1
|
Madhan S, Arunan YE, Rangasamy A, Dananjeyan B, Iruthayasamy J, Gajendiran M, Ramasamy K, Rajasekaran R, Saminathan V. Rhizobial, passenger nodule endophytes and phyllosphere bacteria in combination with acyl homoserine lactones enhances the growth and yield of groundnut. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2025; 46:e00893. [PMID: 40270784 PMCID: PMC12017914 DOI: 10.1016/j.btre.2025.e00893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/19/2025] [Accepted: 04/04/2025] [Indexed: 04/25/2025]
Abstract
Quorum sensing (QS) mechanisms play an essential role in mediating several signals and plant-bacteria interactions, promoting plant growth. This study demonstrated production of multiple Homoserine lactone (HSL) molecules like C6 HSL, C7 HSL, C8 HSL, 3-Hydroxy-C8-HSL and 3-oxo-C14 HSL in rhizobial and passenger endophytes and phyllospheric bacteria which regulated production of plant growth promoting traits viz., indole acetic acid and exo-polysaccharide production, biofilm formation, and motility. Quorum quenching (QQ) molecules like salicylic acid, gallic acid, and disalicylic acid impaired these traits, but exogenous addition of QS molecules (C7HSL and 3-oxo-C14 HSL) restored these inhibitory effects of QQ compounds. The pot culture experiment revealed that the treatment involving Methylobacterium populi TMV7-4 or Enterobacter cloacae S23 with salicylic acid, C7HSL and 3-oxo-C14 HSL significantly enhanced plant growth including root length, nodulation, pod formation, soil available nutrients and plant nutrients uptake. In future field validation is required for the use of QS molecules in improving groundnut production.
Collapse
Affiliation(s)
- Sivakumar Madhan
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Yuvasri Errakutty Arunan
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Anandham Rangasamy
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Balachandar Dananjeyan
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Johnson Iruthayasamy
- Department of Plant Pathology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Manimaran Gajendiran
- Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Krishnamoorthy Ramasamy
- Department of Crop Management, Vanavarayar Institute of Agriculture, Pollachi, Tamil Nadu 642103, India
| | - Raghu Rajasekaran
- Centre for Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Vincent Saminathan
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| |
Collapse
|
2
|
Zenelt W, Krawczyk K. Insect-derived bacteria as biocontrol tool and a potent suppressor of plant pathogenic fungi in tomato cultivation. Microb Pathog 2025; 198:107158. [PMID: 39608512 DOI: 10.1016/j.micpath.2024.107158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/24/2024] [Accepted: 11/23/2024] [Indexed: 11/30/2024]
Abstract
Sustainable agriculture is increasingly emphasized, focusing on microorganisms' role in maintaining soil fertility and inhibiting plant pathogens. Seeking novel sources of plant-beneficial bacteria, our study explores insects due to their established associations with plants and bacteria. The insect gut, hosting various bacteria, may hold microbes protecting against fungal infections, particularly plant pathogens. Traditional sources of plant growth-promoting bacteria are the rhizosphere and host plant tissues; however, insects serve as diverse bacterial reservoirs in the environment. This study aimed to identify insect-gut-derived bacteria with antifungal properties and cellulase enzyme production, predicting high plant tissue colonization abilities. Cellulase, crucial for breaking down cellulose, is essential for both industry and the environment. We sought to assess the potential of these bacteria as biocontrol agents against plant pathogenic fungi, with a focus on tomato plants. Bacterial isolates from insect bodies, including Lactococcus lactis, Pantoea ananatis, and Serratia liquefaciens, exhibited robust antifungal properties and cellulase activity. In vitro tests and glasshouse tests, confirmed their ability to inhibit the growth of plant-pathogenic fungi, indicating potential for biological control. Moreover, selected strains demonstrated high cellulase enzyme activity, vital for nutrient competition and rapid colonization of plant surfaces. The study introduces insect-gut-derived bacteria as promising biocontrol agents against plant pathogenic fungi. The identified strains, capable of inhibiting fungal growth and producing cellulase, offer sustainable alternatives to synthetic fungicides for protecting tomato plants. The findings advance agricultural practices by harnessing insect-associated bacteria, contributing to eco-friendly and efficient pest management strategies in modern agriculture.
Collapse
Affiliation(s)
- Weronika Zenelt
- Plant Disease Clinic and Bank of Pathogens, Institute of Plant Protection - National Research Institute, Władysława Węgorka 20 street, 60-318, Poznań, Poland
| | - Krzysztof Krawczyk
- Department of Virology and Bacteriology, Institute of Plant Protection - National Research Institute, Władysława Węgorka 20 street, 60-318, Poznań, Poland.
| |
Collapse
|
3
|
Frigoli M, Lowdon JW, Donetti N, Crapnell RD, Banks CE, Cleij TJ, Diliën H, Eersels K, van Grinsven B. Electrochemical Detection of Pseudomonas aeruginosa Quorum Sensing Molecule ( S)- N-Butyryl Homoserine Lactone Using Molecularly Imprinted Polymers. ACS OMEGA 2024; 9:36411-36420. [PMID: 39220512 PMCID: PMC11359617 DOI: 10.1021/acsomega.4c03970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Pseudomonas aeruginosa is a multidrug-resistant Gram-negative bacterium that poses a significant threat to public health, necessitating rapid and on-site detection methods for rapid recognition. The goal of the project is therefore to indirectly detect the presence of P. aeruginosa in environmental water samples targeting one of its quorum-sensing molecules, namely, (S)-N-butyryl homoserine lactone (BHL). To this aim, molecularly imprinted polymers (MIPs) were synthesized via bulk free-radical polymerization using BHL as a template molecule. The obtained MIP particles were immobilized onto screen-printed electrodes (MIP-SPEs), and the BHL rebinding was analyzed via electrochemical impedance spectroscopy (EIS). To study the specificity of the synthesized MIPs, isotherm curves were built after on-point rebinding analysis performed via LC-MS measurements for both MIPs and NIPs (nonimprinted polymers, used as a negative control), obtaining an imprinting factor (IF) of 2.8 (at C f = 0.4 mM). The MIP-SPEs were integrated into an electrochemical biosensor with a linear range of 1 × 101-1 × 103 nM and a limit of detection (LoD) of 31.78 ± 4.08 nM. Selectivity measurements were also performed after choosing specific interferent molecules, such as structural analogs and potential interferents, followed by on-point analysis performed in spiked tap water to prove the sensor's potential to detect the presence of the quorum-sensing molecule in environmentally related real-life samples.
Collapse
Affiliation(s)
- Margaux Frigoli
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Joseph W. Lowdon
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Nicolas Donetti
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Robert D. Crapnell
- John
Dalton Building, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K.
| | - Craig E. Banks
- John
Dalton Building, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K.
| | - Thomas J. Cleij
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Hanne Diliën
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Kasper Eersels
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Bart van Grinsven
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| |
Collapse
|
4
|
Xu B, Su Q, Yang Y, Huang S, Yang Y, Shi X, Choo KH, Ng HY, Lee CH. Quorum Quenching in Membrane Bioreactors for Fouling Retardation: Complexity Provides Opportunities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39012227 DOI: 10.1021/acs.est.4c04535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The occurrence of biofouling restricts the widespread application of membrane bioreactors (MBRs) in wastewater treatment. Regulation of quorum sensing (QS) is a promising approach to control biofouling in MBRs, yet the underlying mechanisms are complex and remain to be illustrated. A fundamental understanding of the relationship between QS and membrane biofouling in MBRs is lacking, which hampers the development and application of quorum quenching (QQ) techniques in MBRs (QQMBRs). While many QQ microorganisms have been isolated thus far, critical criteria for selecting desirable QQ microorganisms are still missing. Furthermore, there are inconsistent results regarding the QQ lifecycle and the effects of QQ on the physicochemical characteristics and microbial communities of the mixed liquor and biofouling assemblages in QQMBRs, which might result in unreliable and inefficient QQ applications. This review aims to comprehensively summarize timely QQ research and highlight the important yet often ignored perspectives of QQ for biofouling control in MBRs. We consider what this "information" can and cannot tell us and explore its values in addressing specific and important questions in QQMBRs. Herein, we first examine current analytical methods of QS signals and discuss the critical roles of QS in fouling-forming microorganisms in MBRs, which are the cornerstones for the development of QQ technologies. To achieve targeting QQ strategies in MBRs, we propose the substrate specificity and degradation capability of isolated QQ microorganisms and the surface area and pore structures of QQ media as the critical criteria to select desirable functional microbes and media, respectively. To validate the biofouling retardation efficiency, we further specify the QQ effects on the physicochemical properties, microbial community composition, and succession of mixed liquor and biofouling assemblages in MBRs. Finally, we provide scale-up considerations of QQMBRs in terms of the debated QQ lifecycle, practical synergistic strategies, and the potential cost savings of MBRs. This review presents the limitations of classic QS/QQ hypotheses in MBRs, advances the understanding of the role of QS/QQ in biofouling development/retardation in MBRs, and builds a bridge between the fundamental understandings and practical applications of QQ technology.
