1
|
Ofori KF, Parsaeimehr A, Ozbay G. Investigation of the presence and persistence of bacteria in seawater and oysters from an aquaculture farm in Rehoboth Bay, Delaware. Microbiol Spectr 2025; 13:e0305424. [PMID: 40207947 PMCID: PMC12054098 DOI: 10.1128/spectrum.03054-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/24/2025] [Indexed: 04/11/2025] Open
Abstract
The filter-feeding nature of oysters, anthropogenic activities, and increasing agriculture in Delaware compromise the microbial safety of Eastern oysters from local aquaculture farms. From July to October 2023, we evaluated the presence and persistence of eight bacteria in seawater and oysters produced from off-bottom and bottom cultures at Sally Cove, an aquaculture farm within Rehoboth Bay in Delaware. A control site within Sally Cove, which was without oyster cultures, was also included in the study. Seawater temperature, salinity, pH, and dissolved oxygen were measured in situ during sampling. Molecular confirmation with PCR and qPCR showed that Vibrio parahaemolyticus, Shiga-toxin-producing Escherichia coli, Salmonella enterica, Staphylococcus aureus, Pseudomonas aeruginosa, and Clostridium spp. were present and persisted in seawater and oyster samples from both cultures at Sally Cove and in off-bottom and bottom seawater samples from the control site throughout the study. Shigella spp. and Listeria monocytogenes were consistently found in seawater and oyster samples from July to September. However, Shigella spp. was only detected in samples from the bottom cultures, whereas L. monocytogenes was undetectable in all samples from both cultures in October. The observed temperature, salinity, pH, and dissolved oxygen levels across the study period were in the range of 15.30-29.67°C, 29.33-31.87 ppt, 7.25-7.95, and 3.79-8.10 mg/L, respectively, and comparable with the conditions suitable for the growth and survival of these bacteria. These findings suggest that consuming raw oysters from Sally Cove poses contamination risks from several bacteria, especially in the summer months.IMPORTANCEAlthough studies have evaluated bacterial contamination in seawater and oysters within the Delaware Inland Bays and nearby areas, the focus has primarily been on Vibrio species. However, other bacteria have been found in seawater and seafood at various locations and could potentially occur in oysters produced from aquaculture farms within the Delaware Inland Bays. Sally Cove is an oyster aquaculture farm that produces Eastern oysters (Crassostrea virginica) for consumption in Delaware using both off-bottom and bottom culturing methods. The risk of bacterial contamination from consuming raw oysters from this farm is unknown. This paper shows the presence and persistence of several bacteria, including those associated with waste, in seawater and oysters at the farm. The findings can inform consumers about the contamination risks from consuming raw oysters produced at the farm.
Collapse
Affiliation(s)
- Kelvin F. Ofori
- Food Science and Biotechnology Program, Department of Human Ecology, College of Agriculture, Science and Technology, Delaware State University, Dover, Delaware, USA
| | - Ali Parsaeimehr
- Department of Agriculture and Natural Resources, College of Agriculture, Science and Technology, Delaware State University, Dover, Delaware, USA
| | - Gulnihal Ozbay
- Food Science and Biotechnology Program, Department of Human Ecology, College of Agriculture, Science and Technology, Delaware State University, Dover, Delaware, USA
- Department of Agriculture and Natural Resources, College of Agriculture, Science and Technology, Delaware State University, Dover, Delaware, USA
| |
Collapse
|
2
|
Hensen ADO, Vehreschild MJGT, Gerding DN, Krut O, Chen W, Young VB, Tzipori S, Solbach P, Gibani MM, Chiu C, de Keersmaecker SCJ, Dasyam D, Morel S, Devaster JM, Corti N, Kuijper EJ, Roestenberg M, Smits WK. How to develop a controlled human infection model for Clostridioides difficile. Clin Microbiol Infect 2025; 31:373-379. [PMID: 39214188 DOI: 10.1016/j.cmi.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Clostridioides difficile (C. difficile) remains the leading cause of healthcare-associated diarrhoea, posing treatment challenges because of antibiotic resistance and high relapse rates. Faecal microbiota transplantation is a novel treatment strategy to prevent relapses of C. difficile infection (CDI), however, the exact components conferring colonization resistance are unknown, hampering its translation to a medicinal product. The development of novel products independent of antibiotics, which increase colonization resistance or induce protective immune mechanisms is urgently needed. OBJECTIVES To establish a framework for a Controlled Human Infection Model (CHIM) of C. difficile, in which healthy volunteers are exposed to toxigenic C. difficile spores, offering the possibility to test novel approaches and identify microbiota and immunological targets. Whereas experimental exposure to non-toxigenic C. difficile has been done before, a toxigenic C. difficile CHIM faces ethical, scientific, logistical, and biosafety challenges. SOURCES Specific challenges in developing a C. difficile CHIM were discussed by a group of international experts during a workshop organized by Inno4Vac, an Innovative Health Initiative-funded consortium. CONTENT The experts agreed that the main challenges are: developing a clinically relevant CHIM that induces mild to moderate CDI symptoms but not severe CDI, determining the optimal C. difficile inoculum dose, and understanding the timing and duration of antibiotic pretreatment in inducing susceptibility to CDI in healthy volunteers. IMPLICATIONS Should these challenges be tackled, a C. difficile CHIM will not only provide a way forward for the testing of novel products but also offer a framework for a better understanding of the pathophysiology, pathogenesis, and immunology of C. difficile colonization and infection.
Collapse
Affiliation(s)
- Annefleur D O Hensen
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Maria J G T Vehreschild
- Department of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; German Center for Infection Research (DZIF), Cologne, Germany
| | - Dale N Gerding
- Department of Veterans Affairs, Edward Hines Jr VA Hospital, Hines, IL, United States
| | - Oleg Krut
- Paul-Ehrlich-Institut (PEI), Langen, Germany
| | - Wilbur Chen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Vincent B Young
- Department of Internal Medicine/Infectious Diseases Division and the Department of Microbiology & Immunology, The University of Michigan, Ann Arbor, MI, United States
| | - Saul Tzipori
- Division of Infectious Disease and Global Health, Tufts University, Medford, MA, United States
| | - Philipp Solbach
- First Department of Medicine, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Malick Mahdi Gibani
- Department of Infectious Disease, Imperial College London (ICL), London, United Kingdom
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London (ICL), London, United Kingdom
| | | | | | | | | | | | - Ed J Kuijper
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Meta Roestenberg
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), Leiden, The Netherlands.
| | - Wiep Klaas Smits
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), Leiden, The Netherlands
| |
Collapse
|
3
|
Vinay G, Seppen J, Setlow P, Brul S. Bile acids as germinants for Clostridioides difficile spores, evidence of adaptation to the gut? FEMS Microbiol Rev 2025; 49:fuaf005. [PMID: 39924167 PMCID: PMC11878537 DOI: 10.1093/femsre/fuaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 12/16/2024] [Accepted: 02/07/2025] [Indexed: 02/11/2025] Open
Abstract
Bacterial spores formed upon metabolic stress have minimal metabolic activity and can remain dormant for years. Nevertheless, they can sense the environment and germinate quickly upon exposure to various germinants. Germinated spores can then outgrow into vegetative cells. Germination of spores of some anaerobes, especially Clostridioides difficile, is triggered by cholic acid and taurocholic acid. Elevated levels of these bile acids are thought to correlate with a perturbed gut microbiome, which cannot efficiently convert primary bile acids into secondary bile acids. That bile acids are germination-triggers suggests these bacteria have a life cycle taking place partially in the mammalian digestive tract where bile acids are plentiful; notably bile acids can be made by all vertebrates. Thus, spores survive in the environment until taken up by a host where they encounter an environment suitable for germination and then proliferate in the largely anaerobic large intestine; some ultimately sporulate there, regenerating environmentally resistant spores in the C. difficile life cycle. This review summarizes current literature on the effects of bile acids and their metabolites on spore germination in the gut and evidence that adaptation to bile acids as germinants is a consequence of a life cycle both inside and outside the digestive tract.
Collapse
Affiliation(s)
- Gianni Vinay
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | - Jurgen Seppen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, United States
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
4
|
Rupnik M, Fuks A, Janezic S. Diversity of Clostridioides difficile PCR ribotypes isolated from freshwater sediments depends on the isolation method. Appl Environ Microbiol 2024; 90:e0144224. [PMID: 39269162 PMCID: PMC11497773 DOI: 10.1128/aem.01442-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Clostridioides difficile is an intestinal pathogen of humans and animals. In community-associated infections, the environment is suggested to play a significant role in overall transmission routes. Although the prevalence of C. difficile in freshwater and soil has been widely studied, little is known about its presence in sediments. In this study, we tested 15 sediment samples collected from various freshwater sources. C. difficile was isolated from all sampled sites, yielding a total of 171 strains grouped into 26 ribotypes, with 001/072 and 014/020 being the most prevalent. Genome sequencing of 37 isolates from 17 PCR ribotypes confirmed the presence of highly related strains in the geographically distant and unlinked water samples. Eight divergent PCR ribotypes from clades C-II and C-III were found in six samples. In each sample, the unbound fraction (supernatant after sediment wash) and bound fraction (sonicated sediment sample) were subjected to enrichment. Sonication was only slightly better than washing in terms of sample positivity (14 positive samples with sonication and 11 with washing). However, sonication substantially increased the diversity of the PCR ribotypes obtained (23 in sonicated samples vs nine in washed samples). In conclusion, sediments are a rich source for investigating the diversity of environmental C. difficile, including isolates from divergent lineages. Selection of the isolation method can significantly impact the diversity of captured PCR ribotypes.IMPORTANCEClostridioides difficile, a pathogenic bacterium that can cause intestinal infections in humans and animals, thrives in the gut but also disperses widely through spores found in the environment. Clinical and environmental strains often overlap with common PCR ribotypes, which are consistently isolated worldwide. Environmental studies have mostly focused on water and soil, but sediments have been very poorly studied. In this study, we investigated the presence of C. difficile in various freshwater sediments and evaluated the effectiveness of two different isolation approaches on positivity rates and strain diversity. C. difficile was found to be highly prevalent in sediments, with an isolation rate of 100%. Sonication proved to be more effective than simple washing for capturing a greater diversity of PCR ribotypes. Overall, this study underscores the widespread presence of C. difficile in freshwater sediments and emphasizes the importance of continued surveillance and monitoring to understand its ecology and transmission dynamics.
