1
|
Deng S, Kim W, Cheng K, Yang Q, Singh Y, Bae G, Bézière N, Mager L, Kommoss S, Sprengel J, Trautwein C. Identification and impact of microbiota-derived metabolites in ascites of ovarian and gastrointestinal cancer. Cancer Metab 2025; 13:21. [PMID: 40361187 PMCID: PMC12076955 DOI: 10.1186/s40170-025-00391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Malignant ascites is a common complication of advanced ovarian cancer (OC) and gastrointestinal cancer (GI), significantly impacting metastasis, quality of life, and survival. Increased intestinal permeability can lead to blood or lymphatic infiltration and microbial translocation from the gastrointestinal or uterine tract. This study aimed to identify microbiota-derived metabolites in ascites from OC (stages II-III and IV) and GI patients, assessing their roles in tumor progression. METHODS Malignant ascites samples from 18 OC and GI patients were analyzed using a four-dimensional (4D) untargeted metabolomics approach combining reversed-phase (RP) and hydrophilic interaction liquid chromatography (HILIC) with trapped ion mobility spectrometry time-of-flight mass spectrometry (timsTOF-MS). Additonally, a targeted flow cytometry-based cytokine panel was used to screen for inflammatory markers. Non-endogenous, microbiota-derived metabolites were identified through the Human Microbial Metabolome Database (MiMeDB). RESULTS OC stage IV exhibited metabolic profiles similar to GI cancers, while OC stage II-III differed significantly. Stage IV OC patients exhibited higher levels of 11 typically microbiome-derived metabolites, including 1-methylhistidine, 3-hydroxyanthranilic acid, 4-pyridoxic acid, biliverdin, butyryl-L-carnitine, hydroxypropionic acid, indole, lysophosphatidylinositol 18:1 (LPI 18:1), mevalonic acid, N-acetyl-L-phenylalanine, and nudifloramide, and lower levels of 5 metabolites, including benzyl alcohol, naringenin, o-cresol, octadecanedioic acid, and phenol, compared to stage II-III. Correlation analysis revealed positive associations between IL-10 and metabolites such as glucosamine and LPCs, while MCP-1 positively correlated with benzyl alcohol and phenol. CONCLUSION 4D metabolomics revealed distinct metabolic signatures in OC and GI ascites, highlighting microbiota-derived metabolites involved in lipid metabolism and inflammation. Metabolites like 3-hydroxyanthranilic acid, indole, and naringenin may serve as markers of disease progression and underscore the microbiota's role in shaping malignant ascites and tumor biology.
Collapse
Affiliation(s)
- Sisi Deng
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Core Facility Metabolomics, Faculty of Medicine, University of Tübingen, Tübingen, Germany
- M3 Research Center for Microbiome, Metabolome and Malignome, Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Wooyong Kim
- Core Facility Metabolomics, Faculty of Medicine, University of Tübingen, Tübingen, Germany
- M3 Research Center for Microbiome, Metabolome and Malignome, Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Kefan Cheng
- Core Facility Metabolomics, Faculty of Medicine, University of Tübingen, Tübingen, Germany
- M3 Research Center for Microbiome, Metabolome and Malignome, Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Qianlu Yang
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University Hospital Tübingen, Tübingen, Germany
| | - Yogesh Singh
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Gyuntae Bae
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Nicolas Bézière
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence CMFI (EXC 2124) "Controlling Microbes to Fight Infections", Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Lukas Mager
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- M3 Research Center for Microbiome, Metabolome and Malignome, Faculty of Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence CMFI (EXC 2124) "Controlling Microbes to Fight Infections", Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Internal Medicine I, Faculty of Medicine, University of Tübingen, Tübingen, Germany
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Stefan Kommoss
- Department of Obstetrics and Gynecology, Diak Klinikum, Schäbisch Hall, Germany
| | - Jannik Sprengel
- Core Facility Metabolomics, Faculty of Medicine, University of Tübingen, Tübingen, Germany
- M3 Research Center for Microbiome, Metabolome and Malignome, Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Christoph Trautwein
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University Hospital Tübingen, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
- Core Facility Metabolomics, Faculty of Medicine, University of Tübingen, Tübingen, Germany.
- M3 Research Center for Microbiome, Metabolome and Malignome, Faculty of Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Liu Y, Wang R, Zhou J, Lyu Q, Zhao X, Yang X, Chen K, Gao Z, Li X. Myricetin alleviates high-fat diet-induced atherosclerosis in ApoE -/- mice by regulating bile acid metabolism involved in gut microbiota remodeling. Food Funct 2025; 16:2737-2749. [PMID: 40059779 DOI: 10.1039/d5fo00374a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Atherosclerosis poses a significant threat to global health. This study aimed to investigate the effects of myricetin (MYR) on high-fat diet (HFD)-induced atherosclerosis in ApoE-/- mice. Our findings demonstrated that MYR treatment significantly reduced the formation of atherosclerotic plaques, particularly at a high dose of 100 mg kg-1 day-1. Additionally, MYR markedly attenuated lipid metabolism disorders in ApoE-/- mice by decreasing body weight, improving serum lipid profiles, and reducing lipid deposition. Analysis of 16S rRNA sequencing revealed that MYR treatment enhanced the abundance of probiotic g_Lachnospiraceae_NK4A136, while it reduced that of obesity-associated genera, including Rikenellaceae_RC9_gut_group and Alistipes. Metabolomic analysis and RT-qPCR tests indicated that MYR upregulated hepatic bile acid biosynthesis, evidenced by increased total bile acid levels and enhanced expression of key enzymes CYP7A1 and CYP8B1, particularly through the classical biosynthetic pathway. Spearman's correlation analysis revealed strong associations between the regulated bile acids and these aforementioned bacteria. Therefore, our results demonstrated that MYR exerts an anti-atherosclerotic effect by modulating the gut-liver axis.
Collapse
Affiliation(s)
- Yilong Liu
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Ruoqi Wang
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Jinren Zhou
- Department of Vascular Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Qiang Lyu
- School of Pharmacy, Zhejiang Chinese Medical University, 548, Binwen Road, Hangzhou 310053, China
| | - Xiaoyong Zhao
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Kunsong Chen
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Zhiwei Gao
- Department of Vascular Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Xian Li
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| |
Collapse
|
3
|
Liu J, Li Z, Zhang Z, Shen Z. Uncovering the mechanism of Huangkui capsule in the treatment of diabetic kidney disease based on network pharmacology and experimental validation. Sci Rep 2025; 15:6503. [PMID: 39987179 PMCID: PMC11846948 DOI: 10.1038/s41598-025-91264-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 02/19/2025] [Indexed: 02/24/2025] Open
Abstract
Diabetic kidney disease (DKD) is a main complication of diabetes mellitus. experimental in vitro validation and Network pharmacology were used in this study to explore the potential mechanism of Huangkui capsules (HKC) in treating DKD. First, we used CCK8 to analyze the optimal drug concentration of HKC. Next, we used flow cytometry, ELISA, Scratch test, and immunofluorescence to examine the apoptosis, oxidative stress, inflammatory factors, and fibrotic factors (FN and α-SMA) expression in HK-2 cells. Thereafter, in order to determine the potential molecular mechanisms underlying the therapeutic effect of HKC in DKD. Compounds contained in HKC were explored by UPLC-Q-TOF-MS/MS. SwissTargetPrediction was utilized for predicting potential gene targets of these compounds. OMIM, DisGeNet and GeneCards databases were employed to identify DKD-related genes. Meanwhile, the association of compounds with DKD genes was examined by protein-protein interaction, GO and KEGG analysis. Finally, molecular docking and molecular dynamics simulation were adopted for further validation. The results showed that HKC had 40 active ingredients, 1051 possible gene targets, and 133 DKD-HKC intersection genes. IL6, TNF, GAPDH, AKT1, PPARG, and TP53 were candidate hub genes by which HKC exerted its anti-DKD function based on molecular docking, molecular dynamics simulation and experimental results. To conclude, this study sheds more lights on the possible pharmacological activities of HKC in DKD and a foundation for further clinical application.
Collapse
Affiliation(s)
- Junhong Liu
- Department of Gastroenterology, The Fuyang Affiliated Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Ziwei Li
- Department of Clinical Nutrition, The Fuyang Affiliated Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - ZongYao Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan, 232007, China
| | - Zhongyuan Shen
- Department of Radiology, The Fuyang Affiliated Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| |
Collapse
|
4
|
Kasahara K, Kerby RL, Aquino-Martinez R, Evered AH, Cross TWL, Everhart J, Ulland TK, Kay CD, Bolling BW, Bäckhed F, Rey FE. Gut microbes modulate the effects of the flavonoid quercetin on atherosclerosis. NPJ Biofilms Microbiomes 2025; 11:12. [PMID: 39794320 PMCID: PMC11723976 DOI: 10.1038/s41522-024-00626-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 11/27/2024] [Indexed: 01/13/2025] Open
Abstract
Gut bacterial metabolism of dietary flavonoids results in the production of a variety of phenolic acids, whose contributions to health remain poorly understood. Here, we show that supplementation with the commonly consumed flavonoid quercetin impacted gut microbiome composition and resulted in a significant reduction in atherosclerosis burden in conventionally raised (ConvR) Apolipoprotein E (ApoE) knockout (KO) mice but not in germ-free (GF) ApoE KO mice. Metabolomic analysis revealed that consumption of quercetin significantly increased plasma levels of benzoylglutamic acid, 3,4 dihydroxybenzoic acid (3,4-DHBA) and its sulfate-conjugated form in ConvR mice, but not in GF mice supplemented with the flavonoid. Levels of these metabolites were negatively associated with atherosclerosis burden. Furthermore, we show that 3,4-DHBA prevented lipopolysaccharide (LPS)-induced decrease in transendothelial electrical resistance (TEER). These results suggest that the effects of quercetin on atherosclerosis are influenced by gut microbes and are potentially mediated by bacterial metabolites derived from the flavonoid.
Collapse
Affiliation(s)
- Kazuyuki Kasahara
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| | - Robert L Kerby
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Abigail H Evered
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Tzu-Wen L Cross
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Jessica Everhart
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Tyler K Ulland
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Colin D Kay
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Bradley W Bolling
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
5
|
Huang M, Xie X, Yuan R, Xin Q, Ma S, Guo H, Miao Y, Hu C, Zhu Y, Cong W. The multifaceted anti-atherosclerotic properties of herbal flavonoids: A comprehensive review. Pharmacol Res 2025; 211:107551. [PMID: 39701504 DOI: 10.1016/j.phrs.2024.107551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Atherosclerosis (AS) is a major etiological factor underpinning a spectrum of cardiovascular diseases, leading to cerebral infarction, coronary artery disease, and peripheral vascular disease. The chronic progression of AS, spanning from initial plaque formation to the occurrence of acute cardiovascular events, underscores the complexity of AS and the challenges it presents in terms of treatment. Currently, the clinical management of AS relies predominantly on statins and proprotein convertase subtilisin/kexin type 9 inhibitors, which primarily aim to reduce low-density lipoprotein levels and have demonstrated some therapeutic efficacy. Nevertheless, due to their potential side effects, there is a pressing need to actively investigate alternative treatment approaches. Researches on natural compounds derived from herbal medicines, such as flavonoids, hold significant promise in combating AS by regulating lipid metabolism, reducing oxidative stress and inflammation, inhibiting the proliferation of vascular smooth muscle cells, modulating autophagy and additional pathways. Various targets participate in these physiological processes, encompassing acyl-CoA: cholesterol acyltransferase (ACAT), ATP citrate lyase (ACLY), nuclear factor erythroid 2-related factor 2 (Nrf2), krüppel-like factor 2 (KLF2), NOD-like receptor protein 3 (NLRP3), transcription factor EB (TFEB) and so on. This comprehensive review endeavors to synthesize and analyse the most recent findings on herbal flavonoids, shedding light on their anti-atherosclerotic potential and the underlying protective mechanisms and related-targets, which might pave the way for the development of novel drug candidates or the optimization of flavonoid-based therapies.
Collapse
Affiliation(s)
- Meiwen Huang
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China; Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xuena Xie
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China; Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Rong Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Shudong Ma
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Hongai Guo
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Miao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Chunyu Hu
- Department of Teaching Quality Construction, Graduate School, China Academy of Chinese Medical Sciences, 100700, China
| | - Yizhun Zhu
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Weihong Cong
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China; Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
6
|
Silva BDLDA, Vasconcelos MADS, Batista KS, Batista FRDC, Cavalcante HC, Toscano LDLT, Silva AS, D'Oliveira AB, Alves AF, Aquino JDS. Hepatoprotective, Lipid-Lowering and Antioxidant Effects of Mangaba Powder ( Hancornia speciosa) Administered to Rats Fed a High-Fat Diet. Foods 2024; 13:3773. [PMID: 39682845 DOI: 10.3390/foods13233773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The aim of this study was to evaluate the potential effects of administering mangaba powder on liver function and somatic, oxidative and lipid metabolism parameters in rats fed a high-fat diet. Prepared mangaba powder has important amounts of phenolic compounds, vitamin C, dietary fiber and oligosaccharides. A total of 32 adult Wistar rats were initially randomized into two groups for the biological assay: normal-fat (NF, n = 16) and high-fat (HF, n = 16) diets for 21 days. These rats were subsequently subdivided into four groups: NF (n = 8), HF (n = 8), normal-fat diet with mangaba powder administration (NFMG, n = 8) and high-fat diet with mangaba powder administration (HFMG, n = 8). The treatment with mangaba powder (400 mg/kg) lasted an additional 28 days. Compared to the HF rats, the HFMG rats showed an 8% reduction in the body mass index. Treatment with mangaba reduced the serum cholesterol by 18%, as well as the hepatic deposition of triacylglycerides by 26% and cholesterol by 25%, in addition to increasing bile acid synthesis by 77% in this organ. Mangaba powder consumption attenuated the degree of hepatic steatosis, reduced lipid peroxidation and increased the serum and hepatic antioxidant capacity in HFMG rats. These results show that the consumption of mangaba powder had lipid-lowering, hepatoprotective and antioxidant effects, especially in HFMG rats, which may be associated with an additive and synergistic action between the bioactive compounds present in the product.
