this unique gene network was compared with another in silico derived novel, convergent gene network which is shared by seven major neurological disorders (Alzheimer's disease, Parkinson's disease, Multiple Sclerosis, Age Macular Degeneration, Amyotrophic Lateral Sclerosis, Vascular Dementia, and Restless Leg Syndrome). These networks differed in their gene circuits; however, in large, they involved innate immunity signaling pathways, which suggests commonalities in the immunological basis of different neuropathogenesis. The common gene circuits reported here can provide a prospective platform to understand how gene-circuits belonging to other neuro-disorders may be convoluted during real-time neuroAIDS condition and it may elucidate the underlying-and so far unknown-genetic overlap between HIV infection and neuroAIDS risk. Also, it may lead to a new paradigm in understanding disease progression, identifying biomarkers, and developing therapies.
Collapse
Affiliation(s)
- Vidya Sagar
- Institute of Neuroimmune Pharmacology/Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - S. Pilakka-Kanthikeel
- Institute of Neuroimmune Pharmacology/Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - Paola C. Martinez
- Institute of Neuroimmune Pharmacology/Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - V. S. R. Atluri
- Institute of Neuroimmune Pharmacology/Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - M. Nair
- Institute of Neuroimmune Pharmacology/Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| |
Collapse
|
19
|
HIV-1 gp120 Upregulates Brain-Derived Neurotrophic Factor (BDNF) Expression in BV2 Cells via the Wnt/β-Catenin Signaling Pathway. J Mol Neurosci 2017; 62:199-208. [PMID: 28560687 DOI: 10.1007/s12031-017-0931-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 05/08/2017] [Indexed: 01/11/2023]
Abstract
HIV-1 gp120 plays a critical role in the pathogenesis of HIV-associated pain, but the underlying molecular mechanisms are incompletely understood. This study aims to determine the effect and possible mechanism of HIV-1 gp120 on BDNF expression in BV2 cells (a murine-derived microglial cell line). We observed that gp120 (10 ng/ml) activated BV2 cells in cultures and upregulated proBDNF/mBDNF. Furthermore, gp120-treated BV2 also accumulated Wnt3a and β-catenin, suggesting the activation of the Wnt/β-catenin pathway. We demonstrated that activation of the pathway by Wnt3a upregulated BDNF expression. In contrast, inhibition of the Wnt/β-catenin pathway by either DKK1 or IWR-1 attenuated BDNF upregulation induced by gp120 or Wnt3a. These findings collectively suggest that gp120 stimulates BDNF expression in BV2 cells via the Wnt/β-catenin signaling pathway.
Collapse
|
20
|
Ganief T, Gqamana P, Garnett S, Hoare J, Stein DJ, Joska J, Soares N, Blackburn JM. Quantitative proteomic analysis of HIV-1 Tat-induced dysregulation in SH-SY5Y neuroblastoma cells. Proteomics 2017; 17. [PMID: 28101920 DOI: 10.1002/pmic.201600236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 12/23/2016] [Accepted: 01/12/2017] [Indexed: 11/11/2022]
Abstract
Despite affecting up to 70% of HIV-positive patients and being the leading cause of dementia in patients under 40 years, the molecular mechanisms involved in the onset of HIV-associated neurocognitive disorders (HAND) are not well understood. To address this, we performed SILAC-based quantitative proteomic analysis on HIV-Tat treated SH-SY5Y neuroblastoma cells. Isolated protein was fractionated by SDS-PAGE and analyzed by nLC-MS/MS on an Orbitrap Velos. Using MaxQuant, we identified and quantified 3077 unique protein groups, of which 407 were differentially regulated. After applying an additional standard deviation-based cutoff, 29 of these were identified as highly significantly and stably dysregulated. GO term analysis shows dysregulation in both protein translation machinery as well as cytoskeletal regulation that have both been implicated in other dementias. In addition, several key cytoskeletal regulatory proteins such as ARHGEF17, the Rho GTPase, SHROOM3, and CMRP1 are downregulated. Together, these data demonstrate that HIV-Tat can dysregulate neuronal cytoskeletal regulatory proteins that could lead to the major HAND clinical manifestation-synapse loss.
Collapse
Affiliation(s)
- Tariq Ganief
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Putuma Gqamana
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Shaun Garnett
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Jackie Hoare
- Department of Psychiatry, University of Cape Town, South Africa
| | - Dan J Stein
- Department of Psychiatry, University of Cape Town, South Africa.,MRC Unit on Anxiety and Stress Disorders, University of Cape Town, South Africa
| | - John Joska
- Department of Psychiatry, University of Cape Town, South Africa
| | - Nelson Soares
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Jonathan M Blackburn
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| |
Collapse
|
21
|
Vartak-Sharma N, Nooka S, Ghorpade A. Astrocyte elevated gene-1 (AEG-1) and the A(E)Ging HIV/AIDS-HAND. Prog Neurobiol 2016; 157:133-157. [PMID: 27090750 DOI: 10.1016/j.pneurobio.2016.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/11/2016] [Accepted: 03/19/2016] [Indexed: 12/23/2022]
Abstract
Recent attempts to analyze human immunodeficiency virus (HIV)-1-induced gene expression changes in astrocytes uncovered a multifunctional oncogene, astrocyte elevated gene-1 (AEG-1). Our previous studies revealed that AEG-1 regulates reactive astrocytes proliferation, migration and inflammation, hallmarks of aging and CNS injury. Moreover, the involvement of AEG-1 in neurodegenerative disorders, such as Huntington's disease and migraine, and its induction in the aged brain suggest a plausible role in regulating overall CNS homeostasis and aging. Therefore, it is important to investigate AEG-1 specifically in aging-associated cognitive decline. In this study, we decipher the common mechanistic links in cancer, aging and HIV-1-associated neurocognitive disorders that likely contribute to AEG-1-based regulation of astrocyte responses and function. Despite AEG-1 incorporation into HIV-1 virions and its induction by HIV-1, tumor necrosis factor-α and interleukin-1β, the specific role(s) of AEG-1 in astrocyte-driven HIV-1 neuropathogenesis are incompletely defined. We propose that AEG-1 plays a central role in a multitude of cellular stress responses involving mitochondria, endoplasmic reticulum and the nucleolus. It is thus important to further investigate AEG-1-based cellular and molecular regulation in order to successfully develop better therapeutic approaches that target AEG-1 to combat cancer, HIV-1 and aging.
