1
|
Munguia-Galaviz FJ, Miranda-Diaz AG, Gutierrez-Mercado YK, Ku-Centurion M, Gonzalez-Gonzalez RA, Portilla-de Buen E, Echavarria R. The Sigma-1 Receptor Exacerbates Cardiac Dysfunction Induced by Obstructive Nephropathy: A Role for Sexual Dimorphism. Biomedicines 2024; 12:1908. [PMID: 39200372 PMCID: PMC11351121 DOI: 10.3390/biomedicines12081908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/02/2024] Open
Abstract
The Sigma-1 Receptor (Sigmar1) is a stress-activated chaperone and a promising target for pharmacological modulation due to its ability to induce multiple cellular responses. Yet, it is unknown how Sigmar1 is involved in cardiorenal syndrome type 4 (CRS4) in which renal damage results in cardiac dysfunction. This study explored the role of Sigmar1 and its ligands in a CRS4 model induced by unilateral ureteral obstruction (UUO) in male and female C57BL/6 mice. We evaluated renal and cardiac dysfunction markers, Sigmar1 expression, and cardiac remodeling through time (7, 12, and 21 days) and after chronically administering the Sigmar1 agonists PRE-084 (1 mg/kg/day) and SA4503 (1 mg/kg/day), and the antagonist haloperidol (2 mg/kg/day), for 21 days after UUO using colorimetric analysis, RT-qPCR, histology, immunohistochemistry, enzyme-linked immunosorbent assay, RNA-seq, and bioinformatics. We found that obstructive nephropathy induces Sigmar1 expression in the kidneys and heart, and that Sigmar1 stimulation with its agonists PRE-084 and SA4503 aggravates cardiac dysfunction and remodeling in both sexes. Still, their effects are significantly more potent in males. Our findings reveal essential differences associated with sex in the development of CRS4 and should be considered when contemplating Sigmar1 as a pharmacological target.
Collapse
Affiliation(s)
- Francisco Javier Munguia-Galaviz
- Departamento de Fisiologia, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (F.J.M.-G.); (A.G.M.-D.)
- Division de Ciencias de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzman 49000, Jalisco, Mexico
| | - Alejandra Guillermina Miranda-Diaz
- Departamento de Fisiologia, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (F.J.M.-G.); (A.G.M.-D.)
| | - Yanet Karina Gutierrez-Mercado
- Departamento de Clinicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlan 47620, Jalisco, Mexico;
| | - Marco Ku-Centurion
- Unidad de Biotecnologia Medica y Farmaceutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Jalisco, Mexico;
- Division de Investigacion Quirurgica, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico; (R.A.G.-G.); (E.P.-d.B.)
| | - Ricardo Arturo Gonzalez-Gonzalez
- Division de Investigacion Quirurgica, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico; (R.A.G.-G.); (E.P.-d.B.)
| | - Eliseo Portilla-de Buen
- Division de Investigacion Quirurgica, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico; (R.A.G.-G.); (E.P.-d.B.)
| | - Raquel Echavarria
- Consejo Nacional de Humanidades, Ciencias y Tecnologias (CONAHCYT)—Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
2
|
Serban-Feier LF, Cuiban E, Gogosoiu EB, Stepan E, Radulescu D. Renalase Potential as a Marker and Therapeutic Target in Chronic Kidney Disease. Biomedicines 2024; 12:1715. [PMID: 39200179 PMCID: PMC11351300 DOI: 10.3390/biomedicines12081715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/02/2024] Open
Abstract
Hypertension and cardiovascular disease are prominent features of chronic kidney disease, and they are associated with premature mortality and progression toward end-stage kidney disease. Renalase, an enzyme secreted predominantly by the kidney and identified in 2005, seems to be one of the missing pieces in the puzzle of heart and kidney interaction in chronic kidney disease by lowering blood pressure and reducing the overactivity of sympathetic tone. This review aims to summarize evidence from clinical studies performed on subjects with CKD in order to explore the value of renalase as a marker and/or a therapeutic target in this disease.
Collapse
Affiliation(s)
- Larisa Florina Serban-Feier
- Department of Nephrology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.F.S.-F.); (E.S.); (D.R.)
- Department of Nephrology, Sfantul Ioan Clinical Emergency Hospital, 042122 Bucharest, Romania;
| | - Elena Cuiban
- Department of Nephrology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.F.S.-F.); (E.S.); (D.R.)
- Department of Nephrology, Sfantul Ioan Clinical Emergency Hospital, 042122 Bucharest, Romania;
| | - Elena Bianca Gogosoiu
- Department of Nephrology, Sfantul Ioan Clinical Emergency Hospital, 042122 Bucharest, Romania;
| | - Elena Stepan
- Department of Nephrology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.F.S.-F.); (E.S.); (D.R.)
| | - Daniela Radulescu
- Department of Nephrology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.F.S.-F.); (E.S.); (D.R.)
- Department of Nephrology, Sfantul Ioan Clinical Emergency Hospital, 042122 Bucharest, Romania;
| |
Collapse
|
3
|
Guo S, Tong Y, Li T, Yang K, Gao W, Peng F, Zou X. Endoplasmic Reticulum Stress-Mediated Cell Death in Renal Fibrosis. Biomolecules 2024; 14:919. [PMID: 39199307 PMCID: PMC11352060 DOI: 10.3390/biom14080919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
The endoplasmic reticulum (ER) is indispensable for maintaining normal life activities. Dysregulation of the ER function results in the accumulation of harmful proteins and lipids and the disruption of intracellular signaling pathways, leading to cellular dysfunction and eventual death. Protein misfolding within the ER disrupts its delicate balance, resulting in the accumulation of misfolded or unfolded proteins, a condition known as endoplasmic reticulum stress (ERS). Renal fibrosis, characterized by the aberrant proliferation of fibrotic tissue in the renal interstitium, stands as a grave consequence of numerous kidney disorders, precipitating a gradual decline in renal function. Renal fibrosis is a serious complication of many kidney conditions and is characterized by the overgrowth of fibrotic tissue in the glomerular and tubular interstitium, leading to the progressive failure of renal function. Studies have shown that, during the onset and progression of kidney disease, ERS causes various problems in the kidneys, a process that can lead to kidney fibrosis. This article elucidates the underlying intracellular signaling pathways modulated by ERS, delineating its role in triggering diverse forms of cell death. Additionally, it comprehensively explores a spectrum of potential pharmacological agents and molecular interventions aimed at mitigating ERS, thereby charting novel research avenues and therapeutic advancements in the management of renal fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiangyu Zou
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China; (S.G.); (Y.T.); (T.L.); (K.Y.); (W.G.); (F.P.)
| |
Collapse
|
4
|
Muramatsu H, Akimoto N, Yajima K, Hashimoto M, Katakura M. Suppressing Effects of Docosahexaenoic Acid-Containing Diets on Oxidative Stress and Fibrosis in 5/6 Nephrectomized Rats. KIDNEY360 2023; 4:1690-1701. [PMID: 37222582 PMCID: PMC10758513 DOI: 10.34067/kid.0000000000000152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/04/2023] [Indexed: 05/25/2023]
Abstract
Key Points Increased albuminuria on 5/6 nephrectomized rats, as reported earlier, is attenuated by arachidonic acid–containing and docosahexaenoic acid (DHA)–containing diets. This study established that DHA affects both oxidative stress and fibrosis in the kidney. DHA suppressed the oxidative stress and fibrosis, hence suppressing the progression of renal failure. Background Urinary albumin excretion gradually increases after nephrectomy, which eventually progresses toward renal failure. Our previous study had reported that arachidonic acid (ARA)–containing or docosahexaenoic acid (DHA)–containing diet attenuates the increasing urinary albumin excretion. This study aimed to investigate the effects of ARA-containing or/and DHA-containing diets on oxidative stress and fibrosis that cause kidney injury in 5/6 nephrectomized rats. Methods Sprague–Dawley rats were randomly divided into control group, ARA group, DHA group, and ARA+DHA group. Rats underwent 5/6 kidney removal and were fed ARA-containing or/and DHA-containing diet each five groups continuously for 4 weeks. We collected urine, plasma, and kidney samples 4 weeks after surgery and investigated the effects of ARA-containing and DHA-containing diets on oxidative stress, inflammation, and fibrosis in the kidney. Results Urinary albumin excretion, indoxyl sulfate, reactive oxygen species, TNF-α levels, and fibrosis in the kidney were all increased on nephrectomy; however, they were attenuated after feeding the rats with DHA-containing diet. Conclusion One possible mechanism of preventing chronic renal failure would be the suppression of indoxyl sulfate accumulation, oxidative stress, and kidney fibrosis arising due to nephrectomy. The results collectively suggested that DHA-containing diets can suppress the progression of renal failure.
Collapse
Affiliation(s)
- Hiroki Muramatsu
- Laboratory of Nutritional Physiology, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Japan
| | - Naoe Akimoto
- Laboratory of Nutritional Physiology, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Japan
| | - Katsuhiko Yajima
- Laboratory of Nutritional Physiology, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Japan
| | | | - Masanori Katakura
- Laboratory of Nutritional Physiology, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Japan
| |
Collapse
|
5
|
Stojanovic D, Stojanovic M, Milenkovic J, Velickov A, Ignjatovic A, Milojkovic M. The Multi-Faceted Nature of Renalase for Mitochondrial Dysfunction Improvement in Cardiac Disease. Cells 2023; 12:1607. [PMID: 37371077 DOI: 10.3390/cells12121607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The cellular mechanisms and signaling network that guide the cardiac disease pathophysiology are inextricably intertwined, which explains the current scarcity of effective therapy and to date remains the greatest challenge in state-of-the-art cardiovascular medicine. Accordingly, a novel concept has emerged in which cardiomyocytes are the centerpiece of therapeutic targeting, with dysregulated mitochondria as a critical point of intervention. Mitochondrial dysfunction pluralism seeks a multi-faceted molecule, such as renalase, to simultaneously combat the pathophysiologic heterogeneity of mitochondria-induced cardiomyocyte injury. This review provides some original perspectives and, for the first time, discusses the functionality spectrum of renalase for mitochondrial dysfunction improvement within cardiac disease, including its ability to preserve mitochondrial integrity and dynamics by suppressing mitochondrial ΔΨm collapse; overall ATP content amelioration; a rise of mtDNA copy numbers; upregulation of mitochondrial genes involved in oxidative phosphorylation and cellular vitality promotion; mitochondrial fission inhibition; NAD+ supplementation; sirtuin upregulation; and anti-oxidant, anti-apoptotic, and anti-inflammatory traits. If verified that renalase, due to its multi-faceted nature, behaves like the "guardian of mitochondria" by thwarting pernicious mitochondrial dysfunction effects and exerting therapeutic potential to target mitochondrial abnormalities in failing hearts, it may provide large-scale benefits for cardiac disease patients, regardless of the underlying causes.