Collapse
Affiliation(s)
- Maja Rupnik
- National Laboratory for Health, Environment and Food, Maribor, Slovenia
- University of Maribor, Faculty of Medicine, Maribor, Slovenia
| | - Alen Fuks
- National Laboratory for Health, Environment and Food, Maribor, Slovenia
| | - Sandra Janezic
- National Laboratory for Health, Environment and Food, Maribor, Slovenia
- University of Maribor, Faculty of Medicine, Maribor, Slovenia
| |
Collapse
|
5
|
Blau K, Berger FK, Mellmann A, Gallert C. Clostridioides difficile from Fecally Contaminated Environmental Sources: Resistance and Genetic Relatedness from a Molecular Epidemiological Perspective. Microorganisms 2023; 11:2497. [PMID: 37894155 PMCID: PMC10608975 DOI: 10.3390/microorganisms11102497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Clostridioides difficile is the most important pathogen causing antimicrobial-associated diarrhea and has recently been recognized as a cause of community-associated C. difficile infection (CA-CDI). This study aimed to characterize virulence factors, antimicrobial resistance (AMR), ribotype (RT) distribution and genetic relationship of C. difficile isolates from diverse fecally contaminated environmental sources. C. difficile isolates were recovered from different environmental samples in Northern Germany. Antimicrobial susceptibility testing was determined by E-test or disk diffusion method. Toxin genes (tcdA and tcdB), genes coding for binary toxins (cdtAB) and ribotyping were determined by PCR. Furthermore, 166 isolates were subjected to whole genome sequencing (WGS) for core genome multi-locus sequence typing (cgMLST) and extraction of AMR and virulence-encoding genes. Eighty-nine percent (148/166) of isolates were toxigenic, and 51% (76/148) were positive for cdtAB. Eighteen isolates (11%) were non-toxigenic. Thirty distinct RTs were identified. The most common RTs were RT127, RT126, RT001, RT078, and RT014. MLST identified 32 different sequence types (ST). The dominant STs were ST11, followed by ST2, ST3, and ST109. All isolates were susceptible to vancomycin and metronidazole and displayed a variable rate of resistance to moxifloxacin (14%), clarithromycin (26%) and rifampicin (2%). AMR genes, such as gyrA/B, blaCDD-1/2, aph(3')-llla-sat-4-ant(6)-la cassette, ermB, tet(M), tet(40), and tetA/B(P), conferring resistance toward fluoroquinolone, beta-lactam, aminoglycoside, macrolide and tetracycline antimicrobials, were found in 166, 137, 29, 32, 21, 72, 17, and 9 isolates, respectively. Eleven "hypervirulent" RT078 strains were detected, and several isolates belonged to RTs (i.e., RT127, RT126, RT023, RT017, RT001, RT014, RT020, and RT106) associated with CA-CDI, indicating possible transmission between humans and environmental sources pointing out to a zoonotic potential.
Collapse
Affiliation(s)
- Khald Blau
- Department of Microbiology–Biotechnology, Faculty of Technology, University of Applied Sciences Emden/Leer, 26723 Emden, Germany;
| | - Fabian K. Berger
- Institute of Medical Microbiology and Hygiene, Saarland University Medical Center, 66421 Homburg, Germany;
- German National Reference Center for Clostridioides Difficile, 66421 Homburg, Germany;
| | - Alexander Mellmann
- German National Reference Center for Clostridioides Difficile, 66421 Homburg, Germany;
- Institute of Hygiene, University of Münster, 48149 Münster, Germany
| | - Claudia Gallert
- Department of Microbiology–Biotechnology, Faculty of Technology, University of Applied Sciences Emden/Leer, 26723 Emden, Germany;
| |
Collapse
|
6
|
Marutescu LG, Popa M, Gheorghe-Barbu I, Barbu IC, Rodríguez-Molina D, Berglund F, Blaak H, Flach CF, Kemper MA, Spießberger B, Wengenroth L, Larsson DGJ, Nowak D, Radon K, de Roda Husman AM, Wieser A, Schmitt H, Pircalabioru Gradisteanu G, Vrancianu CO, Chifiriuc MC. Wastewater treatment plants, an "escape gate" for ESCAPE pathogens. Front Microbiol 2023; 14:1193907. [PMID: 37293232 PMCID: PMC10244645 DOI: 10.3389/fmicb.2023.1193907] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Antibiotics are an essential tool of modern medicine, contributing to significantly decreasing mortality and morbidity rates from infectious diseases. However, persistent misuse of these drugs has accelerated the evolution of antibiotic resistance, negatively impacting clinical practice. The environment contributes to both the evolution and transmission of resistance. From all anthropically polluted aquatic environments, wastewater treatment plants (WWTPs) are probably the main reservoirs of resistant pathogens. They should be regarded as critical control points for preventing or reducing the release of antibiotics, antibiotic-resistant bacteria (ARB), and antibiotic-resistance genes (ARGs) into the natural environment. This review focuses on the fate of the pathogens Enterococcus faecium, Staphylococcus aureus, Clostridium difficile, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae spp. (ESCAPE) in WWTPs. All ESCAPE pathogen species, including high-risk clones and resistance determinants to last-resort antibiotics such as carbapenems, colistin, and multi-drug resistance platforms, were detected in wastewater. The whole genome sequencing studies demonstrate the clonal relationships and dissemination of Gram-negative ESCAPE species into the wastewater via hospital effluents and the enrichment of virulence and resistance determinants of S. aureus and enterococci in WWTPs. Therefore, the efficiency of different wastewater treatment processes regarding the removal of clinically relevant ARB species and ARGs, as well as the influence of water quality factors on their performance, should be explored and monitored, along with the development of more effective treatments and appropriate indicators (ESCAPE bacteria and/or ARGs). This knowledge will allow the development of quality standards for point sources and effluents to consolidate the WWTP barrier role against the environmental and public health AR threats.
Collapse
Affiliation(s)
- Luminita Gabriela Marutescu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Marcela Popa
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Ilda Czobor Barbu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Daloha Rodríguez-Molina
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology – IBE, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Fanny Berglund
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Hetty Blaak
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Carl-Fredrik Flach
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Merel Aurora Kemper
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Beate Spießberger
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany
- Department of Infectious Diseases and Tropical Medicine, LMU University Hospital Munich, Munich, Germany
| | - Laura Wengenroth
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - D. G. Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Dennis Nowak
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
| | - Katja Radon
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Ana Maria de Roda Husman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Andreas Wieser
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany
- Department of Infectious Diseases and Tropical Medicine, LMU University Hospital Munich, Munich, Germany
| | - Heike Schmitt
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Gratiela Pircalabioru Gradisteanu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Romanian Academy of Sciences, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- The Romanian Academy, Bucharest, Romania
| |
Collapse
|
7
|
Ivashkin VT, Maev IV, Andreev DN, Goloshchapov OV, Derinov AA, Zolnikova OY, Ivashkin KV, Kiseleva OY, Kiryukhin AP, Lyashenko OS, Poluektova EA, Tertychnyy AS, Trukhmanov AS, Ulyanin AI, Sheptulin AA, Shifrin OS. Modern Approaches to the Diagnosis and treatment of <i>Clostridioides difficile (C. difficile)</i>-associated Disease in Adults (literature Review and Expert Council Resolution). RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2023; 33:19-33. [DOI: 10.22416/1382-4376-2023-33-2-19-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Aim: to review the modern approaches to the diagnosis and treatment ofC. difficile-associated disease in adults and present the resolution of the Expert Council held on March 25, 2023 in Moscow.General provisions.C. difficileis the most important nosocomial pathogen which spores are also commonly found in the environment. Microbiota impairment, primarily due to the use of antibacterial drugs, is a key stage in the development ofC. difficile-associated disease. A search for an infection should be carried out only in patients with diarrhea, and it is advisable to use at least 2 laboratory methods. The drug of choice for first-line treatment is vancomycin. If drug treatment is ineffective or the patient has recurrent clostridial infection, fecal microbiota transplantation should be considered. The probiotic strainSaccharomyces boulardii CNCM I-745has a direct inhibitory effect onC. difficiletoxin A, promotes normalization of the intestinal microbiota composition, and decreases the inflammatory reaction in colonic mucosa colonized with a toxigenic strain ofC. difficile.Conclusions. Addition of the probiotic strainSaccharomyces boulardii CNCM I-745to antibacterial therapy promotes both primary and secondary prevention ofC. difficile-associated disease.
Collapse
Affiliation(s)
- V. T. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - I. V. Maev
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| | - D. N. Andreev
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| | | | - A. A. Derinov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. Yu. Zolnikova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - K. V. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. Yu. Kiseleva
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. P. Kiryukhin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. S. Lyashenko
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - E. A. Poluektova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. S. Tertychnyy
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. S. Trukhmanov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. I. Ulyanin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. A. Sheptulin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. S. Shifrin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
8
|
Xu M, Selvaraj GK, Lu H. Environmental sporobiota: Occurrence, dissemination, and risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161809. [PMID: 36702282 DOI: 10.1016/j.scitotenv.2023.161809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/03/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Spore-forming bacteria known as sporobiota are widespread in diverse environments from terrestrial and aquatic habitats to industrial and healthcare systems. Studies on sporobiota have been mainly focused on food processing and clinical fields, while a large amount of sporobiota exist in natural environments. Due to their persistence and capabilities of transmitting virulence factors and antibiotic resistant genes, environmental sporobiota could pose significant health risks to humans. These risks could increase as global warming and environmental pollution has altered the life cycle of sporobiota. This review summarizes the current knowledge of environmental sporobiota, including their occurrence, characteristics, and functions. An interaction network among clinical-, food-related, and environment-related sporobiota is constructed. Recent and effective methods for detecting and disinfecting environmental sporobiota are also discussed. Key problems and future research needs for better understanding and reducing the risks of environmental sporobiota and sporobiome are proposed.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ganesh-Kumar Selvaraj
- Department of Microbiology, St. Peter's Institute of Higher Education and Research, Chennai 600054, Tamil Nadu, India.
| | - Huijie Lu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Water Pollution Control and Environmental Safety, Zhejiang, China.
| |
Collapse
|
9
|
The Environment, Farm Animals and Foods as Sources of Clostridioides difficile Infection in Humans. Foods 2023; 12:foods12051094. [PMID: 36900611 PMCID: PMC10000743 DOI: 10.3390/foods12051094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
The recent discovery of the same Clostridioides difficile ribotypes associated with human infection in a broad range of environments, animals and foods, coupled with an ever-increasing rate of community-acquired infections, suggests this pathogen may be foodborne. The objective of this review was to examine the evidence supporting this hypothesis. A review of the literature found that forty-three different ribotypes, including six hypervirulent strains, have been detected in meat and vegetable food products, all of which carry the genes encoding pathogenesis. Of these, nine ribotypes (002, 003, 012, 014, 027, 029, 070, 078 and 126) have been isolated from patients with confirmed community-associated C. difficile infection (CDI). A meta-analysis of this data suggested there is a higher risk of exposure to all ribotypes when consuming shellfish or pork, with the latter being the main foodborne route for ribotypes 027 and 078, the hypervirulent strains that cause most human illnesses. Managing the risk of foodborne CDI is difficult as there are multiple routes of transmission from the farming and processing environment to humans. Moreover, the endospores are resistant to most physical and chemical treatments. The most effective current strategy is, therefore, to limit the use of broad-spectrum antibiotics while advising potentially vulnerable patients to avoid high-risk foods such as shellfish and pork.