Collapse
Affiliation(s)
- Neha Vartak-Sharma
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107-2699, USA; Institute for Integrated Cell-Material Sciences, Kyoto University, Japan; Institute for Stem Cell Research and Regenerative Medicine, National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Shruthi Nooka
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107-2699, USA
| | - Anuja Ghorpade
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107-2699, USA.
| |
Collapse
|
22
|
A fully human antibody to gp41 selectively eliminates HIV-infected cells that transmigrated across a model human blood brain barrier. AIDS 2016; 30:563-72. [PMID: 26595540 DOI: 10.1097/qad.0000000000000968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Many HIV patients on combined antiretroviral therapy exhibit HIV-associated neurocognitive disorders because the brain becomes a viral reservoir. There is a need for therapeutics that can enter the central nervous system (CNS) and eradicate the virus. DESIGN Radiolabeled human mAb 2556 to HIV gp41 selectively kills HIV-infected cells in vivo and in vitro. Here we tested the ability of 213Bi-2556 to cross a tissue culture model of the human blood brain barrier and kill HIV-infected peripheral blood mononuclear cells (PBMCs) and monocytes on the CNS side of the barrier. METHODS 2556 mAb isoelectric point was determined with isoelectric focusing. The ability of radiolabeled 2556 to penetrate through the barrier was studied by adding it to the upper chamber of the barriers and its penetration into the CNS side was followed for 5 h. To assess the ability of Bi-2556 to kill the HIV-infected cells on the CNS side of barrier, the HIV-infected and uninfected PBMCs and monocytes were allowed to transmigrate across the barriers overnight followed by application of Bi-2556 or control mAb Bi-1418 to the top of the barrier. Killing of cells was measured by TUNEL and Trypan blue assays. The barriers were examined by confocal microscopy for overt damage. RESULTS The isoelectric point of Bi-2556 was 9.6 enabling its penetration through the barrier by transcytosis. Bi-2556 killed significantly more transmigrated HIV-infected cells in comparison to Bi-1418 and uninfected cells. No overt damage to barriers was observed. CONCLUSION We demonstrated that Bi-2556 mAb crossed an in-vitro human blood brain barrier and specifically killed transmigrated HIV-infected PBMCs and monocytes without overt damage to the barrier.
Collapse
|
23
|
Li GH, Henderson L, Nath A. Astrocytes as an HIV Reservoir: Mechanism of HIV Infection. Curr HIV Res 2016; 14:373-381. [PMID: 27719663 PMCID: PMC11345863 DOI: 10.2174/1570162x14666161006121455] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 08/23/2016] [Accepted: 08/23/2016] [Indexed: 11/22/2022]
Abstract
If we have any hope of achieving a cure for HIV infection, close attention to the cell types capable of getting infected with HIV is necessary. Of these cell types, astrocytes are the most ideal cell type for the formation of such a reservoir. These are long-lived cells with a very low turnover rate and are found in the brain and the gastrointestinal tract. Although astrocytes are evidently resistant to infection of cell-free HIV in vitro, these cells are efficiently infected via cell-tocell contact by which immature HIV virions bud off lymphocytes and have the ability to directly bind to CXCR4, triggering the process of fusion in the absence of CD4. In this review, we closely examine the evidence for HIV infection of astrocytes in the brain and the mechanisms for viral entry and regulation in this cell type, and discuss an approach for controlling this viral reservoir.
Collapse
Affiliation(s)
- Guan-Han Li
- Section of Infections of the Nervous System, NIH/NINDS, 10 Centre Dr., 7C120, Bethesda, MD 20814, USA.
| | | | | |
Collapse
|
24
|
Lee KM, Chiu KB, Renner NA, Sansing HA, Didier PJ, MacLean AG. Form follows function: astrocyte morphology and immune dysfunction in SIV neuroAIDS. J Neurovirol 2014; 20:474-84. [PMID: 24970236 DOI: 10.1007/s13365-014-0267-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/22/2014] [Accepted: 06/16/2014] [Indexed: 11/24/2022]
Abstract
Cortical function is disrupted in neuroinflammatory disorders, including HIV-associated neurocognitive disorders (HAND). Astrocyte dysfunction includes retraction of foot processes from the blood-brain barrier and decreased removal of neurotransmitters from synaptic clefts. Mechanisms of astrocyte activation, including innate immune function and the fine neuroanatomy of astrocytes, however, remain to be investigated. We quantified the number of glial fibrillary acidic protein (GFAP)-labeled astrocytes per square millimeter and the proportion of astrocytes immunopositive for Toll-like receptor 2 (TLR2) to examine innate immune activation in astrocytes. We also performed detailed morphometric analyses of gray and white matter astrocytes in the frontal and parietal lobes of rhesus macaques infected with simian immunodeficiency virus (SIV), both with and without encephalitis, an established model of AIDS neuropathogenesis. Protoplasmic astrocytes (gray matter) and fibrous astrocytes (deep white matter) were imaged, and morphometric features were analyzed using Neurolucida. Gray matter and white matter astrocytes showed no change in cell body size in animals infected with SIV regardless of encephalitic status. In SIV-infected macaques, both gray and white matter astrocytes had shorter, less ramified processes, resulting in decreased cell arbor compared with controls. SIV-infected macaques with encephalitis showed decreases in arbor length in white matter astrocytes and reduced complexity in gray matter astrocytes compared to controls. These results provide the first evidence that innate immune activation of astrocytes is linked to altered cortical astrocyte morphology in SIV/HIV infection. Here, we demonstrate that astrocyte remodeling is correlated with infection. Perturbed neuron-glia signaling may be a driving factor in the development of HAND.