Collapse
Affiliation(s)
- Bernadete de Lourdes de Araújo Silva
- Nutrition Department, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
- Nutrition Department, Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil
| | | | - Kamila Sabino Batista
- Experimental Nutrition Laboratory, Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil
- Instituto Nacional do Semiárido, Campina Grande 58434-700, Brazil
| | | | - Hassler Clementino Cavalcante
- Nutrition Department, Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil
- Experimental Nutrition Laboratory, Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil
| | | | | | - Aline Barbosa D'Oliveira
- Experimental Nutrition Laboratory, Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil
| | - Adriano Francisco Alves
- Department of Physiology and Pathology, Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil
| | - Jailane de Souza Aquino
- Nutrition Department, Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil
- Experimental Nutrition Laboratory, Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil
| |
Collapse
|
7
|
Lv Y, Peng J, Ma X, Liang Z, Salekdeh GH, Ke Q, Shen W, Yan Z, Li H, Wang S, Ding X. Network Analysis of Gut Microbial Communities Reveals Key Reason for Quercetin Protects against Colitis. Microorganisms 2024; 12:1973. [PMID: 39458282 PMCID: PMC11509604 DOI: 10.3390/microorganisms12101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
As one of the most representative natural products among flavonoids, quercetin (QUE) has been reported to exhibit beneficial effects on gut health in recent years. In this study, we utilized a dextran sulfate sodium (DSS)-induced colitis mice model to explore the protective effects and underlying mechanisms of QUE on colitis. Our data demonstrated that QUE oral gavage administration significantly ameliorates the symptoms and histopathological changes associated with colitis. Additionally, the concentration of mucin-2, the number of goblet cells, and the expression of tight junction proteins (such as ZO-1, Occludin, and Claudin-1) were all found to be increased. Furthermore, QUE treatment regulated the levels of inflammatory cytokines and macrophage polarization, as well as the oxidative stress-related pathway (Nrf2/HO-1) and associated enzymes. Additionally, 16S rDNA sequencing revealed that QUE treatment rebalances the alterations in colon microbiota composition (inlcuding Bacteroidaceae, Bacteroides, and Odoribacter) in DSS-induced colitis mice. The analysis of network dynamics reveals a significant correlation between gut microbial communities and microenvironmental factors associated with inflammation and oxidative stress, in conjunction with the previously mentioned findings. Collectively, our results suggest that QUE has the potential to treat colitis by maintaining the mucosal barrier, modulating inflammation, and reducing oxidation stress, which may depend on the reversal of gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Yanan Lv
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Y.L.); (J.P.); (X.M.); (Z.L.); (Q.K.); (W.S.); (Z.Y.); (H.L.)
| | - Jing Peng
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Y.L.); (J.P.); (X.M.); (Z.L.); (Q.K.); (W.S.); (Z.Y.); (H.L.)
| | - Xiaoyu Ma
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Y.L.); (J.P.); (X.M.); (Z.L.); (Q.K.); (W.S.); (Z.Y.); (H.L.)
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Zeyi Liang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Y.L.); (J.P.); (X.M.); (Z.L.); (Q.K.); (W.S.); (Z.Y.); (H.L.)
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj 3135933151, Iran;
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Qunhua Ke
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Y.L.); (J.P.); (X.M.); (Z.L.); (Q.K.); (W.S.); (Z.Y.); (H.L.)
| | - Wenxiang Shen
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Y.L.); (J.P.); (X.M.); (Z.L.); (Q.K.); (W.S.); (Z.Y.); (H.L.)
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Zuoting Yan
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Y.L.); (J.P.); (X.M.); (Z.L.); (Q.K.); (W.S.); (Z.Y.); (H.L.)
| | - Hongsheng Li
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Y.L.); (J.P.); (X.M.); (Z.L.); (Q.K.); (W.S.); (Z.Y.); (H.L.)
| | - Shengyi Wang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Y.L.); (J.P.); (X.M.); (Z.L.); (Q.K.); (W.S.); (Z.Y.); (H.L.)
| | - Xuezhi Ding
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Y.L.); (J.P.); (X.M.); (Z.L.); (Q.K.); (W.S.); (Z.Y.); (H.L.)
| |
Collapse
|
8
|
Cruz Neto JPR, de Luna Freire MO, de Albuquerque Lemos DE, Ribeiro Alves RMF, de Farias Cardoso EF, de Moura Balarini C, Duman H, Karav S, de Souza EL, de Brito Alves JL. Targeting Gut Microbiota with Probiotics and Phenolic Compounds in the Treatment of Atherosclerosis: A Comprehensive Review. Foods 2024; 13:2886. [PMID: 39335815 PMCID: PMC11431284 DOI: 10.3390/foods13182886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory vascular disease. Dysregulated lipid metabolism, oxidative stress, and inflammation are the major mechanisms implicated in the development of AS. In addition, evidence suggests that gut dysbiosis plays an important role in atherogenesis, and modulation of the gut microbiota with probiotics and phenolic compounds has emerged as a promising strategy for preventing and treating AS. It has been shown that probiotics and phenolic compounds can improve atherosclerosis-related parameters by improving lipid profile, oxidative stress, and inflammation. In addition, these compounds may modulate the diversity and composition of the gut microbiota and improve atherosclerosis. The studies evaluated in the present review showed that probiotics and phenolic compounds, when consumed individually, improved atherosclerosis by modulating the gut microbiota in various ways, such as decreasing gut permeability, decreasing TMAO and LPS levels, altering alpha and beta diversity, and increasing fecal bile acid loss. However, no study was found that evaluated the combined use of probiotics and phenolic compounds to improve atherosclerosis. The available literature highlights the synergistic potential between phenolic compounds and probiotics to improve their health-promoting properties and functionalities. This review aims to summarize the available evidence on the individual effects of probiotics and phenolic compounds on AS, while providing insights into the potential benefits of nutraceutical approaches using probiotic strains, quercetin, and resveratrol as potential adjuvant therapies for AS treatment through modulation of the gut microbiota.
Collapse
Affiliation(s)
- José Patrocínio Ribeiro Cruz Neto
- Department of Nutrition, Health Sciences Center, Campus I—Jd. Cidade Universitária, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (J.P.R.C.N.); (M.O.d.L.F.); (D.E.d.A.L.); (E.L.d.S.)
| | - Micaelle Oliveira de Luna Freire
- Department of Nutrition, Health Sciences Center, Campus I—Jd. Cidade Universitária, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (J.P.R.C.N.); (M.O.d.L.F.); (D.E.d.A.L.); (E.L.d.S.)
| | - Deborah Emanuelle de Albuquerque Lemos
- Department of Nutrition, Health Sciences Center, Campus I—Jd. Cidade Universitária, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (J.P.R.C.N.); (M.O.d.L.F.); (D.E.d.A.L.); (E.L.d.S.)
| | - Rayanne Maira Felix Ribeiro Alves
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraíba, João Pessoa 58037-760, PB, Brazil; (R.M.F.R.A.); (E.F.d.F.C.); (C.d.M.B.)
| | - Emmily Ferreira de Farias Cardoso
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraíba, João Pessoa 58037-760, PB, Brazil; (R.M.F.R.A.); (E.F.d.F.C.); (C.d.M.B.)
| | - Camille de Moura Balarini
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraíba, João Pessoa 58037-760, PB, Brazil; (R.M.F.R.A.); (E.F.d.F.C.); (C.d.M.B.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (H.D.); (S.K.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (H.D.); (S.K.)
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Campus I—Jd. Cidade Universitária, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (J.P.R.C.N.); (M.O.d.L.F.); (D.E.d.A.L.); (E.L.d.S.)
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Campus I—Jd. Cidade Universitária, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (J.P.R.C.N.); (M.O.d.L.F.); (D.E.d.A.L.); (E.L.d.S.)
| |
Collapse
|
9
|
Zhang MY, Zheng SQ. Network pharmacology and molecular dynamics study of the effect of the Astragalus-Coptis drug pair on diabetic kidney disease. World J Diabetes 2024; 15:1562-1588. [PMID: 39099827 PMCID: PMC11292324 DOI: 10.4239/wjd.v15.i7.1562] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 05/29/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is the primary cause of end-stage renal disease. The Astragalus-Coptis drug pair is frequently employed in the management of DKD. However, the precise molecular mechanism underlying its therapeutic effect remains elusive. AIM To investigate the synergistic effects of multiple active ingredients in the Astragalus-Coptis drug pair on DKD through multiple targets and pathways. METHODS The ingredients of the Astragalus-Coptis drug pair were collected and screened using the TCMSP database and the SwissADME platform. The targets were predicted using the SwissTargetPrediction database, while the DKD differential gene expression analysis was obtained from the Gene Expression Omnibus database. DKD targets were acquired from the GeneCards, Online Mendelian Inheritance in Man database, and DisGeNET databases, with common targets identified through the Venny platform. The protein-protein interaction network and the "disease-active ingredient-target" network of the common targets were constructed utilizing the STRING database and Cytoscape software, followed by the analysis of the interaction relationships and further screening of key targets and core active ingredients. Gene Ontology (GO) function and Kyoto Ency-clopedia of Genes and Genomes (KEGG) pathway enrichments were performed using the DAVID database. The tissue and organ distributions of key targets were evaluated. PyMOL and AutoDock software validate the molecular docking between the core ingredients and key targets. Finally, molecular dynamics (MD) simulations were conducted to simulate the optimal complex formed by interactions between core ingredients and key target proteins. RESULTS A total of 27 active ingredients and 512 potential targets of the Astragalus-Coptis drug pair were identified. There were 273 common targets between DKD and the Astragalus-Coptis drug pair. Through protein-protein interaction network topology analysis, we identified 9 core active ingredients and 10 key targets. GO and KEGG pathway enrichment analyses revealed that Astragalus-Coptis drug pair treatment for DKD involves various biological processes, including protein phosphorylation, negative regulation of apoptosis, inflammatory response, and endoplasmic reticulum unfolded protein response. These pathways are mainly associated with the advanced glycation end products (AGE)-receptor for AGE products signaling pathway in diabetic complications, as well as the Lipid and atherosclerosis. Molecular docking and MD simulations demonstrated high affinity and stability between the core active ingredients and key targets. Notably, the quercetin-AKT serine/threonine kinase 1 (AKT1) and quercetin-tumor necrosis factor (TNF) protein complexes exhibited exceptional stability. CONCLUSION This study demonstrated that DKD treatment with the Astragalus-Coptis drug pair involves multiple ingredients, targets, and signaling pathways. We propose a novel approach for investigating the molecular mechanism underlying the therapeutic effects of the Astragalus-Coptis drug pair on DKD. Furthermore, we suggest that quercetin is the most potent active ingredient and specifically targets AKT1 and TNF, providing a theoretical foundation for further exploration of pharmacologically active ingredients and elucidating their molecular mechanisms in DKD treatment.
Collapse
Affiliation(s)
- Mo-Yan Zhang
- Liaoning University of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, Liaoning Province, China
| | - Shu-Qin Zheng
- Department of Endocrinology, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, Liaoning Province, China
| |
Collapse
|
10
|
Ai J, Tang X, Mao B, Zhang Q, Zhao J, Chen W, Cui S. Gut microbiota: a superior operator for dietary phytochemicals to improve atherosclerosis. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 38940319 DOI: 10.1080/10408398.2024.2369169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Mounting evidence implicates the gut microbiota as a possible key susceptibility factor for atherosclerosis (AS). The employment of dietary phytochemicals that strive to target the gut microbiota has gained scientific support for treating AS. This study conducted a general overview of the links between the gut microbiota and AS, and summarized available evidence that dietary phytochemicals improve AS via manipulating gut microbiota. Then, the microbial metabolism of several dietary phytochemicals was summarized, along with a discussion on the metabolites formed and the biotransformation pathways involving key gut bacteria and enzymes. This study additionally focused on the anti-atherosclerotic potential of representative metabolites from dietary phytochemicals, and investigated their underlying molecular mechanisms. In summary, microbiota-dependent dietary phytochemical therapy is a promising strategy for AS management, and knowledge of "phytochemical-microbiota-biotransformation" may be a breakthrough in the search for novel anti-atherogenic agents.
