1
|
Lan T, Li H, Liu B, Shi M, Tian Y, Sahu SK, Cui L, Dussex N, Liu D, Ma Y, Kong W, Liu S, Fan J, Zhao Y, Fu Y, Li Q, Lin C, Dalén L, Liu H, Zhang L, Jiang G, Xu Y. Revealing extensive inbreeding and less efficient purging of deleterious mutations in wild Amur tigers in China. J Genet Genomics 2025; 52:641-649. [PMID: 39674273 DOI: 10.1016/j.jgg.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Inbreeding increases genome homozygosity within populations, which can exacerbate inbreeding depression by exposing homozygous deleterious alleles that are responsible for declines in fitness traits. In small populations, genetic purging that occurs under the pressure of natural selection acts as an opposing force, contributing to a reduction of deleterious alleles. Both inbreeding and genetic purging are paramount in the field of conservation genomics. The Amur tiger (Panthera tigris altaica) lives in small populations in the forests of Northeast Asia and is among the most endangered animals on the planet. Using genome-wide assessment and comparison, we reveal substantially higher and more extensive inbreeding in wild Amur tigers (FROH = 0.50) than in captive individuals (FROH = 0.24). However, a relatively reduced number of loss-of-function mutations in wild Amur tigers is observed compared to captive individuals, indicating genetic purging of inbreeding load with relatively large-effect alleles. The higher ratio of homozygous mutation load and number of fixed damaging alleles in the wild population indicates a less-efficient genetic purging, with purifying selection also contributing to this process. These findings provide valuable insights for the future conservation of Amur tigers.
Collapse
Affiliation(s)
- Tianming Lan
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China; BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Haimeng Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China; State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518083, China; Heilongjiang Key Laboratory of Complex Traits and Protein Machines in Organisms, Harbin, Heilongjiang 150040, China
| | - Boyang Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Minhui Shi
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Yinping Tian
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | | | - Liangyu Cui
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Nicolas Dussex
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Zoology, Stockholm University, Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Dan Liu
- Heilongjiang Siberian Tiger Park, Harbin, Heilongjiang 150000, China
| | - Yue Ma
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Weiyao Kong
- Jinlin Provincial Academy of Forestry Science, Changchun, Jilin 130033, China
| | - Shanlin Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiale Fan
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Yue Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Yuan Fu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Qiye Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Chen Lin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Zoology, Stockholm University, Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Huan Liu
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, Heilongjiang 150040, China; State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, Guangdong 518120, China
| | - Le Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China.
| | - Guangshun Jiang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China.
| | - Yanchun Xu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China; BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, Heilongjiang 150040, China; National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
2
|
Chen C, Chang H, Pang X, Liu Q, Xue L, Yin C. Genetic diversity analysis and conservation strategy recommendations for ex situ conservation of Cupressus chengiana. BMC PLANT BIOLOGY 2025; 25:552. [PMID: 40295907 PMCID: PMC12039293 DOI: 10.1186/s12870-025-06581-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 04/18/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Cupressus chengiana is mainly distributed in the Hengduan Mountains area in China. It is one of the Class II endangered plants, ex situ conservation is often used to the affected C. chengiana population due to the construction of the power station. However, population fragmentation and inbreeding in the ex situ conservation have led to decline in genetic diversity. It is therefore important to clarify the differences in genetic diversity between native populations and ex situ population. RESULTS In this study, we used Genotyping-by-Sequencing to assess the genetic diversity of 30 C. chengiana trees from four populations in the Dadu River Basin, southwest China, including one ex situ conserved population (DK) and three native populations (BW, SA, RJ). The results showed that compared with the native populations, the DK population showed higher genetic diversity. Among the three native populations, SA population may experience inbreeding and has low genetic diversity. The population structure analysis further revealed that the DK population had higher gene flow and lower differentiation than other three populations. For ex situ populations, the primary determinant of genetic diversity is the genetic variation present in the seedlings sourced from natural populations. CONCLUSION These findings support the feasibility of ex situ conservation for C. chengiana conservation. This study provides a scientific foundation for the preservation, management, and restoration of C. chengiana, and would offer valuable insights for the conservation of other endangered plants.
Collapse
Affiliation(s)
- Chaoqun Chen
- Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & Maoxian Mountain Ecosystem Research Station, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - He Chang
- China Renewable Energy Engineering Institute, No. 57A Andingmenwai Street, Beijing, 100120, P. R. China
| | - Xueyong Pang
- Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & Maoxian Mountain Ecosystem Research Station, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, P. R. China
| | - Qinghua Liu
- Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & Maoxian Mountain Ecosystem Research Station, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, P. R. China
| | - Lianfang Xue
- China Renewable Energy Engineering Institute, No. 57A Andingmenwai Street, Beijing, 100120, P. R. China
| | - Chunying Yin
- Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & Maoxian Mountain Ecosystem Research Station, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, P. R. China.
| |
Collapse
|
3
|
Banterng N, Ewart K, Sitam FT, Ogden R. Mitogenomic analysis of Thai Sunda pangolins reveals regional phylogeography and informs conservation management. Sci Rep 2025; 15:14067. [PMID: 40269012 PMCID: PMC12018953 DOI: 10.1038/s41598-025-97182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/01/2025] [Indexed: 04/25/2025] Open
Abstract
Pangolins are considered the most trafficked mammals in the world with all eight species listed on CITES Appendix I. Despite this pervasive threat to their survival, there remains a limited understanding of genetic diversity and connectivity among populations of Asian pangolin species, hampering effective conservation management. We analysed mitogenome sequences of the Sunda pangolin (Manis javanica) from across their Southeast Asia continental distribution, as well as Borneo. Phylogenetic reconstruction revealed six lineages, with clear separation north and south of the Kangar-Pattani biogeographic line in southern Thailand, revealing clear differentiation between Sundaland and Indochinese Sunda pangolin lineages. Further divergence across an east-west divide was observed in central and northern Thailand, extending northwards towards China. Our results provide new insights into the evolutionary relationships among Sunda pangolin populations in Southeast Asia, building on other recent research in this field and helping to establish the species' baseline phylogeography. These inferences will aid conservation planning and support the genetic traceability of the illegal pangolin trade.
Collapse
Affiliation(s)
- Nattapong Banterng
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
- Department of National Parks, Wildlife and Plant Conservation, Bangkok, Thailand
| | - Kyle Ewart
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2050, Australia
- TRACE Wildlife Forensics Network, Edinburgh, EH12 6LE, UK
| | - Frankie Thomas Sitam
- Department of Wildlife and National Parks (DWNP/PERHILITAN), National Wildlife Forensic Laboratory (NWFL), Kuala Lumpur, Malaysia
| | - Rob Ogden
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
- TRACE Wildlife Forensics Network, Edinburgh, EH12 6LE, UK.
| |
Collapse
|
4
|
MacDonald ZG, Dupuis JR, Glasier JRN, Sissons R, Moehrenschlager A, Shaffer HB, Sperling FAH. Genomic and ecological divergence support recognition of a new species of endangered Satyrium butterfly (Lepidoptera, Lycaenidae). Zookeys 2025; 1234:291-307. [PMID: 40290424 PMCID: PMC12022668 DOI: 10.3897/zookeys.1234.143893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
We describe a highly isolated population of hairstreak butterfly from Waterton Lakes National Park, Alberta, Canada, as a new species, Satyriumcuriosolus sp. nov., previously recognized as Satyriumsemiluna (Half-moon Hairstreak). We propose "Curiously Isolated Hairstreak" as the common name due to its disjunct and unusual distribution. Previous whole-genome analyses revealed S.curiosolus has extremely low genomic diversity and is highly divergent from the nearest S.semiluna populations in British Columbia and Montana, more than 400 km distant. Further analysis suggested prolonged inbreeding and isolation for up to ~40,000 years BP. Ecological niche modeling indicated that S.curiosolus occupies environmental conditions that are distinct from S.semiluna, suggesting niche divergence driven by long-term geographical and ecological separation. While host plant and ant associations have not been definitively resolved, they likely differ between S.curiosolus and S.semiluna. As part of this description, we provide whole-genome consensus sequences for each individual of the type series and identify 21,985 single nucleotide polymorphisms (SNPs) that are divergently fixed between S.curiosolus and S.semiluna, including 117 unlinked SNPs distributed across the genome as putative diagnostic markers. Previously listed as Endangered in Canada as the Waterton population of S.semiluna, S.curiosolus should retain this conservation status due to its extreme isolation, small population size, and flatlined genomic diversity. We propose species recognition as a testable hypothesis under the General Lineage Concept and recommend further research to explore the taxonomy, ecological relationships, and conservation of the greater species complex, including S.curiosolus, S.semiluna, and S.fuliginosa.
Collapse
Affiliation(s)
- Zachary G. MacDonald
- UCLA La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, California, USA
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Julian R. Dupuis
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - Axel Moehrenschlager
- Resource Conservation, Waterton Lakes National Park, Waterton Park, Alberta, Canada
- IUCN SSC Conservation Translocation Specialist Group, Calgary, Alberta, Canada
| | - H. Bradley Shaffer
- UCLA La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, California, USA
| | - Felix A. H. Sperling
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
5
|
Costa JAS, da Silva Medeiros C, Furtado LFV, Rabelo ÉML. From selection to resistance: Mitochondrial findings in hookworm evolution under drug pressure. Vet Parasitol 2025; 337:110470. [PMID: 40267584 DOI: 10.1016/j.vetpar.2025.110470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/13/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Single nucleotide polymorphisms (SNPs) in codons 134, 167, 198, and 200 of the β-tubulin isotype 1 gene are associated with benzimidazole resistance in nematodes. Our group previously selected an Ancylostoma ceylanicum strain resistant to albendazole through drug-induced selective pressure, derived from a wild-type strain maintained under laboratory conditions for over 15 years. This study aimed to investigate mitochondrial genetic variability in the resistant strain compared to its wild-type counterpart. A total of 151 worms from both strains, collected during and 42 months after the selection process, were analyzed for partial sequences of the mitochondrial COI and NAD1 genes. Nucleotide variations were detected exclusively in the resistant strain, with low divergence levels of 0.16 % (1/612 bp) in COI and 0.25 % (1/398 bp) in NAD1. All COI substitutions were synonymous, while NAD1 presented one nonsynonymous mutation. Phylogenetic analyses based on Maximum Likelihood and Bayesian inference revealed strong clustering between resistant and wild-type laboratory samples (COI: 99 % bootstrap; NAD1: 96 %), distinct from field-derived sequences. These findings suggest that genetically homogeneous populations, resulting from isolation and restricted gene flow, may be more susceptible to genetic pressures, including selection, potentially leading to the establishment of resistant parasites. This study underscores the role of population genetics in the evolution of drug resistance and emphasizes the importance of managing genetic diversity to mitigate resistance development.
Collapse
Affiliation(s)
- João Alexsander Silva Costa
- Molecular Parasitology Laboratory, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Pampulha Campus, Belo Horizonte, MG, Brazil
| | - Celi da Silva Medeiros
- Molecular Parasitology Laboratory, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Pampulha Campus, Belo Horizonte, MG, Brazil
| | - Luis Fernando Viana Furtado
- Clinic Parasitology Laboratory, Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Minas Gerais (UFMG), Pampulha Campus, Belo Horizonte, MG, Brazil.
| | - Élida Mara Leite Rabelo
- Molecular Parasitology Laboratory, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Pampulha Campus, Belo Horizonte, MG, Brazil
| |
Collapse
|
6
|
Abedin I, Singha H, Singh S, Mukherjee T, Kim HW, Kundu S. Riverine Realities: Evaluating Climate Change Impacts on Habitat Dynamics of the Critically Endangered Gharial ( Gavialis gangeticus) in the Indian Landscape. Animals (Basel) 2025; 15:896. [PMID: 40150425 PMCID: PMC11939341 DOI: 10.3390/ani15060896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
The endemic and critically endangered gharial, Gavialis gangeticus, experienced a severe population decline in its range. However, conservation efforts, notably through the implementation of "Project Crocodile" in India, have led to a significant recovery of its population. The present study employs an ensemble Species Distribution Model (SDM) to delineate suitable habitats for G. gangeticus under current and future climatic scenarios to understand the impact of climate change. The model estimates that 46.85% of the area of occupancy is suitable under the present scenario, with this suitable area projected to increase by 145.16% in future climatic conditions. States such as Madhya Pradesh, Uttar Pradesh, and Assam are projected to experience an increase in habitat suitability, whereas Odisha and Rajasthan are anticipated to face declines. The study recommends conducting ground-truthing ecological assessments using advanced technologies and genetic analyses to validate the viability of newly identified habitats in the Lower Ganges, Mahanadi, and Brahmaputra River systems. These areas should be prioritized within the Protected Area network for potential translocation sites allocation. Collaborative efforts between the IUCN-SSC Crocodile Specialist Group and stakeholders are vital for prioritizing conservation and implementing site-specific interventions to protect the highly threatened gharial population in the wild.
Collapse
Affiliation(s)
- Imon Abedin
- Department of Zoology, Bodoland University, Kokrajhar 783370, India
| | - Hilloljyoti Singha
- Department of Zoology, Bodoland University, Kokrajhar 783370, India
- Centre for Wildlife Research and Biodiversity Conservation, Bodoland University, Kokrajhar 783370, India
| | - Shailendra Singh
- Turtle Survival Alliance Foundation India (TSAFI), Lucknow 226021, India
| | - Tanoy Mukherjee
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Hyun-Woo Kim
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia
| | - Shantanu Kundu
- Ocean and Fisheries Development International Cooperation Institute, College of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
7
|
Weeks AR, Kriesner P, Bartonicek N, van Rooyen A, Cairns KM, Ahrens CW. Genetic structure and common ancestry expose the dingo-dog hybrid myth. Evol Lett 2025; 9:1-12. [PMID: 39906582 PMCID: PMC11790216 DOI: 10.1093/evlett/qrae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 02/06/2025] Open
Abstract
The evolutionary history of canids has been shown to be complex, with hybridization and domestication confounding our understanding of speciation among various canid lineages. The dingo is a recent canid lineage that was completely isolated from other canids for over 5000 years on the Australian mainland, but the introduction of domestic dogs in 1788 has placed doubt on its independence, with recent studies highlighting hybridization between dingoes and domestic dogs. Using genomic single nucleotide polymorphism data from 434 Australian canid samples, we explicitly test for introgression between closely related canid groups and dingoes. We found no evidence of introgression between dingoes and domestic dogs and show that previous work has likely mischaracterized shared ancestral genetic variation as evidence for hybridization. Further, New Guinea Singing Dogs are the only canid group that significantly shared genetic variation with dingoes, which fits with our understanding of previous phylogenetic analyses. Despite more recent sympatric distributions with dogs, dingoes have likely maintained their independence since their arrival in Australia, even in areas with high lethal control, indicating that their evolutionary trajectory is currently being conserved. The future conservation of the dingo lineage will require policies that promote coexistence pathways between humans and dingoes that protect rangeland systems and the dingoes' evolutionary future.