Collapse
Affiliation(s)
- Kim M Lee
- Tulane National Primate Research Center, Covington, LA, USA
| | | | | | | | | | | |
Collapse
|
25
|
TRIM5α and TRIM22 are differentially regulated according to HIV-1 infection phase and compartment. J Virol 2014; 88:4291-303. [PMID: 24478420 DOI: 10.1128/jvi.03603-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED The antiviral role of TRIM E3 ligases in vivo is not fully understood. To test the hypothesis that TRIM5α and TRIM22 have differential transcriptional regulation and distinct anti-HIV roles according to infection phase and compartment, we measured TRIM5α, TRIM22, and type I interferon (IFN-I)-inducible myxovirus resistance protein A (MxA) levels in peripheral blood mononuclear cells (PBMCs) during primary and chronic HIV-1 infection, with chronic infection samples being matched PBMCs and central nervous system (CNS)-derived cells. Associations with biomarkers of disease progression were explored. The impact of IFN-I, select proinflammatory cytokines, and HIV on TRIM E3 ligase-specific expression was investigated. PBMCs from individuals with primary and chronic HIV-1 infection had significantly higher levels of MxA and TRIM22 than did PBMCs from HIV-1-negative individuals (P < 0.05 for all comparisons). PBMCs from chronic infection had lower levels of TRIM5α than did PBMCs from primary infection or HIV-1-uninfected PBMCs (P = 0.0001 for both). In matched CNS-derived samples and PBMCs, higher levels of MxA (P = 0.001) and TRIM5α (P = 0.0001) in the CNS were noted. There was a negative correlation between TRIM22 levels in PBMCs and plasma viral load (r = -0.40; P = 0.04). In vitro, IFN-I and, rarely, proinflammatory cytokines induced TRIM5α and TRIM22 in a cell type-dependent manner, and the knockdown of either protein in CD4(+) lymphocytes resulted in increased HIV-1 infection. These data suggest that there are infection-phase-specific and anatomically compartmentalized differences in TRIM5α and TRIM22 regulation involving primarily IFN-I and specific cell types and indicate subtle differences in the antiviral roles and transcriptional regulation of TRIM E3 ligases in vivo. IMPORTANCE Type I interferon-inducible TRIM E3 ligases are a family of intracellular proteins with potent antiviral activities mediated through diverse mechanisms. However, little is known about the contribution of these proteins to antiviral immunity in vivo and how their expression is regulated. We show here that TRIM5α and TRIM22, two prominent members of the family, have different expression patterns in vivo and that the expression pattern depends on HIV-1 infection status and phase. Furthermore, expression differs in peripheral blood versus central nervous system anatomical sites of infection. Only TRIM22 expression correlated negatively with HIV-1 viral load, but gene silencing of both proteins enhances HIV-1 infection of target cells. We report subtle differences in TRIM5α and TRIM22 gene induction by IFN-I and proinflammatory cytokines in CD4(+) lymphocytes, monocytes, and neuronal cells. This study enhances our understanding of antiviral immunity by intrinsic antiviral factors and how their expression is determined.
Collapse
|
26
|
Bagashev A, Sawaya BE. Roles and functions of HIV-1 Tat protein in the CNS: an overview. Virol J 2013; 10:358. [PMID: 24359561 PMCID: PMC3879180 DOI: 10.1186/1743-422x-10-358] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/06/2013] [Indexed: 01/01/2023] Open
Abstract
Nearly 50% of HIV-infected individuals suffer from some form of HIV-associated neurocognitive disorders (HAND). HIV-1 Tat (a key HIV transactivator of transcription) protein is one of the first HIV proteins to be expressed after infection occurs and is absolutely required for the initiation of the HIV genome transcription. In addition to its canonical functions, various studies have shown the deleterious role of HIV-1 Tat in the development and progression of HAND. Within the CNS, only specific cell types can support productive viral replication (astrocytes and microglia), however Tat protein can be released form infected cells to affects HIV non-permissive cells such as neurons. Therefore, in this review, we will summarize the functions of HIV-1 Tat proteins in neural cells and its ability to promote HAND.
Collapse
Affiliation(s)
| | - Bassel E Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, The Fels Institute for Cancer Research & Molecular Biology, Philadelphia, PA 19140, USA.
| |
Collapse
|
27
|
Avdoshina V, Bachis A, Mocchetti I. Synaptic dysfunction in human immunodeficiency virus type-1-positive subjects: inflammation or impaired neuronal plasticity? J Intern Med 2013; 273:454-65. [PMID: 23600400 PMCID: PMC3633109 DOI: 10.1111/joim.12050] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many people infected with the human immunodeficiency virus type-1 (HIV) exhibit mild or severe neurological problems, termed HIV-associated neurocognitive disorder (HAND), even when receiving antiretroviral therapy. Thus, novel adjunctive therapies must be developed to overcome the neurotoxic effect of HIV. New therapies require a better understanding of the molecular and cellular mechanisms of HIV-induced neurotoxicity and the risk factors that, besides inflammation and T-cell depletion and drugs of abuse, render the central nervous system (CNS) a target of HIV-induced neurotoxicity. HIV appears to impair neuronal plasticity, which refers to the innate ability of the CNS respond to injury and promote recovery of function. The availability of brain-derived neurotrophic factor (BDNF), a potent neurotrophic factor that is present in abundance in the adult brain, is essential for neuronal plasticity. BDNF acts through a receptor system composed of Trk and p75NTR. Here, we present experimental evidence that some of the clinical features of HIV-mediated neurological impairment could result from altered BDNF/TrkB/p75NTR regulation and function.
