1
|
Štrajtenberger M, Lugović-Mihić L, Stipić-Marković A, Artuković M, Glavina A, Pravica NB, Hanžek M, Sušić T, Tešija Kuna A, Nađ Bungić L. Assesment of Salivary and Serum Levels of HBD2 in Patients with Chronic Angioedema. J Clin Med 2024; 13:7552. [PMID: 39768474 PMCID: PMC11728209 DOI: 10.3390/jcm13247552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Human β-defensin 2 (HBD2) is a protein that plays an important role in activating the immune system by modulating spinal pathways and the inflammatory response. According to previous research, HBD2 was proven to be important in chronic spontaneous urticaria (CSU) (their values were significantly elevated in CSU patients, with a significant correlation between HBD2 levels and the percentage of peripheral basophils, suggesting that elevated HBD2 levels may be a potential marker of basophil and mast cell activation), which led us to additional research on the HBD2 molecule in isolated chronic angioedema. The aim of this research is to examine HBD2 values in the saliva and serum of patients with isolated angioedema, as a potential biomarker of the disease. Methods: This cross-sectional study involved a total of 102 participants, involving three groups: 33 patients with isolated chronic non-hereditary angioedema (AE) (defined as sudden onset of localized edema without chronic urticaria), 33 patients with angioedema associated with chronic urticaria (CU+AE), and 35 healthy participants (controls, CTRL). They provided a saliva sample to determine HBD2 levels using an ELISA (Enzyme-Linked Immunosorbent Assay). Subsequently, a peripheral blood sample (serum) was taken from the participants to determine HBD2 levels using the same ELISA. Results: Salivary HBD2 levels were significantly higher in those with CU+AE than in the CTRL (p = 0.019). While salivary HBD2 values differed between those with angioedema and CTRL, the serum HBD2 values did not. Also, no correlation between the levels of HBD2 in saliva and serum was found. Conclusions: Since we found that salivary HBD2 values were significantly higher in those with CU+AE than in CTRL, this points to a possible role of the HBD2 molecule in pathogenesis of AE (namely, that it induces degranulation in mast cells and vascular permeability, and has antimicrobial properties) Therefore, more research is needed to determine how reliable salivary HBD2 measurement is, as well as its significance.
Collapse
Affiliation(s)
- Maja Štrajtenberger
- Department of Pulmology, Special Hospital for Pulmonary Diseases, 10000 Zagreb, Croatia; (M.Š.); (L.N.B.)
| | - Liborija Lugović-Mihić
- Department of Dermatovenereology, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Asja Stipić-Marković
- Department for Respiratory Infections, Dr. Fran Mihaljević University Hospital for Infections Diseases, 10000 Zagreb, Croatia;
| | - Marinko Artuković
- Faculty of Dental Medicine and Health Osijek, 31000 Osijek, Croatia;
| | - Ana Glavina
- Department of Dental Medicine, University Hospital of Split, 21000 Split, Croatia;
- Department of Oral Medicine, Study of Dental Medicine, School of Medicine, University of Split, 21000 Split, Croatia
| | - Nika Barbara Pravica
- Department of Emergency Medicine, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia;
| | - Milena Hanžek
- Department of Clinical Chemistry, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia; (M.H.); (T.S.); (A.T.K.)
| | - Tamara Sušić
- Department of Clinical Chemistry, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia; (M.H.); (T.S.); (A.T.K.)
| | - Andrea Tešija Kuna
- Department of Clinical Chemistry, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia; (M.H.); (T.S.); (A.T.K.)
| | - Lara Nađ Bungić
- Department of Pulmology, Special Hospital for Pulmonary Diseases, 10000 Zagreb, Croatia; (M.Š.); (L.N.B.)
| |
Collapse
|
2
|
Hanson MA, Grollmus L, Lemaitre B. Ecology-relevant bacteria drive the evolution of host antimicrobial peptides in Drosophila. Science 2023; 381:eadg5725. [PMID: 37471548 DOI: 10.1126/science.adg5725] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023]
Abstract
Antimicrobial peptides are host-encoded immune effectors that combat pathogens and shape the microbiome in plants and animals. However, little is known about how the host antimicrobial peptide repertoire is adapted to its microbiome. Here, we characterized the function and evolution of the Diptericin antimicrobial peptide family of Diptera. Using mutations affecting the two Diptericins (Dpt) of Drosophila melanogaster, we reveal the specific role of DptA for the pathogen Providencia rettgeri and DptB for the gut mutualist Acetobacter. The presence of DptA- or DptB-like genes across Diptera correlates with the presence of Providencia and Acetobacter in their environment. Moreover, DptA- and DptB-like sequences predict host resistance against infection by these bacteria across the genus Drosophila. Our study explains the evolutionary logic behind the bursts of rapid evolution of an antimicrobial peptide family and reveals how the host immune repertoire adapts to changing microbial environments.
Collapse
Affiliation(s)
- M A Hanson
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Disease Ecology and Evolution, Biosciences, University of Exeter, Penryn, United Kingdom
| | - L Grollmus
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - B Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
3
|
Hanson MA, Kondo S, Lemaitre B. Drosophila immunity: the Drosocin gene encodes two host defence peptides with pathogen-specific roles. Proc Biol Sci 2022; 289:20220773. [PMID: 35730150 PMCID: PMC9233930 DOI: 10.1098/rspb.2022.0773] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Antimicrobial peptides (AMPs) are key to defence against infection in plants and animals. Use of AMP mutations in Drosophila has now revealed that AMPs can additively or synergistically contribute to defence in vivo. However, these studies also revealed high specificity, wherein just one AMP contributes an outsized role in combatting a specific pathogen. Here, we show the Drosocin locus (CG10816) is more complex than previously described. In addition to its namesake peptide 'Drosocin', it encodes a second mature peptide from a precursor via furin cleavage. This peptide corresponds to the previously uncharacterized 'Immune-induced Molecule 7'. A polymorphism (Thr52Ala) in the Drosocin precursor protein previously masked the identification of this peptide, which we name 'Buletin'. Using mutations differently affecting Drosocin and Buletin, we show that only Drosocin contributes to Drosocin gene-mediated defence against Enterobacter cloacae. Strikingly, we observed that Buletin, but not Drosocin, contributes to the Drosocin gene-mediated defence against Providencia burhodogranariea, including an importance of the Thr52Ala polymorphism for survival. Our study reveals that the Drosocin gene encodes two prominent host defence peptides with different specificity against distinct pathogens. This finding emphasizes the complexity of the Drosophila humoral response and demonstrates how natural polymorphisms can affect host susceptibility.
