1
|
Li C, Zhang L, Peng Z, Li X, Liu Z, Lu T, Kang X, Yang J. Genetic relationship analysis and core collection construction of Eucalyptus grandis from Dongmen improved variety base: the largest eucalypt germplasm resource in China. BMC PLANT BIOLOGY 2024; 24:1240. [PMID: 39716061 DOI: 10.1186/s12870-024-05970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/13/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Eucalyptus grandis, which was first comprehensively and systematically introduced to China in the 1980s, is one of the most important fast-growing tree species in the forestry industry. However, to date, no core collection has been selected from the germplasm resources of E. grandis based on growth and genetic relationship analysis. RESULTS In the present study, 545 individuals of E. grandis collected from 28 populations across 5 countries were selected for genetic diversity analysis using 16 selected SSR markers. The polymorphism information content (PIC) was employed to assess genetic diversity, yielding a mean value of 0.707. Genetic structure analysis was conducted on 492 individuals from 13 combined populations, revealing three clusters as the most suitable number. Principal coordinate analysis (PCoA) demonstrated that the populations were divided into three major clusters. Additionally, the analysis of molecular variance (AMOVA) indicated that the majority of variation occurred within populations. CONCLUSIONS Based on the criteria for screening the core collection, we constructed a population consisting of 158 individuals and created unique fingerprinting codes. These results provide a crucial theoretical foundation for the protection and utilization of germplasm resources of E. grandis in China, which will be helpful in the selection of genetically distant parents for future multigenerational hybridization programs.
Collapse
Affiliation(s)
- Chenhe Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Lei Zhang
- Guangxi Dongmen Forest Farm, Chongzuo, 532199, China
| | - Zhibang Peng
- Guangxi Dongmen Forest Farm, Chongzuo, 532199, China
| | - Xia Li
- Guangxi Dongmen Forest Farm, Chongzuo, 532199, China
| | - Zhao Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Te Lu
- Science and Technology Section, Chifeng Research Institute of Forestry Science, Chifeng, 024000, China
| | - Xiangyang Kang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jun Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
2
|
Søgaard Jørgensen P, Weinberger VP, Waring TM. Evolution and sustainability: gathering the strands for an Anthropocene synthesis. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220251. [PMID: 37952619 PMCID: PMC10645096 DOI: 10.1098/rstb.2022.0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
How did human societies evolve to become a major force of global change? What dynamics can lead societies on a trajectory of global sustainability? The astonishing growth in human population, economic activity and environmental impact has brought these questions to the fore. This theme issue pulls together a variety of traditions that seek to address these questions using different theories and methods. In this Introduction, we review and organize the major strands of work on how the Anthropocene evolved, how evolutionary dynamics are influencing sustainability efforts today, and what principles, strategies and capacities will be important to guide us towards global sustainability in the future. We present a set of synthetic insights and highlight frontiers for future research efforts which could contribute to a consolidated synthesis. This article is part of the theme issue 'Evolution and sustainability: gathering the strands for an Anthropocene synthesis'.
Collapse
Affiliation(s)
- Peter Søgaard Jørgensen
- Stockholm Resilience Centre, Stockholm University, Stockholm, Stockholm 10691, Sweden
- Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Sciences, Stockholm, Stockholm 10405, Sweden
- Anthropocene Laboratory, Royal Swedish Academy of Sciences, Stockholm, Stockholm 10405, Sweden
| | - Vanessa P. Weinberger
- Center for Resilience, Adaptation and Mitigation (CReAM), Universidad Mayor, Temuco, 4801043, Chile
| | - Timothy M. Waring
- Mitchell Center for Sustainability Solutions, University of Maine Orono, ME 04473, USA
- School of Economics, University of Maine Orono, ME 04473, USA
| |
Collapse
|
3
|
Maina JN. A critical assessment of the cellular defences of the avian respiratory system: are birds in general and poultry in particular relatively more susceptible to pulmonary infections/afflictions? Biol Rev Camb Philos Soc 2023; 98:2152-2187. [PMID: 37489059 DOI: 10.1111/brv.13000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023]
Abstract
In commercial poultry farming, respiratory diseases cause high morbidities and mortalities, begetting colossal economic losses. Without empirical evidence, early observations led to the supposition that birds in general, and poultry in particular, have weak innate and adaptive pulmonary defences and are therefore highly susceptible to injury by pathogens. Recent findings have, however, shown that birds possess notably efficient pulmonary defences that include: (i) a structurally complex three-tiered airway arrangement with aerodynamically intricate air-flow dynamics that provide efficient filtration of inhaled air; (ii) a specialised airway mucosal lining that comprises air-filtering (ciliated) cells and various resident phagocytic cells such as surface and tissue macrophages, dendritic cells and lymphocytes; (iii) an exceptionally efficient mucociliary escalator system that efficiently removes trapped foreign agents; (iv) phagocytotic atrial and infundibular epithelial cells; (v) phagocytically competent surface macrophages that destroy pathogens and injurious particulates; (vi) pulmonary intravascular macrophages that protect the lung from the vascular side; and (vii) proficiently phagocytic pulmonary extravasated erythrocytes. Additionally, the avian respiratory system rapidly translocates phagocytic cells onto the respiratory surface, ostensibly from the subepithelial space and the circulatory system: the mobilised cells complement the surface macrophages in destroying foreign agents. Further studies are needed to determine whether the posited weak defence of the avian respiratory system is a global avian feature or is exclusive to poultry. This review argues that any inadequacies of pulmonary defences in poultry may have derived from exacting genetic manipulation(s) for traits such as rapid weight gain from efficient conversion of food into meat and eggs and the harsh environmental conditions and severe husbandry operations in modern poultry farming. To reduce pulmonary diseases and their severity, greater effort must be directed at establishment of optimal poultry housing conditions and use of more humane husbandry practices.
Collapse
Affiliation(s)
- John N Maina
- Department of Zoology, University of Johannesburg, Auckland Park Campus, Kingsway Avenue, Johannesburg, 2006, South Africa
| |
Collapse
|
4
|
Donnelly S, Akin‐Fajiye M, Fraser LH. Plant provenance can influence the impacts of temperature and moisture on intraspecific competition in Pseudoroegneria spicata. Ecol Evol 2023; 13:e10603. [PMID: 37886429 PMCID: PMC10598250 DOI: 10.1002/ece3.10603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 10/28/2023] Open
Abstract
Warming and changing precipitation can alter the performance of native grasses that are essential to grassland ecosystems. Native grasses may respond to changing climate by phenotypic plasticity or lose their current ranges. Establishing plant species from southern, warmer provenances may reduce the likelihood of biodiversity loss and improve restoration success in cool, northern locations that are undergoing warming. We conducted competition trials for Pseudoroegneria spicata (bluebunch wheatgrass), a native grass commonly found in western North American grasslands, to understand the impact of temperature and moisture on plant-plant interactions. We obtained seeds from three locations along a latitudinal gradient in North America, two in British Columbia (BC), Canada, and one in California, USA. We compared the effects of warming, changing water inputs, and competitor provenance on pairwise competitive interactions among Pseudoroegneria spicata plants grown from seeds obtained from the three locations. We quantified interactions using the relative interaction intensity, which has values from -1 (complete competition) to +1 (complete facilitation). Target plants from northern British Columbia, the location with the coldest summer temperature, were generally more competitively suppressed when competing with plants from California, which had the warmest summer temperature and lowest summer precipitation. Competitive suppression of target plants from northern British Columbia and southern British Columbia was more intense when competitor provenance was more geographically distant from target plant provenance. Finally, plants from northern British Columbia and southern British Columbia were more suppressed at higher temperatures, indicating some local adaptation, while plants from California were not affected by competitors, temperature, or water input. Plants grown from seeds obtained from warm and dry locations appear to be more tolerant to competition at higher temperatures, compared to plants from cooler regions. Native plant diversity and restoration success in grasslands subjected to climate change may be preserved or improved by assisted migration of seeds from warm to cooler but warming locations.
Collapse
Affiliation(s)
- Sabina Donnelly
- Department of Natural Resource SciencesThompson Rivers UniversityKamloopsBritish ColumbiaCanada
| | - Morodoluwa Akin‐Fajiye
- Department of Natural Resource SciencesThompson Rivers UniversityKamloopsBritish ColumbiaCanada
| | - Lauchlan H. Fraser
- Department of Natural Resource SciencesThompson Rivers UniversityKamloopsBritish ColumbiaCanada
| |
Collapse
|
5
|
Grezenko H, Ekhator C, Nwabugwu NU, Ganga H, Affaf M, Abdelaziz AM, Rehman A, Shehryar A, Abbasi FA, Bellegarde SB, Khaliq AS. Epigenetics in Neurological and Psychiatric Disorders: A Comprehensive Review of Current Understanding and Future Perspectives. Cureus 2023; 15:e43960. [PMID: 37622055 PMCID: PMC10446850 DOI: 10.7759/cureus.43960] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 08/26/2023] Open
Abstract
The burgeoning field of epigenetics offers transformative insights into the complex landscape of neurological and psychiatric disorders. By unraveling the intricate interplay between genetic, epigenetic, environmental, and lifestyle factors, this comprehensive review highlights the multifaceted nature of mental health. The exploration reveals the potential of epigenetic modifications to revolutionize our understanding, diagnosis, treatment, and prevention of these disorders. Emphasizing the importance of multidisciplinary collaborations, large-scale studies, technological advancements, and ethical considerations, the review asserts the promise of epigenetics as a vital tool for personalized medicine, early intervention, and public health strategies. While acknowledging the challenges in a still-emerging field, the review paints an optimistic picture of epigenetics as a groundbreaking approach that can reshape mental healthcare, offering hope for those affected by neurological and psychiatric conditions. The future trajectory of the field relies on interdisciplinary efforts, ethical diligence, innovative technologies, and translating scientific insights into real-world applications, thereby unlocking the vast potential of epigenetics in mental health.
Collapse
Affiliation(s)
- Han Grezenko
- Translational Neuroscience, Barrow Neurological Institute, Phoenix, USA
| | - Chukwuyem Ekhator
- Neuro-Oncology, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, USA
| | - Nkechi U Nwabugwu
- Public Health, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | - Maryam Affaf
- Internal Medicine, Women Medical College, Abbottabad, PAK
| | - Ali M Abdelaziz
- Internal Medicine, Alexandria University Faculty of Medicine, Alexandria, EGY
| | | | | | - Fatima A Abbasi
- Cardiology, Shifa International Hospital Islamabad, Islamabad, PAK
| | - Sophia B Bellegarde
- Pathology and Laboratory Medicine, American University of Antigua, St. John's, ATG
| | | |
Collapse
|
6
|
Blyth M. Using evolutionary principles to make clinical decisions: a case series of urinary tract infections. Evol Med Public Health 2023; 11:287-293. [PMID: 37649729 PMCID: PMC10465264 DOI: 10.1093/emph/eoad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/09/2023] [Indexed: 09/01/2023] Open
Abstract
The principles of evolutionary medicine have significant potential to be useful in a wide variety of clinical situations. Despite this, few demonstrations of clinical applications exist. To address this paucity, a case series applying evolutionary medicine principles to urinary tract infections, a common medical condition is presented. This series demonstrates how applying evolutionary medicine principles can be used to augment clinical decision-making.