Collapse
Affiliation(s)
- V Avdoshina
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | | | | |
Collapse
|
28
|
Singer EJ, Valdes-Sueiras M, Commins DL, Yong W, Carlson M. HIV stroke risk: evidence and implications. Ther Adv Chronic Dis 2013; 4:61-70. [PMID: 23556125 DOI: 10.1177/2040622312471840] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
An estimated 34 million men, women, and children are infected with human immunodeficiency virus type 1 (HIV-1), the virus that causes acquired immunodeficiency syndrome (AIDS). Current technology cannot eradicate HIV-1, and most patients with HIV-1-infection (HIV+) will require lifelong treatment with combined antiretroviral therapy (cART). Stroke was recognized as a complication of HIV-1 infection since the early days of the epidemic. Potential causes of stroke in HIV-1 include opportunistic infections, tumors, atherosclerosis, diabetes, hypertension, autoimmunity, coagulopathies, cardiovascular disease, and direct HIV-1 infection of the arterial wall. Ischemic stroke has emerged as a particularly significant neurological complication of HIV-1 and its treatment due to the aging of the HIV+ population, chronic HIV-1 infection, inflammation, and prolonged exposure to cART. New prevention and treatment strategies tailored to the needs of the HIV+ population are needed to address this issue.
Collapse
Affiliation(s)
- Elyse J Singer
- National Neurological AIDS Bank, Department of Neurology, David Geffen School of Medicine at UCLA, 11645 Wilshire Blvd, Suite 770, Los Angeles, CA 90025, USA
| | | | | | | | | |
Collapse
|
29
|
Renner NA, Redmann RK, Moroney-Rasmussen T, Sansing HA, Aye PP, Didier PJ, Lackner AA, Maclean AG. S100β as a novel and accessible indicator for the presence of monocyte-driven encephalitis in AIDS. Neuropathol Appl Neurobiol 2012; 38:162-74. [PMID: 21696421 DOI: 10.1111/j.1365-2990.2011.01200.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS The pathogenesis of human/simian immunodeficiency virus encephalitis (HIVE/SIVE) remains incompletely understood, but is associated with alterations in the blood-brain barrier. At present, it is not possible to easily determine if an individual has HIVE/SIVE before post mortem examination. METHODS We have examined serum levels of the astroglial protein S100β in SIV-infected macaques and show that it can be used to determine which animals have SIVE. We also checked for correlations with inflammatory markers such as CCL2/MCP-1, IL-6 and C-reactive protein. RESULTS We found that increased S100β protein in serum correlated with decreased expression of the tight junction protein zonula occludens-1 on brain microvessels. Furthermore, the decrease in zonula occludens-1 expression was spatially related to SIVE lesions and perivascular deposition of plasma fibrinogen. There was no correlation between encephalitis and plasma levels of IL-6, MCP-1/CCL2 or C-reactive protein. CONCLUSIONS Together, these data indicate that SIVE lesions are associated with vascular leakage that can be determined by S100β protein in the periphery. The ability to simply monitor the presence of SIVE will greatly facilitate studies of the neuropathogenesis of AIDS.
Collapse
Affiliation(s)
- N A Renner
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA 70433, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ferrucci A, Nonnemacher MR, Cohen EA, Wigdahl B. Extracellular human immunodeficiency virus type 1 viral protein R causes reductions in astrocytic ATP and glutathione levels compromising the antioxidant reservoir. Virus Res 2012; 167:358-69. [PMID: 22691542 DOI: 10.1016/j.virusres.2012.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/29/2012] [Accepted: 06/02/2012] [Indexed: 01/05/2023]
Abstract
Patients infected with human immunodeficiency virus type 1 (HIV-1) often display neurological complications in late stage disease and increased viral loads directly correlated with higher concentrations of extracellular HIV-1 viral protein r (Vpr) in the blood serum and cerebrospinal fluid. Additionally, HIV-1-infected patients with a low CD4+ T-lymphocyte count displayed lower concentrations of reduced glutathione (GSH), the main intracellular antioxidant molecule, and lower level of survival. To establish a correlation between increased concentrations of extracellular Vpr and an oxidative stress-induced phenotype, the U-87 MG astroglioma cell line has been used to determine the downstream effects induced by Vpr. Conditioned media obtained from the human endothelial kidney (HEK) 293 T cell line transfected either in the absence or presence of HIV-1 Vpr contained free Vpr. Exposure of U-87 MG to this conditioned media decreased intracellular levels of both adenosine triphosphate (ATP) and GSH. These observations were recapitulated using purified recombinant HIV-1 Vpr both in U-87 MG and primary human fetal astrocytes in a dose- and time-dependent manner. Vpr-induced oxidative stress could be partly restored by co-treatment with the antioxidant molecule N-acetyl-cysteine (NAC). In addition, free Vpr augmented production of reactive oxygen species due to an increase in the level of oxidized glutathione (GSSG). This event was almost entirely suppressed by treatment with an anti-Vpr antibody or co-treatment with NAC. These studies confirm a role of extracellular Vpr in impairing astrocytic levels of intracellular ATP and GSH. Studies are underway to better understand the intricate correlation between reductions in ATP and GSH metabolites and how they affect neuronal survival in end-stage disease.
