1
|
Francés R, Mata-Garrido J, Lafarga M, Hurlé MA, Tramullas M. miR-30c-5p Gain and Loss of Function Modulate Sciatic Nerve Injury-Induced Nucleolar Stress Response in Dorsal Root Ganglia Neurons. Int J Mol Sci 2024; 25:11427. [PMID: 39518978 PMCID: PMC11547303 DOI: 10.3390/ijms252111427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Neuropathic pain is a prevalent and debilitating chronic syndrome that is often resistant to treatment. It frequently arises as a consequence of damage to first-order nociceptive neurons in the lumbar dorsal root ganglia (DRG), with chromatolysis being the primary neuropathological response following sciatic nerve injury (SNI). Nevertheless, the function of miRNAs in modulating this chromatolytic response in the context of neuropathic pain remains unexplored. Our previous research demonstrated that the intracisternal administration of a miR-30c mimic accelerates the development of neuropathic pain, whereas the inhibition of miR-30c prevents pain onset and reverses established allodynia. In the present study, we sought to elucidate the role of miR-30c-5p in the pathogenesis of neuropathic pain, with a particular focus on its impact on DRG neurons following SNI. The organisation and ultrastructural changes in DRG neurons, particularly in the protein synthesis machinery, nucleolus, and Cajal bodies (CBs), were analysed. The results demonstrated that the administration of a miR-30c-5p mimic exacerbates chromatolytic damage and nucleolar stress and induces CB depletion in DRG neurons following SNI, whereas the administration of a miR-30c-5p inhibitor alleviates these effects. We proposed that three essential cellular responses-nucleolar stress, CB depletion, and chromatolysis-are the pathological mechanisms in stressed DRG neurons underlying neuropathic pain. Moreover, miR-30c-5p inhibition has a neuroprotective effect by reducing the stress response in DRG neurons, which supports its potential as a therapeutic target for neuropathic pain management. This study emphasises the importance of miR-30c-5p in neuropathic pain pathogenesis and supports further exploration of miRNA-based treatments.
Collapse
Affiliation(s)
- Raquel Francés
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain; (R.F.); (M.A.H.)
- Instituto Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain; (J.M.-G.); (M.L.)
| | - Jorge Mata-Garrido
- Instituto Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain; (J.M.-G.); (M.L.)
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| | - Miguel Lafarga
- Instituto Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain; (J.M.-G.); (M.L.)
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| | - María A. Hurlé
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain; (R.F.); (M.A.H.)
- Instituto Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain; (J.M.-G.); (M.L.)
| | - Mónica Tramullas
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain; (R.F.); (M.A.H.)
- Instituto Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain; (J.M.-G.); (M.L.)
| |
Collapse
|
2
|
Aktaş A, Yiğit F, Delibaş B, Kaplan AA, Hamour HM, Marangoz AH, Kaya A, Altun G, Kaplan S. The effects of Garcinia kola and curcumin on the dorsal root ganglion of the diabetic rat after peripheral nerve transection injury. J Chem Neuroanat 2024; 136:102395. [PMID: 38320670 DOI: 10.1016/j.jchemneu.2024.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
OBJECTIVE To test the protective effects of Garcinia kola and curcumin on the ganglion tissues of diabetic rats following the use of autologous vein graft in peripheral nerve transection injury. METHODS The sciatic nerve on the right side was transected, and anastomosis was performed between the proximal and distal ends using an autologous vein graft. Curcumin and Garcinia kola seed extract were administered daily by oral gavage. The ganglion tissues were harvested after a 90-day waiting period. Sensory neurons in the dorsal root ganglion at the L4 and L5 levels were used for stereological evaluations. Mean sensory neuron numbers were analyzed using a stereological technique. The size of the light and dark neurons was also estimated, and ultrastructural and immunohistochemical evaluations were performed. RESULTS A statistically significant difference in sensory neuron numbers was observed between the groups with and without Garcinia kola and curcumin applications. The immunohistochemical results showed that the s-100 protein is expressed selectively between cell types. CONCLUSION The results of this study show that curcumin and Garicinia kola prevented sensory neuron loss in diabetic rats following transection injury to the sciatic nerve.
Collapse
Affiliation(s)
- Abit Aktaş
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Istanbul University - Cerrahpaşa, Istanbul, Turkey
| | - Funda Yiğit
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Istanbul University - Cerrahpaşa, Istanbul, Turkey
| | - Burcu Delibaş
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Arife Ahsen Kaplan
- Department of Histology and Embryology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Hala Mahgoub Hamour
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | | | - Ayşenur Kaya
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey; Department of Histology and Embryology, Faculty of Medicine, Karamanoğlu Mehmetbey University, Karaman, Turkey
| | - Gamze Altun
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Süleyman Kaplan
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey; Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania.
| |
Collapse
|
3
|
McElroy CL, Wang B, Zhang H, Jin K. Cerebellum and Aging: Update and Challenges. Aging Dis 2024; 15:2345-2360. [PMID: 38502583 PMCID: PMC11567260 DOI: 10.14336/ad.2024.0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
The cerebellum plays a vital role in the aging process. With the aging of the cerebellum, there is a decline in balance and motor function, particularly fine motor skills, and an increased risk of falling. However, in recent years, numerous studies have revealed that the cerebellum has several roles besides balance and fine motor skills, such as cognitive function and memory. It also plays a role in many neurodegenerative diseases. Interestingly, the cerebellum ages more rapidly than other brain regions, including the hippocampus. With increasing studies reporting that the cerebellum has a more prominent and interconnected role in the brain, it is essential to understand why aging affects it more, leading to solutions to help curb the accelerated decline. Here, we summarize the cerebellum's function and look at how it ages at the cellular, molecular, and functional levels. Additionally, we explore the the effects of alcoholism on the aging cerebellum as well as the role of the cerebellum in diseases such as Alzheimer's, Parkinson's, and Multiple Sclerosis.
Collapse
Affiliation(s)
| | | | | | - Kunlin Jin
- Department of Pharmacology and Neuroscience, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
4
|
Pérez-Martín E, Pérez-Revuelta L, Barahona-López C, Pérez-Boyero D, Alonso JR, Díaz D, Weruaga E. Oleoylethanolamide Treatment Modulates Both Neuroinflammation and Microgliosis, and Prevents Massive Leukocyte Infiltration to the Cerebellum in a Mouse Model of Neuronal Degeneration. Int J Mol Sci 2023; 24:ijms24119691. [PMID: 37298639 DOI: 10.3390/ijms24119691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Neurodegenerative diseases involve an exacerbated neuroinflammatory response led by microglia that triggers cytokine storm and leukocyte infiltration into the brain. PPARα agonists partially dampen this neuroinflammation in some models of brain insult, but neuronal loss was not the triggering cause in any of them. This study examines the anti-inflammatory and immunomodulatory properties of the PPARα agonist oleoylethanolamide (OEA) in the Purkinje Cell Degeneration (PCD) mouse, which exhibits striking neuroinflammation caused by aggressive loss of cerebellar Purkinje neurons. Using real-time quantitative polymerase chain reaction and immunostaining, we quantified changes in pro- and anti-inflammatory markers, microglial density and marker-based phenotype, and overall leukocyte recruitment at different time points after OEA administration. OEA was found to modulate cerebellar neuroinflammation by increasing the gene expression of proinflammatory mediators at the onset of neurodegeneration and decreasing it over time. OEA also enhanced the expression of anti-inflammatory and neuroprotective factors and the Pparα gene. Regarding microgliosis, OEA reduced microglial density-especially in regions where it is preferentially located in PCD mice-and shifted the microglial phenotype towards an anti-inflammatory state. Finally, OEA prevented massive leukocyte infiltration into the cerebellum. Overall, our findings suggest that OEA may change the environment to protect neurons from degeneration caused by exacerbated inflammation.
Collapse
Affiliation(s)
- Ester Pérez-Martín
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Laura Pérez-Revuelta
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Cristina Barahona-López
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
| | - David Pérez-Boyero
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José R Alonso
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - David Díaz
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Eduardo Weruaga
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
5
|
Guan X, Iyaswamy A, Sreenivasmurthy SG, Su C, Zhu Z, Liu J, Kan Y, Cheung KH, Lu J, Tan J, Li M. Mechanistic Insights into Selective Autophagy Subtypes in Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23073609. [PMID: 35408965 PMCID: PMC8998506 DOI: 10.3390/ijms23073609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
Eukaryotic cells possess a plethora of regulatory mechanisms to maintain homeostasis and ensure proper biochemical functionality. Autophagy, a central, conserved self-consuming process of the cell, ensures the timely degradation of damaged cellular components. Several studies have demonstrated the important roles of autophagy activation in mitigating neurodegenerative diseases, especially Alzheimer's disease (AD). However, surprisingly, activation of macroautophagy has not shown clinical efficacy. Hence, alternative strategies are urgently needed for AD therapy. In recent years, selective autophagy has been reported to be involved in AD pathology, and different subtypes have been identified, such as aggrephagy, mitophagy, reticulophagy, lipophagy, pexophagy, nucleophagy, lysophagy and ribophagy. By clarifying the underlying mechanisms governing these various subtypes, we may come to understand how to control autophagy to treat AD. In this review, we summarize the latest findings concerning the role of selective autophagy in the pathogenesis of AD. The evidence overwhelmingly suggests that selective autophagy is an active mechanism in AD pathology, and that regulating selective autophagy would be an effective strategy for controlling this pathogenesis.
Collapse
Affiliation(s)
- Xinjie Guan
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Sravan Gopalkrishnashetty Sreenivasmurthy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Chengfu Su
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Zhou Zhu
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Jia Liu
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Yuxuan Kan
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
| | - King-Ho Cheung
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Jiahong Lu
- State Key Lab of Quality Research in Chinese Medicine, University of Macau, Macao, China;
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China
- Correspondence: (J.T.); (M.L.)
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
- Correspondence: (J.T.); (M.L.)
| |
Collapse
|
6
|
Del Pilar C, Lebrón-Galán R, Pérez-Martín E, Pérez-Revuelta L, Ávila-Zarza CA, Alonso JR, Clemente D, Weruaga E, Díaz D. The Selective Loss of Purkinje Cells Induces Specific Peripheral Immune Alterations. Front Cell Neurosci 2021; 15:773696. [PMID: 34916910 PMCID: PMC8671039 DOI: 10.3389/fncel.2021.773696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
The progression of neurodegenerative diseases is reciprocally associated with impairments in peripheral immune responses. We investigated different contexts of selective neurodegeneration to identify specific alterations of peripheral immune cells and, at the same time, discover potential biomarkers associated to this pathological condition. Consequently, a model of human cerebellar degeneration and ataxia -the Purkinje Cell Degeneration (PCD) mouse- has been employed, as it allows the study of different processes of selective neuronal death in the same animal, i.e., Purkinje cells in the cerebellum and mitral cells in the olfactory bulb. Infiltrated leukocytes were studied in both brain areas and compared with those from other standardized neuroinflammatory models obtained by administering either gamma radiation or lipopolysaccharide. Moreover, both myeloid and lymphoid splenic populations were analyzed by flow cytometry, focusing on markers of functional maturity and antigen presentation. The severity and type of neural damage and inflammation affected immune cell infiltration. Leukocytes were more numerous in the cerebellum of PCD mice, being located predominantly within those cerebellar layers mostly affected by neurodegeneration, in a completely different manner than the typical models of induced neuroinflammation. Furthermore, the milder degeneration of the olfactory bulb did not foster leukocyte attraction. Concerning the splenic analysis, in PCD mice we found: (1) a decreased percentage of several myeloid cell subsets, and (2) a reduced mean fluorescence intensity in those myeloid markers related to both antigen presentation and functional maturity. In conclusion, the selective degeneration of Purkinje cells triggers a specific effect on peripheral immune cells, fostering both attraction and functional changes. This fact endorses the employment of peripheral immune cell populations as concrete biomarkers for monitoring different neuronal death processes.
