1
|
Ravera F, Efeoglu E, Byrne HJ. A comparative analysis of stem cell differentiation on 2D and 3D substrates using Raman microspectroscopy. Analyst 2024; 149:4041-4053. [PMID: 38973486 DOI: 10.1039/d4an00315b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Chondrogenesis is a complex cellular process that involves the transformation of mesenchymal stem cells (MSCs) into chondrocytes, the specialised cells that form cartilage. In recent years, three-dimensional (3D) culture systems have emerged as a promising approach to studying cell behaviour and development in a more physiologically relevant environment compared to traditional two-dimensional (2D) cell culture. The use of these systems provided insights into the molecular mechanisms that regulate chondrogenesis and has the potential to revolutionise the development of new therapies for cartilage repair and regeneration. This study demonstrates the successful application of Raman microspectroscopy (RMS) as a label-free, non-destructive, and sensitive method to monitor the chondrogenic differentiation of bone marrow-derived rat mesenchymal stem cells (rMSCs) in a collagen type I hydrogel, and explores the potential benefits of 3D hydrogels compared to conventional 2D cell culture environments. rMSCs were cultured on 3D substrates for 3 weeks and their differentiation was monitored by measuring the spectral signatures of their subcellular compartments. Additionally, the evolution of high-density micromass cultures was investigated to provide a comprehensive understanding of the process and complex interactions between cells and their surrounding extracellular matrix. For comparison, rMSCs were induced into chondrogenesis in identical medium conditions for 21 days in monolayer culture. Raman spectra showed that rMSCs cultured in a collagen type I hydrogel are able to undergo a distinct chondrogenic differentiation pathway at a significantly higher rate than the 2D culture cells. 3D cultures expressed stronger and more homogeneous chondrogenesis-associated peaks such as collagens, glycosaminoglycans (GAGs), and aggrecan while manifesting changes in proteins and lipidic content. These results suggest that 3D type I collagen hydrogel substrates are promising for in vitro chondrogenesis studies, and that RMS is a valuable tool for monitoring chondrogenesis in 3D environments.
Collapse
Affiliation(s)
- F Ravera
- FOCAS Research Institute, Technological University Dublin, City Campus, Dublin 8, Ireland.
| | - E Efeoglu
- NICB (National Institute for Cellular Biotechnology) at Dublin City University, Dublin 9, Ireland
| | - H J Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Dublin 8, Ireland.
| |
Collapse
|
2
|
Rimskaya E, Gorevoy A, Shelygina S, Perevedentseva E, Timurzieva A, Saraeva I, Melnik N, Kudryashov S, Kuchmizhak A. Multi-Wavelength Raman Differentiation of Malignant Skin Neoplasms. Int J Mol Sci 2024; 25:7422. [PMID: 39000528 PMCID: PMC11242141 DOI: 10.3390/ijms25137422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Raman microspectroscopy has become an effective method for analyzing the molecular appearance of biomarkers in skin tissue. For the first time, we acquired in vitro Raman spectra of healthy and malignant skin tissues, including basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), at 532 and 785 nm laser excitation wavelengths in the wavenumber ranges of 900-1800 cm-1 and 2800-3100 cm-1 and analyzed them to find spectral features for differentiation between the three classes of the samples. The intensity ratios of the bands at 1268, 1336, and 1445 cm-1 appeared to be the most reliable criteria for the three-class differentiation at 532 nm excitation, whereas the bands from the higher wavenumber region (2850, 2880, and 2930 cm-1) were a robust measure of the increased protein/lipid ratio in the tumors at both excitation wavelengths. Selecting ratios of the three bands from the merged (532 + 785) dataset made it possible to increase the accuracy to 87% for the three classes and reach the specificities for BCC + SCC equal to 87% and 81% for the sensitivities of 95% and 99%, respectively. Development of multi-wavelength excitation Raman spectroscopic techniques provides a versatile non-invasive tool for research of the processes in malignant skin tumors, as well as other forms of cancer.
Collapse
Affiliation(s)
- Elena Rimskaya
- Lebedev Physical Institute, 119991 Moscow, Russia; (E.R.); (A.G.); (S.S.); (E.P.); (A.T.); (I.S.); (N.M.); (S.K.)
| | - Alexey Gorevoy
- Lebedev Physical Institute, 119991 Moscow, Russia; (E.R.); (A.G.); (S.S.); (E.P.); (A.T.); (I.S.); (N.M.); (S.K.)
| | - Svetlana Shelygina
- Lebedev Physical Institute, 119991 Moscow, Russia; (E.R.); (A.G.); (S.S.); (E.P.); (A.T.); (I.S.); (N.M.); (S.K.)
| | - Elena Perevedentseva
- Lebedev Physical Institute, 119991 Moscow, Russia; (E.R.); (A.G.); (S.S.); (E.P.); (A.T.); (I.S.); (N.M.); (S.K.)
| | - Alina Timurzieva
- Lebedev Physical Institute, 119991 Moscow, Russia; (E.R.); (A.G.); (S.S.); (E.P.); (A.T.); (I.S.); (N.M.); (S.K.)
- Semashko National Research Institute of Public Health, 105064 Moscow, Russia
| | - Irina Saraeva
- Lebedev Physical Institute, 119991 Moscow, Russia; (E.R.); (A.G.); (S.S.); (E.P.); (A.T.); (I.S.); (N.M.); (S.K.)
| | - Nikolay Melnik
- Lebedev Physical Institute, 119991 Moscow, Russia; (E.R.); (A.G.); (S.S.); (E.P.); (A.T.); (I.S.); (N.M.); (S.K.)
| | - Sergey Kudryashov
- Lebedev Physical Institute, 119991 Moscow, Russia; (E.R.); (A.G.); (S.S.); (E.P.); (A.T.); (I.S.); (N.M.); (S.K.)
| | - Aleksandr Kuchmizhak
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, 690041 Vladivostok, Russia
- Far Eastern Federal University, 690922 Vladivostok, Russia
| |
Collapse
|
3
|
Vardaki MZ, Pavlou E, Simantiris N, Lampri E, Seretis K, Kourkoumelis N. Towards non-invasive monitoring of non-melanoma skin cancer using spatially offset Raman spectroscopy. Analyst 2023; 148:4386-4395. [PMID: 37593769 DOI: 10.1039/d3an00684k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
BCC (basal cell carcinoma) and SCC (squamous cell carcinoma) account for the vast majority of cases of non-melanoma skin cancer (NMSC). The gold standard for the diagnosis remains biopsy, which, however, is an invasive and time-consuming procedure. In this study, we employed spatially offset Raman spectroscopy (SORS), a non-invasive approach, allowing the assessment of deeper skin tissue levels and collection of Raman photons with a bias towards the different layers of epidermis, where the non-melanoma cancers are initially formed and expand. Ex vivo Raman measurements were acquired from 22 skin biopsies using conventional back-scattering and a defocused modality (with and without a spatial offset). The spectral data were assessed against corresponding histopathological data to determine potential prognostic factors for lesion detection. The results revealed a positive correlation of protein and lipid content with the SCC and BCC types, respectively. By further correlating with patient data, multiple factor analysis (MFA) demonstrated a strong clustering of variables based on sex and age in all modalities. Specifically for the defocused modality (zero and 2 mm offset), further clustering occurred based on pathology. This study demonstrates the utility of the SORS technology in NMSC diagnosis prior to histopathological examination on the same tissue.
Collapse
Affiliation(s)
- Martha Z Vardaki
- Department of Medical Physics, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
| | - Eleftherios Pavlou
- Department of Medical Physics, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | | | - Evangeli Lampri
- Department of Pathology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Seretis
- Department of Plastic Surgery, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Nikolaos Kourkoumelis
- Department of Medical Physics, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
4
|
FT-IR and FT-Raman fingerprints of flavonoids - A review. Food Chem 2022; 393:133430. [PMID: 35696953 DOI: 10.1016/j.foodchem.2022.133430] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022]
Abstract
Flavonoids are secondary metabolites commonly found in plants. They are known for their antioxidant properties, are part of the defense mechanisms of plants and are responsible for the pigmentation of fruit and flowers petals. Consumption foods rich in flavonoids in the daily diet brings a number of pro-health benefits - for example blood pressure regulation, delaying the aging process or anti-cancer effect. These compounds in synthetic or natural form are also used in pharmacy. The profile of flavonoid compounds can be quickly, accurately and easy determine in the test sample by using the infrared and Raman spectroscopy. Those methods are successfully used in the food and pharmaceutical industries. Spectroscopy methods allow us to determine the chemical structure of these compounds. This review describes and compares differences between the spectroscopic spectra of individual compounds with the chemical structure for the flavonoids subgroups: flavones, isoflavones, flavanones, flavonols and anthocyanins.