Collapse
Affiliation(s)
- Adriano Ferrucci
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
31
|
Ganau M, Prisco L, Pescador D, Ganau L. Challenging New Targets for CNS-HIV Infection. Front Neurol 2012; 3:43. [PMID: 22470365 PMCID: PMC3311057 DOI: 10.3389/fneur.2012.00043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 03/06/2012] [Indexed: 11/13/2022] Open
Abstract
The central nervous system (CNS) represents an important target for HIV infection during multiple stages of the disease: early, after invasion of the host, acting as a viral reservoir; lately, subverting its function and causing peripheral neuropathies and neurocognitive disorders; and lastly, during the final stage of NeuroAIDS, triggering opportunistic infections, cancers, and dementia. Highly active antiretroviral therapy, a combination of drugs that inhibits enzymes essential for HIV replication, can reduce the viremia and the onset of opportunistic infections in most patients, and prolong the survival. Among the limits of the current treatments the most noticeable is the inability to eradicate HIV-infected cells, both, limiting the time frame in which antiretroviral therapies initiated after exposure to HIV can prevent infection, and allowing replication-competent virus that persists in infected cells to emerge rapidly after the cessation of treatments. Many strategies are currently under evaluation to improve HIV treatment, unfortunately more than 98% of drug candidates for CNS disorders never make it to the clinic; here in we report how nanoformulated strategies might be adapted and applied to the field of CNS–HIV infection.
Collapse
Affiliation(s)
- Mario Ganau
- Graduate School of Nanotechnology, University of Trieste Trieste, Italy
| | | | | | | |
Collapse
|
32
|
Abstract
OBJECTIVE Human immunodeficiency virus (HIV)-infected people exhibit a high incidence of vascular diseases. Since in the general population the high cardiovascular risk has been associated with an impaired endothelial cell function, we investigated circulating endothelial progenitor cells in HIV-positive patients. DESIGN We evaluated circulating colony-forming unit-endothelial cell (CFU-EC) and endothelial colony-forming cell (ECFC) progenitors in 14 antiviral therapy-naive HIV-positive patients, in comparison with 15 normal controls. METHODS CFU-EC and ECFC derived from peripheral blood mononuclear cells from HIV-infected and HIV-uninfected individuals were recovered and evaluated for HIV genome presence by PCR. Vascular endothelial growth factor (VEGF) and apolipoprotein B mRNA-editing enzyme catalytic polypeptide like (APOBEC) subunits expression were evaluated in infected colonies by real-time PCR. RESULTS We found that circulating CFU-EC but not ECFC were significantly reduced in HIV-positive patients and that proviral HIV DNA was detectable only in CFU-EC but not in ECFC. Furthermore, the expression of APOBEC subunits was significantly lower in CFU-EC than in circulating monocytes. Accordingly, the CFU-EC displayed a high content of proviral DNA copies, suggesting that these cells have a high sensitivity to the HIV infection. CONCLUSIONS Although HIV does not affect the 'true endothelial progenitor' compartment, it infects and strongly depletes circulating endothelial progenitors with hematopoietic signature. We unravel a novel pathogenetic mechanism by which HIV infection might cause vascular diseases.
Collapse
|
33
|
Grovit-Ferbas K, Harris-White ME. Thinking about HIV: the intersection of virus, neuroinflammation and cognitive dysfunction. Immunol Res 2010; 48:40-58. [DOI: 10.1007/s12026-010-8166-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Bachis A, Cruz MI, Mocchetti I. M-tropic HIV envelope protein gp120 exhibits a different neuropathological profile than T-tropic gp120 in rat striatum. Eur J Neurosci 2010; 32:570-8. [PMID: 20670282 DOI: 10.1111/j.1460-9568.2010.07325.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Most early human immunodeficiency virus type 1 (HIV-1) strains are macrophage (M)-tropic HIV variants and use the chemokine receptor CCR5 for infection. Neuronal loss and dementia are less severe among individuals infected with M-tropic strains. However, after several years, the T-cell (T)-tropic HIV strain, which uses the CXCR4 variant, can emerge in conjunction with brain abnormalities, suggesting strain-specific differences in neuropathogenicity. The molecular and cellular mechanisms of such diversity remain under investigation. We have previously demonstrated that HIV envelope protein gp120IIIB, which binds to CXCR4, causes neuronal apoptosis in rodents. Thus, we have used a similar experimental model to examine the neurotoxic effects of M-tropic gp120BaL. gp120BaL was microinjected in the rat striatum and neuronal apoptosis was examined in the striatum, as well as in anatomically connected areas, such as the somatosensory cortex and the substantia nigra. gp120BaL promoted neuronal apoptosis and tissue loss that were confined to the striatum. Apoptosis was associated with microglial activation and increased levels of interleukin-1beta. Intriguingly, gp120BaL increased brain-derived neurotrophic factor in the striatum. Overall, our data show that gp120BaL demonstrates a different neuropathological profile than gp120IIIB. A better understanding of the pathogenic mechanisms mediating HIV neurotoxicity is vital for developing effective neuroprotective therapies against AIDS-associated dementia complex.
Collapse
Affiliation(s)
- Alessia Bachis
- Department of Neuroscience, Georgetown University Medical Center, New Research Building, 3970 Reservoir Rd, Washington, DC 20057, USA
| | | | | |
Collapse
|
35
|
Duenas-Decamp MJ, Peters PJ, Repik A, Musich T, Gonzalez-Perez MP, Caron C, Brown R, Ball J, Clapham PR. Variation in the biological properties of HIV-1 R5 envelopes: implications of envelope structure, transmission and pathogenesis. Future Virol 2010; 5:435-451. [PMID: 20930940 DOI: 10.2217/fvl.10.34] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
HIV-1 R5 viruses predominantly use CCR5 as a coreceptor to infect CD4(+) T cells and macrophages. While R5 viruses generally infect CD4(+) T cells, research over the past few years has demonstrated that they vary extensively in their capacity to infect macrophages. Thus, R5 variants that are highly macrophage tropic have been detected in late disease and are prominent in brain tissue of subjects with neurological complications. Other R5 variants that are less sensitive to CCR5 antagonists and use CCR5 differently have also been identified in late disease. These latter variants have faster replication kinetics and may contribute to CD4 T-cell depletion. In addition, R5 viruses are highly variable in many other properties, including sensitivity to neutralizing antibodies and inhibitors that block HIV-1 entry into cells. Here, we review what is currently known about how HIV-1 R5 viruses vary in cell tropism and other properties, and discuss the implications of this variation on transmission, pathogenesis, therapy and vaccines.