Collapse
Affiliation(s)
- Michelle Blyth
- Department of Infectious Diseases, Louisiana State University, New Orleans LA, USA
| |
Collapse
|
7
|
Del Arco A, Becks L, de Vicente I. Population dynamics hide phenotypic changes driven by subtle chemical exposures: implications for risk assessments. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:281-289. [PMID: 36871096 PMCID: PMC10102127 DOI: 10.1007/s10646-023-02637-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Ecological risk assessment of chemicals focuses on the response of different taxa in isolation not taking ecological and evolutionary interplay in communities into account. Its consideration would, however, allow for an improved assessment by testing for implications within and across trophic levels and changes in the phenotypic and genotypic diversity within populations. We present a simple experimental system that can be used to evaluate the ecological and evolutionary responses to chemical exposure at microbial community levels. We exposed a microbial model system of the ciliate Tetrahymena thermophila (predator) and the bacterium Pseudomonas fluorescens (prey) to iron released from Magnetic Particles (MP-Fedis), which are Phosphorus (P) adsorbents used in lake restoration. Our results show that while the responses of predator single population size differed across concentrations of MP-Fedis and the responses of prey from communities differed also across concentration of MP-Fedis, the community responses (species ratio) were similar for the different MP-Fedis concentrations. Looking further at an evolutionary change in the bacterial preys' defence, we found that MP-Fedis drove different patterns and dynamics of defence evolution. Overall, our study shows how similar community dynamics mask changes at evolutionary levels that would be overlooked in the design of current risk assessment protocols where evolutionary approaches are not considered.
Collapse
Affiliation(s)
- Ana Del Arco
- Community Dynamics Group, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.
- Limnological Institute, Biology Department, University of Konstanz, 78464, Konstanz/Egg, Germany.
| | - Lutz Becks
- Community Dynamics Group, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
- Limnological Institute, Biology Department, University of Konstanz, 78464, Konstanz/Egg, Germany
| | - Inmaculada de Vicente
- Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, Granada, 18071, Spain
| |
Collapse
|
8
|
Cai L, Comont D, MacGregor D, Lowe C, Beffa R, Neve P, Saski C. The blackgrass genome reveals patterns of non-parallel evolution of polygenic herbicide resistance. THE NEW PHYTOLOGIST 2023; 237:1891-1907. [PMID: 36457293 PMCID: PMC10108218 DOI: 10.1111/nph.18655] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 11/23/2022] [Indexed: 05/31/2023]
Abstract
Globally, weedy plants are a major constraint to sustainable crop production. Much of the success of weeds rests with their ability to rapidly adapt in the face of human-mediated management of agroecosystems. Alopecurus myosuroides (blackgrass) is a widespread and impactful weed affecting agriculture in Europe. Here we report a chromosome-scale genome assembly of blackgrass and use this reference genome to explore the genomic/genetic basis of non-target site herbicide resistance (NTSR). Based on our analysis of F2 seed families derived from two distinct blackgrass populations with the same NTSR phenotype, we demonstrate that the trait is polygenic and evolves from standing genetic variation. We present evidence that selection for NTSR has signatures of both parallel and non-parallel evolution. There are parallel and non-parallel changes at the transcriptional level of several stress- and defence-responsive gene families. At the genomic level, however, the genetic loci underpinning NTSR are different (non-parallel) between seed families. We speculate that variation in the number, regulation and function of stress- and defence-related gene families enable weedy species to rapidly evolve NTSR via exaptation of genes within large multi-functional gene families. These results provide novel insights into the potential for, and nature of plant adaptation in rapidly changing environments.
Collapse
Affiliation(s)
- Lichun Cai
- Department of Plant and Environmental SciencesClemson UniversityClemsonSC29634USA
| | - David Comont
- Protecting Crops and the EnvironmentRothamsted ResearchHarpenden, HertfordshireAL5 2JQUK
| | - Dana MacGregor
- Protecting Crops and the EnvironmentRothamsted ResearchHarpenden, HertfordshireAL5 2JQUK
| | - Claudia Lowe
- Protecting Crops and the EnvironmentRothamsted ResearchHarpenden, HertfordshireAL5 2JQUK
| | - Roland Beffa
- Bayer Crop SciencesIndustriepark Höchst65926Frankfurt am MainGermany
- Königsteiner Weg 465835LiederbachGermany
| | - Paul Neve
- Protecting Crops and the EnvironmentRothamsted ResearchHarpenden, HertfordshireAL5 2JQUK
- Department of Plant and Environmental SciencesUniversity of CopenhagenHøjbakkegård Allé 13Tåstrup2630Denmark
| | - Christopher Saski
- Department of Plant and Environmental SciencesClemson UniversityClemsonSC29634USA
| |
Collapse
|
9
|
Aldridge DC, Ollard IS, Bespalaya YV, Bolotov IN, Douda K, Geist J, Haag WR, Klunzinger MW, Lopes‐Lima M, Mlambo MC, Riccardi N, Sousa R, Strayer DL, Torres SH, Vaughn CC, Zając T, Zieritz A. Freshwater mussel conservation: A global horizon scan of emerging threats and opportunities. GLOBAL CHANGE BIOLOGY 2023; 29:575-589. [PMID: 36444494 PMCID: PMC10100069 DOI: 10.1111/gcb.16510] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/27/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
We identified 14 emerging and poorly understood threats and opportunities for addressing the global conservation of freshwater mussels over the next decade. A panel of 17 researchers and stakeholders from six continents submitted a total of 56 topics that were ranked and prioritized using a consensus-building Delphi technique. Our 14 priority topics fell into five broad themes (autecology, population dynamics, global stressors, global diversity, and ecosystem services) and included understanding diets throughout mussel life history; identifying the drivers of population declines; defining metrics for quantifying mussel health; assessing the role of predators, parasites, and disease; informed guidance on the risks and opportunities for captive breeding and translocations; the loss of mussel-fish co-evolutionary relationships; assessing the effects of increasing surface water changes; understanding the effects of sand and aggregate mining; understanding the effects of drug pollution and other emerging contaminants such as nanomaterials; appreciating the threats and opportunities arising from river restoration; conserving understudied hotspots by building local capacity through the principles of decolonization; identifying appropriate taxonomic units for conservation; improved quantification of the ecosystem services provided by mussels; and understanding how many mussels are enough to provide these services. Solutions for addressing the topics ranged from ecological studies to technological advances and socio-political engagement. Prioritization of our topics can help to drive a proactive approach to the conservation of this declining group which provides a multitude of important ecosystem services.
Collapse
Affiliation(s)
- David C. Aldridge
- Aquatic Ecology Group, Department of ZoologyUniversity of CambridgeCambridgeUK
| | - Isobel S. Ollard
- Aquatic Ecology Group, Department of ZoologyUniversity of CambridgeCambridgeUK
| | - Yulia V. Bespalaya
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of SciencesArkhangelskRussia
| | - Ivan N. Bolotov
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of SciencesArkhangelskRussia
- Northern Arctic Federal UniversityArkhangelskRussia
| | - Karel Douda
- Department of Zoology and FisheriesCzech University of Life Sciences PraguePragueCzech Republic
| | - Juergen Geist
- Aquatic Systems Biology UnitTechnical University of MunichFreisingGermany
| | - Wendell R. Haag
- Southern Research Station, Center for Bottomland Hardwoods ResearchU.S. Forest ServiceFrankfortKentuckyUSA
| | - Michael W. Klunzinger
- Australian Rivers InstituteGriffith UniversityNathanQueenslandAustralia
- Department of Aquatic ZoologyWestern Australian MuseumWelshpoolWestern AustralianAustralia
| | - Manuel Lopes‐Lima
- CIBIO/InBIO/BIOPOLIS—Research Center in Biodiversity and Genetic ResourcesUniversity of PortoVairãoPortugal
| | - Musa C. Mlambo
- Department of Freshwater InvertebratesAlbany MuseumMakhandaSouth Africa
- Department of Zoology and EntomologyRhodes UniversityMakhandaSouth Africa
| | | | - Ronaldo Sousa
- CBMA—Centre of Molecular and Environmental Biology, Department of BiologyUniversity of MinhoBragaPortugal
| | - David L. Strayer
- Cary Institute of Ecosystem StudiesMillbrookNew YorkUSA
- Graham Sustainability InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Santiago H. Torres
- Centro de Investigaciones y Transferencia Santa Cruz (CONICET, UNPA, UTN), Unidad Académica San JuliánUniversidad Nacional de la Patagonia AustralSanta CruzArgentina
| | - Caryn C. Vaughn
- Oklahoma Biological Survey and Department of BiologyUniversity of OklahomaNormanOklahomaUSA
| | - Tadeusz Zając
- Institute of Nature ConservationPolish Academy of SciencesKrakówPoland
| | | |
Collapse
|
10
|
Shen XJ, Cao LJ, Chen JC, Ma LJ, Wang JX, Hoffmann AA, Wei SJ. A comprehensive assessment of insecticide resistance mutations in source and immigrant populations of the diamondback moth Plutella xylostella (L.). PEST MANAGEMENT SCIENCE 2023; 79:569-583. [PMID: 36205305 DOI: 10.1002/ps.7223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The diamondback moth (DBM) Plutella xylostella has developed resistance to almost all insecticides used to control it. Populations of DBM in temperate regions mainly migrate from annual breeding areas. However, the distribution pattern of insecticide resistance of DBM within the context of long-distance migration remains unclear. RESULTS In this study, we examined the frequency of 14 resistance mutations for 52 populations of DBM collected in 2010, 2011, 2017 and 2018 across China using a high-throughput KASP genotyping method. Mutations L1041F and T929I conferring pyrethroid resistance, and mutations G4946E and E1338D conferring chlorantraniliprole resistance were near fixation in most populations, whereas resistant alleles of F1020S, M918I, A309V and F1845Y were uncommon or absent in most populations. Resistance allele frequencies were relatively stable among different years, although the frequency of two mutations decreased. Principal component analysis based on resistant allele frequencies separated a southern population as an outlier, whereas the immigrants clustered with other populations, congruent with the migration pattern of northern immigrants coming from the Sichuan area of southwestern China. Most resistant mutations deviated from Hardy-Weinberg equilibrium due to a lower than expected frequency of heterozygotes. The deviation index of heterozygosity for resistant alleles was significantly higher than the index obtained from single nucleotide polymorphisms across the genome. These findings suggest heterogeneous selection pressures on resistant mutations. CONCLUSION Our results provide a picture of resistant mutation patterns in DBM shaped by insecticide usage and migration of this pest, and highlight the widespread distribution of resistance alleles in DBM. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiu-Jing Shen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, Haidian District, China
| | - Li-Jun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, Haidian District, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, Haidian District, China