Collapse
Affiliation(s)
- Dijana Stojanovic
- Department of Pathophysiology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Miodrag Stojanovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
- Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, 18000 Nis, Serbia
| | - Jelena Milenkovic
- Department of Pathophysiology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Aleksandra Velickov
- Department of Histology and Embryology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Aleksandra Ignjatovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
- Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, 18000 Nis, Serbia
| | - Maja Milojkovic
- Department of Pathophysiology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| |
Collapse
|
6
|
Iyer DR, Arige V, Ananthamohan K, Venkatasubramaniam S, Tokinoya K, Akoi K, Kurtz CL, Sethupathy P, Takekoshi K, Mahapatra NR. Cyclic-AMP response element binding protein (CREB) and microRNA miR-29b regulate renalase gene expression under catecholamine excess conditions. Life Sci 2023:121859. [PMID: 37315838 DOI: 10.1016/j.lfs.2023.121859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
AIMS Renalase, a key mediator of cross-talk between kidneys and sympathetic nervous system, exerts protective roles in various cardiovascular/renal disease states. However, molecular mechanisms underpinning renalase gene expression remain incompletely understood. Here, we sought to identify the key molecular regulators of renalase under basal/catecholamine-excess conditions. MATERIALS AND METHODS Identification of the core promoter domain of renalase was carried out by promoter-reporter assays in N2a/HEK-293/H9c2 cells. Computational analysis of the renalase core promoter domain, over-expression of cyclic-AMP-response-element-binding-protein (CREB)/dominant negative mutant of CREB, ChIP assays were performed to determine the role of CREB in transcription regulation. Role of the miR-29b-mediated-suppression of renalase was validated in-vivo by using locked-nucleic-acid-inhibitors of miR-29. qRT-PCR and Western-blot analyses measured the expression of renalase, CREB, miR-29b and normalization controls in cell lysates/ tissue samples under basal/epinephrine-treated conditions. KEY FINDINGS CREB, a downstream effector in epinephrine signaling, activated renalase expression via its binding to the renalase-promoter. Physiological doses of epinephrine and isoproteronol enhanced renalase-promoter activity and endogenous renalase protein level while propranolol diminished the promoter activity and endogenous renalase protein level indicating a potential role of beta-adrenergic receptor in renalase gene regulation. Multiple animal models (acute exercise, genetically hypertensive/stroke-prone mice/rat) displayed directionally-concordant expression of CREB and renalase. Administration of miR-29b inhibitor in mice upregulated endogenous renalase expression. Moreover, epinephrine treatment down-regulated miR-29b promoter-activity/transcript levels. SIGNIFICANCE This study provides evidence for renalase gene regulation by concomitant transcriptional activation via CREB and post-transcriptional attenuation via miR-29b under excess epinephrine conditions. These findings have implications for disease states with dysregulated catecholamines.
Collapse
Affiliation(s)
- Dhanya R Iyer
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Vikas Arige
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Kalyani Ananthamohan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - S Venkatasubramaniam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Katsuyuki Tokinoya
- Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kai Akoi
- Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - C Lisa Kurtz
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Kazuhiro Takekoshi
- Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
7
|
Wang Y, Bai L, Wen J, Zhang F, Gu S, Wang F, Yin J, Wang N. Cardiac-specific renalase overexpression alleviates CKD-induced pathological cardiac remodeling in mice. Front Cardiovasc Med 2022; 9:1061146. [PMID: 36588579 PMCID: PMC9798007 DOI: 10.3389/fcvm.2022.1061146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction CKD-induced pathological cardiac remodeling is characterized by myocardial hypertrophy and cardiac fibrosis. The available therapeutic options are limited, it is thus urgently needed to identify novel therapeutic targets. Renalase (RNLS) is a newly discovered protein secreted by the kidney and was found beneficial in many renal diseases. But whether it exerts protective effects on cardiac remodeling in CKD remains unclear. Methods RNLS knockout (KO) and wild-type (WT) mice were both used to build CKD models and the adeno-associated virus (AAV9) system was used to overexpress RNLS cardiac specifically. Echocardiography was performed to detect cardiac structural changes every 6 weeks until 18 weeks post-surgery. High throughput sequencing was performed to understand the underlying mechanisms and the effects of RNLS on cardiac fibroblasts were validated in vitro. Results Knockout of RNLS aggravated cardiac remodeling in CKD, while RNLS cardiac-specific overexpression significantly reduced left ventricular hypertrophy and cardiac fibrosis induced by CKD. The following RNA-sequencing analysis revealed that RNLS significantly downregulated the extracellular matrix (ECM) receptor interaction pathway, ECM organization, and several ECM-related proteins. GSEA results showed RNLS significantly downregulated several profibrotic biological processes of cardiac fibroblasts which were upregulated by CKD, including fibroblast proliferation, leukocyte migration, antigen presentation, cytokine production, and epithelial-mesenchymal transition (EMT). In vitro, we validated that RNLS reduced the primary cardiac fibroblast proliferation and α-SMA expression stimulated by TGF-β. Conclusion In this study, we examined the cardioprotective role of RNLS in CKD-induced cardiac remodeling. RNLS may be a potential therapeutic factor that exerts an anti-fibrotic effect in pathological cardiac remodeling.
Collapse
Affiliation(s)
- Yi Wang
- Department of Nephrology, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linnan Bai
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiejun Wen
- Department of Nephrology, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangfei Zhang
- Department of Nephrology, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sijie Gu
- Department of Nephrology, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Wang
- Department of Nephrology, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianyong Yin
- Department of Nephrology, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Jianyong Yin,
| | - Niansong Wang
- Department of Nephrology, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Niansong Wang,
| |
Collapse
|
8
|
Renalase Challenges the Oxidative Stress and Fibroproliferative Response in COVID-19. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4032704. [PMID: 36132227 PMCID: PMC9484957 DOI: 10.1155/2022/4032704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/03/2022] [Accepted: 08/24/2022] [Indexed: 01/08/2023]
Abstract
The hallmark of the coronavirus disease 2019 (COVID-19) pathophysiology was reported to be an inappropriate and uncontrolled immune response, evidenced by activated macrophages, and a robust surge of proinflammatory cytokines, followed by the release of reactive oxygen species, that synergistically result in acute respiratory distress syndrome, fibroproliferative lung response, and possibly even death. For these reasons, all identified risk factors and pathophysiological processes of COVID-19, which are feasible for the prevention and treatment, should be addressed in a timely manner. Accordingly, the evolving anti-inflammatory and antifibrotic therapy for severe COVID-19 and hindering post-COVID-19 fibrosis development should be comprehensively investigated. Experimental evidence indicates that renalase, a novel amino-oxidase, derived from the kidneys, exhibits remarkable organ protection, robustly addressing the most powerful pathways of cell trauma: inflammation and oxidative stress, necrosis, and apoptosis. As demonstrated, systemic renalase administration also significantly alleviates experimentally induced organ fibrosis and prevents adverse remodeling. The recognition that renalase exerts cytoprotection via sirtuins activation, by raising their NAD+ levels, provides a “proof of principle” for renalase being a biologically impressive molecule that favors cell protection and survival and maybe involved in the pathogenesis of COVID-19. This premise supports the rationale that renalase's timely supplementation may prove valuable for pathologic conditions, such as cytokine storm and related acute respiratory distress syndrome. Therefore, the aim for this review is to acknowledge the scientific rationale for renalase employment in the experimental model of COVID-19, targeting the acute phase mechanisms and halting fibrosis progression, based on its proposed molecular pathways. Novel therapies for COVID-19 seek to exploit renalase's multiple and distinctive cytoprotective mechanisms; therefore, this review should be acknowledged as the thorough groundwork for subsequent research of renalase's employment in the experimental models of COVID-19.
Collapse
|
9
|
Stojanovic D, Mitic V, Stojanovic M, Milenkovic J, Ignjatovic A, Milojkovic M. The Scientific Rationale for the Introduction of Renalase in the Concept of Cardiac Fibrosis. Front Cardiovasc Med 2022; 9:845878. [PMID: 35711341 PMCID: PMC9193824 DOI: 10.3389/fcvm.2022.845878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/25/2022] [Indexed: 12/17/2022] Open
Abstract
Cardiac fibrosis represents a redundant accumulation of extracellular matrix proteins, resulting from a cascade of pathophysiological events involved in an ineffective healing response, that eventually leads to heart failure. The pathophysiology of cardiac fibrosis involves various cellular effectors (neutrophils, macrophages, cardiomyocytes, fibroblasts), up-regulation of profibrotic mediators (cytokines, chemokines, and growth factors), and processes where epithelial and endothelial cells undergo mesenchymal transition. Activated fibroblasts and myofibroblasts are the central cellular effectors in cardiac fibrosis, serving as the main source of matrix proteins. The most effective anti-fibrotic strategy will have to incorporate the specific targeting of the diverse cells, pathways, and their cross-talk in the pathogenesis of cardiac fibroproliferation. Additionally, renalase, a novel protein secreted by the kidneys, is identified. Evidence demonstrates its cytoprotective properties, establishing it as a survival element in various organ injuries (heart, kidney, liver, intestines), and as a significant anti-fibrotic factor, owing to its, in vitro and in vivo demonstrated pleiotropy to alleviate inflammation, oxidative stress, apoptosis, necrosis, and fibrotic responses. Effective anti-fibrotic therapy may seek to exploit renalase’s compound effects such as: lessening of the inflammatory cell infiltrate (neutrophils and macrophages), and macrophage polarization (M1 to M2), a decrease in the proinflammatory cytokines/chemokines/reactive species/growth factor release (TNF-α, IL-6, MCP-1, MIP-2, ROS, TGF-β1), an increase in anti-apoptotic factors (Bcl2), and prevention of caspase activation, inflammasome silencing, sirtuins (1 and 3) activation, and mitochondrial protection, suppression of epithelial to mesenchymal transition, a decrease in the pro-fibrotic markers expression (’α-SMA, collagen I, and III, TIMP-1, and fibronectin), and interference with MAPKs signaling network, most likely as a coordinator of pro-fibrotic signals. This review provides the scientific rationale for renalase’s scrutiny regarding cardiac fibrosis, and there is great anticipation that these newly identified pathways are set to progress one step further. Although substantial progress has been made, indicating renalase’s therapeutic promise, more profound experimental work is required to resolve the accurate underlying mechanisms of renalase, concerning cardiac fibrosis, before any potential translation to clinical investigation.