Collapse
Affiliation(s)
- Boyan Xu
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Qingxian Su
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
- Department of Environmental Engineering, Technical University of Denmark, Lyngby 2800, Denmark
| | - Yuxin Yang
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Shujuan Huang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, PR China
| | - Yue Yang
- Corporate Sustainability Office, TÜV SÜD, Westendstr. 199, 80686 München, Germany
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, PR China
| | - Kwang-Ho Choo
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Republic of Korea
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Chung-Hak Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
5
|
Wood PL. Metabolic and Lipid Biomarkers for Pathogenic Algae, Fungi, Cyanobacteria, Mycobacteria, Gram-Positive Bacteria, and Gram-Negative Bacteria. Metabolites 2024; 14:378. [PMID: 39057701 PMCID: PMC11278827 DOI: 10.3390/metabo14070378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The utilization of metabolomics and lipidomics analytical platforms in the study of pathogenic microbes is slowly expanding. These research approaches will significantly contribute to the establishment of microbial metabolite and lipid databases of significant value to all researchers in microbiology. In this review, we present a high-level overview of some examples of biomarkers that can be used to detect the presence of microbes, monitor the expansion/decline of a microbe population, and add to our understanding of microbe biofilms and pathogenicity. In addition, increased knowledge of the metabolic functions of pathogenic microbes can contribute to our understanding of microbes that are utilized in diverse industrial applications. Our review focuses on lipids, secondary metabolites, and non-ribosomal peptides that can be monitored using electrospray ionization high-resolution mass spectrometry (ESI-HRMS).
Collapse
Affiliation(s)
- Paul L Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Parkway, Harrogate, TN 37752, USA
| |
Collapse
|
6
|
Keltsch NG, Gazanis A, Dietrich C, Wick A, Heermann R, Tremel W, Ternes TA. Development of an analytical method to quantify N-acyl-homoserine lactones in bacterial cultures, river water, and treated wastewater. Anal Bioanal Chem 2024; 416:3555-3567. [PMID: 38703199 DOI: 10.1007/s00216-024-05306-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/15/2024] [Accepted: 04/11/2024] [Indexed: 05/06/2024]
Abstract
N-Acyl-homoserine lactones (AHL) play a major role in the communication of Gram-negative bacteria. They influence processes such as biofilm formation, swarming motility, and bioluminescence in the aquatic environment. A comprehensive analytical method was developed to elucidate the "chemical communication" in pure bacterial cultures as well as in the aquatic environment and engineered environments with biofilms. Due to the high diversity of AHLs and their low concentrations in water, a sensitive and selective LC-ESI-MS/MS method combined with solid-phase extraction was developed for 34 AHLs, optimized and validated to quantify AHLs in bacterial conditioned medium, river water, and treated wastewater. Furthermore, the developed method was optimized in terms of enrichment volume, internal standards, limits of detection, and limits of quantification in several matrices. An unanticipated variety of AHLs was detected in the culture media of Pseudomonas aeruginosa (in total 8 AHLs), Phaeobacter gallaeciensis (in total 6 AHLs), and Methylobacterium mesophilicum (in total 15 AHLs), which to our knowledge have not been described for these bacterial cultures so far. Furthermore, AHLs were detected in river water (in total 5 AHLs) and treated wastewater (in total 3 AHLs). Several detected AHLs were quantified (in total 24) using a standard addition method up to 7.3±1.0 µg/L 3-Oxo-C12-AHL (culture media of P. aeruginosa).
Collapse
Affiliation(s)
- N G Keltsch
- Bundesanstalt für Gewässerkunde, Am Mainzer Tor 1, Koblenz, 56068, Germany
- Universität Koblenz-Landau, Universitätsstraße 1, Koblenz, 56070, Germany
| | - A Gazanis
- Biozentrum II, Institut für Molekulare Physiologie, Mikrobiologie und Biotechnologie, Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 17, Mainz, 55128, Germany
| | - C Dietrich
- Bundesanstalt für Gewässerkunde, Am Mainzer Tor 1, Koblenz, 56068, Germany
| | - A Wick
- Bundesanstalt für Gewässerkunde, Am Mainzer Tor 1, Koblenz, 56068, Germany
| | - R Heermann
- Biozentrum II, Institut für Molekulare Physiologie, Mikrobiologie und Biotechnologie, Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 17, Mainz, 55128, Germany
| | - W Tremel
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, Mainz, 55099, Germany
| | - T A Ternes
- Bundesanstalt für Gewässerkunde, Am Mainzer Tor 1, Koblenz, 56068, Germany.
- Universität Koblenz-Landau, Universitätsstraße 1, Koblenz, 56070, Germany.
| |
Collapse
|
7
|
Santos Ferreira DA, de Castro Levatti EV, Santa Cruz LM, Costa AR, Migotto ÁE, Yamada AY, Camargo CH, Christodoulides M, Lago JHG, Tempone AG. Saturated Iso-Type Fatty Acids from the Marine Bacterium Mesoflavibacter zeaxanthinifaciens with Anti-Trypanosomal Potential. Pharmaceuticals (Basel) 2024; 17:499. [PMID: 38675459 PMCID: PMC11053438 DOI: 10.3390/ph17040499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Chagas disease is a Neglected Tropical Disease with limited and ineffective therapy. In a search for new anti-trypanosomal compounds, we investigated the potential of the metabolites from the bacteria living in the corals and sediments of the southeastern Brazilian coast. Three corals, Tubastraea coccinea, Mussismilia hispida, Madracis decactis, and sediments yielded 11 bacterial strains that were fully identified by MALDI-ToF/MS or gene sequencing, resulting in six genera-Vibrio, Shewanella, Mesoflavibacter, Halomonas, Bacillus, and Alteromonas. To conduct this study, EtOAc extracts were prepared and tested against Trypanosoma cruzi. The crude extracts showed IC50 values ranging from 15 to 51 μg/mL against the trypomastigotes. The bacterium Mesoflavibacter zeaxanthinifaciens was selected for fractionation, resulting in an active fraction (FII) with IC50 values of 17.7 μg/mL and 23.8 μg/mL against the trypomastigotes and amastigotes, respectively, with neither mammalian cytotoxicity nor hemolytic activity. Using an NMR and ESI-HRMS analysis, the FII revealed the presence of unsaturated iso-type fatty acids. Its lethal action was investigated, leading to a protein spectral profile of the parasite altered after treatment. The FII also induced a rapid permeabilization of the plasma membrane of the parasite, leading to cell death. These findings demonstrate that these unsaturated iso-type fatty acids are possible new hits against T. cruzi.
Collapse
Affiliation(s)
- Dayana Agnes Santos Ferreira
- Pathophysiology Laboratory, Instituto Butantan, Av. Vital Brazil, 1500, Sao Paulo 05503-900, SP, Brazil; (D.A.S.F.); (E.V.d.C.L.)
| | | | - Lucas Monteiro Santa Cruz
- Centre of Organic Contaminants, Instituto Adolfo Lutz, Av. Dr. Arnaldo, 355, Sao Paulo 01246-000, SP, Brazil; (L.M.S.C.); (A.R.C.)
| | - Alan Roberto Costa
- Centre of Organic Contaminants, Instituto Adolfo Lutz, Av. Dr. Arnaldo, 355, Sao Paulo 01246-000, SP, Brazil; (L.M.S.C.); (A.R.C.)
| | - Álvaro E. Migotto
- Centre for Marine Biology, Universidade de São Paulo, Rodovia Doutor Manoel Hipólito do Rego, km. 131,5, Pitangueiras, Sao Sebastiao 11612-109, SP, Brazil;
| | - Amanda Yaeko Yamada
- Centre of Bacteriology, Instituto Adolfo Lutz, Av. Dr. Arnaldo, 351, Sao Paulo 01246-000, SP, Brazil; (A.Y.Y.); (C.H.C.)
| | - Carlos Henrique Camargo
- Centre of Bacteriology, Instituto Adolfo Lutz, Av. Dr. Arnaldo, 351, Sao Paulo 01246-000, SP, Brazil; (A.Y.Y.); (C.H.C.)
| | - Myron Christodoulides
- Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
| | - João Henrique G. Lago
- Centre of Natural Sciences and Humanities, Universidade Federal do ABC, Sao Paulo 09210-580, SP, Brazil
| | - Andre Gustavo Tempone
- Pathophysiology Laboratory, Instituto Butantan, Av. Vital Brazil, 1500, Sao Paulo 05503-900, SP, Brazil; (D.A.S.F.); (E.V.d.C.L.)