Collapse
Affiliation(s)
- M. A. Hanson
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - S. Kondo
- Invertebrate Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima, Japan
| | - B. Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
4
|
The Two Domains of the Avian Double-β-Defensin AvBD11 Have Different Ancestors, Common with Potential Monodomain Crocodile and Turtle Defensins. BIOLOGY 2022; 11:biology11050690. [PMID: 35625418 PMCID: PMC9138766 DOI: 10.3390/biology11050690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/08/2022] [Accepted: 04/16/2022] [Indexed: 12/12/2022]
Abstract
Simple Summary Vertebrate defensins are a multigene family of antimicrobial peptides that evolved following a series of gene duplication and divergence events during the expansion of vertebrates. In birds, the repertoire of avian defensins contains an atypical defensin, namely AvBD11 (avian beta-defensin 11), which consists of two repeated but divergent defensin units (or domains) while most vertebrate defensins only possess one unit. In this study, we investigated the evolutionary scenario leading to the formation of this double defensin in birds by comparing each defensin unit of AvBD11 with other defensins from birds and closely related reptiles (crocodile, turtles) predicted to have a single defensin unit. Our most outstanding results suggest that the double defensin AvBD11 probably appeared following a fusion of two ancestral genes or from an ancestral double defensin, but not from a recent internal duplication as it can be observed in other types of proteins with domain repeats. Abstract Beta-defensins are an essential group of cysteine-rich host-defence peptides involved in vertebrate innate immunity and are generally monodomain. Among bird defensins, the avian β-defensin 11 (AvBD11) is unique because of its peculiar structure composed of two β-defensin domains. The reasons for the appearance of such ‘polydefensins’ during the evolution of several, but not all branches of vertebrates, still remain an open question. In this study, we aimed at exploring the origin and evolution of the bird AvBD11 using a phylogenetic approach. Although they are homologous, the N- and C-terminal domains of AvBD11 share low protein sequence similarity and possess different cysteine spacing patterns. Interestingly, strong variations in charge properties can be observed on the C-terminal domain depending on bird species but, despite this feature, no positive selection was detected on the AvBD11 gene (neither on site nor on branches). The comparison of AvBD11 protein sequences in different bird species, however, suggests that some amino acid residues may have undergone convergent evolution. The phylogenetic tree of avian defensins revealed that each domain of AvBD11 is distant from ovodefensins (OvoDs) and may have arisen from different ancestral defensins. Strikingly, our phylogenetic analysis demonstrated that each domain of AvBD11 has common ancestors with different putative monodomain β-defensins from crocodiles and turtles and are even more closely related with these reptilian defensins than with their avian paralogs. Our findings support that AvBD11′s domains, which differ in their cysteine spacing and charge distribution, do not result from a recent internal duplication but most likely originate from a fusion of two different ancestral genes or from an ancestral double-defensin arisen before the Testudines-Archosauria split.
Collapse
|
5
|
Boyd RJ, Denommé MR, Grieves LA, MacDougall-Shackleton EA. Stronger population differentiation at infection-sensing than infection-clearing innate immune loci in songbirds: Different selective regimes for different defenses. Evolution 2021; 75:2736-2746. [PMID: 34596241 DOI: 10.1111/evo.14368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/30/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Parasite-mediated selection is widespread at loci involved in immune defense, but different defenses may experience different selective regimes. For defenses involved in clearing infections, purifying selection favoring a single most efficacious allele likely predominates. However, for defenses involved in sensing and recognizing infections, evolutionary arms races may make positive selection particularly important. This could manifest primarily within populations (e.g., balancing selection maintaining variation) or among them (e.g., spatially varying selection enhancing population differences in allele frequencies). We genotyped three toll-like receptors (TLR; involved in sensing infections) and three avian beta-defensins (involved in clearing infections) in 96 song sparrows (Melospiza melodia) from three breeding populations that differ in disease resistance. Variation-based indicators of selection (proportion of variable sites, proportion of nonsynonymous SNPs, proportion of sites bearing signatures of positive or purifying selection, rare allele frequencies) did not differ appreciably between the two locus types. However, differentiation was generally higher at infection-sensing than infection-clearing loci. Allele frequencies differed markedly at TLR3, driven by a variant predicted to alter protein function. Geographically structured variants at infection-sensing loci may reflect local adaptation to spatially heterogeneous parasite communities. Selective regimes experienced by infection-sensing versus infection-clearing loci may differ primarily due to parasite-mediated population differentiation.
Collapse
Affiliation(s)
- Rachel J Boyd
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada.,McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205
| | - Melanie R Denommé
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada.,Department of Biological Sciences, Brock University Faculty of Mathematics & Science, St. Catherines, Ontario, L2S 3A1, Canada
| | - Leanne A Grieves
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada.,Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, L8S 4M4, Canada
| | | |
Collapse
|
6
|
Flegr J, Toman J, Hůla M, Kaňková Š. The role of balancing selection in maintaining human RhD blood group polymorphism: A preregistered cross-sectional study. J Evol Biol 2020; 34:426-438. [PMID: 33244840 DOI: 10.1111/jeb.13745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 01/05/2023]
Abstract
Maintenance of genetic polymorphism remains one of the big questions of evolutionary biology, which for a long time tended to be explained by balancing selection. This explanation was later criticized, but now is again accepted as an important mechanism in evolution. Human blood group systems seem affected by balancing selection especially strongly. In this preregistered study, we focused on stable coexistence of RhD-positive and RhD-negative subjects in a population. This is an evolutionary conundrum, because carriers of the less frequent negative allele suffer from lower fecundity due to haemolytic disease of the newborn affecting RhD-positive infants born to RhD-negative women. One explanation of persisting stability of RhD polymorphism points to heterozygote advantage. Over the past decade, numerous studies demonstrated that RhD-positive subjects score better than RhD-negative homozygotes in psychomotor tests and physical health-related variables. Still, evidence of better health and performance of heterozygotes is scarce and merely indirect. We compared the physical and mental health of 2,539 subjects whose RhD genotype was estimated based on their and their parents' RhD phenotype. We confirmed that RhD-negative homozygotes fare worse in terms of physical and mental health than subjects with RhD-positive phenotype and that RhD-positive heterozygotes enjoy better health than both homozygotes. For the first time, we demonstrated that RhD-positive homozygotes might suffer from worse health than RhD-negative homozygotes. Our results strongly support the hypothesis that RhD polymorphism is maintained by heterozygote advantage and that balancing selection may have played an important role in human evolution in this context and in general.