Collapse
|
5
|
Avci E, Yilmaz H, Sahiner N, Tuna BG, Cicekdal MB, Eser M, Basak K, Altıntoprak F, Zengin I, Dogan S, Çulha M. Label-Free Surface Enhanced Raman Spectroscopy for Cancer Detection. Cancers (Basel) 2022; 14:5021. [PMID: 36291805 PMCID: PMC9600112 DOI: 10.3390/cancers14205021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Blood is a vital reservoir housing numerous disease-related metabolites and cellular components. Thus, it is also of interest for cancer diagnosis. Surface-enhanced Raman spectroscopy (SERS) is widely used for molecular detection due to its very high sensitivity and multiplexing properties. Its real potential for cancer diagnosis is not yet clear. In this study, using silver nanoparticles (AgNPs) as substrates, a number of experimental parameters and scenarios were tested to disclose the potential for this technique for cancer diagnosis. The discrimination of serum samples from cancer patients, healthy individuals and patients with chronic diseases was successfully demonstrated with over 90% diagnostic accuracies. Moreover, the SERS spectra of the blood serum samples obtained from cancer patients before and after tumor removal were compared. It was found that the spectral pattern for serum from cancer patients evolved into the spectral pattern observed with serum from healthy individuals after the removal of tumors. The data strongly suggests that the technique has a tremendous potential for cancer detection and screening bringing the possibility of early detection onto the table.
Collapse
Affiliation(s)
- Ertug Avci
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul 34755, Turkey
| | - Hulya Yilmaz
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul 34956, Turkey
| | - Nurettin Sahiner
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Chemistry, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| | - Bilge Guvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul 34755, Turkey
| | - Munevver Burcu Cicekdal
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul 34755, Turkey
| | - Mehmet Eser
- Department of General Surgery, School of Medicine, Istinye University, Istanbul 34010, Turkey
| | - Kayhan Basak
- Department of Pathology, Kartal Dr. Lütfi Kırdar City Hospital, University of Health Sciences, Istanbul 34865, Turkey
| | - Fatih Altıntoprak
- Department of General Surgery, Research and Educational Hospital, Sakarya University, Serdivan 54100, Turkey
| | - Ismail Zengin
- Department of General Surgery, Research and Educational Hospital, Sakarya University, Serdivan 54100, Turkey
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul 34755, Turkey
| | - Mustafa Çulha
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul 34956, Turkey
- The Knight Cancer Institute, Cancer Early Detection Advanced Research Center (CEDAR), Oregon Health and Science University, Portland, OR 97239, USA
- Department of Chemistry and Physics, College of Science and Mathematics, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
6
|
Mushtaq A, Nawaz H, Irfan Majeed M, Rashid N, Tahir M, Zaman Nawaz M, Shahzad K, Dastgir G, Zaki Abdul Bari R, Ul Haq A, Saleem M, Akhtar F. Surface-enhanced Raman spectroscopy (SERS) for monitoring colistin-resistant and susceptible E. coli strains. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121315. [PMID: 35576839 DOI: 10.1016/j.saa.2022.121315] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/21/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
The emergence of drug-resistant bacteria is a precarious global health concern. In this study, surface-enhanced Raman spectroscopy (SERS) is used to characterize colistin-resistant and susceptible E. coli strains based on their distinguished SERS spectral features for the development of rapid and cost-effective detection and differentiation methods. For this purpose, three colistin-resistant and three colistin susceptible E. coli strains were analyzed by comparing their SERS spectral signatures. Moreover, multivariate data analysis techniques including Principal component analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA) were used to examine the SERS spectral data of colistin-resistant and susceptible strains. PCA technique was employed for differentiating colistin susceptible and resistant E.coli strains due to alteration in biochemical compositions of the bacterial cell. PLS-DA is employed on SERS spectral data sets for discrimination of these resistant and susceptible E. coli strains with 100% specificity, 100% accuracy, 99.8% sensitivity, and 86% area under receiver operating characteristics (AUROC) curve.
Collapse
Affiliation(s)
- Aqsa Mushtaq
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Nosheen Rashid
- Department of Chemistry, University of Education, Faisalabad Campus, Faisalabad 38000, Pakistan.
| | - Muhammad Tahir
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Zaman Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Kashif Shahzad
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Ghulam Dastgir
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Rana Zaki Abdul Bari
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Anwar Ul Haq
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Mudassar Saleem
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Farwa Akhtar
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
7
|
Estimating the Analytical Performance of Raman Spectroscopy for Quantification of Active Ingredients in Human Stratum Corneum. Molecules 2022; 27:molecules27092843. [PMID: 35566190 PMCID: PMC9105701 DOI: 10.3390/molecules27092843] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 01/16/2023] Open
Abstract
Confocal Raman microscopy (CRM) has become a versatile technique that can be applied routinely to monitor skin penetration of active molecules. In the present study, CRM coupled to multivariate analysis (namely PLSR—partial least squares regression) is used for the quantitative measurement of an active ingredient (AI) applied to isolated (ex vivo) human stratum corneum (SC), using systematically varied doses of resorcinol, as model compound, and the performance is quantified according to key figures of merit defined by regulatory bodies (ICH, FDA, and EMA). A methodology is thus demonstrated to establish the limit of detection (LOD), precision, accuracy, sensitivity (SEN), and selectivity (SEL) of the technique, and the performance according to these key figures of merit is compared to that of similar established methodologies, based on studies available in literature. First, principal components analysis (PCA) was used to examine the variability within the spectral data set collected. Second, ratios calculated from the area under the curve (AUC) of characteristic resorcinol and proteins/lipids bands (1400–1500 cm−1) were used to perform linear regression analysis of the Raman spectra. Third, cross-validated PLSR analysis was applied to perform quantitative analysis in the fingerprint region. The AUC results show clearly that the intensities of Raman features in the spectra collected are linearly correlated to resorcinol concentrations in the SC (R2 = 0.999) despite a heterogeneity in the distribution of the active molecule in the samples. The Root Mean Square Error of Cross-Validation (RMSECV) (0.017 mg resorcinol/mg SC), The Root Mean Square of Prediction (RMSEP) (0.015 mg resorcinol/mg SC), and R2 (0.971) demonstrate the reliability of the linear regression constructed, enabling accurate quantification of resorcinol. Furthermore, the results have enabled the determination, for the first time, of numerical criteria to estimate analytical performances of CRM, including LOD, precision using bias corrected mean square error prediction (BCMSEP), sensitivity, and selectivity, for quantification of the performance of the analytical technique. This is one step further towards demonstrating that Raman spectroscopy complies with international guidelines and to establishing the technique as a reference and approved tool for permeation studies.
Collapse
|
8
|
Masson LE, O’Brien CM, Gautam R, Thomas G, Slaughter JC, Goldberg M, Bennett K, Herington J, Reese J, Elsamadicy E, Newton JM, Mahadevan-Jansen A. In vivo Raman spectroscopy monitors cervical change during labor. Am J Obstet Gynecol 2022; 227:275.e1-275.e14. [PMID: 35189092 PMCID: PMC9308703 DOI: 10.1016/j.ajog.2022.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Biochemical cervical change during labor is not well understood, in part, because of a dearth of technologies capable of safely probing the pregnant cervix in vivo. The need for such a technology is 2-fold: (1) to gain a mechanistic understanding of the cervical ripening and dilation process and (2) to provide an objective method for evaluating the cervical state to guide clinical decision-making. Raman spectroscopy demonstrates the potential to meet this need, as it is a noninvasive optical technique that can sensitively detect alterations in tissue components, such as extracellular matrix proteins, lipids, nucleic acids, and blood, which have been previously established to change during the cervical remodeling process. OBJECTIVE We sought to demonstrate that Raman spectroscopy can longitudinally monitor biochemical changes in the laboring cervix to identify spectral markers of impending parturition. STUDY DESIGN Overall, 30 pregnant participants undergoing either spontaneous or induced labor were recruited. The Raman spectra were acquired in vivo at 4-hour intervals throughout labor until rupture of membranes using a Raman system with a fiber-optic probe. Linear mixed-effects models were used to determine significant (P<.05) changes in peak intensities or peak ratios as a function of time to delivery in the study population. A nonnegative least-squares biochemical model was used to extract the changing contributions of specific molecule classes over time. RESULTS We detected multiple biochemical changes during labor, including (1) significant decreases in Raman spectral features associated with collagen and other extracellular matrix proteins (P=.0054) attributed to collagen dispersion, (2) an increase in spectral features associated with blood (P=.0372), and (3) an increase in features indicative of lipid-based molecules (P=.0273). The nonnegative least-squares model revealed a decrease in collagen contribution with time to delivery, an increase in blood contribution, and a change in lipid contribution. CONCLUSION Our findings have demonstrated that in vivo Raman spectroscopy is sensitive to multiple biochemical remodeling changes in the cervix during labor. Furthermore, in vivo Raman spectroscopy may be a valuable noninvasive tool for objectively evaluating the cervix to potentially guide clinical management of labor.
Collapse
|
9
|
Finding reduced Raman spectroscopy fingerprint of skin samples for melanoma diagnosis through machine learning. Artif Intell Med 2021; 120:102161. [PMID: 34629149 DOI: 10.1016/j.artmed.2021.102161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/23/2022]
Abstract
Early-stage detection of cutaneous melanoma can vastly increase the chances of cure. Excision biopsy followed by histological examination is considered the gold standard for diagnosing the disease, but requires long high-cost processing time, and may be biased, as it involves qualitative assessment by a professional. In this paper, we present a new machine learning approach using raw data for skin Raman spectra as input. The approach is highly efficient for classifying benign versus malignant skin lesions (AUC 0.98, 95% CI 0.97-0.99). Furthermore, we present a high-performance model (AUC 0.97, 95% CI 0.95-0.98) using a miniaturized spectral range (896-1039 cm-1), thus demonstrating that only a single fragment of the biological fingerprint Raman region is needed for producing an accurate diagnosis. These findings could favor the future development of a cheaper and dedicated Raman spectrometer for fast and accurate cancer diagnosis.