Collapse
|
10
|
Spore-Forming Clostridium ( Clostridioides) difficile in Wastewater Treatment Plants in Western Australia. Microbiol Spectr 2023; 11:e0358222. [PMID: 36475924 PMCID: PMC9927104 DOI: 10.1128/spectrum.03582-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is growing evidence that shows Clostridium (Clostridioides) difficile is a pathogen of One Health importance with a complex dissemination pathway involving animals, humans, and the environment. Thus, environmental discharge and agricultural recycling of human and animal waste have been suspected as factors behind the dissemination of Clostridium difficile in the community. Here, the presence of C. difficile in 12 wastewater treatment plants (WWTPs) in Western Australia was investigated. Overall, C. difficile was found in 90.5% (114/126) of raw sewage influent, 48.1% (50/104) of treated effluent, 40% (2/5) of reclaimed irrigation water, 100% (38/38) of untreated biosolids, 95.2% (20/21) of anaerobically digested biosolids, and 72.7% (8/11) of lime-amended biosolids. Over half of the isolates (55.3% [157/284]) were toxigenic, and 97 C. difficile ribotypes (RTs) were identified, with RT014/020 the most common (14.8% [42/284]). Thirteen C. difficile isolates with the toxin gene profile A+ B+ CDT+ (positive for genes coding for toxins A and B and the binary C. difficile transferase toxin [CDT]) were found, including the hypervirulent RT078 strain. Resistance to the antimicrobials fidaxomicin, vancomycin, metronidazole, rifaximin, amoxicillin-clavulanate, meropenem, and moxifloxacin was uncommon; however, resistance to clindamycin, erythromycin, and tetracycline was relatively frequent at 56.7% (161/284), 14.4% (41/284), and 13.7% (39/284), respectively. This study revealed that toxigenic C. difficile was commonly encountered in WWTPs and being released into the environment. This raises concern about the possible spillover of C. difficile into animal and/or human populations via land receiving the treated waste. In Western Australia, stringent measures are in place to mitigate the health and environmental risk of recycling human waste; however, further studies are needed to elucidate the public health significance of C. difficile surviving the treatment processes at WWTPs. IMPORTANCE Clostridium difficile infection (CDI) is a leading cause of antimicrobial-associated diarrhea in health care facilities. Extended hospital stays and recurrences increase the cost of treatment and morbidity and mortality. Community-associated CDI (CA-CDI) cases, with no history of antimicrobial use or exposure to health care settings, are increasing. The isolation of clinically important C. difficile strains from animals, rivers, soil, meat, vegetables, compost, treated wastewater, and biosolids has been reported. The objective of this study was to characterize C. difficile in wastewater treatment plants (WWTPs) in Australia. We found that C. difficile can survive the treatment processes of WWTPs, and toxigenic C. difficile was being released into the environment, becoming a potential source/reservoir for CA-CDI.
Collapse
|
11
|
Rashid SJ, Nale JY, Millard AD, Clokie MRJ. Novel ribotype/sequence type associations and diverse CRISPR-Cas systems in environmental Clostridioides difficile strains from northern Iraq. FEMS Microbiol Lett 2023; 370:fnad091. [PMID: 37723612 PMCID: PMC10806358 DOI: 10.1093/femsle/fnad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 07/27/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023] Open
Abstract
The environment is a natural reservoir of Clostridioides difficile, and here, we aimed to isolate the pathogen from seven locations in northern Iraq. Four of the sites yielded thirty-one isolates (ten from soils, twenty-one from sediments), which together represent ribotypes (RTs) 001 (five), 010 (five), 011 (two), 035 (two), 091 (eight), and 604 (nine). Twenty-five of the isolates (∼81%) are non-toxigenic, while six (∼19%) encode the toxin A and B genes. The genomes of eleven selected isolates represent six sequence types (STs): ST-3 (two), ST-15 (one), ST-107 (five), ST-137 (one), ST-177 (one), and ST-181 (one). Five novel RT/ST associations: RT011/ST-137, RT035/ST-107, RT091/ST-107, RT604/ST-177, and RT604/ST-181 were identified, and the first three are linked to RTs previously uncharacterized by multilocus sequence typing (MLST). Nine of the genomes belong to Clade 1, and two are closely related to the cryptic C-I clade. Diverse multiple prophages and CRISPR-Cas systems (class 1 subtype I-B1 and class 2 type V CRISPR-Cas systems) with spacers identical to other C. difficile phages and plasmids were detected in the genomes. Our data show the broader diversity that exists within environmental C. difficile strains from a much less studied location and their potential role in the evolution and emergence of new strains.
Collapse
Affiliation(s)
- Srwa J Rashid
- Medical Laboratory Technology Department, Koya Technical Institute, Erbil Polytechnic University, Erbil, Kurdistan, Iraq
| | - Janet Y Nale
- Centre for Epidemiology and Planetary Health, Scotland’s Rural College, Inverness IV2 5NA, UK
| | - Andrew D Millard
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Martha R J Clokie
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
12
|
Blau K, Gallert C. Prevalence, Antimicrobial Resistance and Toxin-Encoding Genes of Clostridioides difficile from Environmental Sources Contaminated by Feces. Antibiotics (Basel) 2023; 12:antibiotics12010162. [PMID: 36671363 PMCID: PMC9855088 DOI: 10.3390/antibiotics12010162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Clostridioides difficile (C. difficile) is the most common pathogen causing antibiotic-associated intestinal diseases in humans and some animal species, but it can also be present in various environments outside hospitals. Thus, the objective of this study was to investigate the presence and the characteristics of toxin-encoding genes and antimicrobial resistance of C. difficile isolates from different environmental sources. C. difficile was found in 32 out of 81 samples (39.50%) after selective enrichment of spore-forming bacteria and in 45 samples (55.56%) using a TaqMan-based qPCR assay. A total of 169 C. difficile isolates were recovered from those 32 C. difficile-positive environmental samples. The majority of environmental C. difficile isolates were toxigenic, with many (88.75%) positive for tcdA and tcdB. Seventy-four isolates (43.78%) were positive for binary toxins, cdtA and cdtB, and 19 isolates were non-toxigenic. All the environmental C. difficile isolates were susceptible to vancomycin and metronidazole, and most isolates were resistant to ciprofloxacin (66.86%) and clindamycin (46.15%), followed by moxifloxacin (13.02%) and tetracycline (4.73%). Seventy-five isolates (44.38%) showed resistance to at least two of the tested antimicrobials. C. difficile strains are commonly present in various environmental sources contaminated by feces and could be a potential source of community-associated C. difficile infections.
Collapse
|
13
|
Major N, Jechalke S, Nesme J, Goreta Ban S, Černe M, Sørensen SJ, Ban D, Grosch R, Schikora A, Schierstaedt J. Influence of sewage sludge stabilization method on microbial community and the abundance of antibiotic resistance genes. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 154:126-135. [PMID: 36242814 DOI: 10.1016/j.wasman.2022.09.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Municipal sewage sludge (MSS) and other biosolids are of high interest for agriculture. These nutrient-rich organic materials can potentially serve as organic fertilizers. Besides an increase of organic matter in soil, other positive effects were shown after their application. Especially the positive influence on circular economy increased the attention paid to management of MSS in recent years. Unfortunately, the use of sewage sludge has some drawbacks. Biosolids are frequently polluted with heavy metals, xenobiotic organic compounds and industrial chemicals, which may be hazardous for the environment and humans. Here, we investigated the influence of stabilization method and the size of wastewater treatment plant on the structure of microbial communities as well as the abundance of antibiotic resistance genes (ARG) and mobile genetic elements (MGE). All tested ARG and MGE were detectable in almost all of the samples. Interestingly, the presence of MGE as well as particular heavy metals correlated positively with the presence of several ARG. We conclude that the distribution of ARG and MGE in biosolids originated from municipal wastewater treatment plants, cannot be explained by the size of the facility or the applied stabilization method. Moreover, we postulate that the presence of pollutants and long-term impacts should be assessed prior to a possible use of sewage sludge as fertilizer.
Collapse
Affiliation(s)
- Nikola Major
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Sven Jechalke
- Institute for Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Joseph Nesme
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | | | - Marko Černe
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Dean Ban
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Rita Grosch
- Leibniz Institute of Vegetable and Ornamental Crops, Department Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Adam Schikora
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany.
| | - Jasper Schierstaedt
- Leibniz Institute of Vegetable and Ornamental Crops, Department Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| |
Collapse
|
14
|
Mengoli M, Barone M, Fabbrini M, D’Amico F, Brigidi P, Turroni S. Make It Less difficile: Understanding Genetic Evolution and Global Spread of Clostridioides difficile. Genes (Basel) 2022; 13:2200. [PMID: 36553467 PMCID: PMC9778335 DOI: 10.3390/genes13122200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Clostridioides difficile is an obligate anaerobic pathogen among the most common causes of healthcare-associated infections. It poses a global threat due to the clinical outcomes of infection and resistance to antibiotics recommended by international guidelines for its eradication. In particular, C. difficile infection can lead to fulminant colitis associated with shock, hypotension, megacolon, and, in severe cases, death. It is therefore of the utmost urgency to fully characterize this pathogen and better understand its spread, in order to reduce infection rates and improve therapy success. This review aims to provide a state-of-the-art overview of the genetic variation of C. difficile, with particular regard to pathogenic genes and the correlation with clinical issues of its infection. We also summarize the current typing techniques and, based on them, the global distribution of the most common ribotypes. Finally, we discuss genomic surveillance actions and new genetic engineering strategies as future perspectives to make it less difficile.
Collapse
Affiliation(s)
- Mariachiara Mengoli
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Federica D’Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
15
|
Marcos P, Whyte P, Burgess C, Ekhlas D, Bolton D. Detection and Genomic Characterisation of Clostridioides difficile from Spinach Fields. Pathogens 2022; 11:1310. [PMID: 36365061 PMCID: PMC9695345 DOI: 10.3390/pathogens11111310] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 10/29/2023] Open
Abstract
Despite an increased incidence of Clostridioides difficile infections, data on the reservoirs and dissemination routes of this bacterium are limited. This study examined the prevalence and characteristics of C. difficile isolates in spinach fields. C. difficile was detected in 2/60 (3.3%) of spinach and 6/60 (10%) of soil samples using culture-based techniques. Whole genome sequencing (WGS) analysis identified the spinach isolates as belonging to the hypervirulent clade 5, sequence type (ST) 11, ribotypes (RT) 078 and 126 and carried the genes encoding toxins A, B and CDT. The soil isolates belonged to clade 1 with different toxigenic ST/RT (ST19/RT614, ST12/RT003, ST46/RT087, ST16/RT050, ST49/RT014/0) strains and one non-toxigenic ST79/RT511 strain. Antimicrobial resistance to erythromycin (one spinach isolate), rifampicin (two soil isolates), clindamycin (one soil isolate), both moxifloxacin and rifampicin (one soil isolate), and multi-drug resistance to erythromycin, vancomycin and rifampicin (two soil isolates) were observed using the E test, although a broader range of resistance genes were detected using WGS. Although the sample size was limited, our results demonstrate the presence of C. difficile in horticulture and provide further evidence that there are multiple sources and dissemination routes for these bacteria.