| |
Collapse
|
8
|
Xu C, Ni L, Li S, Du C, Sang W, Jiang Z. Quorum sensing regulation in Microcystis aeruginosa: Insights into AHL-mediated physiological processes and MC-LR production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170867. [PMID: 38340844 DOI: 10.1016/j.scitotenv.2024.170867] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Quorum sensing (QS) is a widespread regulatory mechanism in Gram-negative bacteria, primarily involving the secretion of N-acyl homoserine lactone (AHL) to facilitate population density sensing. However, the existence of QS in blue-green algae, a subset of photoautotrophic Gram-negative bacteria forming high-density communities in water blooms, remains elusive. This study delves into the unexplored realm of QS in Microcystis aeruginosa (M. aeruginosa) by investigating AHL-related regulatory mechanisms and their impact on various physiological processes. Utilizing high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) and biosensors, a hitherto unknown long-chain AHL exhibiting a mass-to-charge ratio of 318 was identified in sterile M. aeruginosa cultures. Our investigation focused on discerning correlations between AHL activity fluctuations and key parameters such as microcystin (MC-LR) production, algal density, photosynthesis, buoyancy, and aggregation. Furthermore, the AHL extract was introduced during the logarithmic stage of M. aeruginosa cultures to observe the response in physiological processes. The results revealed that AHL, functioning as an autoinducer (AI), positively influenced algal growth and photosynthesis, as evidenced by the upregulated photosynthetic conversion efficiency of PSI and chlorophyll synthesis gene (psbA). AI also played a crucial role in altering surface characteristics through the synthesis of polysaccharides and proteins in EPS, subsequently promoting cell aggregation. Concomitantly, AI upregulated mcyD, enhancing the synthesis of MC-LR. Notably, our investigation pinpointed the initiation of QS in Microcystis at a density of approximately 1.22 × 10^7 cells/mL. This groundbreaking evidence underscores the regulatory role of AI in governing the physiological processes of growth, aggregation, buoyancy, and MC-LR production by activating pertinent gene expressions. This study significantly expands the understanding of QS in AHL, providing crucial insights into the regulatory networks operating in blue-green algae.
Collapse
Affiliation(s)
- Chu Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Lixiao Ni
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China.
| | - Shiyin Li
- College of Environment, Nanjing Normal University, Nanjing, China
| | - Cunhao Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Wenlu Sang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Zhiyun Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| |
Collapse
|
9
|
Chadha J, Khullar L, Gulati P, Chhibber S, Harjai K. Repurposing albendazole as a potent inhibitor of quorum sensing-regulated virulence factors in Pseudomonas aeruginosa: Novel prospects of a classical drug. Microb Pathog 2024; 186:106468. [PMID: 38036112 DOI: 10.1016/j.micpath.2023.106468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
Pseudomonas aeruginosa has emerged as a critical superbug that poses a serious threat to public health. Owing to its virulence and multidrug resistance profiles, the pathogen demands immediate attention for devising alternate intervention strategies. In an attempt to repurpose drugs against P. aeruginosa, this preclinical study was aimed at investigating the antivirulence prospects of albendazole (AbZ), an FDA-approved anti-helminthic drug, recently predicted to disrupt quorum sensing (QS) in Chromobacterium violaceum. AbZ was scrutinized for its quorum quenching (QQ) prospects, effect on bacterial virulence, different motility phenotypes, and biofilm formation in vitro. Additionally, in silico analysis was employed to predict the molecular interactions between AbZ and QS receptors. At sub-inhibitory levels, AbZ demonstrated anti-QS activity and significantly abrogated AHL biosynthesis in P. aeruginosa. Moreover, AbZ significantly downregulated the transcript levels of QS- (lasI/lasR, rhlI/rhlR, and pqsA/pqsR) and QS-dependent virulence (aprA, lasA, lasB, plcH, and toxA) genes in P. aeruginosa. This coincided with reduced hemolysin, alginate, pyocyanin, rhamnolipids, total protease, and elastase production, thereby lowering phenotypic virulence. Molecular docking with AbZ further revealed strong associations and high binding energies with LasR (-8.8 kcal/mol), RhlR (-6.5 kcal/mol), and PqsR (-6.3 kcal/mol) receptors. AbZ also impeded bacterial motility and abolished EPS production, severely compromising pseudomonal biofilm formation. For the first time, AbZ was shown to interfere with QS circuitry and consequently disarming pseudomonal virulence. Hence, AbZ can be exploited for its antivirulence properties against P. aeruginosa.
Collapse
Affiliation(s)
- Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Lavanya Khullar
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Pallavi Gulati
- RLA College, University of Delhi (South Campus), New Delhi, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
10
|
Lu L, Wang J, Qin T, Chen K, Xie J, Xi B. Carvacrol Inhibits Quorum Sensing in Opportunistic Bacterium Aeromonas hydrophila. Microorganisms 2023; 11:2027. [PMID: 37630587 PMCID: PMC10459158 DOI: 10.3390/microorganisms11082027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Bacterial quorum sensing (QS) plays a crucial role in chemical communication between bacteria involving autoinducers and receptors and controls the production of virulence factors in bacteria. Therefore, reducing the concentration of signaling molecules in QS is an effective strategy for mitigating the virulence of pathogenic bacteria. In this study, we demonstrated that carvacrol at 15.625 μg/mL (1/4 MIC), a natural compound found in plants, exhibits potent inhibitory activity against QS in Chromobacterium violaceum, as evidenced by a significant reduction (62.46%) in violacein production. Based on its impressive performance, carvacrol was employed as a natural QS inhibitor to suppress the pathogenicity of Aeromonas hydrophila NJ-35. This study revealed a significant reduction (36.01%) in the concentration of N-acyl-homoserine lactones (AHLs), a QS signal molecular secreted by A. hydrophila NJ-35, after 1/4 MIC carvacrol treatment. Moreover, carvacrol was found to down-regulate the expression of ahyR/I, two key genes in the QS system, which further inhibited the QS system of A. hydrophila NJ-35. Finally, based on the above results and molecular docking, we proposed that carvacrol alleviate the pathogenicity of A. hydrophila NJ-35 through QS inhibition. These results suggest that carvacrol could serve as a potential strategy for reducing the virulence of pathogenic bacteria and minimizing the reliance on antibiotics in aquaculture.
Collapse
Affiliation(s)
- Liushen Lu
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (L.L.); (T.Q.); (K.C.); (J.X.)
| | - Junwei Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China;
| | - Ting Qin
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (L.L.); (T.Q.); (K.C.); (J.X.)
| | - Kai Chen
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (L.L.); (T.Q.); (K.C.); (J.X.)
| | - Jun Xie
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (L.L.); (T.Q.); (K.C.); (J.X.)
| | - Bingwen Xi
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (L.L.); (T.Q.); (K.C.); (J.X.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China;
| |
Collapse
|
11
|
Sahreen S, Mukhtar H, Imre K, Morar A, Herman V, Sharif S. Exploring the Function of Quorum Sensing Regulated Biofilms in Biological Wastewater Treatment: A Review. Int J Mol Sci 2022; 23:ijms23179751. [PMID: 36077148 PMCID: PMC9456111 DOI: 10.3390/ijms23179751] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Quorum sensing (QS), a type of bacterial cell–cell communication, produces autoinducers which help in biofilm formation in response to cell population density. In this review, biofilm formation, the role of QS in biofilm formation and development with reference to biological wastewater treatment are discussed. Autoinducers, for example, acyl-homoserine lactones (AHLs), auto-inducing oligo-peptides (AIPs) and autoinducer 2, present in both Gram-negative and Gram-positive bacteria, with their mechanism, are also explained. Over the years, wastewater treatment (WWT) by QS-regulated biofilms and their optimization for WWT have gained much attention. This article gives a comprehensive review of QS regulation methods, QS enrichment methods and QS inhibition methods in biological waste treatment systems. Typical QS enrichment methods comprise adding QS molecules, adding QS accelerants and cultivating QS bacteria, while typical QS inhibition methods consist of additions of quorum quenching (QQ) bacteria, QS-degrading enzymes, QS-degrading oxidants, and QS inhibitors. Potential applications of QS regulated biofilms for WWT have also been summarized. At last, the knowledge gaps present in current researches are analyzed, and future study requirements are proposed.
Collapse
Affiliation(s)
- Sania Sahreen
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
- Correspondence: (H.M.); (K.I.); Tel.: +92-3334245581 (H.M.); +40-256277186 (K.I.)