Collapse
|
10
|
Abstract
Raman spectroscopy has shown great potential in detecting nonmelanoma skin cancer accurately and quickly; however, little direct evidence exists on the sensitivity of measurements to the underlying anatomy. Here, we aimed to correlate Raman measurements directly to the underlying tissue anatomy. We acquired Raman spectra of ex vivo skin tissue from 25 patients undergoing Mohs surgery with a fiber probe. We utilized a previously developed biophysical model to extract key biomarkers in the skin from the Raman spectra. We then examined the correlations between the biomarkers and the major skin structures (including the dermis, sebaceous glands, hair follicles, fat, and two types of nonmelanoma skin cancer—basal cell carcinoma (BCC) and squamous cell carcinoma (SCC)). SCC had a significantly different concentration of keratin, collagen, and nucleic acid than normal structures, while ceramide differentiated BCC from normal structures. Our findings identified the key proteins, lipids, and nucleic acids that discriminate nonmelanoma tumors and healthy skin using Raman spectroscopy. These markers may be promising surgical guidance tools for detecting tumors in resection margins.
Collapse
|
11
|
Schleusener J, Guo S, Darvin ME, Thiede G, Chernavskaia O, Knorr F, Lademann J, Popp J, Bocklitz TW. Fiber-based SORS-SERDS system and chemometrics for the diagnostics and therapy monitoring of psoriasis inflammatory disease in vivo. BIOMEDICAL OPTICS EXPRESS 2021; 12:1123-1135. [PMID: 33680562 PMCID: PMC7901339 DOI: 10.1364/boe.413922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 05/05/2023]
Abstract
Psoriasis is considered a widespread dermatological disease that can strongly affect the quality of life. Currently, the treatment is continued until the skin surface appears clinically healed. However, lesions appearing normal may contain modifications in deeper layers. To terminate the treatment too early can highly increase the risk of relapses. Therefore, techniques are needed for a better knowledge of the treatment process, especially to detect the lesion modifications in deeper layers. In this study, we developed a fiber-based SORS-SERDS system in combination with machine learning algorithms to non-invasively determine the treatment efficiency of psoriasis. The system was designed to acquire Raman spectra from three different depths into the skin, which provide rich information about the skin modifications in deeper layers. This way, it is expected to prevent the occurrence of relapses in case of a too short treatment. The method was verified with a study of 24 patients upon their two visits: the data is acquired at the beginning of a standard treatment (visit 1) and four months afterwards (visit 2). A mean sensitivity of ≥85% was achieved to distinguish psoriasis from normal skin at visit 1. At visit 2, where the patients were healed according to the clinical appearance, the mean sensitivity was ≈65%.
Collapse
Affiliation(s)
- Johannes Schleusener
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Both authors contributed equally to this work
- Correspondence regarding medical questions should be sent to
| | - Shuxia Guo
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University of Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
- Both authors contributed equally to this work
| | - Maxim E Darvin
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Gisela Thiede
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Olga Chernavskaia
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Florian Knorr
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Jürgen Lademann
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University of Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Thomas W Bocklitz
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University of Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
- Correspondence for technical issues should be sent to
| |
Collapse
|
12
|
Vibrational Spectroscopy for In Vitro Monitoring Stem Cell Differentiation. Molecules 2020; 25:molecules25235554. [PMID: 33256146 PMCID: PMC7729886 DOI: 10.3390/molecules25235554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Stem cell technology has attracted considerable attention over recent decades due to its enormous potential in regenerative medicine and disease therapeutics. Studying the underlying mechanisms of stem cell differentiation and tissue generation is critical, and robust methodologies and different technologies are required. Towards establishing improved understanding and optimised triggering and control of differentiation processes, analytical techniques such as flow cytometry, immunohistochemistry, reverse transcription polymerase chain reaction, RNA in situ hybridisation analysis, and fluorescence-activated cell sorting have contributed much. However, progress in the field remains limited because such techniques provide only limited information, as they are only able to address specific, selected aspects of the process, and/or cannot visualise the process at the subcellular level. Additionally, many current analytical techniques involve the disruption of the investigation process (tissue sectioning, immunostaining) and cannot monitor the cellular differentiation process in situ, in real-time. Vibrational spectroscopy, as a label-free, non-invasive and non-destructive analytical technique, appears to be a promising candidate to potentially overcome many of these limitations as it can provide detailed biochemical fingerprint information for analysis of cells, tissues, and body fluids. The technique has been widely used in disease diagnosis and increasingly in stem cell technology. In this work, the efforts regarding the use of vibrational spectroscopy to identify mechanisms of stem cell differentiation at a single cell and tissue level are summarised. Both infrared absorption and Raman spectroscopic investigations are explored, and the relative merits, and future perspectives of the techniques are discussed.
Collapse
|
13
|
Heng HPS, Shu C, Zheng W, Lin K, Huang Z. Advances in real‐time fiber‐optic Raman spectroscopy for early cancer diagnosis: Pushing the frontier into clinical endoscopic applications. TRANSLATIONAL BIOPHOTONICS 2020. [DOI: 10.1002/tbio.202000018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Howard Peng Sin Heng
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering National University of Singapore Singapore Singapore
- NUS Graduate School for Integrative Sciences and Engineering National University of Singapore Singapore Singapore
| | - Chi Shu
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering National University of Singapore Singapore Singapore
| | - Wei Zheng
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering National University of Singapore Singapore Singapore
| | - Kan Lin
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering National University of Singapore Singapore Singapore
| | - Zhiwei Huang
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering National University of Singapore Singapore Singapore
- NUS Graduate School for Integrative Sciences and Engineering National University of Singapore Singapore Singapore
| |
Collapse
|
14
|
Assessment of Raman Spectroscopy for Reducing Unnecessary Biopsies for Melanoma Screening. Molecules 2020; 25:molecules25122852. [PMID: 32575717 PMCID: PMC7355922 DOI: 10.3390/molecules25122852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 01/26/2023] Open
Abstract
A key challenge in melanoma diagnosis is the large number of unnecessary biopsies on benign nevi, which requires significant amounts of time and money. To reduce unnecessary biopsies while still accurately detecting melanoma lesions, we propose using Raman spectroscopy as a non-invasive, fast, and inexpensive method for generating a “second opinion” for lesions being considered for biopsy. We collected in vivo Raman spectral data in the clinical skin screening setting from 52 patients, including 53 pigmented lesions and 7 melanomas. All lesions underwent biopsies based on clinical evaluation. Principal component analysis and logistic regression models with leave one lesion out cross validation were applied to classify melanoma and pigmented lesions for biopsy recommendations. Our model achieved an area under the receiver operating characteristic (ROC) curve (AUROC) of 0.903 and a specificity of 58.5% at perfect sensitivity. The number needed to treat for melanoma could have been decreased from 8.6 (60/7) to 4.1 (29/7). This study in a clinical skin screening setting shows the potential of Raman spectroscopy for reducing unnecessary skin biopsies with in vivo Raman data and is a significant step toward the application of Raman spectroscopy for melanoma screening in the clinic.
Collapse
|
15
|
Parachalil DR, McIntyre J, Byrne HJ. Potential of Raman spectroscopy for the analysis of plasma/serum in the liquid state: recent advances. Anal Bioanal Chem 2020; 412:1993-2007. [DOI: 10.1007/s00216-019-02349-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/17/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022]
|
16
|
Balan V, Mihai CT, Cojocaru FD, Uritu CM, Dodi G, Botezat D, Gardikiotis I. Vibrational Spectroscopy Fingerprinting in Medicine: from Molecular to Clinical Practice. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2884. [PMID: 31489927 PMCID: PMC6766044 DOI: 10.3390/ma12182884] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
In the last two decades, Fourier Transform Infrared (FTIR) and Raman spectroscopies turn out to be valuable tools, capable of providing fingerprint-type information on the composition and structural conformation of specific molecular species. Vibrational spectroscopy's multiple features, namely highly sensitive to changes at the molecular level, noninvasive, nondestructive, reagent-free, and waste-free analysis, illustrate the potential in biomedical field. In light of this, the current work features recent data and major trends in spectroscopic analyses going from in vivo measurements up to ex vivo extracted and processed materials. The ability to offer insights into the structural variations underpinning pathogenesis of diseases could provide a platform for disease diagnosis and therapy effectiveness evaluation as a future standard clinical tool.
Collapse
Affiliation(s)
- Vera Balan
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iași, Iași 700115, Romania.
| | - Cosmin-Teodor Mihai
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, Iași 700115, Romania.
| | - Florina-Daniela Cojocaru
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, Iași 700115, Romania.
| | - Cristina-Mariana Uritu
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, Iași 700115, Romania.
| | - Gianina Dodi
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, Iași 700115, Romania.
| | - Doru Botezat
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, Iași 700115, Romania.
| | - Ioannis Gardikiotis
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, Iași 700115, Romania
| |
Collapse
|
17
|
Abstract
Skin hydration is a complex process that influences the physical and mechanical properties of skin. Various technologies have emerged over the years to assess this parameter, with the current standard being electrical probe-based instruments. Nevertheless, their inability to provide detailed information has prompted the use of sophisticated spectroscopic and imaging methodologies, which are capable of in-depth skin analysis that includes structural and composition details. Modern imaging and spectroscopic techniques have transformed skin research in the dermatological and cosmetics disciplines, and are now commonly employed in conjunction with traditional methods for comprehensive assessment of both healthy and pathological skin. This article reviews current techniques employed in measuring skin hydration, and gives an account on their principle of operation and applications in skin-related research.