Collapse
Affiliation(s)
- Jian Ai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Baranowska-Wójcik E, Winiarska-Mieczan A, Olcha P, Kwiecień M, Jachimowicz-Rogowska K, Nowakowski Ł, Miturski A, Gałczyński K. Polyphenols Influence the Development of Endometrial Cancer by Modulating the Gut Microbiota. Nutrients 2024; 16:681. [PMID: 38474808 DOI: 10.3390/nu16050681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Dysbiosis of the microbiota in the gastrointestinal tract can induce the development of gynaecological tumours, particularly in postmenopausal women, by causing DNA damage and alterations in metabolite metabolism. Dysbiosis also complicates cancer treatment by influencing the body's immune response and disrupting the sensitivity to chemotherapy drugs. Therefore, it is crucial to maintain homeostasis in the gut microbiota through the effective use of food components that affect its structure. Recent studies have shown that polyphenols, which are likely to be the most important secondary metabolites produced by plants, exhibit prebiotic properties. They affect the structure of the gut microbiota and the synthesis of metabolites. In this review, we summarise the current state of knowledge, focusing on the impact of polyphenols on the development of gynaecological tumours, particularly endometrial cancer, and emphasising that polyphenol consumption leads to beneficial modifications in the structure of the gut microbiota.
Collapse
Affiliation(s)
- Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland
| | - Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Piotr Olcha
- Department of Gynecology and Gynecological Endocrinology, Medical University of Lublin, Aleje Racławickie 23, 20-049 Lublin, Poland
| | - Małgorzata Kwiecień
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Karolina Jachimowicz-Rogowska
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Łukasz Nowakowski
- Department of Gynecology, 1st Clinical Military Hospital in Lublin, Al. Raclawickie 23, 20-049 Lublin, Poland
| | - Andrzej Miturski
- Department of Gynecology, 1st Clinical Military Hospital in Lublin, Al. Raclawickie 23, 20-049 Lublin, Poland
| | - Krzysztof Gałczyński
- Faculty of Medical Sciences and Health Sciences, Siedlce University of Natural Sciences and Humanities, Konarskiego 2, 08-110 Siedlce, Poland
| |
Collapse
|
12
|
Liu J, Wei X, Wang T, Zhang M, Gao Y, Cheng Y, Chi L. Intestinal mucosal barrier: a potential target for traditional Chinese medicine in the treatment of cardiovascular diseases. Front Pharmacol 2024; 15:1372766. [PMID: 38469405 PMCID: PMC10925767 DOI: 10.3389/fphar.2024.1372766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Cardiovascular disease (CVD) is a serious public health problem, and among non-communicable diseases, CVD is now the leading cause of mortality and morbidity worldwide. CVD involves multiple organs throughout the body, especially the intestinal tract is the first to be involved. The impairment of the intestinal mucosal barrier is considered a significant pathological alteration in CVD and also contributes to the accelerated progression of the disease, thereby offering novel insights for CVD prevention and treatment. The treatment of Chinese medicine is characterized by multi-metabolites, multi-pathways, and multi-targets. In recent years, the studies of Traditional Chinese Medicine (TCM) in treating CVD by repairing the intestinal mucosal barrier have gradually increased, showing great therapeutic potential. This review summarizes the studies related to the treatment of CVD by TCM (metabolites of Chinese botanical drugs, TCM formulas, and Chinese patent medicine) targeting the repair of the intestinal mucosal barrier, as well as the potential mechanisms. We have observed that TCM exerts regulatory effects on the structure and metabolites of gut microbiota, enhances intestinal tight junctions, improves intestinal dyskinesia, repairs intestinal tissue morphology, and preserves the integrity of the intestinal vascular barrier through its anti-inflammatory, antioxidant, and anti-apoptotic properties. These multifaceted attributes position TCM as a pivotal modulator of inhibiting myocardial fibrosis, and hypertrophy, and promoting vascular repairment. Moreover, there exists a close association between cardiovascular risk factors such as hyperlipidemia, obesity, and diabetes mellitus with CVD. We also explore the mechanisms through which Chinese botanical drugs impact the intestinal mucosal barrier and regulate glucose and lipid metabolism. Consequently, these findings present novel insights and methodologies for treating CVD.
Collapse
Affiliation(s)
- Jiahui Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiunan Wei
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tong Wang
- College of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miaomiao Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Gao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Cheng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lili Chi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
13
|
Cao L, Ni H, Gong X, Zang Z, Chang H. Chinese Herbal Medicines for Coronary Heart Disease: Clinical Evidence, Pharmacological Mechanisms, and the Interaction with Gut Microbiota. Drugs 2024; 84:179-202. [PMID: 38265546 DOI: 10.1007/s40265-024-01994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Coronary heart disease (CHD) is a common type of cardiovascular disease (CVD) that has been on the rise in terms of both incidence and mortality worldwide, presenting a significant threat to human health. An increasing body of studies has shown that traditional Chinese medicine (TCM), particularly Chinese herbal medicines (CHMs), can serve as an effective adjunctive therapy to enhance the efficacy of Western drugs in treating CHD due to their multiple targets and multiple pathways. In this article, we critically review data available on the potential therapeutic strategies of CHMs in the intervention of CHD from three perspectives: clinical evidence, pharmacological mechanisms, and the interaction with gut microbiota. We identified 20 CHMs used in clinical practice and it has been found that the total clinical effective rate of CHD patients improved on average by 17.78% with the intervention of these CHMs. Subsequently, six signaling pathways commonly used in treating CHD have been identified through an overview of potential pharmacological mechanisms of these 20 CHMs and the eight representative individual herbs selected from them. CHMs could also act on gut microbiota to intervene in CHD by modulating the composition of gut microbiota, reducing trimethylamine-N-oxide (TMAO) levels, increasing short-chain fatty acids (SCFAs), and maintaining appropriate bile acids (BAs). Thus, the therapeutic potential of CHMs for CHD is worthy of further study in view of the outcomes found in existing studies.
Collapse
Affiliation(s)
- Linhai Cao
- College of Food Science, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing, 400715, China
| | - Hongxia Ni
- College of Food Science, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing, 400715, China
| | - Xiaoxiao Gong
- College of Food Science, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing, 400715, China
| | - Ziyan Zang
- College of Food Science, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing, 400715, China
| | - Hui Chang
- College of Food Science, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing, 400715, China.
| |
Collapse
|
14
|
Łanoszka K, Vlčková N. Natural Sirtuin1 Activators and Atherosclerosis: an Overview. Curr Atheroscler Rep 2023; 25:979-994. [PMID: 38038821 PMCID: PMC10770200 DOI: 10.1007/s11883-023-01165-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 12/02/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the most recent findings investigating the impact of several natural sirtuin (SIRT) activators, particularly SIRT1, on atherosclerosis. RECENT FINDINGS Sirtuins that belong to a family of class III histone deacetylases are believed to be novel therapeutic targets to treat age-related and chronic diseases. SIRT expression is regulated by small molecules called SIRT-activating compounds that can be found in natural food products. SIRT1 may exert protective effects in atherosclerosis, which is said to be a major cause of cardiovascular diseases. Most of the evidence supporting the beneficial effects of these natural compounds comes from in vitro or animal-based studies, while there have been particularly few or inconsistent human-based studies evaluating their long-term impact in recent years. SIRT1 activation has been demonstrated to mitigate or prevent atherosclerosis through various mechanisms. However, further research is required to determine the optimal SIRT activator dosage and to establish a stronger correlation between health effects and the administration of bioactive compounds. Additionally, conducting more human clinical trials is necessary to ensure the safety of these compounds for preventing atherosclerosis development.
Collapse
Affiliation(s)
- Karolina Łanoszka
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149, Krakow, Poland
| | - Nimasha Vlčková
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149, Krakow, Poland.
| |
Collapse
|
15
|
Hassan F, Abd-ElMola L, Mobarez S, Othman D, Zedan A, Mekawy A, Mansour AM, Mahrose K. Influence of tomato processing by-product extract as dietary supplementation on growth performance, carcass characteristics and antioxidant status of growing rabbits under high ambient temperature. Anim Biotechnol 2023; 34:2030-2039. [PMID: 35452359 DOI: 10.1080/10495398.2022.2065283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This study evaluated the effects of dietary supplementation of tomato processing by-product extract (TPBE) on growth performance, carcass characteristics and antioxidant status of growing rabbits under high ambient temperature. A total of eighty weaned New Zealand White (NZW) male rabbits (6-weeks-old; initial body weight, 730.28 ± 36.05 g) were randomly assigned to 4 groups. The first group was the control without supplementation; while the other groups were fed diets supplemented with 100, 200 and 250 mg TPBE/kg. The results showed that TPBE contained 211.85 mg/100g as total phenols and total flavones of 303.36 mg/100g. Rabbits fed a 250 mg TPBE-supplemented diet showed the heaviest body weight, the lowest feed intake and the best feed conversion ratio. TPBE diets reduced mortality percentage. Dietary supplementation of 250 mg TPBE had the highest dressing percentage. Plasma total protein, globulin, catalase and glutathione peroxidase of rabbits fed diets supplemented with 200 and 250 mg TPBE were high. Plasma total cholesterol, triglycerides, plasma hydrogen peroxide and malondialdehyde concentrations were decreased with dietary levels of TPBE. Rabbits fed 250 mg TPBE had higher T-AOC than the other groups. TPBE supplemented diets improved net revenue and economic efficiency. Conclusively, TPBE is containing appreciable content of polyphenols and flavonoids and the dietary supplementation of TPBE (250 mg/kg diet) had a positive impact on growth performance, reducing mortality and enhancing the antioxidant status of rabbits reared under high ambient temperature.
Collapse
Affiliation(s)
- Fawzia Hassan
- Animal Production Research Institute, Agricultural Research Center, Giza, Egypt
| | - Lamiaa Abd-ElMola
- Animal Production Research Institute, Agricultural Research Center, Giza, Egypt
| | - Samia Mobarez
- Animal Production Research Institute, Agricultural Research Center, Giza, Egypt
| | - Doaa Othman
- Central Laboratory for Agricultural Climate, Agricultural Research Center, Giza, Egypt
| | - Afaf Zedan
- Animal Production Research Institute, Agricultural Research Center, Giza, Egypt
| | - Aml Mekawy
- Poultry Production Department, Agriculture College, Damietta University, Damietta, Egypt
| | - Amira M Mansour
- Poultry Production Department, Agriculture College, Mansoura University, Mansoura, Egypt
| | - Khalid Mahrose
- Animal and Poultry Production Department, Faculty of Technology and Development, Zagazig University, Zagazig, Egypt
| |
Collapse
|
16
|
Liao G, Liu W, Dai Y, Shi X, Liu Y, Li D, Xu T. Beneficial effects of flavonoids on animal models of atherosclerosis: A systematic review and meta-analysis. iScience 2023; 26:108337. [PMID: 38026172 PMCID: PMC10665821 DOI: 10.1016/j.isci.2023.108337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/07/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerosis is the main cause of cardiovascular diseases that seriously endanger human health. The existing treatment drugs are effective, but they have some side effects. Accumulating evidence suggests that flavonoids have attracted wide attention due to their multiple cardioprotective effects and fewer side effects. PubMed, Web of Science database, Embase, and Cochrane Library were searched for studies evaluating the effects of flavonoids against atherosclerosis. 119 studies published from August 1954 to April 2023 were included. Random-effects models were performed for synthesis. Compared with the control group, flavonoids significantly reduced longitudinal and cross-sectional plaque area. The findings indicated that flavonoids significantly reduced the concentrations of serum TC, TG, and LDL-C and increased serum HDL-C concentrations. Besides, flavonoids reduced the levels of circulating pro-inflammatory factors, including TNF-α, IL-1β, and IL-6, and increased the serum IL-10 level. This study provides evidence for the potential cardiovascular benefits of flavonoids.
Collapse
Affiliation(s)
- Gege Liao
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Wanlu Liu
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Yiming Dai
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Xiangxiang Shi
- Department of Cardiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yang Liu
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Tongda Xu
- Department of Cardiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
17
|
Oso BJ, Olaoye I, Oso OT. Experimental and hypothetical appraisal on inhibition of glucose-induced glycation of bovine serum albumin by quercetin. J Genet Eng Biotechnol 2023; 21:123. [PMID: 37971629 PMCID: PMC10654330 DOI: 10.1186/s43141-023-00588-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND The specificity of protein functions depends on its folding ability into a functional structure. Protein folding is an essential systemic phenomenon that prevents incorrect folding which could result in harmful aggregation. This harmful aggregation of proteins causes neurodegenerative diseases and systemic amyloidosis. Experimental and theoretical approaches were used in this study to explicate the probable mechanisms of action of quercetin in inhibition of glucose-induced glycation through estimations of percentage glycated protein, inhibited induced protein aggregation, and unoxidized bovine serum albumin thiol groups and assessments of molecular interactions of quercetin with the structures of bovine serum albumin, amyloid beta-peptide (1-42) and 3D amyloid-beta (1-42) fibrils retrieved from the protein databank ( http://www.rcsb.org ). RESULTS The results showed quercetin inhibited the formation of glycated protein, protein aggregation, and thiol oxidation in a concentration-dependent manner where 200 μg/ml showed the highest inhibition while 50 μg/ml depicted the least inhibition in all the studied assessments. From the docking analysis, it was observed that quercetin had a significantly higher binding affinities - 8.67 ± 0.09 kcal/mol, - 5.37 ± 0.05 kcal/mol and - 5.93 ± 0.13 kcal/mol for the bovine serum albumin, amyloid beta-peptide (1-42) and 3D amyloid-beta (1-42) fibrils respectively compared to the glucose, the inducer. Quercetin and glucose interacted with amino acid residues at the BSA subdomain IIA thus providing a clue that quercetin may impose its inhibition through the binding domain. Also, it is important to mention that the phytochemicals shared a similar interaction profile as that of glucose with the amyloid-beta. CONCLUSIONS These findings established the beneficial effects of quercetin as a potential agent that could alleviate hyperglycaemic-initiated disorders associated with elevated serum glucose levels.