Collapse
Affiliation(s)
- Andrew R Weeks
- Cesar Australia, Brunswick, Australia
- School of BioSciences, The University of Melbourne, Parkville, Australia
| | | | | | | | - Kylie M Cairns
- Centre for Ecosystem Science, Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
8
|
MacDonald ZG, Dupuis JR, Glasier JRN, Sissons R, Moehrenschlager A, Shaffer HB, Sperling FAH. Whole-Genome Evaluation of Genetic Rescue: The Case of a Curiously Isolated and Endangered Butterfly. Mol Ecol 2025; 34:e17657. [PMID: 39898688 PMCID: PMC11789553 DOI: 10.1111/mec.17657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/08/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025]
Abstract
Genetic rescue, or the translocation of individuals among populations to augment gene flow, can help ameliorate inbreeding depression and loss of adaptive potential in small and isolated populations. Genetic rescue is currently under consideration for an endangered butterfly in Canada, the Half-moon Hairstreak (Satyrium semiluna). A small, unique population persists in Waterton Lakes National Park, Alberta, isolated from other populations by more than 400 km. However, whether genetic rescue would actually be helpful has not been evaluated. Here, we generate the first chromosome-level genome assembly and whole-genome resequence data for the species. We find that the Alberta population maintains extremely low genetic diversity and is genetically very divergent from the nearest populations in British Columbia and Montana. Runs of homozygosity suggest this is due to a long history of inbreeding, and coalescent analyses show that the population has been small and isolated, yet stable, for up to 40k years. When a population like this maintains its viability despite inbreeding and low genetic diversity, it has likely undergone purging of deleterious recessive alleles and could be threatened by the reintroduction of such alleles via genetic rescue. Ecological niche modelling indicates that the Alberta population also exhibits environmental associations that are atypical of the species. Together, these evolutionary and ecological divergences suggest that population crosses may result in outbreeding depression. We therefore infer that genetic rescue has a relatively unique potential to be harmful rather than helpful for this population at present. However, because of its reduced adaptive potential, the Alberta population may still benefit from future genetic rescue as climate and habitat conditions change. Proactive experimental population crosses should therefore be completed to assess reproductive compatibility and progeny fitness.
Collapse
Affiliation(s)
- Zachary G. MacDonald
- UCLA La Kretz Center for California Conservation Science, Institute of the Environment and SustainabilityUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Julian R. Dupuis
- Department of EntomologyUniversity of KentuckyLexingtonKentuckyUSA
| | | | - Robert Sissons
- Resource Conservation, Waterton Lakes National ParkWaterton ParkAlbertaCanada
| | - Axel Moehrenschlager
- Wilder Institute/Calgary ZooCalgaryAlbertaCanada
- IUCN SSC Conservation Translocation Specialist GroupCalgaryAlbertaCanada
- PantheraNew YorkNew YorkUSA
| | - H. Bradley Shaffer
- UCLA La Kretz Center for California Conservation Science, Institute of the Environment and SustainabilityUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | | |
Collapse
|
9
|
Hoban S, Hvilsom C, Aissi A, Aleixo A, Bélanger J, Biala K, Ekblom R, Fedorca A, Funk WC, Goncalves AL, Gonzalez A, Heuertz M, Hughes A, Ishihama F, Stroil BK, Laikre L, McGowan PJK, Millette KL, O'Brien D, Paz-Vinas I, Rincón-Parra VJ, Robuchon M, Rodríguez JP, Rodríguez-Morales MA, Segelbacher G, Straza TRA, Susanti R, Tshidada N, Vilaça ST, da Silva JM. How can biodiversity strategy and action plans incorporate genetic diversity and align with global commitments? Bioscience 2025; 75:47-60. [PMID: 39911160 PMCID: PMC11791525 DOI: 10.1093/biosci/biae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 02/07/2025] Open
Abstract
National, subnational, and supranational entities are creating biodiversity strategy and action plans (BSAPs) to develop concrete commitments and actions to curb biodiversity loss, meet international obligations, and achieve a society in harmony with nature. In light of policymakers' increasing recognition of genetic diversity in species and ecosystem adaptation and resilience, this article provides an overview of how BSAPs can incorporate species' genetic diversity. We focus on three areas: setting targets; committing to actions, policies, and programs; and monitoring and reporting. Drawing from 21 recent BSAPs, we provide examples of policies, knowledge, projects, capacity building, and more. We aim to enable and inspire specific and ambitious BSAPs and have put forward 10 key suggestions mapped to the policy cycle. Together, scientists and policymakers can translate high level commitments, such as the Convention on Biological Diversity's Kunming-Montreal Global Biodiversity Framework, into concrete nationally relevant targets, actions and policies, and monitoring and reporting mechanisms.
Collapse
Affiliation(s)
- Sean Hoban
- Center for Tree Science, The Morton Arboretum, Lisle, Illinois, Colorado State University, Fort Collins, Colorado, United States
| | | | - Abdeldjalil Aissi
- LAPAPEZA, Institute of Veterinary Sciences and Agronomic Sciences, University of Batna 1, Batna, Algeria
| | | | - Julie Bélanger
- Office of Climate Change, Biodiversity and Environment, Food and Agriculture Organization, United Nations, Rome, Italy
| | | | - Robert Ekblom
- Wildlife Analysis Unit, Swedish Environmental Protection Agency, Stockholm, Sweden
| | - Ancuta Fedorca
- National Institute for Research and Development, Forestry Marin Dracea, Department of Silviculture, Transilvania University, Brasov, Romania
| | - W Chris Funk
- Colorado State University, Fort Collins, Colorado, United States
- CSU Global Biodiversity Center
| | - Alejandra Lorena Goncalves
- National University of Misiones, National Council of Scientific and Technical Research, Institute of Subtropical Biology, Posadas, Argentina
| | - Andrew Gonzalez
- Group on Earth Observations Biodiversity Observation Network based, McGill University, Montreal, Quebec, Canada
| | | | - Alice Hughes
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Fumiko Ishihama
- National Institute for Environmental Studies, Ibaraki, Japan
| | - Belma Kalamujic Stroil
- University of Sarajevo-Institute for Genetic Engineering and Biotechnology, Society for Genetic Conservation of B&H Endemic and Autochthonous Resources GENOFOND, Sarajevo, Bosnia and Herzegovina
| | - Linda Laikre
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Philip J K McGowan
- Newcastle University, Newcastle upon Tyne, England, United Kingdom
- IUCN Species Survival Commission Global Biodiversity Framework Task Force
| | - Katie L Millette
- Group on Earth Observations Biodiversity Observation Network based, McGill University, Montreal, Quebec, Canada
| | - David O'Brien
- NatureScot, Inverness, United Kingdom
- Royal Botanic Garden, Edinburgh, United Kingdom
| | - Ivan Paz-Vinas
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, Villeurbanne, France
| | | | - Marine Robuchon
- Joint Research Centre of the European Commission, Ispra, Italy
| | - Jon Paul Rodríguez
- IUCN Species Survival Commission
- Center for Ecology of the Venezuelan Institute for Scientific Investigations, Caracas, Venezuela
| | | | - Gernot Segelbacher
- Chair of Wildlife Ecology and Management, University Freiburg, Freiburg, Germany
| | - Tiffany R A Straza
- Secretariat of the Pacific Regional Environment Programme, Apia, Samoa
- United Nations Educational, Scientific, and Cultural Organization, Paris, France
| | - Ruliyana Susanti
- Research Center for Ecology and Ethnobiology
- Secretariat of Scientific Authority for Biodiversity, National Research and Innovation Agency, Indonesia
| | | | | | - Jessica M da Silva
- South African National Biodiversity Institute, Cape Town, South Africa
- Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
10
|
Thavornkanlapachai R, Mills HR, Ottewell K, Lambert C, Friend JA, White DJ, Aisya Z, Kennington WJ. Diverged Populations Admixture Bolsters Genetic Diversity of a New Island Dibbler ( Parantechinus apicalis) Population, but Does Not Prevent Subsequent Loss of Genetic Variation. Evol Appl 2025; 18:e70073. [PMID: 39845580 PMCID: PMC11750805 DOI: 10.1111/eva.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 01/01/2025] [Indexed: 01/24/2025] Open
Abstract
Translocating individuals from multiple source populations is one way to bolster genetic variation and avoid inbreeding in newly established populations. However, mixing isolated populations, especially from islands, can potentially lead to outbreeding depression and/or assortative mating, which may limit interbreeding between source populations. Here, we investigated genetic consequences of mixing individuals from two island populations of the dibbler (Parantechinus apicalis) in an island translocation. Despite a high level of genetic divergence between the source populations (F ST ranges 0.33-0.64), and significant differences in body size, individuals with different ancestries were able to successfully interbreed in captivity and in the wild. However, the genetic contributions from each source population were unequal initially despite each of the source populations contributing an equal number of founders. Mating success of captive animals based on the pedigree suggests that this bias toward one source population was due to founder mortality and the mating success of younger and heavier animals. Nevertheless, genetic contributions in the translocated population became equal over time with no parental purebreds, suggesting an extreme excess of hybrids across multiple years. While genetic variation in the translocated population was comparable or higher than the source populations, the increase was short-lived. Genetic composition of captive animals may not reflect what happens in the wild. These changes post-translocation highlight the need for continued genetic monitoring.
Collapse
Affiliation(s)
- Rujiporn Thavornkanlapachai
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- Department of Biodiversity, Conservation and AttractionsBiodiversity and Conservation ScienceBentleyWestern AustraliaAustralia
| | - Harriet R. Mills
- Department of Biodiversity, Conservation and AttractionsBiodiversity and Conservation ScienceBentleyWestern AustraliaAustralia
- School of ScienceEdith Cowan UniversityMount LawleyWestern AustraliaAustralia
| | - Kym Ottewell
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- Department of Biodiversity, Conservation and AttractionsBiodiversity and Conservation ScienceBentleyWestern AustraliaAustralia
| | - Cathy Lambert
- Department of Biodiversity, Conservation and AttractionsBiodiversity and Conservation ScienceBentleyWestern AustraliaAustralia
| | - J. Anthony Friend
- Department of Biodiversity, Conservation and AttractionsBiodiversity and Conservation ScienceAlbanyWestern AustraliaAustralia
| | - Daniel J. White
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- Bennelongia Environmental ConsultantsJolimontWestern AustraliaAustralia
| | - Zahra Aisya
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - W. Jason Kennington
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| |
Collapse
|
11
|
Julien M, Ducrettet J, Diallo M, Imbert E, Colas B, Schatz B. Plant Translocations in France: Identifying Gaps between Knowledge, Practice and Perception by Conservation Actors. ENVIRONMENTAL MANAGEMENT 2024; 74:1160-1172. [PMID: 39327284 DOI: 10.1007/s00267-024-02055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
In the current context of global changes, threatened flora is declining and homogenising at the expense of rare and protected species. Among conservation biology and ecological restoration techniques, plant translocation is one of the recommendations increasingly used. However, translocation remains risky and is recommended as a last resort to conserve protected flora in land use planning. Furthermore, it raises ethical questions partly linked to genetic processes. In this context, we studied how plant translocations are perceived by conservation actors in France, including their genetic aspects. The analysis of translocation perception complements that of feedback on concrete translocation operations and allows us to provide a qualitative assessment of current practices. We have adopted an interdisciplinary approach to survey different types of actors in nature conservation, involved or not in at least one stage of translocation operations (preparation, implementation and monitoring). Three main types of translocation perception divide our sample quite strongly (50% favourable/ 45% unfavourable/ 5% undecided). Surprisingly, their professional activity or the level of involvement in such an operation have no influence on their opinion on translocation, nor on the proposals of alternative measures. Only 15% of the actors involved in translocations used genetic data at least once. To conclude, it would be necessary to promote the sharing of feedback from past experiences. This would allow an up-to-date list of species unacceptable for translocation. Comparing the results of different protocols and implementation conditions for the same species or group should improve overall translocation success rates.
Collapse
Affiliation(s)
- Margaux Julien
- CEFE, CNRS, Univ Montpellier, EPHE IRD, Montpellier, France.
- Ecotonia, Eguilles, France.
| | | | - Mohamed Diallo
- Université Paris-Saclay, CNRS, AgroParisTech Ecologie Systématique et Evolution, Gif sur Yvette, France
| | - Eric Imbert
- ISEM, Univ Montpellier, CNRS IRD, Montpellier, France
| | - Bruno Colas
- Université Paris-Saclay, CNRS, AgroParisTech Ecologie Systématique et Evolution, Gif sur Yvette, France
| | | |
Collapse
|
12
|
Bladon EK, Pascoal S, Kilner RM. Can recent evolutionary history promote resilience to environmental change? Behav Ecol 2024; 35:arae074. [PMID: 39431165 PMCID: PMC11486917 DOI: 10.1093/beheco/arae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/28/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
Principles of social evolution have long been used retrospectively to interpret social interactions, but have less commonly been applied predictively to inform conservation and animal husbandry strategies. We investigate whether differences in developmental environment, facilitated by divergent social conditions, can predict resilience to environmental change. Upon exposure to harsh novel environments, populations that previously experienced more benign social environments are predicted either to suffer fitness losses (the "mutation load hypothesis" and "selection filter hypothesis") or maintain fitness (the "beneficial mutation hypothesis"). We tested these contrasting predictions using populations of burying beetles Nicrophorus vespilloides we had evolved experimentally for 45 generations under contrasting social environments by manipulating the supply of post-hatching parental care. We exposed sexually immature adults from each population to varying heat stress and measured the effect on survival and reproduction. The greater the level of parental care previously experienced by a population, the better its survival under heat stress during sexual maturation. Although this is consistent with the "beneficial mutation hypothesis," it is also possible that populations that had evolved without post-hatching care were simply more prone to dying during maturation, regardless of their thermal environment. Overall, we suggest that stochastic genetic variation, probably due to founder effects, had a stronger influence on resilience. We discuss the implications for translocation and captive breeding programs.