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timisoara, Romania
- Correspondence: (H.M.); (K.I.); Tel.: +92-3334245581 (H.M.); +40-256277186 (K.I.)
| | - Adriana Morar
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timisoara, Romania
| | - Viorel Herman
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timisoara, Romania
| | - Sundas Sharif
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| |
Collapse
|
12
|
Fateh ST, Salehi-Najafabadi A. Repurposing of substances with lactone moiety for the treatment of γ-Hydroxybutyric acid and γ-Butyrolactone intoxication through modulating paraoxonase and PPARγ. Front Pharmacol 2022; 13:909460. [PMID: 35935832 PMCID: PMC9354891 DOI: 10.3389/fphar.2022.909460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
GHB and GBL are highly accessible recreational drugs of abuse with a high risk of adverse effects and mortality while no specific antidotes exist. These components can also be found in the clinical setting, beverages, and cosmetic products, leading to unwanted exposures and further intoxications. As the structural analogue of GABA, GHB is suggested as the primary mediator of GHB/GBL effects. We further suggest that GBL might be as critical as GHB in this process, acting through PPARγ as its receptor. Moreover, PPARγ and PON (i.e., the GHB-GBL converting enzyme) can be targeted for GHB/GBL addiction and intoxication, leading to modulation of the GHB-GBL balance and blockage of their effects. We suggest that repurposing substances with lactone moiety such as bacterial lactones, sesquiterpene lactones, and statins might lead to potential therapeutic options as they occupy the active sites of PPARγ and PON and interfere with the GHB-GBL balance. In conclusion, this hypothesis improves the GHB/GBL mechanism of action, suggests potential therapeutic options, and highlights the necessity of classifying GBL as a controlled substance.
Collapse
Affiliation(s)
- Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Salehi-Najafabadi
- Department of Microbiology, School of Biology, University College of Science, University of Tehran, Tehran, Iran
- *Correspondence: Amir Salehi-Najafabadi,
| |
Collapse
|
13
|
Căpățînă D, Feier B, Hosu O, Tertiș M, Cristea C. Analytical methods for the characterization and diagnosis of infection with Pseudomonas aeruginosa: A critical review. Anal Chim Acta 2022; 1204:339696. [DOI: 10.1016/j.aca.2022.339696] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/05/2022] [Accepted: 03/06/2022] [Indexed: 12/11/2022]
|
14
|
Attempt to Develop an Effective Method for the Separation of Gamma-Decalactone from Biotransformation Medium. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Gamma-decalactone (GDL) is a fragrance compound obtained in the process of β-oxidation of ricinoleic acid, which is derived from the hydrolysis of castor oil. The biotechnological method of the synthesis of this lactone has been improved for over two decades, but the vast majority of research results have been based only on determining the concentration of the lactone by chromatographic methods without separating it from the biotransformation medium. In this study, we attempted to separate GDL from the medium in which the lactone was synthesized by Yarrowia lipolytica from castor oil. The effectiveness of liquid–liquid extraction, hydrodistillation, and adsorption on the porous materials (zeolite, vermiculite and resin Amberlite XAD-4) was compared. The influence of the solvent on the efficiency of GDL extraction, the influence of the acidity of the medium on the amount of GDL in the distillate, and the level of lactone adsorption on the above-mentioned adsorbents were compared by calculating the initial adsorption rate. The adsorption isotherm was determined for the most effective adsorbent. Among the five solvents tested, the most effective was diethyl ether, used at the ratio of 1:1. The extraction was characterized by higher efficiency than hydrodistillation; the difference in GDL determinations by these two methods ranged from 12.8 to 22%. The purity of the distillates was much higher than that of the extracts at 88.0 ± 3.4% compared to 53.0 ± 1.8%. The acidification of the biotransformation medium increased the concentration of the lactone in both the reaction mixture and the distillate. GDL was most efficiently adsorbed on Amberlite XAD-4 resin, for which the lactone isotherm adsorption was linear. The amount of lactone adsorbed on Amberlite XAD-4 within 1 h was approx. 80% (2.45 g), of which 1.96 g was then desorbed with ethanol. In the context of industrial applications, adsorption of GDL on Amberlite XAD-4 seems to be the most appropriate method due to material costs, the ease of the process, and low environmental burden.
Collapse
|
15
|
Hosny RA, Fadel MA. Detection of Quorum Sensing N-Acyl-Homoserine Lactone Molecules Produced by Different Resistant Klebsiella pneumoniae Isolates Recovered from Poultry and Different Environmental Niches. Appl Biochem Biotechnol 2021; 193:3351-3370. [PMID: 34196919 DOI: 10.1007/s12010-021-03605-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
This study aimed to detect and identify the N-acyl-homoserine lactones molecules (AHLs) produced by different resistant Klebsiella pneumoniae isolates recovered from poultry and environmental samples using a modified validated high-performance liquid chromatography method. A total of 56 K. pneumoniae isolates were recovered, investigated for their antibiotic susceptibility, and screened for AHLs production using the Agrobacterium tumefaciens NTL4 biosensor system and a validated high-performance liquid chromatography method. The results revealed the detection of different short- and long-chain AHLs molecules among 39 K. pneumoniae isolates recovered from poultry and environmental samples. All environmental isolates produced nine peaks with retention times for C4-HSL, C6-HSL, C12-HSL, C8-HSL, C14-HSL, C8-oxo-HSL, C10-HSL, C6-oxo-HSL, and C7-HSL. The most quantifiable AHL signal molecules in poultry isolates were C4-HSL, C6-HSL, and C12-HSL. No statistical correlation between the AHL-producing ability of K. pneumoniae isolates and antibiotic resistance was reported. To the best of our knowledge, this study provides the first detailed report on the detection and identification of AHLs in K. pneumoniae isolates recovered from poultry and environmental samples. Furthermore, it provides a new insight available tool other than LC-MS/MS for detection and identification of AHL molecules.
Collapse
Affiliation(s)
- Reham A Hosny
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt.
| | - Mai A Fadel
- Pharmacology and Pyrogen Unit, Department of Chemistry, Toxicology and Feed Deficiency, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| |
Collapse
|
16
|
Targeted and untargeted quantification of quorum sensing signalling molecules in bacterial cultures and biological samples via HPLC-TQ MS techniques. Anal Bioanal Chem 2020; 413:853-864. [PMID: 33206214 PMCID: PMC7809007 DOI: 10.1007/s00216-020-03040-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/09/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023]
Abstract
Quorum sensing (QS) is the ability of some bacteria to detect and to respond to population density through signalling molecules. QS molecules are involved in motility and cell aggregation mechanisms in diseases such as sepsis. Few biomarkers are currently available to diagnose sepsis, especially in high-risk conditions. The aim of this study was the development of new analytical methods based on liquid chromatography-mass spectrometry for the detection and quantification of QS signalling molecules, including N-acyl homoserine lactones (AHL) and hydroxyquinolones (HQ), in biofluids. Biological samples used in the study were Pseudomonas aeruginosa bacterial cultures and plasma from patients with sepsis. We developed two MS analytical methods, based on neutral loss (NL) and product ion (PI) experiments, to identify and characterize unknown AHL and HQ molecules. We then established a multiple-reaction-monitoring (MRM) method to quantify specific QS compounds. We validated the HPLC-MS-based approaches (MRM-NL-PI), and data were in accord with the validation guidelines. With the NL and PI MS-based methods, we identified and characterized 3 and 13 unknown AHL and HQ compounds, respectively, in biological samples. One of the newly found AHL molecules was C12-AHL, first quantified in Pseudomonas aeruginosa bacterial cultures. The MRM quantitation of analytes in plasma from patients with sepsis confirmed the analytical ability of MRM for the quantification of virulence factors during sepsis. Graphical abstract ![]()
Collapse
|
17
|
Erandapurathukadumana Sreedharan H, Cherukara Chellappan H, Selvanesan P, Garvasis J. Quorum sensing mediated response of Achromobacter denitrificans SP1 towards prodigiosin production under phthalate stress. J Basic Microbiol 2020; 60:758-767. [PMID: 32573013 DOI: 10.1002/jobm.201900697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/14/2020] [Accepted: 06/09/2020] [Indexed: 11/07/2022]
Abstract
Quorum sensing is a density-dependent chemical process between bacteria, which may be intergenus or intragenus. N-acyl homoserine lactones (HSLs) are a type of small signaling molecules associated with Gram-negative bacteria for monitoring their own population density. The present study unveils the mechanism of HSLs in Achromobacter denitrificans SP1 while transforming di(2-ethylhexyl) phthalate (DEHP) into prodigiosin in a simple basal salt medium. The primary detection of HSLs was done by the colorimetric method. Fourier-transform infrared spectroscopy and liquid chromatography-mass spectrometry-quadrupole time-of-flight confirmed and identified the HSLs. The maximum production of HSLs was observed between 24 and 72 h of incubation, which is noted to be a peak time of DEHP degradation. A total of 57.2% of DEHP was degraded within 30 h and complete degradation was observed within 72 h of incubation. Regulation in the synthesis of various acyl-HSL molecules, viz. 3OC6-HSL in the initial stage of DEHP stress, 3OC8-HSL, and C10-HSL during the time of degradation and 3OC12-HSL on completion of degradation was noticed. The role of HSLs on the production of prodigiosin was confirmed using vanillin as an HSL inhibitor. Through the selective activation of HSL molecules, A. denitrificans SP1 sustain the changing stressful conditions. Supplementation of acyl-HSL signal molecules may boost up the efficacy of A. denitrificans SP1 in both DEHP degradation and prodigiosin production which offers great potential towards the management of DEHP containing plastic wastes.