Collapse
Affiliation(s)
- Jaroslav Flegr
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Toman
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Hůla
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Prague, Czech Republic
| | - Šárka Kaňková
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Prague, Czech Republic.,Department of Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
7
|
Cortázar-Chinarro M, Meyer-Lucht Y, Van der Valk T, Richter-Boix A, Laurila A, Höglund J. Antimicrobial peptide and sequence variation along a latitudinal gradient in two anurans. BMC Genet 2020; 21:38. [PMID: 32228443 PMCID: PMC7106915 DOI: 10.1186/s12863-020-00839-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While there is evidence of both purifying and balancing selection in immune defense genes, large-scale genetic diversity in antimicrobial peptides (AMPs), an important part of the innate immune system released from dermal glands in the skin, has remained uninvestigated. Here we describe genetic diversity at three AMP loci (Temporin, Brevinin and Palustrin) in two ranid frogs (Rana arvalis and R. temporaria) along a 2000 km latitudinal gradient. We amplified and sequenced part of the Acidic Propiece domain and the hypervariable Mature Peptide domain (~ 150-200 bp) in the three genes using Illumina Miseq and expected to find decreased AMP genetic variation towards the northern distribution limit of the species similarly to studies on MHC genetic patterns. RESULTS We found multiple loci for each AMP and relatively high gene diversity, but no clear pattern of geographic genetic structure along the latitudinal gradient. We found evidence of trans-specific polymorphism in the two species, indicating a common evolutionary origin of the alleles. Temporin and Brevinin did not form monophyletic clades suggesting that they belong to the same gene family. By implementing codon evolution models we found evidence of strong positive selection acting on the Mature Peptide. We also found evidence of diversifying selection as indicated by divergent allele frequencies among populations and high Theta k values. CONCLUSION Our results suggest that AMPs are an important source of adaptive diversity, minimizing the chance of microorganisms developing resistance to individual peptides.
Collapse
Affiliation(s)
- Maria Cortázar-Chinarro
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden.
| | - Yvonne Meyer-Lucht
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden.,Centre for Paleogenetics Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden
| | - Tom Van der Valk
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| | - Alex Richter-Boix
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| | - Anssi Laurila
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| | - Jacob Höglund
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| |
Collapse
|
8
|
Chapman JR, Hill T, Unckless RL. Balancing Selection Drives the Maintenance of Genetic Variation in Drosophila Antimicrobial Peptides. Genome Biol Evol 2019; 11:2691-2701. [PMID: 31504505 PMCID: PMC6764478 DOI: 10.1093/gbe/evz191] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
Genes involved in immune defense against pathogens provide some of the most well-known examples of both directional and balancing selection. Antimicrobial peptides (AMPs) are innate immune effector genes, playing a key role in pathogen clearance in many species, including Drosophila. Conflicting lines of evidence have suggested that AMPs may be under directional, balancing, or purifying selection. Here, we use both a linear model and control-gene-based approach to show that balancing selection is an important force shaping AMP diversity in Drosophila. In Drosophila melanogaster, this is most clearly observed in ancestral African populations. Furthermore, the signature of balancing selection is even more striking once background selection has been accounted for. Balancing selection also acts on AMPs in Drosophila mauritiana, an isolated island endemic separated from D. melanogaster by about 4 Myr of evolution. This suggests that balancing selection may be broadly acting to maintain adaptive diversity in Drosophila AMPs, as has been found in other taxa.
Collapse
Affiliation(s)
| | - Tom Hill
- Department of Molecular Biosciences, University of Kansas
| | | |
Collapse
|
9
|
Gao S, Deviche PJ. The causative effects of corticosterone on innate immunity during the stress response in the House Sparrow, Passer domesticus. Gen Comp Endocrinol 2019; 275:30-37. [PMID: 30721660 DOI: 10.1016/j.ygcen.2019.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/13/2018] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
Abstract
Stress-induced inhibition of innate immune activity has been observed in a variety of wild birds and may increase chances of infection because this activity constitutes the first line of defense against pathogens. We previously reported that the transient elevation of plasma corticosterone (CORT; the primary avian glucocorticoid) that occurs during stress is necessary for stress-induced suppression of natural antibody-mediated, complement-mediated, and bactericidal activity. Here, we further investigated the regulatory role of CORT during this suppression. To this end, we treated House Sparrows (Passer domesticus) with mitotane to block endogenous CORT production, administered CORT at one of three doses (HI: 1.34 mg/kg; LO: 1.00 mg/kg; CON: vehicle), and assessed natural antibody-mediated, complement-mediated, and bactericidal activity during acute stress induced by handling and restraint. Mitotane administration eliminated the endogenous plasma CORT increase that normally takes place during stress, and corticosterone treatment increased plasma CORT to levels similar to those measured in intact birds during acute stress. As predicted, mitotane-treated birds receiving CON injections did not exhibit stress-induced suppression of complement-mediated and bactericidal activity, and CORT administration at both LO and HI doses restored this suppression. Contrary to expectations, mitotane-treated birds receiving CON injections demonstrated stress-induced suppression of natural antibody-mediated activity. Furthermore, CORT administration did not influence this parameter. These results suggest that stress inhibits innate immune activity through both CORT-dependent and CORT-independent mechanisms, but the contribution of these mechanisms can vary. This variation may result from effects of environmental factors, the identity and role of which warrant further research.
Collapse
Affiliation(s)
- Sisi Gao
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
| | - Pierre J Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| |
Collapse
|
10
|
Hanson MA, Dostálová A, Ceroni C, Poidevin M, Kondo S, Lemaitre B. Synergy and remarkable specificity of antimicrobial peptides in vivo using a systematic knockout approach. eLife 2019; 8:e44341. [PMID: 30803481 PMCID: PMC6398976 DOI: 10.7554/elife.44341] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/13/2019] [Indexed: 12/31/2022] Open
Abstract
Antimicrobial peptides (AMPs) are host-encoded antibiotics that combat invading microorganisms. These short, cationic peptides have been implicated in many biological processes, primarily involving innate immunity. In vitro studies have shown AMPs kill bacteria and fungi at physiological concentrations, but little validation has been done in vivo. We utilized CRISPR gene editing to delete all known immune-inducible AMPs of Drosophila, namely: 4 Attacins, 4 Cecropins, 2 Diptericins, Drosocin, Drosomycin, Metchnikowin and Defensin. Using individual and multiple knockouts, including flies lacking all 14 AMP genes, we characterize the in vivo function of individual and groups of AMPs against diverse bacterial and fungal pathogens. We found that Drosophila AMPs act primarily against Gram-negative bacteria and fungi, contributing either additively or synergistically. We also describe remarkable specificity wherein certain AMPs contribute the bulk of microbicidal activity against specific pathogens, providing functional demonstrations of highly specific AMP-pathogen interactions in an in vivo setting.