Collapse
Affiliation(s)
- Carlos Del Pilar
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Rafael Lebrón-Galán
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Toledo, Spain.,SESCAM (Servicio de Salud de Castile-La-Mancha), Castilla-La Mancha, Spain
| | - Ester Pérez-Martín
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Laura Pérez-Revuelta
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Carmelo Antonio Ávila-Zarza
- IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain.,Applied Statistics Group, Department of Statistics, Universidad de Salamanca, Salamanca, Spain
| | - José Ramón Alonso
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain.,Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| | - Diego Clemente
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Toledo, Spain.,SESCAM (Servicio de Salud de Castile-La-Mancha), Castilla-La Mancha, Spain
| | - Eduardo Weruaga
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - David Díaz
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| |
Collapse
|
7
|
Cruz J, Lemos B. Post-transcriptional diversity in riboproteins and RNAs in aging and cancer. Semin Cancer Biol 2021; 76:292-300. [PMID: 34474152 PMCID: PMC8627441 DOI: 10.1016/j.semcancer.2021.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 12/19/2022]
Abstract
Post-transcriptional (PtscM) and post-translational (PtrnM) modifications of nucleotides and amino acids are covalent modifications able to change physio-chemical properties of RNAs and proteins. In the ribosome, the adequate assembly of rRNAs and ribosomal protein subunits in the nucleolus ensures suitable translational activity, with protein synthesis tuned according to intracellular demands of energy production, replication, proliferation, and growth. Disruption in the regulatory control of PtscM and PtrnM can impair ribosome biogenesis and ribosome function. Ribosomal impairment may, in turn, impact the synthesis of proteins engaged in functions as varied as telomere maintenance, apoptosis, and DNA repair, as well as intersect with mitochondria and telomerase activity. These cellular processes often malfunction in carcinogenesis and senescence. Here we discuss regulatory mechanisms of PtscMs and PtrnMs on ribosomal function. We also address chemical modification in rRNAs and their impacts on cellular metabolism, replication control, and senescence. Further, we highlight similarities and differences of PtscMs and PtrnMs in ribosomal intermediates during aging and carcinogenesis. Understanding these regulatory mechanisms may uncover critical steps for the development of more efficient oncologic and anti-aging therapies.
Collapse
Affiliation(s)
- Jurandir Cruz
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP 01246, Brazil
| | - Bernardo Lemos
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
8
|
Baltanás FC, Berciano MT, Santos E, Lafarga M. The Childhood-Onset Neurodegeneration with Cerebellar Atrophy (CONDCA) Disease Caused by AGTPBP1 Gene Mutations: The Purkinje Cell Degeneration Mouse as an Animal Model for the Study of this Human Disease. Biomedicines 2021; 9:biomedicines9091157. [PMID: 34572343 PMCID: PMC8464709 DOI: 10.3390/biomedicines9091157] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022] Open
Abstract
Recent reports have identified rare, biallelic damaging variants of the AGTPBP1 gene that cause a novel and documented human disease known as childhood-onset neurodegeneration with cerebellar atrophy (CONDCA), linking loss of function of the AGTPBP1 protein to human neurodegenerative diseases. CONDCA patients exhibit progressive cognitive decline, ataxia, hypotonia or muscle weakness among other clinical features that may be fatal. Loss of AGTPBP1 in humans recapitulates the neurodegenerative course reported in a well-characterised murine animal model harbouring loss-of-function mutations in the AGTPBP1 gene. In particular, in the Purkinje cell degeneration (pcd) mouse model, mutations in AGTPBP1 lead to early cerebellar ataxia, which correlates with the massive loss of cerebellar Purkinje cells. In addition, neurodegeneration in the olfactory bulb, retina, thalamus and spinal cord were also reported. In addition to neurodegeneration, pcd mice show behavioural deficits such as cognitive decline. Here, we provide an overview of what is currently known about the structure and functional role of AGTPBP1 and discuss the various alterations in AGTPBP1 that cause neurodegeneration in the pcd mutant mouse and humans with CONDCA. The sequence of neuropathological events that occur in pcd mice and the mechanisms governing these neurodegenerative processes are also reported. Finally, we describe the therapeutic strategies that were applied in pcd mice and focus on the potential usefulness of pcd mice as a promising model for the development of new therapeutic strategies for clinical trials in humans, which may offer potential beneficial options for patients with AGTPBP1 mutation-related CONDCA.
Collapse
Affiliation(s)
- Fernando C. Baltanás
- Lab.1, CIC-IBMCC, University of Salamanca-CSIC and CIBERONC, 37007 Salamanca, Spain;
- Correspondence: ; Tel.: +34-923294801
| | - María T. Berciano
- Department of Molecular Biology and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IDIVAL, 39011 Santander, Spain;
| | - Eugenio Santos
- Lab.1, CIC-IBMCC, University of Salamanca-CSIC and CIBERONC, 37007 Salamanca, Spain;
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IDIVAL, 39011 Santander, Spain;
| |
Collapse
|
9
|
Pathak RU, Soujanya M, Mishra RK. Deterioration of nuclear morphology and architecture: A hallmark of senescence and aging. Ageing Res Rev 2021; 67:101264. [PMID: 33540043 DOI: 10.1016/j.arr.2021.101264] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/04/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
The metazoan nucleus is a highly structured organelle containing several well-defined sub-organelles. It is the largest organelle inside a cell taking up from one tenth to half of entire cell volume. This makes it one of the easiest organelles to identify and study under the microscope. Abnormalities in the nuclear morphology and architecture are commonly observed in an aged and senescent cell. For example, the nuclei enlarge, loose their shape, appear lobulated, harbour nuclear membrane invaginations, carry enlarged/fragmented nucleolus, loose heterochromatin, etc. In this review we discuss about the age-related changes in nuclear features and elaborate upon the molecular reasons driving the change. Many of these changes can be easily imaged under a microscope and analysed in silico. Thus, computational image analysis of nuclear features appears to be a promising tool to evaluate physiological age of a cell and offers to be a legitimate biomarker. It can be used to examine progression of age-related diseases and evaluate therapies.
Collapse
Affiliation(s)
| | - Mamilla Soujanya
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | - Rakesh Kumar Mishra
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
10
|
Kim J, Lee S, Kim H, Lee H, Seong KM, Youn H, Youn B. Autophagic Organelles in DNA Damage Response. Front Cell Dev Biol 2021; 9:668735. [PMID: 33912571 PMCID: PMC8072393 DOI: 10.3389/fcell.2021.668735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Autophagy is an important subcellular event engaged in the maintenance of cellular homeostasis via the degradation of cargo proteins and malfunctioning organelles. In response to cellular stresses, like nutrient deprivation, infection, and DNA damaging agents, autophagy is activated to reduce the damage and restore cellular homeostasis. One of the responses to cellular stresses is the DNA damage response (DDR), the intracellular pathway that senses and repairs damaged DNA. Proper regulation of these pathways is crucial for preventing diseases. The involvement of autophagy in the repair and elimination of DNA aberrations is essential for cell survival and recovery to normal conditions, highlighting the importance of autophagy in the resolution of cell fate. In this review, we summarized the latest information about autophagic recycling of mitochondria, endoplasmic reticulum (ER), and ribosomes (called mitophagy, ER-phagy, and ribophagy, respectively) in response to DNA damage. In addition, we have described the key events necessary for a comprehensive understanding of autophagy signaling networks. Finally, we have highlighted the importance of the autophagy activated by DDR and appropriate regulation of autophagic organelles, suggesting insights for future studies. Especially, DDR from DNA damaging agents including ionizing radiation (IR) or anti-cancer drugs, induces damage to subcellular organelles and autophagy is the key mechanism for removing impaired organelles.
Collapse
Affiliation(s)
- Jeongha Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Hyunwoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Haksoo Lee
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Ki Moon Seong
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea.,Department of Biological Sciences, Pusan National University, Busan, South Korea
| |
Collapse
|
11
|
Puente-Bedia A, Berciano MT, Tapia O, Martínez-Cué C, Lafarga M, Rueda N. Nuclear Reorganization in Hippocampal Granule Cell Neurons from a Mouse Model of Down Syndrome: Changes in Chromatin Configuration, Nucleoli and Cajal Bodies. Int J Mol Sci 2021; 22:ijms22031259. [PMID: 33514010 PMCID: PMC7865916 DOI: 10.3390/ijms22031259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 01/05/2023] Open
Abstract
Down syndrome (DS) or trisomy of chromosome 21 (Hsa21) is characterized by impaired hippocampal-dependent learning and memory. These alterations are due to defective neurogenesis and to neuromorphological and functional anomalies of numerous neuronal populations, including hippocampal granular cells (GCs). It has been proposed that the additional gene dose in trisomic cells induces modifications in nuclear compartments and on the chromatin landscape, which could contribute to some DS phenotypes. The Ts65Dn (TS) mouse model of DS carries a triplication of 92 genes orthologous to those found in Hsa21, and shares many phenotypes with DS individuals, including cognitive and neuromorphological alterations. Considering its essential role in hippocampal memory formation, we investigated whether the triplication of this set of Hsa21 orthologous genes in TS mice modifies the nuclear architecture of their GCs. Our results show that the TS mouse presents alterations in the nuclear architecture of its GCs, affecting nuclear compartments involved in transcription and pre-rRNA and pre-mRNA processing. In particular, the GCs of the TS mouse show alterations in the nucleolar fusion pattern and the molecular assembly of Cajal bodies (CBs). Furthermore, hippocampal GCs of TS mice present an epigenetic dysregulation of chromatin that results in an increased heterochromatinization and reduced global transcriptional activity. These nuclear alterations could play an important role in the neuromorphological and/or functional alterations of the hippocampal GCs implicated in the cognitive dysfunction characteristic of TS mice.
Collapse
Affiliation(s)
- Alba Puente-Bedia
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, 39011 Santander, Spain; (A.P.-B.); (C.M.-C.)
| | - María T. Berciano
- Department of Molecular Biology, “Red sobre Enfermedades Neurodegenerativas (CIBERNED)” and University of Cantabria-IDIVAL, 39011 Santander, Spain;
| | - Olga Tapia
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), “Red sobre Enfermedades Neurodegenerativas (CIBERNED)” and Universidad Europea del Atlántico, 39011 Santander, Spain;
| | - Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, 39011 Santander, Spain; (A.P.-B.); (C.M.-C.)
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology, “Red sobre Enfermedades Neurodegenerativas (CIBERNED)” and University of Cantabria-IDIVAL, 39011 Santander, Spain
- Correspondence: (M.L.); (N.R.); Tel.: +34-942201966 (N.R.); Fax: +34-942201903 (N.R.)
| | - Noemí Rueda
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, 39011 Santander, Spain; (A.P.-B.); (C.M.-C.)
- Correspondence: (M.L.); (N.R.); Tel.: +34-942201966 (N.R.); Fax: +34-942201903 (N.R.)
| |
Collapse
|
12
|
Bodakuntla S, Janke C, Magiera MM. Tubulin polyglutamylation, a regulator of microtubule functions, can cause neurodegeneration. Neurosci Lett 2021; 746:135656. [PMID: 33482309 DOI: 10.1016/j.neulet.2021.135656] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases lead to a progressive demise of neuronal functions that ultimately results in neuronal death. Besides a large variety of molecular pathways that have been linked to the degeneration of neurons, dysfunctions of the microtubule cytoskeleton are common features of many human neurodegenerative disorders. Yet, it is unclear whether microtubule dysfunctions are causative, or mere bystanders in the disease progression. A so-far little explored regulatory mechanism of the microtubule cytoskeleton, the posttranslational modifications of tubulin, emerge as candidate mechanisms involved in neuronal dysfunction, and thus, degeneration. Here we review the role of tubulin polyglutamylation, a prominent modification of neuronal microtubules. We discuss the current understanding of how polyglutamylation controls microtubule functions in healthy neurons, and how deregulation of this modification leads to neurodegeneration in mice and humans.