Collapse
Affiliation(s)
- Eleanor K Bladon
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, United Kingdom
| | - Sonia Pascoal
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, United Kingdom
- Department of Haematology, University of Cambridge, Long Road, Cambridge, CB2 0PT, United Kingdom
| | - Rebecca M Kilner
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, United Kingdom
| |
Collapse
|
13
|
Richdon S, Menchaca Rodriguez A, Price E, Wormell D, McCabe G, Jones G. Thirty years of conservation breeding: Assessing the genetic diversity of captive Livingstone's fruit bats. Zoo Biol 2024; 43:395-404. [PMID: 38837463 DOI: 10.1002/zoo.21845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/18/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Fruit bats (genus Pteropus) are typically island-endemic species important in seed dispersal and reforestation that are vulnerable to increased extinction risk. An effective method of reducing extinction risk in vulnerable species that cannot be conserved in their native habitat is establishing an ex-situ captive breeding programme. Due to anthropogenic threats and low population numbers, in the early 1990s, a captive breeding programme was established at Jersey Zoo, British Isles, for Critically Endangered Livingstone's fruit bats (Pteropus livingstonii). Here we use six polymorphic microsatellite loci to assess genetic diversity in the captive breeding population of Livingstone's fruit bats (P. livingstonii), 30 years after the programme's establishment, investigating change over generations and comparing our findings with published data from the wild population. We found no significant difference between the genetic diversity in the captive and wild populations of Livingstone's fruit bats (P. livingstonii), in both expected heterozygosity and allelic richness. The captive population has retained a comparable level of genetic diversity to that documented in the wild, and there has been no significant decline in genetic diversity over the last 30 years. We advise that a full pedigree of the paternal lineage is created to improve the management of the captive breeding programme and further reduce the possibility of inbreeding. However, it appears that the captive breeding programme is currently effective at maintaining genetic diversity at levels comparable to those seen in the wild population, which suggests reintroductions could be viable if genetic diversity remains stable in captivity.
Collapse
Affiliation(s)
- Sarah Richdon
- School of Biological Sciences, University of Bristol, Bristol, UK
- Bristol Zoological Society, Clifton, Bristol, UK
| | | | - Eluned Price
- Durrell Wildlife Conservation Trust, La Profonde Rue, Jersey, UK
| | - Dominic Wormell
- Durrell Wildlife Conservation Trust, La Profonde Rue, Jersey, UK
| | | | - Gareth Jones
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
14
|
Aitken SN, Jordan R, Tumas HR. Conserving Evolutionary Potential: Combining Landscape Genomics with Established Methods to Inform Plant Conservation. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:707-736. [PMID: 38594931 DOI: 10.1146/annurev-arplant-070523-044239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Biodiversity conservation requires conserving evolutionary potential-the capacity for wild populations to adapt. Understanding genetic diversity and evolutionary dynamics is critical for informing conservation decisions that enhance adaptability and persistence under environmental change. We review how emerging landscape genomic methods provide plant conservation programs with insights into evolutionary dynamics, including local adaptation and its environmental drivers. Landscape genomic approaches that explore relationships between genomic variation and environments complement rather than replace established population genomic and common garden approaches for assessing adaptive phenotypic variation, population structure, gene flow, and demography. Collectively, these approaches inform conservation actions, including genetic rescue, maladaptation prediction, and assisted gene flow. The greatest on-the-ground impacts from such studies will be realized when conservation practitioners are actively engaged in research and monitoring. Understanding the evolutionary dynamics shaping the genetic diversity of wild plant populations will inform plant conservation decisions that enhance the adaptability and persistence of species in an uncertain future.
Collapse
Affiliation(s)
- Sally N Aitken
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada; ,
| | | | - Hayley R Tumas
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada; ,
| |
Collapse
|
15
|
Sexton JP, Clemens M, Bell N, Hall J, Fyfe V, Hoffmann AA. Patterns and effects of gene flow on adaptation across spatial scales: implications for management. J Evol Biol 2024; 37:732-745. [PMID: 38888218 DOI: 10.1093/jeb/voae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/21/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Gene flow can have rapid effects on adaptation and is an important evolutionary tool available when undertaking biological conservation and restoration. This tool is underused partly because of the perceived risk of outbreeding depression and loss of mean fitness when different populations are crossed. In this article, we briefly review some theory and empirical findings on how genetic variation is distributed across species ranges, describe known patterns of gene flow in nature with respect to environmental gradients, and highlight the effects of gene flow on adaptation in small or stressed populations in challenging environments (e.g., at species range limits). We then present a case study involving crosses at varying spatial scales among mountain populations of a trigger plant (Stylidium armeria: Stylidiaceae) in the Australian Alps to highlight how some issues around gene flow effects can be evaluated. We found evidence of outbreeding depression in seed production at greater geographic distances. Nevertheless, we found no evidence of maladaptive gene flow effects in likelihood of germination, plant performance (size), and performance variance, suggesting that gene flow at all spatial scales produces offspring with high adaptive potential. This case study demonstrates a path to evaluating how increasing sources of gene flow in managed wild and restored populations could identify some offspring with high fitness that could bolster the ability of populations to adapt to future environmental changes. We suggest further ways in which managers and researchers can act to understand and consider adaptive gene flow in natural and conservation contexts under rapidly changing conditions.
Collapse
Affiliation(s)
- Jason P Sexton
- Department of Life and Environmental Sciences, University of California, Merced, CA, United States
| | - Molly Clemens
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Nicholas Bell
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Joseph Hall
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Verity Fyfe
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
16
|
Bonassin L, Pârvulescu L, Boštjančić LL, Francesconi C, Paetsch J, Rutz C, Lecompte O, Theissinger K. Genomic insights into the conservation status of the Idle Crayfish Austropotamobius bihariensis Pârvulescu, 2019: low genetic diversity in the endemic crayfish species of the Apuseni Mountains. BMC Ecol Evol 2024; 24:78. [PMID: 38862896 PMCID: PMC11165767 DOI: 10.1186/s12862-024-02268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/05/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Biodiversity in freshwater ecosystems is declining due to an increased anthropogenic footprint. Freshwater crayfish are keystone species in freshwater ecosystems and play a crucial role in shaping the structure and function of their habitats. The Idle Crayfish Austropotamobius bihariensis is a native European species with a narrow distribution range, endemic to the Apuseni Mountains (Romania). Although its area is small, the populations are anthropogenically fragmented. In this context, the assessment of its conservation status is timely. RESULTS Using a reduced representation sequencing approach, we identified 4875 genomic SNPs from individuals belonging to 13 populations across the species distribution range. Subsequent population genomic analyses highlighted low heterozygosity levels, low number of private alleles and small effective population size. Our structuring analyses revealed that the genomic similarity of the populations is conserved within the river basins. CONCLUSION Genomic SNPs represented excellent tools to gain insights into intraspecific genomic diversity and population structure of the Idle Crayfish. Our study highlighted that the analysed populations are at risk due to their limited genetic diversity, which makes them extremely vulnerable to environmental alterations. Thus, our results emphasize the need for conservation measures and can be used as a baseline to establish species management programs.
Collapse
Affiliation(s)
- Lena Bonassin
- Department of Computer Science, Centre de Recherche en Biomédecine de Strasbourg, UMR 7357, University of Strasbourg, CNRS, Rue Eugène Boeckel 1, 67000, ICube, Strasbourg, France
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Institute for Environmental Sciences, Department of Molecular Ecology, Rhineland-Palatinate Technical University Kaiserslautern Landau, Fortstr. 7, 76829, Landau, Germany
| | - Lucian Pârvulescu
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Str. Pestalozzi 16A, 300115, Timisoara, Romania.
- Crayfish Research Centre, Institute for Advanced Environmental Research, West University of Timisoara, Oituz 4, 300086, Timisoara, Romania.
| | - Ljudevit Luka Boštjančić
- Department of Computer Science, Centre de Recherche en Biomédecine de Strasbourg, UMR 7357, University of Strasbourg, CNRS, Rue Eugène Boeckel 1, 67000, ICube, Strasbourg, France
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Institute for Environmental Sciences, Department of Molecular Ecology, Rhineland-Palatinate Technical University Kaiserslautern Landau, Fortstr. 7, 76829, Landau, Germany
| | - Caterina Francesconi
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Institute for Environmental Sciences, Department of Molecular Ecology, Rhineland-Palatinate Technical University Kaiserslautern Landau, Fortstr. 7, 76829, Landau, Germany
| | - Judith Paetsch
- Department of Biogeography, University of Trier, Behringstraße 21, D-54296, Geozentrum, Trier, Germany
| | - Christelle Rutz
- Department of Computer Science, Centre de Recherche en Biomédecine de Strasbourg, UMR 7357, University of Strasbourg, CNRS, Rue Eugène Boeckel 1, 67000, ICube, Strasbourg, France
| | - Odile Lecompte
- Department of Computer Science, Centre de Recherche en Biomédecine de Strasbourg, UMR 7357, University of Strasbourg, CNRS, Rue Eugène Boeckel 1, 67000, ICube, Strasbourg, France
| | - Kathrin Theissinger
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, D-35392, Giessen, Germany
| |
Collapse
|
17
|
Conceição TA, Santos AS, Fernandes AKC, Meireles GN, de Oliveira FA, Barbosa RM, Gaiotto FA. Guiding seed movement: environmental heterogeneity drives genetic differentiation in Plathymenia reticulata, providing insights for restoration. AOB PLANTS 2024; 16:plae032. [PMID: 38883565 PMCID: PMC11176975 DOI: 10.1093/aobpla/plae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Forest and landscape restoration is one of the main strategies for overcoming the environmental crisis. This activity is particularly relevant for biodiversity-rich areas threatened by deforestation, such as tropical forests. Efficient long-term restoration requires understanding the composition and genetic structure of native populations, as well as the factors that influence these genetic components. This is because these populations serve as the seed sources and, therefore, the gene reservoirs for areas under restoration. In the present study, we investigated the influence of environmental, climatic and spatial distance factors on the genetic patterns of Plathymenia reticulata, aiming to support seed translocation strategies for restoration areas. We collected plant samples from nine populations of P. reticulata in the state of Bahia, Brazil, located in areas of Atlantic Forest and Savanna, across four climatic types, and genotyped them using nine nuclear and three chloroplast microsatellite markers. The populations of P. reticulata evaluated generally showed low to moderate genotypic variability and low haplotypic diversity. The populations within the Savanna phytophysiognomy showed values above average for six of the eight evaluated genetic diversity parameters. Using this classification based on phytophysiognomy demonstrated a high predictive power for genetic differentiation in P. reticulata. Furthermore, the interplay of climate, soil and geographic distance influenced the spread of alleles across the landscape. Based on our findings, we propose seed translocation, taking into account the biome, with restricted use of seed sources acquired or collected from the same environment as the areas to be restored (Savanna or Atlantic Forest).
Collapse
Affiliation(s)
- Taise Almeida Conceição
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, USP, Piracicaba, São Paulo 13418-900, Brazil
| | - Alesandro Souza Santos
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Ane Karoline Campos Fernandes
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Gabriela Nascimento Meireles
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Fernanda Ancelmo de Oliveira
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, São Paulo 13083-875, Brazil
| | - Rafael Marani Barbosa
- Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Fernanda Amato Gaiotto
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, USP, Piracicaba, São Paulo 13418-900, Brazil
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| |
Collapse
|
18
|
Lamka GF, Willoughby JR. Habitat remediation followed by managed connectivity reduces unwanted changes in evolutionary trajectory of high extirpation risk populations. PLoS One 2024; 19:e0304276. [PMID: 38814889 PMCID: PMC11139274 DOI: 10.1371/journal.pone.0304276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024] Open
Abstract
As we continue to convert green spaces into roadways and buildings, connectivity between populations and biodiversity will continue to decline. In threatened and endangered species, this trend is particularly concerning because the cessation of immigration can cause increased inbreeding and loss of genetic diversity, leading to lower adaptability and higher extirpation probabilities in these populations. Unfortunately, monitoring changes in genetic diversity from management actions such as assisted migration and predicting the extent of introduced genetic variation that is needed to prevent extirpation is difficult and costly in situ. Therefore, we designed an agent-based model to link population-wide genetic variability and the influx of unique alleles via immigration to population stability and extirpation outcomes. These models showed that management of connectivity can be critical in restoring at-risk populations and reducing the effects of inbreeding depression. However, the rescued populations were more similar to the migrant source population (average FST range 0.05-0.10) compared to the historical recipient population (average FST range 0.23-0.37). This means that these management actions not only recovered the populations from the effects of inbreeding depression, but they did so in a way that changed the evolutionary trajectory that was predicted and expected for these populations prior to the population crash. This change was most extreme in populations with the smallest population sizes, which are representative of critically endangered species that could reasonably be considered candidates for restored connectivity or translocation strategies. Understanding how these at-risk populations change in response to varying management interventions has broad implications for the long-term adaptability of these populations and can improve future efforts for protecting locally adapted allele complexes when connectivity is restored.
Collapse
Affiliation(s)
- Gina F. Lamka
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, Alabama, United States of America
| | - Janna R. Willoughby
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, Alabama, United States of America
| |
Collapse
|
19
|
Ortego J, Muñoz‐Fuentes V, López‐Luque R, Ball AD, Ghazali M, Abed SA, Salim MA, Green AJ. Demographic and conservation genomic assessment of the threatened marbled teal ( Marmaronetta angustirostris). Evol Appl 2024; 17:e13639. [PMID: 38721592 PMCID: PMC11077658 DOI: 10.1111/eva.13639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2025] Open
Abstract
Genetic assessment of species that have experienced dramatic population declines provides critical information that is instrumental for the design of conservation recovery programs. Here, we use different sources of molecular data (mtDNA and ddRAD-seq) to evaluate the genetic status of wild and captive populations of marbled teal (Marmaronetta angustirostris), a duck species classified as critically endangered in Spain and near threatened at a global scale. First, we determined the evolutionary and demographic trajectories of the wild population from Spain and the currently much larger population from Iraq, which is also the documented source of European zoo stocks. Second, we evaluated the suitability of the different captive populations for ongoing restocking programs in Spain and assessed their potential impact on the genetic composition of wild populations. Populations from Spain and Iraq were assigned to distinct genetic clusters, albeit with an overall low level of genetic differentiation, in line with their recent divergence (<8000 years ago) and lack of phylogeographic structure in the species. Demogenomic inferences revealed that the two populations have experienced parallel demographic trajectories, with a marked bottleneck during the last glacial period followed by a sudden demographic expansion and stability since the onset of the Holocene. The wild population from Spain presented high levels of inbreeding, but we found no evidence of recent genetic bottlenecks compatible with the human-driven decline of the species during the past century. The captive populations from the two Spanish centers involved in restocking programs showed genetic introgression from European zoos; however, we found limited evidence of introgression from the zoo genetic stock into the wild population from Spain, suggesting captive-bred birds have limited breeding success in the wild. Our study illustrates how ex situ conservation programs should consider the genetic distinctiveness of populations when establishing breeding stocks and highlights the importance of genetically assessing captive populations prior to reinforcement actions.