Collapse
Affiliation(s)
| | | | - Pradeep Selvanesan
- Division of Microbiology, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, Kerala, India
| | - Julia Garvasis
- Corrosion and Electrochemistry Lab, Department of Chemistry, University of Calicut, Kerala, India
| |
Collapse
|
18
|
Huang S, Zhang H, Albert Ng TC, Xu B, Shi X, Ng HY. Analysis of N-Acy-L-homoserine lactones (AHLs) in wastewater treatment systems using SPE-LLE with LC-MS/MS. WATER RESEARCH 2020; 177:115756. [PMID: 32294590 DOI: 10.1016/j.watres.2020.115756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/03/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
The occurrence and distribution of N-acyl homoserine lactones (AHLs) in membrane bioreactors (MBRs) treating wastewater has garnered much attention as they have been shown to play critical role in biofouling. There is a need to develop a single method capable of analysing AHLs in various wastewater with comparable and reliable performance. A novel and robust method was proposed for trace analysis of 11 AHLs in wastewater treatment systems treating domestic and industrial wastewater. This method utilised solid phase extraction (SPE) to extract AHLs from wastewater followed by liquid-liquid extraction (LLE) to extract AHLs from the SPE eluant, and used N-heptanoyl-dl-homoserine lactone (C7-HSL) as an internal standard. There was no need to prepare matrix-matched calibration curve for accurate quantification of AHLs in the liquid chromatography tandem mass chromatography (LC-MS/MS) analysis. The developed method was validated with six different types of domestic and industrial wastewater with regard to AHLs recoveries and matrix effects. For treated domestic and industrial wastewater, the relative recoveries ranged from 75% to 130% and the matrix effects ranged from 89% to 122%. This method exhibited remarkable improvement compared with single SPE. The results also indicated that inclusion of LLE after SPE could effectively alleviate matrix effects, which may be because of the removal of relatively hydrophilic interferences by using dichloromethane to extract AHLs from the SPE eluant composing of methanol and water. The limits of detection of the AHLs were all below 5 ng/L for the tested wastewater samples. The developed method of SPE-LLE with LC-MS/MS was applied to analyse AHLs in four lab-scale and one pilot-scale wastewater treatment systems. Wide spectrum of AHLs with alkanoyl chains ranging from C4 to C14 were detected with concentrations ranging from 2.7 to 299.2 ng/L. This method is capable of identifying and quantifying trace levels of AHLs in various wastewater treatment systems and can help us better understand the mechanisms of AHL-mediated quroum sensing in various wastewater treatment systems.
Collapse
Affiliation(s)
- Shujuan Huang
- Centre for Water Research, Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Hui Zhang
- NUS Environmental Research Institute, National University of Singapore, #02-01, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore
| | - Tze Chiang Albert Ng
- Centre for Water Research, Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Boyan Xu
- Centre for Water Research, Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, PR China
| | - How Yong Ng
- Centre for Water Research, Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, #02-01, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
19
|
Malešević M, Di Lorenzo F, Filipić B, Stanisavljević N, Novović K, Senerovic L, Polović N, Molinaro A, Kojić M, Jovčić B. Pseudomonas aeruginosa quorum sensing inhibition by clinical isolate Delftia tsuruhatensis 11304: involvement of N-octadecanoylhomoserine lactones. Sci Rep 2019; 9:16465. [PMID: 31712724 PMCID: PMC6848482 DOI: 10.1038/s41598-019-52955-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 10/26/2019] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most common opportunistic pathogens that use quorum sensing (QS) system to regulate virulence factors expression and biofilm development. Delftia sp. 11304 was selected among 663 Gram-negative clinical isolates based on its QS inhibitory activity against P. aeruginosa MMA83 clinical isolate. Whole genome sequencing identified this isolate as D. tsuruhatensis and revealed genetic armamentarium of virulence factors and antibiotic resistance determinants. Ethyl acetate extract of D. tsuruhatensis 11304 culture supernatant (QSI extract) prevented biofilm formation of P. aeruginosa MMA83, but was unable to cause biofilm decomposition. QSI extract showed a synergistic effect in combination with meropenem and gentamycin, against P. aeruginosa MMA83. A dose-dependent reduction of the virulence factors: elastase, rhamnolipid and pyocyanin production by P. aeruginosa MMA83 and significant downregulation of lasI, lasR, rhlI, rhlR, pqs and mvfR expression were observed. Matrix-assisted Laser Desorption Ionization (MALDI) mass spectrometry of D. tsuruhatensis 11304 QSI extract revealed the presence of N-acyl homoserine lactones (AHL) with chain lengths of C12 to C18. The main ion peak was identified as N-octadecanoylhomoserine lactone (C18-HSL). Commercial C18-HSL (20 µM) reduced pyocyanin production as well as mRNA level of the lasI gene. A novel AHL species, dihydroxy-N-octadecanoylhomoserine lactone, was also described.
Collapse
Affiliation(s)
- Milka Malešević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11010, Serbia
| | - Flaviana Di Lorenzo
- University of Napoli Federico II, Department of Chemical Sciences, Napoli, 80126, Italy
| | - Brankica Filipić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11010, Serbia.,Faculty of Pharmacy, University of Belgrade, Belgrade, 11221, Serbia
| | - Nemanja Stanisavljević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11010, Serbia
| | - Katarina Novović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11010, Serbia
| | - Lidija Senerovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11010, Serbia
| | - Natalija Polović
- Faculty of Chemistry, University of Belgrade, Belgrade, 11000, Serbia
| | - Antonio Molinaro
- University of Napoli Federico II, Department of Chemical Sciences, Napoli, 80126, Italy
| | - Milan Kojić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11010, Serbia
| | - Branko Jovčić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11010, Serbia. .,Faculty of Biology, University of Belgrade, Belgrade, 11000, Serbia.
| |
Collapse
|
20
|
Strengthening of aerobic sludge granulation by the endogenous acylated homoserine lactones-secreting strain Aeromonas sp. A-L3. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Targeting Acyl Homoserine Lactone (AHL) of Pseudomonas aeruginosa Responsible for Biofilm Formation using Plant Metabolites. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.3.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
Girard L. Quorum sensing in Vibrio spp.: the complexity of multiple signalling molecules in marine and aquatic environments. Crit Rev Microbiol 2019; 45:451-471. [PMID: 31241379 DOI: 10.1080/1040841x.2019.1624499] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Quorum sensing (QS) is a density-dependent mechanism enabling bacteria to coordinate their actions via the release of small diffusible molecules named autoinducers (AIs). Vibrio spp. are able to adapt to changing environmental conditions by using a wide range of physiological mechanisms and many species pose a threat for human health and diverse marine and estuarine ecosystems worldwide. Cell-to-cell communication controls many of their vital functions such as niche colonization, survival strategies, or virulence. In this review, I summarize (1) the different known QS pathways (2) the diversity of AIs as well as their biological functions, and (3) the QS-mediated interactions between Vibrio and other organisms. However, the current knowledge is limited to a few pathogenic or bioluminescent species and in order to provide a genus-wide view an inventory of QS genes among 87 Vibrio species has been made. The large diversity of signal molecules and their differential effects on a particular physiological function suggest that the complexity of multiple signalling systems within bacterial communities is far from being fully understood. I question here the real level of specificity of such communication in the environment and discuss the different perspectives in order to better apprehend QS in natural habitats.
Collapse
Affiliation(s)
- Léa Girard
- Centre of Microbial and Plant Genetics , KU Leuven , Belgium
| |
Collapse
|
23
|
Saipriya K, Swathi CH, Ratnakar KS, Sritharan V. Quorum-sensing system in Acinetobacter baumannii: a potential target for new drug development. J Appl Microbiol 2019; 128:15-27. [PMID: 31102552 DOI: 10.1111/jam.14330] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/24/2019] [Accepted: 05/14/2019] [Indexed: 12/30/2022]
Abstract
Acinetobacter baumannii causes several nosocomial infections and poses major threat when it is multidrug resistant. Even pan drug-resistant strains have been reported in some countries. The intensive care unit (ICU) mortality rate ranged from 45.6% to 60.9% and it is as high as 84.3% when ventilator-associated pneumonia was caused by XDR (extensively drug resistant) A. baumannii. Acinetobacter baumannii constituted 9.4% of all Gram-negative organisms throughout the hospital and 22.6% in the ICUs according to a study carried out in an Indian hospital. One of the major factors contributing to drug resistance in A. baumannii infections is biofilm development. Quorum sensing (QS) facilitates biofilm formation and therefore the search for 'quorum quenchers' has increased recently. Such compounds are expected to inhibit biofilm formation and hence reduce/prevent development of drug resistance in the bacteria. Some of these compounds also target synthesis of some virulence factors (VF). Several candidate drugs have been identified and are at various stages of drug development. Since quorum quenching, inhibition of biofilm formation and inhibition of VF synthesis do not pose any threat to the DNA replication and cell division of the bacteria, chances of resistance development to such compounds is presumably rare. Thus, these compounds ideally qualify as adjunct therapeutics and could be administered along with an antibiotic to reduce chances of resistance development and also to increase the effectiveness of antimicrobial therapy. This review describes the state-of-art in QS process in Gram-negative bacteria in general and in A. baumannii in particular. This article elaborates the nature of QS mediators, their characteristics, and the methods for their detection and quantification. Various potential sites in the QS pathway have been highlighted as drug targets and the candidate quorum quenchers which inhibit the mediator's synthesis or function are enlisted.