Collapse
|
18
|
Narayanamurthy V, Padmapriya P, Noorasafrin A, Pooja B, Hema K, Firus Khan AY, Nithyakalyani K, Samsuri F. Skin cancer detection using non-invasive techniques. RSC Adv 2018; 8:28095-28130. [PMID: 35542700 PMCID: PMC9084287 DOI: 10.1039/c8ra04164d] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/22/2018] [Indexed: 12/22/2022] Open
Abstract
Skin cancer is the most common form of cancer and is globally rising. Historically, the diagnosis of skin cancers has depended on various conventional techniques which are of an invasive manner. A variety of commercial diagnostic tools and auxiliary techniques are available to detect skin cancer. This article explains in detail the principles and approaches involved for non-invasive skin cancer diagnostic methods such as photography, dermoscopy, sonography, confocal microscopy, Raman spectroscopy, fluorescence spectroscopy, terahertz spectroscopy, optical coherence tomography, the multispectral imaging technique, thermography, electrical bio-impedance, tape stripping and computer-aided analysis. The characteristics of an ideal screening test are outlined, and the authors pose several points for clinicians and scientists to consider in the evaluation of current and future studies of skin cancer detection and diagnosis. This comprehensive review critically analyses the literature associated with the field and summarises the recent updates along with their merits and demerits.
Collapse
Affiliation(s)
- Vigneswaran Narayanamurthy
- InnoFuTech No: 42/12, 7th Street, Vallalar Nagar, Pattabiram Chennai Tamil Nadu 600072 India
- Faculty of Electrical and Electronics Engineering, University Malaysia Pahang Pekan 26600 Malaysia
| | - P Padmapriya
- Department of Biomedical Engineering, Veltech Multitech Dr. RR & Dr. SR Engineering College Chennai 600 062 India
| | - A Noorasafrin
- Department of Biomedical Engineering, Veltech Multitech Dr. RR & Dr. SR Engineering College Chennai 600 062 India
| | - B Pooja
- Department of Biomedical Engineering, Veltech Multitech Dr. RR & Dr. SR Engineering College Chennai 600 062 India
| | - K Hema
- Department of Biomedical Engineering, Veltech Multitech Dr. RR & Dr. SR Engineering College Chennai 600 062 India
| | - Al'aina Yuhainis Firus Khan
- Department of Biomedical Science, Faculty of Allied Health Sciences, International Islamic University Malaysia 25200 Kuantan Pahang Malaysia
| | - K Nithyakalyani
- Department of Biomedical Engineering, Veltech Multitech Dr. RR & Dr. SR Engineering College Chennai 600 062 India
| | - Fahmi Samsuri
- Faculty of Electrical and Electronics Engineering, University Malaysia Pahang Pekan 26600 Malaysia
| |
Collapse
|
19
|
Byrne HJ, Bonnier F, Casey A, Maher M, McIntyre J, Efeoglu E, Farhane Z. Advancing Raman microspectroscopy for cellular and subcellular analysis: towards in vitro high-content spectralomic analysis. APPLIED OPTICS 2018; 57:E11-E19. [PMID: 30117916 DOI: 10.1364/ao.57.000e11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
In the confocal mode, Raman microspectroscopy can profile the biochemical content of biological cells at a subcellular level, and any changes to it by exogenous agents, such as therapeutic drugs or toxicants. As an exploration of the potential of the technique as a high-content, label-free analysis technique, this report reviews work to monitor the spectroscopic signatures associated with the uptake and response pathways of commercial chemotherapeutic agents and polymeric nanoparticles by human lung cells. It is demonstrated that the signatures are reproducible and characteristic of the cellular event, and can be used, for example, to identify the mode of action of the agent as well as the subsequent cell death pathway, and even mechanisms of cellular resistance. Data mining approaches are discussed and a spectralomics approach is proposed.
Collapse
|
20
|
Abstract
Histopathology plays a central role in diagnosis of many diseases including solid cancers. Efforts are underway to transform this subjective art to an objective and quantitative science. Coherent Raman imaging (CRI), a label-free imaging modality with sub-cellular spatial resolution and molecule-specific contrast possesses characteristics which could support the qualitative-to-quantitative transition of histopathology. In this work we briefly survey major themes related to modernization of histopathology, review applications of CRI to histopathology and, finally, discuss potential roles for CRI in the transformation of histopathology that is already underway.
Collapse
|
21
|
Sdobnov AY, Darvin ME, Genina EA, Bashkatov AN, Lademann J, Tuchin VV. Recent progress in tissue optical clearing for spectroscopic application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 197:216-229. [PMID: 29433855 DOI: 10.1016/j.saa.2018.01.085] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 05/03/2023]
Abstract
This paper aims to review recent progress in optical clearing of the skin and over naturally turbid biological tissues and blood using this technique in vivo and in vitro with multiphoton microscopy, confocal Raman microscopy, confocal microscopy, NIR spectroscopy, optical coherence tomography, and laser speckle contrast imaging. Basic principles of the technique, its safety, advantages and limitations are discussed. The application of optical clearing agent on a tissue allows for controlling the optical properties of tissue. Optical clearing-induced reduction of tissue scattering significantly facilitates the observation of deep-located tissue regions, at the same time improving the resolution and image contrast for a variety of optical imaging methods suitable for clinical applications, such as diagnostics and laser treatment of skin diseases, mucosal tumor imaging, laser disruption of pathological abnormalities, etc.
Collapse
Affiliation(s)
- A Yu Sdobnov
- Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu 90570, Finland; Research-Educational Institute of Optics and Biophotonics, Saratov State University (National Research University of Russia), Astrakhanskaya 83, 410012 Saratov, Russian Federation.
| | - M E Darvin
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - E A Genina
- Research-Educational Institute of Optics and Biophotonics, Saratov State University (National Research University of Russia), Astrakhanskaya 83, 410012 Saratov, Russian Federation; Interdisciplinary Laboratory of Biophotonics, Tomsk State University (National Research University of Russia), Lenin's av. 36, 634050 Tomsk, Russian Federation
| | - A N Bashkatov
- Research-Educational Institute of Optics and Biophotonics, Saratov State University (National Research University of Russia), Astrakhanskaya 83, 410012 Saratov, Russian Federation; Interdisciplinary Laboratory of Biophotonics, Tomsk State University (National Research University of Russia), Lenin's av. 36, 634050 Tomsk, Russian Federation
| | - J Lademann
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - V V Tuchin
- Research-Educational Institute of Optics and Biophotonics, Saratov State University (National Research University of Russia), Astrakhanskaya 83, 410012 Saratov, Russian Federation; Interdisciplinary Laboratory of Biophotonics, Tomsk State University (National Research University of Russia), Lenin's av. 36, 634050 Tomsk, Russian Federation; Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control RAS, Rabochaya 24, 410028 Saratov, Russian Federation
| |
Collapse
|
22
|
Upchurch E, Isabelle M, Lloyd GR, Kendall C, Barr H. An update on the use of Raman spectroscopy in molecular cancer diagnostics: current challenges and further prospects. Expert Rev Mol Diagn 2018; 18:245-258. [DOI: 10.1080/14737159.2018.1439739] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Emma Upchurch
- Department of Upper GI Surgery, Gloucestershire Royal Hospital, Gloucester
- Biophotonics Research Unit, Gloucestershire Royal Hospital, Gloucester
| | | | - Gavin Rhys Lloyd
- Phenome Centre Birmingham, School of Biosciences, University of Birmingham
| | - Catherine Kendall
- Biophotonics Research Unit, Gloucestershire Royal Hospital, Gloucester
| | - Hugh Barr
- Department of Upper GI Surgery, Gloucestershire Royal Hospital, Gloucester
- Biophotonics Research Unit, Gloucestershire Royal Hospital, Gloucester
| |
Collapse
|
23
|
SEKINE R, SATO S, TANAKA JI, KAGOSHIMA H, AOKI T, MURAKAMI M. Potential Application of Raman Spectroscopy for Real-time Diagnosis and Classification of Colorectal Cancer. ACTA ACUST UNITED AC 2018. [DOI: 10.15369/sujms.30.381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ryuichi SEKINE
- Department of Surgery, Division of General and Gastroenterological Surgery, Showa University Fujigaoka Hospital
| | - Sumito SATO
- Department of Surgery, Division of General and Gastroenterological Surgery, Showa University Fujigaoka Hospital
| | - Jun-ichi TANAKA
- Department of Surgery, Division of General and Gastroenterological Surgery, Showa University Fujigaoka Hospital
| | | | - Takeshi AOKI
- Department of Surgery, Division of General and Gastroenterological Surgery, Showa University School of Medicine
| | - Masahiko MURAKAMI
- Department of Surgery, Division of General and Gastroenterological Surgery, Showa University School of Medicine
| |
Collapse
|
24
|
Abstract
Skin cancer is the most commonly diagnosed cancer in the USA. Mohs micrographic surgery is a microscopically controlled surgical technique that excises lateral and deep surgical margins while also sparing function and achieving a good cosmetic outcome. Given the increasing incidence in skin cancer worldwide and its associated treatment costs, techniques are being developed to improve the time and cost efficacy of this procedure. The use of noninvasive imaging, both in vivo and ex vivo, has the potential to increase efficiency of diagnosis and surgical management of skin cancers. These devices are useful in delineating lateral and deep tumor margins prior to surgery in vivo as well as to detect residual tumor ex vivo virtually in real time.