Collapse
Affiliation(s)
- Satish Bodakuntla
- Institut Curie, PSL Research University, CNRS UMR3348, F-91401 Orsay, France; Université Paris-Saclay, CNRS UMR3348, F-91401 Orsay, France
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR3348, F-91401 Orsay, France; Université Paris-Saclay, CNRS UMR3348, F-91401 Orsay, France.
| | - Maria M Magiera
- Institut Curie, PSL Research University, CNRS UMR3348, F-91401 Orsay, France; Université Paris-Saclay, CNRS UMR3348, F-91401 Orsay, France.
| |
Collapse
|
13
|
Ornatowski W, Lu Q, Yegambaram M, Garcia AE, Zemskov EA, Maltepe E, Fineman JR, Wang T, Black SM. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol 2020; 36:101679. [PMID: 32818797 PMCID: PMC7451718 DOI: 10.1016/j.redox.2020.101679] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
The autophagic pathway involves the encapsulation of substrates in double-membraned vesicles, which are subsequently delivered to the lysosome for enzymatic degradation and recycling of metabolic precursors. Autophagy is a major cellular defense against oxidative stress, or related conditions that cause accumulation of damaged proteins or organelles. Selective forms of autophagy can maintain organelle populations or remove aggregated proteins. Dysregulation of redox homeostasis under pathological conditions results in excessive generation of reactive oxygen species (ROS), leading to oxidative stress and the associated oxidative damage of cellular components. Accumulating evidence indicates that autophagy is necessary to maintain redox homeostasis. ROS activates autophagy, which facilitates cellular adaptation and diminishes oxidative damage by degrading and recycling intracellular damaged macromolecules and dysfunctional organelles. The cellular responses triggered by oxidative stress include the altered regulation of signaling pathways that culminate in the regulation of autophagy. Current research suggests a central role for autophagy as a mammalian oxidative stress response and its interrelationship to other stress defense systems. Altered autophagy phenotypes have been observed in lung diseases such as chronic obstructive lung disease, acute lung injury, cystic fibrosis, idiopathic pulmonary fibrosis, and pulmonary arterial hypertension, and asthma. Understanding the mechanisms by which ROS regulate autophagy will provide novel therapeutic targets for lung diseases. This review highlights our current understanding on the interplay between ROS and autophagy in the development of pulmonary disease.
Collapse
Affiliation(s)
- Wojciech Ornatowski
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Qing Lu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | | | - Alejandro E Garcia
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Evgeny A Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Emin Maltepe
- Department of Pediatrics, The University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, The University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ting Wang
- Department of Internal Medicine, The University of Arizona Health Sciences, Phoenix, AZ, USA
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
14
|
Yao RQ, Ren C, Xia ZF, Yao YM. Organelle-specific autophagy in inflammatory diseases: a potential therapeutic target underlying the quality control of multiple organelles. Autophagy 2020; 17:385-401. [PMID: 32048886 PMCID: PMC8007140 DOI: 10.1080/15548627.2020.1725377] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The structural integrity and functional stability of organelles are prerequisites for the viability and responsiveness of cells. Dysfunction of multiple organelles is critically involved in the pathogenesis and progression of various diseases, such as chronic obstructive pulmonary disease, cardiovascular diseases, infection, and neurodegenerative diseases. In fact, those organelles synchronously present with evident structural derangement and aberrant function under exposure to different stimuli, which might accelerate the corruption of cells. Therefore, the quality control of multiple organelles is of great importance in maintaining the survival and function of cells and could be a potential therapeutic target for human diseases. Organelle-specific autophagy is one of the major subtypes of autophagy, selectively targeting different organelles for quality control. This type of autophagy includes mitophagy, pexophagy, reticulophagy (endoplasmic reticulum), ribophagy, lysophagy, and nucleophagy. These kinds of organelle-specific autophagy are reported to be beneficial for inflammatory disorders by eliminating damaged organelles and maintaining homeostasis. In this review, we summarized the recent findings and mechanisms covering different kinds of organelle-specific autophagy, as well as their involvement in various diseases, aiming to arouse concern about the significance of the quality control of multiple organelles in the treatment of inflammatory diseases.Abbreviations: ABCD3: ATP binding cassette subfamily D member 3; AD: Alzheimer disease; ALS: amyotrophic lateral sclerosis; AMBRA1: autophagy and beclin 1 regulator 1; AMPK: AMP-activated protein kinase; ARIH1: ariadne RBR E3 ubiquitin protein ligase 1; ATF: activating transcription factor; ATG: autophagy related; ATM: ATM serine/threonine kinase; BCL2: BCL2 apoptosis regulator; BCL2L11/BIM: BCL2 like 11; BCL2L13: BCL2 like 13; BECN1: beclin 1; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3 like; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CANX: calnexin; CAT: catalase; CCPG1: cell cycle progression 1; CHDH: choline dehydrogenase; COPD: chronic obstructive pulmonary disease; CSE: cigarette smoke exposure; CTSD: cathepsin D; DDIT3/CHOP: DNA-damage inducible transcript 3; DISC1: DISC1 scaffold protein; DNM1L/DRP1: dynamin 1 like; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EIF2S1/eIF2α: eukaryotic translation initiation factor 2 alpha kinase 3; EMD: emerin; EPAS1/HIF-2α: endothelial PAS domain protein 1; ER: endoplasmic reticulum; ERAD: ER-associated degradation; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; FBXO27: F-box protein 27; FKBP8: FKBP prolyl isomerase 8; FTD: frontotemporal dementia; FUNDC1: FUN14 domain containing 1; G3BP1: G3BP stress granule assembly factor 1; GBA: glucocerebrosidase beta; HIF1A/HIF1: hypoxia inducible factor 1 subunit alpha; IMM: inner mitochondrial membrane; LCLAT1/ALCAT1: lysocardiolipin acyltransferase 1; LGALS3/Gal3: galectin 3; LIR: LC3-interacting region; LMNA: lamin A/C; LMNB1: lamin B1; LPS: lipopolysaccharide; MAPK8/JNK: mitogen-activated protein kinase 8; MAMs: mitochondria-associated membranes; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MFN1: mitofusin 1; MOD: multiple organelles dysfunction; MTPAP: mitochondrial poly(A) polymerase; MUL1: mitochondrial E3 ubiquitin protein ligase 1; NBR1: NBR1 autophagy cargo receptor; NLRP3: NLR family pyrin domain containing 3; NUFIP1: nuclear FMR1 interacting protein 1; OMM: outer mitochondrial membrane; OPTN: optineurin; PD: Parkinson disease; PARL: presenilin associated rhomboid like; PEX3: peroxisomal biogenesis factor 3; PGAM5: PGAM family member 5; PHB2: prohibitin 2; PINK1: PTEN induced putative kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RETREG1/FAM134B: reticulophagy regulator 1; RHOT1/MIRO1: ras homolog family member T1; RIPK3/RIP3: receptor interacting serine/threonine kinase 3; ROS: reactive oxygen species; RTN3: reticulon 3; SEC62: SEC62 homolog, preprotein translocation factor; SESN2: sestrin2; SIAH1: siah E3 ubiquitin protein ligase 1; SNCA: synuclein alpha; SNCAIP: synuclein alpha interacting protein; SQSTM1/p62: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TFEB: transcription factor EB; TICAM1/TRIF: toll-like receptor adaptor molecule 1; TIMM23: translocase of inner mitochondrial membrane 23; TNKS: tankyrase; TOMM: translocase of the outer mitochondrial membrane; TRIM: tripartite motif containing; UCP2: uncoupling protein 2; ULK1: unc-51 like autophagy activating kinase; UPR: unfolded protein response; USP10: ubiquitin specific peptidase 10; VCP/p97: valosin containing protein; VDAC: voltage dependent anion channels; XIAP: X-linked inhibitor of apoptosis; ZNHIT3: zinc finger HIT-type containing 3.
Collapse
Affiliation(s)
- Ren-Qi Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, People's Republic of China.,Department of Burn Surgery, Changhai Hospital, Navy Medical University, Shanghai, People's Republic of China
| | - Chao Ren
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Zhao-Fan Xia
- Department of Burn Surgery, Changhai Hospital, Navy Medical University, Shanghai, People's Republic of China
| | - Yong-Ming Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
15
|
Baltanás FC, Berciano MT, Tapia O, Narcis JO, Lafarga V, Díaz D, Weruaga E, Santos E, Lafarga M. Nucleolin reorganization and nucleolar stress in Purkinje cells of mutant PCD mice. Neurobiol Dis 2019; 127:312-322. [PMID: 30905767 DOI: 10.1016/j.nbd.2019.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/25/2019] [Accepted: 03/20/2019] [Indexed: 01/12/2023] Open
Abstract
The Purkinje cell (PC) degeneration (pcd) mouse harbors a mutation in Agtpbp1 gene that encodes for the cytosolic carboxypeptidase, CCP1. The mutation causes degeneration and death of PCs during the postnatal life, resulting in clinical and pathological manifestation of cerebellar ataxia. Monogenic biallelic damaging variants in the Agtpbp1 gene cause infantile-onset neurodegeneration and cerebellar atrophy, linking loss of functional CCP1 with human neurodegeneration. Although CCP1 plays a key role in the regulation of tubulin stabilization, its loss of function in PCs leads to a severe nuclear phenotype with heterochromatinization and accumulation of DNA damage. Therefore, the pcd mice provides a useful neuronal model to investigate nuclear mechanisms involved in neurodegeneration, particularly the nucleolar stress. In this study, we demonstrated that the Agtpbp1 gene mutation induces a p53-dependent nucleolar stress response in PCs, which is characterized by nucleolar fragmentation, nucleoplasmic and cytoplasmic mislocalization of nucleolin, and dysfunction of both pre-rRNA processing and mRNA translation. RT-qPCR analysis revealed reduction of mature 18S rRNA, with a parallel increase of its intermediate 18S-5'-ETS precursor, that correlates with a reduced expression of Fbl mRNA, which encodes an essential factor for rRNA processing. Moreover, nucleolar alterations were accompanied by a reduction of PTEN mRNA and protein levels, which appears to be related to the chromosome instability and accumulation of DNA damage in degenerating PCs. Our results highlight the essential contribution of nucleolar stress to PC degeneration and also underscore the nucleoplasmic mislocalization of nucleolin as a potential indicator of neurodegenerative processes.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Lab.1, CIC-IBMCC (Universidad de Salamanca-CSIC) and CIBERONC, Salamanca, Spain
| | - María T Berciano
- Department of Anat and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Santander, Spain
| | - Olga Tapia
- Department of Anat and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Santander, Spain
| | - Josep Oriol Narcis
- Department of Anat and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Santander, Spain
| | - Vanesa Lafarga
- Laboratory of Genomic Instability, "Centro Nacional de Investigaciones Oncológicas" (CNIO), Madrid, Spain
| | - David Díaz
- Laboratory of Neural Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León, Universidad de Salamanca, Salamanca, Spain
| | - Eduardo Weruaga
- Laboratory of Neural Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León, Universidad de Salamanca, Salamanca, Spain
| | - Eugenio Santos
- Lab.1, CIC-IBMCC (Universidad de Salamanca-CSIC) and CIBERONC, Salamanca, Spain
| | - Miguel Lafarga
- Department of Anat and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Santander, Spain.