Collapse
Affiliation(s)
- Pilar Marcos
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | | | - Daniel Ekhlas
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Declan Bolton
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
| |
Collapse
|
16
|
Lim SC, Collins DA, Imwattana K, Knight DR, Perumalsamy S, Hain-Saunders NMR, Putsathit P, Speers D, Riley TV. Whole-genome sequencing links Clostridium (Clostridioides) difficile in a single hospital to diverse environmental sources in the community. J Appl Microbiol 2021; 133:1156-1168. [PMID: 34894035 DOI: 10.1111/jam.15408] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/21/2021] [Accepted: 12/07/2021] [Indexed: 11/27/2022]
Abstract
AIMS To investigate if Clostridium (Clostridioides) difficile infection (CDI), traditionally thought of as hospital-acquired, can be genomically linked to hospital or community environmental sources, and to define possible importation routes from the community to the hospital. METHODS AND RESULTS In 2019, C. difficile was isolated from 89/300 (29.7%) floor and 96/300 (32.0%) shoe sole samples at a tertiary hospital in Western Australia. Non-toxigenic C. difficile ribotype (RT) 010 predominated among floor (96.6%) and shoe sole (73.2%) isolates, while toxigenic RT 014/020 was most prevalent among contemporaneous clinical cases (33.0%) at the hospital. Whole-genome sequencing and high-resolution core genome single nucleotide polymorphism (cgSNP) analysis on C. difficile strains from hospital and community sources showed no clinical C. difficile RT 014/020 strains were genetically related, and evidence of frequent long-distance, multi-directional spread between humans, animals and the environment. In addition, cgSNP analysis of environmental RT 010 strains suggested transportation of C. difficile via shoe soles. CONCLUSIONS While C. difficile RT 014/020 appears to spread via routes outside the healthcare system, RT 010 displayed a pattern of possible importation from the community into the hospital. SIGNIFICANCE AND IMPACT OF STUDY These findings suggest developing community-based infection prevention and control strategies could significantly lower rates of CDI in the hospital setting.
Collapse
Affiliation(s)
- Su-Chen Lim
- School of Medical & Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Deirdre A Collins
- School of Medical & Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Korakrit Imwattana
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Daniel R Knight
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Biosecurity and One Health Research Centre, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Sicilia Perumalsamy
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Natasza M R Hain-Saunders
- School of Medical & Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Biosecurity and One Health Research Centre, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Papanin Putsathit
- School of Medical & Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - David Speers
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Department of Microbiology, PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| | - Thomas V Riley
- School of Medical & Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Biosecurity and One Health Research Centre, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia.,Department of Microbiology, PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| |
Collapse
|
17
|
Ørmen Ø, Madslien EH. Molecular Monitoring of Enteropathogens in Sewage During NATO Exercise Trident Juncture 2018: Potential Tool in Early Outbreak Warning? Mil Med 2021; 186:e661-e666. [PMID: 33185665 DOI: 10.1093/milmed/usaa365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/08/2020] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Outbreaks of gastrointestinal disease among military service personnel can have severe impact on operational effectivity and force readiness. Thus, early outbreak detection is critical to minimize spread. This pilot study aimed to explore field-based molecular screening of sewage as a supplemental tool in early outbreak warning before disease is diagnosed in personnel seeking medical care. MATERIALS AND METHODS Sewage from permanent (n = 3) and temporary (n = 3) military camps, hosting national and international military personnel, were sampled during the NATO Exercise TRJE18 taking place in southern Norway during fall 2018. Samples were screened for 22 gastrointestinal pathogens using multiplex PCR. RESULTS Markers of multiple enteropathogens were detected in samples from all locations with some variations in diversity. Yersinia enterocolitica, pathogenic Escherichia coli, adenovirus, and Giardia were detected in sewage from all six camps during the exercise. Agent diversity seemed to increase with population size, regardless of nationality. Only a minor outbreak (n = 6) of norovirus was reported in one of the permanent camps. From the same camp, genetic markers of norovirus were detected in sewage 2 days before outbreak notification. No other outbreaks of gastrointestinal disease were reported during the exercise, indicating that markers of several enteropathogens can be normally found in sewage from healthy soldier populations. Thus, discriminating between true outbreaks and nonrelevant "background levels" would be of critical importance for correct decision-making in operational contexts. CONCLUSIONS Molecular screening of sewage allows rapid detection of multiple gastrointestinal pathogens in biological waste from military camps. However, background levels of pathogens challenges interpretation of qualitative analyses in outbreak situations. As such, quantitative measures, as well as high-resolution sequence-based methods, which allows strain identification and broader target spectrum, should be further explored in future studies.
Collapse
Affiliation(s)
- Øyvind Ørmen
- Department for Veterinary Services and Force Health Protection, Norwegian Armed Forces Joint Medical Services, 2617 Lillehammer, Norway
| | - Elisabeth Henie Madslien
- Division of comprehensive defense, Norwegian Defence Research Establishment, 2027 Kjeller, Norway
| |
Collapse
|
18
|
Baghani A, Alimohammadi M, Aliramezani A, Talebi M, Mesdaghinia A, Douraghi M. Isolation and characterization of a multidrug-resistant Clostridioides difficile toxinotype V from municipal wastewater treatment plant. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1281-1288. [PMID: 33312642 PMCID: PMC7721768 DOI: 10.1007/s40201-020-00546-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 09/07/2020] [Accepted: 09/21/2020] [Indexed: 06/10/2023]
Abstract
PURPOSE Wastewater treatment plant (WWTP) is regarded as a potential source for transmission of Clostridioides difficile from urban areas into the surface water, through feces of human and animals. The aim of this study was to screen and characterize the C. difficile bacteria in inlet and outlet wastewater of different WWTPs in Tehran, Iran. METHODS Totally, 72 samples were collected from three different WWTPs (inlet site and outlet sites) during a year. C. difficile was isolated and characterized in terms of toxins, toxinotype, resistance profile and genes, and colonization factors using PCR. RESULTS One C. difficile toxinotype V was isolated from the outlet samples. The isolate was susceptible to vancomycin but resistant to metronidazole, tetracycline, ciprofloxacin, and moxifloxacin using MIC Test Strips. The isolated C. difficile was toxigenic (tcdA, tcdB, cdtA, cdtB positive and CPE positive) and had tcdC-A genotype. No mutations were found in fliC and fliD. The slpA sequence type was 078 - 01. The C. difficile was positive for tetM, int, but negative for vanA, nim, and tndX genes. Mutations were not observed in gyrA and gyrB genes. CONCLUSIONS This study provided evidence of presence of a multidrug-resistant C. difficile toxinotype V in one of the municipal WWTP. The transmission of such isolate to the environment and reuse of treated wastewater by human pose a threat to human health and dissemination of antibiotic resistant bacteria which are untreatable.
Collapse
Affiliation(s)
- Akram Baghani
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, PO Box: 14155-6446, Tehran, Iran
| | - Mahmood Alimohammadi
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Aliramezani
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, PO Box: 14155-6446, Tehran, Iran
| | - Maliheh Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Mesdaghinia
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Water Quality Research (CWQR), Department of Environmental Health Engineering, School of Public Health, Institute for Environmental Research (IER), Tehran University of Medical Sciences, PO Box: 14155-6446, Tehran, Iran
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, PO Box: 14155-6446, Tehran, Iran
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Lim SC, Knight DR, Moono P, Foster NF, Riley TV. Clostridium difficile in soil conditioners, mulches and garden mixes with evidence of a clonal relationship with historical food and clinical isolates. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:672-680. [PMID: 32975368 DOI: 10.1111/1758-2229.12889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
With rates of community-associated Clostridium difficile infection (CA-CDI) increasing worldwide, potential reservoirs/sources of C. difficile in the community are being sought. Since C. difficile is found in animal manure and human biosolids, which are composted for agricultural purposes, composted products could be a source. In this study, the presence of C. difficile in composted products, and their genetic relatedness to other previously isolated strains from humans, root vegetables and the environment in Western Australia, was investigated. Overall, C. difficile was found in 22.5% (16/71) of composted products [29.7% (11/37) of soil conditioners, 16.7% (2/12) of mulches and 13.6% (3/22) of garden mixes]. Fifteen C. difficile PCR ribotypes (RTs) were identified, the most common toxigenic strains being RTs 020 and 056. Clostridium difficile RT 056 is commonly associated with CDI in humans and has also been isolated from cattle, root vegetables and the environment (veterinary clinics and lawn) in Australia. High-resolution core-genome analysis of 29 C. difficile RT 056 strains revealed clonal relationships between isolates derived from humans, vegetables, composted products and the environment. These findings provide support for an intricate transmission network between human, food and the environment, further highlighting the importance of a 'One Health' approach for managing CDI.
Collapse
Affiliation(s)
- Su-Chen Lim
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Daniel R Knight
- Medical, Molecular and Forensic Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Peter Moono
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Niki F Foster
- PathWest Laboratory Medicine, Perth, Western Australia, Australia
- OzFoodNet, Communicable Diseases Control Directorate, Department of Health, Government of Western Australia, Perth, Western Australia, Australia
| | - Thomas V Riley
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Medical, Molecular and Forensic Sciences, Murdoch University, Perth, Western Australia, Australia
- PathWest Laboratory Medicine, Perth, Western Australia, Australia
| |
Collapse
|
20
|
Major N, Schierstaedt J, Jechalke S, Nesme J, Ban SG, Černe M, Sørensen SJ, Ban D, Schikora A. Composted Sewage Sludge Influences the Microbiome and Persistence of Human Pathogens in Soil. Microorganisms 2020; 8:microorganisms8071020. [PMID: 32660164 PMCID: PMC7409118 DOI: 10.3390/microorganisms8071020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/03/2022] Open
Abstract
Composted sewage sludge (CSS) gained attention as a potential fertilizer in agriculture. Application of CSS increases soil microbial activity and microbial biomass, however, it can also lead to increased chemical and microbiological risks. In this study, we performed microcosm experiments to assess how CSS reshapes the microbial community of diluvial sand (DS) soil. Further, we assessed the potential of CSS to increase the persistence of human pathogens in DS soil and the colonization of Chinese cabbage (Brassica rapa L. subsp. pekinensis (Lour.) Hanelt). The results revealed that CSS substantially altered the prokaryotic community composition. Moreover, addition of CSS increased the persistence of Salmonella enterica serovar Typhimurium strain 14028s and S.enterica serovar Senftenberg in DS soil. However, the enhanced persistence in soil had no impact on the colonization rate of B.rapa grown on soil inoculated with Salmonella. We detected Salmonella in leaves of 1.9% to 3.6% of plants. Addition of CSS had no impact on the plant colonization rate. The use of sewage sludge composts is an interesting option. However, safety measures should be applied in order to avoid contamination of crop plants by human pathogens.
Collapse
Affiliation(s)
- Nikola Major
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (S.G.B.); (M.Č.); (D.B.)