Collapse
Affiliation(s)
- Maria José Duenas-Decamp
- Program in Molecular Medicine & Department of Molecular Genetics & Microbiology, Biotech 2, 373 Plantation Street, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Alteration of blood-brain barrier integrity by retroviral infection. PLoS Pathog 2008; 4:e1000205. [PMID: 19008946 PMCID: PMC2575404 DOI: 10.1371/journal.ppat.1000205] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 10/15/2008] [Indexed: 01/18/2023] Open
Abstract
The blood–brain barrier (BBB), which forms the interface between the blood and the cerebral parenchyma, has been shown to be disrupted during retroviral-associated neuromyelopathies. Human T Lymphotropic Virus (HTLV-1) Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) is a slowly progressive neurodegenerative disease associated with BBB breakdown. The BBB is composed of three cell types: endothelial cells, pericytes and astrocytes. Although astrocytes have been shown to be infected by HTLV-1, until now, little was known about the susceptibility of BBB endothelial cells to HTLV-1 infection and the impact of such an infection on BBB function. We first demonstrated that human cerebral endothelial cells express the receptors for HTLV-1 (GLUT-1, Neuropilin-1 and heparan sulfate proteoglycans), both in vitro, in a human cerebral endothelial cell line, and ex vivo, on spinal cord autopsy sections from HAM/TSP and non-infected control cases. In situ hybridization revealed HTLV-1 transcripts associated with the vasculature in HAM/TSP. We were able to confirm that the endothelial cells could be productively infected in vitro by HTLV-1 and that blocking of either HSPGs, Neuropilin 1 or Glut1 inhibits this process. The expression of the tight-junction proteins within the HTLV-1 infected endothelial cells was altered. These cells were no longer able to form a functional barrier, since BBB permeability and lymphocyte passage through the monolayer of endothelial cells were increased. This work constitutes the first report of susceptibility of human cerebral endothelial cells to HTLV-1 infection, with implications for HTLV-1 passage through the BBB and subsequent deregulation of the central nervous system homeostasis. We propose that the susceptibility of cerebral endothelial cells to retroviral infection and subsequent BBB dysfunction is an important aspect of HAM/TSP pathogenesis and should be considered in the design of future therapeutics strategies. The blood–brain barrier (BBB) forms the interface between the blood and the central nervous system (CNS). BBB disruption is considered to be a key event in the pathogenesis of retroviral-associated neurological diseases. The present paper deals with the susceptibility of the endothelial cells (i.e., one of the main cellular components of BBB) to retroviral infection, and with the impact of infection in BBB function. This study focuses on the Human T-Lymphotropic Virus (HTLV-1), which infects 20 million people worldwide, and is the etiological agent of a neurodegenerative disease called HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP). We first demonstrated that the cerebral endothelial cells express the receptors for the retrovirus in vitro, and on spinal cord autopsy sections from non-infected and HAM/TSP patients. We found on these latter that vascular-like structures were infected and confirmed in vitro that the endothelial cells could be productively infected by HTLV-1. We demonstrated that such an infection impairs BBB properties in vitro, as well as tight junctions, that are cell adhesion structures. This study is the first to demonstrate the impact of HTLV-1 infection on human BBB integrity; such a susceptibility has to be considered in the design of future therapeutics strategies.
Collapse
|
37
|
Fiala M, Singer EJ, Commins D, Mirzapoiazova T, Verin A, Espinosa A, Ugen K, Bernas M, Witte M, Weinand M, Lossinsky AS. HIV-1 Antigens in Neurons of Cocaine-Abusing Patients. Open Virol J 2008; 2:24-31. [PMID: 19440461 PMCID: PMC2678818 DOI: 10.2174/1874357900802010024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 03/11/2008] [Accepted: 03/17/2008] [Indexed: 11/22/2022] Open
Abstract
Cocaine opens the blood-brain barrier by deregulating transcription of target genes. Here we show that cocaine at blood concentrations in drug abusers disrupts endothelial cell junctions in parallel with signaling by phosphorylation of extracellular signal-regulated kinase, myristoylated alanine-rich C kinase and myosin light chain. Cocaine effects may be important in vivo since the neurons of drug abusing patients with HIV-1 associated dementia displayed gp120, p24 and Nef.
Collapse
Affiliation(s)
- Milan Fiala
- Departments of Medicine, UCLA School of Medicine, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Argyris EG, Acheampong E, Wang F, Huang J, Chen K, Mukhtar M, Zhang H. The interferon-induced expression of APOBEC3G in human blood-brain barrier exerts a potent intrinsic immunity to block HIV-1 entry to central nervous system. Virology 2007; 367:440-451. [PMID: 17631933 PMCID: PMC2737467 DOI: 10.1016/j.virol.2007.06.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 05/21/2007] [Accepted: 06/06/2007] [Indexed: 12/28/2022]
Abstract
In the human genome, the APOBEC3 gene has expanded into a tandem array of genes termed APOBEC3A-H. Several members of this family have potent anti-HIV-1 activity. Here we demonstrate that APOBEC-3B/3C/3F and -3G are expressed in all major cellular components of the CNS. Moreover, we show that both interferon-alpha (IFN-alpha) and IFN-gamma significantly enhance the expression of APOBEC-3G/3F and drastically inhibit HIV-1 replication in primary human brain microvascular endothelial cells (BMVECs), the major component of blood-brain barrier (BBB). As the viral inhibition can be neutralized by APOBEC3G-specific siRNA, APOBEC3G plays a key role to mediate the anti-HIV-1 activity of IFN-alpha and/or IFN-gamma. Our findings suggest that, in addition to the restriction at viral entry level, the restriction from APOBEC3 family could account for the low-level replication of HIV-1 in BMVECs. The manipulation of IFN-APOBEC3 signaling pathway could be a potent therapeutic strategy to prevent HIV invasion to central nervous system (CNS).