| | - Li-Jun Ma
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, Haidian District, China
| | - Jia-Xu Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, Haidian District, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Melbourne, Parkville, Australia
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, Haidian District, China
| |
Collapse
|
11
|
Thompson LM, Thurman LL, Cook CN, Beever EA, Sgrò CM, Battles A, Botero CA, Gross JE, Hall KR, Hendry AP, Hoffmann AA, Hoving C, LeDee OE, Mengelt C, Nicotra AB, Niver RA, Pérez‐Jvostov F, Quiñones RM, Schuurman GW, Schwartz MK, Szymanski J, Whiteley A. Connecting research and practice to enhance the evolutionary potential of species under climate change. CONSERVATION SCIENCE AND PRACTICE 2023. [DOI: 10.1111/csp2.12855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Laura M. Thompson
- U.S. Geological Survey (USGS), National Climate Adaptation Science Center and the University of Tennessee Knoxville Tennessee USA
| | | | - Carly N. Cook
- School of Biological Sciences Monash University Melbourne Australia
| | - Erik A. Beever
- USGS, Northern Rocky Mountain Science Center and Montana State University Bozeman Montana USA
| | - Carla M. Sgrò
- School of Biological Sciences Monash University Melbourne Australia
| | | | | | - John E. Gross
- National Park Service (NPS) Climate Change Response Program Fort Collins Colorado USA
| | | | | | | | | | - Olivia E. LeDee
- USGS, Midwest Climate Adaptation Science Center Saint Paul Minnesota USA
| | | | | | - Robyn A. Niver
- U.S. Fish and Wildlife Service (USFWS), Branch of Listing and Policy Support Bailey's Crossroads Virginia USA
| | | | - Rebecca M. Quiñones
- Massachusetts Division of Fisheries and Wildlife Westborough Massachusetts USA
| | - Gregor W. Schuurman
- National Park Service (NPS) Climate Change Response Program Fort Collins Colorado USA
| | - Michael K. Schwartz
- U.S. Forest Service, National Genomics Center for Wildlife and Fish Conservation Missoula Montana USA
| | - Jennifer Szymanski
- USFWS, Branch of SSA Science Support, Division of Endangered Species Onalaska Wisconsin USA
| | | |
Collapse
|
12
|
Rohr RP, Loeuille N. Effects of evolution on niche displacement and emergent population properties, a discussion on optimality. OIKOS 2022. [DOI: 10.1111/oik.09472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Rudolf P. Rohr
- 1Dept of Biology – Ecology and Evolution, Univ. of Fribourg Chemin du Musée 15 Fribourg Switzerland
| | - Nicolas Loeuille
- Sorbonne Univ., UPEC, CNRS, IRD, INRA, Inst. of Ecology and Environmental Sciences, IEES Paris France
| |
Collapse
|
13
|
Bernos TA, Jeffries KM, Mandrak NE. Aquatic invasive species specialists’ perceptions on the importance of genetic tools and concepts to inform management. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02758-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Sun P, Shang Y, Sun R, Tian Y, Heino M. The Effects of Selective Harvest on Japanese Spanish Mackerel (Scomberomorus niphonius) Phenotypic Evolution. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.844693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Japanese Spanish mackerel (Scomberomorus niphonius) is an important fish species in the China Seas with wide distribution, extensive migration, and high economic value. This species has been yielding high fisheries production despite experiencing continuously high fishing pressure and the conversion from gillnet to trawl harvesting. Meanwhile, changes in life-history traits have been observed, including earlier maturation and smaller size at age. Here, we build an individual-based eco-genetic model parameterized for Japanese Spanish mackerel to investigate the population’s response to different fishing scenarios (fishing by trawl or by gillnet). The model allows evolution of life-history processes including maturation, reproduction and growth. It also incorporates environmental variability, phenotypic plasticity, and density-dependent feedbacks. Our results show that different gear types can result in different responses of life-history traits and altered population dynamics. The population harvested by gillnet shows weaker response to fishing than that by trawl. When fishing ceases, gillnet-harvested population can recover to the pre-harvest level more easily than that harvested by trawl. The different responses of population growth rate and evolution to different fishing gears demonstrated in this study shed light on the sustainable management and utilization of Japanese Spanish mackerel in the over-exploited China Seas.
Collapse
|
15
|
Ochoa-Zavala M, Osorio-Olvera L, Cerón-Souza I, Rivera-Ocasio E, Jiménez-Lobato V, Núñez-Farfán J. Reduction of Genetic Variation When Far From the Niche Centroid: Prediction for Mangrove Species. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2021.795365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The niche-centroid hypothesis states that populations that are distributed near the centroid of the species' ecological niche will have higher fitness-related attributes, such as population abundance and genetic diversity than populations near the edges of the niche. Empirical evidence based on abundance and, more recently, genetic diversity data support this hypothesis. However, there are few studies that test this hypothesis in coastal species, such as mangroves. Here, we focused on the black mangrove Avicennia germinans. We combined ecological, heterozygosity, and allelic richness information from 1,419 individuals distributed in 40 populations with three main goals: (1) test the relationship between distance to the niche centroid and genetic diversity, (2) determine the set of environmental variables that best explain heterozygosity and allelic richness, and (3) predict the spatial variation in genetic diversity throughout most of the species' natural geographic range. We found a strong correlation between the distance to the niche centroid and both observed heterozygosity (Ho; ρ2 = 0.67 P < 0.05) and expected heterozygosity (He; ρ2 = 0.65, P < 0.05). The niche variables that best explained geographic variation in genetic diversity were soil type and precipitation seasonality. This suggests that these environmental variables influence mangrove growth and establishment, indirectly impacting standing genetic variation. We also predicted the spatial heterozygosity of A. germinans across its natural geographic range in the Americas using regression model coefficients. They showed significant power in predicting the observed data (R2 = 0.65 for Ho; R2 = 0.60 for He), even when we considered independent data sets (R2= 0.28 for Ho; R2 = 0.25 for He). Using this approach, several genetic diversity estimates can be implemented and may take advantage of population genomics to improve genetic diversity predictions. We conclude that the level of genetic diversity in A. germinans is in agreement with expectations of the niche-centroid hypothesis, namely that the highest heterozygosity and allelic richness (the basic genetic units for adaptation) are higher at locations of high environmental suitability. This shows that this approach is a potentially powerful tool in the conservation and management of this species, including for modelling changes in the face of climate change.
Collapse
|
16
|
Toriyabe A, Enari H, Enari HS, Saito MU. Habitat selection by non-native masked palm civets in a Japanese rural landscape, incorporating individual differences. J Mammal 2022. [DOI: 10.1093/jmammal/gyab150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Animals that succeed as non-native species may have highly plastic characteristics. We conducted a radio telemetry survey for introduced masked palm civets (Paguma larvata), which inhabit rural landscapes in almost all of Japan, to clarify their habitat selection and intraspecific variation. We compared two generalized linear mixed models, one that did not consider individual differences and another that did, which indicated the importance of incorporating individual differences for evaluating habitat selection by this species. We obtained results of habitat selectivity for all individuals (i.e., common effect on the species) and for each individual using coefficients of fixed effects or fixed effects with random effects. Masked palm civets significantly selected deciduous broad-leaved forests, artificial structures, rice fields, and orchards as a common effect for all individuals. However, these habitats were not necessarily selected as a significant effect for each individual. Deciduous broad-leaved forests and artificial structures were more important than other habitats. The wide range of possible environments and the plasticity of habitat selection shown in this study may partly explain the success of this species in expanding its distribution in Japan.
Collapse
Affiliation(s)
- Ayaka Toriyabe
- Graduate School of Agricultural Sciences, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata 997-8555, Japan
| | - Hiroto Enari
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata 997-8555, Japan
| | - Haruka S Enari
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata 997-8555, Japan
- Snow Region Wildlife Research Group, 1-23 Wakaba-machi, Tsuruoka, Yamagata 997-8555, Japan
| | - Masayuki U Saito
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata 997-8555, Japan
| |
Collapse
|
17
|
Isa I, Ndams IS, Aminu M, Chechet G, Dotzauer A, Simon AY. Genetic diversity of Dengue virus serotypes circulating among Aedes mosquitoes in selected regions of northeastern Nigeria. One Health 2021; 13:100348. [PMID: 34825044 PMCID: PMC8605110 DOI: 10.1016/j.onehlt.2021.100348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/07/2022] Open
Abstract
The flaviviruses are mosquito borne pathogens that continue to pose a considerable public health risk to animals and humans. The members of this group includes, Dengue virus (DENV), Yellow fever virus (YVF), Japanese encephalitis virus (JEV), West Nile virus (WEV) and Zika virus (ZKV). The DENV mosquito vector is endemic to tropical and subtropical climates, placing ∼40% of the world's population at direct risk of dengue infection. Currently, in Nigeria the status of DENV serotypes circulating among mosquito vectors is unknown. Our study was designed to identify and characterize the DENV serotypes circulating in Aedes mosquito populations collected in selected sites in Nigeria. The mosquitoes were collected and identified morphologically to species level using colored identification keys of Rueda. Generally, each species identified was tested in pools of 20 individuals of each Aedes species. RT-PCR and semi nested PCR were used to detect DENV serotypes in mosquitoes and characterized using Sanger sequencing methods. The results showed that DENV serotypes were detected in 58.54% (24/41) of the pools of Aedes mosquitoes from Mubi, Numan and Yola screened. All DENV1-4 serotypes were detected in Ae. aegypti. While DENV 1, 2 and 4 were detected in Ae. albopictus. And only DENV 2 was detected in Ae. galloisi with DENV4 serotype being reported for the first time in Nigeria. DENV2 (37.8%) was the most detected serotypes, while double and triple co-infections of serotypes were detected in 24.4% of the pools. Phylogenetic analysis revealed a strong evolutionary relatedness of DENV serotypes in our study with that of South and Southeast Asia, North America, and other African countries. This is the first reports on the natural DENV serotypes co-infection among Aedes species pools in Nigeria, which can create possible interaction with other flaviviruses causing animal and human diseases. In addition, our study postulates the possible linkage between DENV serotypes infection and human febrile flu-like disease burden being experienced by host communities in northeastern Nigeria.