- Correspondence: (N.M.); (A.S.)
| | - Jasper Schierstaedt
- Leibniz Institute of Vegetable and Ornamental Crops, Department Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany;
| | - Sven Jechalke
- Institute for Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany;
| | - Joseph Nesme
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark; (J.N.); (S.J.S.)
| | - Smiljana Goreta Ban
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (S.G.B.); (M.Č.); (D.B.)
| | - Marko Černe
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (S.G.B.); (M.Č.); (D.B.)
| | - Søren J. Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark; (J.N.); (S.J.S.)
| | - Dean Ban
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (S.G.B.); (M.Č.); (D.B.)
| | - Adam Schikora
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
- Correspondence: (N.M.); (A.S.)
| |
Collapse
|
21
|
Usui M. One Health approach to Clostridioides difficile in Japan. J Infect Chemother 2020; 26:643-650. [PMID: 32334949 DOI: 10.1016/j.jiac.2020.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/22/2020] [Indexed: 12/19/2022]
Abstract
Clostridioides difficile infections (CDIs) are predominantly a healthcare-associated illness in developed countries, with the majority of cases being elderly and hospitalize patients who used antibiotic therapy. Recently, the incidence of community-associated CDIs (CA-CDIs) in younger patients without a previous history of hospitalization or antibiotic treatment has been increasing globally. C. difficile is sometimes found in the intestine of many animals, such as pigs, calves, and dogs. Food products such as retail meat products and vegetables sometimes contain C. difficile. C. difficile has also been isolated from several environments such as compost manure, rivers, and soils. Yet, direct transmission of C. difficile from animals, food products, and environments to humans has not been proven, although these strains have similar molecular characteristics. Therefore, it has been suggested that there is a relationship between CA-CDIs and C. difficile from animals, food products, and the environment. To clarify the importance of the presence of C. difficile in several sources, characterization of C. difficile in these sources is required. However, the epidemiology of C. difficile in animals, food products, and the environment is not well studied in Japan. This review summarizes recent trends of CDIs and compares the molecular characteristics of C. difficile in Japanese animals, food products, and the environment. The prevalence trends of C. difficile in Japan are similar to those in the rest of the world. Therefore, I recommend using a One Health approach to CDI surveillance, monitoring, and control.
Collapse
Affiliation(s)
- Masaru Usui
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido, 069-8501, Japan.
| |
Collapse
|
22
|
Rivas L, Dupont PY, Gilpin BJ, Cornelius AJ. Isolation and characterization of Clostridium difficile from a small survey of wastewater, food and animals in New Zealand. Lett Appl Microbiol 2019; 70:29-35. [PMID: 31631350 DOI: 10.1111/lam.13238] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 11/29/2022]
Abstract
The objective of this study was to undertake a microbiological survey of foods, animal faeces and wastewater samples for Clostridium difficile, and determine the genotypes and antimicrobial susceptibilities of isolates. A total of 211 samples were tested for C. difficile using culture methods. Thirteen toxigenic C. difficile isolates were obtained; ten from wastewater samples, one each from pig and duck faeces and another from a raw meat product. Eight PCR-ribotypes (RTs) were identified, including two novel RTs (878 and 879). Single-nucleotide polymorphism analysis using WGS data for all isolates provided greater discrimination between C. difficile isolates within the same RT and multilocus sequence typing (MLST) profiles. All C. difficile isolates were found to be susceptible to the first-line human antimicrobials used to treat C. difficile infection. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to report the isolation of Clostridium difficile from animals, food and wastewater in New Zealand (NZ) and provides important data with respect to ribotypes and multilocus sequence typing profiles, whole genome sequence and antimicrobial susceptibilities. The results highlight the need for further investigations into the epidemiology of C. difficile in NZ and to elucidate the role of the environmental and food sources as transmission routes of human infection.
Collapse
Affiliation(s)
- L Rivas
- Health and Environment, Institute of Environmental Science and Research, Christchurch Science Centre, Christchurch, New Zealand
| | - P-Y Dupont
- Health and Environment, Institute of Environmental Science and Research, Christchurch Science Centre, Christchurch, New Zealand
| | - B J Gilpin
- Health and Environment, Institute of Environmental Science and Research, Christchurch Science Centre, Christchurch, New Zealand
| | - A J Cornelius
- Health and Environment, Institute of Environmental Science and Research, Christchurch Science Centre, Christchurch, New Zealand
| |
Collapse
|
23
|
Schlatter DC, Paul NC, Shah DH, Schillinger WF, Bary AI, Sharratt B, Paulitz TC. Biosolids and Tillage Practices Influence Soil Bacterial Communities in Dryland Wheat. MICROBIAL ECOLOGY 2019; 78:737-752. [PMID: 30796467 DOI: 10.1007/s00248-019-01339-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Class B biosolids are used in dryland wheat (Triticum aestivum L.) production in eastern Washington as a source of nutrients and to increase soil organic matter, but little is known about their effects on bacterial communities and potential for harboring human pathogens. Moreover, conservation tillage is promoted to reduce erosion and soil degradation. We explored the impacts of biosolids or synthetic fertilizer in combination with traditional (conventional) or conservation tillage on soil bacterial communities. Bacterial communities were characterized from fresh biosolids, biosolid aggregates embedded in soil, and soil after a second application of biosolids using high-throughput amplicon sequencing. Biosolid application significantly affected bacterial communities, even 4 years after their application. Bacteria in the families Clostridiaceae, Norcardiaceae, Anaerolinaceae, Dietziaceae, and Planococcaceae were more abundant in fresh biosolids, biosolid aggregates, and soils treated with biosolids than in synthetically fertilized soils. Taxa identified as Turcibacter, Dietzia, Clostridiaceae, and Anaerolineaceae were highly abundant in biosolid aggregates in the soil and likely originated from the biosolids. In contrast, Oxalobacteriaceae, Streptomyceteaceae, Janthinobacterium, Pseudomonas, Kribbella, and Bacillus were rare in the fresh biosolids, but relatively abundant in biosolid aggregates in the soil, and probably originated from the soil to colonize the substrate. However, tillage had relatively minor effects on bacterial communities, with only a small number of taxa differing in relative abundance between traditional and conventional tillage. Although biosolid-associated bacteria persisted in soil, potentially pathogenic taxa were extremely rare and no toxin genes for key groups (Salmonella, Clostridium) were detectable, suggesting that although fecal contamination was apparent via indicator taxa, pathogen populations had declined to low levels. Thus, biosolid amendments had profound effects on soil bacterial communities both by introducing gut- or digester-derived bacteria and by enriching potentially beneficial indigenous soil populations.
Collapse
Affiliation(s)
- Daniel C Schlatter
- Wheat Health, Genetics and Quality Research Unit, USDA-ARS, Pullman, WA, 99164, USA
| | - Narayan C Paul
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Devendra H Shah
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - William F Schillinger
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Andy I Bary
- Puyallup Research and Extension Center, Washington State University, Puyallup, WA, 98371, USA
| | - Brenton Sharratt
- Northwest Sustainable Agroecosystems Research Unit, USDA-ARS, Pullman, WA, 99164, USA
| | - Timothy C Paulitz
- Wheat Health, Genetics and Quality Research Unit, USDA-ARS, Pullman, WA, 99164, USA.
| |
Collapse
|
24
|
Le Maréchal C, Druilhe C, Repérant E, Boscher E, Rouxel S, Le Roux S, Poëzévara T, Ziebal C, Houdayer C, Nagard B, Barbut F, Pourcher AM, Denis M. Evaluation of the occurrence of sporulating and nonsporulating pathogenic bacteria in manure and in digestate of five agricultural biogas plants. Microbiologyopen 2019; 8:e872. [PMID: 31568706 PMCID: PMC6813454 DOI: 10.1002/mbo3.872] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 11/11/2022] Open
Abstract
The number of agricultural biogas plants has been increasing in the past decades in some European countries. Digestates obtained after anaerobic digestion (AD) of manure are usually spread on agricultural land; however, their hygiene status regarding pathogens posing public health and/or animal health challenges has been poorly characterized up to now in France. In this study, three replicates of manure and digestate were collected from five farm biogas plants receiving animal manure in order to assess the occurrence and concentrations of sporulating (Clostridium botulinum, Clostridioides difficile, Clostridium perfringens) and nonsporulating (Listeria monocytogenes, thermotolerant Campylobacter spp., Salmonella, Escherichia coli, enterococci) bacteria. Concentrations of E. coli, enterococci, and C. perfringens in digestates ranged from 102 to 104, 104 to 105, and <103 to 7 × 105 CFU/g, respectively. Salmonella and C. difficile were detected in manure and digestate from the five biogas plants at concentrations ranging from <1.3 to >7 × 102 MPN/g and from 1.3 to 3 × 102 MPN/g, respectively. Thermotolerant Campylobacter, detected in all the manures, was only found in two digestates at a concentration of cells ranging from <10 to 2.6 × 102 CFU/g. Listeria monocytogenes and C. botulinum were detected in three manures and four digestates. The bacterial counts of L. monocytogenes and C. botulinum did not exceed 3 × 102 and 14 MPN/g, respectively. C. botulinum type B was detected at very low level in both the manure and digestate of farm biogas plants with no botulism history. The levels of pathogenic bacteria in both manure and digestate suggested that some bacteria can persist throughout AD.
Collapse
Affiliation(s)
- Caroline Le Maréchal
- ANSES, Ploufragan-Plouzané Laboratory, Hygiene and Quality of Poultry and Pig Products Unit, Bretagne-Loire University, Ploufragan, France
| | - Céline Druilhe
- OPAALE Research Unit (Optimization of Processes in Agriculture, Agri-Food and Environment), IRSTEA, Bretagne-Loire University, Rennes, France
| | - Elisabeth Repérant
- ANSES, Ploufragan-Plouzané Laboratory, Hygiene and Quality of Poultry and Pig Products Unit, Bretagne-Loire University, Ploufragan, France
| | - Evelyne Boscher
- ANSES, Ploufragan-Plouzané Laboratory, Hygiene and Quality of Poultry and Pig Products Unit, Bretagne-Loire University, Ploufragan, France
| | - Sandra Rouxel
- ANSES, Ploufragan-Plouzané Laboratory, Hygiene and Quality of Poultry and Pig Products Unit, Bretagne-Loire University, Ploufragan, France
| | - Sophie Le Roux
- OPAALE Research Unit (Optimization of Processes in Agriculture, Agri-Food and Environment), IRSTEA, Bretagne-Loire University, Rennes, France
| | - Typhaine Poëzévara
- ANSES, Ploufragan-Plouzané Laboratory, Hygiene and Quality of Poultry and Pig Products Unit, Bretagne-Loire University, Ploufragan, France
| | - Christine Ziebal
- OPAALE Research Unit (Optimization of Processes in Agriculture, Agri-Food and Environment), IRSTEA, Bretagne-Loire University, Rennes, France
| | - Catherine Houdayer
- ANSES, Ploufragan-Plouzané Laboratory, Hygiene and Quality of Poultry and Pig Products Unit, Bretagne-Loire University, Ploufragan, France
| | - Bérengère Nagard
- ANSES, Ploufragan-Plouzané Laboratory, Hygiene and Quality of Poultry and Pig Products Unit, Bretagne-Loire University, Ploufragan, France
| | - Frédéric Barbut
- National Reference Laboratory for Clostridioides difficile, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Anne-Marie Pourcher
- OPAALE Research Unit (Optimization of Processes in Agriculture, Agri-Food and Environment), IRSTEA, Bretagne-Loire University, Rennes, France
| | - Martine Denis
- ANSES, Ploufragan-Plouzané Laboratory, Hygiene and Quality of Poultry and Pig Products Unit, Bretagne-Loire University, Ploufragan, France
| |
Collapse
|
25
|
Rodriguez C, Bouchafa L, Soumillion K, Ngyuvula E, Taminiau B, Van Broeck J, Delmée M, Daube G. Seasonality of Clostridium difficile in the natural environment. Transbound Emerg Dis 2019; 66:2440-2449. [PMID: 31338965 DOI: 10.1111/tbed.13301] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
Clostridium difficile is considered the leading cause of antibiotic-associated disease worldwide. In the past decade, a large number of studies have focused on identifying the main sources of contamination in order to elucidate the complete life cycle of the infection. Hospitals, animals and retail foods have been considered as potential vectors. However, the prevalence of C. difficile in these types of samples was found to be rather low, suggesting that other contamination routes must exist. This study explores the presence of C. difficile in the natural environment and the seasonal dynamics of the bacterium. C. difficile was isolated from a total of 45 samples out of 112 collected (40.2%) on 56 sampling points. A total of 17 points were positive only during the winter sampling (30.4%), 10 were positive only during the summer sampling (17.9%) and 9 sampling points (16.1%) were positive in both summer sampling and winter sampling. Spore counts in soil samples ranged between 50 and 250 cfu/g for 24.4% of the positive samples, with the highest concentrations detected in samples collected in the forest during winter campaign (200-250 cfu/g). A total of 17 different PCR ribotypes were identified, and 15 of them had the genes coding for toxins A and B. Most of those ribotypes had not previously been found or had been isolated only sporadically (<1% of samples) from hospitals in Belgium. Regarding antimicrobial susceptibility, most of the resistant strains were found during the summer campaign. These findings bear out that C. difficile is present in the natural environment, where the bacterium undergoes seasonal variations.