Collapse
Affiliation(s)
- K Saipriya
- Department of Molecular Diagnostics & Biomarkers, Global Medical Education & Research Foundation (GMERF), Lakdi-Ka-Pul, Hyderabad, India
| | - C H Swathi
- Department of Molecular Diagnostics & Biomarkers, Global Medical Education & Research Foundation (GMERF), Lakdi-Ka-Pul, Hyderabad, India
| | - K S Ratnakar
- Department of Molecular Diagnostics & Biomarkers, Global Medical Education & Research Foundation (GMERF), Lakdi-Ka-Pul, Hyderabad, India
| | - V Sritharan
- Department of Molecular Diagnostics & Biomarkers, Global Medical Education & Research Foundation (GMERF), Lakdi-Ka-Pul, Hyderabad, India
| |
Collapse
|
24
|
Bodelón G, Montes-García V, Pérez-Juste J, Pastoriza-Santos I. Surface-Enhanced Raman Scattering Spectroscopy for Label-Free Analysis of P. aeruginosa Quorum Sensing. Front Cell Infect Microbiol 2018; 8:143. [PMID: 29868499 PMCID: PMC5958199 DOI: 10.3389/fcimb.2018.00143] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/20/2018] [Indexed: 12/20/2022] Open
Abstract
Bacterial quorum sensing systems regulate the production of an ample variety of bioactive extracellular compounds that are involved in interspecies microbial interactions and in the interplay between the microbes and their hosts. The development of new approaches for enabling chemical detection of such cellular activities is important in order to gain new insight into their function and biological significance. In recent years, surface-enhanced Raman scattering (SERS) spectroscopy has emerged as an ultrasensitive analytical tool employing rationally designed plasmonic nanostructured substrates. This review highlights recent advances of SERS spectroscopy for label-free detection and imaging of quorum sensing-regulated processes in the human opportunistic pathogen Pseudomonas aeruginosa. We also briefly describe the challenges and limitations of the technique and conclude with a summary of future prospects for the field.
Collapse
Affiliation(s)
- Gustavo Bodelón
- Departamento de Química Física y Centro Singular de Investigaciones Biomédicas (CINBIO), Universidad de Vigo, Vigo, Spain
| | - Verónica Montes-García
- Departamento de Química Física y Centro Singular de Investigaciones Biomédicas (CINBIO), Universidad de Vigo, Vigo, Spain
| | - Jorge Pérez-Juste
- Departamento de Química Física y Centro Singular de Investigaciones Biomédicas (CINBIO), Universidad de Vigo, Vigo, Spain
| | - Isabel Pastoriza-Santos
- Departamento de Química Física y Centro Singular de Investigaciones Biomédicas (CINBIO), Universidad de Vigo, Vigo, Spain
| |
Collapse
|
25
|
Zheng J, Chen T, Chen H. Antibiotic resistome promotion in drinking water during biological activated carbon treatment: Is it influenced by quorum sensing? THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:1-8. [PMID: 28846900 DOI: 10.1016/j.scitotenv.2017.08.072] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
The contamination of antibiotic resistance genes (ARGs) in drinking water may pose a direct threat to human health. This study applied high-throughput qPCR and sequencing to investigate the dynamics of ARGs and bacterial communities during the advanced treatment of drinking water using biological activated carbon. The promotion of ARGs was observed, and the normalized copy number of ARGs increased significantly after BAC treatment, raising the number of detected ARGs from 84 to 159. Twenty-nine ARGs were identified as biofilm-influencing sources in the BAC, and they persisted after chlorination. The shift of bacterial communities primarily had effects on the changes in resistome. Firmicutes, Cyanobacteria were related to persistent ARGs mostly in the BAC biofilm. Meanwhile, the Acyl-Homoserine Lactones (AHLs), quorum sensing molecules, and bacteria that produced AHLs were identified to understand the promotion of ARGs. The isolated AHL-producing bacteria belonged to the Proteobacteria, Firmicutes and Bacteroidetes phyla. Six detectable AHLs had an influence on plasmid-based horizontal gene transfer in the intragenus mating systems, indicating that the dynamics of ARGs were strongly affected by quorum sensing between specific bacteria in the biofilm. These results provide new insight into the mechanism of antibiotic resistome promotion in BAC biofilms.
Collapse
Affiliation(s)
- Ji Zheng
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tao Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
26
|
Turan NB, Engin GÖ. Quorum Quenching. FUNDAMENTALS OF QUORUM SENSING, ANALYTICAL METHODS AND APPLICATIONS IN MEMBRANE BIOREACTORS 2018. [DOI: 10.1016/bs.coac.2018.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Leipert J, Treitz C, Leippe M, Tholey A. Identification and Quantification of N-Acyl Homoserine Lactones Involved in Bacterial Communication by Small-Scale Synthesis of Internal Standards and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2538-2547. [PMID: 28856620 DOI: 10.1007/s13361-017-1777-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 06/07/2023]
Abstract
N-acyl homoserine lactones (AHL) are small signal molecules involved in the quorum sensing of many gram-negative bacteria, and play an important role in biofilm formation and pathogenesis. Present analytical methods for identification and quantification of AHL require time-consuming sample preparation steps and are hampered by the lack of appropriate standards. By aiming at a fast and straightforward method for AHL analytics, we investigated the applicability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Suitable MALDI matrices, including crystalline and ionic liquid matrices, were tested and the fragmentation of different AHL in collision-induced dissociation MS/MS was studied, providing information about characteristic marker fragments ions. Employing small-scale synthesis protocols, we established a versatile and cost-efficient procedure for fast generation of isotope-labeled AHL standards, which can be used without extensive purification and yielded accurate standard curves. Quantitative analysis was possible in the low pico-molar range, with lower limits of quantification reaching from 1 to 5 pmol for different AHL. The developed methodology was successfully applied in a quantitative MALDI MS analysis of low-volume culture supernatants of Pseudomonas aeruginosa. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Jan Leipert
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105, Kiel, Germany
| | - Christian Treitz
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105, Kiel, Germany
| | - Matthias Leippe
- Zoological Institute, Comparative Immunobiology, Christian-Albrechts-Universität zu Kiel, 24114, Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105, Kiel, Germany.
| |
Collapse
|
28
|
Yasmin S, Hafeez FY, Mirza MS, Rasul M, Arshad HMI, Zubair M, Iqbal M. Biocontrol of Bacterial Leaf Blight of Rice and Profiling of Secondary Metabolites Produced by Rhizospheric Pseudomonas aeruginosa BRp3. Front Microbiol 2017; 8:1895. [PMID: 29018437 PMCID: PMC5622989 DOI: 10.3389/fmicb.2017.01895] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/15/2017] [Indexed: 01/28/2023] Open
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is widely prevalent and causes Bacterial Leaf Blight (BLB) in Basmati rice grown in different areas of Pakistan. There is a need to use environmentally safe approaches to overcome the loss of grain yield in rice due to this disease. The present study aimed to develop inocula, based on native antagonistic bacteria for biocontrol of BLB and to increase the yield of Super Basmati rice variety. Out of 512 bacteria isolated from the rice rhizosphere and screened for plant growth promoting determinants, the isolate BRp3 was found to be the best as it solubilized 97 μg/ mL phosphorus, produced 30 μg/mL phytohormone indole acetic acid and 15 mg/ L siderophores in vitro. The isolate BRp3 was found to be a Pseudomonas aeruginosa based on 16S rRNA gene sequencing (accession no. HQ840693). This bacterium showed antagonism in vitro against different phytopathogens including Xoo and Fusarium spp. Strain BRp3 showed consistent pathogen suppression of different strains of BLB pathogen in rice. Mass spectrometric analysis detected the production of siderophores (1-hydroxy-phenazine, pyocyanin, and pyochellin), rhamnolipids and a series of already characterized 4-hydroxy-2-alkylquinolines (HAQs) as well as novel 2,3,4-trihydroxy-2-alkylquinolines and 1,2,3,4-tetrahydroxy-2-alkylquinolines in crude extract of BRp3. These secondary metabolites might be responsible for the profound antibacterial activity of BRp3 against Xoo pathogen. Another contributing factor toward the suppression of the pathogen was the induction of defense related enzymes in the rice plant by the inoculated strain BRp3. When used as an inoculant in a field trial, this strain enhanced the grain and straw yields by 51 and 55%, respectively, over non-inoculated control. Confocal Laser Scanning Microscopy (CLSM) used in combination with immunofluorescence marker confirmed P. aeruginosa BRp3 in the rice rhizosphere under sterilized as well as field conditions. The results provide evidence that novel secondary metabolites produced by BRp3 may contribute to its activity as a biological control agent against Xoo and its potential to promote the growth and yield of Super Basmati rice.