Collapse
Affiliation(s)
- Dijana Stojanovic
- Institute of Pathophysiology, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Valentina Mitic
- Department of Cardiovascular Rehabilitation, Institute for Treatment and Rehabilitation "Niska Banja", Niska Banja, Serbia
| | - Miodrag Stojanovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Niš, Niš, Serbia.,Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, Niš, Serbia
| | - Jelena Milenkovic
- Institute of Pathophysiology, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Aleksandra Ignjatovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Niš, Niš, Serbia.,Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, Niš, Serbia
| | - Maja Milojkovic
- Institute of Pathophysiology, Faculty of Medicine, University of Niš, Niš, Serbia
| |
Collapse
|
10
|
Rocco E, Grimaldi MC, Maino A, Cappannoli L, Pedicino D, Liuzzo G, Biasucci LM. Advances and Challenges in Biomarkers Use for Coronary Microvascular Dysfunction: From Bench to Clinical Practice. J Clin Med 2022; 11:2055. [PMID: 35407662 PMCID: PMC8999821 DOI: 10.3390/jcm11072055] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 02/01/2023] Open
Abstract
Coronary microvascular dysfunction (CMD) is related to a broad variety of clinical scenarios in which cardiac microvasculature is morphologically and functionally affected, and it is associated with impaired responses to vasoactive stimuli. Although the prevalence of CMD involves about half of all patients with chronic coronary syndromes and more than 20% of those with acute coronary syndrome, the diagnosis of CMD is often missed, leading to the underestimation of its clinical importance. The established and validated techniques for the measurement of coronary microvascular function are invasive and expensive. An ideal method to assess endothelial dysfunction should be accurate, non-invasive, cost-effective and accessible. There are varieties of biomarkers available, potentially involved in microvascular disease, but none have been extensively validated in this heterogeneous clinical population. The investigation of potential biomarkers linked to microvascular dysfunction might improve the assessment of the diagnosis, risk stratification, disease progression and therapy response. This review article offers an update about traditional and novel potential biomarkers linked to CMD.
Collapse
Affiliation(s)
- Erica Rocco
- Department of Medical-Surgical Sciences and Biotechnologies, Cardiology Unit, ICOT Hospital, Sapienza University of Rome, 04110 Latina, Italy;
| | - Maria Chiara Grimaldi
- Department of Cardiovascular and Pneumological Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.M.); (L.C.); (D.P.); (G.L.); (L.M.B.)
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Alessandro Maino
- Department of Cardiovascular and Pneumological Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.M.); (L.C.); (D.P.); (G.L.); (L.M.B.)
| | - Luigi Cappannoli
- Department of Cardiovascular and Pneumological Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.M.); (L.C.); (D.P.); (G.L.); (L.M.B.)
| | - Daniela Pedicino
- Department of Cardiovascular and Pneumological Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.M.); (L.C.); (D.P.); (G.L.); (L.M.B.)
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanna Liuzzo
- Department of Cardiovascular and Pneumological Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.M.); (L.C.); (D.P.); (G.L.); (L.M.B.)
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Luigi Marzio Biasucci
- Department of Cardiovascular and Pneumological Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.M.); (L.C.); (D.P.); (G.L.); (L.M.B.)
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
11
|
Czerwińska K, Poręba R, Gać P. Renalase-A new understanding of its enzymatic and non-enzymatic activity and its implications for future research. Clin Exp Pharmacol Physiol 2021; 49:3-9. [PMID: 34545616 DOI: 10.1111/1440-1681.13594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 01/09/2023]
Abstract
Renalase was first described in 2005 and since then it became an object of scientific interest because of its proposed ability to catalyse circulating neurotransmitters and its promising antihypertensive effects. However, further research on the enzymatic activity of renalase did not confirm these initial findings and yielded that renalase serves to oxidize isomeric forms of β-NAD(P)H and recycle them by forming β-NAD(P)+. Moreover, in contrast to initial assumptions, it is indicated that renalase's enzymatic activity is confined to the cell and that extracellular renalase loses its enzymatic properties. These new reports led scientists to question as to whether renalase, as an enzyme, still has the potential to influence various systemic physiological responses (e.g. blood pressure). It was also put into question whether many physiological discoveries published based on the notion that renalase is secreted into the blood and acts by oxidation of catecholamines can still be considered valid. In this article, we attempt to review the literature to confront these doubts and find further possible directions of research on the importance of renalase. Our aim was to evaluate recent reports of non-enzymatic activity for renalase.
Collapse
Affiliation(s)
| | - Rafał Poręba
- Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Paweł Gać
- Department of Hygiene, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
12
|
Ischemic preconditioning protects the heart against ischemia-reperfusion injury in chronic kidney disease in both males and females. Biol Sex Differ 2021; 12:49. [PMID: 34488888 PMCID: PMC8420010 DOI: 10.1186/s13293-021-00392-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Uremic cardiomyopathy is a common cardiovascular complication of chronic kidney disease (CKD) characterized by left ventricular hypertrophy (LVH) and fibrosis enhancing the susceptibility of the heart to acute myocardial infarction. In the early stages of CKD, approximately 60% of patients are women. We aimed to investigate the influence of sex on the severity of uremic cardiomyopathy and the infarct size-limiting effect of ischemic preconditioning (IPRE) in experimental CKD. METHODS CKD was induced by 5/6 nephrectomy in 9-week-old male and female Wistar rats. Two months later, serum and urine laboratory parameters were measured to verify the development of CKD. Transthoracic echocardiography was performed to assess cardiac function and morphology. Cardiomyocyte hypertrophy and fibrosis were measured by histology. Left ventricular expression of A- and B-type natriuretic peptides (ANP and BNP) were measured by qRT-PCR and circulating BNP level was measured by ELISA. In a subgroup of animals, hearts were perfused according to Langendorff and were subjected to 35 min global ischemia and 120 min reperfusion with or without IPRE (3 × 5 min I/R cycles applied before index ischemia). Then infarct size or phosphorylated and total forms of proteins related to the cardioprotective RISK (AKT, ERK1,2) and SAFE (STAT3) pathways were measured by Western blot. RESULTS The severity of CKD was similar in males and females. However, CKD males developed more severe LVH compared to females as assessed by echocardiography. Histology revealed cardiac fibrosis only in males in CKD. LV ANP expression was significantly increased due to CKD in both sexes, however, LV BNP and circulating BNP levels failed to significantly increase in CKD. In both sexes, IPRE significantly decreased the infarct size in both the sham-operated and CKD groups. IPRE significantly increased the phospho-STAT3/STAT3 ratio in sham-operated but not in CKD animals in both sexes. There were no significant differences in phospho-AKT/AKT and phospho-ERK1,2/ERK1,2 ratios between the groups. CONCLUSION The infarct size-limiting effect of IPRE was preserved in both sexes in CKD despite the more severe uremic cardiomyopathy in male CKD rats. Further research is needed to identify crucial molecular mechanisms in the cardioprotective effect of IPRE in CKD.
Collapse
|
13
|
Prieto-Carrasco R, Silva-Palacios A, Rojas-Morales P, Aparicio-Trejo OE, Medina-Reyes EI, Hernández-Cruz EY, Sánchez-Garibay C, Salinas-Lara C, Pavón N, Roldán FJ, Zazueta C, Tapia E, Pedraza-Chaverri J. Unilateral Ureteral Obstruction for 28 Days in Rats Is Not Associated with Changes in Cardiac Function or Alterations in Mitochondrial Function. BIOLOGY 2021; 10:671. [PMID: 34356526 PMCID: PMC8301354 DOI: 10.3390/biology10070671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022]
Abstract
Our work evaluated cardiac function and mitochondrial bioenergetics parameters in hearts from male Wistar rats subjected to the UUO model during 28 days of progression. We measured markers of kidney damage and inflammation in plasma and renal fibrosis by histological analysis and Western blot. Cardiac function was evaluated by echocardiography and proteins involved in cardiac damage by Western blot. Oxygen consumption and transmembrane potential were monitored in cardiac mitochondria using high-resolution respirometry. We also determined the activity of ATP synthase and antioxidant enzymes such as glutathione peroxidase, glutathione reductase, and catalase. Our results show that, although renal dysfunction is established in animals subjected to ureteral obstruction, cardiac function is maintained along with mitochondrial function and antioxidant enzymes activity after 28 days of injury evolution. Our results suggest that renocardiac syndrome might develop but belatedly in obstruction-induced renal damage, opening the opportunity for treatment to prevent this condition.
Collapse
Affiliation(s)
- Rodrigo Prieto-Carrasco
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (R.P.-C.); (P.R.-M.); (O.E.A.-T.); (E.I.M.-R.); (E.Y.H.-C.)