Collapse
Affiliation(s)
- Ibrahim Isa
- Department of Zoology, Ahmadu Bello University Zaria, Nigeria
| | - Iliya Shehu Ndams
- Department of Zoology, Ahmadu Bello University Zaria, Nigeria.,Africa Centre of Excellence for Neglected Tropical Diseases & Forensic Biotechnology, Ahmadu Bello University Zaria, Nigeria
| | - Maryam Aminu
- Department of Microbiology, Ahmadu Bello University Zaria, Nigeria
| | - Gloria Chechet
- Department of Biochemistry, Ahmadu Bello University Zaria, Nigeria.,Africa Centre of Excellence for Neglected Tropical Diseases & Forensic Biotechnology, Ahmadu Bello University Zaria, Nigeria
| | | | - Ayo Yila Simon
- Africa Centre of Excellence for Neglected Tropical Diseases & Forensic Biotechnology, Ahmadu Bello University Zaria, Nigeria.,Center for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,National Centers for Animal Disease Research, Lethbridge Laboratory, Science Branch, Canadian Food Inspection Agency, Government of Canada, Lethbridge, Alberta, Canada
| |
Collapse
|
18
|
Paul K, D'Ambrosio J, Phocas F. Temporal and region‐specific variations in genome‐wide inbreeding effects on female size and reproduction traits of rainbow trout. Evol Appl 2021; 15:645-662. [PMID: 35505890 PMCID: PMC9046919 DOI: 10.1111/eva.13308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 07/11/2021] [Accepted: 09/14/2021] [Indexed: 02/01/2023] Open
Abstract
Recent studies have shown that current levels of inbreeding, estimated by runs of homozygosity (ROH), are moderate to high in farmed rainbow trout lines. Based on ROH metrics, the aims of our study were to (i) quantify inbreeding effects on female size (postspawning body weight, fork length) and reproduction traits (spawning date, coelomic fluid weight, spawn weight, egg number, average egg weight) in rainbow trout, and (ii) identify both the genomic regions and inbreeding events affecting performance. We analysed the performance of 1346 females under linear animal models including random additive and dominance genetics effects, with fixed covariates accounting for inbreeding effects at different temporal and genomic scales. A significant effect of genome‐wide inbreeding (F) was only observed for spawning date and egg weight, with performance variations of +12.3% and −3.8%, respectively, for 0.1 unit increase in F level. At different local genomic scales, we observed highly variable inbreeding effects on the seven traits under study, ranging from increasing to decreasing trait values. As widely reported in the literature, the main scenario observed during this study was a negative impact of recent inbreeding. However, other scenarios such as positive effects of recent inbreeding or negative impacts of old inbreeding were also observed. Although partial dominance appeared to be the main hypothesis explaining inbreeding depression for all the traits studied, the overdominance hypothesis might also play a significant role in inbreeding depression affecting fecundity (egg number and mass) traits in rainbow trout. These findings suggest that region‐specific inbreeding can strongly impact performance without necessarily observing genome‐wide inbreeding effects. They shed light on the genetic architecture of inbreeding depression and its evolution along the genome over time. The use of region‐specific metrics may enable breeders to more accurately manage the trade‐off between genetic merit and the undesirable side effects associated with inbreeding.
Collapse
Affiliation(s)
- Katy Paul
- Université Paris‐Saclay INRAE AgroParisTech GABIJouy‐en‐Josas France
| | - Jonathan D'Ambrosio
- Université Paris‐Saclay INRAE AgroParisTech GABIJouy‐en‐Josas France
- SYSAAFStation INRAE‐LPGPCampus de Beaulieu Rennes France
| | - Florence Phocas
- Université Paris‐Saclay INRAE AgroParisTech GABIJouy‐en‐Josas France
| |
Collapse
|
19
|
Gunn RL, Hartley IR, Algar AC, Niemelä PT, Keith SA. Understanding behavioural responses to human‐induced rapid environmental change: a meta‐analysis. OIKOS 2021. [DOI: 10.1111/oik.08366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Rachel L. Gunn
- Lancaster Environment Centre, Lancaster Univ. Lancaster UK
| | - Ian R. Hartley
- Lancaster Environment Centre, Lancaster Univ. Lancaster UK
| | - Adam C. Algar
- Dept of Biology, Lakehead Univ. Thunder Bay ON Canada
| | - Petri T. Niemelä
- Behavioural Ecology, Dept of Biology, Ludwig‐Maximilians Univ. of Munich Planegg‐Martinsried Germany
- Organismal and Evolutionary Biology Research Programme, Univ. of Helsinki Finland
| | - Sally A. Keith
- Lancaster Environment Centre, Lancaster Univ. Lancaster UK
| |
Collapse
|
20
|
Cook CN, Beever EA, Thurman LL, Thompson LM, Gross JE, Whiteley AR, Nicotra AB, Szymanski JA, Botero CA, Hall KR, Hoffmann AA, Schuurman GW, Sgrò CM. Supporting the adaptive capacity of species through more effective knowledge exchange with conservation practitioners. Evol Appl 2021; 14:1969-1979. [PMID: 34429742 PMCID: PMC8372063 DOI: 10.1111/eva.13266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 05/27/2021] [Accepted: 06/06/2021] [Indexed: 01/28/2023] Open
Abstract
There is an imperative for conservation practitioners to help biodiversity adapt to accelerating environmental change. Evolutionary biologists are well-positioned to inform the development of evidence-based management strategies that support the adaptive capacity of species and ecosystems. Conservation practitioners increasingly accept that management practices must accommodate rapid environmental change, but harbour concerns about how to apply recommended changes to their management contexts. Given the interest from both conservation practitioners and evolutionary biologists in adjusting management practices, we believe there is an opportunity to accelerate the required changes by promoting closer collaboration between these two groups. We highlight how evolutionary biologists can harness lessons from other disciplines about how to foster effective knowledge exchange to make a substantive contribution to the development of effective conservation practices. These lessons include the following: (1) recognizing why practitioners do and do not use scientific evidence; (2) building an evidence base that will influence management decisions; (3) translating theory into a format that conservation practitioners can use to inform management practices; and (4) developing strategies for effective knowledge exchange. Although efforts will be required on both sides, we believe there are rewards for both practitioners and evolutionary biologists, not least of which is fostering practices to help support the long-term persistence of species.
Collapse
Affiliation(s)
- Carly N. Cook
- School of Biological SciencesMonash UniversityClaytonVICAustralia
| | - Erik A. Beever
- Northern Rocky Mountain Science CenterU.S. Geological SurveyBozemanMTUSA
- Department of EcologyMontana State UniversityBozemanMTUSA
| | - Lindsey L. Thurman
- Northwest Climate Adaptation Science CenterU.S. Geological SurveyCorvallisORUSA
| | - Laura M. Thompson
- National Climate Adaptation Science CenterU.S. Geological SurveyRestonVAUSA
- Department of Forestry, Wildlife and FisheriesUniversity of TennesseeKnoxvilleTNUSA
| | - John E. Gross
- Climate Change Response ProgramU.S. National Park ServiceFort CollinsCOUSA
| | - Andrew R. Whiteley
- Wildlife Biology ProgramDepartment of Ecosystem and Conservation SciencesFranke College of Forestry and ConservationUniversity of MontanaMissoulaMTUSA
| | - Adrienne B. Nicotra
- Division of Ecology and EvolutionResearch School of BiologyAustralian National UniversityCanberraACTAustralia
| | | | | | | | - Ary A. Hoffmann
- School of BioSciencesBio21 InstituteThe University of MelbourneMelbourneVICAustralia
| | | | - Carla M. Sgrò
- School of Biological SciencesMonash UniversityClaytonVICAustralia
| |
Collapse
|
21
|
Smith TB, Fuller TL, Zhen Y, Zaunbrecher V, Thomassen HA, Njabo K, Anthony NM, Gonder MK, Buermann W, Larison B, Ruegg K, Harrigan RJ. Genomic vulnerability and socio-economic threats under climate change in an African rainforest bird. Evol Appl 2021; 14:1239-1247. [PMID: 34025764 PMCID: PMC8127712 DOI: 10.1111/eva.13193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 01/28/2023] Open
Abstract
Preserving biodiversity under rapidly changing climate conditions is challenging. One approach for estimating impacts and their magnitude is to model current relationships between genomic and environmental data and then to forecast those relationships under future climate scenarios. In this way, understanding future genomic and environmental relationships can help guide management decisions, such as where to establish new protected areas where populations might be buffered from high temperatures or major changes in rainfall. However, climate warming is only one of many anthropogenic threats one must consider in rapidly developing parts of the world. In Central Africa, deforestation, mining, and infrastructure development are accelerating population declines of rainforest species. Here we investigate multiple anthropogenic threats in a Central African rainforest songbird, the little greenbul (Andropadus virens). We examine current climate and genomic variation in order to explore the association between genome and environment under future climate conditions. Specifically, we estimate Genomic Vulnerability, defined as the mismatch between current and predicted future genomic variation based on genotype-environment relationships modeled across contemporary populations. We do so while considering other anthropogenic impacts. We find that coastal and central Cameroon populations will require the greatest shifts in adaptive genomic variation, because both climate and land use in these areas are predicted to change dramatically. In contrast, in the more northern forest-savanna ecotones, genomic shifts required to keep pace with climate will be more moderate, and other anthropogenic impacts are expected to be comparatively low in magnitude. While an analysis of diverse taxa will be necessary for making comprehensive conservation decisions, the species-specific results presented illustrate how evolutionary genomics and other anthropogenic threats may be mapped and used to inform mitigation efforts. To this end, we present an integrated conceptual model demonstrating how the approach for a single species can be expanded to many taxonomically diverse species.
Collapse
Affiliation(s)
- Thomas B. Smith
- Center for Tropical ResearchInstitute of the Environment & SustainabilityUniversity of California Los AngelesLos AngelesCAUSA
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesCAUSA
| | - Trevon L. Fuller
- Center for Tropical ResearchInstitute of the Environment & SustainabilityUniversity of California Los AngelesLos AngelesCAUSA
| | - Ying Zhen
- Zhejiang Provincial Laboratory of Life Sciences and BiomedicineKey Laboratory of Structural Biology of Zhejiang ProvinceSchool of Life SciencesWestlake UniversityHangzhouChina
- Institute of BiologyWestlake Institute for Advanced StudyHangzhouChina
| | - Virginia Zaunbrecher
- Center for Tropical ResearchInstitute of the Environment & SustainabilityUniversity of California Los AngelesLos AngelesCAUSA
| | | | - Kevin Njabo
- Center for Tropical ResearchInstitute of the Environment & SustainabilityUniversity of California Los AngelesLos AngelesCAUSA
| | - Nicola M. Anthony
- Department of Biological SciencesUniversity of New OrleansNew OrleansLAUSA
| | | | | | - Brenda Larison
- Center for Tropical ResearchInstitute of the Environment & SustainabilityUniversity of California Los AngelesLos AngelesCAUSA
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesCAUSA
| | - Kristen Ruegg
- Department of BiologyColorado State UniversityFort CollinsCOUSA
| | - Ryan J. Harrigan
- Center for Tropical ResearchInstitute of the Environment & SustainabilityUniversity of California Los AngelesLos AngelesCAUSA
| |
Collapse
|
22
|
Amiot C, Ji W, Ellis EC, Anderson MG. Temporal and sociocultural effects of human colonisation on native biodiversity: filtering and rates of adaptation. OIKOS 2021. [DOI: 10.1111/oik.07615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christophe Amiot
- Human Wildlife Interaction Research Group, Inst. of Natural and Mathematical Sciences, Massey Univ. Albany New Zealand
- UMR 6554 CNRS, LETG–Angers, Univ. d'Angers Angers France
| | - Weihong Ji
- Human Wildlife Interaction Research Group, Inst. of Natural and Mathematical Sciences, Massey Univ. Albany New Zealand
| | - Erle C. Ellis
- Dept of Geography and Environmental Systems, Univ. of Maryland Baltimore County Baltimore USA
| | - Michael G. Anderson
- Ecology, Behaviour and Conservation Group, Inst. of Natural and Mathematical Sciences, Massey Univ. Albany New Zealand
| |
Collapse
|
23
|
Nusbaumer D, Marques da Cunha L, Wedekind C. Testing for population differences in evolutionary responses to pesticide pollution in brown trout ( Salmo trutta). Evol Appl 2021; 14:462-475. [PMID: 33664788 PMCID: PMC7896705 DOI: 10.1111/eva.13132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 11/30/2022] Open
Abstract
Pesticides are often toxic to nontarget organisms, especially to those living in rivers that drain agricultural land. The brown trout (Salmo trutta) is a keystone species in many such rivers, and natural populations have hence been chronically exposed to pesticides over multiple generations. The introduction of pesticides decades ago could have induced evolutionary responses within these populations. Such a response would be predicted to reduce the toxicity over time but also deplete any additive genetic variance for the tolerance to the pesticides. If so, populations are now expected to differ in their susceptibility and in the variance for the tolerance depending on the pesticides they have been exposed to. We sampled breeders from seven natural populations that differ in their habitats and that show significant genetic differentiation. We stripped them for their gametes and produced 118 families by in vitro fertilization. We then raised 20 embryos per family singly in experimentally controlled conditions and exposed them to one of two ecologically relevant concentrations of either the herbicide S-metolachlor or the insecticide diazinon. Both pesticides affected embryo and larval development at all concentrations. We found no statistically significant additive genetic variance for tolerance to these stressors within or between populations. Tolerance to the pesticides could also not be linked to variation in carotenoid content of the eggs. However, pesticide tolerance was linked to egg size, with smaller eggs being more tolerant to the pesticides than larger eggs. We conclude that an evolutionary response to these pesticides is currently unlikely and that (a) continuous selection in the past has either depleted genetic variance in all the populations we studied or (b) that exposure to the pesticides never induced an evolutionary response. The observed toxicity selects against large eggs that are typically spawned by larger and older females.