Collapse
Affiliation(s)
- Cristina Rodriguez
- Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Microbiology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Lamia Bouchafa
- Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Microbiology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Kate Soumillion
- National Reference Center Clostridium Difficile, Microbiology Unit, Catholic University of Louvain, Brussels, Belgium
| | - Eleonore Ngyuvula
- National Reference Center Clostridium Difficile, Microbiology Unit, Catholic University of Louvain, Brussels, Belgium
| | - Bernard Taminiau
- Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Microbiology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Johan Van Broeck
- National Reference Center Clostridium Difficile, Microbiology Unit, Catholic University of Louvain, Brussels, Belgium
| | - Michel Delmée
- National Reference Center Clostridium Difficile, Microbiology Unit, Catholic University of Louvain, Brussels, Belgium
| | - Georges Daube
- Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Microbiology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
26
|
Williamson CHD, Stone NE, Nunnally AE, Hornstra HM, Wagner DM, Roe CC, Vazquez AJ, Nandurkar N, Vinocur J, Terriquez J, Gillece J, Travis J, Lemmer D, Keim P, Sahl JW. A global to local genomics analysis of Clostridioides difficile ST1/RT027 identifies cryptic transmission events in a northern Arizona healthcare network. Microb Genom 2019; 5:e000271. [PMID: 31107202 PMCID: PMC6700662 DOI: 10.1099/mgen.0.000271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/04/2019] [Indexed: 12/15/2022] Open
Abstract
Clostridioides difficile is a ubiquitous, diarrhoeagenic pathogen often associated with healthcare-acquired infections that can cause a range of symptoms from mild, self-limiting disease to toxic megacolon and death. Since the early 2000s, a large proportion of C. difficile cases have been attributed to the ribotype 027 (RT027) lineage, which is associated with sequence type 1 (ST1) in the C. difficile multilocus sequence typing scheme. The spread of ST1 has been attributed, in part, to resistance to fluoroquinolones used to treat unrelated infections, which creates conditions ideal for C. difficile colonization and proliferation. In this study, we analysed 27 isolates from a healthcare network in northern Arizona, USA, and 1352 publicly available ST1 genomes to place locally sampled isolates into a global context. Whole genome, single nucleotide polymorphism analysis demonstrated that at least six separate introductions of ST1 were observed in healthcare facilities in northern Arizona over an 18-month sampling period. A reconstruction of transmission networks identified potential nosocomial transmission of isolates, which were only identified via whole genome sequence analysis. Antibiotic resistance heterogeneity was observed among ST1 genomes, including variability in resistance profiles among locally sampled ST1 isolates. To investigate why ST1 genomes are so common globally and in northern Arizona, we compared all high-quality C. difficile genomes and identified that ST1 genomes have gained and lost a number of genomic regions compared to all other C. difficile genomes; analyses of other toxigenic C. difficile sequence types demonstrate that this loss may be anomalous and could be related to niche specialization. These results suggest that a combination of antimicrobial resistance and gain and loss of specific genes may explain the prominent association of this sequence type with C. difficile infection cases worldwide. The degree of genetic variability in ST1 suggests that classifying all ST1 genomes into a quinolone-resistant hypervirulent clone category may not be appropriate. Whole genome sequencing of clinical C. difficile isolates provides a high-resolution surveillance strategy for monitoring persistence and transmission of C. difficile and for assessing the performance of infection prevention and control strategies.
Collapse
Affiliation(s)
| | - Nathan E. Stone
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Amalee E. Nunnally
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Heidie M. Hornstra
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - David M. Wagner
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Chandler C. Roe
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Adam J. Vazquez
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Nivedita Nandurkar
- Northern Arizona Healthcare, Flagstaff Medical Center, Flagstaff, AZ 86001, USA
| | - Jacob Vinocur
- Northern Arizona Healthcare, Flagstaff Medical Center, Flagstaff, AZ 86001, USA
| | - Joel Terriquez
- Northern Arizona Healthcare, Flagstaff Medical Center, Flagstaff, AZ 86001, USA
| | - John Gillece
- Translational Genomics Research Institute, Flagstaff, AZ 86001, USA
| | - Jason Travis
- Translational Genomics Research Institute, Flagstaff, AZ 86001, USA
| | - Darrin Lemmer
- Translational Genomics Research Institute, Flagstaff, AZ 86001, USA
| | - Paul Keim
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Jason W. Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
27
|
Knight DR, Riley TV. Genomic Delineation of Zoonotic Origins of Clostridium difficile. Front Public Health 2019; 7:164. [PMID: 31281807 PMCID: PMC6595230 DOI: 10.3389/fpubh.2019.00164] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/03/2019] [Indexed: 01/27/2023] Open
Abstract
Clostridium difficile is toxin-producing antimicrobial resistant (AMR) enteropathogen historically associated with diarrhea and pseudomembranous colitis in hospitalized patients. In recent years, there have been dramatic increases in the incidence and severity of C. difficile infection (CDI), and associated morbidity and mortality, in both healthcare and community settings. C. difficile is an ancient and diverse species that displays a sympatric lifestyle, establishing itself in a range of ecological niches external to the healthcare system. These sources/reservoirs include food, water, soil, and over a dozen animal species, in particular, livestock such as pigs and cattle. In a manner analogous to human infection, excessive antimicrobial exposure, particularly to cephalosporins, is driving the expansion of C. difficile in livestock populations worldwide. Subsequent spore contamination of meat, vegetables grown in soil containing animal feces, agricultural by-products such as compost and manure, and the environment in general (households, lawns, and public spaces) is contributing to a persistent community source/reservoir of C. difficile and the insidious rise of CDI in the community. The whole-genome sequencing era continues to redefine our view of this complex pathogen. The application of high-resolution microbial genomics in a One Health framework (encompassing clinical, veterinary, and environment derived datasets) is the optimal paradigm for advancing our understanding of CDI in humans and animals. This approach has begun to yield critical insights into the genetic diversity, evolution, AMR, and zoonotic potential of C. difficile. In Europe, North America, and Australia, microevolutionary analysis of the C. difficile core genome shows strains common to humans and animals (livestock or companion animals) do not form distinct populations but share a recent evolutionary history. Moreover, for C. difficile sequence type 11 and PCR ribotypes 078 and 014, major lineages of One Health importance, this approach has substantiated inter-species clonal transmission between animals and humans. These findings indicate either a zoonosis or anthroponosis. Moreover, they challenge the existing paradigm and the long-held misconception that CDI is primarily a healthcare-associated infection. In this article, evolutionary, and zoonotic aspects of CDI are discussed, including the anthropomorphic factors that contribute to the spread of C. difficile from the farm to the community.
Collapse
Affiliation(s)
- Daniel R Knight
- Medical, Molecular, and Forensic Sciences, Murdoch University, Perth, WA, Australia
| | - Thomas V Riley
- Medical, Molecular, and Forensic Sciences, Murdoch University, Perth, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia.,PathWest Laboratory Medicine, Department of Microbiology, Nedlands, WA, Australia
| |
Collapse
|
28
|
Numberger D, Riedel T, McEwen G, Nübel U, Frentrup M, Schober I, Bunk B, Spröer C, Overmann J, Grossart HP, Greenwood AD. Genomic analysis of three Clostridioides difficile isolates from urban water sources. Anaerobe 2019; 56:22-26. [DOI: 10.1016/j.anaerobe.2019.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/05/2018] [Accepted: 01/04/2019] [Indexed: 02/08/2023]
|
29
|
Dingle KE, Didelot X, Quan TP, Eyre DW, Stoesser N, Marwick CA, Coia J, Brown D, Buchanan S, Ijaz UZ, Goswami C, Douce G, Fawley WN, Wilcox MH, Peto TEA, Walker AS, Crook DW. A Role for Tetracycline Selection in Recent Evolution of Agriculture-Associated Clostridium difficile PCR Ribotype 078. mBio 2019; 10:e02790-18. [PMID: 30862754 PMCID: PMC6414706 DOI: 10.1128/mbio.02790-18] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/31/2019] [Indexed: 02/04/2023] Open
Abstract
The increasing clinical importance of human infections (frequently severe) caused by Clostridium difficile PCR ribotype 078 (RT078) was first reported in 2008. The severity of symptoms (mortality of ≤30%) and the higher proportion of infections among community and younger patients raised concerns. Farm animals, especially pigs, have been identified as RT078 reservoirs. We aimed to understand the recent changes in RT078 epidemiology by investigating a possible role for antimicrobial selection in its recent evolutionary history. Phylogenetic analysis of international RT078 genomes (isolates from 2006 to 2014, n = 400), using time-scaled, recombination-corrected, maximum likelihood phylogenies, revealed several recent clonal expansions. A common ancestor of each expansion had independently acquired a different allele of the tetracycline resistance gene tetM Consequently, an unusually high proportion (76.5%) of RT078 genomes were tetM positive. Multiple additional tetracycline resistance determinants were also identified (including efflux pump tet40), frequently sharing a high level of nucleotide sequence identity (up to 100%) with sequences found in the pig pathogen Streptococcus suis and in other zoonotic pathogens such as Campylobacter jejuni and Campylobacter coli Each RT078 tetM clonal expansion lacked geographic structure, indicating rapid, recent international spread. Resistance determinants for C. difficile infection-triggering antimicrobials, including fluoroquinolones and clindamycin, were comparatively rare in RT078. Tetracyclines are used intensively in agriculture; this selective pressure, plus rapid, international spread via the food chain, may explain the increased RT078 prevalence in humans. Our work indicates that the use of antimicrobials outside the health care environment has selected for resistant organisms, and in the case of RT078, has contributed to the emergence of a human pathogen.IMPORTANCEClostridium difficile PCR ribotype 078 (RT078) has multiple reservoirs; many are agricultural. Since 2005, this genotype has been increasingly associated with human infections in both clinical settings and the community. Investigations of RT078 whole-genome sequences revealed that tetracycline resistance had been acquired on multiple independent occasions. Phylogenetic analysis revealed a rapid, recent increase in numbers of closely related tetracycline-resistant RT078 (clonal expansions), suggesting that tetracycline selection has strongly influenced its recent evolutionary history. We demonstrate recent international spread of emergent, tetracycline-resistant RT078. A similar tetracycline-positive clonal expansion was also identified in unrelated nontoxigenic C. difficile, suggesting that this process may be widespread and may be independent of disease-causing ability. Resistance to typical C. difficile infection-associated antimicrobials (e.g., fluoroquinolones, clindamycin) occurred only sporadically within RT078. Selective pressure from tetracycline appears to be a key factor in the emergence of this human pathogen and the rapid international dissemination that followed, plausibly via the food chain.