Collapse
Affiliation(s)
- Amanda Levine
- Department of Dermatology, Mount Sinai Medical Center, New York, NY, 10029, USA
- Department of Dermatology, SUNY Downstate Medical Center, Brooklyn, NY, 11203, USA
- Department of Dermatology, New York Harbor Healthcare System, Brooklyn, NY, 11209, USA
| | - Daniel Siegel
- Department of Dermatology, SUNY Downstate Medical Center, Brooklyn, NY, 11203, USA
- Department of Dermatology, New York Harbor Healthcare System, Brooklyn, NY, 11209, USA
| | - Orit Markowitz
- Department of Dermatology, Mount Sinai Medical Center, New York, NY, 10029, USA
- Department of Dermatology, SUNY Downstate Medical Center, Brooklyn, NY, 11203, USA
- Department of Dermatology, New York Harbor Healthcare System, Brooklyn, NY, 11209, USA
| |
Collapse
|
25
|
Zhao J, Zeng H, Kalia S, Lui H. Using Raman Spectroscopy to Detect and Diagnose Skin Cancer In Vivo. Dermatol Clin 2017; 35:495-504. [PMID: 28886805 DOI: 10.1016/j.det.2017.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Raman spectroscopy provides a noninvasive bedside tool that captures unique optical signals via molecular vibrations in tissue samples. Raman theory was discovered at the beginning of the twentieth century, but it was not until the past few decades that it has been used to differentiate skin neoplasms. We provide a brief description of Raman spectroscopy for in vivo skin cancer diagnosis, including the physical principles underlying Raman spectroscopy, its advantages, typical spectra of skin pathologies, and its clinical application for aiding skin cancer diagnosis.
Collapse
Affiliation(s)
- Jianhua Zhao
- Photomedicine Institute, Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, The University of British Columbia, 835 West 10th Avenue, Vancouver, British Columbia V5Z 4E8, Canada; Imaging Unit, Integrative Oncology Department, The BC Cancer Agency Research Center, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Haishan Zeng
- Photomedicine Institute, Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, The University of British Columbia, 835 West 10th Avenue, Vancouver, British Columbia V5Z 4E8, Canada; Imaging Unit, Integrative Oncology Department, The BC Cancer Agency Research Center, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Sunil Kalia
- Photomedicine Institute, Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, The University of British Columbia, 835 West 10th Avenue, Vancouver, British Columbia V5Z 4E8, Canada; Imaging Unit, Integrative Oncology Department, The BC Cancer Agency Research Center, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Harvey Lui
- Photomedicine Institute, Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, The University of British Columbia, 835 West 10th Avenue, Vancouver, British Columbia V5Z 4E8, Canada; Imaging Unit, Integrative Oncology Department, The BC Cancer Agency Research Center, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada.
| |
Collapse
|
26
|
Jeništová A, Dendisová M, Matějka P. Study of plasmonic nanoparticles interactions with skin layers by vibrational spectroscopy. Eur J Pharm Biopharm 2017; 116:85-93. [DOI: 10.1016/j.ejpb.2016.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/06/2016] [Accepted: 12/19/2016] [Indexed: 12/26/2022]
|
27
|
Thatai P, Sapra B. Structural and component mining of nails using bioengineering techniques. Int J Cosmet Sci 2016; 39:225-240. [PMID: 27709625 DOI: 10.1111/ics.12371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/01/2016] [Indexed: 11/29/2022]
Abstract
The human nail is one of the challenging membranes for the scientists to target and to improve the clinical efficacy of ungual formulations. The understanding of nail physiology, impact of hydration on its properties and presence of trace elements in nails as biomarkers has been explored by various researchers in clinical studies. Despite the importance of biophysical techniques for the assessment of structure and physiology of nail, minimum literature analyses biophysical, biochemical and bioanalytical approaches. However, nowadays scientists in bioengineering field are keen in developing non-invasive, reliable and reproducible techniques for the assessment of different anatomical and functional parameters of nails for testing of ungual products.
Collapse
Affiliation(s)
- P Thatai
- Pharmaceutics Division, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - B Sapra
- Pharmaceutics Division, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
28
|
Fioravanti V, Brandhoff L, van den Driesche S, Breiteneder H, Kitzwögerer M, Hafner C, Vellekoop MJ. An Infrared Absorbance Sensor for the Detection of Melanoma in Skin Biopsies. SENSORS 2016; 16:s16101659. [PMID: 27735858 PMCID: PMC5087447 DOI: 10.3390/s16101659] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/24/2016] [Accepted: 09/28/2016] [Indexed: 11/16/2022]
Abstract
An infrared (IR) absorbance sensor has been designed, realized and tested with the aim of detecting malignant melanomas in human skin biopsies. The sensor has been designed to obtain fast measurements (80 s) of a biopsy using a small light spot (0.5 mm in diameter, typically five to 10 times smaller than the biopsy size) to investigate different biopsy areas. The sensor has been equipped with a monochromator to record the whole IR spectrum in the 3330-3570 nm wavelength range (where methylene and methyl stretching vibrations occur) for a qualitative spectral investigation. From the collected spectra, the CH₂ stretch ratio values (ratio of the absorption intensities of the symmetric to asymmetric CH₂ stretching peaks) are determined and studied as a cancer indicator. Melanoma areas exhibit different spectral shapes and significantly higher CH₂ stretch ratios when compared to healthy skin. The results of the infrared investigation are compared with standard histology. This study shows that the IR sensor is a promising supportive tool to improve the diagnosis of melanoma during histopathological analysis, decreasing the risk of misdiagnosis.
Collapse
Affiliation(s)
- Valeria Fioravanti
- Institute for Microsensors, Actuators and Systems (IMSAS), MCB, University of Bremen, Bremen D-28359, Germany.
| | - Lukas Brandhoff
- Institute for Microsensors, Actuators and Systems (IMSAS), MCB, University of Bremen, Bremen D-28359, Germany.
| | - Sander van den Driesche
- Institute for Microsensors, Actuators and Systems (IMSAS), MCB, University of Bremen, Bremen D-28359, Germany.
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna A-1090, Austria.
| | - Melitta Kitzwögerer
- Department of Pathology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten A-3100, Austria.
| | - Christine Hafner
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna A-1090, Austria.
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten A-3100, Austria.
| | - Michael J Vellekoop
- Institute for Microsensors, Actuators and Systems (IMSAS), MCB, University of Bremen, Bremen D-28359, Germany.
| |
Collapse
|
29
|
Lin K, Zheng W, Lim CM, Huang Z. Real-time in vivo diagnosis of laryngeal carcinoma with rapid fiber-optic Raman spectroscopy. BIOMEDICAL OPTICS EXPRESS 2016; 7:3705-3715. [PMID: 27699131 PMCID: PMC5030043 DOI: 10.1364/boe.7.003705] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/23/2016] [Accepted: 08/23/2016] [Indexed: 05/05/2023]
Abstract
We assess the clinical utility of a unique simultaneous fingerprint (FP) (i.e., 800-1800 cm-1) and high-wavenumber (HW) (i.e., 2800-3600 cm-1) fiber-optic Raman spectroscopy for in vivo diagnosis of laryngeal cancer at endoscopy. A total of 2124 high-quality in vivo FP/HW Raman spectra (normal = 1321; cancer = 581) were acquired from 101 tissue sites (normal = 71; cancer = 30) of 60 patients (normal = 44; cancer = 16) undergoing routine endoscopic examination. FP/HW Raman spectra differ significantly between normal and cancerous laryngeal tissue that could be attributed to changes of proteins, lipids, nucleic acids, and the bound water content in the larynx. Partial least squares-discriminant analysis and leave-one tissue site-out, cross-validation were employed on the in vivo FP/HW tissue Raman spectra acquired, yielding a diagnostic accuracy of 91.1% (sensitivity: 93.3% (28/30); specificity: 90.1% (64/71)) for laryngeal cancer identification, which is superior to using either FP (accuracy: 86.1%; sensitivity: 86.7% (26/30); specificity: 85.9% (61/71)) or HW (accuracy: 84.2%; sensitivity: 76.7% (23/30); specificity: 87.3% (62/71)) Raman technique alone. Further receiver operating characteristic analysis reconfirms the best performance of the simultaneous FP/HW Raman technique for laryngeal cancer diagnosis. We demonstrate for the first time that the simultaneous FP/HW Raman spectroscopy technique can be used for improving real-time in vivo diagnosis of laryngeal carcinoma during endoscopic examination.