Collapse
Affiliation(s)
- David Nusbaumer
- Department of Ecology & EvolutionUniversity of LausanneLausanneSwitzerland
| | | | - Claus Wedekind
- Department of Ecology & EvolutionUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
24
|
Theodorou P, Baltz LM, Paxton RJ, Soro A. Urbanization is associated with shifts in bumblebee body size, with cascading effects on pollination. Evol Appl 2021; 14:53-68. [PMID: 33519956 PMCID: PMC7819558 DOI: 10.1111/eva.13087] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Urbanization is a global phenomenon with major effects on species, the structure of community functional traits and ecological interactions. Body size is a key species trait linked to metabolism, life-history and dispersal as well as a major determinant of ecological networks. Here, using a well-replicated urban-rural sampling design in Central Europe, we investigate the direction of change of body size in response to urbanization in three common bumblebee species, Bombus lapidarius, Bombus pascuorum and Bombus terrestris, and potential knock-on effects on pollination service provision. We found foragers of B. terrestris to be larger in cities and the body size of all species to be positively correlated with road density (albeit at different, species-specific scales); these are expected consequences of habitat fragmentation resulting from urbanization. High ambient temperature at sampling was associated with both a small body size and an increase in variation of body size in all three species. At the community level, the community-weighted mean body size and its variation increased with urbanization. Urbanization had an indirect positive effect on pollination services through its effects not only on flower visitation rate but also on community-weighted mean body size and its variation. We discuss the eco-evolutionary implications of the effect of urbanization on body size, and the relevance of these findings for the key ecosystem service of pollination.
Collapse
Affiliation(s)
- Panagiotis Theodorou
- General ZoologyInstitute of BiologyMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Lucie M. Baltz
- General ZoologyInstitute of BiologyMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Robert J. Paxton
- General ZoologyInstitute of BiologyMartin Luther University Halle‐WittenbergHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Antonella Soro
- General ZoologyInstitute of BiologyMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| |
Collapse
|
25
|
Augustyniak M, Tarnawska M, Dziewięcka M, Kafel A, Rost-Roszkowska M, Babczyńska A. DNA damage in Spodoptera exigua after multigenerational cadmium exposure - A trade-off between genome stability and adaptation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141048. [PMID: 32758757 DOI: 10.1016/j.scitotenv.2020.141048] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Human activity is a serious cause of extensive changes in the environment and a constant reason for the emergence of new stress factors. Thus, to survive and reproduce, organisms must constantly implement a program of adaptation to continuously changing conditions. The research presented here is focused on tracking slow changes occurring in Spodoptera exigua (Lepidoptera: Noctuidae) caused by multigenerational exposure to sub-lethal cadmium doses. The insects received food containing cadmium at concentrations of 5, 11, 22 and 44 μg per g of dry mass of food. The level of DNA stability was monitored by a comet assay in subsequent generations up to the 36th generation. In the first three generations, the level of DNA damage was high, especially in the groups receiving higher doses of cadmium in the diet. In the fourth generation, a significant reduction in the level of DNA damage was observed, which could indicate that the desired stability of the genome was achieved. Surprisingly, however, in subsequent generations, an alternating increase and decrease was found in DNA stability. The observed cycles of changing DNA stability were longer lasting in insects consuming food with a lower Cd content. Thus, a transient reduction in genome stability can be perceived as an opportunity to increase the number of genotypes that undergo selection. This phenomenon occurs faster if the severity of the stress factor is high but is low enough to allow the population to survive.
Collapse
Affiliation(s)
- Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland.
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Marta Dziewięcka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Alina Kafel
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Magdalena Rost-Roszkowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
26
|
Montgomery RA, Macdonald DW, Hayward MW. The inducible defences of large mammals to human lethality. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Robert A. Montgomery
- Research on the Ecology of Carnivores and their Prey (RECaP) Laboratory Department of Fisheries and Wildlife Michigan State University East Lansing MI USA
- Wildlife Conservation Research Unit Department of Zoology University of OxfordThe Recanati‐Kaplan CentreTubney House Tubney Oxon UK
| | - David W. Macdonald
- Wildlife Conservation Research Unit Department of Zoology University of OxfordThe Recanati‐Kaplan CentreTubney House Tubney Oxon UK
| | - Matthew W. Hayward
- School of Environmental and Life Sciences University of Newcastle Callaghan NSW Australia
- Centre for African Conservation Ecology Nelson Mandela University Port Elizabeth South Africa
- Centre for Wildlife Management University of Pretoria Pretoria South Africa
| |
Collapse
|
27
|
The genetic diversity and differentiation of mussels with complex life cycles and relations to host fish migratory traits and densities. Sci Rep 2020; 10:17435. [PMID: 33060747 PMCID: PMC7567107 DOI: 10.1038/s41598-020-74261-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/28/2020] [Indexed: 11/12/2022] Open
Abstract
Many landscape and biotic processes shape the genetic structure of populations. The genetic structure of species with parasitic stages may also depend on the life history and ecology of their host. We investigated population genetic structure of the mussel Margaritifera margaritifera in Southern Sweden, and in relation to the population size and life history of its hosts, Salmo trutta and S. salar. Mussel populations were genetically differentiated into two clusters, further subdivided into four clusters and distinct conservation units. Regardless of host species, the genetic differentiation was lower among mussel populations sustained by sea-migrating than by resident hosts, while the genetic diversity was higher in mussel populations sustained by sea-migrating than by resident hosts. Genetic diversity of mussel populations was positively related to host abundance. Mussel population size was positively related to high genetic diversity of mussels sustained by resident hosts, while low mussel population size sustained by sea-migrating hosts had a high genetic diversity. The results of our study suggest a combined influence of mussels and host fish on genetic structure of unionoid mussels. We suggest to conserve not only mussel population sizes and host fish species, but also consider host migratory/resident behaviour and abundance when designing conservation programs.
Collapse
|
28
|
Talapko J, Škrlec I. The Principles, Mechanisms, and Benefits of Unconventional Agents in the Treatment of Biofilm Infection. Pharmaceuticals (Basel) 2020; 13:299. [PMID: 33050521 PMCID: PMC7600518 DOI: 10.3390/ph13100299] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Today, researchers are looking at new ways to treat severe infections caused by resistance to standard antibiotic therapy. This is quite challenging due to the complex and interdependent relationships involved: the cause of infection-the patient-antimicrobial agents. The sessile biofilm form is essential in research to reduce resistance to very severe infections (such as ESKAPE pathogens: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanni, Pseudomonas aeruginosa, and Enterobacter spp). The purpose of this study is to elucidate the mechanisms of the occurrence, maintenance, and suppression of biofilm infections. One form of biofilm suppression is the efficient action of natural antagonists of bacteria-bacteriophages. Bacteriophages effectively penetrate the biofilm's causative cells. They infect those bacterial cells and either destroy them or prevent the infection spreading. In this process, bacteriophages are specific, relatively easy to apply, and harmless to the patient. Antimicrobial peptides (AMPs) support the mechanisms of bacteriophages' action. AMPs could also attack and destroy infectious agents on their own (even on biofilm). AMPs are simple, universal peptide molecules, mainly cationic peptides. Additional AMP research could help develop even more effective treatments of biofilm (bacteriophages, antibiotics, AMPs, nanoparticles). Here, we review recent unconventional agents, such as bacteriophages and AMPs, used for eradication of biofilm, providing an overview of potentially new biofilm treatment strategies.
Collapse
Affiliation(s)
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia;
| |
Collapse
|
29
|
Hereward JP, Cai X, Matias AMA, Walter GH, Xu C, Wang Y. Migration dynamics of an important rice pest: The brown planthopper ( Nilaparvata lugens) across Asia-Insights from population genomics. Evol Appl 2020; 13:2449-2459. [PMID: 33005233 PMCID: PMC7513714 DOI: 10.1111/eva.13047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION Brown planthoppers (Nilaparvata lugens) are the most serious insect pests of rice, one of the world's most important staple crops. They reproduce year-round in the tropical parts of their distribution, but cannot overwinter in the temperate areas where they occur, and invade seasonally from elsewhere. Decades of research have not revealed their source unambiguously. METHODS AND RESULTS We sequenced the genomes of brown planthopper populations from across temperate and tropical parts of their distribution and show that the Indochinese peninsula is the major source of migration into temperate China. The Philippines, once considered a key source, is not significant, with little evidence for their migration into China. We find support for immigration from the west of China contributing to these regional dynamics. DISCUSSION The lack of connectivity between the Philippine population and the mainland Chinese populations explains the different evolution of Imidacloprid resistance in these populations. This study highlights the promise of whole-genome sequence data to understand migration when gene flow is high-a situation that has been difficult to resolve using traditional genetic markers.