- Department of Cardio-Renal Pathophysiology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico;
| | - Alejandro Silva-Palacios
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico; (A.S.-P.); (C.Z.)
| | - Pedro Rojas-Morales
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (R.P.-C.); (P.R.-M.); (O.E.A.-T.); (E.I.M.-R.); (E.Y.H.-C.)
- Department of Cardio-Renal Pathophysiology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico;
| | - Omar Emiliano Aparicio-Trejo
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (R.P.-C.); (P.R.-M.); (O.E.A.-T.); (E.I.M.-R.); (E.Y.H.-C.)
| | - Estefany Ingrid Medina-Reyes
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (R.P.-C.); (P.R.-M.); (O.E.A.-T.); (E.I.M.-R.); (E.Y.H.-C.)
| | - Estefani Yaquelin Hernández-Cruz
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (R.P.-C.); (P.R.-M.); (O.E.A.-T.); (E.I.M.-R.); (E.Y.H.-C.)
| | - Carlos Sánchez-Garibay
- Department of Neuropathology, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.S.-G.); (C.S.-L.)
| | - Citlaltepetl Salinas-Lara
- Department of Neuropathology, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.S.-G.); (C.S.-L.)
| | - Natalia Pavón
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico;
| | - Francisco Javier Roldán
- Department of External Consultation, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico;
| | - Cecilia Zazueta
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico; (A.S.-P.); (C.Z.)
| | - Edilia Tapia
- Department of Cardio-Renal Pathophysiology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico;
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (R.P.-C.); (P.R.-M.); (O.E.A.-T.); (E.I.M.-R.); (E.Y.H.-C.)
| |
Collapse
|
14
|
Wiśniewska M, Serwin N, Dziedziejko V, Marchelek-Myśliwiec M, Dołęgowska B, Domański L, Ciechanowski K, Safranow K, Gołębiowski T, Pawlik A. The Effect of Bilateral Nephrectomy on Renalase and Catecholamines in Hemodialysis Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126282. [PMID: 34200667 PMCID: PMC8296035 DOI: 10.3390/ijerph18126282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/05/2022]
Abstract
Background/Aims: Renalase is an enzyme with monoamine oxidase activity that metabolizes catecholamines; therefore, it has a significant influence on arterial blood pressure regulation and the development of cardiovascular diseases. Renalase is mainly produced in the kidneys. Nephrectomy and hemodialysis (HD) may alter the production and metabolism of renalase. The aim of this study was to examine the effect of bilateral nephrectomy on renalase levels in the serum and erythrocytes of hemodialysis patients. Methods: This study included 27 hemodialysis patients post-bilateral nephrectomy, 46 hemodialysis patients without nephrectomy but with chronic kidney disease and anuria and 30 healthy subjects with normal kidney function. Renalase levels in the serum and erythrocytes were measured using an ELISA kit. Results: Serum concentrations of renalase were significantly higher in post-bilateral nephrectomy patients when compared with those of control subjects (101.1 ± 65.5 vs. 19.6 ± 5.0; p < 0.01). Additionally, renalase concentrations, calculated per gram of hemoglobin, were significantly higher in patients after bilateral nephrectomy in comparison with those of healthy subjects (994.9 ± 345.5 vs. 697.6 ± 273.4, p = 0.015). There were no statistically significant differences in plasma concentrations of noradrenaline or adrenaline. In contrast, the concentration of dopamine was significantly lower in post-nephrectomy patients when compared with those of healthy subjects (116.8 ± 147.7 vs. 440.9 ± 343.2, p < 0.01). Conclusions: Increased serum levels of renalase in post-bilateral nephrectomy hemodialysis patients are likely related to production in extra-renal organs as a result of changes in the cardiovascular system and hypertension.
Collapse
Affiliation(s)
- Magda Wiśniewska
- Clinical Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland; (M.W.); (M.M.-M.); (L.D.); (K.C.)
| | - Natalia Serwin
- Immunology and Laboratory Medicine, Department of Microbiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (N.S.); (B.D.)
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland; (V.D.); (K.S.)
| | - Małgorzata Marchelek-Myśliwiec
- Clinical Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland; (M.W.); (M.M.-M.); (L.D.); (K.C.)
| | - Barbara Dołęgowska
- Immunology and Laboratory Medicine, Department of Microbiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (N.S.); (B.D.)
| | - Leszek Domański
- Clinical Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland; (M.W.); (M.M.-M.); (L.D.); (K.C.)
| | - Kazimierz Ciechanowski
- Clinical Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland; (M.W.); (M.M.-M.); (L.D.); (K.C.)
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland; (V.D.); (K.S.)
| | - Tomasz Gołębiowski
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Correspondence:
| |
Collapse
|
15
|
Li Y, Wu W, Liu W, Zhou M. Roles and mechanisms of renalase in cardiovascular disease: A promising therapeutic target. Biomed Pharmacother 2020; 131:110712. [PMID: 32916539 DOI: 10.1016/j.biopha.2020.110712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular disease (CVD) is prevalent worldwide and remains a leading cause of death. Although substantial progress has been made in the diagnosis and treatment of CVD, the prognosis remains unsatisfactory. Renalase is a newly discovered cytokine that is synthesized by the kidney and then secreted into blood. Numerous studies have suggested the efficacy of renalase in treating CVD by metabolizing catecholamines in the circulatory system. As a new biomarker of heart disease, renalase is normally recognized as a signalling molecule that activates cytoprotective intracellular signals to lower blood pressure, protect ischaemic heart muscle and promote atherosclerotic plaque stability in CVD, which subsequently improves cardiac function. Due to its important regulatory role in the circulatory system, renalase has gradually become a potential target in the treatment of CVD. This review summarizes the structure, mechanism and function of renalase in CVD, thereby providing preclinical evidence for alternative approaches and new prospects in the development of renalase-related drugs against CVD.
Collapse
Affiliation(s)
- Yue Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China
| | - Weidong Wu
- London Metropolitan University, London, N7 8DB, United Kingdom
| | - Weihong Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China
| | - Mingxue Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China.
| |
Collapse
|
16
|
Tokinoya K, Shirai T, Ota Y, Takemasa T, Takekoshi K. Denervation-induced muscle atrophy suppression in renalase-deficient mice via increased protein synthesis. Physiol Rep 2020; 8:e14475. [PMID: 32741114 PMCID: PMC7395909 DOI: 10.14814/phy2.14475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/17/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Denervation-induced muscle atrophy increases signaling through both protein degradation and synthesis pathways. Renalase is a flavin adenine dinucleotide-dependent amine oxidase that inhibits apoptosis and inflammation and promotes cell survival. This study aimed to elucidate the effect of renalase on denervation-induced muscle atrophy. We used 7-week-old renalase knock-out (KO) mice (a model of denervation-induced muscle atrophy) and wild-type (WT) mice (KO: n = 6, weight = 20-26 g; WT: n = 5, weight = 19-23 g). After their left legs were denervated, these mice were killed 1 week later. KO mice had lighter muscle weight than the WT mice. We observed an increase in molecular signaling through protein degradation pathway as well as oxidative stress in denervated muscles compared with that in sham-operated muscles in both WT and KO mice. Additionally, we also observed the main effect of renalase in WT and KO mice. Mitochondrial oxidative phosphorylation protein content was lower in denervated muscles than in sham-operated muscles in both WT and KO mice. However, a significant difference was noted in the reaction with Akt and p70S6K (components of the protein synthesis pathway) between WT and KO mice. In conclusion, mice with renalase deficiency demonstrated an attenuation of denervation-induced muscle atrophy. This might be related to catecholamines because signaling through the protein synthesis pathway was increased following denervation in renalase KO mice compared with that in WT mice, despite showing no change in signaling through protein degradation pathways.
Collapse
Affiliation(s)
- Katsuyuki Tokinoya
- Doctoral Program in Sports MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
- Research Fellow of the Japan Society for the Promotion of ScienceTokyoJapan
| | - Takanaga Shirai
- Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Yuya Ota
- Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Tohru Takemasa
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| | - Kazuhiro Takekoshi
- Division of Clinical MedicineFaculty of MedicineUniversity of TsukubaTsukubaJapan
| |
Collapse
|
17
|
Stojanovic D, Mitic V, Stojanovic M, Petrovic D, Ignjatovic A, Stefanovic N, Cvetkovic T, Kocic G, Bojanic V, Deljanin Ilic M. The partnership between renalase and ejection fraction as a risk factor for increased cardiac remodeling biomarkers in chronic heart failure patients. Curr Med Res Opin 2020; 36:909-919. [PMID: 32297799 DOI: 10.1080/03007995.2020.1756233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Objective: Heart failure (HF) represents a huge socio-economic burden. It has been demonstrated, experimentally, that renalase, a newly discovered protein, prevents cardiac hypertrophy and adverse remodeling, which is seen in HF. We postulated the following aims: to investigate associations of renalase with biomarkers of cardiac remodeling: galectin-3, soluble suppression of tumorigenicity, (sST2), growth differentiation factor 15 (GDF-15) and syndecan-1, myocardial stretch (BNP) and cardio-renal axis (cystatin C) in HF patients with reduced ejection fraction (HFrEF) and preserved ejection fraction (HFpEF) to determine whether renalase, in combination with left ventricular ejection fraction (LVEF), represents a risk factor for plasma elevation in biomarkers.Methods: We classified HF patients (n = 76) according to LVEF (preserved/reduced), applied a median plasma renalase (113 ng/mL) as a cut-off value (low/high) and created four subgroups of HF patients: HFpEF/low renalase (n = 19), HFrEF/low renalase (n = 19), HFrEF/high renalase (n = 32) and HFpEF/high renalase (n = 6). A control group (n = 35) consisted of healthy volunteers.Results: Plasma concentrations of evaluated biomarkers were determined using an ELISA technique and were highest in HF patients with reduced EF (p < .001, respectively), and renalase's positive correlations were obtained relating to all biomarkers: galectin-3 (r = 0.913; p < .001), sST2 (r = 0.965; p < .001), GDF-15 (r = 0.887; p < .001), syndecan-1 (r = 0.922; p < .001), BNP (r = 0.527; p < .001) and cystatin C (r = 0.844; p < .001) and strong and negative correlation with LVEF (r = -0.456, p < .001). Increased renalase, regardless of the EF (preserved/reduced), was shown to be an independent risk factor for an increase in all evaluated cardiac remodeling biomarkers, p < .001, respectively. However, increased renalase and reduced EF was the only independent risk factor for BNP and cystatin C elevation, p < .001, respectively. Results after multivariable adjustments (age/gender) were identical.Conclusion: When elevated plasma renalase and HF are present, regardless of EF being reduced or preserved, that represents a significant risk factor for increase in cardiac remodeling biomarker plasma concentrations. However, only elevated renalase and reduced EF demonstrated significance as a risk factor for BNP and cystatin C plasma elevation. Renalase may be considered a promising molecule for the improved predictive abilities of conventional biomarkers and is worthy of further investigation.