Collapse
Affiliation(s)
- Kan Lin
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 117576 Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, 119260 Singapore
| | - Wei Zheng
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 117576 Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, 119260 Singapore
| | - Chwee Ming Lim
- Department of Otolaryngology, Head and Neck Surgery, National University of Singapore and National University Health System, 119074 Singapore
| | - Zhiwei Huang
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 117576 Singapore
| |
Collapse
|
30
|
Sharma A, Sharma S, Zarrow A, Schwartz RA, Lambert WC. Raman Spectroscopy: Incorporating the Chemical Dimension into Dermatological Diagnosis. Indian J Dermatol 2016; 61:1-8. [PMID: 26955087 PMCID: PMC4763617 DOI: 10.4103/0019-5154.173978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Raman spectroscopy provides chemical analysis of tissue in vivo. By measuring the inelastic interactions of light with matter, Raman spectroscopy can determine the chemical composition of a sample. Diseases that are visually difficult to visually distinguish can be delineated based on differences in chemical composition of the affected tissue. Raman spectroscopy has successfully found spectroscopic signatures for skin cancers and differentiated those of benign skin growths. With current and on-going advances in optics and computing, inexpensive and effective Raman systems may soon be available for clinical use. Raman spectroscopy provides direct analyses of skin lesions, thereby improving both disease diagnosis and management.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Dermatology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Shruti Sharma
- Department of Physics, University of Cambridge, Cambridge, UK
| | - Anna Zarrow
- Department of Chemistry, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Robert A Schwartz
- Department of Dermatology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - W Clark Lambert
- Department of Dermatology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
31
|
Sohn M, Buehler T, Imanidis G. Repartition of oil miscible and water soluble UV filters in an applied sunscreen film determined by confocal Raman microspectroscopy. Photochem Photobiol Sci 2016; 15:861-71. [DOI: 10.1039/c6pp00024j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Repartition of UV filters responsible for sun protection in the sunscreen film upon application depends on the formulation of the sunscreen.
Collapse
Affiliation(s)
- Myriam Sohn
- University of Applied Sciences Northwestern Switzerland
- School of Life Sciences
- Institute of Pharmaceutical Technology
- Muttenz/Basel
- Switzerland
| | - Theodor Buehler
- University of Applied Sciences Northwestern Switzerland
- School of Life Sciences
- Institute of Pharmaceutical Technology
- Muttenz/Basel
- Switzerland
| | - Georgios Imanidis
- University of Applied Sciences Northwestern Switzerland
- School of Life Sciences
- Institute of Pharmaceutical Technology
- Muttenz/Basel
- Switzerland
| |
Collapse
|
32
|
Rossi AM, Sierra H, Rajadhyaksha M, Nehal K. Novel approaches to imaging basal cell carcinoma. Future Oncol 2015; 11:3039-46. [PMID: 26467205 DOI: 10.2217/fon.15.231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The gold standard of diagnosis for nonmelanoma and melanoma skin cancer has been skin biopsy with routine paraffin embedded hematoxylin and eosin histopathology. This practice is frequently carried out on suspicious lesions to rule out a malignant process. Therefore, as a result, many biopsies are done on benign lesions. Unlike other fields of medicine that rely on noninvasive imaging modalities, the use of imaging devices in dermatology has not been as robust. This has been mainly due to the limited resolution offered by imaging devices that is needed to detect malignant changes in the cutaneous layers. However, the demand for more efficient in vivo and ex vivo imaging tools to reduce the amount of biopsies have led to new areas of investigation using noninvasive modalities to augment the clinical diagnosis of skin cancer. The use of noninvasive imaging both in vivo and ex vivo has the potential to increase efficiency of diagnosis and management, decrease healthcare cost, improve clinical care and enhance patient satisfaction.
Collapse
Affiliation(s)
- Anthony M Rossi
- Memorial Sloan Kettering Cancer Center, Dermatology Service, 160 East 53rd Street, 2nd Floor, New York, NY 10022, USA
| | - Heidy Sierra
- Memorial Sloan Kettering Cancer Center, Dermatology Service, 160 East 53rd Street, 2nd Floor, New York, NY 10022, USA
| | - Milind Rajadhyaksha
- Memorial Sloan Kettering Cancer Center, Dermatology Service, 160 East 53rd Street, 2nd Floor, New York, NY 10022, USA
| | - Kiswher Nehal
- Memorial Sloan Kettering Cancer Center, Dermatology Service, 160 East 53rd Street, 2nd Floor, New York, NY 10022, USA
| |
Collapse
|
33
|
Ouyang H, Xu J, Zhu Z, Long T, Yu C. Rapid discrimination of malignant lesions from normal gastric tissues utilizing Raman spectroscopy system: a meta-analysis. J Cancer Res Clin Oncol 2015; 141:1835-44. [PMID: 25912559 DOI: 10.1007/s00432-015-1971-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/13/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To systematically analyze the diagnostic accuracy of Raman spectroscopy system (RAS) in the rapid diagnosis of gastric cancer with histopathology as the reference standard. METHODS We searched a wide range of electronic databases for all published researches that assessed the diagnostic accuracy of RAS to detect gastric carcinoma. Full papers were obtained for potentially eligible studies and evaluated according to predefined criteria. The Quality Assessment of Diagnostic Accuracy Studies checklist was used to assess the quality of included studies. From each study, we extracted information on diagnostic performance of RAS. After exploring heterogeneity, we adopted a random effects model to pool related effect sizes. RESULTS The initial literature search identified 257 reference articles in which 15 relevant articles with 15 data sets were selected and reviewed. The pooled sensitivity and specificity of RAS in diagnosing gastric cancer were 0.89 (95 % CI 0.84-0.92) and 0.92 (95 % CI 0.88-0.95), respectively. The positive likelihood ratio, the negative likelihood ratio, and the area under the curve were 10 (95 % CI 6.5-15.3), 0.13 (95 % CI 0.08-0.22), and 0.96 (95 % CI 0.94-0.97), respectively. All the pooled estimates, calculated by random and fixed effect models, were similar. There was no evidence of considerable publication bias. CONCLUSIONS RAS is an objective and sensitive optical diagnostic technology for detecting gastric cancer and has advantages of being noninvasive to the body, real-time diagnosis, and ease of use. Consequently, it does deserve to be recommended.
Collapse
Affiliation(s)
- Huan Ouyang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, 230022, China,
| | | | | | | | | |
Collapse
|
34
|
de Boer E, Moore LS, Warram JM, Huang CC, Brandwein-Gensler MS, van Dam GM, Rosenthal EL, Schmalbach CE. On the horizon: Optical imaging for cutaneous squamous cell carcinoma. Head Neck 2015; 38 Suppl 1:E2204-13. [PMID: 25899874 DOI: 10.1002/hed.24079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Surgical resection with negative margins remains the standard of care for high-risk cutaneous squamous cell carcinoma (SCC). However, surgical management is often limited by poor intraoperative tumor visualization and inability to detect occult nodal metastasis. The inability to intraoperatively detect microscopic disease can lead to additional surgery, tumor recurrence, and decreased survival. METHODS A comprehensive literature review was conducted to identify studies incorporating optical imaging technology in the management of cutaneous SCC (January 1, 2000-December 1, 2014). RESULTS Several innovative optical imaging techniques, Raman spectroscopy, confocal microscopy, and fluorescence imaging, have been developed for intraoperative surgical guidance. Fifty-seven studies review the ability of these techniques to improve cutaneous SCC localization at the gross and microscopic level. CONCLUSION Significant advances have been achieved with real-time optical imaging strategies for intraoperative cutaneous SCC margin assessment and tumor detection. Optical imaging holds promise in improving the percentage of negative surgical margins and in the early detection of micrometastatic disease. © 2015 Wiley Periodicals, Inc. Head Neck 38: E2204-E2213, 2016.
Collapse
Affiliation(s)
- Esther de Boer
- Division of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lindsay S Moore
- Division of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jason M Warram
- Division of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Conway C Huang
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Margaret S Brandwein-Gensler
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gooitzen M van Dam
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Eben L Rosenthal
- Division of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Cecelia E Schmalbach
- Division of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
35
|
Schleusener J, Gluszczynska P, Reble C, Gersonde I, Helfmann J, Fluhr JW, Lademann J, Röwert-Huber J, Patzelt A, Meinke MC. In vivo study for the discrimination of cancerous and normal skin using fibre probe-based Raman spectroscopy. Exp Dermatol 2015; 24:767-72. [PMID: 26010742 DOI: 10.1111/exd.12768] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2015] [Indexed: 11/28/2022]
Abstract
Raman spectroscopy has proved its capability as an objective, non-invasive tool for the detection of various melanoma and non-melanoma skin cancers (NMSC) in a number of studies. Most publications are based on a Raman microspectroscopic ex vivo approach. In this in vivo clinical evaluation, we apply Raman spectroscopy using a fibre-coupled probe that allows access to a multitude of affected body sites. The probe design is optimized for epithelial sensitivity, whereby a large part of the detected signal originates from within the epidermal layer's depth down to the basal membrane where early stages of skin cancer develop. Data analysis was performed on measurements of 104 subjects scheduled for excision of lesions suspected of being malignant melanoma (MM) (n = 36), basal cell carcinoma (BCC) (n = 39) and squamous cell carcinoma (SCC) (n = 29). NMSC were discriminated from normal skin with a balanced accuracy of 73% (BCC) and 85% (SCC) using partial least squares discriminant analysis (PLS-DA). Discriminating MM and pigmented nevi (PN) resulted in a balanced accuracy of 91%. These results lie within the range of comparable in vivo studies and the accuracies achieved by trained dermatologists using dermoscopy. Discrimination proved to be unsuccessful between cancerous lesions and suspicious lesions that had been histopathologically verified as benign by dermoscopy.