Collapse
Affiliation(s)
- James P Hereward
- School of Biological Sciences The University of Queensland Brisbane Queensland Australia
| | - Xuhong Cai
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory College of Plant Science and Technology Huazhong Agricultural University Wuhan Hubei China
| | - Ambrocio Melvin A Matias
- School of Biological Sciences The University of Queensland Brisbane Queensland Australia
- Institute of Biology University of the Philippines Diliman Quezon City Philippines
| | - Gimme H Walter
- School of Biological Sciences The University of Queensland Brisbane Queensland Australia
| | - Chenxi Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory College of Plant Science and Technology Huazhong Agricultural University Wuhan Hubei China
| | - Yongmo Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory College of Plant Science and Technology Huazhong Agricultural University Wuhan Hubei China
| |
Collapse
|
30
|
Weiskopf SR, Rubenstein MA, Crozier LG, Gaichas S, Griffis R, Halofsky JE, Hyde KJW, Morelli TL, Morisette JT, Muñoz RC, Pershing AJ, Peterson DL, Poudel R, Staudinger MD, Sutton-Grier AE, Thompson L, Vose J, Weltzin JF, Whyte KP. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:137782. [PMID: 32209235 DOI: 10.1016/j.scitotenv.2020.137782] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 05/22/2023]
Abstract
Climate change is a pervasive and growing global threat to biodiversity and ecosystems. Here, we present the most up-to-date assessment of climate change impacts on biodiversity, ecosystems, and ecosystem services in the U.S. and implications for natural resource management. We draw from the 4th National Climate Assessment to summarize observed and projected changes to ecosystems and biodiversity, explore linkages to important ecosystem services, and discuss associated challenges and opportunities for natural resource management. We find that species are responding to climate change through changes in morphology and behavior, phenology, and geographic range shifts, and these changes are mediated by plastic and evolutionary responses. Responses by species and populations, combined with direct effects of climate change on ecosystems (including more extreme events), are resulting in widespread changes in productivity, species interactions, vulnerability to biological invasions, and other emergent properties. Collectively, these impacts alter the benefits and services that natural ecosystems can provide to society. Although not all impacts are negative, even positive changes can require costly societal adjustments. Natural resource managers need proactive, flexible adaptation strategies that consider historical and future outlooks to minimize costs over the long term. Many organizations are beginning to explore these approaches, but implementation is not yet prevalent or systematic across the nation.
Collapse
Affiliation(s)
- Sarah R Weiskopf
- U.S. Geological Survey National Climate Adaptation Science Center, Reston, VA, USA.
| | | | - Lisa G Crozier
- NOAA Northwest Fisheries Science Center, Seattle, WA, USA
| | - Sarah Gaichas
- NOAA Northeast Fisheries Science Center, Woods Hole, MA, USA
| | - Roger Griffis
- NOAA National Marine Fisheries Service, Silver Spring, MD, USA
| | - Jessica E Halofsky
- University of Washington, School of Environmental and Forest Sciences, Seattle, WA, USA
| | | | - Toni Lyn Morelli
- U.S. Geological Survey Northeast Climate Adaptation Science Center, Amherst, MA, USA
| | - Jeffrey T Morisette
- U.S. Department of the Interior, National Invasive Species Council Secretariat, Fort Collins, CO, USA
| | - Roldan C Muñoz
- NOAA Southeast Fisheries Science Center, Beaufort, NC, USA
| | | | - David L Peterson
- University of Washington, School of Environmental and Forest Sciences, Seattle, WA, USA
| | | | - Michelle D Staudinger
- U.S. Geological Survey Northeast Climate Adaptation Science Center, Amherst, MA, USA
| | - Ariana E Sutton-Grier
- University of Maryland Earth System Science Interdisciplinary Center, College Park, MD, USA
| | - Laura Thompson
- U.S. Geological Survey National Climate Adaptation Science Center, Reston, VA, USA
| | - James Vose
- U.S. Forest Service Southern Research Station, Raleigh, NC, USA
| | | | | |
Collapse
|
31
|
Creech TG, Epps CW, Wehausen JD, Crowhurst RS, Jaeger JR, Longshore K, Holton B, Sloan WB, Monello RJ. Genetic and Environmental Indicators of Climate Change Vulnerability for Desert Bighorn Sheep. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Talla V, Pierce AA, Adams KL, de Man TJB, Nallu S, Villablanca FX, Kronforst MR, de Roode JC. Genomic evidence for gene flow between monarchs with divergent migratory phenotypes and flight performance. Mol Ecol 2020; 29:2567-2582. [PMID: 32542770 DOI: 10.1111/mec.15508] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 06/05/2020] [Indexed: 12/24/2022]
Abstract
Monarch butterflies are known for their spectacular annual migration in eastern North America, with millions of monarchs flying up to 4,500 km to overwintering sites in central Mexico. Monarchs also live west of the Rocky Mountains, where they travel shorter distances to overwinter along the Pacific Coast. It is often assumed that eastern and western monarchs form distinct evolutionary units, but genomic studies to support this notion are lacking. We used a tethered flight mill to show that migratory eastern monarchs have greater flight performance than western monarchs, consistent with their greater migratory distances. However, analysing more than 20 million SNPs in 43 monarch genomes, we found no evidence for genomic differentiation between eastern and western monarchs. Genomic analysis also showed identical and low levels of genetic diversity, and demographic analyses indicated similar effective population sizes and ongoing gene flow between eastern and western monarchs. Gene expression analysis of a subset of candidate genes during active flight revealed differential gene expression related to nonmuscular motor activity. Our results demonstrate that eastern and western monarchs maintain migratory differences despite ongoing gene flow, and suggest that migratory differences between eastern and western monarchs are not driven by select major-effects alleles. Instead, variation in migratory distance and destination may be driven by environmentally induced differential gene expression or by many alleles of small effect.
Collapse
Affiliation(s)
- Venkat Talla
- Department of Biology, Emory University, Atlanta, GA, USA
| | | | - Kandis L Adams
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Tom J B de Man
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Sumitha Nallu
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Francis X Villablanca
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Marcus R Kronforst
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
33
|
Asaduzzaman M, Wahab MA, Rahman MM, Mariom, Nahiduzzaman M, Rahman MJ, Roy BK, Phillips MJ, Wong LL. Morpho-Genetic Divergence and Adaptation of Anadromous Hilsa shad (Tenualosa ilisha) Along Their Heterogenic Migratory Habitats. FRONTIERS IN MARINE SCIENCE 2020; 7. [DOI: 10.3389/fmars.2020.00554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
|
34
|
The long-term restoration of ecosystem complexity. Nat Ecol Evol 2020; 4:676-685. [DOI: 10.1038/s41559-020-1154-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 02/19/2020] [Indexed: 12/25/2022]
|
35
|
Diaz Pauli B, Edeline E, Evangelista C. Ecosystem consequences of multi-trait response to environmental changes in Japanese medaka, Oryzias latipes. CONSERVATION PHYSIOLOGY 2020; 8:coaa011. [PMID: 32274061 PMCID: PMC7125048 DOI: 10.1093/conphys/coaa011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 01/21/2020] [Accepted: 02/02/2020] [Indexed: 06/01/2023]
Abstract
Intraspecific trait variation has large effects on the ecosystem and is greatly affected by human activities. To date, most studies focused on single-trait analyses, while considering multiple traits is expected to better predict how an individual interacts with its environment. Here, we used a mesocosm experiment with fish Oryzias latipes to test whether individual growth, boldness and functional traits (feeding rate and stoichiometric traits) formed one functional pace-of-life syndrome (POLS). We then tested the effects of among-individual mean and variance of fish functional POLSs within mesocosms on invertebrate community (e.g. zoobenthos and zooplankton abundances) and ecosystem processes (e.g. ecosystem metabolism, algae stock, nutrient concentrations). Stoichiometric traits correlated with somatic growth and behaviours, forming two independent functional POLS (i.e. two major covariance axes). Mean values of the first syndrome were sex- and environment-dependent and were associated with (i) long-term (10 generations; 4 years) selection for small or large body size resulting in contrasting life histories and (ii) short-term (6 weeks) effects of experimental treatments on resource availability (through manipulation of light intensity and interspecific competition). Specifically, females and individuals from populations selected for a small body size presented fast functional POLS with faster growth rate, higher carbon body content and lower boldness. Individuals exposed to low resources (low light and high competition) displayed a slow functional POLS. Higher mesocosm mean and variance values in the second functional POLS (i.e. high feeding rate, high carbon:nitrogen body ratio, low ammonium excretion rate) were associated to decreased prey abundances, but did not affect any of the ecosystem processes. We highlighted the presence of functional multi-trait covariation in medaka, which were affected by sex, long-term selection history and short-term environmental conditions, that ultimately had cascading ecological consequences. We stressed the need for applying this approach to better predict ecosystem response to anthropogenic global changes.
Collapse
Affiliation(s)
- Beatriz Diaz Pauli
- Department of Biosciences, Centre for Ecological and Evolutionary Syntheses (CEES), University of Oslo, Blindernveien 31, N-0316 Oslo, Norway
| | - Eric Edeline
- ESE Ecology and Ecosystem Health, INRAE, Agocampus Ouest, 65 rue de Saint-Brieuc 35042 Rennes, France
| | - Charlotte Evangelista
- Department of Biosciences, Centre for Ecological and Evolutionary Syntheses (CEES), University of Oslo, Blindernveien 31, N-0316 Oslo, Norway
| |
Collapse
|
36
|
Batlla D, Ghersa CM, Benech-Arnold RL. Dormancy, a critical trait for weed success in crop production systems. PEST MANAGEMENT SCIENCE 2020; 76:1189-1194. [PMID: 31800163 DOI: 10.1002/ps.5707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Agricultural practices exert selective forces on weed populations. As these practices change over time, weed adaptive traits also evolve, allowing weeds to persist in the new environment. However, only weeds having individuals showing the trait with adaptive significance will be able to cope with these changes, thus allowing a sub-population to be selected for persistence. In addition, changes in agricultural practices can select new weed species showing functional traits with characteristics adaptive to the modified system. Seed dormancy has long been recognized as a trait with enormous adaptive value to adjust weed biology to cropping systems. In this paper, we illustrate with examples of success and failure, the value of seed dormancy as a functional trait to cope with long-term changes in crop production systems. We show that successful outcomes are mostly related to the existence of sufficient variability for the functioning of physiological mechanisms that control dormancy characteristics as influenced by the agricultural environment. Presented examples illustrate how knowledge about the relationship that exists between agricultural practices and their selective pressure on seed dormancy can be instrumental in predicting changes in weed biotype dormancy characteristics or foreseeing the appearance of new weed species in future agricultural scenarios. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Diego Batlla
- Departamento de Producción Vegetal, Cátedra de Cerealicultura, Facultad de Agronomía de la Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- IFEVA, CONICET/Facultad de Agronomía de la Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Claudio M Ghersa
- IFEVA, CONICET/Facultad de Agronomía de la Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Departamento de Biología Aplicada y Alimentos, Cátedra de Ecología, Facultad de Agronomía de la Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Roberto L Benech-Arnold
- IFEVA, CONICET/Facultad de Agronomía de la Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Departamento de Producción Vegetal, Cátedra de Cultivos Industriales, Facultad de Agronomía de la Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
37
|
Teixeira-Santos J, Ribeiro ACDC, Wiig Ø, Pinto NS, Cantanhêde LG, Sena L, Mendes-Oliveira AC. Environmental factors influencing the abundance of four species of threatened mammals in degraded habitats in the eastern Brazilian Amazon. PLoS One 2020; 15:e0229459. [PMID: 32101578 PMCID: PMC7043734 DOI: 10.1371/journal.pone.0229459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/06/2020] [Indexed: 01/03/2023] Open
Abstract
On the latest 60 years the degradation and fragmentation of native habitats have been modifying the landscape in the eastern Brazilian Amazon. The adaptive plasticity of an organism has been crucial for its long-term survival and success in these novel ecosystems. In this study, we investigated the response of four endangered species of large terrestrial mammals to the variations in the quality of their original habitats, in a context of high anthropogenic pressure. The distribution of the Myrmecophaga tridactyla (Giant anteater), Priodontes maximus (Giant armadillo), Tapirus terrestris (Lowland tapir) and Tayassu pecari (White-lipped peccary) in all sampled habitats suggests their tolerance to degradation. However, the survival ability of each species in the different habitats was not the same. Among the four species, T. pecari seems to be the one with the least ability to survive in more altered environments. The positive influence of the anthropogenically altered habitats on abundances of three of the four species studied, as observed at the regeneration areas, can be considered as a potential indication of the ecological trap phenomenon. This study reinforces the importance of the forest remnants for the survival of endangered mammal species, in regions of high anthropogenic pressure, as in the eastern Brazilian Amazon.