Collapse
Affiliation(s)
- Kate E Dingle
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
- NIHR Oxford Health Protection Research Unit on Healthcare Associated Infection and Antimicrobial Resistance, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - T Phuong Quan
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
- NIHR Oxford Health Protection Research Unit on Healthcare Associated Infection and Antimicrobial Resistance, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - David W Eyre
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Nicole Stoesser
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Charis A Marwick
- Population Health Sciences, School of Medicine, University of Dundee, Scotland, United Kingdom
| | - John Coia
- Scottish Microbiology Reference Laboratories, Glasgow, United Kingdom
| | - Derek Brown
- Scottish Microbiology Reference Laboratories, Glasgow, United Kingdom
| | | | - Umer Z Ijaz
- University of Glasgow, Scotland, United Kingdom
| | | | - Gill Douce
- University of Glasgow, Scotland, United Kingdom
| | - Warren N Fawley
- Department of Microbiology, Leeds General Infirmary, Leeds Teaching Hospitals, University of Leeds, Leeds, United Kingdom
| | - Mark H Wilcox
- Department of Microbiology, Leeds General Infirmary, Leeds Teaching Hospitals, University of Leeds, Leeds, United Kingdom
| | - Timothy E A Peto
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
- NIHR Oxford Health Protection Research Unit on Healthcare Associated Infection and Antimicrobial Resistance, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - A Sarah Walker
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
- NIHR Oxford Health Protection Research Unit on Healthcare Associated Infection and Antimicrobial Resistance, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - Derrick W Crook
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
- NIHR Oxford Health Protection Research Unit on Healthcare Associated Infection and Antimicrobial Resistance, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| |
Collapse
|
30
|
Candel-Pérez C, Ros-Berruezo G, Martínez-Graciá C. A review of Clostridioides [Clostridium] difficile occurrence through the food chain. Food Microbiol 2019; 77:118-129. [DOI: 10.1016/j.fm.2018.08.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/01/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022]
|
31
|
Development of an optimized broth enrichment culture medium for the isolation of Clostridium difficile. Anaerobe 2018; 54:92-99. [DOI: 10.1016/j.anaerobe.2018.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/26/2018] [Accepted: 08/13/2018] [Indexed: 02/04/2023]
|
32
|
Brown AWW, Wilson RB. Clostridium difficile colitis and zoonotic origins-a narrative review. Gastroenterol Rep (Oxf) 2018; 6:157-166. [PMID: 30151199 PMCID: PMC6101521 DOI: 10.1093/gastro/goy016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/26/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is a major cause of hospital-associated diarrhoea, and in severe cases leads to pseudomembranous colitis and toxic megacolon. The frequency of C. difficile infection (CDI) has increased in recent decades, with 453 000 cases identified in 2011 in the USA. This is related to antibiotic-selection pressure, disruption of normal host intestinal microbiota and emergence of antibiotic-resistant C. difficile strains. The burden of community-acquired CDI has been increasingly appreciated, with disease identified in patients previously considered low-risk, such as young women or patients with no prior antibiotic exposure. C. difficile has been identified in livestock animals, meat products, seafood and salads. It has been postulated that the pool of C. difficile in the agricultural industry may contribute to human CDI. There is widespread environmental dispersal of C. difficile spores. Domestic households, turf lawns and public spaces are extensively contaminated, providing a potential reservoir for community-acquired CDI. In Australia, this is particularly associated with porcine-derived C. difficile UK PCR ribotype 014/020. In this article, the epidemiological differences between hospital- and community-acquired CDI are discussed, including some emerging evidence for community-acquired CDI being a possible zoonosis.
Collapse
Affiliation(s)
- Alexander W W Brown
- General Surgery Department, Liverpool Hospital, Elizabeth St, Liverpool, NSW, Australia
| | - Robert B Wilson
- General Surgery Department, Liverpool Hospital, Elizabeth St, Liverpool, NSW, Australia
| |
Collapse
|
33
|
Isolation of Toxigenic Clostridium difficile from Animal Manure and Composts Being Used as Biological Soil Amendments. Appl Environ Microbiol 2018; 84:AEM.00738-18. [PMID: 29858208 DOI: 10.1128/aem.00738-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/30/2018] [Indexed: 01/05/2023] Open
Abstract
The well-known nosocomial pathogen Clostridium difficile has recently been recognized as a community-associated pathogen. As livestock animals carry and shed C. difficile in their feces, animal manure-based composts may play an important role in disseminating toxigenic C. difficile strains into the agricultural environment. The present study surveyed C. difficile contamination of commercially available composts and animal manure. Presumptive C. difficile isolates were confirmed by testing for the tpi housekeeping gene in addition to Gram staining. The confirmed C. difficile isolates were further tested for toxigenicity, PCR ribotype, and susceptibilities to selected antibiotics. C. difficile was found in 51 out of 142 samples (36%). A total of 58 C. difficile strains were isolated from those 51 positive compost/manure samples. The presence of C. difficile in compost did not significantly correlate (P > 0.05) with the physical and most microbiological parameters, including the presence of fecal coliforms. The majority of C. difficile isolates were toxigenic, with 63.8% positive for the toxin A gene (tcdA) and 67.2% positive for the toxin B gene (tcdB). Only 3 isolates (5.17%) were positive for the binary toxins. There were 38 different PCR ribotypes among the 58 C. difficile isolates, and ribotype 106 was the most prevalent, followed by ribotypes 020 and 412. All C. difficile isolates were susceptible to the selected antibiotics, but >50% of the isolates had reduced susceptibility to clindamycin by the agar dilution method. This study indicates that compost may be a reservoir of toxigenic C. difficile strains.IMPORTANCEClostridium difficile infection (CDI) is a leading cause of antibiotic-associated diarrhea in health care facilities in developed countries. Extended hospital stays and recurrences severely increase the cost of treatments and the high mortality rate that is observed among the elderly. Community-associated CDI cases that occur without any recent contact with the hospital environment are increasing. Studies have reported the isolation of virulent C. difficile strains from water, soil, meat, vegetables, pets, livestock animals, and animal manure. The objective of this study was to isolate and characterize C. difficile strains from animal manure and commercially available compost products. Our results demonstrate that not only unprocessed animal manure but also finished composts made of different feedstocks can serve as a reservoir for C. difficile as well. Most importantly, our study revealed that properly processed compost is a potential source of toxigenic and clindamycin-resistant C. difficile isolates.
Collapse
|
34
|
Abstract
Clostridium difficile is the main causative agent of antibiotic-associated and health care-associated infective diarrhea. Recently, there has been growing interest in alternative sources of C. difficile other than patients with Clostridium difficile infection (CDI) and the hospital environment. Notably, the role of C. difficile-colonized patients as a possible source of transmission has received attention. In this review, we present a comprehensive overview of the current understanding of C. difficile colonization. Findings from gut microbiota studies yield more insights into determinants that are important for acquiring or resisting colonization and progression to CDI. In discussions on the prevalence of C. difficile colonization among populations and its associated risk factors, colonized patients at hospital admission merit more attention, as findings from the literature have pointed to their role in both health care-associated transmission of C. difficile and a higher risk of progression to CDI once admitted. C. difficile colonization among patients at admission may have clinical implications, although further research is needed to identify if interventions are beneficial for preventing transmission or overcoming progression to CDI.
Collapse
|
35
|
Moradigaravand D, Gouliouris T, Ludden C, Reuter S, Jamrozy D, Blane B, Naydenova P, Judge K, H. Aliyu S, F. Hadjirin N, A. Holmes M, Török E, M. Brown N, Parkhill J, Peacock S. Genomic survey of Clostridium difficile reservoirs in the East of England implicates environmental contamination of wastewater treatment plants by clinical lineages. Microb Genom 2018; 4:e000162. [PMID: 29498619 PMCID: PMC5885014 DOI: 10.1099/mgen.0.000162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/09/2018] [Indexed: 01/03/2023] Open
Abstract
There is growing evidence that patients with Clostridiumdifficile-associated diarrhoea often acquire their infecting strain before hospital admission. Wastewater is known to be a potential source of surface water that is contaminated with C. difficile spores. Here, we describe a study that used genome sequencing to compare C. difficile isolated from multiple wastewater treatment plants across the East of England and from patients with clinical disease at a major hospital in the same region. We confirmed that C. difficile from 65 patients were highly diverse and that most cases were not linked to other active cases in the hospital. In total, 186 C. difficile isolates were isolated from effluent water obtained from 18 municipal treatment plants at the point of release into the environment. Whole genome comparisons of clinical and environmental isolates demonstrated highly related populations, and confirmed extensive release of toxigenic C. difficile into surface waters. An analysis based on multilocus sequence types (STs) identified 19 distinct STs in the clinical collection and 38 STs in the wastewater collection, with 13 of 44 STs common to both clinical and wastewater collections. Furthermore, we identified five pairs of highly similar isolates (≤2 SNPs different in the core genome) in clinical and wastewater collections. Strategies to control community acquisition should consider the need for bacterial control of treated wastewater.
Collapse
Affiliation(s)
| | | | | | - Sandra Reuter
- University of Freiburg, Freiburg im Breisgau, Germany
| | | | | | | | - Kim Judge
- Wellcome Trust Sanger Institute, Hinxton, UK
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Knight DR, Squire MM, Collins DA, Riley TV. Genome Analysis of Clostridium difficile PCR Ribotype 014 Lineage in Australian Pigs and Humans Reveals a Diverse Genetic Repertoire and Signatures of Long-Range Interspecies Transmission. Front Microbiol 2017; 7:2138. [PMID: 28123380 PMCID: PMC5225093 DOI: 10.3389/fmicb.2016.02138] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/19/2016] [Indexed: 12/19/2022] Open
Abstract
Clostridium difficile PCR ribotype (RT) 014 is well-established in both human and porcine populations in Australia, raising the possibility that C. difficile infection (CDI) may have a zoonotic or foodborne etiology. Here, whole genome sequencing and high-resolution core genome phylogenetics were performed on a contemporaneous collection of 40 Australian RT014 isolates of human and porcine origin. Phylogenies based on MLST (7 loci, STs 2, 13, and 49) and core orthologous genes (1260 loci) showed clustering of human and porcine strains indicative of very recent shared ancestry. Core genome single nucleotide variant (SNV) analysis found 42% of human strains showed a clonal relationship (separated by ≤2 SNVs in their core genome) with one or more porcine strains, consistent with recent inter-host transmission. Clones were spread over a vast geographic area with 50% of the human cases occurring without recent healthcare exposure. These findings suggest a persistent community reservoir with long-range dissemination, potentially due to agricultural recycling of piggery effluent. We also provide the first pan-genome analysis for this lineage, characterizing its resistome, prophage content, and in silico virulence potential. The RT014 is defined by a large "open" pan-genome (7587 genes) comprising a core genome of 2296 genes (30.3% of the total gene repertoire) and an accessory genome of 5291 genes. Antimicrobial resistance genotypes and phenotypes varied across host populations and ST lineages and were characterized by resistance to tetracycline [tetM, tetA(P), tetB(P) and tetW], clindamycin/erythromycin (ermB), and aminoglycosides (aph3-III-Sat4A-ant6-Ia). Resistance was mediated by clinically important mobile genetic elements, most notably Tn6194 (harboring ermB) and a novel variant of Tn5397 (harboring tetM). Numerous clinically important prophages (Siphoviridae and Myoviridae) were identified as well as an uncommon accessory gene regulator locus (agr3). Conservation in the pathogenicity locus and S-layer correlated with ST affiliation, further extending the concept of clonal C. difficile lineages. This study provides novel insights on the genetic variability and strain relatedness of C. difficile RT014, a lineage of emerging One Health importance. Ongoing molecular and genomic surveillance of strains in humans, animals, food, and the environment is imperative to identify opportunities to reduce the overall CDI burden.