| |
Collapse
|
16
|
Riancho J, Gonzalo I, Ruiz-Soto M, Berciano J. Why do motor neurons degenerate? Actualisation in the pathogenesis of amyotrophic lateral sclerosis. NEUROLOGÍA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.nrleng.2015.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
17
|
Riancho J, Gonzalo I, Ruiz-Soto M, Berciano J. ¿Por qué degeneran las motoneuronas? Actualización en la patogenia de la esclerosis lateral amiotrófica. Neurologia 2019; 34:27-37. [DOI: 10.1016/j.nrl.2015.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/06/2015] [Indexed: 12/11/2022] Open
|
18
|
Jang J, Oh H, Nam D, Seol W, Seo MK, Park SW, Kim HG, Seo H, Son I, Ho DH. Increase in anti-apoptotic molecules, nucleolin, and heat shock protein 70, against upregulated LRRK2 kinase activity. Anim Cells Syst (Seoul) 2018; 22:273-280. [PMID: 30460108 PMCID: PMC6171436 DOI: 10.1080/19768354.2018.1518262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 12/30/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is involved in Parkinson’s disease (PD) pathology. A previous study showed that rotenone treatment induced apoptosis, mitochondrial damage, and nucleolar disruption via up-regulated LRRK2 kinase activity, and these effects were rescued by an LRRK2 kinase inhibitor. Heat-shock protein 70 (Hsp70) is an anti-oxidative stress chaperone, and overexpression of Hsp70 enhanced tolerance to rotenone. Nucleolin (NCL) is a component of the nucleolus; overexpression of NCL reduced cellular vulnerability to rotenone. Thus, we hypothesized that rotenone-induced LRRK2 activity would promote changes in neuronal Hsp70 and NCL expressions. Moreover, LRRK2 G2019S, the most prevalent LRRK2 pathogenic mutant with increased kinase activity, could induce changes in Hsp70 and NCL expression. Rotenone treatment of differentiated SH-SY5Y (dSY5Y) cells increased LRKK2 levels and kinase activity, including phospho-S935-LRRK2, phospho-S1292-LRRK2, and the phospho-moesin/moesin ratio, in a dose-dependent manner. Neuronal toxicity and the elevation of cleaved poly (ADP-ribose) polymerase, NCL, and Hsp70 were increased by rotenone. To validate the induction of NCL and Hsp70 expression in response to rotenone, cycloheximide (CHX), a protein synthesis blocker, was administered with rotenone. Post-rotenone increased NCL and Hsp70 expression was repressed by CHX; whereas, rotenone-induced kinase activity and apoptotic toxicity remained unchanged. Transient expression of G2019S in dSY5Y increased the NCL and Hsp70 levels, while administration of a kinase inhibitor diminished these changes. Similar results were observed in rat primary neurons after rotenone treatment or G2019S transfection. Brains from G2019S-transgenic mice also showed increased NCL and Hsp70 levels. Accordingly, LRRK2 kinase inhibition might prevent oxidative stress-mediated PD progression. Abbreviations: 6-OHDA: 6-hydroxydopamine; CHX: cycloheximide; dSY5Y: differentiated SH-SY5Y; g2019S tg: g2019S transgenic mouse; GSK/A-KI: GSK2578215A kinase inhibitor; HSP70: heat shock protein 70; LDH: lactose dehydrogenase; LRRK2: leucine rich-repeat kinase 2; MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; myc-GS LRRK2: myc-tagged g2019S LRRK2; NCL: nucleolin; PARP: poly(ADP-ribose) polymerase; PD: Parkinson’s disease; PINK1: PTEN-induced putative kinase 1; pmoesin: phosphorylated moesin at t558; ROS: reactive oxygen species
Collapse
Affiliation(s)
- Jihoon Jang
- Department of Molecular and Life Sciences, Hanyang University, Ansan-si, Republic of Korea.,InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo-si, Republic of Korea
| | - Hakjin Oh
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo-si, Republic of Korea
| | - Daleum Nam
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo-si, Republic of Korea
| | - Wongi Seol
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo-si, Republic of Korea
| | - Mi Kyoung Seo
- Paik Institute for Clinical Research, Inje University College of Medicine, Busan, Republic of Korea
| | - Sung Woo Park
- Paik Institute for Clinical Research, Inje University College of Medicine, Busan, Republic of Korea.,Department of Health Science and Technology, Graduate School of Inje University, Busan, Republic of Korea
| | - Hyung Gun Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan-si, Republic of Korea
| | - Hyemyung Seo
- Department of Molecular and Life Sciences, Hanyang University, Ansan-si, Republic of Korea
| | - Ilhong Son
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo-si, Republic of Korea.,Department of Neurology, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo-si, Republic of Korea
| | - Dong Hwan Ho
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo-si, Republic of Korea
| |
Collapse
|
19
|
Moon LDF. Chromatolysis: Do injured axons regenerate poorly when ribonucleases attack rough endoplasmic reticulum, ribosomes and RNA? Dev Neurobiol 2018; 78:1011-1024. [PMID: 30027624 PMCID: PMC6334169 DOI: 10.1002/dneu.22625] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 02/06/2023]
Abstract
After axonal injury, chromatolysis (fragmentation of Nissl substance) can occur in the soma. Electron microscopy shows that chromatolysis involves fission of the rough endoplasmic reticulum. In CNS neurons (which do not regenerate axons back to their original targets) or in motor neurons or dorsal root ganglion neurons denied axon regeneration (e.g., by transection and ligation), chromatolysis is often accompanied by degranulation (loss of ribosomes from rough endoplasmic reticulum), disaggregation of polyribosomes and degradation of monoribosomes into dust‐like particles. Ribosomes and rough endoplasmic reticulum may also be degraded in autophagic vacuoles by ribophagy and reticulophagy, respectively. In other words, chromatolysis is disruption of parts of the protein synthesis infrastructure. Whereas some neurons may show transient or no chromatolysis, severely injured neurons can remain chromatolytic and never again synthesize normal levels of protein; some may atrophy or die. Ribonuclease(s) might cause the following features of chromatolysis: fragmentation and degranulation of rough endoplasmic reticulum, disaggregation of polyribosomes and degradation of monoribosomes. For example, ribonucleases in the EndoU/PP11 family can modify rough endoplasmic reticulum; many ribonucleases can degrade mRNA causing polyribosomes to unchain and disperse, and they can disassemble monoribosomes; Ribonuclease 5 can control rRNA synthesis and degrade tRNA; Ribonuclease T2 can degrade ribosomes, endoplasmic reticulum and RNA within autophagic vacuoles; and Ribonuclease IRE1α acts as a stress sensor within the endoplasmic reticulum. Regeneration might be improved after axonal injury by protecting the protein synthesis machinery from catabolism; targeting ribonucleases using inhibitors can enhance neurite outgrowth and could be a profitable strategy in vivo. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018
Collapse
Affiliation(s)
- Lawrence David Falcon Moon
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, 16-20 Newcomen Street, London, SE1 1UL, United Kingdom
| |
Collapse
|
20
|
Muñoz-Castañeda R, Díaz D, Peris L, Andrieux A, Bosc C, Muñoz-Castañeda JM, Janke C, Alonso JR, Moutin MJ, Weruaga E. Cytoskeleton stability is essential for the integrity of the cerebellum and its motor- and affective-related behaviors. Sci Rep 2018; 8:3072. [PMID: 29449678 PMCID: PMC5814431 DOI: 10.1038/s41598-018-21470-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/29/2018] [Indexed: 01/06/2023] Open
Abstract
The cerebellum plays a key role in motor tasks, but its involvement in cognition is still being considered. Although there is an association of different psychiatric and cognitive disorders with cerebellar impairments, the lack of time-course studies has hindered the understanding of the involvement of cerebellum in cognitive and non-motor functions. Such association was here studied using the Purkinje Cell Degeneration mutant mouse, a model of selective and progressive cerebellar degeneration that lacks the cytosolic carboxypeptidase 1 (CCP1). The effects of the absence of this enzyme on the cerebellum of mutant mice were analyzed both in vitro and in vivo. These analyses were carried out longitudinally (throughout both the pre-neurodegenerative and neurodegenerative stages) and different motor and non-motor tests were performed. We demonstrate that the lack of CCP1 affects microtubule dynamics and flexibility, defects that contribute to the morphological alterations of the Purkinje cells (PCs), and to progressive cerebellar breakdown. Moreover, this degeneration led not only to motor defects but also to gradual cognitive impairments, directly related to the progression of cellular damage. Our findings confirm the cerebellar implication in non-motor tasks, where the formation of the healthy, typical PCs structure is necessary for normal cognitive and affective behavior.
Collapse
Affiliation(s)
- Rodrigo Muñoz-Castañeda
- Laboratory of Neural Plasticity and Neurorepair. Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, E-37007, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), E-37007, Salamanca, Spain
| | - David Díaz
- Laboratory of Neural Plasticity and Neurorepair. Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, E-37007, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), E-37007, Salamanca, Spain
| | - Leticia Peris
- Inserm, U1216, F-38000, Grenoble, France.,Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000, Grenoble, France
| | - Annie Andrieux
- Inserm, U1216, F-38000, Grenoble, France.,Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000, Grenoble, France.,CEA, BIG-GPC, F-38000, Grenoble, France
| | - Christophe Bosc
- Inserm, U1216, F-38000, Grenoble, France.,Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000, Grenoble, France
| | - José M Muñoz-Castañeda
- Physics Department, Aeronautics Engineering School, Polytechnic University of Madrid, E-28040, Madrid, Spain
| | - Carsten Janke
- Institut Curie, F-91405, Orsay, France.,Paris Sciences et Lettres Research University, F-75005, Paris, France.,Centre National de la Recherche Scientifique, UMR3348, F-91405, Orsay, France
| | - José R Alonso
- Laboratory of Neural Plasticity and Neurorepair. Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, E-37007, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), E-37007, Salamanca, Spain.,Institute for Higher Research, University of Tarapaca, Arica, Chile
| | - Marie-Jo Moutin
- Inserm, U1216, F-38000, Grenoble, France.,Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000, Grenoble, France
| | - Eduardo Weruaga
- Laboratory of Neural Plasticity and Neurorepair. Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, E-37007, Salamanca, Spain. .,Institute for Biomedical Research of Salamanca (IBSAL), E-37007, Salamanca, Spain.
| |
Collapse
|
21
|
Tapia O, Narcís JO, Riancho J, Tarabal O, Piedrafita L, Calderó J, Berciano MT, Lafarga M. Cellular bases of the RNA metabolism dysfunction in motor neurons of a murine model of spinal muscular atrophy: Role of Cajal bodies and the nucleolus. Neurobiol Dis 2017; 108:83-99. [PMID: 28823932 DOI: 10.1016/j.nbd.2017.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/01/2017] [Accepted: 08/16/2017] [Indexed: 02/06/2023] Open
Abstract
Spinal muscular atrophy (SMA) is caused by a homozygous deletion or mutation in the survival motor neuron 1 (SMN1) gene that leads to reduced levels of SMN protein resulting in degeneration of motor neurons (MNs). The best known functions of SMN is the biogenesis of spliceosomal snRNPs. Linked to this function, Cajal bodies (CBs) are involved in the assembly of spliceosomal (snRNPs) and nucleolar (snoRNPs) ribonucleoproteins required for pre-mRNA and pre-rRNA processing. Recent studies support that the interaction between CBs and nucleoli, which are especially prominent in neurons, is essential for the nucleolar rRNA homeostasis. We use the SMN∆7 murine model of type I SMA to investigate the cellular basis of the dysfunction of RNA metabolism in MNs. SMN deficiency in postnatal MNs produces a depletion of functional CBs and relocalization of coilin, which is a scaffold protein of CBs, in snRNP-free perinucleolar caps or within the nucleolus. Disruption of CBs is the earliest nuclear sign of MN degeneration. We demonstrate that depletion of CBs, with loss of CB-nucleolus interactions, induces a progressive nucleolar dysfunction in ribosome biogenesis. It includes reorganization and loss of nucleolar transcription units, segregation of dense fibrillar and granular components, retention of SUMO-conjugated proteins in intranucleolar bodies and a reactive, compensatory, up-regulation of mature 18S rRNA and genes encoding key nucleolar proteins, such as upstream binding factor, fibrillarin, nucleolin and nucleophosmin. We propose that CB depletion and nucleolar alterations are essential components of the dysfunction of RNA metabolism in SMA.
Collapse
Affiliation(s)
- Olga Tapia
- Department of Anatomy and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Santander, Spain
| | - Josep Oriol Narcís
- Department of Anatomy and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Santander, Spain
| | - Javier Riancho
- Service of Neurology, University Hospital Marqués de Valdecilla-IDIVAL-CIBERNED, Santander, Spain
| | - Olga Tarabal
- Department of Experimental Medicine, School of Medicine, University of Lleida and "Institut de Recerca Biomèdica de Lleida" (IRBLLEIDA), Lleida, Spain
| | - Lídia Piedrafita
- Department of Experimental Medicine, School of Medicine, University of Lleida and "Institut de Recerca Biomèdica de Lleida" (IRBLLEIDA), Lleida, Spain
| | - Jordi Calderó
- Department of Experimental Medicine, School of Medicine, University of Lleida and "Institut de Recerca Biomèdica de Lleida" (IRBLLEIDA), Lleida, Spain
| | - Maria T Berciano
- Department of Anatomy and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Santander, Spain
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Santander, Spain.
| |
Collapse
|
22
|
Scott EY, Penedo MCT, Murray JD, Finno CJ. Defining Trends in Global Gene Expression in Arabian Horses with Cerebellar Abiotrophy. CEREBELLUM (LONDON, ENGLAND) 2017; 16:462-472. [PMID: 27709457 PMCID: PMC5336519 DOI: 10.1007/s12311-016-0823-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Equine cerebellar abiotrophy (CA) is a hereditary neurodegenerative disease that affects the Purkinje neurons of the cerebellum and causes ataxia in Arabian foals. Signs of CA are typically first recognized either at birth to any time up to 6 months of age. CA is inherited as an autosomal recessive trait and is associated with a single nucleotide polymorphism (SNP) on equine chromosome 2 (13074277G>A), located in the fourth exon of TOE1 and in proximity to MUTYH on the antisense strand. We hypothesize that unraveling the functional consequences of the CA SNP using RNA-seq will elucidate the molecular pathways underlying the CA phenotype. RNA-seq (100 bp PE strand-specific) was performed in cerebellar tissue from four CA-affected and five age-matched unaffected horses. Three pipelines for differential gene expression (DE) analysis were used (Tophat2/Cuffdiff2, Kallisto/EdgeR, and Kallisto/Sleuth) with 151 significant DE genes identified by all three pipelines in CA-affected horses. TOE1 (Log2(foldchange) = 0.92, p = 0.66) and MUTYH (Log2(foldchange) = 1.13, p = 0.66) were not differentially expressed. Among the major pathways that were differentially expressed, genes associated with calcium homeostasis and specifically expressed in Purkinje neurons, CALB1 (Log2(foldchange) = -1.7, p < 0.01) and CA8 (Log2(foldchange) = -0.97, p < 0.01), were significantly down-regulated, confirming loss of Purkinje neurons. There was also a significant up-regulation of markers for microglial phagocytosis, TYROBP (Log2(foldchange) = 1.99, p < 0.01) and TREM2 (Log2(foldchange) = 2.02, p < 0.01). These findings reaffirm a loss of Purkinje neurons in CA-affected horses along with a potential secondary loss of granular neurons and activation of microglial cells.