Collapse
Affiliation(s)
- Joaquín Ortego
- Department of Ecology and EvolutionEstación Biológica de Doñana, EBD‐CSICSevilleSpain
| | - Violeta Muñoz‐Fuentes
- European Molecular Biology Laboratory‐European Bioinformatics InstituteHinxtonUK
- Present address:
UN Environment World Conservation Monitoring Centre (UNEP‐WCMC)CambridgeUK
| | - Raquel López‐Luque
- Department of Conservation Biology and Global ChangeEstación Biológica de Doñana, EBD‐CSICSevilleSpain
| | - Alex D. Ball
- RZSS WildGenes LaboratoryRoyal Zoological Society of ScotlandEdinburghScotlandUK
| | - Muhammad Ghazali
- RZSS WildGenes LaboratoryRoyal Zoological Society of ScotlandEdinburghScotlandUK
| | - Salwan Ali Abed
- Department of Environment, College of ScienceUniversity of Al‐QadisiyahAl DiwaniyahIraq
| | | | - Andy J. Green
- Department of Conservation Biology and Global ChangeEstación Biológica de Doñana, EBD‐CSICSevilleSpain
| |
Collapse
|
20
|
Furlan EM, Baumgartner LJ, Duncan M, Ellis I, Gruber B, Harrisson K, Michie L, Thiem JD, Stuart I. Swinging back from the brink? Polygamous mating strategies revealed for an iconic threatened freshwater fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170808. [PMID: 38336046 DOI: 10.1016/j.scitotenv.2024.170808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Catastrophic fish death events are increasing in frequency and severity globally. A series of major recent fish deaths in the semi-arid lower Darling-Baaka river system (LDBR) of Australia are emblematic of these issues with tens of millions of native fish perishing. In 2018-2019 there was a major death event for Australia's largest freshwater fish, Murray cod (Maccullochella peelii). To aid the recovery and guide restoration activities of local Murray cod populations, it is essential to gather information on the mating strategies and effective population size following the fish death event. After the fish deaths, we collected larvae during the 2020 and 2021 breeding seasons and used single nucleotide polymorphisms (SNPs) to provide insight mating strategies and to estimate effective population size. Larvae were detected in both years along the entire length of the LDBR. Sixteen percent of the inferred breeding individuals were found to contribute to multiple pairings, confirming a complex and polygamous mating system. A high frequency of polygamy was evident both within and between years with 100 % polygamy identified among parents that produced offspring in both 2020 and 2021 and 95 % polygamy identified among parents involved in multiple spawning events within years. Post-larval Murray cod samples collected between 2016 and 2021 were co-analysed to further inform kinship patterns. Again, monogamy was rare with no confirmed cases of the same male-female pair contributing to multiple breeding events within or between seasons. Effective population size based on Murray cod collected after the fish death event was estimated at 721.6 (CI 471-1486), though this has likely declined following a subsequent catastrophic fish death event in the LDBR in March 2023. Our data provide insight into the variability of Murray cod mating strategies, and we anticipate that this knowledge will assist in planning conservation actions to ultimately help recover a species in crisis.
Collapse
Affiliation(s)
- Elise M Furlan
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, University Drive, Bruce, ACT 2617, Australia; Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, P.O. Box 789, Albury, NSW 2640, Australia.
| | - Lee J Baumgartner
- Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, P.O. Box 789, Albury, NSW 2640, Australia
| | - Meaghan Duncan
- Department of Primary Industries, Narrandera Fisheries Centre, Narrandera, New South Wales, Australia
| | - Iain Ellis
- Department of Primary Industries, Buronga, New South Wales, Australia
| | - Bernd Gruber
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, University Drive, Bruce, ACT 2617, Australia
| | - Katherine Harrisson
- Department of Environment and Genetics, La Trobe University, Melbourne, Australia; Research Centre for Future Landscapes, La Trobe University, Melbourne, Australia; Arthur Rylah Institute for Environmental Research, Department of Energy, Environment and Climate Action, Victoria, Australia
| | - Laura Michie
- Department of Primary Industries, Narrandera Fisheries Centre, Narrandera, New South Wales, Australia
| | - Jason D Thiem
- Department of Primary Industries, Narrandera Fisheries Centre, Narrandera, New South Wales, Australia
| | - Ivor Stuart
- Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, P.O. Box 789, Albury, NSW 2640, Australia
| |
Collapse
|
21
|
Brocka CW, Mazzamuto MV, Koprowski JL. The high cost of movement in an arid working landscape for an endangered amphibian. Ecol Evol 2024; 14:e11259. [PMID: 38628912 PMCID: PMC11019298 DOI: 10.1002/ece3.11259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
Connectivity is essential for the maintenance of genetic diversity and stability of wildlife populations. Drought and changing precipitation regimes have caused natural aquatic amphibian breeding habitats to disappear or become isolated and have led to the replacement of natural surface water with artificial livestock water tanks. Terrestrial movement is the only means of responding to aquatic threats in arid landscapes and to allow population connectivity. Aridity may present an impenetrable barrier in hydrologically fragmented environments. We used a facultatively paedomorphic and federally endangered salamander to assess the challenges of movement across arid working lands. Sonoran tiger salamanders (Ambystoma mavortium stebbinsi) are endemic to the San Rafael Valley of southeastern Arizona, United States of America, where they depend on livestock water tanks as breeding habitat. The ecology of this species' metamorphs outside of stock tanks is virtually unknown. To assess survival on the landscape during terrestrial movement we used radio-transmitters to track 78 adult metamorphosed salamanders over 2 years. Sonoran tiger salamanders moved up to 1 km from the tank edge, and average distances moved of over 400 m were higher than most Ambystoma species. However, during the study period, none reached neighboring stock tanks. We found high mortality due to predation and desiccation. Individuals that dispersed to terrestrial habitat in summer survived longer than individuals that dispersed in spring. High mortality suggests terrestrial movement is exceptionally risky and may contribute to isolated subpopulations and elevated levels of inbreeding. Conservation actions that improve and maintain artificial aquatic habitats as well as increase connectivity may improve long-term management for pond-breeding amphibians in arid regions.
Collapse
Affiliation(s)
- Colin W. Brocka
- School of Natural Resources and the EnvironmentUniversity of ArizonaTucsonArizonaUSA
| | | | - John L. Koprowski
- School of Natural Resources and the EnvironmentUniversity of ArizonaTucsonArizonaUSA
- Haub School of Environment and Natural ResourcesUniversity of WyomingLaramieWyomingUSA
| |
Collapse
|
22
|
Bellis J, Osazuwa-Peters O, Maschinski J, Keir MJ, Parsons EW, Kaye TN, Kunz M, Possley J, Menges E, Smith SA, Roth D, Brewer D, Brumback W, Lange JJ, Niederer C, Turner-Skoff JB, Bontrager M, Braham R, Coppoletta M, Holl KD, Williamson P, Bell T, Jonas JL, McEachern K, Robertson KL, Birnbaum SJ, Dattilo A, Dollard JJ, Fant J, Kishida W, Lesica P, Link SO, Pavlovic NB, Poole J, Reemts CM, Stiling P, Taylor DD, Titus JH, Titus PJ, Adkins ED, Chambers T, Paschke MW, Heineman KD, Albrecht MA. Identifying predictors of translocation success in rare plant species. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14190. [PMID: 37768181 DOI: 10.1111/cobi.14190] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
The fundamental goal of a rare plant translocation is to create self-sustaining populations with the evolutionary resilience to persist in the long term. Yet, most plant translocation syntheses focus on a few factors influencing short-term benchmarks of success (e.g., survival and reproduction). Short-term benchmarks can be misleading when trying to infer future growth and viability because the factors that promote establishment may differ from those required for long-term persistence. We assembled a large (n = 275) and broadly representative data set of well-documented and monitored (7.9 years on average) at-risk plant translocations to identify the most important site attributes, management techniques, and species' traits for six life-cycle benchmarks and population metrics of translocation success. We used the random forest algorithm to quantify the relative importance of 29 predictor variables for each metric of success. Drivers of translocation outcomes varied across time frames and success metrics. Management techniques had the greatest relative influence on the attainment of life-cycle benchmarks and short-term population trends, whereas site attributes and species' traits were more important for population persistence and long-term trends. Specifically, large founder sizes increased the potential for reproduction and recruitment into the next generation, whereas declining habitat quality and the outplanting of species with low seed production led to increased extinction risks and a reduction in potential reproductive output in the long-term, respectively. We also detected novel interactions between some of the most important drivers, such as an increased probability of next-generation recruitment in species with greater seed production rates, but only when coupled with large founder sizes. Because most significant barriers to plant translocation success can be overcome by improving techniques or resolving site-level issues through early intervention and management, we suggest that by combining long-term monitoring with adaptive management, translocation programs can enhance the prospects of achieving long-term success.
Collapse
Affiliation(s)
- Joe Bellis
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St. Louis, Missouri, USA
- Center for Plant Conservation, Escondido, California, USA
| | - Oyomoare Osazuwa-Peters
- Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Joyce Maschinski
- Center for Plant Conservation, Escondido, California, USA
- Fairchild Tropical Botanic Garden, Coral Gables, Florida, USA
| | - Matthew J Keir
- Department of Land and Natural Resources, Hawai'i Division of Forestry and Wildlife, Honolulu, Hawaii, USA
| | - Elliott W Parsons
- Pacific Regional Invasive Species and Climate Change Management Network, University of Hawaii at Mānoa, Honolulu, Hawaii, USA
| | - Thomas N Kaye
- Institute for Applied Ecology, Corvallis, Oregon, USA
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Michael Kunz
- North Carolina Botanical Garden, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Eric Menges
- Archbold Biological Station, Venus, Florida, USA
| | - Stacy A Smith
- Archbold Biological Station, Venus, Florida, USA
- Agronomy Department, University of Florida, Gainesville, Florida, USA
| | - Daniela Roth
- New Mexico Energy, Minerals, and Natural Resources Department, Forestry Division, Santa Fe, New Mexico, USA
| | - Debbie Brewer
- Fort Huachuca Environmental and Natural Resources Division, Fort Huachuca, Arizona, USA
| | | | - James J Lange
- Fairchild Tropical Botanic Garden, Coral Gables, Florida, USA
| | | | | | - Megan Bontrager
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Richard Braham
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, USA
| | | | - Karen D Holl
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, California, USA
| | - Paula Williamson
- Department of Biology, Texas State University, San Marcos, Texas, USA
| | | | - Jayne L Jonas
- Department of Biology, University of Nebraska at Kearney, Kearney, Nebraska, USA
| | - Kathryn McEachern
- U.S. Geological Survey, WERC-Channel Islands Field Station, Ventura, California, USA
| | | | | | - Adam Dattilo
- Tennessee Valley Authority, Knoxville, Tennessee, USA
| | - John J Dollard
- Croatan National Forest, Forest Service, New Bern, North Carolina, USA
| | | | - Wendy Kishida
- Department of Land and Natural Resources, Hawai'i Division of Forestry and Wildlife, Honolulu, Hawaii, USA
| | - Peter Lesica
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Steven O Link
- Department of Natural Resources, Energy and Environmental Sciences Program, Pendleton, Oregon, USA
| | - Noel B Pavlovic
- U.S. Geological Survey, GLSC - Lake Michigan Ecological Research Station, Chesterton, Indiana, USA
| | - Jackie Poole
- Texas Parks & Wildlife Department, Austin, Texas, USA
| | | | - Peter Stiling
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - David D Taylor
- Daniel Boone National Forest, USDA Forest Service, Winchester, Kentucky, USA
| | - Jonathan H Titus
- Biology Department, Science Center, State University of New York, Fredonia, New York, USA
| | | | - Edith D Adkins
- Pacific Cooperative Studies Unit, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Timothy Chambers
- U.S Army Natural Resources Program on Oahu, Schofield Barracks, Hawaii, USA
| | - Mark W Paschke
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, Colorado, USA
| | | | - Matthew A Albrecht
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St. Louis, Missouri, USA
| |
Collapse
|
23
|
Sharma SP, Ghazi MG, Katdare S, Badola R, Hussain SA. Population status and genetic assessment of mugger (Crocodylus palustris) in a tropical regulated river system in North India. Sci Rep 2024; 14:7438. [PMID: 38548905 PMCID: PMC10978964 DOI: 10.1038/s41598-024-57983-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/24/2024] [Indexed: 04/01/2024] Open
Abstract
For rewilding the depleted crocodylian populations in India, a targeted 'one-species one area' based conservation approach was adopted in the early-1970s. Suitable habitats were identified and designated as protected areas, specifically targeted to recover a particular crocodylian species. A ~ 610 km stretch of Chambal River in the Ganga River Basin was declared as National Chambal Sanctuary to restore the 'Critically Endangered' gharial (Gavialis gangeticus), where active management of mugger (Crocodylus palustris) was discouraged. In the present study, we examined the population trends, occupancy, and genetic status of mugger by conducting population monitoring and genetic assessment to understand the status of potentially competitive mugger in the Sanctuary. Our finding suggests that the mugger population has notably increased and colonised the Sanctuary. We observed a moderate level of genetic diversity in the mugger, which was relatively higher compared to the gharial in the Sanctuary. The rapid colonization of ecological generalist mugger raises concerns about potential competition with ecological specialist gharial threatening its long-term sustainability. Considering the coexistence dynamics between the species, it is essential to extend adaptive management strategies for mugger to ensure successful recovery of gharial population in the Sanctuary.