Collapse
Affiliation(s)
- Mark Austin Hanson
- Global Health Institute, School of Life ScienceÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Anna Dostálová
- Global Health Institute, School of Life ScienceÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Camilla Ceroni
- Global Health Institute, School of Life ScienceÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Mickael Poidevin
- Institute for Integrative Biology of the Cell (I2BC)Université Paris-Saclay, CEA, CNRS, Université Paris SudGif-sur-YvetteFrance
| | - Shu Kondo
- Invertebrate Genetics Laboratory, Genetic Strains Research CenterNational Institute of GeneticsMishimaJapan
| | - Bruno Lemaitre
- Global Health Institute, School of Life ScienceÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
11
|
Zhou F, Shen C, Hsu YH, Gao J, Dou J, Ko R, Zheng X, Sun L, Cui Y, Zhang X. DNA methylation-based subclassification of psoriasis in the Chinese Han population. Front Med 2018; 12:717-725. [PMID: 29623515 DOI: 10.1007/s11684-017-0588-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/24/2017] [Indexed: 02/08/2023]
Abstract
Psoriasis (Ps) is an inflammatory skin disease caused by genetic and environmental factors. Previous studies on DNA methylation (DNAm) found genetic markers that are closely associated with Ps, and evidence has shown that DNAm mediates genetic risk in Ps. In this study, Consensus Clustering was used to analyze DNAm data, and 114 Ps patients were divided into three subclassifications. Investigation of the clinical characteristics and copy number variations (CNVs) of DEFB4, IL22, and LCE3C in the three subclassifications revealed no significant differences in gender ratio and in Ps area and severity index (PASI) score. The proportion of late-onset ( ≥ 40 years) Ps patients was significantly higher in type I than in types II and III (P = 0.035). Type III contained the smallest proportion of smokers and the largest proportion of non-smoking Ps patients (P = 0.086). The CNVs of DEFB4 and LCE3C showed no significant differences but the CNV of IL22 significantly differed among the three subclassifications (P = 0.044). This study is the first to profile Ps subclassifications based on DNAm data in the Chinese Han population. These results are useful in the treatment and management of Ps from the molecular and genetic perspectives.
Collapse
Affiliation(s)
- Fusheng Zhou
- Institute of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China.
- The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, China.
- Collaborative Innovation Center for Complex and Severe Dermatosis, Anhui Medical University, Hefei, 230032, China.
| | - Changbing Shen
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, 100029, China
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
- Molecular and Integrative Physiological Sciences, Harvard T.H. CHAN School of Public Health, Boston, MA, 02115, USA
- Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, MA, 02131, USA
| | - Yi-Hsiang Hsu
- Molecular and Integrative Physiological Sciences, Harvard T.H. CHAN School of Public Health, Boston, MA, 02115, USA
- Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, MA, 02131, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Jing Gao
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230601, China
| | - Jinfa Dou
- Institute of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, China
- Collaborative Innovation Center for Complex and Severe Dermatosis, Anhui Medical University, Hefei, 230032, China
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Randy Ko
- Department of Biochemistry, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Xiaodong Zheng
- Institute of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, China
- Collaborative Innovation Center for Complex and Severe Dermatosis, Anhui Medical University, Hefei, 230032, China
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Liangdan Sun
- Institute of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, China
- Collaborative Innovation Center for Complex and Severe Dermatosis, Anhui Medical University, Hefei, 230032, China
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, 100029, China
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xuejun Zhang
- Institute of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China.
- The Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, China.
- Collaborative Innovation Center for Complex and Severe Dermatosis, Anhui Medical University, Hefei, 230032, China.
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China.
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
12
|
Ateya AI, Hussein MS, Ghanem HM, Saleh RM, El-Domany WB, Elseady YY. Expression profiles of immunity and reproductive genes during transition period in Holstein cattle. Reprod Domest Anim 2017; 53:352-358. [PMID: 29164710 DOI: 10.1111/rda.13112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/11/2017] [Indexed: 01/09/2023]
Abstract
The transition period is a critical time for dairy cows as the animal is subjected to the physiological stress accompanying parturition. Immunosuppression and health status were examined during this period in 80 Holstein cows. Blood samples were taken from each cow 3, 2 and 1 week before and after calving, and at calving (0 day). RNA was extracted and subjected to real-time PCR to determine mRNA levels for the immune-related genes TLR 2, 4, 6, 7 and β-defensin 5 in addition to the reproduction-related genes prolactin and IGF-I. Results showed significant up-regulation of pro-inflammatory-selected genes, TLR 4, 6 7 and β-defensin 5 at the third-week post-calving; however, earlier periods had lower expression of such genes. In contrast, the immunosuppression biomarker TLR2 gene was up-regulated at calving and 1 week after parturition and then down-regulated again at second and third week. Prolactin and IGF-I genes expression levels were significantly and gradually increased mainly post-partum. This research highlights that the expression patterns of TLRs, BNBD5, PRL and IGF-I could be biomarkers to follow up immune and reproductive status of dairy cow at peri-parturient period to predict the most susceptible risk time for disease incidence and to build up management protocol.
Collapse
Affiliation(s)
- A I Ateya
- Department of Animal Husbandry and Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - M S Hussein
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - H M Ghanem
- Department of Animal Husbandry and Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - R M Saleh
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - W B El-Domany
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Y Y Elseady
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
13
|
Rolff J, Schmid-Hempel P. Perspectives on the evolutionary ecology of arthropod antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0297. [PMID: 27160599 DOI: 10.1098/rstb.2015.0297] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2016] [Indexed: 12/27/2022] Open
Abstract
Antimicrobial peptides (AMPs) are important elements of the innate immune defence in multicellular organisms that target and kill microbes. Here, we reflect on the various points that are raised by the authors of the 11 contributions to a special issue of Philosophical Transactions on the 'evolutionary ecology of arthropod antimicrobial peptides'. We see five interesting topics emerging. (i) AMP genes in insects, and perhaps in arthropods more generally, evolve much slower than most other immune genes. One explanation refers to the constraints set by AMPs being part of a finely tuned defence system. A new view argues that AMPs are under strong stabilizing selection. Regardless, this striking observation still invites many more questions than have been answered so far. (ii) AMPs almost always are expressed in combinations and sometimes show expression patterns that are dependent on the infectious agent. While it is often assumed that this can be explained by synergistic interactions, such interactions have rarely been demonstrated and need to be studied further. Moreover, how to define synergy in the first place remains difficult and needs to be addressed. (iii) AMPs play a very important role in mediating the interaction between a host and its mutualistic or commensal microbes. This has only been studied in a very small number of (insect) species. It has become clear that the very same AMPs play different roles in different situations and hence are under concurrent selection. (iv) Different environments shape the physiology of organisms; especially the host-associated microbial communities should impact on the evolution host AMPs. Studies in social insects and some organisms from extreme environments seem to support this notion, but, overall, the evidence for adaptation of AMPs to a given environment is scant. (v) AMPs are considered or already developed as new drugs in medicine. However, bacteria can evolve resistance to AMPs. Therefore, in the light of our limited understanding of AMP evolution in the natural context, and also the very limited understanding of the evolution of resistance against AMPs in bacteria in particular, caution is recommended. What is clear though is that study of the ecology and evolution of AMPs in natural systems could inform many of these outstanding questions, including those related to medical applications and pathogen control.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Jens Rolff
- Evolutionary Biology, Institute of Biology, Freie Universität Berlin, Königin-Luise-Strasse 1-3, 14195 Berlin, Germany Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - Paul Schmid-Hempel
- ETH Zürich, Institute of Integrative Biology (IBZ), ETH-Zentrum CHN, Universitätsstrasse 16, 8092 Zürich, Switzerland
| |
Collapse
|
14
|
Schmitt C, Garant D, Bélisle M, Pelletier F. Linking innate immunogenetic variation with phenotypic traits in a wild population of tree swallows, Tachycineta bicolor. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
15
|
Schmitt C, Garant D, Doyon K, Bousquet N, Gaudreau L, Bélisle M, Pelletier F. Patterns of Diversity and Spatial Variability of β-Defensin Innate Immune Genes in a Declining Wild Population of Tree Swallows. J Hered 2017; 108:262-269. [PMID: 28186244 DOI: 10.1093/jhered/esx005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 01/25/2017] [Indexed: 12/26/2022] Open
Abstract
Assessing the genetic variation and distribution of immune genes across heterogeneous environmental conditions in wild species is essential to further our understanding of the role of pathogen pressure and potential resistance or prevalence in hosts. Researchers have recently investigated β-defensin genes in the wild, because their variability suggests that they may play an important role in innate host defense. This study investigated the variation occurring at 6 innate immune genes of the β-defensin family in a declining population of tree swallows (Tachycineta bicolor) in southern Québec, Canada (N = 160). We found that all 6 genes showed synonymous and nonsynonymous single nucleotide polymorphisms (SNPs) within the exon coding for the mature peptide. These results indicated that this group of genes was diverse in tree swallows. Our results suggested a potential interaction of this group of genes with fluctuating pathogen diversity, however, we found no sign of positive or negative selection. We assessed whether or not the distribution of genetic diversity of β-defensin genes in our study population differed between 2 regions that strongly differ in their level of agricultural intensification. Adults are highly philopatric to their breeding sites and their immunological responses differ between these 2 regions. However, we found little evidence that the level and distribution of genetic variability differed between these heterogeneous environmental conditions. Further studies should aim to assess the link between genetic diversity of β-defensin genes and fitness-related traits in wild populations.