Collapse
Affiliation(s)
- Babatunde Joseph Oso
- Department of Biochemistry, McPherson University, Seriki Sotayo, Ogun State, Nigeria.
| | - Ige Olaoye
- Department of Biochemistry, McPherson University, Seriki Sotayo, Ogun State, Nigeria.
| | - Olufunke Temiloluwa Oso
- Department of Obstetrics and Gynaecology, Ekiti State University Teaching Hospital, Ado-Ekiti, Nigeria
| |
Collapse
|
18
|
Espírito-Santo DA, Cordeiro GS, Santos LS, Silva RT, Pereira MU, Matos RJB, Boaventura GT, Barreto-Medeiros JM. Cardioprotective effect of the quercetin on cardiovascular remodeling and atherosclerosis in rodents fed a high-fat diet: A systematic review. Chem Biol Interact 2023; 384:110700. [PMID: 37690744 DOI: 10.1016/j.cbi.2023.110700] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death globally, estimated at 17.9 million premature deaths. Several risk factors contribute to the development of CVD, including unhealthy diet rich in saturated fat. Quercetin (Q) is a important natural flavonoid with cardioprotective effect. However, it is crucial to understand and clarify which dosages and intervention times quercetin promotes better cardioprotective effects when exposed to a High-Fat Diet (HFD). We aim was to carry out a review to identify and compare experimental studies that investigated the quercetin effect on cardiac parameters in rodents fed a HFD. This literature search was performed through the specialized databases PubMed, Embase, Web of Science and Lilacs in May 2022. The following information was collected and assessed: Species of animals, dietary fat content, intervention protocol (quercetin), and main results of alterations associated with cardiac change. A total of 116 articles were selected from the database and 30 articles were included in this study. The administration form of quercetin was used in the diet supplemented in 73.4% (n = 22) of the studies. The dosage ranged between 10 and 100 mg/kg, 0.01%-0.36%, and 4-8 g/kg diet. The treatment time ranged between 14 and 63 days in 48.4% studies and most of the selected studies observed changes in the: Serum concentrations of lipids (60%, n = 18) mainly decrease in TC and TG, left ventricle (LV) (16.13%, n = 5) includes attenuation of the cardiac hypertrophy; inhibition of atherosclerotic progression (32%, n = 10) with decrease in lesions and plaque formation; improvement in the expression of gene and protein associated with cardiac functionality and oxidative stress (51.6%; n = 16). Quercetin supplementation at different concentrations/doses promotes important cardioprotective effects in experimental models exposed to a HFD. The supplemented diet was shown to be the better administration option. The methodological variation presented in the articles selected in this review proves that the most appropriate intervention protocol, as well as the most effective route of administration, promotes these effects.
Collapse
Affiliation(s)
- Djane A Espírito-Santo
- Department of Nutrition, Graduate Program of Food Nutrition and Health, Federal University of Bahia, Brazil.
| | - Gabriele S Cordeiro
- Department of Nutrition, Graduate Program of Food Nutrition and Health, Federal University of Bahia, Brazil
| | - Lucimeire S Santos
- Department of Nutrition, Graduate Program of Food Nutrition and Health, Federal University of Bahia, Brazil
| | - Rafael T Silva
- Department of Nutrition, Graduate Program of Food Nutrition and Health, Federal University of Bahia, Brazil
| | - Márcia U Pereira
- Department of Nutrition, Graduate Program of Food Nutrition and Health, Federal University of Bahia, Brazil
| | - Rhowena Jane B Matos
- Health Sciences Center, Federal University of the Recôncavo of Bahia, Santo Antonio de Jesus, Bahia, Brazil
| | - Gilson T Boaventura
- Department of Nutrition, Graduate Program of Food Nutrition and Health, Federal University of Bahia, Brazil
| | | |
Collapse
|
19
|
Cheng H, Zhang D, Wu J, Liu J, Zhou Y, Tan Y, Feng W, Peng C. Interactions between gut microbiota and polyphenols: A mechanistic and metabolomic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154979. [PMID: 37552899 DOI: 10.1016/j.phymed.2023.154979] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/30/2023] [Accepted: 07/15/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Polyphenols are a class of naturally sourced compounds with widespread distribution and an extensive array of bioactivities. However, due to their complex constituents and weak absorption, a convincing explanation for their remarkable bioactivity remains elusive for a long time. In recent years, interaction with gut microbiota is hypothesized to be a reasonable explanation of the potential mechanisms for natural compounds especially polyphenols. OBJECTIVES This review aims to present a persuasive explanation for the contradiction between the limited bioavailability and the remarkable bioactivities of polyphenols by examining their interactions with gut microbiota. METHODS We assessed literatures published before April 10, 2023, from several databases, including Scopus, PubMed, Google Scholar, and Web of Science. The keywords used include "polyphenols", "gut microbiota", "short-chain fatty acids", "bile acids", "trimethylamine N-oxide", "lipopolysaccharides" "tryptophan", "dopamine", "intestinal barrier", "central nervous system", "lung", "anthocyanin", "proanthocyanidin", "baicalein", "caffeic acid", "curcumin", "epigallocatechin-3-gallate", "ferulic acid", "genistein", "kaempferol", "luteolin", "myricetin", "naringenin", "procyanidins", "protocatechuic acid", "pterostilbene", "quercetin", "resveratrol", etc. RESULTS: The review first demonstrates that polyphenols significantly alter gut microbiota diversity (α- and β-diversity) and the abundance of specific microorganisms. Polyphenols either promote or inhibit microorganisms, with various factors influencing their effects, such as dosage, treatment duration, and chemical structure of polyphenols. Furthermore, the review reveals that polyphenols regulate several gut microbiota metabolites, including short-chain fatty acids, dopamine, trimethylamine N-oxide, bile acids, and lipopolysaccharides. Polyphenols affect these metabolites by altering gut microbiota composition, modifying microbial enzyme activity, and other potential mechanisms. The changed microbial metabolites induced by polyphenols subsequently trigger host responses in various ways, such as acting as intestinal acid-base homeostasis regulators and activating on specific target receptors. Additionally, polyphenols are transformed into microbial derivatives by gut microbiota and these polyphenols' microbial derivatives have many potential advantages (e.g., increased bioactivity, improved absorption). Lastly, the review shows polyphenols maintain intestinal barrier, central nervous system, and lung function homeostasis by regulating gut microbiota. CONCLUSION The interaction between polyphenols and gut microbiota provides a credible explanation for the exceptional bioactivities of polyphenols. This review aids our understanding of the underlying mechanisms behind the bioactivity of polyphenols.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Juan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Yaochuan Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| |
Collapse
|
20
|
Jing J, Guo J, Dai R, Zhu C, Zhang Z. Targeting gut microbiota and immune crosstalk: potential mechanisms of natural products in the treatment of atherosclerosis. Front Pharmacol 2023; 14:1252907. [PMID: 37719851 PMCID: PMC10504665 DOI: 10.3389/fphar.2023.1252907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory reaction that primarily affects large and medium-sized arteries. It is a major cause of cardiovascular disease and peripheral arterial occlusive disease. The pathogenesis of AS involves specific structural and functional alterations in various populations of vascular cells at different stages of the disease. The immune response is involved throughout the entire developmental stage of AS, and targeting immune cells presents a promising avenue for its treatment. Over the past 2 decades, studies have shown that gut microbiota (GM) and its metabolites, such as trimethylamine-N-oxide, have a significant impact on the progression of AS. Interestingly, it has also been reported that there are complex mechanisms of action between GM and their metabolites, immune responses, and natural products that can have an impact on AS. GM and its metabolites regulate the functional expression of immune cells and have potential impacts on AS. Natural products have a wide range of health properties, and researchers are increasingly focusing on their role in AS. Now, there is compelling evidence that natural products provide an alternative approach to improving immune function in the AS microenvironment by modulating the GM. Natural product metabolites such as resveratrol, berberine, curcumin, and quercetin may improve the intestinal microenvironment by modulating the relative abundance of GM, which in turn influences the accumulation of GM metabolites. Natural products can delay the progression of AS by regulating the metabolism of GM, inhibiting the migration of monocytes and macrophages, promoting the polarization of the M2 phenotype of macrophages, down-regulating the level of inflammatory factors, regulating the balance of Treg/Th17, and inhibiting the formation of foam cells. Based on the above, we describe recent advances in the use of natural products that target GM and immune cells crosstalk to treat AS, which may bring some insights to guide the treatment of AS.
Collapse
Affiliation(s)
- Jinpeng Jing
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Guo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Dai
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaojun Zhu
- Institute of TCM Ulcers, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Surgical Department of Traditional Chinese Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhaohui Zhang
- Institute of TCM Ulcers, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Surgical Department of Traditional Chinese Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
21
|
Ji L, Song T, Ge C, Wu Q, Ma L, Chen X, Chen T, Chen Q, Chen Z, Chen W. Identification of bioactive compounds and potential mechanisms of scutellariae radix-coptidis rhizoma in the treatment of atherosclerosis by integrating network pharmacology and experimental validation. Biomed Pharmacother 2023; 165:115210. [PMID: 37499457 DOI: 10.1016/j.biopha.2023.115210] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
OBJECTIVE This study aims at investigating the potential targets and functional mechanisms of Scutellariae Radix-Coptidis Rhizoma (QLYD) against atherosclerosis (AS) through network pharmacology, molecular docking, bioinformatic analysis and experimental validation. METHODS The compositions of QLYD were collected from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and literature, where the main active components of QLYD and corresponding targets were identified. The potential therapeutic targets of AS were excavated using the OMIM database, DrugBank database, DisGeNET database, CTD database and GEO datasets. The protein-protein interaction (PPI) network of common targets was constructed and visualized by Cytoscape 3.7.2 software. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analysis were performed to analyze the function of core targets in the PPI network. Molecular docking was carried out using AutoDockTools, AutoDock Vina, and PyMOL software to verify the correlation between the main components of QLYD and the core targets. Mouse AS model was established and the results of network pharmacology were verified by in vivo experiments. RESULTS Totally 49 active components and 225 corresponding targets of QLYD were obtained, where 68 common targets were identified by intersecting with AS-related targets. Five hub genes including IL6, VEGFA, AKT1, TNF, and IL1B were screened from the PPI network. GO functional analysis reported that these targets had associations mainly with cellular response to oxidative stress, regulation of inflammatory response, epithelial cell apoptotic process, and blood coagulation. KEGG pathway analysis demonstrated that these targets were correlated to AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, IL-17 signaling pathway, MAPK signaling pathway, and NF-kappa B signaling pathway. Results of molecular docking indicated good binding affinity of QLYD to FOS, AKT1, and TNF. Animal experiments showed that QLYD could inhibit inflammation, improve blood lipid levels and reduce plaque area in AS mice to prevent and treat AS. CONCLUSION QLYD may exert anti-inflammatory and anti-oxidative stress effects through multi-component, multi-target and multi-pathway to treat AS.
Collapse
Affiliation(s)
- Lingyun Ji
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250355, China
| | - Ting Song
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250011, China
| | - Chunlei Ge
- Department of Respiratory Medicine, Linyi Tradition Chinese Medical Hospital, Linyi, Shandong Province 276600, China
| | - Qiaolan Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250355, China
| | - Lanying Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250355, China
| | - Xiubao Chen
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250011, China
| | - Ting Chen
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250355, China
| | - Qian Chen
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250355, China
| | - Zetao Chen
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250011, China; Subject of Integrated Chinese and Western Medicine,Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250355, China.
| | - Weida Chen
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250011, China.
| |
Collapse
|
22
|
Dai Z, Zhang Y, Meng Y, Li S, Suonan Z, Sun Y, Ji J, Shen Q, Zheng H, Xue Y. Targeted delivery of nutraceuticals derived from food for the treatment of obesity and its related complications. Food Chem 2023; 418:135980. [PMID: 36989644 DOI: 10.1016/j.foodchem.2023.135980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Nutraceuticals which are abundant in foods have attracted much attention due to their bioactive activities of anti-obesity, anti-hyperlipidemia and anti-atherosclerosis. Unfortunately, the poor bioavailability severely undermines their envisioned benefits. Therefore, there is an urgent need to develop suitable delivery systems to promote the benefits of their biological activity. Targeted drug delivery system (TDDS) is a novel drug delivery system that can selectively concentrate drugs on targets in the body, improve the bioavailability of agents and reduce side effects. This emerging drug delivery system provides a new strategy for the treatment of obesity with nutraceuticals and would be a promising alternative to be widely used in the food field. This review summarizes the recent studies on the application in the targeted delivery of nutraceuticals for treating obesity and its related complications, especially the available receptors and their corresponding ligands for TDDS and the evaluation methods of the targeting ability.