Collapse
Affiliation(s)
- Surya Prasad Sharma
- Wildlife Institute of India, Chandrabani, P.O. Box # 18, Dehra Dun, 248002, Uttarakhand, India
| | | | - Suyash Katdare
- Wildlife Institute of India, Chandrabani, P.O. Box # 18, Dehra Dun, 248002, Uttarakhand, India
| | - Ruchi Badola
- Wildlife Institute of India, Chandrabani, P.O. Box # 18, Dehra Dun, 248002, Uttarakhand, India
| | - Syed Ainul Hussain
- Wildlife Institute of India, Chandrabani, P.O. Box # 18, Dehra Dun, 248002, Uttarakhand, India.
| |
Collapse
|
24
|
Lavenia C, Priyono DS, Yudha DS, Arisuryanti T. Species Identification of Rehabilitated Critically Endangered Orangutans Through DNA Forensic: Implication for Conservation. Trop Life Sci Res 2024; 35:123-137. [PMID: 39262863 PMCID: PMC11383629 DOI: 10.21315/tlsr2024.35.1.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2024] Open
Abstract
Rehabilitating and releasing orangutans back into the wild is one of the conservation strategies being pursued to conserve orangutans. However, the species determination between Sumatran, Tapanuli, and Bornean orangutans is essential for reintroduction to avoid outbreeding depression, which could lead to DNA hybridisation and increase the probability of recessive characters. Here, we reported on an investigation of three orangutans in which DNA forensic techniques were used to identify the species before release and reintroduction to their habitat. By applying DNA forensic, the orangutan was successfully confirmed with high probabilities (100%) by identifying two orangutan species, Pongo abelii and Pongo pygmaeus wurmbii. Based on ambiguous morphology, we found the possibility of orangutan species being misidentified in rehabilitation. This case report demonstrates the importance of molecular diagnostics to identify the orangutan species. We also provide workflow recommendations from genetic aspect for rehabilitated orangutans. These recommendations will enable decision-makers to consider genetics when assessing future management decisions, which will help ensure that the orangutan species is effectively conserved.
Collapse
Affiliation(s)
- Christy Lavenia
- Department of Biology, Universitas Indonesia, Depok 16424. West Java, Indonesia
| | - Dwi Sendi Priyono
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sinduadi. Mlati, Sleman, 55281. Special Region of Yogyakarta, Indonesia
- Centre for Indonesia Tropical Biodiversity (CENTROBIO), Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sinduadi. Mlati, Sleman, 55281. Special Region of Yogyakarta, Indonesia
| | - Donan Satria Yudha
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sinduadi. Mlati, Sleman, 55281. Special Region of Yogyakarta, Indonesia
| | - Tuty Arisuryanti
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sinduadi. Mlati, Sleman, 55281. Special Region of Yogyakarta, Indonesia
| |
Collapse
|
25
|
Kim KR, Sung MS, Hwang Y, Jeong JH, Yu JN. Assessment of the Genetic Diversity and Structure of the Korean Endemic Freshwater Fish Microphysogobio longidorsalis (Gobioninae) Using Microsatellite Markers: A First Glance from Population Genetics. Genes (Basel) 2024; 15:69. [PMID: 38254959 PMCID: PMC10815670 DOI: 10.3390/genes15010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Microphysogobio longidorsalis is endemic to South Korea and inhabits small areas of the Namhangang, Bukhangang, and Imjingang Rivers in the Hangang River water system. Endemic species usually are more vulnerable than species with a wide distribution. Notably, there is a lack of basic conservation data for M. longidorsalis. We analyzed 19 microsatellite loci in six populations of M. longidorsalis in South Korea to characterize their population structure and genetic diversity. The genetic diversity of the microsatellites was 0.741-0.779, which is lower than that of other freshwater fishes. The pairwise genetic differentiation of microsatellite (FST) values ranged from 0.007 to 0.041, suggesting low genetic differentiation between the populations. The Jojongicheon stream population (CP) had an effective population size of <100. Therefore, conservation efforts are required to prevent inbreeding depression in M. longidorsalis. Discriminant analysis of principal components showed that the Hangang River water system would be a single management unit (MU). Our findings provide fundamental genetic insights for the formulation of conservation strategies for M. longidorsalis.
Collapse
Affiliation(s)
- Kang-Rae Kim
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (K.-R.K.); (Y.H.); (J.H.J.)
| | - Mu-Sung Sung
- Muldeuli Research, Icheon 12607, Republic of Korea;
| | - Yujin Hwang
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (K.-R.K.); (Y.H.); (J.H.J.)
| | - Ju Hui Jeong
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (K.-R.K.); (Y.H.); (J.H.J.)
| | - Jeong-Nam Yu
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (K.-R.K.); (Y.H.); (J.H.J.)
| |
Collapse
|
26
|
Cook CN, Redford KH, Schwartz MW. Species conservation in the era of genomic science. Bioscience 2023; 73:885-890. [PMID: 38162573 PMCID: PMC10755706 DOI: 10.1093/biosci/biad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 01/03/2024] Open
Abstract
The exponential increase in the availability of genomic data, derived from sequencing thousands of loci or whole genomes, provides exciting new insights into the diversity of life. However, it can also challenge established species concepts and existing management regimes derived from these concepts. Genomic data can help inform decisions about how to manage genetic diversity, but policies that protect identified taxonomic entities can generate conflicting recommendations that create challenges for practitioners. We outline three dimensions of management concern that arise when facing new and potentially conflicting interpretations of genomic data: defining conservation entities, deciding how to manage diversity, and evaluating the risks and benefits of management actions. We highlight the often-underappreciated role of values in influencing management choices made by individuals, scientists, practitioners, the public, and other stakeholders. Such values influence choices through mechanisms such as the Rashomon effect, whereby management decisions are complicated by conflicting perceptions of the causes and consequences of the conservation problem. To illustrate how this might operate, we offer a hypothetical example of this effect for the interpretation of genomic data and its implications for conservation management. Such value-based decisions can be challenged by the rigidity of existing management regimes, making it difficult to achieve the necessary flexibility to match the changing biological understanding. We finish by recommending that both conservation geneticists and practitioners reflect on their respective values, responsibilities, and roles in building a more robust system of species management. This includes embracing the inclusion of stakeholders in decision-making because, as in many cases, there are not objectively defensible right or wrong decisions.
Collapse
Affiliation(s)
- Carly N Cook
- Monash University's School of Biological Sciences, Melbourne, Australia
| | - Kent H Redford
- University of New England's Department of Environmental Studies, Biddeford, Maine, United States
| | - Mark W Schwartz
- Department of Environmental Science and Policy, University of California, Davis, Davis, California, United States
| |
Collapse
|
27
|
Pröhl H, Rodríguez A. Importance of Genetic-Fitness Correlations for the Conservation of Amphibians. Animals (Basel) 2023; 13:3564. [PMID: 38003181 PMCID: PMC10668650 DOI: 10.3390/ani13223564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Endangered animals suffer from isolation of their habitats. Isolation leads to a reduction in population size as well as a decrease in genetic diversity and a concomitant increase in the risk of extinction. Amphibians are the most endangered vertebrate class. Besides habitat loss, fragmentation and isolation, amphibians are threatened by emerging diseases e.g., chytrid fungus or Ranavirus. By employing experiments, researchers investigate whether changes in genetic diversity within or among isolated populations affect amphibian fitness. While genetic diversity estimates are based on molecular markers, typically microsatellites, fitness is mostly measured as tadpole performance in rearing experiments often under varying environmental conditions. Tadpole performances (e.g., body mass, growth rate and survival) have been found to be negatively affected by low genetic diversity, as several studies have found a positive association between genetic diversity and these fitness traits. Moreover, infection with pathogens also seems to be more likely in individuals or populations with lower genetic diversity. Overall, these genetic-fitness correlations seem to be more pronounced or detectable in smaller, declining populations but not in larger populations. Genomic studies, which sample a larger fraction of the genome, are still scarce in the conservation genetic literature on amphibians. These are likely to increase in upcoming years and may reveal adaptive variants that protect against dangerous pathogens or environmental changes. Altogether, genetic-fitness correlation studies should be a priority in order to develop effective management plans for the genetic rescue of isolated, imperilled amphibian populations.
Collapse
Affiliation(s)
- Heike Pröhl
- Institute of Zoology, University of Veterinary Medicine of Hannover, Bünteweg 17, 30559 Hannover, Germany;
| | | |
Collapse
|
28
|
Buono V, Bissattini AM, Davoli F, Mengoni C, Mucci N, Vignoli L. Fine-scale spatial genetic structure and dispersal among Italian smooth newt populations in a rural landscape. Sci Rep 2023; 13:19956. [PMID: 37968502 PMCID: PMC10651844 DOI: 10.1038/s41598-023-47265-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023] Open
Abstract
Amphibians are particularly sensitive to habitat loss and fragmentation caused by the intensification and modernization of farming occurring in the second half of the twentieth century in the Mediterranean basin. However, artificial water bodies, associated with traditional husbandry, proved to be important surrogate for amphibian feeding and reproduction. Here, multilocus genotypes were used to investigate the spatial population structure of Lissotriton vulgaris meridionalis and the role of drinking troughs in supporting viable breeding populations within a rural landscape interested by traditional husbandry and agriculture. Our genetic analysis highlighted the conservation value and the potential stepping-stone function of artificial aquatic sites in the dispersal of the species and for the gene flow maintenance. Indeed, populations of drinking troughs show allelic richness and heterozygosity levels comparable to those from natural ponds and there is no great evidence of genetic bottlenecks. A complex system of artificial aquatic sites and few natural wetlands was identified sustaining a well-structured network of demes highly interconnected with themselves and natural aquatic sites. The conservation of the identified genetic clusters may be useful to prevent further population declines and future loss of genetic diversity within the study area characterized by scarce natural wetlands that frequently dried because of agricultural practices and strong seasonality. Site-specific protection measures are needed to contrast the progressive disappearance of drinking troughs observed in the last years in Italy because of the abandonment of traditional farming practices in favour of modern agriculture and intensive farming.
Collapse
Affiliation(s)
- Vincenzo Buono
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy.
| | | | - Francesca Davoli
- Unit for Conservation, Management and Sustainable Use of Marine Aquatic Resources (BIO-CIT), Department for the Monitoring and Protection of the Environment and for Biodiversity Conservation, Italian Institute for Environmental Protection and Research (ISPRA), Ozzano Dell'Emilia, 40064, Bologna, Italy
| | - Chiara Mengoni
- Unit for Conservation Genetics (BIO-CGE), Department for the Monitoring and Protection of the Environment and for Biodiversity Conservation, Italian Institute for Environmental Protection and Research (ISPRA), Ozzano Dell'Emilia, 40064, Bologna, Italy
| | - Nadia Mucci
- Unit for Conservation Genetics (BIO-CGE), Department for the Monitoring and Protection of the Environment and for Biodiversity Conservation, Italian Institute for Environmental Protection and Research (ISPRA), Ozzano Dell'Emilia, 40064, Bologna, Italy
| | | |
Collapse
|
29
|
Pérez-González J, Carranza J, Anaya G, Broggini C, Vedel G, de la Peña E, Membrillo A. Comparative Analysis of Microsatellite and SNP Markers for Genetic Management of Red Deer. Animals (Basel) 2023; 13:3374. [PMID: 37958129 PMCID: PMC10650148 DOI: 10.3390/ani13213374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The analysis of population genetic structure and individual multilocus heterozygosity are crucial for wildlife management and conservation. Microsatellite markers have traditionally been used to assess these genetic parameters. However, single-nucleotide polymorphisms (SNPs) are becoming increasingly popular. Our goal here was to determine to what extent SNPs can provide better insights than microsatellites into the overall genetic status and population genetic processes in the species. To this end, we genotyped 210 red deer (Cervus elaphus) in the Spanish wild population with both 11 microsatellites and 31,712 SNPs. We compared parameters related to population genetic structure and individual multilocus heterozygosity obtained with both types of markers. Our results showed correlations between parameters measured using both microsatellites and SNPs, particularly those related to the level of genetic diversity and genetic differentiation. However, we found notably lower precision of microsatellites in measuring the distribution of genetic diversity among individuals. We conclude that microsatellites can be used to monitor the overall genetic status and detect broad patterns in red deer populations. Nevertheless, the greater precision of SNPs in inferring genetic structure and multilocus heterozygosity leads us to encourage scientists and wildlife managers to prioritize their use whenever possible.
Collapse
Affiliation(s)
- Javier Pérez-González
- Biology and Ethology Unit, Veterinary Faculty, University of Extremadura, 10003 Caceres, Spain
| | - Juan Carranza
- Wildlife Research Unit (UIRCP), University of Córdoba, 14071 Cordoba, Spain; (J.C.); (G.A.); (C.B.); (G.V.); (E.d.l.P.); (A.M.)
| | - Gabriel Anaya
- Wildlife Research Unit (UIRCP), University of Córdoba, 14071 Cordoba, Spain; (J.C.); (G.A.); (C.B.); (G.V.); (E.d.l.P.); (A.M.)
- Department of Genetics, University of Cordoba, 14071 Cordoba, Spain
| | - Camilla Broggini
- Wildlife Research Unit (UIRCP), University of Córdoba, 14071 Cordoba, Spain; (J.C.); (G.A.); (C.B.); (G.V.); (E.d.l.P.); (A.M.)
| | - Giovanni Vedel
- Wildlife Research Unit (UIRCP), University of Córdoba, 14071 Cordoba, Spain; (J.C.); (G.A.); (C.B.); (G.V.); (E.d.l.P.); (A.M.)
| | - Eva de la Peña
- Wildlife Research Unit (UIRCP), University of Córdoba, 14071 Cordoba, Spain; (J.C.); (G.A.); (C.B.); (G.V.); (E.d.l.P.); (A.M.)
- Institute for Game and Wildlife Research (IREC), 13005 Ciudad Real, Spain
| | - Alberto Membrillo
- Wildlife Research Unit (UIRCP), University of Córdoba, 14071 Cordoba, Spain; (J.C.); (G.A.); (C.B.); (G.V.); (E.d.l.P.); (A.M.)
- Department of Specific Didactics, Faculty of Education Sciences, University of Cordoba, 14071 Cordoba, Spain
| |
Collapse
|
30
|
Steventon C, Wicker L, Legione AR, Devlin JM, Harley D, Dobson E. A RETROSPECTIVE ANALYSIS OF MORBIDITY AND MORTALITY IN THE CAPTIVE LEADBEATER'S POSSUM ( GYMNOBELIDEUS LEADBEATERI) POPULATION FROM 1970 TO 2021. J Zoo Wildl Med 2023; 54:511-519. [PMID: 37817616 DOI: 10.1638/2022-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 10/12/2023] Open
Abstract
The Leadbeater's possum (Gymnobelideus leadbeateri) is a critically endangered nocturnal marsupial with a restricted range in the Central Highlands of Victoria, Australia. There are two genetically distinct populations divided by location: highland and lowland. Lowland possums exist in one remnant swamp forest and entered captivity in 2012 when ∼60 individuals remained. Today, with less than 20 lowland individuals remaining, any information that informs the yet-unsuccessful breeding program is critical. This study encompasses a retrospective analysis of the causes of mortality and significant histological lesions in captive highland and lowland individuals across seven institutions internationally from 1970 to 2021. During this time, 245 possums lived in captivity. Postmortem records exist for 99 animals, including 349 histopathology diagnoses from 80 reports and 264 gross necropsy diagnoses from 78 reports. Diagnoses were assigned into two categories based on the importance to the individual (causing death or morbidity to a single animal [n = 194]), or importance to the wider population (causing death or morbidity to more than one animal or was related to reproduction [n = 155]). Individual animals had multiple diagnoses, which were tallied as individual data points. Renal disease was diagnosed 57 times; the most common finding was chronic nephropathy (43/57). Cardiovascular disease was diagnosed 33 times; atherosclerosis associated with obesity was common (n = 10/33). Both categories suggest causal association with captive husbandry but elicit no comment on the lack of success of the breeding program. Reproductive disease was diagnosed 36 times in 24 animals (14 females and 10 males). In females, 11 cases of uterine inflammation and associated clinical signs were associated with ascending infection or neoplasia. Of the seven lowland male possums with mortality data, five were infertile (azoospermia or testicular atrophy). More investigation into the reproductive health of this population is indicated to understand the lack of success in the current breeding program.