Collapse
Affiliation(s)
- Clarence Schmitt
- From the Département de biologie, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Québec, CanadaJ1K 2R1
| | - Dany Garant
- From the Département de biologie, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Québec, CanadaJ1K 2R1
| | - Kathy Doyon
- From the Département de biologie, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Québec, CanadaJ1K 2R1
| | - Nicolas Bousquet
- From the Département de biologie, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Québec, CanadaJ1K 2R1
| | - Luc Gaudreau
- From the Département de biologie, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Québec, CanadaJ1K 2R1
| | - Marc Bélisle
- From the Département de biologie, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Québec, CanadaJ1K 2R1
| | - Fanie Pelletier
- From the Département de biologie, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Québec, CanadaJ1K 2R1
| |
Collapse
|
16
|
Hanson MA, Hamilton PT, Perlman SJ. Immune genes and divergent antimicrobial peptides in flies of the subgenus Drosophila. BMC Evol Biol 2016; 16:228. [PMID: 27776480 PMCID: PMC5078906 DOI: 10.1186/s12862-016-0805-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/14/2016] [Indexed: 11/14/2022] Open
Abstract
Background Drosophila is an important model for studying the evolution of animal immunity, due to the powerful genetic tools developed for D. melanogaster. However, Drosophila is an incredibly speciose lineage with a wide range of ecologies, natural histories, and diverse natural enemies. Surprisingly little functional work has been done on immune systems of species other than D. melanogaster. In this study, we examine the evolution of immune genes in the speciose subgenus Drosophila, which diverged from the subgenus Sophophora (that includes D. melanogaster) approximately 25–40 Mya. We focus on D. neotestacea, a woodland species used to study interactions between insects and parasitic nematodes, and combine recent transcriptomic data with infection experiments to elucidate aspects of host immunity. Results We found that the vast majority of genes involved in the D. melanogaster immune response are conserved in D. neotestacea, with a few interesting exceptions, particularly in antimicrobial peptides (AMPs); until recently, AMPs were not thought to evolve rapidly in Drosophila. Unexpectedly, we found a distinct diptericin in subgenus Drosophila flies that appears to have evolved under diversifying (positive) selection. We also describe the presence of the AMP drosocin, which was previously thought to be restricted to the subgenus Sophophora, in the subgenus Drosophila. We challenged two subgenus Drosophila species, D. neotestacea and D. virilis with bacterial and fungal pathogens and quantified AMP expression. Conclusions While diptericin in D. virilis was induced by exposure to gram-negative bacteria, it was not induced in D. neotestacea, showing that conservation of immune genes does not necessarily imply conservation of the realized immune response. Our study lends support to the idea that invertebrate AMPs evolve rapidly, and that Drosophila harbor a diverse repertoire of AMPs with potentially important functional consequences. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0805-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mark A Hanson
- Department of Biology, University of Victoria, Victoria, BC, Canada.
| | | | - Steve J Perlman
- Department of Biology, University of Victoria, Victoria, BC, Canada.,Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Unckless RL, Lazzaro BP. The potential for adaptive maintenance of diversity in insect antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150291. [PMID: 27160594 PMCID: PMC4874389 DOI: 10.1098/rstb.2015.0291] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2016] [Indexed: 02/07/2023] Open
Abstract
Genes involved in immune defence are among the fastest evolving in the genomes of many species. Interestingly, however, genes encoding antimicrobial peptides (AMPs) have shown little evidence for adaptive divergence in arthropods, despite the centrality of these peptides in direct killing of microbial pathogens. This observation, coupled with a failure to detect phenotypic consequence of genetic variation in AMPs, has led to the hypothesis that individual AMPs make minor contributions to overall immune defence and that AMPs instead act as a collective cocktail. Recent data, however, have suggested an alternative explanation for the apparent lack of adaptive divergence in AMP genes. Molecular evolutionary and phenotypic data have begun to suggest that variant AMP alleles may be maintained through balancing selection in invertebrates, a pattern similar to that observed in several vertebrate AMPs. Signatures of balancing selection include high rates of non-synonymous polymorphism, trans-species amino acid polymorphisms, and convergence of amino acid states across the phylogeny. In this review, we revisit published literature on insect AMP genes and analyse newly available population genomic datasets in Drosophila, finding enrichment for patterns consistent with adaptive maintenance of polymorphism.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
| | - Brian P Lazzaro
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
18
|
Croze M, Živković D, Stephan W, Hutter S. Balancing selection on immunity genes: review of the current literature and new analysis in Drosophila melanogaster. ZOOLOGY 2016; 119:322-9. [PMID: 27106015 DOI: 10.1016/j.zool.2016.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/11/2016] [Accepted: 03/16/2016] [Indexed: 12/18/2022]
Abstract
Balancing selection has been widely assumed to be an important evolutionary force, yet even today little is known about its abundance and its impact on the patterns of genetic diversity. Several studies have shown examples of balancing selection in humans, plants or parasites, and many genes under balancing selection are involved in immunity. It has been proposed that host-parasite coevolution is one of the main forces driving immune genes to evolve under balancing selection. In this paper, we review the literature on balancing selection on immunity genes in several organisms, including Drosophila. Furthermore, we performed a genome scan for balancing selection in an African population of Drosophila melanogaster using coalescent simulations of a demographic model with and without selection. We find very few genes under balancing selection and only one novel candidate gene related to immunity. Finally, we discuss the possible causes of the low number of genes under balancing selection.