Collapse
Affiliation(s)
- Dijana Stojanovic
- Faculty of Medicine, Institute of Pathophysiology, University of Nis, Nis, Serbia
| | - Valentina Mitic
- Institute for Treatment and Rehabilitation "Niska Banja", Niška Banja, Serbia
| | - Miodrag Stojanovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Nis, Nis, Serbia
- Institute for Public Health, Nis, Serbia
| | - Dejan Petrovic
- Institute for Treatment and Rehabilitation "Niska Banja", Niška Banja, Serbia
- Department of Internal Medicine, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Aleksandra Ignjatovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Nis, Nis, Serbia
- Institute for Public Health, Nis, Serbia
| | - Nikola Stefanovic
- Department of Pharmacy, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Tatjana Cvetkovic
- Faculty of Medicine, Institute of Biochemistry, University of Nis, Nis, Serbia
| | - Gordana Kocic
- Faculty of Medicine, Institute of Biochemistry, University of Nis, Nis, Serbia
| | - Vladmila Bojanic
- Faculty of Medicine, Institute of Pathophysiology, University of Nis, Nis, Serbia
| | - Marina Deljanin Ilic
- Institute for Treatment and Rehabilitation "Niska Banja", Niška Banja, Serbia
- Department of Internal Medicine, Faculty of Medicine, University of Nis, Nis, Serbia
| |
Collapse
|
18
|
5/6 nephrectomy induces different renal, cardiac and vascular consequences in 129/Sv and C57BL/6JRj mice. Sci Rep 2020; 10:1524. [PMID: 32001792 PMCID: PMC6992698 DOI: 10.1038/s41598-020-58393-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/10/2020] [Indexed: 02/08/2023] Open
Abstract
Experimental models of cardiovascular diseases largely depend on the genetic background. Subtotal 5/6 nephrectomy (5/6 Nx) is the most frequently used model of chronic kidney disease (CKD) in rodents. However, in mice, cardiovascular consequences of 5/6 Nx are rarely reported in details and comparative results between strains are scarce. The present study detailed and compared the outcomes of 5/6 Nx in the 2 main strains of mice used in cardiovascular and kidney research, 129/Sv and C57BL/6JRj. Twelve weeks after 5/6 Nx, CKD was demonstrated by a significant increase in plasma creatinine in both 129/Sv and C57BL/6JRj male mice. Polyuria and kidney histological lesions were more pronounced in 129/Sv than in C57BL/6JRj mice. Increase in albuminuria was significant in 129/Sv but not in C57BL/6JRj mice. Both strains exhibited an increase in systolic blood pressure after 8 weeks associated with decreases in cardiac systolic and diastolic function. Heart weight increased significantly only in 129/Sv mice. Endothelium-dependent mesenteric artery relaxation to acetylcholine was altered after 5/6 Nx in C57BL/6JRj mice. Marked reduction of endothelium-dependent vasodilation to increased intraluminal flow was demonstrated in both strains after 5/6 Nx. Cardiovascular and kidney consequences of 5/6 Nx were more pronounced in 129/Sv than in C57BL/6JRj mice.
Collapse
|
19
|
Yin J, Liu X, Zhao T, Liang R, Wu R, Zhang F, Kong Y, Liu L, Xing T, Wang N, Zhao Q, Wang F. A protective role of renalase in diabetic nephropathy. Clin Sci (Lond) 2020; 134:75-85. [PMID: 31899483 DOI: 10.1042/cs20190995] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/12/2019] [Accepted: 01/03/2020] [Indexed: 01/09/2023]
Abstract
Renalase, a recently discovered secreted flavoprotein, exerts anti-apoptotic and anti-inflammatory effects against renal injury in acute and chronic animal models. However, whether Renalase elicits similar effects in the development of diabetic nephropathy (DN) remains unclear. The studies presented here tested the hypothesis that Renalase may play a key role in the development of DN and may have therapeutic potential for DN. Renalase expression was measured in human kidney biopsies with DN and in kidneys of db/db mice. The role of Renalase in the development of DN was examined using a genetically engineered mouse model: Renalase knockout mice with db/db background. The renoprotective effects of Renalase in DN was evaluated in db/db mice with Renalase overexpression. In addition, the effects of Renalase on high glucose-induced mesangial cells were investigated. Renalase was down-regulated in human diabetic kidneys and in kidneys of db/db mice compared with healthy controls or db/m mice. Renalase homozygous knockout increased arterial blood pressure significantly in db/db mice while heterozygous knockout did not. Renalase heterozygous knockout resulted in elevated albuminuria and increased renal mesangial expansion in db/db mice. Mesangial hypertrophy, renal inflammation, and pathological injury in diabetic Renalase heterozygous knockout mice were significantly exacerbated compared with wild-type littermates. Moreover, Renalase overexpression significantly ameliorated renal injury in db/db mice. Mechanistically, Renalase attenuated high glucose-induced profibrotic gene expression and p21 expression through inhibiting extracellular regulated protein kinases (ERK1/2). The present study suggested that Renalase protected against the progression of DN and might be a novel therapeutic target for the treatment of DN.
Collapse
Affiliation(s)
- Jianyong Yin
- Department of Nephrology, Jiangsu University Affiliated Shanghai Eigth People's Hospital, Shanghai 200233, China
| | - Xuanchen Liu
- Department of Nephrology, Jiangsu University Affiliated Shanghai Eigth People's Hospital, Shanghai 200233, China
| | - Ting Zhao
- Department of Nephrology, Jiangsu University Affiliated Shanghai Eigth People's Hospital, Shanghai 200233, China
| | - Rulian Liang
- Department of Nephrology, Jiangsu University Affiliated Shanghai Eigth People's Hospital, Shanghai 200233, China
| | - Rui Wu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Fangfei Zhang
- Department of Nephrology, Jiangsu University Affiliated Shanghai Eigth People's Hospital, Shanghai 200233, China
| | - Yiwei Kong
- Biomedical School, Medical College of Wisconsin, Milwaukee, WI 53226, U.S.A
| | - Limei Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Tao Xing
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Niansong Wang
- Department of Nephrology, Jiangsu University Affiliated Shanghai Eigth People's Hospital, Shanghai 200233, China
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Qing Zhao
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Feng Wang
- Department of Nephrology, Jiangsu University Affiliated Shanghai Eigth People's Hospital, Shanghai 200233, China
| |
Collapse
|
20
|
Association of Plasma Renalase and Left Ventricle Mass Index in Heart Failure Patients Stratified to the Category of the Ejection Fraction: A Pilot Study. DISEASE MARKERS 2019; 2019:7265160. [PMID: 31737132 PMCID: PMC6815612 DOI: 10.1155/2019/7265160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/28/2019] [Indexed: 12/28/2022]
Abstract
Heart failure represents a growing health problem, with increasing morbidity and mortality globally. According to the mechanisms involved in the pathogenesis of heart failure, many biomarkers have been proposed for the timely diagnosis and prognostication of patients with heart failure, but other than natriuretic peptides, none of them has gained enough clinical significance. Renalase, a new protein derived from kidneys was demonstrated to metabolize catecholamines and to have a cardioprotective role. The aim of the study was to determine whether renalase and brain natriuretic peptide (BNP) concentration could be used to differentiate heart failure patients stratified to the category of the ejection fraction and whether plasma renalase could be used as a biomarker for left ventricle hypertrophy in all subgroups of heart failure patients. We included patients diagnosed with heart failure and stratified them to the three subgroups according to the ejection fraction. Regarding echocardiographic parameters, HFmrEF had an intermediate profile in between HFrEF and HFpEF, with statistical significance in most evaluated parameters. BNP concentration was significantly different in all three subgroups (p < 0.001), and renalase was statistically higher in HFrEF (p = 0.007) compared to the HFmrEF and HFpEF, where its results were similar, without statistical significance. Renalase plasma concentration was demonstrated to be highly and positively associated with left ventricle mass index in HFrEF (p = 0.029), as well as increased plasma concentration of BNP (p = 0.006). In the HFmrEF group of patients, body mass index was positively associated with LVMI (p = 0.05), while in the patients with HFpEF, diabetes mellitus was demonstrated to have a positive association with LVMI (p = 0.043). These findings suggest that renalase concentration may be measured in order to differentiate patients with reduced ejection fraction. Plasma renalase concentrations positively correlated with left ventricle hypertrophy in patients with reduced ejection fraction, being strongly associated with increased left ventricular mass index.
Collapse
|
21
|
Abstract
BACKGROUND Antithrombin III (ATIII), the predominant coagulation factor inhibitor, possesses anti-inflammatory properties and exerts renoprotective effects on renal ischemia-reperfusion injury in animal models. However, the ATIII's protective effects of ATIII on acute kidney injury (AKI) following severe acute pancreatitis (SAP) need to be confirmed. METHODS We assessed the association between ATIII activities and the incidence of AKI in patients with SAP, and explored therapeutic effects and potential mechanisms of ATIII on kidney injury in sodium taurocholate induced SAP rat model. Rats were intravenously injected with ATIII (500 μg/kg) before or after the induction of SAP. RESULTS The results demonstrated ATIII did not attenuate pancreatic injury, but significantly ameliorate renal dysfunction and renal histological injury. ATIII administration alleviated renal inflammation response, oxidative stress, and cell apoptosis. Moreover, ATIII attenuated tumor necrosis factor α (TNFα)-stimulated intercellular cell adhesion molecule 1(ICAM-1) and monocyte chemotactic protein 1 (MCP-1) upregulation in cultured renal tubular epithelial cells. CONCLUSION ATIII appears to ameliorate SAP-induced kidney injury by inhibiting inflammation, oxidative stress, and apoptosis. ATIII supplementation may have a potential prophylactic and therapeutic effect on SAP induced AKI.