Collapse
Affiliation(s)
- Chloe Steventon
- Australian Wildlife Health Centre, Healesville Sanctuary, Zoos Victoria, Healesville, VIC 3777, Australia,
| | - Leanne Wicker
- Wildlife Conservation and Science, Zoos Victoria, Healesville, VIC 3777, Australia
| | - Alistair R Legione
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Joanne M Devlin
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Dan Harley
- Wildlife Conservation and Science, Zoos Victoria, Healesville, VIC 3777, Australia
| | | |
Collapse
|
31
|
Nistelberger HM, Roycroft E, Macdonald AJ, McArthur S, White LC, Grady PGS, Pierson J, Sims C, Cowen S, Moseby K, Tuft K, Moritz C, Eldridge MDB, Byrne M, Ottewell K. Genetic mixing in conservation translocations increases diversity of a keystone threatened species, Bettongia lesueur. Mol Ecol 2023. [PMID: 37715549 DOI: 10.1111/mec.17119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/11/2023] [Accepted: 08/17/2023] [Indexed: 09/17/2023]
Abstract
Translocation programmes are increasingly being informed by genetic data to monitor and enhance conservation outcomes for both natural and established populations. These data provide a window into contemporary patterns of genetic diversity, structure and relatedness that can guide managers in how to best source animals for their translocation programmes. The inclusion of historical samples, where possible, strengthens monitoring by allowing assessment of changes in genetic diversity over time and by providing a benchmark for future improvements in diversity via management practices. Here, we used reduced representation sequencing (ddRADseq) data to report on the current genetic health of three remnant and seven translocated boodie (Bettongia lesueur) populations, now extinct on the Australian mainland. In addition, we used exon capture data from seven historical mainland specimens and a subset of contemporary samples to compare pre-decline and current diversity. Both data sets showed the significant impact of population founder source (whether multiple or single) on the genetic diversity of translocated populations. Populations founded by animals from multiple sources showed significantly higher genetic diversity than the natural remnant and single-source translocation populations, and we show that by mixing the most divergent populations, exon capture heterozygosity was restored to levels close to that observed in pre-decline mainland samples. Relatedness estimates were surprisingly low across all contemporary populations and there was limited evidence of inbreeding. Our results show that a strategy of genetic mixing has led to successful conservation outcomes for the species in terms of increasing genetic diversity and provides strong rationale for mixing as a management strategy.
Collapse
Affiliation(s)
- Heidi M Nistelberger
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Emily Roycroft
- Division of Ecology & Evolution, Research School of Biology, ANU College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Anna J Macdonald
- Division of Ecology & Evolution, Research School of Biology, ANU College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Shelley McArthur
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Lauren C White
- Department of Environment, Land, Water and Planning, Arthur Rylah Institute for Environmental Research, Heidelberg, Victoria, Australia
| | - Patrick G S Grady
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Jennifer Pierson
- Australian Wildlife Conservancy, Subiaco, Western Australia, Australia
| | - Colleen Sims
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Saul Cowen
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Katherine Moseby
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Craig Moritz
- Division of Ecology & Evolution, Research School of Biology, ANU College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Mark D B Eldridge
- Terrestrial Vertebrates, Australian Museum Research Institute, Sydney, New South Wales, Australia
| | - Margaret Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Kym Ottewell
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| |
Collapse
|
32
|
Burnett HA, Bieker VC, Le Moullec M, Peeters B, Rosvold J, Pedersen ÅØ, Dalén L, Loe LE, Jensen H, Hansen BB, Martin MD. Contrasting genomic consequences of anthropogenic reintroduction and natural recolonization in high-arctic wild reindeer. Evol Appl 2023; 16:1531-1548. [PMID: 37752961 PMCID: PMC10519417 DOI: 10.1111/eva.13585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 09/28/2023] Open
Abstract
Anthropogenic reintroduction can supplement natural recolonization in reestablishing a species' distribution and abundance. However, both reintroductions and recolonizations can give rise to founder effects that reduce genetic diversity and increase inbreeding, potentially causing the accumulation of genetic load and reduced fitness. Most current populations of the endemic high-arctic Svalbard reindeer (Rangifer tarandus platyrhynchus) originate from recent reintroductions or recolonizations following regional extirpations due to past overharvesting. We investigated and compared the genomic consequences of these two paths to reestablishment using whole-genome shotgun sequencing of 100 Svalbard reindeer across their range. We found little admixture between reintroduced and natural populations. Two reintroduced populations, each founded by 12 individuals around four decades (i.e. 8 reindeer generations) ago, formed two distinct genetic clusters. Compared to the source population, these populations showed only small decreases in genome-wide heterozygosity and increases in inbreeding and lengths of runs of homozygosity. In contrast, the two naturally recolonized populations without admixture possessed much lower heterozygosity, higher inbreeding and longer runs of homozygosity, possibly caused by serial population founder effects and/or fewer or more genetically related founders than in the reintroduction events. Naturally recolonized populations can thus be more vulnerable to the accumulation of genetic load than reintroduced populations. This suggests that in some organisms even small-scale reintroduction programs based on genetically diverse source populations can be more effective than natural recolonization in establishing genetically diverse populations. These findings warrant particular attention in the conservation and management of populations and species threatened by habitat fragmentation and loss.
Collapse
Affiliation(s)
- Hamish A. Burnett
- Centre for Biodiversity Dynamics, Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Department of Natural History, NTNU University MuseumNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Vanessa C. Bieker
- Centre for Biodiversity Dynamics, Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Department of Natural History, NTNU University MuseumNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Mathilde Le Moullec
- Centre for Biodiversity Dynamics, Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Bart Peeters
- Centre for Biodiversity Dynamics, Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Jørgen Rosvold
- Department of Terrestrial BiodiversityNorwegian Institute for Nature Research (NINA)TrondheimNorway
| | | | - Love Dalén
- Centre for PalaeogeneticsStockholmSweden
- Department of Bioinformatics and GeneticsSwedish Museum of Natural HistoryStockholmSweden
- Department of ZoologyStockholm UniversityStockholmSweden
| | - Leif Egil Loe
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesAasNorway
| | - Henrik Jensen
- Centre for Biodiversity Dynamics, Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Brage B. Hansen
- Centre for Biodiversity Dynamics, Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Department of Terrestrial EcologyNorwegian Institute for Nature Research (NINA)TrondheimNorway
| | - Michael D. Martin
- Centre for Biodiversity Dynamics, Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Department of Natural History, NTNU University MuseumNorwegian University of Science and Technology (NTNU)TrondheimNorway
| |
Collapse
|
33
|
Powell DM. Losing the forest for the tree? On the wisdom of subpopulation management. Zoo Biol 2023; 42:591-604. [PMID: 37218348 DOI: 10.1002/zoo.21776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/24/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023]
Abstract
Animal habitats are changing around the world in many ways, presenting challenges to the survival of species. Zoo animal populations are also challenged by small population sizes and limited genetic diversity. Some ex situ populations are managed as subpopulations based on presumed subspecies or geographic locality and related concerns over genetic purity or taxonomic integrity. However, these decisions can accelerate the loss of genetic diversity and increase the likelihood of population extinction. Here I challenge the wisdom of subpopulation management, pointing out significant concerns in the literature with delineation of species, subspecies, and evolutionarily significant units. I also review literature demonstrating the value of gene flow for preserving adaptive potential, the often-misunderstood role of hybridization in evolution, and the likely overstated concerns about outbreeding depression, and preservation of local adaptations. I argue that the most effective way to manage animal populations for the long term be they in human care, in the wild, or if a captive population is being managed for reintroduction, is to manage for maximum genetic diversity rather than managing subpopulations focusing on taxonomic integrity, genetic purity, or geographic locale because selection in the future, rather than the past, will determine what genotypes and phenotypes are the most fit. Several case studies are presented to challenge the wisdom of subpopulation management and stimulate thinking about the preservation of genomes rather than species, subspecies, or lineages because those units evolved in habitats that are likely very different from those habitats today and in the future.
Collapse
Affiliation(s)
- David M Powell
- Department of Reproductive & Behavioral Sciences, Saint Louis Zoo, Saint Louis, Missouri, USA
| |
Collapse
|
34
|
Cowen S, Sims C, Ottewell K, Knox F, Friend T, Mills H, Garretson S, Rayner K, Gibson L. Return to 1616: Multispecies Fauna Reconstruction Requires Thinking Outside the Box. Animals (Basel) 2023; 13:2762. [PMID: 37685026 PMCID: PMC10486414 DOI: 10.3390/ani13172762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 09/10/2023] Open
Abstract
Conservation translocations have become increasingly popular for 'rewilding' areas that have lost their native fauna. These multispecies translocations are complex and need to consider the requirements of each individual species as well as the influence of likely interactions among them. The Dirk Hartog Island National Park Ecological Restoration Project, Return to 1616, aspires to restore ecological function to Western Australia's largest island. Since 2012, pest animals have been eradicated, and conservation translocations of seven fauna species have been undertaken, with a further six planned. Here, we present a synthesis of the innovative approaches undertaken in restoring the former faunal assemblage of Dirk Hartog Island and the key learnings gathered as the project has progressed.
Collapse
Affiliation(s)
- Saul Cowen
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Woodvale, WA 6026, Australia; (C.S.); (F.K.); (S.G.); (K.R.); (L.G.)
- School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Colleen Sims
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Woodvale, WA 6026, Australia; (C.S.); (F.K.); (S.G.); (K.R.); (L.G.)
| | - Kym Ottewell
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA 6151, Australia;
| | - Fiona Knox
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Woodvale, WA 6026, Australia; (C.S.); (F.K.); (S.G.); (K.R.); (L.G.)
- School of Veterinary Medicine, Murdoch University, Murdoch, WA 6150, Australia
| | - Tony Friend
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Albany, WA 6330, Australia;
| | - Harriet Mills
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, South Perth, WA 6951, Australia;
| | - Sean Garretson
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Woodvale, WA 6026, Australia; (C.S.); (F.K.); (S.G.); (K.R.); (L.G.)
| | - Kelly Rayner
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Woodvale, WA 6026, Australia; (C.S.); (F.K.); (S.G.); (K.R.); (L.G.)
| | - Lesley Gibson
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Woodvale, WA 6026, Australia; (C.S.); (F.K.); (S.G.); (K.R.); (L.G.)
- School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA 6151, Australia;
| |
Collapse
|
35
|
Cavedon M, Neufeld L, Finnegan L, Hervieux D, Michalak A, Pelletier A, Polfus J, Schwantje H, Skinner G, Steenweg R, Thacker C, Poissant J, Musiani M. Genomics of founders for conservation breeding: the Jasper caribou case. CONSERV GENET 2023; 24:855-867. [PMID: 37969360 PMCID: PMC10638200 DOI: 10.1007/s10592-023-01540-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/07/2023] [Indexed: 11/17/2023]
Abstract
Conservation breeding programs are increasingly used as recovery actions for wild animals; bringing founders into captivity to rear captive populations for future reintroduction into the wild. The International Union for the Conservation of Nature recommends that founders should come from genetically close populations and should have sufficient genetic diversity to avoid mating among relatives. Genomic data are highly informative for evaluating founders due to their high resolution and ability to capture adaptive divergence, yet, their application in that context remains limited. Woodland caribou are federally listed as a Species at Risk in Canada, with several populations facing extirpation, such as those in the Rocky Mountains of Alberta and British Columbia (BC). To prevent local extirpation, Jasper National Park (JNP) is proposing a conservation breeding program. We examined single nucleotide polymorphisms for 144 caribou from 11 populations encompassing a 200,0002 km area surrounding JNP to provide information useful for identifying appropriate founders for this program. We found that this area likely hosts a caribou metapopulation historically characterized by high levels of gene flow, which indicates that multiple sources of founders would be appropriate for initiating a breeding program. However, population structure and adaptive divergence analyses indicate that JNP caribou are closest to populations in the BC Columbia range, which also have suitable genetic diversity for conservation breeding. We suggest that collaboration among jurisdictions would be beneficial to implement the program to promote recovery of JNP caribou and possibly other caribou populations in the surrounding area, which is strategically at the periphery of the distribution of this endangered species. Supplementary Information The online version contains supplementary material available at 10.1007/s10592-023-01540-3.
Collapse
Affiliation(s)
- Maria Cavedon
- Deparment of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Lalenia Neufeld
- Jasper National Park of Canada, Parks Canada, Jasper, Canada
| | - Laura Finnegan
- fRI Research, 1176 Switzer Drive, Hinton, AB T7V 1V3 Canada
| | - Dave Hervieux
- Fish and Wildlife Stewardship Branch, Alberta Environment and Protected Areas, Grande Prairie, AB T8V 6J4 Canada
| | - Anita Michalak
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Agnes Pelletier
- Ministry of Land, Water and Resource Stewardship Northeast Region, 400-10003-110Th Avenue, Fort St. John, BC V1J 6M7 Canada
| | - Jean Polfus
- Canadian Wildlife Service – Pacific Region, Environment and Climate Change Canada, 1238 Discovery Ave, Kelowna, BC V1V 1V9 Canada
| | - Helen Schwantje
- Wildlife and Habitat Branch, Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Government of British Columbia, 2080 Labieux Road, Nanaimo, BC V9T 6J 9 Canada
| | - Geoff Skinner
- Jasper National Park of Canada, Parks Canada, Jasper, Canada
| | - Robin Steenweg
- Canadian Wildlife Service – Pacific Region, Environment and Climate Change Canada, 1238 Discovery Ave, Kelowna, BC V1V 1V9 Canada
| | - Caeley Thacker
- Wildlife and Habitat Branch, Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Government of British Columbia, 2080 Labieux Road, Nanaimo, BC V9T 6J 9 Canada
| | - Jocelyn Poissant
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Marco Musiani
- Dipartimento Scienze Biologiche Geologiche Ambientali, Università Di Bologna, Via Zamboni, 33 - 40126 Bologna, Italia
| |
Collapse
|
36
|
Marks AJ, Goldingay RL. Are Urban Populations of a Gliding Mammal Vulnerable to Decline? Animals (Basel) 2023; 13:2098. [PMID: 37443895 DOI: 10.3390/ani13132098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Small populations are at high risk of extinction, and they are likely to need management intervention. Successful management, however, relies on sufficient long-term demographic data in order to determine whether apparent declines are natural fluctuations or the product of threatening processes. In this study, we monitored a small urban population of squirrel gliders (Petaurus norfolcensis) in Queensland, Australia, over a 16 year period. A reference population in a larger forest patch was also studied in order to investigate whether its demographic trends were similar. Using mark-recapture data to generate estimates of apparent survival and population size, we found evidence of a decline within the small population but not in the reference population over the monitoring period. We suggest that the influence of multiple factors may have led to the decline, but, ultimately, that the genetic condition of the small population may be responsible. Understanding demographic trends is an important context for management interventions of small populations, although causes of decline need to be identified for successful management. The squirrel glider provides a useful case study for small urban populations and particularly for arboreal mammals.