Collapse
Affiliation(s)
- E Y Scott
- Department of Animal Science, University of California, Davis, USA
| | - M C T Penedo
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, USA
| | - J D Murray
- Department of Animal Science, University of California, Davis, USA.
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, USA.
| | - C J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, USA.
| |
Collapse
|
23
|
Neural Differentiation in HDAC1-Depleted Cells Is Accompanied by Coilin Downregulation and the Accumulation of Cajal Bodies in Nucleoli. Stem Cells Int 2017; 2017:1021240. [PMID: 28337219 PMCID: PMC5350323 DOI: 10.1155/2017/1021240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/12/2017] [Accepted: 01/26/2017] [Indexed: 12/23/2022] Open
Abstract
Cajal bodies (CBs) are important compartments containing accumulated proteins that preferentially regulate RNA-related nuclear events, including splicing. Here, we studied the nuclear distribution pattern of CBs in neurogenesis. In adult brains, coilin was present at a high density, but CB formation was absent in the nuclei of the choroid plexus of the lateral ventricles. Cells of the adult hippocampus were characterized by a crescent-like morphology of coilin protein. We additionally observed a 70 kDa splice variant of coilin in adult mouse brains, which was different to embryonic brains and mouse pluripotent embryonic stem cells (mESCs), characterized by the 80 kDa standard variant of coilin. Here, we also showed that depletion of coilin is induced during neural differentiation and HDAC1 deficiency in mESCs caused coilin accumulation inside the fibrillarin-positive region of the nucleoli. A similar distribution pattern was observed in adult brain hippocampi, characterized by lower levels of both coilin and HDAC1. In summary, we observed that neural differentiation and HDAC1 deficiency lead to coilin depletion and coilin accumulation in body-like structures inside the nucleoli.
Collapse
|
24
|
Garcia-Esparcia P, López-González I, Grau-Rivera O, García-Garrido MF, Konetti A, Llorens F, Zafar S, Carmona M, Del Rio JA, Zerr I, Gelpi E, Ferrer I. Dementia with Lewy Bodies: Molecular Pathology in the Frontal Cortex in Typical and Rapidly Progressive Forms. Front Neurol 2017; 8:89. [PMID: 28348546 PMCID: PMC5346561 DOI: 10.3389/fneur.2017.00089] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/24/2017] [Indexed: 11/29/2022] Open
Abstract
Objectives The goal of this study was to assess mitochondrial function, energy, and purine metabolism, protein synthesis machinery from the nucleolus to the ribosome, inflammation, and expression of newly identified ectopic olfactory receptors (ORs) and taste receptors (TASRs) in the frontal cortex of typical cases of dementia with Lewy bodies (DLB) and cases with rapid clinical course (rpDLB: 2 years or less) compared with middle-aged non-affected individuals, in order to learn about the biochemical abnormalities underlying Lewy body pathology. Methods Real-time quantitative PCR, mitochondrial enzymatic assays, and analysis of β-amyloid, tau, and synuclein species were used. Results The main alterations in DLB and rpDLB, which are more marked in the rapidly progressive forms, include (i) deregulated expression of several mRNAs and proteins of mitochondrial subunits, and reduced activity of complexes I, II, III, and IV of the mitochondrial respiratory chain; (ii) reduced expression of selected molecules involved in energy metabolism and increased expression of enzymes involved in purine metabolism; (iii) abnormal expression of nucleolar proteins, rRNA18S, genes encoding ribosomal proteins, and initiation factors of the transcription at the ribosome; (iv) discrete inflammation; and (v) marked deregulation of brain ORs and TASRs, respectively. Severe mitochondrial dysfunction involving activity of four complexes, minimal inflammatory responses, and dramatic altered expression of ORs and TASRs discriminate DLB from Alzheimer’s disease. Altered solubility and aggregation of α-synuclein, increased β-amyloid bound to membranes, and absence of soluble tau oligomers are common in DLB and rpDLB. Low levels of soluble β-amyloid are found in DLB. However, increased soluble β-amyloid 1–40 and β-amyloid 1–42, and increased TNFα mRNA and protein expression, distinguish rpDLB. Conclusion Molecular alterations in frontal cortex in DLB involve key biochemical pathways such as mitochondria and energy metabolism, protein synthesis, purine metabolism, among others and are accompanied by discrete innate inflammatory response.
Collapse
Affiliation(s)
- Paula Garcia-Esparcia
- Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain; CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Madrid, Spain
| | - Irene López-González
- Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain; CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Madrid, Spain
| | - Oriol Grau-Rivera
- Neurological Tissue Bank of the Biobanc-Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) , Barcelona , Spain
| | - María Francisca García-Garrido
- Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat , Barcelona , Spain
| | - Anusha Konetti
- Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat , Barcelona , Spain
| | - Franc Llorens
- Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University, German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Saima Zafar
- Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University, German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Margarita Carmona
- Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain; CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Madrid, Spain
| | - José Antonio Del Rio
- CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Madrid, Spain; Molecular and Cellular Neurobiotechnology, Department of Cell Biology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University, German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Ellen Gelpi
- Neurological Tissue Bank of the Biobanc-Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) , Barcelona , Spain
| | - Isidro Ferrer
- Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain; CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Madrid, Spain; Department of Pathology and Experimental Therapeutics, L'Hospitalet de Llobregat, University of Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
Abstract
Macroautophagy/autophagy is a key catabolic process, essential for maintaining cellular homeostasis and survival through the removal and recycling of unwanted cellular material. Emerging evidence has revealed intricate connections between the RNA and autophagy research fields. While a majority of studies have focused on protein, lipid and carbohydrate catabolism via autophagy, accumulating data supports the view that several types of RNA and associated ribonucleoprotein complexes are specifically recruited to phagophores (precursors to autophagosomes) and subsequently degraded in the lysosome/vacuole. Moreover, recent studies have revealed a substantial number of novel autophagy regulators with RNA-related functions, indicating roles for RNA and associated proteins not only as cargo, but also as regulators of this process. In this review, we discuss widespread evidence of RNA catabolism via autophagy in yeast, plants and animals, reviewing the molecular mechanisms and biological importance in normal physiology, stress and disease. In addition, we explore emerging evidence of core autophagy regulation mediated by RNA-binding proteins and noncoding RNAs, and point to gaps in our current knowledge of the connection between RNA and autophagy. Finally, we discuss the pathological implications of RNA-protein aggregation, primarily in the context of neurodegenerative disease.
Collapse
Affiliation(s)
- Lisa B Frankel
- a Biotech Research and Innovation Centre , University of Copenhagen , Copenhagen , Denmark
| | - Michal Lubas
- a Biotech Research and Innovation Centre , University of Copenhagen , Copenhagen , Denmark
| | - Anders H Lund
- a Biotech Research and Innovation Centre , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
26
|
Trinkle-Mulcahy L, Sleeman JE. The Cajal body and the nucleolus: "In a relationship" or "It's complicated"? RNA Biol 2016; 14:739-751. [PMID: 27661468 DOI: 10.1080/15476286.2016.1236169] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
From their initial identification as 'nucleolar accessory bodies' more than a century ago, the relationship between Cajal bodies and nucleoli has been a subject of interest and controversy. In this review, we seek to place recent developments in the understanding of the physical and functional relationships between the 2 structures in the context of historical observations. Biophysical models of nuclear body formation, the molecular nature of CB/nucleolus interactions and the increasing list of joint roles for CBs and nucleoli, predominantly in assembling ribonucleoprotein (RNP) complexes, are discussed.
Collapse
Affiliation(s)
- Laura Trinkle-Mulcahy
- a Department of Cellular and Molecular Medicine , Ottawa Institute of Systems Biology, University of Ottawa , Ottawa , ON , Canada
| | - Judith E Sleeman
- b BSRC Complex, School of Biology, University of St Andrews , UK
| |
Collapse
|
27
|
Abstract
Cajal is commonly regarded as the father of modern neuroscience in recognition of his fundamental work on the structure of the nervous system. But Cajal also made seminal contributions to the knowledge of nuclear structure in the early 1900s, including the discovery of the "accessory body" later renamed "Cajal body" (CB). This important nuclear structure has emerged as a center for the assembly of ribonucleoproteins (RNPs) required for splicing, ribosome biogenesis and telomere maintenance. The modern era of CB research started in the 1990s with the discovery of coilin, now known as a scaffold protein of CBs, and specific probes for small nuclear RNAs (snRNAs). In this review, we summarize what we have learned in the recent decades concerning CBs in post-mitotic neurons, thereby ruling out dynamic changes in CB functions during the cell cycle. We show that CBs are particularly prominent in neurons, where they frequently associate with the nucleolus. Neuronal CBs are transcription-dependent nuclear organelles. Indeed, their number dynamically accommodates to support the high neuronal demand for splicing and ribosome biogenesis required for sustaining metabolic and bioelectrical activity. Mature neurons have canonical CBs enriched in coilin, survival motor neuron protein and snRNPs. Disruption and loss of neuronal CBs associate with severe neuronal dysfunctions in several neurological disorders such as motor neuron diseases. In particular, CB depletion in motor neurons seems to reflect a perturbation of transcription and splicing in spinal muscular atrophy, the most common genetic cause of infant mortality.
Collapse
Affiliation(s)
- Miguel Lafarga
- a Departamento de Anatomía y Biología Celular and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)" , Universidad de Cantabria-IDIVAL , Santander , Spain
| | - Olga Tapia
- a Departamento de Anatomía y Biología Celular and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)" , Universidad de Cantabria-IDIVAL , Santander , Spain
| | - Ana M Romero
- a Departamento de Anatomía y Biología Celular and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)" , Universidad de Cantabria-IDIVAL , Santander , Spain
| | - Maria T Berciano
- a Departamento de Anatomía y Biología Celular and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)" , Universidad de Cantabria-IDIVAL , Santander , Spain
| |
Collapse
|
28
|
Reorganization of Synaptic Connections and Perineuronal Nets in the Deep Cerebellar Nuclei of Purkinje Cell Degeneration Mutant Mice. Neural Plast 2015; 2016:2828536. [PMID: 26819763 PMCID: PMC4706924 DOI: 10.1155/2016/2828536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/10/2015] [Accepted: 09/15/2015] [Indexed: 12/22/2022] Open
Abstract
The perineuronal net (PN) is a subtype of extracellular matrix appearing as a net-like structure around distinct neurons throughout the whole CNS. PNs surround the soma, proximal dendrites, and the axonal initial segment embedding synaptic terminals on the neuronal surface. Different functions of the PNs are suggested which include support of synaptic stabilization, inhibition of axonal sprouting, and control of neuronal plasticity. A number of studies provide evidence that removing PNs or PN-components results in renewed neurite growth and synaptogenesis. In a mouse model for Purkinje cell degeneration, we examined the effect of deafferentation on synaptic remodeling and modulation of PNs in the deep cerebellar nuclei. We found reduced GABAergic, enhanced glutamatergic innervations at PN-associated neurons, and altered expression of the PN-components brevican and hapln4. These data refer to a direct interaction between ECM and synapses. The altered brevican expression induced by activated astrocytes could be required for an adequate regeneration by promoting neurite growth and synaptogenesis.