Collapse
|
22
|
Bian X, Su X, Wang Y, Zhao G, Zhang B, Li D. Periostin contributes to renal and cardiac dysfunction in rats with chronic kidney disease: Reduction of PPARα. Biochimie 2019; 160:172-182. [DOI: 10.1016/j.biochi.2019.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
|
23
|
Renalase attenuates mitochondrial fission in cisplatin-induced acute kidney injury via modulating sirtuin-3. Life Sci 2019; 222:78-87. [DOI: 10.1016/j.lfs.2019.02.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/04/2019] [Accepted: 02/20/2019] [Indexed: 02/01/2023]
|
24
|
Jamil Z, Shahid S, Baig E, Ahmad R, Subhani F, Fatima SS. Serum anti mullerian hormone and renalase levels in predicting the risk of preeclampsia. Taiwan J Obstet Gynecol 2019; 58:188-191. [PMID: 30910136 DOI: 10.1016/j.tjog.2019.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2018] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE The aim of the study was to explore the association of serum AMH and Renalase with the risk of preeclampsia thereby assessing them as screening tools, reducing the risk of gravid consequences of preeclampsia. MATERIALS AND METHODS This cross-sectional study recruited n = 95 pregnant women between 14 and 32 gestational weeks. They were categorized as a) women with gestational hypertension (n = 45); b) women with pre-eclampsia (n = 20) and c) normotensive pregnant women (n = 30) according to the ACOG criteria. Anthropometrics data and blood and urine samples were collected. AMH and Renalase levels were measured by ELISA assay. RESULTS The mean age of study cohort was 27.3 ± 6.2 year and weight was 65.1 ± 14.1 kg. Blood pressures were significantly higher in pre-eclamptic patients versus both the gestational hypertensive females and controls (p < 0.05). AMH was found to be significantly higher in controls but no difference was observed between gestational hypertensive and pre-eclamptic patients. No difference was seen for serum Renalase among the three groups (p > 0.05). AMH showed a negative weak correlation with diastolic blood pressure (r = -0.272; p = 0.008) that remained significant even after adjustment (r = -0.236; p = 0.023) whereas Renalase did not show any difference (r = -0.051; p > 0.05). Females with low levels of AMH were 1.07 times at risk of developing hypertension even after adjustment for age and BMI (p < 0.05). CONCLUSION Low AMH levels may lead to hypertension in pregnancy suggesting a role in detecting vascular diseases as well as its effect on ovarian aging. However, further research is required to establish a causal relationship.
Collapse
Affiliation(s)
- Zehra Jamil
- Department of Biological & Biomedical Sciences, Aga Khan University, Pakistan
| | - Sana Shahid
- Department of Physiology, Sir Syed College of Medical Sciences for Girls, Pakistan
| | - Erum Baig
- Medical Students, Aga Khan University, Pakistan
| | - Rida Ahmad
- Medical Students, Aga Khan University, Pakistan
| | | | - Syeda Sadia Fatima
- Department of Biological & Biomedical Sciences, Aga Khan University, Pakistan.
| |
Collapse
|
25
|
Safdar B, Guo X, Johnson C, D'Onofrio G, Dziura J, Sinusas AJ, Testani J, Rao V, Desir G. Elevated renalase levels in patients with acute coronary microvascular dysfunction - A possible biomarker for ischemia. Int J Cardiol 2019; 279:155-161. [PMID: 30630613 PMCID: PMC6482834 DOI: 10.1016/j.ijcard.2018.12.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022]
Abstract
AIMS We explored the relationship between inflammation, renalase an anti-inflammatory protein, and acute chest pain with coronary microvascular dysfunction (CMD). METHODS AND RESULTS We used cardiac Rb-82 PET/CT imaging to diagnose coronary artery disease (CAD/CALC) (defect or coronary calcification) and CMD (depressed coronary flow reserve without CAD) in patients with chest pain in an emergency department (ED). Blood samples were collected pre-imaging within 24 h of ED presentation and were analyzed for renalase and inflammatory markers including C-reactive protein, interleukins, interferon gamma, tumor necrosis factor, vascular endothelial growth factor, and metalloproteinases. Exclusions were age ≤30 years, myocardial infarction, hemodynamic instability, hypertensive crisis, heart failure or dialysis. Between 6/2014 and 11/2015, 80 patients undergoing PET/CT provided blood and were categorized as normal (18%), CAD/CALC (27%) and CMD (55%). Median renalase values were highest in patients with CMD (5503 ng/ml; IQR 3070) compared to patients with normal flows (4266 ng/ml; IQR 1503; p = 0.02) or CAD/CALC (4069 ng/ml IQR 1850; p = 0.004). CMD patients had similar median values for inflammatory markers as normal patients (p > 0.05). Renalase remained an independent predictor of CMD (OR 1.34; 95% CI = 1.1-1.7, per 1000 ng/ml) after adjustment for smoking, family history, obesity and Framingham risk score. In a model for CMD diagnosis with Framingham risk score, typical angina history and CRP, renalase improved discrimination from C-statistic = 0.60 (95% CI 0.47, 0.73) to 0.70 (95% CI, 0.59-0.82). CONCLUSION We found elevated renalase in response to ischemia from acute CMD. Its role as a biomarker needs validation in larger trials.
Collapse
Affiliation(s)
- Basmah Safdar
- Department of Emergency Medicine, New Haven, CT, United States of America.
| | - Xiaojia Guo
- Department of Internal Medicine (Section of Nephrology), New Haven, CT, United States of America
| | - Caitlin Johnson
- Department of Emergency Medicine, New Haven, CT, United States of America
| | - Gail D'Onofrio
- Department of Emergency Medicine, New Haven, CT, United States of America
| | - James Dziura
- Yale Center for Analytical Sciences, New Haven, CT, United States of America
| | - Albert J Sinusas
- Department of Internal Medicine (Section of Cardiology), New Haven, CT, United States of America
| | - Jeffrey Testani
- Department of Internal Medicine (Section of Cardiology), New Haven, CT, United States of America
| | - Veena Rao
- Department of Internal Medicine (Section of Nephrology), New Haven, CT, United States of America; Department of Internal Medicine (Section of Cardiology), New Haven, CT, United States of America
| | - Gary Desir
- Department of Internal Medicine (Section of Nephrology), New Haven, CT, United States of America
| |
Collapse
|
26
|
Cintra R, Moura FA, Carvalho LSFD, Barreto J, Tambascia M, Pecoits-Filho R, Sposito AC. Inhibition of the sodium-glucose co-transporter 2 in the elderly: clinical and mechanistic insights into safety and efficacy. ACTA ACUST UNITED AC 2019; 65:70-86. [PMID: 30758423 DOI: 10.1590/1806-9282.65.1.70] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/26/2018] [Indexed: 12/16/2022]
Abstract
The prevalence of type 2 diabetes mellitus (T2DM) in the elderly grew sharply over the last decade. Reduced insulin sensitivity and secretory capacity, weight gain, sarcopenia, and elevated adiposity are all common metabolic and body changes in the aging population that favor an increased risk of hypoglycemia, frailty syndrome, falls, and cognitive dysfunction. First line antidiabetic therapy is frequently not safe in older individuals because of its high risk of hypoglycemia and prevalent co-morbid diseases, such as chronic kidney disease, osteoporosis, cardiovascular disease, and obesity. Sodium-glucose cotransporter 2 inhibitor (SGLT2i) is a new class of antidiabetic therapy that inhibits glucose and sodium reabsorption on renal proximal convoluted tubule. Its effect is well demonstrated in various clinical scenarios in the younger population. This review and metanalysis describe particularities of the SGLT2i on the elderly, with mechanistic insights of the potential benefit and remaining challenges about the use of these drugs in this important age group. Further, we will present a meta-analysis of the main effects of SGLT2i reported in post-hoc studies in which the median age of the subgroups analyzed was over 60 years. Despite the absence of specific clinical trials for this population, our findings suggest that SGLT2i therapy on older individuals is effective to lower glucose and maintain its effect on systolic blood pressure and body weight.