Collapse
Affiliation(s)
- Anita J Marks
- Faculty of Science and Engineering, Southern Cross University, East Lismore, NSW 2480, Australia
| | - Ross L Goldingay
- Faculty of Science and Engineering, Southern Cross University, East Lismore, NSW 2480, Australia
| |
Collapse
|
37
|
Fitzpatrick SW, Mittan-Moreau C, Miller M, Judson JM. Genetic rescue remains underused for aiding recovery of federally listed vertebrates in the United States. J Hered 2023; 114:354-366. [PMID: 36975379 PMCID: PMC10287150 DOI: 10.1093/jhered/esad002] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/13/2023] [Indexed: 03/29/2023] Open
Abstract
Restoring gene flow among fragmented populations is discussed as a potentially powerful management strategy that could reduce inbreeding depression and cause genetic rescue. Yet, examples of assisted migration for genetic rescue remain sparse in conservation, prompting several outspoken calls for its increased use in genetic management of fragmented populations. We set out to evaluate the extent to which this strategy is underused and to determine how many imperiled species would realistically stand to benefit from genetic rescue, focusing on federally threatened or endangered vertebrate species in the United States. We developed a "genetic rescue suitability index (GR index)" based on concerns about small population problems relative to risks associated with outbreeding depression and surveyed the literature for 222 species. We found that two-thirds of these species were good candidates for consideration of assisted migration for the purpose of genetic rescue according to our suitability index. Good candidate species spanned all taxonomic groups and geographic regions, though species with more missing data tended to score lower on the suitability index. While we do not recommend a prescriptive interpretation of our GR index, we used it here to establish that assisted migration for genetic rescue is an underused strategy. For example, we found in total, "genetic rescue" was only mentioned in 11 recovery plans and has only been implemented in 3 of the species we surveyed. A potential way forward for implementation of this strategy is incorporating genetic rescue as a priority in USFWS recovery documentation. In general, our results suggest that although not appropriate for all imperiled species, many more species stand to benefit from a conservation strategy of assisted migration for genetic rescue than those for which it has previously been considered or implemented.
Collapse
Affiliation(s)
- Sarah W Fitzpatrick
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, United States
- Department of Integrative Biology, Michigan State University, East Lansing, MI, United States
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, United States
| | - Cinnamon Mittan-Moreau
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, United States
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, United States
| | - Madison Miller
- Savannah River Ecology Lab, University of Georgia, Aiken, SC, United States
- Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV, United States
| | - Jessica M Judson
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, United States
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
38
|
Alves F, Banks SC, Edworthy M, Stojanovic D, Langmore NE, Heinsohn R. Using conservation genetics to prioritise management options for an endangered songbird. Heredity (Edinb) 2023; 130:289-301. [PMID: 37016134 PMCID: PMC10162965 DOI: 10.1038/s41437-023-00609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 04/06/2023] Open
Abstract
Genetic data can be highly informative for answering questions relevant to practical conservation efforts, but remain one of the most neglected aspects of species recovery plans. Framing genetic questions with reference to practical and tractable conservation objectives can help bypass this limitation of the application of genetics in conservation. Using a single-nucleotide polymorphism dataset from reduced-representation sequencing (DArTSeq), we conducted a genetic assessment of remnant populations of the endangered forty-spotted pardalote (Pardalotus quadragintus), a songbird endemic to Tasmania, Australia. Our objectives were to inform strategies for the conservation of genetic diversity in the species and estimate effective population sizes and patterns of inter-population movement to identify management units relevant to population conservation and habitat restoration. We show population genetic structure and identify two small populations on mainland Tasmania as 'satellites' of larger Bruny Island populations connected by migration. Our data identify management units for conservation objectives relating to genetic diversity and habitat restoration. Although our results do not indicate the immediate need to genetically manage populations, the small effective population sizes we estimated for some populations indicate that they are vulnerable to genetic drift, highlighting the urgent need to implement habitat restoration to increase population size and to conduct genetic monitoring. We discuss how our genetic assessment can be used to inform management interventions for the forty-spotted pardalote and show that by assessing contemporary genetic aspects, valuable information for conservation planning and decision-making can be produced to guide actions that account for genetic diversity and increase chances of recovery in species of conservation concern.
Collapse
Affiliation(s)
- Fernanda Alves
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia.
- Fenner School of Environment and Society, Australian National University, Canberra, ACT, Australia.
| | - Sam C Banks
- Research Institute for the Environment and Livelihoods, College of Engineering, IT and the Environment, Charles Darwin University, Darwin, NT, Australia
| | - Max Edworthy
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Dejan Stojanovic
- Fenner School of Environment and Society, Australian National University, Canberra, ACT, Australia
| | - Naomi E Langmore
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Robert Heinsohn
- Fenner School of Environment and Society, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
39
|
Alagador D. Effective conservation planning of Iberian amphibians based on a regionalization of climate-driven range shifts. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14026. [PMID: 36317717 DOI: 10.1111/cobi.14026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/11/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Amphibians are severely affected by climate change, particularly in regions where droughts prevail and water availability is scarce. The extirpation of amphibians triggers cascading effects that disrupt the trophic structure of food webs and ecosystems. Dedicated assessments of the spatial adaptive potential of amphibian species under climate change are, therefore, essential to provide guidelines for their effective conservation. I used predictions about the location of suitable climates for 27 amphibian species in the Iberian Peninsula from a baseline period to 2080 to typify shifting species' ranges. The time at which these range types are expected to be functionally important for the adaptation of a species was used to identify full or partial refugia; areas most likely to be the home of populations moving into new climatically suitable grounds; areas most likely to receive populations after climate adaptive dispersal; and climatically unsuitable areas near suitable areas. I implemented an area prioritization protocol for each species to obtain a cohesive set of areas that would provide maximum adaptability and where management interventions should be prioritized. A connectivity assessment pinpointed where facilitative strategies would be most effective. Each of the 27 species had distinct spatial requirements but, common to all species, a bottleneck effect was predicted by 2050 because source areas for subsequent dispersal were small in extent. Three species emerged as difficult to maintain up to 2080. The Iberian northwest was predicted to capture adaptive range for most species. My study offers analytical guidelines for managers and decision makers to undertake systematic assessments on where and when to intervene to maximize the persistence of amphibian species and the functionality of the ecosystems that depend on them.
Collapse
Affiliation(s)
- Diogo Alagador
- The Biodiversity Chair, Institute for Advanced Studies and Research, Universidade de Évora, Évora, Portugal
- MED - Mediterranean Institute for Agriculture, Environment and Development, CHANGE - Global Change and Sustainability Institute, Universidade de Évora, Évora, Portugal
| |
Collapse
|
40
|
Lloyd‐Jones LR, Brien ML, Feutry P, Lawrence E, Beri P, Booth S, Coulson S, Baylis SM, Villiers K, Taplin LE, Westcott DA. Implications of past and present genetic connectivity for management of the saltwater crocodile ( Crocodylus porosus). Evol Appl 2023; 16:911-935. [PMID: 37124084 PMCID: PMC10130557 DOI: 10.1111/eva.13545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/17/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Effective management of protected species requires information on appropriate evolutionary and geographic population boundaries and knowledge of how the physical environment and life-history traits combine to shape the population structure and connectivity. Saltwater crocodiles (Crocodylus porosus) are the largest and most widely distributed of living crocodilians, extending from Sri Lanka to Southeast Asia and down to northern Australia. Given the long-distance movement capabilities reported for C. porosus, management units are hypothesised to be highly connected by migration. However, the magnitude, scale, and consistency of connection across managed populations are not fully understood. Here we used an efficient genotyping method that combines DArTseq and sequence capture to survey≈ 3000 high-quality genome-wide single nucleotide polymorphisms from 1176 C. porosus sampled across nearly the entire range of the species in Queensland, Australia. We investigated historical and present-day connectivity patterns using fixation and diversity indices coupled with clustering methods and the spatial distribution of kin pairs. We inferred kinship using forward simulation coupled with a kinship estimation method that is robust to unspecified population structure. The results demonstrated that the C. porosus population has substantial genetic structure with six broad populations correlated with geographical location. The rate of gene flow was highly correlated with spatial distance, with greater differentiation along the east coast compared to the west. Kinship analyses revealed evidence of reproductive philopatry and limited dispersal, with approximately 90% of reported first and second-degree relatives showing a pairwise distance of <50 km between sampling locations. Given the limited dispersal, lack of suitable habitat, low densities of crocodiles and the high proportion of immature animals in the population, future management and conservation interventions should be considered at regional and state-wide scales.
Collapse
Affiliation(s)
- Luke R. Lloyd‐Jones
- Commonwealth Scientific and Industrial Research OrganisationData61BrisbaneQueensland4072Australia
| | - Matthew L. Brien
- Department of Environment and ScienceQueensland GovernmentCairnsQueensland4870Australia
| | - Pierre Feutry
- Commonwealth Scientific and Industrial Research OrganisationOceans and AtmosphereHobartTasmania7000Australia
| | - Emma Lawrence
- Commonwealth Scientific and Industrial Research OrganisationData61BrisbaneQueensland4072Australia
| | - Paul Beri
- Department of Environment and ScienceQueensland GovernmentCairnsQueensland4870Australia
| | - Simon Booth
- Department of Environment and ScienceQueensland GovernmentCairnsQueensland4870Australia
| | - Steven Coulson
- Department of Environment and ScienceQueensland GovernmentCairnsQueensland4870Australia
| | - Shane M. Baylis
- Commonwealth Scientific and Industrial Research OrganisationOceans and AtmosphereHobartTasmania7000Australia
| | - Kira Villiers
- Commonwealth Scientific and Industrial Research OrganisationData61BrisbaneQueensland4072Australia
| | - Laurence E. Taplin
- Department of Environment and ScienceQueensland GovernmentCairnsQueensland4870Australia
| | - David A. Westcott
- Commonwealth Scientific and Industrial Research OrganisationLand and WaterAthertonQueensland4883Australia
| |
Collapse
|
41
|
Roznik EA, Buckanoff H, Langston RW, Shupp CJ, Smith D. Conservation through Collaboration: Regional Conservation Programs of the North Carolina Zoo. JOURNAL OF ZOOLOGICAL AND BOTANICAL GARDENS 2023. [DOI: 10.3390/jzbg4020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
In response to rapid biodiversity losses in recent decades, zoos have become more engaged in conservation issues. Solutions to conservation challenges are complex and require collaborative efforts across organizations. Zoos can be effective partners that can contribute diverse expertise and resources to protect wildlife and their habitats. While zoos often partner with international organizations to facilitate field-based conservation projects on the exotic animals they exhibit, some of the most meaningful conservation and education initiatives are conducted locally in partnership with local organizations. A core part of the mission of the North Carolina Zoo (Asheboro, NC, USA) is the conservation of wildlife and their natural habitats, both regionally and internationally. The goal of this article is to review the North Carolina Zoo’s regional conservation programs and the importance of partnerships with other local organizations in accomplishing shared goals. North Carolina Zoo plays an important role in regional conservation by protecting and managing natural lands, protecting declining amphibians through headstarting and habitat management, rehabilitating native wildlife, and working on local outreach and sustainability projects to reduce impacts on natural resources and inspire others to get involved in conservation. These programs were developed through partnerships with local and state government agencies, academic institutions, non-profit organizations, other zoos and aquariums, schools, libraries, and businesses. These collaborations have been instrumental in developing and implementing successful projects by pooling limited resources and sharing crucial expertise. They demonstrate how zoos are evolving to become leaders and partners in conservation, research, and education to protect local species and natural resources.
Collapse
|
42
|
Torres E, García-Fernández A, Iñigo D, Lara-Romero C, Morente-López J, Prieto-Benítez S, Rubio Teso ML, Iriondo JM. Facilitated Adaptation as A Conservation Tool in the Present Climate Change Context: A Methodological Guide. PLANTS (BASEL, SWITZERLAND) 2023; 12:1258. [PMID: 36986946 PMCID: PMC10053585 DOI: 10.3390/plants12061258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Climate change poses a novel threat to biodiversity that urgently requires the development of adequate conservation strategies. Living organisms respond to environmental change by migrating to locations where their ecological niche is preserved or by adapting to the new environment. While the first response has been used to develop, discuss and implement the strategy of assisted migration, facilitated adaptation is only beginning to be considered as a potential approach. Here, we present a review of the conceptual framework for facilitated adaptation, integrating advances and methodologies from different disciplines. Briefly, facilitated adaptation involves a population reinforcement that introduces beneficial alleles to enable the evolutionary adaptation of a focal population to pressing environmental conditions. To this purpose, we propose two methodological approaches. The first one (called pre-existing adaptation approach) is based on using pre-adapted genotypes existing in the focal population, in other populations, or even in closely related species. The second approach (called de novo adaptation approach) aims to generate new pre-adapted genotypes from the diversity present in the species through artificial selection. For each approach, we present a stage-by-stage procedure, with some techniques that can be used for its implementation. The associated risks and difficulties of each approach are also discussed.