Collapse
|
23
|
Zhang W, Dong X, Huang R. Antiparkinsonian Effects of Polyphenols: A Narrative Review with a Focus on the Modulation of the Gut-brain Axis. Pharmacol Res 2023:106787. [PMID: 37224894 DOI: 10.1016/j.phrs.2023.106787] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/23/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
Polyphenols, which are naturally occurring bioactive compounds in fruits and vegetables, are emerging as potential therapeutics for neurological disorders such as Parkinson's disease (PD). Polyphenols have diverse biological activities, such as anti-oxidative, anti-inflammatory, anti-apoptotic, and α-synuclein aggregation inhibitory effects, which could ameliorate PD pathogenesis. Studies have shown that polyphenols are capable of regulating the gut microbiota (GM) and its metabolites; in turn, polyphenols are extensively metabolized by the GM, resulting in the generation of bioactive secondary metabolites. These metabolites may regulate various physiological processes, including inflammatory responses, energy metabolism, intercellular communication, and host immunity. With increasing recognition of the importance of the microbiota-gut-brain axis (MGBA) in PD etiology, polyphenols have attracted growing attention as MGBA regulators. In order to address the potential therapeutic role of polyphenolic compounds in PD, we focused on MGBA. DATA AVAILABILITY: Data will be made available on request.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR, China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR, China
| | - Rui Huang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR, China.
| |
Collapse
|
24
|
MIRMOHAMMADALI SN, ROSENKRANZ SK. Dietary phytochemicals, gut microbiota composition, and health outcomes in human and animal models. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:152-171. [PMID: 37404568 PMCID: PMC10315191 DOI: 10.12938/bmfh.2022-078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/17/2023] [Indexed: 07/06/2023]
Abstract
The role of the composition of the gut microbiota on human health is not well understood. However, during the past decade, an increased emphasis has been placed on the influence of the impact of nutrition on the composition of gut microbiota and how the gut microbiota affects human health. The current review focuses on the role of some of the most studied phytochemicals on the composition of the gut microbiota. First, the review highlights the state of the research evidence regarding dietary phytochemical consumption and gut microbiota composition, including the influence of phytochemicals such as polyphenols, glucosinolates, flavonoids, and sterols that are present in vegetables, nuts, beans, and other foods. Second, the review identifies changes in health outcomes with altered gut microbiota composition, in both animal and human model studies. Third, the review highlights research that includes both associations between dietary phytochemical consumption and gut microbiota composition, and associations between the gut microbiota composition and health outcomes, in order to elucidate the role of the gut microbiota in the relationship between dietary phytochemical consumption and health outcomes in humans and animals. The current review indicated that phytochemicals can beneficially alter gut microbiota composition and decrease the risk for some diseases, such as cancers, and improve some cardiovascular and metabolic risk biomarkers. There is an urgent demand for high-quality studies that determine the relationships between the consumption of phytochemicals and health outcomes, examining gut microbiota as a moderator or mediator.
Collapse
Affiliation(s)
- Seyedeh Nooshan MIRMOHAMMADALI
- Department of Food, Nutrition, Dietetics and Health, Kansas
State University, 110 Anderson Hall, 919 Mid-Campus Drive North, Manhattan, KS 66506-0110,
USA
| | - Sara K. ROSENKRANZ
- Department of Kinesiology and Nutrition Sciences, University
of Nevada Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV 89154, USA
| |
Collapse
|
25
|
Sharma R, Singh S, Tewari N, Dey P. A toxic shrub turned therapeutic: The dichotomy of Nerium oleander bioactivities. Toxicon 2023; 224:107047. [PMID: 36706925 DOI: 10.1016/j.toxicon.2023.107047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Nerium oleander L. is a medicinal plant, used for the treatment of cancers and hyperglycemia across the world, especially in Indian sub-continent, Turkey, Morocco, and China. Although clinical studies supporting its pharmacological effects remain critically underexplored, accidental and intentional consumption of any part of the plant causes fatal toxicity in animals and humans. While the polyphenolic fraction of oleander leaves has been attributed to its pre-clinical pharmacological activities, the presence of diverse cardiac glycosides (especially oleandrin) causes apoptosis to cancer cells in vitro and results in clinical signs of oleander poisoning. Thus, the dual pharmacological and toxicological role of oleander is a perplexing dichotomy in phytotherapy. The current investigative review, therefore, intended to analyze the intrinsic and extrinsic factors that likely contribute to this conundrum. Especially by focusing on gut microbial diversity, abundance, and metabolic functions, oleander-associated pharmacological and toxicological studies have been critically analyzed to define the dual effects of oleander. Electronic databases were extensively screened for relevant research articles (including pre-clinical and clinical) related to oleander bioactivities and toxicity. Taxonomic preference was given to the plant N. oleander L. and synonymous plants as per 'The World Flora Online' database (WCSP record #135196). Discussion on yellow oleander (Cascabela thevetia (L.) Lippold) has intentionally been avoided since it is a different plant. The review indicates that the gut microbiota likely plays a key role in differentially modulating the pharmacological and toxicological effects of oleander. Other factors identified influencing the oleander bioactivities include dose and mode of treatment, cardiac glycoside pharmacokinetics, host-endogenous glycosides, plant material processing and phytochemical extraction methods, plant genotypic variations, environmental effects on the phytochemical quality and quantity, gene expression variations, host dietary patterns and co-morbidity, etc. The arguments proposed are also relevant to other medicinal plants containing toxic cardiac glycosides.
Collapse
Affiliation(s)
- Rajat Sharma
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| | - Swati Singh
- Department of Zoology, University of North Bengal, Siliguri, West Bengal, India.
| | - Nisha Tewari
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| |
Collapse
|
26
|
Korczak M, Pilecki M, Granica S, Gorczynska A, Pawłowska KA, Piwowarski JP. Phytotherapy of mood disorders in the light of microbiota-gut-brain axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154642. [PMID: 36641978 DOI: 10.1016/j.phymed.2023.154642] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 11/22/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Clinical research in natural product-based psychopharmacology has revealed a variety of promising herbal medicines that may provide benefit in the treatment of mild mood disorders, however failed to unambiguously indicate pharmacologically active constituents. The emerging role of the microbiota-gut-brain axis opens new possibilities in the search for effective methods of treatment and prevention of mood disorders. PURPOSE Considering the clinically proven effectiveness juxtaposed with inconsistencies regarding the indication of active principles for many medicinal plants applied in the treatment of anxiety and depression, the aim of the review is to look at their therapeutic properties from the perspective of the microbiota-gut-brain axis. METHOD A literature-based survey was performed using Scopus, Pubmed, and Google Scholar databases. The current state of knowledge regarding Hypericum perforatum, Valeriana officinalis, Piper methysticum, Passiflora incarnata, Humulus lupulus, Melissa officinalis, Lavandula officinalis, and Rhodiola rosea in terms of their antimicrobial activity, bioavailability, clinical effectiveness in depression/anxiety and gut microbiota - natural products interaction was summarized and analyzed. RESULTS Recent studies have provided direct and indirect evidence that herbal extracts and isolated compounds are potent modulators of gut microbiota structure. Additionally, some of the formed postbiotic metabolites exert positive effects and ameliorate depression-related behaviors in animal models of mood disorders. The review underlines the gap in research on natural products - gut microbiota interaction in the context of mood disorders. CONCLUSION Modification of microbiota-gut-brain axis by natural products is a plausible explanation of their therapeutic properties. Future studies evaluating the effectiveness of herbal medicine and isolated compounds in treating mild mood disorders should consider the bidirectional interplay between phytoconstituents and the gut microbiota community.
Collapse
Affiliation(s)
- Maciej Korczak
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Pilecki
- Department of Psychiatry, Collegium Medicum, Jagiellonian University, Cracow, Poland
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Gorczynska
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Karolina A Pawłowska
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Jakub P Piwowarski
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
27
|
Centner AM, Khalili L, Ukhanov V, Kadyan S, Nagpal R, Salazar G. The Role of Phytochemicals and Gut Microbiome in Atherosclerosis in Preclinical Mouse Models. Nutrients 2023; 15:1212. [PMID: 36904211 PMCID: PMC10005405 DOI: 10.3390/nu15051212] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Gut microbiome alterations have recently been linked to many chronic conditions including cardiovascular disease (CVD). There is an interplay between diet and the resident gut microbiome, where the food eaten affects populations of certain microbes. This is important, as different microbes are associated with various pathologies, as they can produce compounds that are disease-promoting or disease-protecting. The Western diet negatively affects the host gut microbiome, ultimately resulting in heightened arterial inflammation and cell phenotype changes as well as plaque accumulation in the arteries. Nutritional interventions including whole foods rich in fiber and phytochemicals as well as isolated compounds including polyphenols and traditional medicinal plants show promise in positively influencing the host gut microbiome to alleviate atherosclerosis. This review investigates the efficacy of a vast array of foods and phytochemicals on host gut microbes and atherosclerotic burden in mice. Reduction in plaque by interventions was associated with increases in bacterial diversity, reduction in the Firmicutes/Bacteroidetes (F/B) ratio, and upregulation of Akkermansia. Upregulation in CYP7 isoform in the liver, ABC transporters, bile acid excretion, and the level of acetic acid, propionic acid, and butyric acid were also noted in several studies reducing plaque. These changes were also associated with attenuated inflammation and oxidative stress. In conclusion, an increase in the abundance of Akkermansia with diets rich in polyphenols, fiber, and grains is likely to reduce plaque burden in patients suffering from CVD.
Collapse
Affiliation(s)
- Ann M. Centner
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Leila Khalili
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Vladimir Ukhanov
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Saurabh Kadyan
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Gloria Salazar
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
28
|
Khalili L, Centner AM, Salazar G. Effects of Berries, Phytochemicals, and Probiotics on Atherosclerosis through Gut Microbiota Modification: A Meta-Analysis of Animal Studies. Int J Mol Sci 2023; 24:ijms24043084. [PMID: 36834497 PMCID: PMC9960548 DOI: 10.3390/ijms24043084] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Atherosclerosis is a major cause of death and disability. The beneficial effects of phytochemicals and probiotics on atherosclerosis have gained significant interest since these functional foods can improve inflammation, oxidative stress, and microbiome dysbiosis. The direct effect of the microbiome in atherosclerosis, however, needs further elucidation. The objective of this work was to investigate the effects of polyphenols, alkaloids, and probiotics on atherosclerosis using a meta-analysis of studies with mouse models of atherosclerosis. Identification of eligible studies was conducted through searches on PubMed, Embase, Web of Science, and Science Direct until November 2022. The results showed that phytochemicals reduced atherosclerosis, which was significant in male mice, but not in females. Probiotics, on the other hand, showed significant reductions in plaque in both sexes. Berries and phytochemicals modulated gut microbial composition by reducing the Firmicutes/Bacteroidetes (F/B) ratio and by upregulating health-promoting bacteria, including Akkermansia muciniphila. This analysis suggests that phytochemicals and probiotics can reduce atherosclerosis in animal models, with a potentially greater effect on male animals. Thus, consumption of functional foods rich in phytochemicals as well as probiotics are viable interventions to improve gut health and reduce plaque burden in patients suffering from cardiovascular disease (CVD).
Collapse
Affiliation(s)
- Leila Khalili
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Ann Marie Centner
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Gloria Salazar
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL 32306, USA
- Center for Advancing Exercise and Nutrition Research on Aging (CAENRA), Florida State University, Tallahassee, FL 32306, USA
- Correspondence:
| |
Collapse
|
29
|
Potential Role of Quercetin Glycosides as Anti-Atherosclerotic Food-Derived Factors for Human Health. Antioxidants (Basel) 2023; 12:antiox12020258. [PMID: 36829817 PMCID: PMC9952755 DOI: 10.3390/antiox12020258] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Quercetin is a monomeric polyphenol of plant origin that belongs to the flavonol-type flavonoid subclass. Extensive studies using cultured cells and experimental model animals have demonstrated the anti-atherosclerotic effects of dietary quercetin in relation to the prevention of cardiovascular disease (CVD). As quercetin is exclusively present in plant-based foods in the form of glycosides, this review focuses on the bioavailability and bioefficacy of quercetin glycosides in relation to vascular health effects. Some glucose-bound glycosides are absorbed from the small intestine after glucuronide/sulfate conjugation. Both conjugated metabolites and deconjugated quercetin aglycones formed by plasma β-glucuronidase activity act as food-derived anti-atherogenic factors by exerting antioxidant, anti-inflammatory, and plasma low-density lipoprotein cholesterol-lowering effects. However, most quercetin glycosides reach the large intestine, where they are subject to gut microbiota-dependent catabolism resulting in deglycosylated aglycone and chain-scission products. These catabolites also affect vascular health after transfer into the circulation. Furthermore, quercetin glycosides may improve gut microbiota profiles. A variety of human cohort studies and intervention studies support the idea that the intake of quercetin glycoside-rich plant foods such as onion helps to prevent CVD. Thus, quercetin glycoside-rich foods offer potential benefits in terms of cardiovascular health and possible clinical applications.