Collapse
Affiliation(s)
- Riobaldo Cintra
- Laboratory of Atherosclerosis and Vascular Biology, Unicamp, Campinas, SP, Brasil
| | - Filipe A Moura
- Laboratory of Atherosclerosis and Vascular Biology, Unicamp, Campinas, SP, Brasil
| | - Luis Sergio F de Carvalho
- Laboratory of Atherosclerosis and Vascular Biology, Unicamp, Campinas, SP, Brasil.,Cardiology Division, State University of Campinas (Unicamp), Campinas, SP, Brasil
| | - Joaquim Barreto
- Laboratory of Atherosclerosis and Vascular Biology, Unicamp, Campinas, SP, Brasil
| | - Marcos Tambascia
- Endocrinology Division, State University of Campinas (Unicamp), Campinas, SP, Brasil
| | | | - Andrei C Sposito
- Laboratory of Atherosclerosis and Vascular Biology, Unicamp, Campinas, SP, Brasil.,Cardiology Division, State University of Campinas (Unicamp), Campinas, SP, Brasil
| |
Collapse
|
27
|
Sárközy M, Kovács ZZA, Kovács MG, Gáspár R, Szűcs G, Dux L. Mechanisms and Modulation of Oxidative/Nitrative Stress in Type 4 Cardio-Renal Syndrome and Renal Sarcopenia. Front Physiol 2018; 9:1648. [PMID: 30534079 PMCID: PMC6275322 DOI: 10.3389/fphys.2018.01648] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is a public health problem and a recognized risk factor for cardiovascular diseases (CVD). CKD could amplify the progression of chronic heart failure leading to the development of type 4 cardio-renal syndrome (T4CRS). The severity and persistence of heart failure are strongly associated with mortality risk in T4CRS. CKD is also a catabolic state leading to renal sarcopenia which is characterized by the loss of skeletal muscle strength and physical function. Renal sarcopenia also promotes the development of CVD and increases the mortality in CKD patients. In turn, heart failure developed in T4CRS could result in chronic muscle hypoperfusion and metabolic disturbances leading to or aggravating the renal sarcopenia. The interplay of multiple factors (e.g., comorbidities, over-activated renin-angiotensin-aldosterone system [RAAS], sympathetic nervous system [SNS], oxidative/nitrative stress, inflammation, etc.) may result in the progression of T4CRS and renal sarcopenia. Among these factors, oxidative/nitrative stress plays a crucial role in the complex pathomechanism and interrelationship between T4CRS and renal sarcopenia. In the heart and skeletal muscle, mitochondria, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, uncoupled nitric oxide synthase (NOS) and xanthine oxidase are major ROS sources producing superoxide anion (O2·−) and/or hydrogen peroxide (H2O2). O2·− reacts with nitric oxide (NO) forming peroxynitrite (ONOO−) which is a highly reactive nitrogen species (RNS). High levels of ROS/RNS cause lipid peroxidation, DNA damage, interacts with both DNA repair enzymes and transcription factors, leads to the oxidation/nitration of key proteins involved in contractility, calcium handling, metabolism, antioxidant defense mechanisms, etc. It also activates the inflammatory response, stress signals inducing cardiac hypertrophy, fibrosis, or cell death via different mechanisms (e.g., apoptosis, necrosis) and dysregulates autophagy. Therefore, the thorough understanding of the mechanisms which lead to perturbations in oxidative/nitrative metabolism and its relationship with pro-inflammatory, hypertrophic, fibrotic, cell death and other pathways would help to develop strategies to counteract systemic and tissue oxidative/nitrative stress in T4CRS and renal sarcopenia. In this review, we also focus on the effects of some well-known and novel pharmaceuticals, nutraceuticals, and physical exercise on cardiac and skeletal muscle oxidative/nitrative stress in T4CRS and renal sarcopenia.
Collapse
Affiliation(s)
- Márta Sárközy
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsuzsanna Z A Kovács
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Mónika G Kovács
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Renáta Gáspár
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gergő Szűcs
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Dux
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
28
|
Ham O, Jin W, Lei L, Huang HH, Tsuji K, Huang M, Roh J, Rosenzweig A, Lu HAJ. Pathological cardiac remodeling occurs early in CKD mice from unilateral urinary obstruction, and is attenuated by Enalapril. Sci Rep 2018; 8:16087. [PMID: 30382174 PMCID: PMC6208335 DOI: 10.1038/s41598-018-34216-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 10/04/2018] [Indexed: 12/27/2022] Open
Abstract
Cardiovascular disease constitutes the leading cause of mortality in patients with chronic kidney disease (CKD) and end-stage renal disease. Despite increasing recognition of a close interplay between kidney dysfunction and cardiovascular disease, termed cardiorenal syndrome (CRS), the underlying mechanisms of CRS remain poorly understood. Here we report the development of pathological cardiac hypertrophy and fibrosis in early stage non-uremic CKD. Moderate kidney failure was induced three weeks after unilateral urinary obstruction (UUO) in mice. We observed pathological cardiac hypertrophy and increased fibrosis in UUO-induced CKD (UUO/CKD) animals. Further analysis indicated that this cardiac fibrosis was associated with increased expression of transforming growth factor β (TGF-β) along with significant upregulation of Smad 2/3 signaling in the heart. Moreover early treatment of UUO/CKD animals with an angiotensin-converting-enzyme inhibitor (ACE I), Enalapril, significantly attenuated cardiac fibrosis. Enalapril antagonized activation of the TGF-β signaling pathway in the UUO/CKD heart. In summary our study demonstrates the presence of pathological cardiac hypertrophy and fibrosis in mice early in UUO-induced CKD, in association with early activation of the TGF-β/Smad signaling pathway. We also demonstrate the beneficial effect of ACE I in alleviating this early fibrogenic process in the heart in UUO/CKD animals.
Collapse
Affiliation(s)
- Onju Ham
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - William Jin
- College of Arts & Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Lei Lei
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hui Hui Huang
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Kenji Tsuji
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Ming Huang
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jason Roh
- Corrigan Minehan Heart Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Anthony Rosenzweig
- Corrigan Minehan Heart Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Hua A Jenny Lu
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
29
|
Investigation of Renalase gene rs2576178 polymorphism in patients with coronary artery disease. Biosci Rep 2018; 38:BSR20180839. [PMID: 30181378 PMCID: PMC6137248 DOI: 10.1042/bsr20180839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/27/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
Renalase gene rs2576178 polymorphism has been demonstrated to be a risk factor of ischemic stroke, essential hypertension, and end-stage renal disease, but the association Renalase with risk of coronary artery disease (CAD) has been less reported. Therefore, we detected Renalase rs2576178 polymorphism in 449 CAD patients and 507 healthy controls using matrix-assisted laser-desorption ionization (MALDI)/time of flight (TOF)-mass spectrometry (MS). It was found that GG genotype or G allele of rs2576178 polymorphism was associated with the risk of CAD. Stratified analysis indicated that Renalase polymorphism significantly increased the risk of CAD in females, smokers, and alcoholics. However, there was no significant association between different genotypes of rs2576178 polymorphism and clinical parameters. In summary, Renalase rs2576178 polymorphism is associated with increased risk of CAD, but this finding should be confirmed by larger studies with more diverse ethnic populations.
Collapse
|
30
|
Influence of acute exercise on renalase and its regulatory mechanism. Life Sci 2018; 210:235-242. [PMID: 30056018 DOI: 10.1016/j.lfs.2018.07.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/13/2018] [Accepted: 07/21/2018] [Indexed: 01/19/2023]
Abstract
AIMS Renalase expression in the kidneys and liver is regulated by nuclear factor (NF)-κB, Sp1, and hypoxia-inducible factor (HIF)-1α. The dynamics of renalase expression in acute exercise, and its mechanism and physiological effects are unclear. We evaluated the effect of different exercise intensities on renalase expression and examined its mechanism and physiological effects. MAIN METHODS 21 male Wistar rats ran for 30 min on a treadmill after resting for 15 min. The sedentary group rested on the treadmill while the exercise group ran for 30 min at 10 or 30 m/min. Skeletal muscles, the kidney, heart, liver, and blood samples were collected after exercise. The expression of renalase and phosphate IkB-α and Akt was measured by western blotting, while HIF-1α, Sp1, MuRF-1, and MAFbx were measured in the skeletal muscle by real-time RT-PCR. KEY FINDINGS Renalase expression in skeletal muscles increased after acute exercise, while its expression in the kidneys, heart, and liver decreased. NF-κB regulated renalase expression in the plantaris muscle and that of HIF-1α in the soleus muscle. Phosphate Akt in the plantaris muscle significantly increased in the 30 m/min group compared with that in the sedentary group. MuRF-1 in the plantaris did not change between these groups. SIGNIFICANCE Renalase expression in skeletal muscles increased after acute exercise but decreased in other tissues. This increase may be a response to exercise-induced oxidative stress. Furthermore, NF-κB in the plantaris muscle may mainly regulate renalase expression, and support a relationship with the cell protective effects of renalase.
Collapse
|
31
|
Wu R, Liu X, Yin J, Wu H, Cai X, Wang N, Qian Y, Wang F. IL-6 receptor blockade ameliorates diabetic nephropathy via inhibiting inflammasome in mice. Metabolism 2018; 83:18-24. [PMID: 29336982 DOI: 10.1016/j.metabol.2018.01.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/24/2017] [Accepted: 01/08/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Interleukin 6 (IL-6) has been identified as a key mediator in inflammation, immune responses and glucose metabolism. In this study, we assessed the effects of an IL-6 receptor antibody on diabetic nephropathy in a mouse model of type 2 diabetes mellitus. METHODS Twelve week old male db/db mice were treated with Tocilizumab (an IL-6 receptor antibody), normal IgG1 control antibody, insulin or normal saline for 12 weeks. Renal injury, inflammation and insulin resistance were assessed. RESULTS Db/db mice treated with Tocilizumab exhibited reduced proteinuria and glomerular mesangial matrix accumulation compared to db/db + IgG controls. Additionally, Tocilizumab suppressed inflammatory response, oxidative stress and the IL-6 signaling pathway in the diabetic kidneys. It is noteworthy that blockade of IL-6 receptor blunted the activation of NLRP3 inflammasome partly through inhibition of IL-17A. Furthermore, insulin resistance assessed by glucose tolerance test, was ameliorated by Tocilizumab treatment. CONCLUSIONS The protective effects of an IL-6 receptor blockade against diabetic renal injury may be due to decreased insulin resistance and inhibition of the inflammasome.
Collapse
Affiliation(s)
- Rui Wu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xuanchen Liu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Jiangsu University Affiliated Shanghai Eighth People's Hospital, Shanghai 200233, China
| | - Jianyong Yin
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Huijuan Wu
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiulei Cai
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Youcun Qian
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Feng Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Jiangsu University Affiliated Shanghai Eighth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
32
|
Synergistic effect of renalase and chronic kidney disease on endothelin-1 in patients with coronary artery disease ‒ a cross-sectional study. Sci Rep 2018; 8:7378. [PMID: 29743680 PMCID: PMC5943599 DOI: 10.1038/s41598-018-25763-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/27/2018] [Indexed: 12/30/2022] Open
Abstract
Endothelin-1 (ET-1) is associated with endothelial dysfunction and vasoconstriction. Increased circulating ET-1 levels are associated with long-term cardiovascular mortality. Renalase, released from kidney, metabolizes catecholamines and regulates blood pressure. An increase in circulating renalase levels has been reported in patients with chronic kidney disease (CKD) and is associated with coronary artery disease (CAD). We hypothesized the existence of a synergistic effect of serum renalase levels and CKD on ET-1 levels in patients with CAD. We evaluated 342 non-diabetic patients with established CAD. ET-1 and renalase levels were measured in all patients after an overnight fast. Patients with CKD had higher ET-1 (1.95 ± 0.77 vs. 1.62 ± 0.76 pg/ml, P < 0.001) and renalase levels (46.8 ± 17.1 vs. 33.9 ± 9.9 ng/ml, P < 0.001) than patients without CKD. Patients with both CKD and high renalase levels (>the median of 36.2 ng/ml) exhibited the highest serum ET-1 (P value for the trend <0.001). According to multivariate linear regression analysis, the combination of high serum renalase levels with CKD was a significant risk factor for increased serum ET-1 levels (regression coefficient = 0.297, 95% confidence interval = 0.063‒0.531, P = 0.013). In conclusion, our data suggest a synergistic effect of high serum renalase levels and CKD on increases in ET-1 levels in patients with established CAD.