Collapse
|
29
|
Garcia-Esparcia P, Hernández-Ortega K, Koneti A, Gil L, Delgado-Morales R, Castaño E, Carmona M, Ferrer I. Altered machinery of protein synthesis is region- and stage-dependent and is associated with α-synuclein oligomers in Parkinson's disease. Acta Neuropathol Commun 2015; 3:76. [PMID: 26621506 PMCID: PMC4666041 DOI: 10.1186/s40478-015-0257-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/14/2015] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION Parkinson's disease (PD) is characterized by the accumulation of abnormal α-synuclein in selected regions of the brain following a gradient of severity with disease progression. Whether this is accompanied by globally altered protein synthesis is poorly documented. The present study was carried out in PD stages 1-6 of Braak and middle-aged (MA) individuals without alterations in brain in the substantia nigra, frontal cortex area 8, angular gyrus, precuneus and putamen. RESULTS Reduced mRNA expression of nucleolar proteins nucleolin (NCL), nucleophosmin (NPM1), nucleoplasmin 3 (NPM3) and upstream binding transcription factor (UBF), decreased NPM1 but not NPM3 nucleolar protein immunostaining in remaining neurons; diminished 18S rRNA, 28S rRNA; reduced expression of several mRNAs encoding ribosomal protein (RP) subunits; and altered protein levels of initiation factor eIF3 and elongation factor eEF2 of protein synthesis was found in the substantia nigra in PD along with disease progression. Although many of these changes can be related to neuron loss in the substantia nigra, selective alteration of certain factors indicates variable degree of vulnerability of mRNAs, rRNAs and proteins in degenerating sustantia nigra. NPM1 mRNA and 18S rRNA was increased in the frontal cortex area 8 at stage 5-6; modifications were less marked and region-dependent in the angular gyrus and precuneus. Several RPs were abnormally regulated in the frontal cortex area 8 and precuneus, but only one RP in the angular gyrus, in PD. Altered levels of eIF3 and eIF1, and decrease eEF1A and eEF2 protein levels were observed in the frontal cortex in PD. No modifications were found in the putamen at any time of the study except transient modifications in 28S rRNA and only one RP mRNA at stages 5-6. These observations further indicate marked region-dependent and stage-dependent alterations in the cerebral cortex in PD. Altered solubility and α-synuclein oligomer formation, assessed in total homogenate fractions blotted with anti-α-synuclein oligomer-specific antibody, was demonstrated in the substantia nigra and frontal cortex, but not in the putamen, in PD. Dramatic increase in α-synuclein oligomers was also seen in fluorescent-activated cell sorter (FACS)-isolated nuclei in the frontal cortex in PD. CONCLUSIONS Altered machinery of protein synthesis is altered in the substantia nigra and cerebral cortex in PD being the frontal cortex area 8 more affected than the angular gyrus and precuneus; in contrast, pathways of protein synthesis are apparently preserved in the putamen. This is associated with the presence of α-synuclein oligomeric species in total homogenates; substantia nigra and frontal cortex are enriched, albeit with different band patterns, in α-synuclein oligomeric species, whereas α-synuclein oligomers are not detected in the putamen.
Collapse
Affiliation(s)
- Paula Garcia-Esparcia
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Karina Hernández-Ortega
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Anusha Koneti
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Laura Gil
- Department of Genetics, Medical School, Alfonso X el Sabio University, Villanueva de la Cañada, Madrid, Spain
| | - Raul Delgado-Morales
- Cancer Epigenetics and Biology Program, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Ester Castaño
- Biology-Bellvitge Unit, Scientific and Technological Centers-University of Barcelona (CCiTUB), Hospitalet de Llobregat, Barcelona, Spain
| | - Margarita Carmona
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Isidre Ferrer
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.
- Institute of Neuropathology, Service of Pathologic Anatomy, Bellvitge University Hospital, carrer Feixa Llarga s/n, 08907, Hospitalet de Llobregat, Spain.
| |
Collapse
|
30
|
Baltanás FC, Valero J, Alonso JR, Berciano MT, Lafarga M. Nuclear signs of pre-neurodegeneration. Methods Mol Biol 2015; 1254:43-54. [PMID: 25431056 DOI: 10.1007/978-1-4939-2152-2_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nuclear architecture is highly concerted including the organization of chromosome territories and distinct nuclear bodies, such as nucleoli, Cajal bodies, nuclear speckles of splicing factors, and promyelocytic leukemia nuclear bodies, among others. The organization of such nuclear compartments is very dynamic and may represent a sensitive indicator of the functional status of the cell. Here, we describe methodologies that allow isolating discrete cell populations from the brain and the fine observation of nuclear signs that could be insightful predictors of an early neuronal injury in a wide range of neurodegenerative disorders. The tools here described may be of use for the early detection of pre-degenerative processes in neurodegenerative diseases and for validating novel rescue strategies.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Institute for Molecular and Cell Biology of the Cancer, CSIC - Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | |
Collapse
|
31
|
Tanco S, Tort O, Demol H, Aviles FX, Gevaert K, Van Damme P, Lorenzo J. C-terminomics screen for natural substrates of cytosolic carboxypeptidase 1 reveals processing of acidic protein C termini. Mol Cell Proteomics 2014; 14:177-90. [PMID: 25381060 DOI: 10.1074/mcp.m114.040360] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytosolic carboxypeptidases (CCPs) constitute a new subfamily of M14 metallocarboxypeptidases associated to axonal regeneration and neuronal degeneration, among others. CCPs are deglutamylating enzymes, able to catalyze the shortening of polyglutamate side-chains and the gene-encoded C termini of tubulin, telokin, and myosin light chain kinase. The functions of these enzymes are not entirely understood, in part because of the lack of information about C-terminal protein processing in the cell and its functional implications. By means of C-terminal COFRADIC, a positional proteomics approach, we searched for cellular substrates targets of CCP1, the most relevant member of this family. We here identified seven new putative CCP1 protein substrates, including ribosomal proteins, translation factors, and high mobility group proteins. Furthermore, we showed for the first time that CCP1 processes both glutamates as well as C-terminal aspartates. The implication of these C termini in molecular interactions furthermore suggests that CCP1-mediated shortening of acidic protein tails might regulate protein-protein and protein-DNA interactions.
Collapse
Affiliation(s)
- Sebastian Tanco
- From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium; ¶Institute for Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Olivia Tort
- ¶Institute for Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Hans Demol
- From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Francesc Xavier Aviles
- ¶Institute for Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Kris Gevaert
- From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Petra Van Damme
- From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium;
| | - Julia Lorenzo
- ¶Institute for Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
32
|
Riancho J, Ruiz-Soto M, Villagrá NT, Berciano J, Berciano MT, Lafarga M. Compensatory Motor Neuron Response to Chromatolysis in the Murine hSOD1(G93A) Model of Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2014; 8:346. [PMID: 25374511 PMCID: PMC4206191 DOI: 10.3389/fncel.2014.00346] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/06/2014] [Indexed: 11/13/2022] Open
Abstract
We investigated neuronal self-defense mechanisms in a murine model of amyotrophic lateral sclerosis (ALS), the transgenic hSOD1(G93A), during both the asymptomatic and symptomatic stages. This is an experimental model of endoplasmic reticulum (ER) stress with severe chromatolysis. As a compensatory response to translation inhibition, chromatolytic neurons tended to reorganize the protein synthesis machinery at the perinuclear region, preferentially at nuclear infolding domains enriched in nuclear pores. This organization could facilitate nucleo-cytoplasmic traffic of RNAs and proteins at translation sites. By electron microscopy analysis, we observed that the active euchromatin pattern and the reticulated nucleolar configuration of control motor neurons were preserved in ALS chromatolytic neurons. Moreover the 5'-fluorouridine (5'-FU) transcription assay, at the ultrastructural level, revealed high incorporation of the RNA precursor 5'-FU into nascent RNA. Immunogold particles of 5'-FU incorporation were distributed throughout the euchromatin and on the dense fibrillar component of the nucleolus in both control and ALS motor neurons. The high rate of rRNA transcription in ALS motor neurons could maintain ribosome biogenesis under conditions of severe dysfunction of proteostasis. Collectively, the perinuclear reorganization of protein synthesis machinery, the predominant euchromatin architecture, and the active nucleolar transcription could represent compensatory mechanisms in ALS motor neurons in response to the disturbance of ER proteostasis. In this scenario, epigenetic activation of chromatin and nucleolar transcription could have important therapeutic implications for neuroprotection in ALS and other neurodegenerative diseases. Although histone deacetylase inhibitors are currently used as therapeutic agents, we raise the untapped potential of the nucleolar transcription of ribosomal genes as an exciting new target for the therapy of some neurodegenerative diseases.
Collapse
Affiliation(s)
- Javier Riancho
- Service of Neurology, University Hospital Marqués de Valdecilla, Instituto de Investigación Valdecilla (IDIVAL), University of Cantabria , Santander , Spain
| | - Maria Ruiz-Soto
- Department of Anatomy and Cell Biology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Valdecilla, University of Cantabria , Santander , Spain
| | - Nuria T Villagrá
- Service of Pathology, University Hospital Marqués de Valdecilla, Instituto de Investigación Valdecilla, University of Cantabria , Santander , Spain
| | - Jose Berciano
- Service of Neurology, University Hospital Marqués de Valdecilla, Instituto de Investigación Valdecilla (IDIVAL), University of Cantabria , Santander , Spain
| | - Maria T Berciano
- Department of Anatomy and Cell Biology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Valdecilla, University of Cantabria , Santander , Spain
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Valdecilla, University of Cantabria , Santander , Spain
| |
Collapse
|
33
|
Diesch J, Hannan RD, Sanij E. Perturbations at the ribosomal genes loci are at the centre of cellular dysfunction and human disease. Cell Biosci 2014; 4:43. [PMID: 25949792 PMCID: PMC4422213 DOI: 10.1186/2045-3701-4-43] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 07/27/2014] [Indexed: 01/05/2023] Open
Abstract
Ribosomal RNA (rRNA) gene (rDNA) transcription by RNA Polymerase I (Pol I) drives cell growth and underlies nucleolar structure and function, indirectly coordinating many fundamental cellular processes. The importance of keeping rDNA transcription under tight control is reflected by the fact that deranged Pol I transcription is a feature of cancer and other human disorders. In this review, we discuss multiple aspects of rDNA function including the relationship between Pol I transcription and proliferative capacity, the role of Pol I transcription in mediating nucleolar structure and integrity, and rDNA/nucleolar interactions with the genome and their influence on heterochromatin and global genome stability. Furthermore, we discuss how perturbations in the structure of the rDNA loci might contribute to human disease, in some cases independent of effects on ribosome biogenesis.
Collapse
Affiliation(s)
- Jeannine Diesch
- Growth Control Laboratory, Research Division, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria 3002, Australia ; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ross D Hannan
- Growth Control Laboratory, Research Division, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria 3002, Australia ; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia ; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia ; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia ; Division of Cancer Medicine, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria 3002, Australia ; School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Elaine Sanij
- Growth Control Laboratory, Research Division, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria 3002, Australia ; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia ; Department of Pathology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
34
|
Hale AN, Ledbetter DJ, Gawriluk TR, Rucker EB. Autophagy: regulation and role in development. Autophagy 2014; 9:951-72. [PMID: 24121596 DOI: 10.4161/auto.24273] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Autophagy is an evolutionarily conserved cellular process through which long-lived proteins and damaged organelles are recycled to maintain energy homeostasis. These proteins and organelles are sequestered into a double-membrane structure, or autophagosome, which subsequently fuses with a lysosome in order to degrade the cargo. Although originally classified as a type of programmed cell death, autophagy is more widely viewed as a basic cell survival mechanism to combat environmental stressors. Autophagy genes were initially identified in yeast and were found to be necessary to circumvent nutrient stress and starvation. Subsequent elucidation of mammalian gene counterparts has highlighted the importance of this process to normal development. This review provides an overview of autophagy, the types of autophagy, its regulation and its known impact on development gleaned primarily from murine models.
Collapse
Affiliation(s)
- Amber N Hale
- Department of Biology; University of Kentucky; Lexington, KY USA
| | | | | | | |
Collapse
|
35
|
Nakahira K, Cloonan SM, Mizumura K, Choi AMK, Ryter SW. Autophagy: a crucial moderator of redox balance, inflammation, and apoptosis in lung disease. Antioxid Redox Signal 2014; 20:474-94. [PMID: 23879400 PMCID: PMC3894710 DOI: 10.1089/ars.2013.5373] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Autophagy is a fundamental cellular process that functions in the turnover of subcellular organelles and protein. Activation of autophagy may represent a cellular defense against oxidative stress, or related conditions that cause accumulation of damaged proteins or organelles. Selective forms of autophagy can maintain organelle populations or remove aggregated proteins. Autophagy can increase survival during nutrient deficiency and play a multifunctional role in host defense, by promoting pathogen clearance and modulating innate and adaptive immune responses. RECENT ADVANCES Autophagy has been described as an inducible response to oxidative stress. Once believed to represent a random process, recent studies have defined selective mechanisms for cargo assimilation into autophagosomes. Such mechanisms may provide for protein aggregate detoxification and mitochondrial homeostasis during oxidative stress. Although long studied as a cellular phenomenon, recent advances implicate autophagy as a component of human diseases. Altered autophagy phenotypes have been observed in various human diseases, including lung diseases such as chronic obstructive lung disease, cystic fibrosis, pulmonary hypertension, and idiopathic pulmonary fibrosis. CRITICAL ISSUES Although autophagy can represent a pro-survival process, in particular, during nutrient starvation, its role in disease pathogenesis may be multifunctional and complex. The relationship of autophagy to programmed cell death pathways is incompletely defined and varies with model system. FUTURE DIRECTIONS Activation or inhibition of autophagy may be used to alter the progression of human diseases. Further resolution of the mechanisms by which autophagy impacts the initiation and progression of diseases may lead to the development of therapeutics specifically targeting this pathway.