Collapse
|
30
|
Li Y, Yang S, Jin X, Li D, Lu J, Wang X, Wu M. Mitochondria as novel mediators linking gut microbiota to atherosclerosis that is ameliorated by herbal medicine: A review. Front Pharmacol 2023; 14:1082817. [PMID: 36733506 PMCID: PMC9886688 DOI: 10.3389/fphar.2023.1082817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Atherosclerosis (AS) is the main cause of cardiovascular disease (CVD) and is characterized by endothelial damage, lipid deposition, and chronic inflammation. Gut microbiota plays an important role in the occurrence and development of AS by regulating host metabolism and immunity. As human mitochondria evolved from primordial bacteria have homologous characteristics, they are attacked by microbial pathogens as target organelles, thus contributing to energy metabolism disorders, oxidative stress, and apoptosis. Therefore, mitochondria may be a key mediator of intestinal microbiota disorders and AS aggravation. Microbial metabolites, such as short-chain fatty acids, trimethylamine, hydrogen sulfide, and bile acids, also affect mitochondrial function, including mtDNA mutation, oxidative stress, and mitophagy, promoting low-grade inflammation. This further damages cellular homeostasis and the balance of innate immunity, aggravating AS. Herbal medicines and their monomers can effectively ameliorate the intestinal flora and their metabolites, improve mitochondrial function, and inhibit atherosclerotic plaques. This review focuses on the interaction between gut microbiota and mitochondria in AS and explores a therapeutic strategy for restoring mitochondrial function and intestinal microbiota disorders using herbal medicines, aiming to provide new insights for the prevention and treatment of AS.
Collapse
Affiliation(s)
- Yujuan Li
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao Jin
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan Li
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Lu
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Beijing University of Chinese Medicine, Beijing, China
| | - Xinyue Wang
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Min Wu,
| |
Collapse
|
31
|
Does the Composition of Gut Microbiota Affect Hypertension? Molecular Mechanisms Involved in Increasing Blood Pressure. Int J Mol Sci 2023; 24:ijms24021377. [PMID: 36674891 PMCID: PMC9863380 DOI: 10.3390/ijms24021377] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Arterial hypertension is a chronic disease which is very prevalent contemporarily. The aim of this review was to investigate the impact of gut microbiota on the development and potential treatment of hypertension, taking into consideration underlying molecular mechanisms. The bacteria present in the intestines have the ability to secrete different metabolites, which might play a significant role in the regulation of blood pressure. The most important include short-chain fatty acids (SCFAs), vasoactive hormones, trimethylamine (TMA) and trimethylamine N-oxide (TMAO) and uremic toxins, such as indoxyl sulfate (IS) and p-cresyl sulfate (PCS). Their action in regulating blood pressure is mainly based on their pro- or anti-inflammatory function. The use of specifically formulated probiotics to modify the composition of gut microbiota might be a beneficial way of supportive treatment of hypertension; however, further research on this topic is needed to choose the species of bacteria that could induce the hypotensive pattern.
Collapse
|
32
|
Salazar J, Morillo V, Suárez MK, Castro A, Ramírez P, Rojas M, Añez R, D’Marco L, Chacín-González M, Bermudez V. Role of Gut Microbiome in Atherosclerosis: Molecular and Therapeutic Aspects. Curr Cardiol Rev 2023; 19:e020223213408. [PMID: 36733248 PMCID: PMC10494273 DOI: 10.2174/1573403x19666230202164524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 02/04/2023] Open
Abstract
Atherosclerosis is one of the most relevant and prevalent cardiovascular diseases of our time. It is one of the pathological entities that increases the morbidity and mortality index in the adult population. Pathophysiological connections have been observed between atherosclerosis and the gut microbiome (GM), represented by a group of microorganisms that are present in the gut. These microorganisms are vital for metabolic homeostasis in humans. Recently, direct and indirect mechanisms through which GM can affect the development of atherosclerosis have been studied. This has led to research into the possible modulation of GM and metabolites as a new target in the prevention and treatment of atherosclerosis. The goal of this review is to analyze the physiopathological mechanisms linking GM and atherosclerosis that have been described so far. We also aim to summarize the recent studies that propose GM as a potential target in atherosclerosis management.
Collapse
Affiliation(s)
- Juan Salazar
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Valery Morillo
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - María K Suárez
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ana Castro
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Paola Ramírez
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Milagros Rojas
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Roberto Añez
- Departamento de Endocrinología y Nutrición. Hospital General Universitario Gregorio Marañón, Madrid, España
| | - Luis D’Marco
- Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, 46115, Spain
| | | | - Valmore Bermudez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
33
|
Liu M, Shi W, Huang Y, Wu Y, Wu K. Intestinal flora: A new target for traditional Chinese medicine to improve lipid metabolism disorders. Front Pharmacol 2023; 14:1134430. [PMID: 36937840 PMCID: PMC10014879 DOI: 10.3389/fphar.2023.1134430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Lipid metabolism disorders (LMD) can cause a series of metabolic diseases, including hyperlipidemia, obesity, non-alcoholic fatty liver disease (NAFLD) and atherosclerosis (AS). Its development is caused by more pathogenic factors, among which intestinal flora dysbiosis is considered to be an important pathogenic mechanism of LMD. In recent years, the research on intestinal flora has made great progress, opening up new perspectives on the occurrence and therapeutic effects of diseases. With its complex composition and wide range of targets, traditional Chinese medicine (TCM) is widely used to prevent and treat LMD. This review takes intestinal flora as a target, elaborates on the scientific connotation of TCM in the treatment of LMD, updates the therapeutic thinking of LMD, and provides a reference for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Min Liu
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wei Shi
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yefang Huang
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Keming Wu
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
34
|
Yu Z, Qin E, Cheng S, Yang H, Liu R, Xu T, Liu Y, Yuan J, Yu S, Yang J, Liang F. Gut microbiome in PCOS associates to serum metabolomics: a cross-sectional study. Sci Rep 2022; 12:22184. [PMID: 36564416 PMCID: PMC9789036 DOI: 10.1038/s41598-022-25041-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
The association between gut microbiome and chronic metabolic disease including polycystic ovary syndrome (PCOS), is well documented, however, the relationship between the gut microbiota and serum metabolites remains unknown. In this study, untargeted metabolomics together with a 16S rRNA gene sequencing tool was used to detect small molecule serum metabolites and the gut microbiome. We identified 15 differential metabolites between PCOS patients and the healthy control. Lysophosphatidylcholine (LPC) (18:2, 20:3, 18:1, P-16:0, 17:0, 15:0, 18:3, 20:4), phosphatidylcholine(PC), ganglioside GA2 (d18:1/16:0) and 1-linoleoylglycerophosphocholine were increased in the PCOS group, and the concentrations of phosphoniodidous acid, bilirubin, nicotinate beta-D-ribonucleotide and citric acid were decreased in the PCOS group, suggesting a lipid metabolism and energy metabolism disorder in the PCOS patients. The diversity of gut microbiota in PCOS group was lower than that in healthy controls. Escherichia/Shigella, Alistipes and an unnamed strain 0319_6G20 belonging to Proteobacteria were important distinguishing genera (LDA > 3.5) in PCOS. Prevotella_9 was positively correlated with phosphoniodidous acid, nicotinate beta-D-ribonucleotide and citric acid concentrations, and negatively correlated with the concentration of LPC (20:3) and 1-linoleoylglycerophosphocholine; Roseburia was negatively correlated with LPC concentration (20:4), while the characteristic genus 0319_6G20 of PCOS was positively correlated with LPC concentration (20:3) (COR > 0.45). SF-36 in the PCOS group was significantly lower than that in the healthy control (HC) group, which was associated with the presence of Escherichia-Shigella and Alistipes. Our finding demonstrated the correlation between the gut microbiota and serum metabolites in PCOS, and therefore characteristic gut microbiota and metabolites may play an important role in the insulin resistance and the mood changes of PCOS patients.
Collapse
Affiliation(s)
- Zheng Yu
- grid.411304.30000 0001 0376 205XCollege of Medical Information and Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Erqi Qin
- Acupuncture Department, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Shirui Cheng
- grid.411304.30000 0001 0376 205XAcupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 37 Shi’er Qiao Rd, Chengdu, 610075 Sichuan China
| | - Han Yang
- grid.411304.30000 0001 0376 205XAcupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 37 Shi’er Qiao Rd, Chengdu, 610075 Sichuan China
| | - Rui Liu
- grid.266097.c0000 0001 2222 1582Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, CA USA
| | - Tian Xu
- grid.438526.e0000 0001 0694 4940Undergraduate Program in Department of Biochemistry, College of Agriculture and Life Science, Virginia Tech, Blacksburg, VA USA
| | - Yanqin Liu
- Acupuncture Department, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Jing Yuan
- Gynecology Department, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Shuguang Yu
- grid.411304.30000 0001 0376 205XAcupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 37 Shi’er Qiao Rd, Chengdu, 610075 Sichuan China
| | - Jie Yang
- grid.411304.30000 0001 0376 205XAcupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 37 Shi’er Qiao Rd, Chengdu, 610075 Sichuan China
| | - Fanrong Liang
- grid.411304.30000 0001 0376 205XAcupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 37 Shi’er Qiao Rd, Chengdu, 610075 Sichuan China
| |
Collapse
|
35
|
Polyphenols as Drivers of a Homeostatic Gut Microecology and Immuno-Metabolic Traits of Akkermansia muciniphila: From Mouse to Man. Int J Mol Sci 2022; 24:ijms24010045. [PMID: 36613488 PMCID: PMC9820369 DOI: 10.3390/ijms24010045] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Akkermansia muciniphila is a mucosal symbiont considered a gut microbial marker in healthy individuals, as its relative abundance is significantly reduced in subjects with gut inflammation and metabolic disturbances. Dietary polyphenols can distinctly stimulate the relative abundance of A. muciniphila, contributing to the attenuation of several diseases, including obesity, type 2 diabetes, inflammatory bowel diseases, and liver damage. However, mechanistic insight into how polyphenols stimulate A. muciniphila or its activity is limited. This review focuses on dietary interventions in rodents and humans and in vitro studies using different phenolic classes. We provide critical insights with respect to potential mechanisms explaining the effects of polyphenols affecting A. muciniphila. Anthocyanins, flavan-3-ols, flavonols, flavanones, stilbenes, and phenolic acids are shown to increase relative A. muciniphila levels in vivo, whereas lignans exert the opposite effect. Clinical trials show consistent findings, and high intervariability relying on the gut microbiota composition at the baseline and the presence of multiple polyphenol degraders appear to be cardinal determinants in inducing A. muciniphila and associated benefits by polyphenol intake. Polyphenols signal to the AhR receptor and impact the relative abundance of A. muciniphila in a direct and indirect fashion, resulting in the restoration of intestinal epithelial integrity and homeostatic crosstalk with the gut microbiota by affecting IL-22 production. Moreover, recent evidence suggests that A. muciniphila participates in the initial hydrolysis of some polyphenols but does not participate in their complete metabolism. In conclusion, the consumption of polyphenol-rich foods targeting A. muciniphila as a pivotal intermediary represents a promising precision nutritional therapy to prevent and attenuate metabolic and inflammatory diseases.
Collapse
|
36
|
Dietary polyphenols and their relationship to the modulation of non-communicable chronic diseases and epigenetic mechanisms: A mini-review. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 6:100155. [PMID: 36582744 PMCID: PMC9793217 DOI: 10.1016/j.fochms.2022.100155] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/18/2022] [Accepted: 12/11/2022] [Indexed: 12/14/2022]
Abstract
Chronic Non-Communicable Diseases (NCDs) have been considered a global health problem, characterized as diseases of multiple factors, which are developed throughout life, and regardless of genetics as a risk factor of important relevance, the increase in mortality attributed to the disease to environmental factors and the lifestyle one leads. Although the reactive species (ROS/RNS) are necessary for several physiological processes, their overproduction is directly related to the pathogenesis and aggravation of NCDs. In contrast, dietary polyphenols have been widely associated with minimizing oxidative stress and inflammation. In addition to their antioxidant power, polyphenols have also drawn attention for being able to modulate both gene expression and modify epigenetic alterations, suggesting an essential involvement in the prevention and/or development of some pathologies. Therefore, this review briefly explained the mechanisms in the development of some NCDs, followed by a summary of some evidence related to the interaction of polyphenols in oxidative stress, as well as the modulation of epigenetic mechanisms involved in the management of NCDs.