Collapse
Affiliation(s)
- Myriam Croze
- Department of Biology II, Ludwig Maximilian University Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany.
| | - Daniel Živković
- Department of Biology II, Ludwig Maximilian University Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| | - Wolfgang Stephan
- Department of Biology II, Ludwig Maximilian University Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| | - Stephan Hutter
- Department of Biology II, Ludwig Maximilian University Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
19
|
Gilroy D, van Oosterhout C, Komdeur J, Richardson DS. Avian β-defensin variation in bottlenecked populations: the Seychelles warbler and other congeners. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0813-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Unckless RL, Howick VM, Lazzaro BP. Convergent Balancing Selection on an Antimicrobial Peptide in Drosophila. Curr Biol 2016; 26:257-262. [PMID: 26776733 DOI: 10.1016/j.cub.2015.11.063] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/12/2015] [Accepted: 11/24/2015] [Indexed: 02/07/2023]
Abstract
Genes of the immune system often evolve rapidly and adaptively, presumably driven by antagonistic interactions with pathogens [1-4]. Those genes encoding secreted antimicrobial peptides (AMPs), however, have failed to exhibit conventional signatures of strong adaptive evolution, especially in arthropods (e.g., [5, 6]) and often segregate for null alleles and gene deletions [3, 4, 7, 8]. Furthermore, quantitative genetic studies have failed to associate naturally occurring polymorphism in AMP genes with variation in resistance to infection [9-11]. Both the lack of signatures of positive selection in AMPs and lack of association between genotype and immune phenotypes have yielded an interpretation that AMP genes evolve under relaxed evolutionary constraint, with enough functional redundancy that variation in, or even loss of, any particular peptide would have little effect on overall resistance [12, 13]. In stark contrast to the current paradigm, we identified a naturally occurring amino acid polymorphism in the AMP Diptericin that is highly predictive of resistance to bacterial infection in Drosophila melanogaster [13]. The identical amino acid polymorphism arose in parallel in the sister species D. simulans, by independent mutation with equivalent phenotypic effect. Convergent substitutions at the same amino acid residue have evolved at least five times across the Drosophila genus. We hypothesize that the alternative alleles are maintained by balancing selection through context-dependent or fluctuating selection. This pattern of evolution appears to be common in AMPs but is invisible to conventional screens for adaptive evolution that are predicated on elevated rates of amino acid divergence.
Collapse
Affiliation(s)
- Robert L Unckless
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA.
| | | | - Brian P Lazzaro
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
21
|
Cheng Y, Prickett MD, Gutowska W, Kuo R, Belov K, Burt DW. Evolution of the avian β-defensin and cathelicidin genes. BMC Evol Biol 2015; 15:188. [PMID: 26373713 PMCID: PMC4571063 DOI: 10.1186/s12862-015-0465-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/21/2015] [Indexed: 11/10/2022] Open
Abstract
Background β-defensins and cathelicidins are two families of cationic antimicrobial peptides (AMPs) with a broad range of antimicrobial activities that are key components of the innate immune system. Due to their important roles in host defense against rapidly evolving pathogens, the two gene families provide an ideal system for studying adaptive gene evolution. In this study we performed phylogenetic and selection analyses on β-defensins and cathelicidins from 53 avian species representing 32 orders to examine the evolutionary dynamics of these peptides in birds. Results and conclusions Avian β-defensins are found in a gene cluster consisting of 13 subfamiles. Nine of these are conserved as one to one orthologs in all birds, while the others (AvBD1, AvBD3, AvBD7 and AvBD14) are more subject to gene duplication or pseudogenisation events in specific avian lineages. Avian cathelicidins are found in a gene cluster consisting of three subfamilies with species-specific duplications and gene loss. Evidence suggested that the propiece and mature peptide domains of avian cathelicidins are possibly co-evolving in such a way that the cationicity of the mature peptide is partially neutralised by the negative charge of the propiece prior to peptide secretion (further evidence obtained by repeating the analyses on primate cathelicidins). Negative selection (overall mean dN < dS) was detected in most of the gene domains examined, conserving certain amino acid residues that may be functionally crucial for the avian β-defensins and cathelicidins, while episodic positive selection was also involved in driving the diversification of specific codon sites of certain AMPs in avian evolutionary history. These findings have greatly improved our understanding of the molecular evolution of avian AMPs and will be useful to understand their role in the avian innate immune response. Additionally, the large dataset of β-defensin and cathelicidin peptides may also provide a valuable resource for translational research and development of novel antimicrobial agents in the future. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0465-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- RMC Gunn Building B19, Faculty of Veterinary Science, University of Sydney, Camperdown, 2006, NSW, Australia.
| | - Michael Dennis Prickett
- Dipartimento di Scienze della Vita-Edif. C11, Università di Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy.
| | - Weronika Gutowska
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Richard Kuo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Katherine Belov
- RMC Gunn Building B19, Faculty of Veterinary Science, University of Sydney, Camperdown, 2006, NSW, Australia.
| | - David W Burt
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
22
|
Trans-Species Polymorphism in Immune Genes: General Pattern or MHC-Restricted Phenomenon? J Immunol Res 2015; 2015:838035. [PMID: 26090501 PMCID: PMC4458282 DOI: 10.1155/2015/838035] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/04/2015] [Indexed: 11/24/2022] Open
Abstract
Immunity exhibits extraordinarily high levels of variation. Evolution of the immune system in response to host-pathogen interactions in particular ecological contexts appears to be frequently associated with diversifying selection increasing the genetic variability. Many studies have documented that immunologically relevant polymorphism observed today may be tens of millions years old and may predate the emergence of present species. This pattern can be explained by the concept of trans-species polymorphism (TSP) predicting the maintenance and sharing of favourable functionally important alleles of immune-related genes between species due to ongoing balancing selection. Despite the generality of this concept explaining the long-lasting adaptive variation inherited from ancestors, current research in TSP has vastly focused only on major histocompatibility complex (MHC). In this review we summarise the evidence available on TSP in human and animal immune genes to reveal that TSP is not a MHC-specific evolutionary pattern. Further research should clearly pay more attention to the investigation of TSP in innate immune genes and especially pattern recognition receptors which are promising candidates for this type of evolution. More effort should also be made to distinguish TSP from convergent evolution and adaptive introgression. Identification of balanced TSP variants may represent an accurate approach in evolutionary medicine to recognise disease-resistance alleles.