Collapse
Affiliation(s)
| | | | - Øystein Wiig
- Natural History Museum, University of Oslo, Oslo, Norway
| | | | | | - Leonardo Sena
- Institute of Biological Science, Federal University of Pará, Belém, Pará, Brazil
| | | |
Collapse
|
38
|
Oziolor EM, DeSchamphelaere K, Lyon D, Nacci D, Poynton H. Evolutionary Toxicology-An Informational Tool for Chemical Regulation? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:257-268. [PMID: 31978273 PMCID: PMC7885860 DOI: 10.1002/etc.4611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Elias M Oziolor
- Department of Environmental Toxicology, University of California at Davis, Davis, CA, USA
| | - Karel DeSchamphelaere
- Laboratory of Environmental Toxicology and Aquatic Ecology, GhEnToxLab Unit, Ghent University, Gent, Belgium
| | - Delina Lyon
- Shell Health, Shell Oil Company, Houston, TX, USA
| | - Diane Nacci
- Atlantic Coastal Environmental Sciences Division, Center for Environmental Measurements and Modeling, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - Helen Poynton
- School for the Environment, University of Massachusetts Boston, Boston, MA, USA
| |
Collapse
|
39
|
Romanuk TN, Binzer A, Loeuille N, Carscallen WMA, Martinez ND. Simulated evolution assembles more realistic food webs with more functionally similar species than invasion. Sci Rep 2019; 9:18242. [PMID: 31796765 PMCID: PMC6890687 DOI: 10.1038/s41598-019-54443-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/08/2019] [Indexed: 01/13/2023] Open
Abstract
While natural communities are assembled by both ecological and evolutionary processes, ecological assembly processes have been studied much more and are rarely compared with evolutionary assembly processes. We address these disparities here by comparing community food webs assembled by simulating introductions of species from regional pools of species and from speciation events. Compared to introductions of trophically dissimilar species assumed to be more typical of invasions, introducing species trophically similar to native species assumed to be more typical of sympatric or parapatric speciation events caused fewer extinctions and assembled more empirically realistic networks by introducing more persistent species with higher trophic generality, vulnerability, and enduring similarity to native species. Such events also increased niche overlap and the persistence of both native and introduced species. Contrary to much competition theory, these findings suggest that evolutionary and other processes that more tightly pack ecological niches contribute more to ecosystem structure and function than previously thought.
Collapse
Affiliation(s)
- Tamara N Romanuk
- Department of Biology, Dalhousie University, Halifax, Canada
- Pacific Informatics and Computational Ecology Lab, Berkeley, CA, USA
| | - Amrei Binzer
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
- Institute of Ecology and Environmental Sciences, Université Pierre et Marie Curie, Paris, France
| | - Nicolas Loeuille
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IA, United States
| | | | - Neo D Martinez
- Pacific Informatics and Computational Ecology Lab, Berkeley, CA, USA.
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IA, United States.
| |
Collapse
|
40
|
Jørgensen PS, Folke C, Carroll SP. Evolution in the Anthropocene: Informing Governance and Policy. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110218-024621] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Anthropocene biosphere constitutes an unprecedented phase in the evolution of life on Earth with one species, humans, exerting extensive control. The increasing intensity of anthropogenic forces in the twenty-first century has widespread implications for attempts to govern both human-dominated ecosystems and the last remaining wild ecosystems. Here, we review how evolutionary biology can inform governance and policies in the Anthropocene, focusing on five governance challenges that span biodiversity, environmental management, food and other biomass production, and human health. The five challenges are: ( a) evolutionary feedbacks, ( b) maintaining resilience, ( c) alleviating constraints, ( d) coevolutionary disruption, and ( e) biotechnology. Strategies for governing these dynamics will themselves have to be coevolutionary, as eco-evolutionary and social dynamics change in response to each other.
Collapse
Affiliation(s)
- Peter Søgaard Jørgensen
- Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Sciences, SE104-05 Stockholm, Sweden;,
- Stockholm Resilience Centre, Stockholm University, SE106-91 Stockholm, Sweden
| | - Carl Folke
- Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Sciences, SE104-05 Stockholm, Sweden;,
- Stockholm Resilience Centre, Stockholm University, SE106-91 Stockholm, Sweden
- Beijer Institute of Ecological Economics, Royal Swedish Academy of Sciences, SE104-05 Stockholm, Sweden
| | - Scott P. Carroll
- Institute for Contemporary Evolution, Davis, California 95616, USA
- Department of Entomology and Nematology, University of California, Davis, California 95616, USA
| |
Collapse
|
41
|
Abstract
Every fall, millions of North American monarch butterflies undergo a stunning long-distance migration to reach their overwintering grounds in Mexico. Migration allows the butterflies to escape freezing temperatures and dying host plants, and reduces infections with a virulent parasite. We discuss the multigenerational migration journey and its evolutionary history, and highlight the navigational mechanisms of migratory monarchs. Monarchs use a bidirectional time-compensated sun compass for orientation, which is based on a time-compensating circadian clock that resides in the antennae, and which has a distinctive molecular mechanism. Migrants can also use a light-dependent inclination magnetic compass for orientation under overcast conditions. Additional environmental features, e.g., atmospheric conditions, geologic barriers, and social interactions, likely augment navigation. The publication of the monarch genome and the development of gene-editing strategies have enabled the dissection of the genetic and neurobiological basis of the migration. The monarch butterfly has emerged as an excellent system to study the ecological, neural, and genetic basis of long-distance animal migration.
Collapse
Affiliation(s)
- Steven M Reppert
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | |
Collapse
|
42
|
Yoon GR, Deslauriers D, Anderson WG. Influence of a dynamic rearing environment on development of metabolic phenotypes in age-0 Lake Sturgeon, Acipenser fulvescens. CONSERVATION PHYSIOLOGY 2019; 7:coz055. [PMID: 31620291 PMCID: PMC6788496 DOI: 10.1093/conphys/coz055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/04/2019] [Accepted: 07/11/2019] [Indexed: 05/31/2023]
Abstract
Environment-phenotype interactions are the most pronounced during early life stages and can strongly influence metabolism and ultimately ecological fitness. In the present study, we examined the effect of temperature [ambient river temperature (ART) vs ART+2°C], dissolved oxygen (DO; 100% vs 80%) and substrate (presence vs absence) on standard metabolic rate, forced maximum metabolic rate and metabolic scope with Fulton's condition factor (K), energy density (ED) and critical thermal maximum (CTmax) in age-0 Lake Sturgeon, Acipenser fulvescens, before and after a simulated overwintering event. We found that all the environmental variables strongly influenced survival, K, ED and CTmax. Fish reared in elevated temperature showed higher mortality and reduced K pre-winter at 127 days post-hatch (dph). Interestingly, we did not find any significant difference in terms of metabolic rate between treatments at both sampling points of pre- and post-winter. Long-term exposure to 80% DO reduced ED in Lake Sturgeon post-winter at 272 dph. Our data suggest that substrate should be removed at the onset of exogenous feeding to enhance the survival rate of age-0 Lake Sturgeon in the first year of life. Effects of early rearing environment during larval development on survival over winter are discussed with respect to successful recruitment of stock enhanced Lake Sturgeon, a species that is at risk throughout its natural range.
Collapse
Affiliation(s)
- Gwangseok R Yoon
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - David Deslauriers
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
43
|
Homola JJ, Loftin CS, Cammen KM, Helbing CC, Birol I, Schultz TF, Kinnison MT. Replicated Landscape Genomics Identifies Evidence of Local Adaptation to Urbanization in Wood Frogs. J Hered 2019; 110:707-719. [PMID: 31278891 PMCID: PMC6785938 DOI: 10.1093/jhered/esz041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/28/2019] [Indexed: 12/20/2022] Open
Abstract
Native species that persist in urban environments may benefit from local adaptation to novel selection factors. We used double-digest restriction-side associated DNA (RAD) sequencing to evaluate shifts in genome-wide genetic diversity and investigate the presence of parallel evolution associated with urban-specific selection factors in wood frogs (Lithobates sylvaticus). Our replicated paired study design involved 12 individuals from each of 4 rural and urban populations to improve our confidence that detected signals of selection are indeed associated with urbanization. Genetic diversity measures were less for urban populations; however, the effect size was small, suggesting little biological consequence. Using an FST outlier approach, we identified 37 of 8344 genotyped single nucleotide polymorphisms with consistent evidence of directional selection across replicates. A genome-wide association study analysis detected modest support for an association between environment type and 12 of the 37 FST outlier loci. Discriminant analysis of principal components using the 37 FST outlier loci produced correct reassignment for 87.5% of rural samples and 93.8% of urban samples. Eighteen of the 37 FST outlier loci mapped to the American bullfrog (Rana [Lithobates] catesbeiana) genome, although none were in coding regions. This evidence of parallel evolution to urban environments provides a powerful example of the ability of urban landscapes to direct evolutionary processes.
Collapse
Affiliation(s)
- Jared J Homola
- School of Biology and Ecology, University of Maine, Orono, ME
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI
| | - Cynthia S Loftin
- the US Geological Survey, Maine Cooperative Fish and Wildlife Research Unit, Orono, ME
| | | | - Caren C Helbing
- the Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Inanc Birol
- the Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Thomas F Schultz
- the Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, NC
| | | |
Collapse
|
44
|
Cook CN, Sgrò CM. Conservation practitioners' understanding of how to manage evolutionary processes. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2019; 33:993-1001. [PMID: 30866093 DOI: 10.1111/cobi.13306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/11/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Both academics and practitioners consider a lack of knowledge about evolutionary theory to be a general barrier to effectively managing genetic diversity. However, it is challenging to judge practitioners' level of understanding and how this influences their management decisions. Knowledge built through experience may be difficult for practitioners to articulate, but could nonetheless result in appropriate management strategies. To date, researchers have assessed only the explicit (formal) knowledge practitioners have of evolutionary concepts. To explore practitioners' understanding of evolutionary concepts, it is necessary to consider how they might apply explicit and implicit knowledge to their management decisions. Using an online survey, we asked Australian practitioners to respond to 2 common management scenarios in which there is strong evidence that managing genetic diversity can improve outcomes: managing small, isolated populations and sourcing seeds for restoration projects. In describing their approach to these scenarios, practitioners demonstrated a stronger understanding of the effective management of genetic diversity than the definitions of the relevant concepts. However, their management of genetic diversity within small populations was closer to best practice than for restoration projects. Moreover, the risks practitioners described in implementing best practice management were more likely to affect their approach to restoration than translocation projects. These findings provide evidence that strategies to build the capacity of practitioners to manage genetic diversity should focus on realistic management scenarios. Given that practitioners recognize the importance of adapting their practices and the strong evidence for the benefits of actively managing genetic diversity, there is hope that better engagement by evolutionary biologists with practitioners could facilitate significant shifts toward evolutionarily enlightened management.