Collapse
Affiliation(s)
- Elena Torres
- Departamento de Biotecnología-Biología Vegetal, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Alfredo García-Fernández
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| | - Diana Iñigo
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| | - Carlos Lara-Romero
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| | - Javier Morente-López
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
- Grupo de Investigación de Ecología y Evolución en Islas, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 Tenerife, Spain
| | - Samuel Prieto-Benítez
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
- Ecotoxicology of Air Pollution, Environmental Department, CIEMAT, 28040 Madrid, Spain
| | - María Luisa Rubio Teso
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| | - José M. Iriondo
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| |
Collapse
|
43
|
Pfeilsticker TR, Jones RC, Steane DA, Vaillancourt RE, Potts BM. Molecular insights into the dynamics of species invasion by hybridisation in Tasmanian eucalypts. Mol Ecol 2023; 32:2913-2929. [PMID: 36807951 DOI: 10.1111/mec.16892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/26/2022] [Accepted: 01/26/2023] [Indexed: 02/22/2023]
Abstract
In plants where seed dispersal is limited compared with pollen dispersal, hybridisation may enhance gene exchange and species dispersal. We provide genetic evidence of hybridisation contributing to the expansion of the rare Eucalyptus risdonii into the range of the widespread Eucalyptus amygdalina. These closely related tree species are morphologically distinct, and observations suggest that natural hybrids occur along their distribution boundaries and as isolated trees or in small patches within the range of E. amygdalina. Hybrid phenotypes occur outside the range of normal dispersal for E. risdonii seed, yet in some hybrid patches small individuals resembling E. risdonii occur and are hypothesised to be a result of backcrossing. Using 3362 genome-wide SNPs assessed from 97 individuals of E. risdonii and E. amygdalina and 171 hybrid trees, we show that (i) isolated hybrids match the genotypes expected of F1 /F2 hybrids, (ii) there is a continuum in the genetic composition among the isolated hybrid patches from patches dominated by F1 /F2 -like genotypes to those dominated by E. risdonii-backcross genotypes, and (iii) the E. risdonii-like phenotypes in the isolated hybrid patches are most-closely related to proximal larger hybrids. These results suggest that the E. risdonii phenotype has been resurrected in isolated hybrid patches established from pollen dispersal, providing the first steps in its invasion of suitable habitat by long-distance pollen dispersal and complete introgressive displacement of E. amygdalina. Such expansion accords with the population demographics, common garden performance data, and climate modelling which favours E. risdonii and highlights a role of interspecific hybridisation in climate change adaptation and species expansion.
Collapse
Affiliation(s)
- Thais R Pfeilsticker
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Rebecca C Jones
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Dorothy A Steane
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - René E Vaillancourt
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Brad M Potts
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
44
|
Multiplexed ISSR Genotyping by Sequencing (MIG-Seq). Methods Mol Biol 2023; 2638:403-414. [PMID: 36781659 DOI: 10.1007/978-1-0716-3024-2_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Multiplexed inter-simple sequence repeat (ISSR) genotyping by sequencing (MIG-seq) is a simple, rapid, and inexpensive method for detecting single-nucleotide polymorphisms (SNPs) using next-generation sequencing (NGS). The advantages of MIG-seq include easy application to various species without prior genetic information. In addition, this method opens the door to genome-wide nucleotide sequence analyses of low-quality and trace-level deoxyribonucleic acid (DNA) samples, which have previously been difficult to analyze. Another advantage is that the procedure is simple, time-saving, and inexpensive. Recently, MIG-seq has been applied to wild and cultivated plants and has produced novel results. Using invisible DNA information, questions related to gene flow through pollination and seed dispersal, the genetic structure and diversity of populations, clonality, and the hybridization of wild and cultivated plants are being rapidly answered. In this chapter, I present the results of plant research based on MIG-seq and describe the procedure for this method as a user of MIG-seq.
Collapse
|
45
|
Beaman JE, Mulligan C, Moore C, Mitchell D, Narayan E, Burke da Silva K. Resident wild koalas show resilience to large-scale translocation of bushfire-rescued koalas. CONSERVATION PHYSIOLOGY 2023; 11:coac088. [PMID: 36726864 PMCID: PMC9885738 DOI: 10.1093/conphys/coac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/11/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Wildlife translocation is increasingly utilized as a conservation management action, to mitigate the immediate negative effects of habitat loss and fragmentation (e.g. from land clearing or bushfires). Previous research has shown that stress responses can help or hinder survival in translocated wildlife and determine the efficacy of translocation as a conservation action. Yet these translocated animals are only one side of the equation, with translocation also potentially impacting the animals in the recipient population. We measured physiological markers of stress (faecal cortisol metabolite concentrations and neutrophil-lymphocyte ratios) and assessed health condition in a wild koala population one year after a major translocation of bushfire-rescued koalas on Kangaroo Island. We expected to find a high population density at the site (>0.75 koalas per hectare) and that resident koalas would show signs of chronic stress and ill health as a result of territorial conflict over food trees and reproductive opportunities. In contrast, we found that only one-fifth of the population remaining at the site were translocated koalas. The overall population density was also much lower (0.21 koalas per hectare) than anticipated. With no evidence of mass mortality at the site, we suggest that the majority of translocated koalas dispersed away from the site. Our stress marker measurements did not differ between the wild koalas and a sample of captive (non-display) koalas at the nearby Kangaroo Island Wildlife Park and were generally low compared to other studies. Veterinary examinations found that most koalas were in good body condition with very few diagnostic indicators of systemic ill health. Overall, our results suggest that, if there is adequate landscape-scale habitat connectivity and opportunity for dispersal, translocated koalas are likely to disperse from the site of release, with limited impacts on recipient koala populations at translocation release sites.
Collapse
Affiliation(s)
- Julian E Beaman
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042
| | - Connor Mulligan
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042
| | - Claire Moore
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042
| | - Dana Mitchell
- Kangaroo Island Wildlife Park, 4068 Playford Hwy, Duncan, South Australia 5223
- Kangaroo Island Koala & Wildlife Rescue Centre, 4068 Playford Hwy, Duncan, South Australia 5223
| | - Edward Narayan
- School of Agriculture and Food Sciences, The University of Queensland, Lawes, Queensland 4343
| | - Karen Burke da Silva
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042
| |
Collapse
|
46
|
Garrote PJ, Castilla AR, Picó FX, Fedriani JM. Examining the spatiotemporal variation of genetic diversity and genetic rarity in the natural plant recolonization of human-altered areas. CONSERV GENET 2023. [DOI: 10.1007/s10592-023-01503-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AbstractThe spatiotemporal genetic variation at early plant life stages may substantially affect the natural recolonization of human-altered areas, which is crucial to understand plant and habitat conservation. In animal-dispersed plants, dispersers’ behavior may critically drive the distribution of genetic variation. Here, we examine how genetic rarity is spatially and temporally structured in seedlings of a keystone pioneer palm (Chamaerops humilis) and how the variation of genetic rarity could ultimately affect plant recruitment. We intensively monitored the seed rain mediated by two medium-sized carnivores during two consecutive seasons in a Mediterranean human-altered area. We genotyped 143 out of 309 detected seedlings using 12 microsatellite markers. We found that seedlings emerging from carnivore-dispersed seeds showed moderate to high levels of genetic diversity and no evidence of inbreeding. We found inflated kinship among seedlings that emerged from seeds within a single carnivore fecal sample, but a dilution of such FSGS at larger spatial scales (e.g. latrine). Seedlings showed a significant genetic sub-structure and the sibling relationships varied depending on the spatial scale. Rare genotypes arrived slightly later throughout the dispersal season and tended to be spatially isolated. However, genetic rarity was not a significant predictor by itself which indicates that, at least, its influence on seedling survival was smaller than other spatiotemporal factors. Our results suggest strong C. humilis resilience to genetic bottlenecks due to human disturbances. We highlight the study of plant-animal interactions from a genetic perspective since it provides crucial information for plant conservation and the recovery of genetic plant resilience.
Collapse
|
47
|
Lu-Irving P, Bragg JG, Rossetto M, King K, O’Brien M, van der Merwe MM. Capturing Genetic Diversity in Seed Collections: An Empirical Study of Two Congeners with Contrasting Mating Systems. PLANTS (BASEL, SWITZERLAND) 2023; 12:522. [PMID: 36771606 PMCID: PMC9921034 DOI: 10.3390/plants12030522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Plant mating systems shape patterns of genetic diversity and impact the long-term success of populations. As such, they are relevant to the design of seed collections aiming to maximise genetic diversity (e.g., germplasm conservation, ecological restoration). However, for most species, little is known empirically about how variation in mating systems and genetic diversity is distributed. We investigated the relationship between genetic diversity and mating systems in two functionally similar, co-occurring species of Hakea (Proteaceae), and evaluated the extent to which genetic diversity was captured in seeds. We genotyped hundreds of seedlings and mother plants via DArTseq, and developed novel implementations of two approaches to inferring the mating system from SNP data. A striking contrast in patterns of genetic diversity between H. sericea and H. teretifolia was revealed, consistent with a contrast in their mating systems. While both species had mixed mating systems, H. sericea was found to be habitually selfing, while H. teretifolia more evenly employed both selfing and outcrossing. In both species, seed collection schemes maximised genetic diversity by increasing the number of maternal lines and sites sampled, but twice as many sites were needed for the selfing species to capture equivalent levels of genetic variation at a regional scale.
Collapse
Affiliation(s)
- Patricia Lu-Irving
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens Sydney, Mrs Macquaries Rd., Sydney, NSW 2000, Australia
| | - Jason G. Bragg
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens Sydney, Mrs Macquaries Rd., Sydney, NSW 2000, Australia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens Sydney, Mrs Macquaries Rd., Sydney, NSW 2000, Australia
| | - Kit King
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens Sydney, Mrs Macquaries Rd., Sydney, NSW 2000, Australia
| | - Mitchell O’Brien
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens Sydney, Mrs Macquaries Rd., Sydney, NSW 2000, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Innovation Quarter Westmead, Level 3, East Tower, 158-164 Hawkesbury Rd., Westmead, NSW 2145, Australia
| | - Marlien M. van der Merwe
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens Sydney, Mrs Macquaries Rd., Sydney, NSW 2000, Australia
| |
Collapse
|
48
|
Thompson LM, Thurman LL, Cook CN, Beever EA, Sgrò CM, Battles A, Botero CA, Gross JE, Hall KR, Hendry AP, Hoffmann AA, Hoving C, LeDee OE, Mengelt C, Nicotra AB, Niver RA, Pérez‐Jvostov F, Quiñones RM, Schuurman GW, Schwartz MK, Szymanski J, Whiteley A. Connecting research and practice to enhance the evolutionary potential of species under climate change. CONSERVATION SCIENCE AND PRACTICE 2023. [DOI: 10.1111/csp2.12855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Laura M. Thompson
- U.S. Geological Survey (USGS), National Climate Adaptation Science Center and the University of Tennessee Knoxville Tennessee USA
| | | | - Carly N. Cook
- School of Biological Sciences Monash University Melbourne Australia
| | - Erik A. Beever
- USGS, Northern Rocky Mountain Science Center and Montana State University Bozeman Montana USA
| | - Carla M. Sgrò
- School of Biological Sciences Monash University Melbourne Australia
| | | | | | - John E. Gross
- National Park Service (NPS) Climate Change Response Program Fort Collins Colorado USA
| | | | | | | | | | - Olivia E. LeDee
- USGS, Midwest Climate Adaptation Science Center Saint Paul Minnesota USA
| | | | | | - Robyn A. Niver
- U.S. Fish and Wildlife Service (USFWS), Branch of Listing and Policy Support Bailey's Crossroads Virginia USA
| | | | - Rebecca M. Quiñones
- Massachusetts Division of Fisheries and Wildlife Westborough Massachusetts USA
| | - Gregor W. Schuurman
- National Park Service (NPS) Climate Change Response Program Fort Collins Colorado USA
| | - Michael K. Schwartz
- U.S. Forest Service, National Genomics Center for Wildlife and Fish Conservation Missoula Montana USA
| | - Jennifer Szymanski
- USFWS, Branch of SSA Science Support, Division of Endangered Species Onalaska Wisconsin USA
| | | |
Collapse
|
49
|
Stanbridge D, O’Riain MJ, Dreyer C, le Roex N. Genetic restoration of black rhinoceroses in South Africa: conservation implications. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Meek MH, Beever EA, Barbosa S, Fitzpatrick SW, Fletcher NK, Mittan-Moreau CS, Reid BN, Campbell-Staton SC, Green NF, Hellmann JJ. Understanding Local Adaptation to Prepare Populations for Climate Change. Bioscience 2022. [DOI: 10.1093/biosci/biac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Abstract
Adaptation within species to local environments is widespread in nature. Better understanding this local adaptation is critical to conserving biodiversity. However, conservation practices can rely on species’ trait averages or can broadly assume homogeneity across the range to inform management. Recent methodological advances for studying local adaptation provide the opportunity to fine-tune efforts for managing and conserving species. The implementation of these advances will allow us to better identify populations at greatest risk of decline because of climate change, as well as highlighting possible strategies for improving the likelihood of population persistence amid climate change. In the present article, we review recent advances in the study of local adaptation and highlight ways these tools can be applied in conservation efforts. Cutting-edge tools are available to help better identify and characterize local adaptation. Indeed, increased incorporation of local adaptation in management decisions may help meet the imminent demands of managing species amid a rapidly changing world.
Collapse
Affiliation(s)
- Mariah H Meek
- Department of Integrative Biology, AgBio Research, and the Ecology, Evolution, and Behavior Program Michigan State University , East Lansing, Michigan, United States
| | - Erik A Beever
- Department of Ecology, Montana State University , Bozeman, Montana, United States
| | - Soraia Barbosa
- Department of Fish and Wildlife Sciences, University of Idaho , Moscow, Idaho, United States
| | - Sarah W Fitzpatrick
- Department of Integrative Biology, Michigan State University , Hickory Corners, Michigan, United States
| | - Nicholas K Fletcher
- Department of Ecology and Evolutionary Biology, Cornell University , Ithaca, New York, United States
- Department of Biology, University of Maryland , College Park, Maryland, United States
| | - Cinnamon S Mittan-Moreau
- Department of Integrative Biology, Michigan State University , Hickory Corners, Michigan, United States
- Department of Ecology and Evolutionary Biology, Cornell University , Ithaca, New York, United States
| | - Brendan N Reid
- Department of Integrative Biology, Michigan State University , Hickory Corners, Michigan, United States
- Department of Ecology, Evolution, and Natural Resources, Rutgers University , New Brunswick, New Jersey, United States
| | - Shane C Campbell-Staton
- Department of Ecology and Evolutionary Biology, Princeton University , Princeton, New Jersey, United States
| | - Nancy F Green
- US Fish and Wildlife Service, Falls Church , Virginia, United States
| | - Jessica J Hellmann
- Institute of the Environment and Department of Ecology, Evolution, and Behavior, University of Minnesota , Saint Paul, Minnesota, United States
| |
Collapse
|