Collapse
|
23
|
Genomic structure and evolution of beta-defensin genes in the golden pheasant and hwamei. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0758-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
24
|
Duan S, Shi C, Chen G, Zheng JF, Wu B, Diao H, Ji L, Gu Y, Xin A, Wu Y, Zhou W, Miao M, Xu L, Li Z, Yuan Y, Wang P, Shi H. Another functional frame-shift polymorphism of DEFB126 (rs11467497) associated with male infertility. J Cell Mol Med 2015; 19:1077-84. [PMID: 25721098 PMCID: PMC4420609 DOI: 10.1111/jcmm.12502] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/24/2014] [Indexed: 12/13/2022] Open
Abstract
DEFB126 rs140685149 mutation was shown to cause sperm dysfunction and subfertility. Indel rs11467497 is another 4-nucleotide frame-shift mutation (151bp upstream of rs140685149) that leads to the premature termination of translation and the expression of peptide truncated at the carboxyl terminus. In the present study, we performed a comprehensive association study to check the contribution of rs140685149 and rs11467497 to male infertility. Our results confirmed the previous findings that there was no association between rs140685149 and sperm motility. In contrast, we found a significant association of another indel rs11467497 with male infertility. Moreover, rs11467497 was shown to be associated with higher number of round cells in the infertile males with low sperm motility. Surprisingly, the two mutations commonly existed in the sperm donors (n = 672), suggesting a potential application of the two indels in the screening for eligible sperm donors. Western blotting assays showed the sperms with rs140685149 2-nt deletion tended to have unstable DEFB126 protein in contrast of no DEFB126 protein expressed in the sperms with rs11467497 4-nt deletion, suggesting a more severe consequence caused by rs11467497 mutation. In conclusion, our study presented a significant contribution of another functional frame-shift polymorphism of DEFB126 (rs11467497) to male infertility.
Collapse
Affiliation(s)
- Shiwei Duan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
The first report of a Pelecaniformes defensin cluster: characterization of β-defensin genes in the crested ibis based on BAC libraries. Sci Rep 2014; 4:6923. [PMID: 25372018 PMCID: PMC5381368 DOI: 10.1038/srep06923] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/16/2014] [Indexed: 01/16/2023] Open
Abstract
Defensins play a key role in the innate immunity of various organisms. Detailed genomic studies of the defensin cluster have only been reported in a limited number of birds. Herein, we present the first characterization of defensins in a Pelecaniformes species, the crested ibis (Nipponia nippon), which is one of the most endangered birds in the world. We constructed bacterial artificial chromosome libraries, including a 4D-PCR library and a reverse-4D library, which provide at least 40 equivalents of this rare bird's genome. A cluster including 14 β-defensin loci within 129 kb was assigned to chromosome 3 by FISH, and one gene duplication of AvBD1 was found. The ibis defensin genes are characterized by multiform gene organization ranging from two to four exons through extensive exon fusion. Splicing signal variations and alternative splice variants were also found. Comparative analysis of four bird species identified one common and multiple species-specific duplications, which might be associated with high GC content. Evolutionary analysis revealed birth-and-death mode and purifying selection for avian defensin evolution, resulting in different defensin gene numbers among bird species and functional conservation within orthologous genes, respectively. Additionally, we propose various directions for further research on genetic conservation in the crested ibis.
Collapse
|
26
|
Atkinson CT, Saili KS, Utzurrum RB, Jarvi SI. Experimental evidence for evolved tolerance to avian malaria in a wild population of low elevation Hawai'i 'Amakihi (Hemignathus virens). ECOHEALTH 2013; 10:366-75. [PMID: 24430825 DOI: 10.1007/s10393-013-0899-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 12/18/2013] [Accepted: 12/18/2013] [Indexed: 05/11/2023]
Abstract
Introduced vector-borne diseases, particularly avian malaria (Plasmodium relictum) and avian pox virus (Avipoxvirus spp.), continue to play significant roles in the decline and extinction of native forest birds in the Hawaiian Islands. Hawaiian honeycreepers are particularly susceptible to avian malaria and have survived into this century largely because of persistence of high elevation refugia on Kaua'i, Maui, and Hawai'i Islands, where transmission is limited by cool temperatures. The long term stability of these refugia is increasingly threatened by warming trends associated with global climate change. Since cost effective and practical methods of vector control in many of these remote, rugged areas are lacking, adaptation through processes of natural selection may be the best long-term hope for recovery of many of these species. We document emergence of tolerance rather than resistance to avian malaria in a recent, rapidly expanding low elevation population of Hawai'i 'Amakihi (Hemignathus virens) on the island of Hawai'i. Experimentally infected low elevation birds had lower mortality, lower reticulocyte counts during recovery from acute infection, lower weight loss, and no declines in food consumption relative to experimentally infected high elevation Hawai'i 'Amakihi in spite of similar intensities of infection. Emergence of this population provides an exceptional opportunity for determining physiological mechanisms and genetic markers associated with malaria tolerance that can be used to evaluate whether other, more threatened species have the capacity to adapt to this disease.
Collapse
Affiliation(s)
- Carter T Atkinson
- U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawaii National Park, P.O. Box 44, Hawaii, HI, 96718, USA,
| | | | | | | |
Collapse
|
27
|
Cuperus T, Coorens M, van Dijk A, Haagsman HP. Avian host defense peptides. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:352-369. [PMID: 23644014 DOI: 10.1016/j.dci.2013.04.019] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 04/24/2013] [Indexed: 06/02/2023]
Abstract
Host defense peptides (HDPs) are important effector molecules of the innate immune system of vertebrates. These antimicrobial peptides are also present in invertebrates, plants and fungi. HDPs display broad-spectrum antimicrobial activities and fulfill an important role in the first line of defense of many organisms. It is becoming increasingly clear that in the animal kingdom the functions of HDPs are not confined to direct antimicrobial actions. Research in mammals has indicated that HDPs have many immunomodulatory functions and are also involved in other physiological processes ranging from development to wound healing. During the past five years our knowledge about avian HDPs has increased considerably. This review addresses our current knowledge on the evolution, regulation and biological functions of HDPs of birds.