Collapse
Affiliation(s)
- Carly N Cook
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
45
|
Nusbaumer D, Marques da Cunha L, Wedekind C. Sperm cryopreservation reduces offspring growth. Proc Biol Sci 2019; 286:20191644. [PMID: 31551057 PMCID: PMC6784727 DOI: 10.1098/rspb.2019.1644] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022] Open
Abstract
Sperm cryopreservation is routinely used in reproductive medicine, livestock production and wildlife management. Its effect on offspring performance is often assumed to be negligible, but this still remains to be confirmed in well-controlled within-subject experiments. We use a vertebrate model that allows us to experimentally separate parental and environmental effects to test whether sperm cryopreservation influences offspring phenotype under stress and non-stress conditions, and whether such effects are male-specific. Wild brown trout (Salmo trutta) were stripped for their gametes, and a portion of each male's milt was cryopreserved. Then, 960 eggs were simultaneously fertilized with either non-cryopreserved or frozen-thawed semen and raised singly in the presence or absence of a pathogen. We found no significant effects of cryopreservation on fertilization rates, and no effects on growth, survival nor pathogen resistance during the embryo stage. However, fertilization by cryopreserved sperm led to significantly reduced larval growth after hatching. Males varied in genetic quality as determined from offspring performance, but effects of cryopreservation on larval growth were not male-specific. We conclude that cryopreservation causes a reduction in offspring growth that is easily overlooked because it only manifests itself at later developmental stages, when many other factors affect growth and survival too.
Collapse
Affiliation(s)
| | | | - Claus Wedekind
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
46
|
Vimercati G, Davies SJ, Measey J. Invasive toads adopt marked capital breeding when introduced to a cooler, more seasonal environment. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abstract
Amphibians from cold and seasonal environments show marked capital breeding and sustained resource allocation to growth when compared with conspecifics from warmer, less seasonal environments. Capital breeding fuels reproduction by using only stored energy, and larger sizes and masses confer higher fecundity, starvation resistance and heat and water retention. Invasive populations act as experiments to explore how resources are allocated in novel environments. We investigated resource allocation of the southern African toad Sclerophrys gutturalis in a native source population (Durban) and in an invasive population recently (< 20 years) established in a cooler, more seasonal climate (Cape Town). After dissection, lean structural mass (bones and muscles), gonadal mass, liver mass and body fat percentage were measured in 161 native and invasive animals sampled at the beginning and the end of the breeding season. As expected, female gonadal mass decreased throughout the breeding season only in the invaded range. Thus, invasive female toads adopt a more marked capital breeding strategy than native conspecifics. Conversely, males from both populations appear to be income breeders. Also, male and female toads from the invaded range allocate more resources to growth than their native counterparts. Such a novel allocation strategy might be a response to the low temperatures, reduced rainfall and heightened seasonality encountered by the invasive population.
Collapse
Affiliation(s)
- Giovanni Vimercati
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, atieland, South Africa
| | - Sarah J Davies
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, atieland, South Africa
| | - John Measey
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, atieland, South Africa
| |
Collapse
|
47
|
Brady SP, Bolnick DI, Barrett RDH, Chapman L, Crispo E, Derry AM, Eckert CG, Fraser DJ, Fussmann GF, Gonzalez A, Guichard F, Lamy T, Lane J, McAdam AG, Newman AEM, Paccard A, Robertson B, Rolshausen G, Schulte PM, Simons AM, Vellend M, Hendry A. Understanding Maladaptation by Uniting Ecological and Evolutionary Perspectives. Am Nat 2019; 194:495-515. [PMID: 31490718 DOI: 10.1086/705020] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Evolutionary biologists have long trained their sights on adaptation, focusing on the power of natural selection to produce relative fitness advantages while often ignoring changes in absolute fitness. Ecologists generally have taken a different tack, focusing on changes in abundance and ranges that reflect absolute fitness while often ignoring relative fitness. Uniting these perspectives, we articulate various causes of relative and absolute maladaptation and review numerous examples of their occurrence. This review indicates that maladaptation is reasonably common from both perspectives, yet often in contrasting ways. That is, maladaptation can appear strong from a relative fitness perspective, yet populations can be growing in abundance. Conversely, resident individuals can appear locally adapted (relative to nonresident individuals) yet be declining in abundance. Understanding and interpreting these disconnects between relative and absolute maladaptation, as well as the cases of agreement, is increasingly critical in the face of accelerating human-mediated environmental change. We therefore present a framework for studying maladaptation, focusing in particular on the relationship between absolute and relative fitness, thereby drawing together evolutionary and ecological perspectives. The unification of these ecological and evolutionary perspectives has the potential to bring together previously disjunct research areas while addressing key conceptual issues and specific practical problems.
Collapse
|
48
|
Sensitization to human decreases human-wildlife conflict: empirical and simulation study. EUR J WILDLIFE RES 2019. [DOI: 10.1007/s10344-019-1309-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Derry AM, Fraser DJ, Brady SP, Astorg L, Lawrence ER, Martin GK, Matte J, Negrín Dastis JO, Paccard A, Barrett RDH, Chapman LJ, Lane JE, Ballas CG, Close M, Crispo E. Conservation through the lens of (mal)adaptation: Concepts and meta-analysis. Evol Appl 2019; 12:1287-1304. [PMID: 31417615 PMCID: PMC6691223 DOI: 10.1111/eva.12791] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/24/2019] [Accepted: 03/07/2019] [Indexed: 12/25/2022] Open
Abstract
Evolutionary approaches are gaining popularity in conservation science, with diverse strategies applied in efforts to support adaptive population outcomes. Yet conservation strategies differ in the type of adaptive outcomes they promote as conservation goals. For instance, strategies based on genetic or demographic rescue implicitly target adaptive population states whereas strategies utilizing transgenerational plasticity or evolutionary rescue implicitly target adaptive processes. These two goals are somewhat polar: adaptive state strategies optimize current population fitness, which should reduce phenotypic and/or genetic variance, reducing adaptability in changing or uncertain environments; adaptive process strategies increase genetic variance, causing maladaptation in the short term, but increase adaptability over the long term. Maladaptation refers to suboptimal population fitness, adaptation refers to optimal population fitness, and (mal)adaptation refers to the continuum of fitness variation from maladaptation to adaptation. Here, we present a conceptual classification for conservation that implicitly considers (mal)adaptation in the short-term and long-term outcomes of conservation strategies. We describe cases of how (mal)adaptation is implicated in traditional conservation strategies, as well as strategies that have potential as a conservation tool but are relatively underutilized. We use a meta-analysis of a small number of available studies to evaluate whether the different conservation strategies employed are better suited toward increasing population fitness across multiple generations. We found weakly increasing adaptation over time for transgenerational plasticity, genetic rescue, and evolutionary rescue. Demographic rescue was generally maladaptive, both immediately after conservation intervention and after several generations. Interspecific hybridization was adaptive only in the F1 generation, but then rapidly leads to maladaptation. Management decisions that are made to support the process of adaptation must adequately account for (mal)adaptation as a potential outcome and even as a tool to bolster adaptive capacity to changing conditions.
Collapse
Affiliation(s)
- Alison Margaret Derry
- Département des sciences biologiquesUniversité du Québec à MontréalMontrealQuebecCanada
- Quebec Center for Biodiversity ScienceMontrealQuebecCanada
| | - Dylan J. Fraser
- Quebec Center for Biodiversity ScienceMontrealQuebecCanada
- Biology DepartmentConcordia UniversityMontrealQuebecCanada
| | - Steven P. Brady
- Biology DepartmentSouthern Connecticut State UniversityNew HavenConnecticut
| | - Louis Astorg
- Département des sciences biologiquesUniversité du Québec à MontréalMontrealQuebecCanada
| | | | - Gillian K. Martin
- Département des sciences biologiquesUniversité du Québec à MontréalMontrealQuebecCanada
| | | | | | - Antoine Paccard
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Rowan D. H. Barrett
- Quebec Center for Biodiversity ScienceMontrealQuebecCanada
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Lauren J. Chapman
- Quebec Center for Biodiversity ScienceMontrealQuebecCanada
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Jeffrey E. Lane
- Department of BiologyUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | | | - Marissa Close
- Department of BiologyPace UniversityNew YorkNew York
| | - Erika Crispo
- Department of BiologyPace UniversityNew YorkNew York
| |
Collapse
|
50
|
Comont D, Hicks H, Crook L, Hull R, Cocciantelli E, Hadfield J, Childs D, Freckleton R, Neve P. Evolutionary epidemiology predicts the emergence of glyphosate resistance in a major agricultural weed. THE NEW PHYTOLOGIST 2019; 223:1584-1594. [PMID: 30883786 DOI: 10.1111/nph.15800] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
The evolution of resistance to herbicides is a striking example of rapid, human-directed adaptation with major consequences for food production. Most studies of herbicide resistance are performed reactively and focus on post hoc determination of resistance mechanisms following the evolution of field resistance. If the evolution of resistance can be anticipated, however, pro-active management to slow or prevent resistance traits evolving can be advocated. We report a national-scale study that combines population monitoring, glyphosate sensitivity assays, quantitative genetics and epidemiological analyses to pro-actively identify the prerequisites for adaptive evolution (directional selection and heritable genetic variation) to the world's most widely used herbicide (glyphosate) in a major, economically damaging weed species, Alopecurus myosuroides. Results highlighted pronounced, heritable variability in glyphosate sensitivity amongst UK A. myosuroides populations. We demonstrated a direct epidemiological link between historical glyphosate selection and current population-level sensitivity, and show that current field populations respond to further glyphosate selection. This study provides a novel, pro-active assessment of adaptive potential for herbicide resistance, and provides compelling evidence of directional selection for glyphosate insensitivity in advance of reports of field resistance. The epidemiological approach developed can provide a basis for further pro-active study of resistance evolution across pesticide resistance disciplines.
Collapse
Affiliation(s)
- David Comont
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Helen Hicks
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, NG25 0QF, UK
| | - Laura Crook
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Richard Hull
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Elise Cocciantelli
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Jarrod Hadfield
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3JT, UK
| | - Dylan Childs
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, South Yorkshire, S10 2TN, UK
| | - Robert Freckleton
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, South Yorkshire, S10 2TN, UK
| | - Paul Neve
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| |
Collapse
|