Collapse
Key Words
- 8-oxodG, 8-oxo-2́deosyguanosine
- ABCG, ATP Binding Cassette Subfamily G Member
- ADAM10, α-secretase
- ADRB3, adrenoceptor Beta 3
- APP, amyloid-β precursor protein
- ARF, auxin response factor
- ARH-I, aplysia ras homology member I
- ARHGAP24, Rho GTPase Activating Protein 24
- ATF6, activating transcription factor 6
- ATP2A3, ATPase Sarcoplasmic/Endoplasmic Reticulum Ca2+ Transporting 3
- BCL2L14, apoptosis facilitator Bcl-2-like protein 14
- Bioactive compounds
- CDH1, cadherin-1
- CDKN, cyclin dependent kinase inhibitor
- CPT, carnitine palmitoyltransferase
- CREBH, cyclic AMP-responsive element-binding protein H
- DANT2, DXZ4 associated non-noding transcript 2, distal
- DAPK1, death-associated protein kinase 1
- DNA methylation
- DNMT, DNA methyltransferase
- DOT1L, disruptor of telomeric silencing 1-like
- EWASs, epigenome-wide association studies
- EZH2, Enhancer of zeste homolog 2
- FAS, Fas cell Surface Death Receptor
- GDNF, glial cell line-derived neurotrophic factor
- GFAP, glial fibrillary acid protein
- GSTP1, Glutathione S-transferases P1
- Gut microbiota modulation
- HAT, histone acetylases
- HDAC, histone deacetylases
- HSD11B2, 11 beta-hydroxysteroid dehydrogenase type 2
- Histone modifications
- IGFBP3, insulin-like growth factor-binding protein 3
- IGT, impaired glucose tolerance
- KCNK3, potassium two pore domain channel subfamily K Member 3
- MBD4, methyl-CpG binding domain 4
- MGMT, O-6-methylguanine-DNA methyltransferase
- NAFLD, Non-alcoholic fatty liver disease
- OCT1, Organic cation transporter 1
- OGG1, 8-Oxoguanine DNA Glycosylase
- Oxidative stress
- PAI-1, plasminogen activator inhibitor 1
- PHOSPHO1, Phosphoethanolamine/Phosphocholine Phosphatase 1
- PLIN1, perilipin 1
- POE3A, RNA polymerase III
- PPAR, peroxisome proliferator-activated receptor
- PPARGC1A, PPARG coactivator 1 alpha
- PRKCA, Protein kinase C alpha
- PTEN, phosphatase and tensin homologue
- Personalized nutrition
- RASSF1A, Ras association domain family member 1
- SAH, S -adenosyl-l-homocysteine
- SAM, S-adenosyl-methionine
- SD, sleep deprivation
- SOCS3, suppressor of cytokine signaling 3
- SREBP-1C, sterol-regulatory element binding protein-1C
- TBX2, t-box transcription factor 2
- TCF7L2, transcription factor 7 like 2
- TET, ten-eleven translocation proteins
- TNNT2, cardiac muscle troponin T
- TPA, 12-O-tetradecanoylphorbol-13-acetate
- lncRNA, long non-coding RNA
- ncRNA, non-coding RNA
- oAβ-induced-LTP, oligomeric amyloid-beta induced long term potentiation
Collapse
|
37
|
An updated review of extraction and liquid chromatography techniques for analysis of phenolic compounds in honey. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Deng B, Tao L, Wang Y. Natural products against inflammation and atherosclerosis: Targeting on gut microbiota. Front Microbiol 2022; 13:997056. [PMID: 36532443 PMCID: PMC9751351 DOI: 10.3389/fmicb.2022.997056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/25/2022] [Indexed: 09/29/2023] Open
Abstract
The gut microbiota (GM) has become recognized as a crucial element in preserving human fitness and influencing disease consequences. Commensal and pathogenic gut microorganisms are correlated with pathological progress in atherosclerosis (AS). GM may thus be a promising therapeutic target for AS. Natural products with cardioprotective qualities might improve the inflammation of AS by modulating the GM ecosystem, opening new avenues for researches and therapies. However, it is unclear what components of natural products are useful and what the actual mechanisms are. In this review, we have summarized the natural products relieving inflammation of AS by regulating the GM balance and active metabolites produced by GM.
Collapse
Affiliation(s)
- Bing Deng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liyu Tao
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiru Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
39
|
Mi W, Hu Z, Xu L, Bian X, Lian W, Yin S, Zhao S, Gao W, Guo C, Shi T. Quercetin positively affects gene expression profiles and metabolic pathway of antibiotic-treated mouse gut microbiota. Front Microbiol 2022; 13:983358. [PMID: 36090094 PMCID: PMC9453598 DOI: 10.3389/fmicb.2022.983358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Quercetin has a wide range of biological properties that can be used to prevent or decrease particular inflammatory diseases. In this study, we aimed to investigate the gene expression profile and metabolic pathway of the gut microbiota of an antibiotic-treated mouse model administered quercetin. Blood, feces, and intestinal tissue samples were collected and metagenomic sequencing, enzyme-linked immunosorbent assay, and western blot analysis were used to detect variations. The results showed that the quercetin-treated group exhibited increased levels of health beneficial bacterial species, including Faecalibaculum rodentium (103.13%), Enterorhabdus caecimuris (4.13%), Eggerthella lenta (4%), Roseburia hominis (1.33%), and Enterorhabdus mucosicola (1.79%), compared with the model group. These bacterial species were positively related to butyrate, propionate, and intestinal tight junction proteins (zonula occludens-1 and occludin) expression, but negatively related to serum lipopolysaccharide and tumor necrosis factor-α level. In addition, the metabolic pathway analysis showed that dietary quercetin significantly enhanced spliceosomes (111.11%), tight junctions (62.96%), the citrate cycle (10.41%), pyruvate metabolism (6.95%), and lysine biosynthesis (5.06%), but decreasing fatty acid biosynthesis (23.91%) and N-glycan (7.37%) biosynthesis. Furthermore, these metabolic pathway changes were related to relative changes in the abundance of 10 Kyoto Encyclopedia of Genes and Genomes genes (K00244, K00341, K02946, K03737, K01885, k10352, k11717, k10532, K02078, K01191). In conclusion, dietary quercetin increased butyrate-producing bacterial species, and the acetyl-CoA-mediated increased butyrate accelerated carbohydrate, energy metabolism, reduced cell motility and endotoxemia, and increased the gut barrier function, thereby leading to healthy colonic conditions for the host.
Collapse
Affiliation(s)
- Wei Mi
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Zhiyong Hu
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Lanlan Xu
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Xiangyu Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Wu Lian
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Shuying Yin
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Shuying Zhao
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Weina Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- *Correspondence: Weina Gao,
| | - Changjiang Guo
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- Changjiang Guo,
| | - Tala Shi
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
- Tala Shi,
| |
Collapse
|
40
|
Potential Pharmaceutical Applications of Quercetin in Cardiovascular Diseases. Pharmaceuticals (Basel) 2022; 15:ph15081019. [PMID: 36015169 PMCID: PMC9412669 DOI: 10.3390/ph15081019] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/20/2022] Open
Abstract
Quercetin, as a member of flavonoids, has emerged as a potential therapeutic agent in cardiovascular diseases (CVDs) in recent decades. In this comprehensive literature review, our goal was a critical appraisal of the pathophysiological mechanisms of quercetin in relation to the classical cardiovascular risk factors (e.g., hyperlipidemia), atherosclerosis, etc. We also assessed experimental and clinical data about its potential application in CVDs. Experimental studies including both in vitro methods and in vivo animal models mainly outline the following effects of quercetin: (1) antihypertensive, (2) hypolipidemic, (3) hypoglycemic, (4) anti-atherosclerotic, and (5) cardioprotective (suppressed cardiotoxicity). From the clinical point of view, there are human studies and meta-analyses implicating its beneficial effects on glycemic and lipid parameters. In contrast, other human studies failed to demonstrate consistent favorable effects of quercetin on other cardiometabolic risk factors such as MS, obesity, and hypertension, underlying the need for further investigation. Analyzing the reason of this inconsistency, we identified significant drawbacks in the clinical trials’ design, while the absence of pharmacokinetic/pharmacodynamic tests prior to the studies attenuated the power of clinical results. Therefore, additional well-designed preclinical and clinical studies are required to examine the therapeutic mechanisms and clinical efficacy of quercetin in CVDs.
Collapse
|
41
|
Kan J, Wu F, Wang F, Zheng J, Cheng J, Li Y, Yang Y, Du J. Phytonutrients: Sources, bioavailability, interaction with gut microbiota, and their impacts on human health. Front Nutr 2022; 9:960309. [PMID: 36051901 PMCID: PMC9424995 DOI: 10.3389/fnut.2022.960309] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/11/2022] [Indexed: 12/13/2022] Open
Abstract
Phytonutrients are natural bioactive components present in the daily diet that can exert a positive impact on human health. Studies have shown that phytonutrients may act as antioxidants and improve metabolism after being ingested, which help to regulate physiological processes and prevent metabolic disorders and diseases. However, their efficacy is limited by their low bioavailability. The gut microbiota is symbiotic with humans and its abundance and profile are related to most diseases. Interestingly, studies have shown that the gut microbiota is associated with the metabolism of phytonutrients by converting them into small molecules that can be absorbed by the body, thereby enhancing their bioavailability. Furthermore, phytonutrients can modulate the composition of the gut microbiota, and therefore improve the host's health. Here, we focus on uncovering the mechanisms by which phytonutrients and gut microbiota play roles in health, and the interrelationships between phytonutrients and gut microbiota were summarized. We also reviewed the studies that reported the efficacy of phytonutrients in human health and the future directions.
Collapse
Affiliation(s)
- Juntao Kan
- Nutrilite Health Institute, Shanghai, China
| | - Feng Wu
- Sequanta Technologies Co., Ltd., Shanghai, China
| | | | | | - Junrui Cheng
- Department of Molecular and Structural Biochemistry, North Carolina State University, Kannapolis, NC, United States
| | - Yuan Li
- Sequanta Technologies Co., Ltd., Shanghai, China
| | - Yuexin Yang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
- Yuexin Yang
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
- *Correspondence: Jun Du
| |
Collapse
|
42
|
Liu TH, Xie T, Bai ZY, Liang QE, Xie PC, Xue YZ, Xiao Y, Chen LG. The Important Role of TaohongSiwu Decoction in Gut Microbial Modulation in Response to High-Salt Diet-Induced Hypertensive Mice. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221118199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
TaohongSiwu decoction (THSWD), a traditional Chinese recipe, has been widely used to treat hypertension since ancient times. However, the mechanisms of its action are still unclear. Herein, we aimed to explore the gut microbial activity of THSWD in high-salt diet-induced hypertensive mice. Eight percent high-salt (NaCl) diet was used to induce hypertension for 4 weeks in a mouse model. Meanwhile, THSWD was used to intervene in the high-salt diet-induced mice, and the efficacy was evaluated by different parameters. Here, we found that THSWD significantly restored blood pressure compared with the model group. Moreover, THSWD effectively protected endothelial function by significantly upregulating the level of nitric oxide (NO) and downregulating the level of endothelin-1 (ET-1), angiotensin I (AngI), and vascular endothelial growth factor (VEGF) in serum compared with the model group. Notably, THSWD significantly upregulated the relative abundance of Dubosiella and downregulated that of Cyanobium_PCC-6307 and DNF00809 at the genus level compared with the model group. The results of PCA and microbial distance calculation further exhibited that THSWD treatment resulted in significant regulation of the microbial community. Furthermore, compared with the model group, THSWD increased the level of vitamin k2 (VK2) in serum. These findings indicate that THSWD could protect blood pressure and endothelial function by regulating gut microbiota and promoting microbial metabolite VK2. These results show the important role of THSWD in regulating the gut microbiota in response to high-salt diet-induced mice.
Collapse
Affiliation(s)
- Tian-hao Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Ting Xie
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhen-yu Bai
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Qiu-er Liang
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Peng-cheng Xie
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Yu-zheng Xue
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Ya Xiao
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Li-guo Chen
- College of Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
43
|
Santhiravel S, Bekhit AEDA, Mendis E, Jacobs JL, Dunshea FR, Rajapakse N, Ponnampalam EN. The Impact of Plant Phytochemicals on the Gut Microbiota of Humans for a Balanced Life. Int J Mol Sci 2022; 23:ijms23158124. [PMID: 35897699 PMCID: PMC9332059 DOI: 10.3390/ijms23158124] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
The gastrointestinal tract of humans is a complex microbial ecosystem known as gut microbiota. The microbiota is involved in several critical physiological processes such as digestion, absorption, and related physiological functions and plays a crucial role in determining the host’s health. The habitual consumption of specific dietary components can impact beyond their nutritional benefits, altering gut microbiota diversity and function and could manipulate health. Phytochemicals are non-nutrient biologically active plant components that can modify the composition of gut microflora through selective stimulation of proliferation or inhibition of certain microbial communities in the intestine. Plants secrete these components, and they accumulate in the cell wall and cell sap compartments (body) for their development and survival. These compounds have low bioavailability and long time-retention in the intestine due to their poor absorption, resulting in beneficial impacts on gut microbiota population. Feeding diets containing phytochemicals to humans and animals may offer a path to improve the gut microbiome resulting in improved performance and/or health and wellbeing. This review discusses the effects of phytochemicals on the modulation of the gut microbiota environment and the resultant benefits to humans; however, the effect of phytochemicals on the gut microbiota of animals is also covered, in brief.