Collapse
Affiliation(s)
- Johannes Schleusener
- Laser- und Medizin-Technologie Berlin (LMTB), Berlin, Germany.,Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Patrycja Gluszczynska
- Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carina Reble
- Laser- und Medizin-Technologie Berlin (LMTB), Berlin, Germany.,Institut für Optik und Atomare Physik, Technische Universität Berlin, Berlin, Germany
| | - Ingo Gersonde
- Laser- und Medizin-Technologie Berlin (LMTB), Berlin, Germany
| | - Jürgen Helfmann
- Laser- und Medizin-Technologie Berlin (LMTB), Berlin, Germany
| | - Joachim W Fluhr
- Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jürgen Lademann
- Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Joachim Röwert-Huber
- Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alexa Patzelt
- Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martina C Meinke
- Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
36
|
Piredda P, Berning M, Boukamp P, Volkmer A. Subcellular Raman Microspectroscopy Imaging of Nucleic Acids and Tryptophan for Distinction of Normal Human Skin Cells and Tumorigenic Keratinocytes. Anal Chem 2015; 87:6778-85. [DOI: 10.1021/acs.analchem.5b01009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Paola Piredda
- 3rd
Institute of Physics, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Manuel Berning
- Division
of Genetics of Skin Carcinogenesis, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Petra Boukamp
- Division
of Genetics of Skin Carcinogenesis, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Andreas Volkmer
- 3rd
Institute of Physics, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
37
|
Sim YC, Ahn KM, Park JY, Park CS, Son JH. Temperature-dependent terahertz imaging of excised oral malignant melanoma. IEEE J Biomed Health Inform 2015; 17:779-84. [PMID: 25055305 DOI: 10.1109/jbhi.2013.2252357] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We imaged a single case of oral malignant melanoma using terahertz (THz) reflection imaging at room temperature (20 °C) and below freezing (-20 °C). A malignant nodule beneath the oral tissue surface was visualized using 2-D and B-scan THz imaging techniques. The THz images were well correlated with the histological findings. The nodule was found to have lower water content than that of normal cells, and this water effect may have influenced the THz refractive index and absorption coefficient at 20 °C. The THz spectroscopic image of the frozen tissue at -20 °C showed better contrast because of the lack of liquid water; this implies that there are significant structural differences between malignant oral melanoma cells and normal mucosal cells. The better contrast in the frozen tissue images was due to the greater penetration of THz radiation into the sample. This temperature-dependent THz imaging approach demonstrated the feasibility of accurate imaging of the oral tumor tissue.
Collapse
|
38
|
Silveira FL, Pacheco MT, Bodanese B, Pasqualucci CA, Zângaro RA, Silveira L. Discrimination of non-melanoma skin lesions from non-tumor human skin tissuesin vivousing Raman spectroscopy and multivariate statistics. Lasers Surg Med 2015; 47:6-16. [DOI: 10.1002/lsm.22318] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Fabricio L. Silveira
- Biomedical Engineering Institute; Universidade Camilo Castelo Branco-UNICASTELO; Parque Tecnológico de São José dos Campos; Estrada Dr. Altino Bondesan, 500, Eugênio de Melo São José dos Campos São Paulo Brazil 122447-016
| | - Marcos T.T. Pacheco
- Biomedical Engineering Institute; Universidade Camilo Castelo Branco-UNICASTELO; Parque Tecnológico de São José dos Campos; Estrada Dr. Altino Bondesan, 500, Eugênio de Melo São José dos Campos São Paulo Brazil 122447-016
| | - Benito Bodanese
- Health Sciences Center-CCS; Universidade Comunitária Regional de Chapecó - UNOCHAPECÓ; Av. Sen. Attílio Fontana, 591-E Chapecó Santa Catarina Brazil 89809-000
| | - Carlos A. Pasqualucci
- Department of Cardiovascular Pathology, Faculty of Medicine; Universidade de São Paulo - USP; Av. Dr. Arnaldo, 455 Cerqueira Cesar São Paulo Brazil 01246-000
| | - Renato A. Zângaro
- Biomedical Engineering Institute; Universidade Camilo Castelo Branco-UNICASTELO; Parque Tecnológico de São José dos Campos; Estrada Dr. Altino Bondesan, 500, Eugênio de Melo São José dos Campos São Paulo Brazil 122447-016
| | - Landulfo Silveira
- Biomedical Engineering Institute; Universidade Camilo Castelo Branco-UNICASTELO; Parque Tecnológico de São José dos Campos; Estrada Dr. Altino Bondesan, 500, Eugênio de Melo São José dos Campos São Paulo Brazil 122447-016
| |
Collapse
|
39
|
Liu P, Gardner JM, Kloo L. Solution processable, cross-linked sulfur polymers as solid electrolytes in dye-sensitized solar cells. Chem Commun (Camb) 2015; 51:14660-2. [DOI: 10.1039/c5cc04822b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Utilization of soluble cross-linked polymeric sulfur as hole conductor in solid state dye sensitized solar cells.
Collapse
Affiliation(s)
- Peng Liu
- Applied Physical Chemistry
- Department of Chemistry
- KTH Royal Institute of Technology
- SE-10044 Stockholm
- Sweden
| | - James M. Gardner
- Applied Physical Chemistry
- Department of Chemistry
- KTH Royal Institute of Technology
- SE-10044 Stockholm
- Sweden
| | - Lars Kloo
- Applied Physical Chemistry
- Department of Chemistry
- KTH Royal Institute of Technology
- SE-10044 Stockholm
- Sweden
| |
Collapse
|
40
|
Schleusener J, Gluszczynska P, Reble C, Gersonde I, Helfmann J, Cappius HJ, Fluhr JW, Meinke MC. Perturbation factors in the clinical handling of a fiber-coupled Raman probe for cutaneous in vivo diagnostic Raman spectroscopy. APPLIED SPECTROSCOPY 2015; 69:243-256. [PMID: 25588117 DOI: 10.1366/14-07482] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The application of fiber-coupled Raman probes for the discrimination of cancerous and normal skin has the advantage of a non-invasive in vivo application, easy clinical handling, and access to the majority of body sites, which would otherwise be limited by stationary Raman microscopes. Nevertheless, including optical fibers and miniaturizing optical components, as well as measuring in vivo, involves the sensibility to external perturbation factors that could introduce artifacts to the acquired Raman spectra and thereby potentially reduce classification performance. In this study, typical perturbation factors of Raman measurements with a Raman fiber probe, optimized for clinical in vivo discrimination of skin cancer, were investigated experimentally. Measurements were performed under standardized conditions in clinical settings in vivo on human skin, as well as ex vivo on porcine ears. Raman spectra were analyzed in the fingerprint region between 1150 and 1730 cm(-1) using principal component analysis. The largest artifacts in the Raman spectra were found in measurements performed under the influence of strong ambient light conditions as well as after miscellaneous pre-treatments to the skin, such as use of a permanent marker or a sunscreen. Minor influences were also found in measurements using H2O immersion and when varying the probe contact force. The effect of reasonable variation of the fiber-bending radius was found to be of negligible impact. The influence of measurements on hairy or sun-exposed body sites, as well as inter-subject variation, was also investigated. The presented results may serve as a guide to avoid negative effects during the process of data acquisition and so avoid misclassification in tumor discrimination.
Collapse
Affiliation(s)
- Johannes Schleusener
- Laser- und Medizin- Technologie Berlin (LMTB), Fabeckstrasse 60-62, 14195 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Schleusener J, Reble C, Meinke MC, Helfmann J. Raman spectroscopy for the discrimination of cancerous and normal skin. ACTA ACUST UNITED AC 2015. [DOI: 10.1515/plm-2014-0043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract:Various studies have shown promising results in using Raman spectroscopy (RS) for the detection of skin cancers.