Collapse
Affiliation(s)
- Daniel R. Knight
- Microbiology and Immunology, School of Pathology and Laboratory Medicine, The University of Western AustraliaNedlands, WA, Australia
| | - Michele M. Squire
- Microbiology and Immunology, School of Pathology and Laboratory Medicine, The University of Western AustraliaNedlands, WA, Australia
| | - Deirdre A. Collins
- Microbiology and Immunology, School of Pathology and Laboratory Medicine, The University of Western AustraliaNedlands, WA, Australia
- Department of Population Health, School of Medical and Health Sciences, Edith Cowan UniversityJoondalup, WA, Australia
| | - Thomas V. Riley
- Department of Population Health, School of Medical and Health Sciences, Edith Cowan UniversityJoondalup, WA, Australia
- PathWest Laboratory Medicine, Department of Microbiology, Queen Elizabeth II Medical CentreNedlands, WA, Australia
- Department of Medical and Molecular Sciences, School of Veterinary and Life Sciences, Murdoch UniversityMurdoch, WA, Australia
| |
Collapse
|
37
|
Romanazzi V, Bonetta S, Fornasero S, De Ceglia M, Gilli G, Traversi D. Assessing Methanobrevibacter smithii and Clostridium difficile as not conventional faecal indicators in effluents of a wastewater treatment plant integrated with sludge anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 184:170-177. [PMID: 27697372 DOI: 10.1016/j.jenvman.2016.09.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/22/2016] [Accepted: 09/25/2016] [Indexed: 06/06/2023]
Abstract
Wastewater treatment plants (WWTP) are an important source of surface water contamination by enteric pathogens, affecting the role of environmental water as a microbial reservoir. We describe the release to the environment of certain anaerobes of human and environmental concern. The work was focused on emerging microbial targets. They are tracing, by RT-qPCR, on WWTP effluents, both liquid and solid, when an anaerobic digestion step is included. The focus is placed on Clostridium spp. with the specific quantification of Clostridium perfringens, as typical bioindicator, and Clostridium difficile, as emerging pathogen not only confined into nosocomial infection. Moreover methanogens were quantified for their involvement in the anaerobic digestion, and in particular on Methanobrevibacter smithii as major methanogenic component of the human gut microbiome and as not conventional faecal indicator. In the water samples, a reduction, statistically significant, in all microbial targets was observed (p < 0.01), 2 log for the total bacteria, 1.4 log for the Clostridium spp. and M. smithii, 1 log for total methanogens, C. perfringens and C. difficile. The AD process contribute to a significant change in microbial levels into the sludge for total bacteria and total methanogens (p < 0.01), both when the input sludge are primary and secondary, while for the presence of Clostridium spp. and C. difficile there was not a significant change. The produced data are innovative showing which is the diffusion of such anaerobic microorganisms throughout the WWTP and opening a discussion on the implementation of possible techniques for a more efficient microbial removal from effluents, particularly bio-solids, to reduce the potential release of pathogens into the environment.
Collapse
Affiliation(s)
- Valeria Romanazzi
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy.
| | - Silvia Bonetta
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy.
| | - Stefania Fornasero
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy.
| | - Margherita De Ceglia
- SMAT - Depuratore di Castiglione Torinese, Società Metropolitana Acque Torino S.p.A., Corso XI Febbraio 14, 10152 Torino, Italy.
| | - Giorgio Gilli
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy.
| | - Deborah Traversi
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy.
| |
Collapse
|
38
|
Warriner K, Xu C, Habash M, Sultan S, Weese S. Dissemination ofClostridium difficilein food and the environment: Significant sources ofC. difficilecommunity-acquired infection? J Appl Microbiol 2016; 122:542-553. [DOI: 10.1111/jam.13338] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/11/2022]
Affiliation(s)
- K. Warriner
- Department of Food Science; University of Guelph; Guelph ON Canada
| | - C. Xu
- Shanghai Ocean University; Shanghai China
| | - M. Habash
- School of Environmental Biology; University of Guelph; Guelph ON Canada
| | - S. Sultan
- School of Environmental Biology; University of Guelph; Guelph ON Canada
| | - S.J. Weese
- Pathobiology; University of Guelph; Guelph ON Canada
| |
Collapse
|
39
|
Xu C, Wang D, Huber A, Weese S, Warriner K. Persistence of Clostridium difficile
in wastewater treatment-derived biosolids during land application or windrow composting. J Appl Microbiol 2016; 120:312-20. [DOI: 10.1111/jam.13018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/12/2015] [Accepted: 11/26/2015] [Indexed: 11/28/2022]
Affiliation(s)
- C. Xu
- Department of Food Science; University of Guelph; Guelph ON Canada
| | - D. Wang
- Department of Food Science; University of Guelph; Guelph ON Canada
| | - A. Huber
- Soil Research Group; Guelph ON Canada
| | - S.J. Weese
- Pathobiology; University of Guelph; Guelph ON Canada
| | - K. Warriner
- Department of Food Science; University of Guelph; Guelph ON Canada
| |
Collapse
|
40
|
Xu C, Salsali H, Weese S, Warriner K. Inactivation of Clostridium difficile in sewage sludge by anaerobic thermophilic digestion. Can J Microbiol 2015; 62:16-23. [PMID: 26564276 DOI: 10.1139/cjm-2015-0511] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There has been an increase in community-associated Clostridium difficile infections with biosolids derived from wastewater treatment being identified as one potential source. The current study evaluated the efficacy of thermophilic digestion in decreasing levels of C. difficile ribotype 078 associated with sewage sludge. Five isolates of C. difficile 078 were introduced (final density of 5 log CFU/g) into digested sludge and subjected to anaerobic digestion at mesophilic (36 or 42 °C) or thermophilic (55 °C) temperatures for up to 60 days. It was found that mesophilic digestion at 36 °C did not result in a significant reduction in C. difficile spore levels. In contrast, thermophilic sludge digestion reduced endospore levels at a rate of 0.19-2.68 log CFU/day, depending on the strain tested. The mechanism of lethality was indirect - by stimulating germination then inactivating the resultant vegetative cells. Acidification of sludge by adding acetic acid (6 g/L) inhibited the germination of spores regardless of the sludge digestion temperature. In conclusion, thermophilic digestion can be applied to reduce C. difficile in biosolids, thereby reducing the environmental burden of the enteric pathogen.
Collapse
Affiliation(s)
- Changyun Xu
- a Department of Food Science, University of Guelph, ON N1G 2W1, Canada
| | | | - Scott Weese
- c Department of Pathobiology, Ontario Veterinary College, University of Guelph, ON N1G 2W1, Canada
| | - Keith Warriner
- a Department of Food Science, University of Guelph, ON N1G 2W1, Canada
| |
Collapse
|
41
|
Abstract
The view of Clostridium difficile infection as a hospital-acquired infection transmitted only by symptomatic patients is changing. Although C difficile is present in food for human consumption, food-borne infection caused by C difficile has never been confirmed. More information on the infective dose and the level of contamination is needed to determine the risk for food-borne exposure to C difficile in humans. The emergence of C difficile polymerase chain reaction (PCR) ribotype 078 in humans is epidemiologically linked to its presence in piglets and calves and their environment, suggesting zoonotic transmission.
Collapse
Affiliation(s)
- Martijn P Bauer
- Department of Infectious Diseases, Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Ed J Kuijper
- Department of Medical Microbiology, Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands.
| |
Collapse
|
42
|
Montazeri N, Liu D, Janes ME. Occurrence of Toxigenic Clostridium difficile in Louisiana Oysters (<i>Crassostrea virginica</i>) and Environmental Waters. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/fns.2015.611110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Corrigendum. J Appl Microbiol 2014. [DOI: 10.1111/jam.12625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
Stiles BG, Pradhan K, Fleming JM, Samy RP, Barth H, Popoff MR. Clostridium and bacillus binary enterotoxins: bad for the bowels, and eukaryotic being. Toxins (Basel) 2014; 6:2626-56. [PMID: 25198129 PMCID: PMC4179152 DOI: 10.3390/toxins6092626] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 08/22/2014] [Accepted: 08/27/2014] [Indexed: 12/18/2022] Open
Abstract
Some pathogenic spore-forming bacilli employ a binary protein mechanism for intoxicating the intestinal tracts of insects, animals, and humans. These Gram-positive bacteria and their toxins include Clostridium botulinum (C2 toxin), Clostridium difficile (C. difficile toxin or CDT), Clostridium perfringens (ι-toxin and binary enterotoxin, or BEC), Clostridium spiroforme (C. spiroforme toxin or CST), as well as Bacillus cereus (vegetative insecticidal protein or VIP). These gut-acting proteins form an AB complex composed of ADP-ribosyl transferase (A) and cell-binding (B) components that intoxicate cells via receptor-mediated endocytosis and endosomal trafficking. Once inside the cytosol, the A components inhibit normal cell functions by mono-ADP-ribosylation of globular actin, which induces cytoskeletal disarray and death. Important aspects of each bacterium and binary enterotoxin will be highlighted in this review, with particular focus upon the disease process involving the biochemistry and modes of action for each toxin.
Collapse
Affiliation(s)
- Bradley G Stiles
- Biology Department, Wilson College, 1015 Philadelphia Avenue, Chambersburg, PA 17201, USA.
| | - Kisha Pradhan
- Environmental Science Department, Wilson College, 1015 Philadelphia Avenue, Chambersburg, PA 17201, USA.
| | - Jodie M Fleming
- Department of Biology, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA.
| | - Ramar Perumal Samy
- Venom and Toxin Research Programme, Department of Anatomy, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge 117597, Singapore.
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, Ulm D-89081, Germany.
| | - Michel R Popoff
- Bacteries Anaerobies et Toxines, Institut Pasteur, 28 Rue du Docteur Roux, Paris 75724, France.
| |
Collapse
|