Collapse
Affiliation(s)
- Sumera Yasmin
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Fauzia Y Hafeez
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.,Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Muhammad S Mirza
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Maria Rasul
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Hafiz M I Arshad
- Plant Protection Division, Nuclear Institute of Agriculture and Biology, Faisalabad, Pakistan
| | - Muhammad Zubair
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Mazhar Iqbal
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
29
|
Patel B, Kumari S, Banerjee R, Samanta M, Das S. Disruption of the quorum sensing regulated pathogenic traits of the biofilm-forming fish pathogen Aeromonas hydrophila by tannic acid, a potent quorum quencher. BIOFOULING 2017; 33:580-590. [PMID: 28685594 DOI: 10.1080/08927014.2017.1336619] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/25/2017] [Indexed: 06/07/2023]
Abstract
The quorum sensing (QS) phenomenon regulates a myriad of pathogenic traits in the biofilm forming fish pathogen, Aeromonas hydrophila. Blocking the QS mechanism of A. hydrophila is a novel strategy to prevent disease in fish. This study evaluated the effect of tannic acid, a QS inhibitor, on A. hydrophila-associated QS regulated phenomena. A streaking assay with Chromobacterium violaceum (CVO26) reported the presence of N-acyl homoserine lactone (AHL) in A. hydrophila, which was confirmed by HPLC and GC-MS analysis. Tannic acid-treated A. hydrophila showed a considerable reduction in violacein production, blood haemolysis activity and the pattern of swarming motility. Biofilm formation was significantly reduced (p < 0.001) (up to 95%), after tannic acid treatment for 48 h. Analysis by qRT-PCR revealed significant downregulation (p < 0.001) of AhyI and AhyR transcripts in A. hydrophila after tannic acid treatment. Co-stimulation of Catla catla with A. hydrophila and tannic acid attenuated pathogen-induced skin haemorrhages and increased the relative survival rate up to 86.6%. The study provides a mechanistic basis of tannic acid as a QS blocker and indicates its therapeutic potential against A. hydrophila-induced pathogenesis.
Collapse
Affiliation(s)
- Bhakti Patel
- a Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science , National Institute of Technology , Rourkela , India
| | - Supriya Kumari
- a Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science , National Institute of Technology , Rourkela , India
| | - Rajanya Banerjee
- a Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science , National Institute of Technology , Rourkela , India
| | - Mrinal Samanta
- b Immunology Laboratory, Fish Health Management Division , ICAR-Central Institute of Freshwater Aquaculture , Bhubaneswar , India
| | - Surajit Das
- a Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science , National Institute of Technology , Rourkela , India
| |
Collapse
|
30
|
Characterization of N-Acyl Homoserine Lactones in Vibrio tasmaniensis LGP32 by a Biosensor-Based UHPLC-HRMS/MS Method. SENSORS 2017; 17:s17040906. [PMID: 28425948 PMCID: PMC5426830 DOI: 10.3390/s17040906] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 12/13/2022]
Abstract
Since the discovery of quorum sensing (QS) in the 1970s, many studies have demonstrated that Vibrio species coordinate activities such as biofilm formation, virulence, pathogenesis, and bioluminescence, through a large group of molecules called N-acyl homoserine lactones (AHLs). However, despite the extensive knowledge on the involved molecules and the biological processes controlled by QS in a few selected Vibrio strains, less is known about the overall diversity of AHLs produced by a broader range of environmental strains. To investigate the prevalence of QS capability of Vibrio environmental strains we analyzed 87 Vibrio spp. strains from the Banyuls Bacterial Culture Collection (WDCM911) for their ability to produce AHLs. This screening was based on three biosensors, which cover a large spectrum of AHLs, and revealed that only 9% of the screened isolates produced AHLs in the defined experimental conditions. Among these AHL-producing strains, Vibrio tasmaniensis LGP32 is a well-known pathogen of bivalves. We further analyzed the diversity of AHLs produced by this strain using a sensitive bioguided UHPLC-HRMS/MS approach (Ultra-High-Performance Liquid Chromatography followed by High-Resolution tandem Mass Spectrometry) and we identified C10-HSL, OH-C12-HSL, oxo-C12-HSL and C14:1-HSL as QS molecules. This is the first report that documents the production of AHL by Vibrio tasmaniensis LGP32.
Collapse
|
31
|
Verbeke F, De Craemer S, Debunne N, Janssens Y, Wynendaele E, Van de Wiele C, De Spiegeleer B. Peptides as Quorum Sensing Molecules: Measurement Techniques and Obtained Levels In vitro and In vivo. Front Neurosci 2017; 11:183. [PMID: 28446863 PMCID: PMC5388746 DOI: 10.3389/fnins.2017.00183] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022] Open
Abstract
The expression of certain bacterial genes is regulated in a cell-density dependent way, a phenomenon called quorum sensing. Both Gram-negative and Gram-positive bacteria use this type of communication, though the signal molecules (auto-inducers) used by them differ between both groups: Gram-negative bacteria use predominantly N-acyl homoserine lacton (AHL) molecules (autoinducer-1, AI-1) while Gram-positive bacteria use mainly peptides (autoinducer peptides, AIP or quorum sensing peptides). These quorum sensing molecules are not only involved in the inter-microbial communication, but can also possibly cross-talk directly or indirectly with their host. This review summarizes the currently applied analytical approaches for quorum sensing identification and quantification with additionally summarizing the experimentally found in vivo concentrations of these molecules in humans.
Collapse
Affiliation(s)
- Frederick Verbeke
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent UniversityGhent, Belgium
| | - Severine De Craemer
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent UniversityGhent, Belgium
| | - Nathan Debunne
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent UniversityGhent, Belgium
| | - Yorick Janssens
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent UniversityGhent, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent UniversityGhent, Belgium
| | - Christophe Van de Wiele
- Department of Nuclear Medicine, AZ GroeningeKortrijk, Belgium.,Department of Nuclear Medicine and Radiology, Faculty of Medicine and Health Sciences, Ghent UniversityGhent, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent UniversityGhent, Belgium
| |
Collapse
|
32
|
Pal S, Qureshi A, Purohit HJ. Antibiofilm activity of biomolecules: gene expression study of bacterial isolates from brackish and fresh water biofouled membranes. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
33
|
Rosa B, Victor T, Ricardo VR, Alfredo M, Octavio A. Anti-biofilm activity of ibuprofen and diclofenac against some biofilm producing Escherichia coli and Klebsiella pneumoniae uropathogens. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajmr2016.8039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
34
|
Purohit HJ, Kapley A, Khardenavis A, Qureshi A, Dafale NA. Insights in Waste Management Bioprocesses Using Genomic Tools. ADVANCES IN APPLIED MICROBIOLOGY 2016; 97:121-170. [PMID: 27926430 DOI: 10.1016/bs.aambs.2016.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microbial capacities drive waste stabilization and resource recovery in environmental friendly processes. Depending on the composition of waste, a stress-mediated selection process ensures a scenario that generates a specific enrichment of microbial community. These communities dynamically change over a period of time while keeping the performance through the required utilization capacities. Depending on the environmental conditions, these communities select the appropriate partners so as to maintain the desired functional capacities. However, the complexities of these organizations are difficult to study. Individual member ratios and sharing of genetic intelligence collectively decide the enrichment and survival of these communities. The next-generation sequencing options with the depth of structure and function analysis have emerged as a tool that could provide the finer details of the underlying bioprocesses associated and shared in environmental niches. These tools can help in identification of the key biochemical events and monitoring of expression of associated phenotypes that will support the operation and maintenance of waste management systems. In this chapter, we link genomic tools with process optimization and/or management, which could be applied for decision making and/or upscaling. This review describes both, the aerobic and anaerobic, options of waste utilization process with the microbial community functioning as flocs, granules, or biofilms. There are a number of challenges involved in harnessing the microbial community intelligence with associated functional plasticity for efficient extension of microbial capacities for resource recycling and waste management. Mismanaged wastes could lead to undesired genotypes such as antibiotic/multidrug-resistant microbes.