Collapse
|
42
|
Brauchle E, Noor S, Holtorf E, Garbe C, Schenke-Layland K, Busch C. Raman spectroscopy as an analytical tool for melanoma research. Clin Exp Dermatol 2014; 39:636-45. [DOI: 10.1111/ced.12357] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2014] [Indexed: 12/19/2022]
Affiliation(s)
- E. Brauchle
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB); Stuttgart Germany
- University Women's Hospital Tuebingen; Eberhard Karls University Tuebingen; Tuebingen Germany
- University of Stuttgart; Institute for Interfacial Engineering and Plasma Technology (IGVP); Stuttgart Germany
| | - S. Noor
- Section of Dermato-Oncology; Department of Dermatology; University of Tuebingen; Tuebingen Germany
| | - E. Holtorf
- Section of Dermato-Oncology; Department of Dermatology; University of Tuebingen; Tuebingen Germany
| | - C. Garbe
- Section of Dermato-Oncology; Department of Dermatology; University of Tuebingen; Tuebingen Germany
| | - K. Schenke-Layland
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB); Stuttgart Germany
- University Women's Hospital Tuebingen; Eberhard Karls University Tuebingen; Tuebingen Germany
| | - C. Busch
- Section of Dermato-Oncology; Department of Dermatology; University of Tuebingen; Tuebingen Germany
| |
Collapse
|
43
|
Neittaanmäki-Perttu N, Grönroos M, Tani T, Pölönen I, Ranki A, Saksela O, Snellman E. Detecting field cancerization using a hyperspectral imaging system. Lasers Surg Med 2014; 45:410-7. [PMID: 24037822 DOI: 10.1002/lsm.22160] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2013] [Indexed: 01/10/2023]
Abstract
BACKGROUND Field cancerization denotes subclinical abnormalities in a tissue chronically exposed to UV radiation. These abnormalities can be found surrounding the clinically visible actinic keratoses. OBJECTIVES The aim of this study was to test the feasibility of a hyperspectral imaging system in the detection of multiple clinical and subclinical AKs for early treatment of the affected areas. MATERIALS AND METHODS Altogether 52 clinical AKs in 12 patients were included in this study. In six patients digital photos were taken of the naive AKs, and again after methylaminolevulinate(MAL)-fluorescence diagnosis which was used to teach HIS to find subclinical lesions. After 2-3 days when the MAL had vanished, the hyperspectral images were taken. Biopsies were taken from clinical AKs, healthy-looking skin and several suspected subclinical AKs. In the other six patients digital and hyperspectral images were taken of the naive AKs followed by one biopsy per patient. RESULTS HIS detected all clinically visible 52 AKs and numerous subclinical lesions. The histopathology of the 33 biopsied lesions were concordant with the HIS results showing either AK (n = 28) or photodamage (n = 5). Of the 28 histopathologically confirmed AKs, 16 were subclinical. A specific diffuse reflectance spectrum of an AK and healthy skin was defined. CONCLUSION The hyperspectral imaging system offers a new, non-invasive method for early detection of field cancerization. Lasers Surg. Med. 45:410-417, 2013. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Noora Neittaanmäki-Perttu
- Department of Dermatology and Allergology, Päijät-Häme Social and Health Care Group, Lahti, Finland; Department of Mathematical Information Technology, University of Jyväskylä, Jyväskylä, Finland
| | | | | | | | | | | | | |
Collapse
|
44
|
Guze K, Pawluk HC, Short M, Zeng H, Lorch J, Norris C, Sonis S. Pilot study: Raman spectroscopy in differentiating premalignant and malignant oral lesions from normal mucosa and benign lesions in humans. Head Neck 2014; 37:511-7. [DOI: 10.1002/hed.23629] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 11/22/2013] [Accepted: 02/10/2014] [Indexed: 11/05/2022] Open
Affiliation(s)
- Kevin Guze
- Department of Oral Medicine; Infection and Immunity; Harvard School of Dental Medicine; Boston Massachusetts
- Divisions of Oral Medicine; Dana-Farber Cancer Institute and Brigham and Women's Hospital; Boston Massachusetts
| | - Hanna C. Pawluk
- Imaging Unit - Integrative Oncology Department; British Columbia Cancer Agency Research Centre; Vancouver British Columbia Canada
| | - Michael Short
- Imaging Unit - Integrative Oncology Department; British Columbia Cancer Agency Research Centre; Vancouver British Columbia Canada
| | - Haishan Zeng
- Imaging Unit - Integrative Oncology Department; British Columbia Cancer Agency Research Centre; Vancouver British Columbia Canada
| | - Jochen Lorch
- Head and Neck Oncology Program; Dana Farber Cancer Institute; Boston Massachusetts
| | - Charles Norris
- Head and Neck Oncology Program; Dana Farber Cancer Institute; Boston Massachusetts
| | - Stephen Sonis
- Department of Oral Medicine; Infection and Immunity; Harvard School of Dental Medicine; Boston Massachusetts
- Divisions of Oral Medicine; Dana-Farber Cancer Institute and Brigham and Women's Hospital; Boston Massachusetts
| |
Collapse
|
45
|
|
46
|
Mittal R, Balu M, Krasieva T, Potma EO, Elkeeb L, Zachary CB, Wilder-Smith P. Evaluation of stimulated Raman scattering microscopy for identifying squamous cell carcinoma in human skin. Lasers Surg Med 2013. [PMID: 23996592 DOI: 10.1002/lsm.22168.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND SIGNIFICANCE There is a need to develop non-invasive diagnostic tools to achieve early and accurate detection of skin cancer in a non-surgical manner. In this study, we evaluate the capability of stimulated Raman scattering (SRS) microscopy, a potentially non-invasive optical imaging technique, for identifying the pathological features of s squamous cell carcinoma (SCC) tissue. STUDY DESIGN We studied ex vivo SCC and healthy skin tissues using SRS microscopy, and compared the SRS contrast with the contrast obtained in reflectance confocal microscopy (RCM) and standard histology. RESULTS AND CONCLUSION SRS images obtained at the carbon-hydrogen stretching vibration at 2945 cm(-1) exhibit contrast related protein density that clearly delineates the cell nucleus from the cell cytoplasm. The morphological features of SCC tumor seen in the SRS images show excellent correlation with the diagnostic features identified by histological examination. Additionally, SRS exhibits enhanced cellular contrast in comparison to that seen in confocal microscopy. In conclusion, SRS represents an attractive approach for generating protein density maps with contrast that closely resembles histopathological contrast of SCC in human skin.
Collapse
Affiliation(s)
- Richa Mittal
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, California, 92612; Department of Chemical Engineering and Materials Sciences, University of California, Irvine, California, 92697
| | | | | | | | | | | | | |
Collapse
|
47
|
Mittal R, Balu M, Krasieva T, Potma EO, Elkeeb L, Zachary CB, Wilder-Smith P. Evaluation of stimulated Raman scattering microscopy for identifying squamous cell carcinoma in human skin. Lasers Surg Med 2013; 45:496-502. [PMID: 23996592 DOI: 10.1002/lsm.22168] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2013] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND SIGNIFICANCE There is a need to develop non-invasive diagnostic tools to achieve early and accurate detection of skin cancer in a non-surgical manner. In this study, we evaluate the capability of stimulated Raman scattering (SRS) microscopy, a potentially non-invasive optical imaging technique, for identifying the pathological features of s squamous cell carcinoma (SCC) tissue. STUDY DESIGN We studied ex vivo SCC and healthy skin tissues using SRS microscopy, and compared the SRS contrast with the contrast obtained in reflectance confocal microscopy (RCM) and standard histology. RESULTS AND CONCLUSION SRS images obtained at the carbon-hydrogen stretching vibration at 2945 cm(-1) exhibit contrast related protein density that clearly delineates the cell nucleus from the cell cytoplasm. The morphological features of SCC tumor seen in the SRS images show excellent correlation with the diagnostic features identified by histological examination. Additionally, SRS exhibits enhanced cellular contrast in comparison to that seen in confocal microscopy. In conclusion, SRS represents an attractive approach for generating protein density maps with contrast that closely resembles histopathological contrast of SCC in human skin.
Collapse
Affiliation(s)
- Richa Mittal
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, California, 92612; Department of Chemical Engineering and Materials Sciences, University of California, Irvine, California, 92697
| | | | | | | | | | | | | |
Collapse
|
48
|
Pence IJ, Vargis E, Mahadevan-Jansen A. Assessing variability of in vivo tissue Raman spectra. APPLIED SPECTROSCOPY 2013; 67:789-800. [PMID: 23816132 DOI: 10.1366/12-06773] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Raman spectroscopy (RS) has received increasing attention as a potential tool for clinical diagnostics. However, the unknown comparability of multiple tissue RS systems remains a major issue for technique standardization and future multisystem trials. In this study, we evaluated potential factors affecting data collection and interpretation, utilizing the skin as an example tissue. The effects of contact pressure and probe angle were characterized as potential user-induced variability sources. Similarly, instrumentation-induced variability sources of system stability and system-dependent response were also analyzed on skin and a nonvolatile biological tissue analog. Physiologically induced variations were studied on multiple tissue locations and patients. The effect of variability sources on spectral line shape and dispersion was analyzed with analysis-of-variance methods, and a new metric for comparing spectral dispersion was defined. In this study, in vivo measurements were made on multiple sites of skin from five healthy volunteers, with four stand-alone fiber optic probe-based tissue RS systems. System stability and controlled user-induced variables had no effects on obtained spectra. By contrast, instrumentation and anatomical location of measurement were significant sources of variability. These findings establish the comparability of tissue Raman spectra obtained by unique systems. Furthermore, we suggest steps for further procedural and instrumentation standardization prior to broad clinical applications of the technique.
Collapse
Affiliation(s)
- Isaac J Pence
- Department of Biomedical Engineering, Vanderbilt University, Box 351631 Station B, Nashville, TN 37235, USA
| | | | | |
Collapse
|
49
|
Design and analysis of a squamous cell carcinoma in vitro model system. Biomaterials 2013; 34:7401-7. [PMID: 23827189 DOI: 10.1016/j.biomaterials.2013.06.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 06/11/2013] [Indexed: 11/22/2022]
Abstract
Tissue-engineered skin equivalents based on primary isolated fibroblasts and keratinocytes have been shown to be useful tools for functional in vitro tests, including toxicological screenings and drug development. In this study, a commercially available squamous cell carcinoma (SCC) cell line SCC-25 was introduced into epidermal and full-thickness skin equivalents to generate human-based disease-in-a-dish model systems. Interestingly, when cultured either in the epidermis or dermis of full-thickness skin equivalents, SCC-25 cells formed hyper-keratinized tumor cell nests, a phenomenon that is frequently seen in the skin of patients afflicted with SCC. Raman spectroscopy was employed for the label-free cell phenotype characterization within the engineered skin equivalents and revealed the presence of differential protein patterns in keratinocytes and SCC-25 cells. To conclude, the here presented SSC disease-in-a-dish approaches offer the unique opportunity to model SSC in human skin in vitro, which will allow further insight into SSC disease progression, and the development of therapeutic strategies.
Collapse
|
50
|
Philipsen PA, Knudsen L, Gniadecka M, Ravnbak MH, Wulf HC. Diagnosis of malignant melanoma and basal cell carcinoma by in vivo NIR-FT Raman spectroscopy is independent of skin pigmentation. Photochem Photobiol Sci 2013; 12:770-6. [DOI: 10.1039/c3pp25344a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|