Collapse
Affiliation(s)
- Elias G Argyris
- Thomas Jefferson University, Dept. of Medicine, Division of Infectious Diseases, Center for Human Virology
| | - Edward Acheampong
- Thomas Jefferson University, Dept. of Medicine, Division of Infectious Diseases, Center for Human Virology
| | - Fengxiang Wang
- Thomas Jefferson University, Dept. of Medicine, Division of Infectious Diseases, Center for Human Virology
| | - Jialing Huang
- Thomas Jefferson University, Dept. of Medicine, Division of Infectious Diseases, Center for Human Virology
| | - Keyang Chen
- Thomas Jefferson University, Dept. of Medicine, Division of Infectious Diseases, Center for Human Virology
| | - Muhammad Mukhtar
- Drexel University-College of Medicine, Dept. of Microbiology and Immunology
| | - Hui Zhang
- Thomas Jefferson University, Dept. of Medicine, Division of Infectious Diseases, Center for Human Virology
| |
Collapse
|
39
|
Scaravilli F, Bazille C, Gray F. Neuropathologic contributions to understanding AIDS and the central nervous system. Brain Pathol 2007; 17:197-208. [PMID: 17388950 PMCID: PMC8095617 DOI: 10.1111/j.1750-3639.2007.00047.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
This historical review describes the evolution of the pathogenetic concepts associated with infection by the Human Immunodeficiency Virus (HIV), with emphasis on the pathology of the nervous system. Although the first descriptions of damage to the nervous system in the acquired immunodeficiency syndrome (AIDS) only appeared in 1982, the dramatic diffusion of the epidemic worldwide and the invariably rapidly fatal outcome of the disease, before the introduction of efficient treatment, generated from the beginning an enormous amount of research with rethinking on a number of pathogenetic concepts. Less than 25 years after the first autopsy series of AIDS patients were published and the virus responsible for AIDS was identified, satisfactory definition and classification of a number of neuropathological complications of HIV infection have been established, leading to accurate clinical radiological and biological diagnosis of the main neurological complications of the disease, which remain a major cause of disability and death in AIDS patients. Clinical and experimental studies have provided essential insight into the pathogenesis of CNS lesions and natural history of the disease. The relatively recent introduction of highly active antiretroviral therapy (HAART) in 1995-1996 has dramatically improved the course and prognosis of HIV disease. However, there remain a number of unsolved pathogenetic issues, the most puzzling of which remains the precise mechanism of neuronal damage underlying the specific HIV-related cognitive disorders (HIV dementia). In addition, although HAART has changed the course of neurological complications of HIV infection, new issues have emerged such as the lack of improvement or even paradoxical deterioration of the neurological status in treated patients. Interpretation of these latter data remains largely speculative partly because of the small number of neuropathological studies related to the beneficial consequence of this treatment.
Collapse
Affiliation(s)
| | - Céline Bazille
- Service Central d’Anatomie et de Cytologie Pathologiques, AP‐HP, Hôpital Lariboisière—Université Paris VII, France
| | - Françoise Gray
- Service Central d’Anatomie et de Cytologie Pathologiques, AP‐HP, Hôpital Lariboisière—Université Paris VII, France
| |
Collapse
|
40
|
Brust D, Polis M, Davey R, Hahn B, Bacharach S, Whatley M, Fauci AS, Carrasquillo JA. Fluorodeoxyglucose imaging in healthy subjects with HIV infection: impact of disease stage and therapy on pattern of nodal activation. AIDS 2006; 20:985-93. [PMID: 16603850 DOI: 10.1097/01.aids.0000222070.52996.76] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Nodal uptake in areas of lymphocyte activation can be visualized using fluorodeoxyglucose. Various patterns of fluorodeoxyglucose accumulation in HIV-positive patients have been described previously and hypothesized potentially to represent regions of active HIV replication or nodal activation. We evaluated the utility of fluorodeoxyglucose scanning as a tool to study HIV pathogenesis. DESIGN We evaluated fluorodeoxyglucose biodistribution visually and quantitatively in HIV-negative individuals and various groups of HIV-infected patients to determine the impact on the pattern of nodal activation of HIV infection, the stage of HIV infection and degree of viremia, and HAART. In addition, we attempted to image anatomical site(s) of ongoing HIV replication in patients with suppressed HIV viremia on HAART, but subsequently discontinued HAART. METHOD We performed fluorodeoxyglucose imaging on five groups: HIV-negative, HIV-positive individuals with early infection, HIV-positive patients with advanced disease, HIV-positive patients with suppressed viral loads, and HIV-positive patients who stopped HAART. RESULTS Healthy HIV patients with suppressed viral loads and HIV-negative individuals had no or little fluorodeoxyglucose nodal accumulation or any other hypermetabolic areas, whereas viremic individuals with early and advanced HIV had increased fluorodeoxyglucose in the peripheral nodes, indicating that fluorodeoxyglucose potentially identifies areas of HIV replication. Fluorodeoxyglucose biodistribution was similar between early and advanced-stage disease. Four of five patients taken off HAART had negative baseline scans but developed nodal uptake and increases in viral loads. CONCLUSION Abnormal fluorodeoxyglucose accumulation occurs in the nodes of individuals with detectable viral loads. Interruption of effective HAART results in the activation of previously quiescent nodal areas.