Collapse
Affiliation(s)
- Sarusha Santhiravel
- Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Alaa El-Din A Bekhit
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Eresha Mendis
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Joe L Jacobs
- Animal Production Sciences, Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Ellinbank, VIC 3821, Australia
- Centre for Agricultural Innovation, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Frank R Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Niranjan Rajapakse
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Eric N Ponnampalam
- Animal Production Sciences, Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Bundoora, VIC 3083, Australia
| |
Collapse
|
44
|
Keranmu A, Pan LB, Yu H, Fu J, Liu YF, Amuti S, Han P, Ma SR, Xu H, Zhang ZW, Chen D, Yang FY, Wang MS, Wang Y, Xing NZ, Jiang JD. The potential biological effects of quercetin based on pharmacokinetics and multi-targeted mechanism in vivo. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:403-431. [PMID: 35282731 DOI: 10.1080/10286020.2022.2045965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Quercetin is a plant-derived polyphenol flavonoid that has been proven to be effective for many diseases. However, the mechanism and in vivo metabolism of quercetin remains to be clarified. It achieves a wide range of biological effects through various metabolites, gut microbiota and its metabolites, systemic mediators produced by inflammation and oxidation, as well as by multiple mechanisms. The all-round disease treatment of quercetin is achieved through the organic combination of multiple channels. Therefore, this article clarifies the metabolic process of quercetin in the body, and explores the new pattern of action of quercetin in the treatment of diseases.
Collapse
Affiliation(s)
- Adili Keranmu
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Li-Bin Pan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Yi-Fang Liu
- Department of Tuberculosis, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai Clinical Research Center of Tuberculosis, Shanghai 200433, China
| | - Siyiti Amuti
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Ürümqi 830011, China
| | - Pei Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Shu-Rong Ma
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hui Xu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Zheng-Wei Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Dong Chen
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fei-Ya Yang
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ming-Shuai Wang
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Nian-Zeng Xing
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
45
|
Yan L, Vaghari-Tabari M, Malakoti F, Moein S, Qujeq D, Yousefi B, Asemi Z. Quercetin: an effective polyphenol in alleviating diabetes and diabetic complications. Crit Rev Food Sci Nutr 2022; 63:9163-9186. [PMID: 35468007 DOI: 10.1080/10408398.2022.2067825] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Various studies, especially in recent years, have shown that quercetin has beneficial therapeutic effects in various human diseases, including diabetes. Quercetin has significant anti-diabetic effects and may be helpful in lowering blood sugar and increasing insulin sensitivity. Quercetin appears to affect many factors and signaling pathways involved in insulin resistance and the pathogenesis of type 2 of diabetes. TNFα, NFKB, AMPK, AKT, and NRF2 are among the factors that are affected by quercetin. In addition, quercetin can be effective in preventing and ameliorating the diabetic complications, including diabetic nephropathy, cardiovascular complications, neuropathy, delayed wound healing, and retinopathy, and affects the key mechanisms involved in the pathogenesis of these complications. These positive effects of quercetin may be related to its anti-inflammatory and anti-oxidant properties. In this article, after a brief review of the pathogenesis of insulin resistance and type 2 diabetes, we will review the latest findings on the anti-diabetic effects of quercetin with a molecular perspective. Then we will review the effects of quercetin on the key mechanisms of pathogenesis of diabetes complications including nephropathy, cardiovascular complications, neuropathy, delayed wound healing, and retinopathy. Finally, clinical trials investigating the effect of quercetin on diabetes and diabetes complications will be reviewed.
Collapse
Affiliation(s)
- Lei Yan
- Clinical Experimental Centre, Xi'an International Medical Center Hospital, Xi'an, China
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Mostafa Vaghari-Tabari
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
46
|
Zhang X, Gérard P. Diet-gut microbiota interactions on cardiovascular disease. Comput Struct Biotechnol J 2022; 20:1528-1540. [PMID: 35422966 PMCID: PMC8983311 DOI: 10.1016/j.csbj.2022.03.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVD) are a group of disorders of the heart and blood vessels and remain the leading cause of morbidity and mortality worldwide. Over the past decades, accumulating studies indicated that the gut microbiota, an indispensable "invisible organ", plays a vital role in human metabolism and disease states including CVD. Among many endogenous and exogenous factors that can impact gut microbial communities, the dietary nutrients emerge as an essential component of host-microbiota relationships that can be involved in CVD susceptibility. In this review, we summarize the major concepts of dietary modulation of the gut microbiota and the chief principles of the involvement of this microbiota in CVD development. We also discuss the mechanisms of diet-microbiota crosstalk that regulate CVD progression, including endotoxemia, inflammation, gut barrier dysfunction and lipid metabolism dysfunction. In addition, we describe how metabolites produced by the microbiota, including trimethylamine-N-oxide (TMAO), secondary bile acids (BAs), short chain fatty acids (SCFAs) as well as aromatic amino acids (AAAs) derived metabolites play a role in CVD pathogenesis. Finally, we present the potential dietary interventions which interacted with gut microbiota as novel preventive and therapeutic strategies for CVD management.
Collapse
Affiliation(s)
- Xufei Zhang
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Philippe Gérard
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
47
|
Amevor FK, Cui Z, Du X, Ning Z, Deng X, Xu D, Shu G, Wu Y, Cao X, Shuo W, Tian Y, Li D, Wang Y, Zhang Y, Du X, Zhu Q, Han X, Zhao X. Supplementation of Dietary Quercetin and Vitamin E Promotes the Intestinal Structure and Immune Barrier Integrity in Aged Breeder Hens. Front Immunol 2022; 13:860889. [PMID: 35386687 PMCID: PMC8977514 DOI: 10.3389/fimmu.2022.860889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
In aged animals, the physiological functions of the gastrointestinal tract (GIT) are reduced. Dietary intervention is necessary to re-activate GIT functions. The objective of this study was to investigate the impacts of dietary combination of quercetin (Q) and vitamin E (VE) on the intestinal structure and barrier integrity in aged breeder chickens. A sum of 400 (65-wks-old) Tianfu breeder hens were randomly allotted into four (4) groups with four (4) replicates, and fed with basal diet; basal diet supplemented with 0.4g/kg of Q; basal diet supplemented with 0.2g/kg of VE; and basal diet supplemented with the combination of Q (0.4 g/kg) and VE (0.2 g/kg) for 14 weeks. At the end of the 14th week, serum and gut segments were collected from eight hens per group for analyses. The results showed that Q+VE exerted synergistic effects on intestinal morphology by promoting villi height and crypt depth (P < 0.05), as well as mitigated the intestinal inflammatory damage of the aged hens, but decreased the concentration of serum D-lactate and diamine oxidase; and increased the levels of secretory immunoglobulin A (sIgA) and Mucin-2 mRNA (P < 0.05). Furthermore, the mRNA expression of intestinal tight junction proteins including occludin, ZO1, and claudin-1 was increased by Q+VE (P < 0.05). Moreover, Q+VE decreased the mRNA expression of the pro-inflammatory genes (TNF-α, IL-6, and IL-1β), and increased the expression of anti-inflammatory genes (IL-10 and IL-4) (P < 0.05). These results were consistent with the mRNA expression of Bax and Bcl-2. In addition, Q+VE protected the small intestinal tract from oxidative damage by increasing the levels of superoxide dismutase, total antioxidant capacity, glutathione peroxidase, catalase (P < 0.05), and the mRNA expression of SOD1 and GPx-2. However, Q+VE decreased malondialdehyde levels in the intestine compared to the control (P < 0.05). These results indicated that dietary Q+VE improved intestinal function in aged breeder hens, by protecting the intestinal structure and integrity. Therefore, Q+VE could act as an anti-aging agent to elevate the physiological functions of the small intestine in chickens.
Collapse
Affiliation(s)
- Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zifan Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xun Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dan Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Youhao Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xueqing Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Wei Shuo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaohui Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xue Han
- Guizhou Institute of Animal Husbandry and Veterinary Medicine, Guiyang, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
48
|
Molinari R, Merendino N, Costantini L. Polyphenols as modulators of pre-established gut microbiota dysbiosis: State-of-the-art. Biofactors 2022; 48:255-273. [PMID: 34397132 PMCID: PMC9291298 DOI: 10.1002/biof.1772] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022]
Abstract
The human intestine contains an intricate ecological community of bacteria, referred as the gut microbiota, which plays a pivotal role in the host homeostasis. Multiple factors could interfere with this delicate balance, thus causing a disruption of the microbiota equilibrium, the so called dysbiosis. Gut microbiota dysbiosis is involved in gastrointestinal and extra-intestinal metabolic diseases, as obesity and diabetes. Polyphenols, present in a broad range of plant foods, are known to have numerous health benefits; however, their beneficial effect on pre-existing dysbiosis is less clear. Indeed, in most of the conducted animal studies the administration of polyphenols or foods rich in polyphenols occurred simultaneously with the induction of the pathology to be examined, then analyzing the preventive action of the polyphenols on the onset of dysbiosis, while very low studies analyzed the modulatory activity of polyphenols on the pre-existing dysbiosis. For this reason, the present review aims to update the current information about the modulation of the pre-established gut microbiota dysbiosis by dietary phenolic compounds in a broad range of disorders in both animal studies and human trials, distinguishing the preventive or treatment approaches in animal studies. The described studies highlight that dietary polyphenols, exerting prebiotic-like effects, can modulate the pre-existing dysbiosis stimulating the growth of beneficial bacteria and inhibiting pathogenic bacteria in both animal models and humans. Anyway, most of the conducted studies are related to obesity and metabolic syndrome, and so further studies are needed to understand this polyphenols' ability in relation to other pathologies.
Collapse
Affiliation(s)
- Romina Molinari
- Department of Ecological and Biological sciences (DEB)Tuscia University, Largo dell'Università sncViterboItaly
| | - Nicolò Merendino
- Department of Ecological and Biological sciences (DEB)Tuscia University, Largo dell'Università sncViterboItaly
| | - Lara Costantini
- Department of Ecological and Biological sciences (DEB)Tuscia University, Largo dell'Università sncViterboItaly
| |
Collapse
|
49
|
Hua F, Zhou P, Bao G, Ling T. Flavonoids in Lu’an GuaPian tea as potential inhibitors of TMA‐lyase in acute myocardial infarction. J Food Biochem 2022; 46:e14110. [DOI: 10.1111/jfbc.14110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Fang Hua
- School of Pharmacy Anhui Xinhua University Hefei China
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization Anhui Agricultural University Hefei China
| | - Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine Anhui University of Chinese Medicine Hefei China
| | - Guan‐hu Bao
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization Anhui Agricultural University Hefei China
| | - Tie‐jun Ling
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization Anhui Agricultural University Hefei China
| |
Collapse
|
50
|
Alia F, Putri M, Anggraeni N, Syamsunarno MRAA. The Potency of Moringa oleifera Lam. as Protective Agent in Cardiac Damage and Vascular Dysfunction. Front Pharmacol 2022; 12:724439. [PMID: 35140601 PMCID: PMC8818947 DOI: 10.3389/fphar.2021.724439] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022] Open
Abstract
Cardiac damage and vascular dysfunction due to underlying diseases, such as hypertension and cardiac thrombosis, or side effects from certain drugs may lead to critical illness conditions and even death. The phytochemical compounds in natural products are being prospected to protect the heart and vascular system from further damage. Moringa genus is a subtropical tree native to Asia and Africa, which includes 13 species; Moringa oleifera Lam. (MO) is the most cultivated for its beneficial uses. MO is also known as the “miracle tree” because it has been used traditionally as a food source and medicine to treat various diseases such as anemia, diabetes, and infectious or cardiovascular diseases. The phytochemical compounds identified in MO with functional activities associated with cardiovascular diseases are N,α-L-rhamnopyranosyl vincosamide, isoquercetin, quercetin, quercetrin, and isothiocyanate. This study aims to investigate the potency of the phytochemical compounds in MO as a protective agent to cardiac damage and vascular dysfunction in the cardiovascular disease model. This is a scoping review by studying publications from the reputed database that assessed the functional activities of MO, which contribute to the improvement of cardiac and vascular dysfunctions. Studies show that the phytochemical compounds, for example, N,α-L-rhamnopyranosyl vincosamide and quercetin, have the molecular function of antioxidant, anti-inflammation, and anti-apoptosis. These lead to improving cardiac contractility and protecting cardiac structural integrity from damage. These compounds also act as natural vasorelaxants and endothelium protective agents. Most of the studies were conducted on in vivo studies; therefore, further studies should be applied in a clinical setting.
Collapse
Affiliation(s)
- Fenty Alia
- Study Program of Biomedical Engineering, School of Electrical Engineering, Telkom University, Bandung, Indonesia
| | - Mirasari Putri
- Department of Biochemistry, Nutrition, and Biomolecular, Faculty of Medicine, Universitas Islam Bandung, Bandung, Indonesia
| | - Neni Anggraeni
- Medical Laboratory Technologist, Bakti Asih School of Analyst, Bandung, Indonesia
| | - Mas Rizky A. A Syamsunarno
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, Indonesia
- *Correspondence: Mas Rizky A. A Syamsunarno,
| |
Collapse
|