Collapse
Affiliation(s)
- Kiichi Nakahira
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital , Harvard Medical School, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
36
|
Parlato R, Liss B. How Parkinson's disease meets nucleolar stress. Biochim Biophys Acta Mol Basis Dis 2014; 1842:791-7. [PMID: 24412806 DOI: 10.1016/j.bbadis.2013.12.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/13/2013] [Accepted: 12/31/2013] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. Although the causes of PD are still not understood, aging is a predisposing factor and metabolic stress seems to be a common trigger. Interestingly, the response to stress conditions and quality control mechanisms is impaired in PD, as well as in other neurodegenerative disorders. Downregulation of rRNA transcription is one major strategy to maintain cellular homeostasis under stress conditions, as it limits energy consumption in disadvantageous circumstances. Altered rRNA transcription and disruption of nucleolar integrity are associated with neurodegenerative disorders, and with aging. Nucleolar stress can be triggered by genetic and epigenetic factors, and by specific signaling mechanisms, that are altered in neurodegenerative disorders. The consequences of neuronal nucleolar stress seem to depend on p53 function, the mammalian target of rapamycin (mTOR) activity and deregulation of protein translation. In this review, we will summarize findings identifying an emerging role of nucleolar stress for the onset and progression of in particular PD. Emphasis is given to similarities in molecular causes and consequences of nucleolar stress in other neurodegenerative disorders. The mechanisms by which nucleolar stress participates in PD could help identify novel risk factors, and develop new therapeutic strategies to slow down the progressive loss of neurons in neurodegenerative diseases. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Rosanna Parlato
- Institute of Applied Physiology, University of Ulm, Ulm, Germany; Institute of Anatomy and Cell Biology, Department of Medical Biology, University of Heidelberg, Heidelberg, Germany; Dept. of Molecular Biology of the Cell I, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany.
| | - Birgit Liss
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| |
Collapse
|
37
|
Expression of Ambra1 in mouse brain during physiological and Alzheimer type aging. Neurobiol Aging 2014; 35:96-108. [DOI: 10.1016/j.neurobiolaging.2013.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 05/28/2013] [Accepted: 07/04/2013] [Indexed: 01/25/2023]
|
38
|
Tsoi H, Chan HYE. Roles of the nucleolus in the CAG RNA-mediated toxicity. Biochim Biophys Acta Mol Basis Dis 2013; 1842:779-84. [PMID: 24269666 DOI: 10.1016/j.bbadis.2013.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 10/26/2022]
Abstract
The nucleolus is a subnuclear compartment within the cell nucleus that serves as the site for ribosomal RNA (rRNA) transcription and the assembly of ribosome subunits. Apart from its classical role in ribosomal biogenesis, a number of cellular regulatory roles have recently been assigned to the nucleolus, including governing the induction of apoptosis. "Nucleolar stress" is a term that is used to describe a signaling pathway through which the nucleolus communicates with other subcellular compartments, including the mitochondria, to induce apoptosis. It is an effective mechanism for eliminating cells that are incapable of performing protein synthesis efficiently due to ribosome biogenesis defects. The down-regulation of rRNA transcription is a common cause of nucleolar function disruption that subsequently triggers nucleolar stress, and has been associated with the pathogenesis of neurological disorders such as spinocerebellar ataxias (SCAs) and Huntington's diseases (HD). This article discusses recent advances in mechanistic studies of how expanded CAG trinucleotide repeat RNA transcripts trigger nucleolar stress in SCAs, HD and other trinucleotide repeat disorders. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Ho Tsoi
- Laboratory of Drosophila Research, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Biochemistry Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila Research, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Biochemistry Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Cell and Molecular Biology Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Molecular Biotechnology Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
39
|
Palanca A, Casafont I, Berciano MT, Lafarga M. Reactive nucleolar and Cajal body responses to proteasome inhibition in sensory ganglion neurons. Biochim Biophys Acta Mol Basis Dis 2013; 1842:848-59. [PMID: 24269586 DOI: 10.1016/j.bbadis.2013.11.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 12/25/2022]
Abstract
The dysfunction of the ubiquitin proteasome system has been related to a broad array of neurodegenerative disorders in which the accumulation of misfolded protein aggregates causes proteotoxicity. The ability of proteasome inhibitors to induce cell cycle arrest and apoptosis has emerged as a powerful strategy for cancer therapy. Bortezomib is a proteasome inhibitor used as an antineoplastic drug, although its neurotoxicity frequently causes a severe sensory peripheral neuropathy. In this study we used a rat model of bortezomib treatment to study the nucleolar and Cajal body responses to the proteasome inhibition in sensory ganglion neurons that are major targets of bortezomib-induced neurotoxicity. Treatment with bortezomib induced dose-dependent dissociation of protein synthesis machinery (chromatolysis) and nuclear retention of poly(A) RNA granules resulting in neuronal dysfunction. However, as a compensatory response to the proteotoxic stress, both nucleoli and Cajal bodies exhibited reactive changes. These include an increase in the number and size of nucleoli, strong nucleolar incorporation of the RNA precursor 5'-fluorouridine, and increased expression of both 45S rRNA and genes encoding nucleolar proteins UBF, fibrillarin and B23. Taken together, these findings appear to reflect the activation of the nucleolar transcription in response to proteotoxic stress Furthermore, the number of Cajal bodies, a parameter related to transcriptional activity, increases upon proteasome inhibition. We propose that nucleoli and Cajal bodies are important targets in the signaling pathways that are activated by the proteotoxic stress response to proteasome inhibition. The coordinating activity of these two organelles in the production of snRNA, snoRNA and rRNA may contribute to neuronal survival after proteasome inhibition. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Ana Palanca
- Department of Anatomy and Cell Biology, University of Cantabria-IFIMAV, Santander, Spain; "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", Santander, Spain
| | - Iñigo Casafont
- Department of Anatomy and Cell Biology, University of Cantabria-IFIMAV, Santander, Spain; "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", Santander, Spain
| | - María T Berciano
- Department of Anatomy and Cell Biology, University of Cantabria-IFIMAV, Santander, Spain; "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", Santander, Spain
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology, University of Cantabria-IFIMAV, Santander, Spain; "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", Santander, Spain.
| |
Collapse
|
40
|
Functional redundancy of Sos1 and Sos2 for lymphopoiesis and organismal homeostasis and survival. Mol Cell Biol 2013; 33:4562-78. [PMID: 24043312 DOI: 10.1128/mcb.01026-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sos1 and Sos2 are ubiquitously expressed, universal Ras guanine nucleotide exchange factors (Ras-GEFs) acting in multiple signal transduction pathways activated by upstream cellular kinases. The embryonic lethality of Sos1 null mutants has hampered ascertaining the specific in vivo contributions of Sos1 and Sos2 to processes controlling adult organism survival or development of hematopoietic and nonhematopoietic organs, tissues, and cell lineages. Here, we generated a tamoxifen-inducible Sos1-null mouse strain allowing analysis of the combined disruption of Sos1 and Sos2 (Sos1/2) during adulthood. Sos1/2 double-knockout (DKO) animals died precipitously, whereas individual Sos1 and Sos2 knockout (KO) mice were perfectly viable. A reduced percentage of total bone marrow precursors occurred in single-KO animals, but a dramatic depletion of B-cell progenitors was specifically detected in Sos1/2 DKO mice. We also confirmed a dominant role of Sos1 over Sos2 in early thymocyte maturation, with almost complete thymus disappearance and dramatically higher reduction of absolute thymocyte counts in Sos1/2 DKO animals. Absolute counts of mature B and T cells in spleen and peripheral blood were unchanged in single-KO mutants, while significantly reduced in Sos1/2 DKO mice. Our data demonstrate functional redundancy between Sos1 and Sos2 for homeostasis and survival of the full organism and for development and maturation of T and B lymphocytes.
Collapse
|
41
|
Díaz D, Recio JS, Weruaga E, Alonso JR. Mild cerebellar neurodegeneration of aged heterozygous PCD mice increases cell fusion of Purkinje and bone marrow-derived cells. Cell Transplant 2013; 21:1595-602. [PMID: 22507630 DOI: 10.3727/096368912x638900] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bone marrow-derived cells have different plastic properties, especially regarding cell fusion, which increases with time and is prompted by tissue injury. Several recessive mutations, including Purkinje Cell Degeneration, affect the number of Purkinje cells in homozygosis; heterozygous young animals have an apparently normal phenotype but they undergo Purkinje cell loss as they age. Our findings demonstrate that heterozygous pcd mice undergo Purkinje cell loss at postnatal day 300, this slow but steadily progressing cell death starting sooner than has been reported previously and without massive reactive gliosis or inflammation. Here, transplantation of bone marrow stem cells was performed to assess the arrival of bone marrow-derived cells in the cerebellum in these heterozygous mice. Our results reveal that a higher number of cell fusion events occurs in heterozygous animals than in the controls, on days 150 and 300 postnatally. In sum, this study indicates that mild cell death promotes the fusion of bone marrow-derived cells with surviving Purkinje neurons. This phenomenon suggests new therapies for long-lasting neurodegenerative disorders.
Collapse
Affiliation(s)
- David Díaz
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and León and Institute of Biomedical Research of Salamanca, Universidad de Salamanca, Salamanca, Spain
| | | | | | | |
Collapse
|
42
|
Kreiner G, Bierhoff H, Armentano M, Rodriguez-Parkitna J, Sowodniok K, Naranjo JR, Bonfanti L, Liss B, Schütz G, Grummt I, Parlato R. A neuroprotective phase precedes striatal degeneration upon nucleolar stress. Cell Death Differ 2013; 20:1455-64. [PMID: 23764776 PMCID: PMC3792439 DOI: 10.1038/cdd.2013.66] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 05/03/2013] [Accepted: 05/16/2013] [Indexed: 01/17/2023] Open
Abstract
The nucleolus is implicated in sensing and responding to cellular stress by stabilizing p53. The pro-apoptotic effect of p53 is associated with several neurodegenerative disorders, including Huntington's disease (HD), which is characterized by the progressive loss of medium spiny neurons (MSNs) in the striatum. Here we show that disruption of nucleolar integrity and function causes nucleolar stress and is an early event in MSNs of R6/2 mice, a transgenic model of HD. Targeted perturbation of nucleolar function in MSNs by conditional knockout of the RNA polymerase I-specific transcription initiation factor IA (TIF-IA) leads to late progressive striatal degeneration, HD-like motor abnormalities and molecular signatures. Significantly, p53 prolongs neuronal survival in TIF-IA-deficient MSNs by transient upregulation of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor that inhibits mammalian target of rapamycin signaling and induces autophagy. The results emphasize the initial role of nucleolar stress in neurodegeneration and uncover a p53/PTEN-dependent neuroprotective response.