Collapse
Affiliation(s)
- H J Purohit
- National Environmental Engineering Research Institute, CSIR, Nagpur, India
| | - A Kapley
- National Environmental Engineering Research Institute, CSIR, Nagpur, India
| | - A Khardenavis
- National Environmental Engineering Research Institute, CSIR, Nagpur, India
| | - A Qureshi
- National Environmental Engineering Research Institute, CSIR, Nagpur, India
| | - N A Dafale
- National Environmental Engineering Research Institute, CSIR, Nagpur, India
| |
Collapse
|
35
|
Patejko M, Jacyna J, Markuszewski MJ. Sample preparation procedures utilized in microbial metabolomics: An overview. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1043:150-157. [PMID: 27693061 DOI: 10.1016/j.jchromb.2016.09.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/17/2016] [Accepted: 09/21/2016] [Indexed: 10/21/2022]
Abstract
Bacteria are remarkably diverse in terms of their size, structure and biochemical properties. Due to this fact, it is hard to develop a universal method for handling bacteria cultures during metabolomic analysis. The choice of suitable processing methods constitutes a key element in any analysis, because only appropriate selection of procedures may provide accurate results, leading to reliable conclusions. Because of that, every analytical experiment concerning bacteria requires individually and very carefully planned research methodology. Although every study varies in terms of sample preparation, there are few general steps to follow while planning experiment, like sampling, separation of cells from growth medium, stopping their metabolism and extraction. As a result of extraction, all intracellular metabolites should be washed out from cell environment. What is more, extraction method utilized cannot cause any chemical decomposition or degradation of the metabolome. Furthermore, chosen extraction method should correlate with analytical technique, so it will not disturb or prolong following sample preparation steps. For those reasons, we observe a need to summarize sample preparation procedures currently utilized in microbial metabolomic studies. In the presented overview, papers concerning analysis of extra- and intracellular metabolites, published over the last decade, have been discussed. Presented work gives some basic guidelines that might be useful while planning experiments in microbial metabolomics.
Collapse
Affiliation(s)
- Małgorzata Patejko
- Medical University of Gdańsk, Department of Biopharmaceutics and Pharmacodynamics, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Julia Jacyna
- Medical University of Gdańsk, Department of Biopharmaceutics and Pharmacodynamics, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Michał J Markuszewski
- Medical University of Gdańsk, Department of Biopharmaceutics and Pharmacodynamics, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland.
| |
Collapse
|
36
|
Huang J, Shi Y, Zeng G, Gu Y, Chen G, Shi L, Hu Y, Tang B, Zhou J. Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: An overview. CHEMOSPHERE 2016; 157:137-151. [PMID: 27213243 DOI: 10.1016/j.chemosphere.2016.05.032] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/21/2016] [Accepted: 05/11/2016] [Indexed: 06/05/2023]
Abstract
Quorum sensing (QS) is a communication process between cells, in which bacteria secrete and sense the specific chemicals, and regulate gene expression in response to population density. Quorum quenching (QQ) blocks QS system, and inhibits gene expression mediating bacterial behaviors. Given the extensive research of acyl-homoserine lactone (AHL) signals, existences and effects of AHL-based QS and QQ in biological wastewater treatments are being subject to high concern. This review summarizes AHL structure, synthesis mode, degradation mechanisms, analytical methods, environmental factors, AHL-based QS and QQ mechanisms. The existences and roles of AHL-based QS and QQ in biomembrane processes, activated sludge processes and membrane bioreactors are summarized and discussed, and corresponding exogenous regulation strategy by selective enhancement of AHL-based QS or QQ coexisting in biological wastewater treatments is suggested. Such strategies including the addition of AHL signals, AHL-producing bacteria as well as quorum quenching enzyme or bacteria can effectively improve wastewater treatment performance without killing or limiting bacterial survival and growth. This review will present the theoretical and practical cognition for bacterial AHL-based QS and QQ, suggest the feasibility of exogenous regulation strategies in biological wastewater treatments, and provide useful information to scientists and engineers who work in this field.
Collapse
Affiliation(s)
- Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China.
| | - Yahui Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Yanling Gu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Guiqiu Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Lixiu Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Yi Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Bi Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Jianxin Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
37
|
Zhu S, Shen J, Ruan Y, Guo X, Ye Z, Deng Y, Shi M. The effects of different seeding ratios on nitrification performance and biofilm formation in marine recirculating aquaculture system biofilter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:14540-14548. [PMID: 27068911 DOI: 10.1007/s11356-016-6609-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/31/2016] [Indexed: 06/05/2023]
Abstract
Rapid start-up of biofilter is essential for intensive marine recirculating aquaculture system (RAS) production. This study evaluated the nitrifying biofilm formation using mature biofilm as an inoculum to accelerate the process in RAS practice. The effects of inoculation ratios (0-15 %) on the reactor performance and biofilm structure were investigated. Complete nitrification was achieved rapidly in reactors with inoculated mature biofilm (even in 32 days when 15 % seeding ratio was applied). However, the growth of target biofilm on blank carrier was affected by the mature biofilm inoculated through substrate competition. The analysis of extracellular polymeric substance (EPS) and nitrification rates confirmed the divergence of biofilm cultivation among reactors. Besides, three N-acyl-homoserine lactones (AHLs) were found in the process, which might regulate the activities of biofilm. Multivariate analysis based on non-metric multidimensional scaling (nMDS) also indicated the great roles of AHLs and substrate supply which might fundamentally determine varied cultivation performance on target biofilm.
Collapse
Affiliation(s)
- Songming Zhu
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jiazheng Shen
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yunjie Ruan
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall, Ithaca, NY, 14853, USA.
| | - Xishan Guo
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhangying Ye
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yale Deng
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Mingming Shi
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
38
|
Olher VGA, Ferreira NP, Souza AG, Chiavelli LUR, Teixeira AF, Santos WD, Santin SMO, Ferrarese Filho O, Silva CC, Pomini AM. Acyl-homoserine Lactone from Saccharum × officinarum with Stereochemistry-Dependent Growth Regulatory Activity. JOURNAL OF NATURAL PRODUCTS 2016; 79:1316-1321. [PMID: 27192014 DOI: 10.1021/acs.jnatprod.5b01075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Acyl-homoserine lactones (AHLs) are a class of compounds produced by Gram-negative bacteria that are used in a process of chemical communication called quorum sensing. Much is known about how bacteria use these chemical compounds to control the expression of important factors; however, there have been few reports about the presence and effects of AHLs in plants. In this study, the phytochemical study of leaves and culms of sugar cane (Saccharum × officinarum) led to the identification of N-(3-oxo-octanoyl)homoserine lactone. Since the absolute configuration of the natural product could not be determined, both R and S enantiomers of N-(3-oxo-octanoyl)homoserine lactone were synthesized and tested in sugar cane culms. The enantiomers caused changes in the mass and length of buds and roots when used at micromolar concentrations. Using the sugar cane RB96-6928 variety, the S enantiomer increased sprouting of roots more effectively than the R enantiomer. Furthermore, scanning electron microscopy showed that both the R and S enantiomers led to more stretched root cells compared with the control.
Collapse
Affiliation(s)
- Vanessa G A Olher
- Instituto Federal do Paraná, Campus Paranavaí , Rua José Felipe Tequinha 1400, 87703-536, Paranavaí-PR, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Purohit AA, Johansen JA, Hansen H, Leiros HKS, Kashulin A, Karlsen C, Smalås A, Haugen P, Willassen NP. Presence of acyl-homoserine lactones in 57 members of the Vibrionaceae family. J Appl Microbiol 2013; 115:835-47. [PMID: 23725044 PMCID: PMC3910146 DOI: 10.1111/jam.12264] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/10/2013] [Accepted: 05/25/2013] [Indexed: 12/27/2022]
Abstract
AIMS The aim of this study was to use a sensitive method to screen and quantify 57 Vibrionaceae strains for the production of acyl-homoserine lactones (AHLs) and map the resulting AHL profiles onto a host phylogeny. METHODS AND RESULTS We used a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) protocol to measure AHLs in spent media after bacterial growth. First, the presence/absence of AHLs (qualitative analysis) was measured to choose internal standard for subsequent quantitative AHL measurements. We screened 57 strains from three genera (Aliivibrio, Photobacterium and Vibrio) of the same family (i.e. Vibrionaceae). Our results show that about half of the isolates produced multiple AHLs, typically at 25-5000 nmol l(-1) . CONCLUSIONS This work shows that production of AHL quorum sensing signals is found widespread among Vibrionaceae bacteria and that closely related strains typically produce similar AHL profiles. SIGNIFICANCE AND IMPACT OF THE STUDY The AHL detection protocol presented in this study can be applied to a broad range of bacterial samples and may contribute to a wider mapping of AHL production in bacteria, for example, in clinically relevant strains.
Collapse
Affiliation(s)
- A A Purohit
- The Norwegian Structural Biology Centre, University of Tromsø, Tromsø, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|