Collapse
Affiliation(s)
- Douglas Brust
- National Institute of Allergy and Infectious Disease, and the Nuclear Medicine Department, Warren G. Magnuson Clinical Center of the National Institutes of Health, 10 Center Drive, MSC 1180, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Brust D, Polis M, Davey R, Hahn B, Bacharach S, Whatley M, Fauci AS, Carrasquillo JA. Fluorodeoxyglucose imaging in healthy subjects with HIV infection: impact of disease stage and therapy on pattern of nodal activation. AIDS 2006; 20:495-503. [PMID: 16470113 DOI: 10.1097/01.aids.0000210603.40267.29] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Nodal uptake in areas of lymphocyte activation can be visualized using fluorodeoxyglucose (FDG). Various patterns of FDG accumulation in HIV-positive subjects have been described previously and hypothesized to potentially represent regions of active HIV replication and or nodal activation. We evaluated the utility of FDG scanning as a tool to study HIV pathogenesis. DESIGN We evaluated FDG biodistribution visually and quantitatively in HIV-negative individuals and various groups of HIV-infected subjects to determine the impact on pattern of nodal activation of: HIV infection; stage of HIV infection and degree of viremia; and HAART. In addition, we attempted to image anatomical site(s) of on-going HIV replication in subjects with suppressed HIV viremia on ART, but who subsequently discontinued ART. METHOD We performed FDG imaging on five groups: HIV-negative, HIV-positive with early infection, HIV-positive with advanced disease, HIV-positive with suppressed viral loads, and HIV-positive who stopped ART. RESULTS Healthy HIV subjects with suppressed viral loads and HIV-negative individuals had no or little FDG nodal accumulation or any other hypermetabolic areas, whereas viremic subjects with early and advanced HIV had increased FDG in peripheral nodes, indicating that FDG potentially identifies areas of HIV replication. FDG biodistribution was similar between early and advanced-stage. Four of five subjects taken off ART had negative baseline scans but developed nodal uptake and increases in viral load. CONCLUSIONS Abnormal FDG accumulation occurs in nodes of subjects with detectable viral loads. Interruption of effective ART results in activation of previously quiescent nodal areas.
Collapse
Affiliation(s)
- Douglas Brust
- National Institute of Allergy and Infectious Disease, Warren G. Magnuson Clinical Center of the National Institutes of Health, Maryland 20892-1180, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Neil SJD, Aasa-Chapman MMI, Clapham PR, Nibbs RJ, McKnight A, Weiss RA. The promiscuous CC chemokine receptor D6 is a functional coreceptor for primary isolates of human immunodeficiency virus type 1 (HIV-1) and HIV-2 on astrocytes. J Virol 2005; 79:9618-24. [PMID: 16014924 PMCID: PMC1181543 DOI: 10.1128/jvi.79.15.9618-9624.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The role of coreceptors other than CCR5 and CXCR4 in the pathogenesis of human immunodeficiency virus (HIV) disease is controversial. Here we show that a promiscuous CC chemokine receptor, D6, can function as a coreceptor for various primary dual-tropic isolates of HIV type 1 (HIV-1) and HIV-2. Furthermore, D6 usage is common among chimeric HIV-1 constructs bearing the gp120 proteins of isolates from early seroconverting patients. D6 mRNA and immunoreactivity were demonstrated to be expressed in HIV-1 target cells such as macrophages, peripheral blood mononuclear cells, and primary astrocytes. In primary astrocytes, an RNA interference-mediated knockdown of D6 expression inhibited D6-tropic isolate infection. D6 usage may account for some previous observations of alternative receptor tropism for primary human cells. Thus, D6 may be an important receptor for HIV pathogenesis in the brain and for the early dissemination of virus in the host.
Collapse
Affiliation(s)
- Stuart J D Neil
- Wohl Virion Centre, Division of Infection and Immunity, University College London, UK
| | | | | | | | | | | |
Collapse
|
43
|
Gaskill PJ, Watry DD, Burdo TH, Fox HS. Development and characterization of positively selected brain-adapted SIV. Virol J 2005; 2:44. [PMID: 15890081 PMCID: PMC1145188 DOI: 10.1186/1743-422x-2-44] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Accepted: 05/12/2005] [Indexed: 11/10/2022] Open
Abstract
HIV is found in the brains of most infected individuals but only 30% develop neurological disease. Both viral and host factors are thought to contribute to the motor and cognitive disorders resulting from HIV infection. Here, using the SIV/rhesus monkey system, we characterize the salient characteristics of the virus from the brain of animals with neuropathological disorders. Nine unique molecular clones of SIV were derived from virus released by microglia cultured from the brains of two macaques with SIV encephalitis. Sequence analysis revealed a remarkably high level of similarity between their env and nef genes as well as their 3' LTR. As this genotype was found in the brains of two separate animals, and it encoded a set of distinct amino acid changes from the infecting virus, it demonstrates the convergent evolution of the virus to a unique brain-adapted genotype. This genotype was distinct from other macrophage-tropic and neurovirulent strains of SIV. Functional characterization of virus derived from representative clones showed a robust in vitro infection of 174xCEM cells, primary macrophages and primary microglia. The infectious phenotype of this virus is distinct from that shown by other strains of SIV, potentially reflecting the method by which the virus successfully infiltrates and infects the CNS. Positive in vivo selection of a brain-adapted strain of SIV resulted in a near-homogeneous strain of virus with distinct properties that may give clues to the viral basis of neuroAIDS.
Collapse
Affiliation(s)
- Peter J Gaskill
- Department of Neuropharmacology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Debbie D Watry
- Department of Neuropharmacology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Tricia H Burdo
- Department of Neuropharmacology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Howard S Fox
- Department of Neuropharmacology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|