Collapse
Affiliation(s)
- G Kreiner
- 1] Department of Molecular Biology of the Cell I, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany [2] Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Purkartová Z, Vožeh F. Cerebellar degeneration in Lurcher mice under confocal laser scanning microscope. Microsc Res Tech 2013; 76:545-51. [PMID: 23463661 DOI: 10.1002/jemt.22198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 01/28/2013] [Accepted: 02/05/2013] [Indexed: 12/19/2022]
Abstract
Lurcher mutant mice represent a natural model of genetically-determined olivocerebellar degeneration caused by a mutation in the δ2 glutamate receptor gene. They suffer from progressive postnatal loss of cerebellar Purkinje cells and a decrease of granule cells and inferior olive neurons. Their wild type littermates serve as healthy controls. A confocal laser scanning microscope was used aiming investigation the dynamics of changes in the cerebellar cortex of Lurcher and wild type mice derived from two strains during the period of 8-21 postnatal days. Fluorescent double-staining was used to visualize mainly the Purkinje cells in cerebellar slices. In wild types, only normal Purkinje cells of round or regular drop-shaped were present, when staining intensity of other individual cell structures differed in dependence on the age of the animal. In Lurcher mutants, there were still some normal-shaped cells. Nevertheless, depending on the animal's age, a wide variety of stages of the cell degeneration were depicted. The main characteristics of Purkinje cell degeneration in the early stage are: disruption of the continuity of the Purkinje cell layer, dark spots in cell nuclei and an irregular coloring of the cytoplasm. Later, the cells and their nuclei were deformed, often with two main dendrites sprouting from the cell body. Finally, the cell and nucleus margins were unclear, dendrites were significantly thickened, showing signs of shrinkage and fragmentation. Cell nucleoli underwent changes in number and appearance. No differences between the Lurcher mice of both strains (C3H and B6CBA) under examination were found.
Collapse
Affiliation(s)
- Zdeňka Purkartová
- Department of Pathophysiology, Medical Faculty in Pilsen, Charles University, Pilsen, Czech Republic
| | | |
Collapse
|
44
|
Cámara MDLM, Bouvier LA, Canepa GE, Miranda MR, Pereira CA. Molecular and functional characterization of a Trypanosoma cruzi nuclear adenylate kinase isoform. PLoS Negl Trop Dis 2013; 7:e2044. [PMID: 23409202 PMCID: PMC3567042 DOI: 10.1371/journal.pntd.0002044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 12/17/2012] [Indexed: 01/30/2023] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas' disease, is an early divergent eukaryote in which control of gene expression relies mainly in post-transcriptional mechanisms. Transcription levels are globally up and down regulated during the transition between proliferating and non-proliferating life-cycle stages. In this work we characterized a nuclear adenylate kinase isoform (TcADKn) that is involved in ribosome biogenesis. Nuclear adenylate kinases have been recently described in a few organisms, being all related to RNA metabolism. Depending on active transcription and translation, TcADKn localizes in the nucleolus or the cytoplasm. A non-canonical nuclear localization signal was mapped towards the N-terminal of the protein, being the phosphate-binding loop essential for its localization. In addition, TcADKn nuclear exportation depends on the nuclear exportation adapter CRM1. TcADKn nuclear shuttling is governed by nutrient availability, oxidative stress and by the equivalent in T. cruzi of the mammalian TOR (Target of Rapamycin) pathway. One of the biological functions of TcADKn is ribosomal 18S RNA processing by direct interaction with ribosomal protein TcRps14. Finally, TcADKn expression is regulated by its 3′ UTR mRNA. Depending on extracellular conditions, cells modulate protein translation rates regulating ribosome biogenesis and nuclear adenylate kinases are probably key components in these processes. Infection with Trypanosoma cruzi produces a condition known as Chagas disease which affects at least 17 million people. Adenylate kinases, so called myokinases, are involved in a wide variety of processes, mainly related to their role in nucleotide interconversion and energy management. Recently, nuclear isoforms have been described in several organisms. This “atypical” isoform in terms of primary structure was associated to ribosomes biogenesis in yeast and to Cajal body organization in humans. Moreover nuclear adenylate kinases are essential for maintaining cellular homeostasis. In this manuscript we characterized T. cruzi nuclear adenylate kinase (TcADKn). TcADKn localizes in the nucleolus or cell cytoplasm. Nuclear shuttling mechanisms were also studied for the first time, being dependent on nutrient availability, oxidative stress and by the equivalent of the mammalian TOR pathway in T. cruzi. Furthermore we characterized the signals involved in nuclear importation and exportation processes. In addition, TcADKn expression levels are regulated at an mRNA level, being its 3′UTR involved in this process. These findings are the first steps in the understanding of ribosome processing in trypanosomatids.
Collapse
Affiliation(s)
| | | | | | | | - Claudio A. Pereira
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas “Alfredo Lanari”, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
45
|
Chueh FS, Chen YL, Hsu SC, Yang JS, Hsueh SC, Ji BC, Lu HF, Chung JG. Triptolide induced DNA damage in A375.S2 human malignant melanoma cells is mediated via reduction of DNA repair genes. Oncol Rep 2012; 29:613-8. [PMID: 23233170 DOI: 10.3892/or.2012.2170] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 11/14/2012] [Indexed: 11/05/2022] Open
Abstract
Numerous studies have demonstrated that triptolide induces cell cycle arrest and apoptosis in human cancer cell lines. However, triptolide-induced DNA damage and inhibition of DNA repair gene expression in human skin cancer cells has not previously been reported. We sought the effects of triptolide on DNA damage and associated gene expression in A375.S2 human malignant melanoma cells in vitro. Comet assay, DAPI staining and DNA gel electrophoresis were used for examining DNA damage and results indicated that triptolide induced a longer DNA migration smear based on single cell electrophoresis and DNA condensation and damage occurred based on the examination of DAPI straining and DNA gel electrophoresis. The real-time PCR technique was used to examine DNA damage and repair gene expression (mRNA) and results indicated that triptolide led to a decrease in the ataxia telangiectasia mutated (ATM), ataxia-telangiectasia and Rad3-related (ATR), breast cancer 1, early onset (BRCA-1), p53, DNA-dependent serine/threonine protein kinase (DNA-PK) and O6-methylguanine-DNA methyltransferase (MGMT) mRNA expression. Thus, these observations indicated that triptolide induced DNA damage and inhibited DNA damage and repair-associated gene expression (mRNA) that may be factors for triptolide-mediated inhibition of cell growth in vitro in A375.S2 cells.
Collapse
Affiliation(s)
- Fu-Shin Chueh
- Departments of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Nucleoli are the sites where synthesis of rRNA and ribosomal assembly take place. Along with these "traditional" roles, the nucleolus controls cellular physiology and homeostasis. The cellular and molecular alterations associated with impaired nucleolar activity ("nucleolar stress") have just started to be systematically explored in the nervous system taking advantage of newly available animal models lacking rRNA synthesis in specific neurons. These studies showed that nucleolar function is necessary for neuronal survival and that its modality of action differs between and within cell types. Nucleolar function is also crucial in pathology as it controls mitochondrial activity and critical stress signaling pathways mimicking hallmarks of human neurodegenerative diseases. This mini-review will focus on the modes of action of nucleolar stress and discuss how the manipulation of nucleolar activity might underscore novel strategies to extend neuronal function and survival.
Collapse
Affiliation(s)
- Rosanna Parlato
- Department of Molecular Biology of the Cell I, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld, 581, 69120, Heidelberg, Germany.
| | | |
Collapse
|
47
|
Siddiqui MA, Malathi K. RNase L induces autophagy via c-Jun N-terminal kinase and double-stranded RNA-dependent protein kinase signaling pathways. J Biol Chem 2012; 287:43651-64. [PMID: 23109342 DOI: 10.1074/jbc.m112.399964] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autophagy is a tightly regulated mechanism that mediates sequestration, degradation, and recycling of cellular proteins, organelles, and pathogens. Several proteins associated with autophagy regulate host responses to viral infections. Ribonuclease L (RNase L) is activated during viral infections and cleaves cellular and viral single-stranded RNAs, including rRNAs in ribosomes. Here we demonstrate that direct activation of RNase L coordinates the activation of c-Jun N-terminal kinase (JNK) and double-stranded RNA-dependent protein kinase (PKR) to induce autophagy with hallmarks as accumulation of autophagic vacuoles, p62(SQSTM1) degradation and conversion of Microtubule-associated Protein Light Chain 3-I (LC3-I) to LC3-II. Accordingly, treatment of cells with pharmacological inhibitors of JNK or PKR and mouse embryonic fibroblasts (MEFs) lacking JNK1/2 or PKR showed reduced autophagy levels. Furthermore, RNase L-induced JNK activity promoted Bcl-2 phosphorylation, disrupted the Beclin1-Bcl-2 complex and stimulated autophagy. Viral infection with Encephalomyocarditis virus (EMCV) or Sendai virus led to higher levels of autophagy in wild-type (WT) MEFs compared with RNase L knock out (KO) MEFs. Inhibition of RNase L-induced autophagy using Bafilomycin A1 or 3-methyladenine suppressed viral growth in initial stages; in later stages autophagy promoted viral replication dampening the antiviral effect. Induction of autophagy by activated RNase L is independent of the paracrine effects of interferon (IFN). Our findings suggest a novel role of RNase L in inducing autophagy affecting the outcomes of viral pathogenesis.
Collapse
|
48
|
Baltanás FC, Berciano MT, Valero J, Gómez C, Díaz D, Alonso JR, Lafarga M, Weruaga E. Differential glial activation during the degeneration of Purkinje cells and mitral cells in the PCD mutant mice. Glia 2012; 61:254-72. [PMID: 23047288 DOI: 10.1002/glia.22431] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 09/06/2012] [Indexed: 01/22/2023]
Abstract
Purkinje Cell Degeneration (PCD) mice harbor a nna1 gene mutation which leads to an early and rapid degeneration of Purkinje cells (PC) between the third and fourth week of age. This mutation also underlies the death of mitral cells (MC) in the olfactory bulb (OB), but this process is slower and longer than in PC. No clear interpretations supporting the marked differences in these neurodegenerative processes exist. Growing evidence suggests that either beneficial or detrimental effects of gliosis in damaged regions would underlie these divergences. Here, we examined the gliosis occurring during PC and MC death in the PCD mouse. Our results demonstrated different glial reactions in both affected regions. PC disappearance stimulated a severe gliosis characterized by strong morphological changes, enhanced glial proliferation, as well as the release of pro-inflammatory mediators. By contrast, MC degeneration seems to promote a more attenuated glial response in the PCD OB compared with that of the cerebellum. Strikingly, cerebellar oligodendrocytes died by apoptosis in the PCD, whereas bulbar ones were not affected. Interestingly, the level of nna1 mRNA under normal conditions was higher in the cerebellum than in the OB, probably related to a faster neurodegeneration and stronger glial reaction in its absence. The glial responses may thus influence the neurodegenerative course in the cerebellum and OB of the mutant mouse brain, providing harmful and beneficial microenvironments, respectively.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Laboratory of Neural Plasticity and Neurorepair, Institute for Neuroscience of Castile and León, Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Reticulophagy and ribophagy: regulated degradation of protein production factories. Int J Cell Biol 2012; 2012:182834. [PMID: 22481944 PMCID: PMC3299282 DOI: 10.1155/2012/182834] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 12/19/2011] [Indexed: 12/11/2022] Open
Abstract
During autophagy, cytosol, protein aggregates, and organelles are sequestered into double-membrane vesicles called autophagosomes and delivered to the lysosome/vacuole for breakdown and recycling of their basic components. In all eukaryotes this pathway is important for adaptation to stress conditions such as nutrient deprivation, as well as to regulate intracellular homeostasis by adjusting organelle number and clearing damaged structures. For a long time, starvation-induced autophagy has been viewed as a nonselective transport pathway; however, recent studies have revealed that autophagy is able to selectively engulf specific structures, ranging from proteins to entire organelles. In this paper, we discuss recent findings on the mechanisms and physiological implications of two selective types of autophagy: ribophagy, the specific degradation of ribosomes, and reticulophagy, the selective elimination of portions of the ER.
Collapse
|
50
|
Hetman M, Pietrzak M. Emerging roles of the neuronal nucleolus. Trends Neurosci 2012; 35:305-14. [PMID: 22305768 DOI: 10.1016/j.tins.2012.01.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 12/15/2011] [Accepted: 01/03/2012] [Indexed: 12/22/2022]
Abstract
Although, the nucleolus has been observed for almost 200 years in neurons, studies that directly address the neuronal roles of this subnuclear structure have appeared only recently. The aim of this review is to discuss recent progress and identify some critical questions that remain to be answered. As expected for the cellular center of ribosome biogenesis, the nucleolus is essential for the growth of developing neurons, including neurite morphogenesis and long-term maintenance of mature neurons. In addition, the nucleolus contributes to neuronal stress responses, including the regulation of apoptosis. Hence, disrupted neurodevelopment or neurodegeneration are among the likely consequences of nucleolar dysfunction. Conversely, the presence of active nucleoli may determine the potential for neurorepair.
Collapse
Affiliation(s)
- Michal Hetman
- Kentucky Spinal Cord Injury Research Center and Department of Neurological Surgery, University of Louisville, Louisville, Kentucky 40292, USA.
| | | |
Collapse
|