Collapse
Affiliation(s)
- Tryntsje Cuperus
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
28
|
Moro-García MA, Alonso-Arias R, Baltadjieva M, Fernández Benítez C, Fernández Barrial MA, Díaz Ruisánchez E, Alonso Santos R, Álvarez Sánchez M, Saavedra Miján J, López-Larrea C. Oral supplementation with Lactobacillus delbrueckii subsp. bulgaricus 8481 enhances systemic immunity in elderly subjects. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1311-26. [PMID: 22645023 PMCID: PMC3705123 DOI: 10.1007/s11357-012-9434-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 05/15/2012] [Indexed: 04/17/2023]
Abstract
Throughout life, there is an aging of the immune system that causes impairment of its defense capability. Prevention or delay of this deterioration is considered crucial to maintain general health and increase longevity. We evaluated whether dietary supplementation with Lactobacillus delbrueckii subsp. bulgaricus 8481 could enhance the immune response in the elderly. This multi-center, double-blind, and placebo controlled study enrolled 61 elderly volunteers who were randomly assigned to receive either placebo or probiotics. Each capsule of probiotics contained at least 3 × 10(7) L. delbrueckii subsp. bulgaricus 8481. Individuals in the study were administered three capsules per day for 6 months. Blood samples were obtained at baseline (time 0), end of month 3, and month 6. We characterized cell subpopulations, measured cytokines by flow cytometry, quantified T cell receptor excision circle (TREC) by real-time PCR (RT-PCR), and determined human β-defensin-2 (hBD-2) concentrations and human cytomegalovirus (CMV) titers by enzyme-linked immunosorbent assay (ELISA). Elderly responded to the intake of probiotic with an increase in the percentage of NK cells, an improvement in the parameters defining the immune risk profile (IRP), and an increase in the T cell subsets that are less differentiated. The probiotic group also showed decreased concentrations of the pro-inflammatory cytokine IL-8 but increased antimicrobial peptide hBD-2. These effects disappeared within 6 months of stopping the probiotic intake. Immunomodulation induced by L. delbrueckii subsp. bulgaricus 8481 could favor the maintenance of an adequate immune response, mainly by slowing the aging of the T cell subpopulations and increasing the number of immature T cells which are potential responders to new antigens.
Collapse
Affiliation(s)
| | - Rebeca Alonso-Arias
- />Immunology Department, Hospital Universitario Central de Asturias, 33006 Oviedo, Spain
| | - Maria Baltadjieva
- />LB Lactis (Scientific-Applied Laboratory for Starter Cultures and Probiotic Products), 4002 Plovdiv, Bulgaria
| | | | | | | | | | | | | | - Carlos López-Larrea
- />Immunology Department, Hospital Universitario Central de Asturias, 33006 Oviedo, Spain
- />Fundación Renal “Iñigo Alvarez de Toledo”, Madrid, Spain
| |
Collapse
|
29
|
Defensins: natural component of human innate immunity. Hum Immunol 2013; 74:1069-79. [PMID: 23756165 DOI: 10.1016/j.humimm.2013.05.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 04/23/2013] [Accepted: 05/29/2013] [Indexed: 12/19/2022]
Abstract
The widespread use of antibiotics has contributed to a huge increase in the number of resistant bacteria. New classes of drugs are therefore being developed of which defensins are a potential source. Defensins are a group of antimicrobial peptides found in different living organisms, involved in the first line of defense in their innate immune response against pathogens. This review summarizes the results of studies of this family of human antimicrobial peptides (AMPs). There is a special emphasis on describing the entire group and individual peptides, history of their discovery, their functions and expression sites. The results of the recent studies on the use of the biologically active peptides in human medicine are also presented. The pharmaceutical potential of human defensins cannot be ignored, especially considering their strong antimicrobial activity and properties such as low molecular weight, reduced immunogenicity, broad activity spectrum and resistance to proteolysis, but there are still many challenges and questions regarding the possibilities of their practical application.
Collapse
|
30
|
Sepil I, Lachish S, Hinks AE, Sheldon BC. Mhc supertypes confer both qualitative and quantitative resistance to avian malaria infections in a wild bird population. Proc Biol Sci 2013; 280:20130134. [PMID: 23516242 DOI: 10.1098/rspb.2013.0134] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Major histocompatibility complex (Mhc) genes are believed to play a key role in the genetic basis of disease control. Although numerous studies have sought links between Mhc and disease prevalence, many have ignored the ecological and epidemiological aspects of the host-parasite interaction. Consequently, interpreting associations between prevalence and Mhc has been difficult, whereas discriminating alleles for qualitative resistance, quantitative resistance and susceptibility remains challenging. Moreover, most studies to date have quantified associations between genotypes and disease status, overlooking the complex relationship between genotype and the properties of the Mhc molecule that interacts with parasites. Here, we address these problems and demonstrate avian malaria (Plasmodium) parasite species-specific associations with functional properties of Mhc molecules (Mhc supertypes) in a wild great tit (Parus major) population. We further show that correctly interpreting these associations depends crucially on understanding the spatial variation in risk of infection and the fitness effects of infection. We report that a single Mhc supertype confers qualitative resistance to Plasmodium relictum, whereas a different Mhc supertype confers quantitative resistance to Plasmodium circumflexum infections. Furthermore, we demonstrate common functional properties of Plasmodium-resistance alleles in passerine birds, suggesting this is a model system for parasite-Mhc associations in the wild.
Collapse
Affiliation(s)
- Irem Sepil
- Edward Grey Institute, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | | | | | | |
Collapse
|
31
|
Pigeon G, Bélisle M, Garant D, Cohen AA, Pelletier F. Ecological immunology in a fluctuating environment: an integrative analysis of tree swallow nestling immune defense. Ecol Evol 2013; 3:1091-103. [PMID: 23610646 PMCID: PMC3631416 DOI: 10.1002/ece3.504] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/17/2013] [Accepted: 01/21/2013] [Indexed: 11/11/2022] Open
Abstract
Evolutionary ecologists have long been interested by the link between different immune defenses and fitness. Given the importance of a proper immune defense for survival, it is important to understand how its numerous components are affected by environmental heterogeneity. Previous studies targeting this question have rarely considered more than two immune markers. In this study, we measured seven immune markers (response to phytohemagglutinin (PHA), hemolysis capacity, hemagglutination capacity, plasma bactericidal capacity, percentage of lymphocytes, percentage of heterophils, and percentage of eosinophils) in tree swallow (Tachycineta bicolor) nestlings raised in two types of agro-ecosystems of contrasted quality and over 2 years. First, we assessed the effect of environmental heterogeneity (spatial and temporal) on the strength and direction of correlations between immune measures. Second, we investigated the effect of an immune score integrating information from several immune markers on individual performance (including growth, mass at fledging and parasite burden). Both a multivariate and a pair-wise approach showed variation in relationships between immune measures across years and habitats. We also found a weak association between the integrated score of nestling immune function and individual performance, but only under certain environmental conditions. We conclude that the ecological context can strongly affect the interpretation of immune defenses in the wild. Given that spatiotemporal variations are likely to affect individual immune defenses, great caution should be used when generalizing conclusions to other study systems.
Collapse
Affiliation(s)
- Gabriel Pigeon
- Département de biologie, Université de Sherbrooke 2500 boulevard de l'Université, Sherbrooke, QC, J1K 2R1, Canada ; Canada Research Chair in Evolutionary Demography and Conservation, Département de biologie, Université de Sherbrooke 2500 boulevard de l'Université, Sherbrooke, QC, J1K 2R1, Canada
| | | | | | | | | |
Collapse
|