Collapse
|
33
|
Suematsu Y, Jing W, Nunes A, Kashyap ML, Khazaeli M, Vaziri ND, Moradi H. LCZ696 (Sacubitril/Valsartan), an Angiotensin-Receptor Neprilysin Inhibitor, Attenuates Cardiac Hypertrophy, Fibrosis, and Vasculopathy in a Rat Model of Chronic Kidney Disease. J Card Fail 2018; 24:266-275. [PMID: 29325796 DOI: 10.1016/j.cardfail.2017.12.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/11/2017] [Accepted: 12/21/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) is associated with cardiac hypertrophy, fibrosis, and increased risk of cardiovascular mortality. LCZ696 (sacubitril/valsartan) is a promising agent that has shown significant potential in treatment of heart failure. We hypothesized that LCZ696 is more effective than valsartan alone in the treatment of cardiovascular abnormalities associated with experimental CKD. METHODS AND RESULTS Male Sprague-Dawley rats underwent 5/6 nephrectomy and were subsequently randomized to no treatment (CKD), 30 mg/kg valsartan (VAL), or 60 mg/kg LCZ696 (LCZ). After 8 weeks, cardiovascular parameters, including markers of inflammation, oxidative stress, mitochondrial abundance/function, hypertrophy, and fibrosis, were measured. Treatment with LCZ resulted in significant improvements in the heart-body weight ratio and serum concentrations of N-terminal pro-B-type natriuretic peptide and fibroblast growth factor 23 along with improvement of kidney function. In addition, LCZ ameliorated aortic fibrosis and cardiac hypertrophy and fibrosis, reduced markers of cardiac oxidative stress and inflammation, and improved indicators of mitochondrial mass/function. Although VAL also improved some of these indices, treatment with LCZ was more effective than VAL alone. CONCLUSIONS CKD-associated cardiovascular abnormalities, including myocardial hypertrophy, fibrosis, inflammation, oxidative stress, and mitochondrial depletion/dysfunction, were more effectively attenuated by LCZ treatment than by VAL alone.
Collapse
Affiliation(s)
- Yasunori Suematsu
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California; Nephrology Section, Long Beach VA Healthcare System, California
| | - Wanghui Jing
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California; School of Pharmacy, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Ane Nunes
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California
| | - Moti L Kashyap
- Cardiology Section, Long Beach VA Healthcare System, California
| | - Mahyar Khazaeli
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California.
| | - Hamid Moradi
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California; Nephrology Section, Long Beach VA Healthcare System, California.
| |
Collapse
|
34
|
Renalase contributes to protection against renal fibrosis via inhibiting oxidative stress in rats. Int Urol Nephrol 2018; 50:1347-1354. [DOI: 10.1007/s11255-018-1820-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/04/2018] [Indexed: 12/13/2022]
|
35
|
Yin J, Wang F, Kong Y, Wu R, Zhang G, Wang N, Wang L, Lu Z, Liang M. Antithrombin III prevents progression of chronic kidney disease following experimental ischaemic-reperfusion injury. J Cell Mol Med 2017; 21:3506-3514. [PMID: 28767184 PMCID: PMC5706518 DOI: 10.1111/jcmm.13261] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 04/30/2017] [Indexed: 12/27/2022] Open
Abstract
Acute kidney disease (AKI) leads to increased risk of progression to chronic kidney disease (CKD). Antithrombin III (ATIII) is a potent anticoagulant with anti-inflammatory properties, and we previously reported that insufficiencies of ATIII exacerbated renal ischaemia-reperfusion injury (IRI) in rats. In this study, we examined the characteristic of AKI-CKD transition in rats with two distinct AKI models. Based on our observation, left IRI plus right nephrectomy (NX-IRI) was used to determine whether ATIII had therapeutic effects in preventing CKD progression after AKI. It was observed that NX-IRI resulted in significant functional and histological damage at 5 weeks after NX-IRI compared with sham rats, which was mitigated by ATIII administration. Besides, we noticed that ATIII administration significantly reduced NX-IRI-induced interstitial fibrosis. Consistently, renal expression of collagen-1, α-smooth muscle actin and fibronectin were substantial diminished in ATIII-administered rats compared with un-treated NX-IRI rats. Furthermore, the beneficial effects of ATIII were accompanied with decreased M1-like macrophage recruitment and down-regulation of M1-like macrophage-dependent pro-inflammatory cytokines such as tumour necrosis factor α, inducible nitric oxide synthase and interleukin-1β, indicating that ATIII prevented AKI-CKD transition via inhibiting inflammation. Overall, ATIII shows potential as a therapeutic strategy for the prevention of CKD progression after AKI.
Collapse
Affiliation(s)
- Jianyong Yin
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yiwei Kong
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rui Wu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guangyuan Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ling Wang
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeyuan Lu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
36
|
Chen X, Wu R, Kong Y, Yang Y, Gao Y, Sun D, Liu Q, Dai D, Lu Z, Wang N, Ge S, Wang F. Tanshinone IIA attenuates renal damage in STZ-induced diabetic rats via inhibiting oxidative stress and inflammation. Oncotarget 2017; 8:31915-31922. [PMID: 28404881 PMCID: PMC5458258 DOI: 10.18632/oncotarget.16651] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress and inflammation have been demonstrated to be involved in the onset and promotion of diabetic nephropathy (DN).Tanshinone IIA (Tan) possesses both antioxidant and anti-inflammatory properties. Here, the aim of the present study was to explore whether Tan could attenuate renal damage in the rats with streptozotocin (STZ)-induced diabetes and its potential mechanisms. Tan was gavaged to STZ-induced diabetic rats at the dose of 10mg/kg once a day for 12 weeks. Tan treatment significantly attenuated albuminuria and renal histopathology in diabetic rats. Besides, Tan treatment also effectively inhibited oxidative stress and inflammatory reaction in the kidneys of diabetic rats. Our study provided evidence that the protective effect of Tan on diabetes-induced renal injury is associated with inhibition of oxidative stress and inflammation. Tan may be a potential candidate for the treatment of DN.
Collapse
Affiliation(s)
- Xia Chen
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Rui Wu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yiwei Kong
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yuting Yang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yu Gao
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Dandan Sun
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Qizhen Liu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Dongjun Dai
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zeyuan Lu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Sheng Ge
- Department of Clinical Nutrition, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Feng Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- Department of Nephrology, Shanghai Eighth People's Hospital, Shanghai 200233, China
| |
Collapse
|
37
|
Wu Y, Wang L, Deng D, Zhang Q, Liu W. Renalase Protects against Renal Fibrosis by Inhibiting the Activation of the ERK Signaling Pathways. Int J Mol Sci 2017; 18:ijms18050855. [PMID: 28448446 PMCID: PMC5454808 DOI: 10.3390/ijms18050855] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/30/2017] [Accepted: 04/04/2017] [Indexed: 01/11/2023] Open
Abstract
Renal interstitial fibrosis is a common pathway for the progression of chronic kidney disease (CKD) to end-stage renal disease. Renalase, acting as a signaling molecule, has been reported to have cardiovascular and renal protective effects. However, its role in renal fibrosis remains unknown. In this study, we evaluated the therapeutic efficacy of renalase in rats with complete unilateral ureteral obstruction (UUO) and examined the inhibitory effects of renalase on transforming growth factor-β1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) in human proximal renal tubular epithelial (HK-2) cells. We found that in the UUO model, the expression of renalase was markedly downregulated and adenoviral-mediated expression of renalase significantly attenuated renal interstitial fibrosis, as evidenced by the maintenance of E-cadherin expression and suppressed expression of α-smooth muscle actin (α-SMA), fibronectin and collagen-I. In vitro, renalase inhibited TGF-β1-mediated upregulation of α-SMA and downregulation of E-cadherin. Increased levels of Phospho-extracellular regulated protein kinases (p-ERK1/2) in TGF-β1-stimulated cells were reversed by renalase cotreatment. When ERK1 was overexpressed, the inhibition of TGF-β1-induced EMT and fibrosis mediated by renalase was attenuated. Our study provides the first evidence that renalase can ameliorate renal interstitial fibrosis by suppression of tubular EMT through inhibition of the ERK pathway. These results suggest that renalase has potential renoprotective effects in renal interstitial fibrosis and may be an effective agent for slowing CKD progression.
Collapse
Affiliation(s)
- Yiru Wu
- Department of Nephrology, Affiliated Beijing Friendship Hospital, Faculty of Kidney Diseases, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing 100050, China.
| | - Liyan Wang
- Department of Nephrology, Affiliated Beijing Friendship Hospital, Faculty of Kidney Diseases, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing 100050, China.
| | - Dai Deng
- Department of Nephrology, Affiliated Beijing Friendship Hospital, Faculty of Kidney Diseases, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing 100050, China.
| | - Qidong Zhang
- Department of Nephrology, Affiliated Beijing Friendship Hospital, Faculty of Kidney Diseases, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing 100050, China.
| | - Wenhu Liu
- Department of Nephrology, Affiliated Beijing Friendship Hospital, Faculty of Kidney Diseases, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing 100050, China.
| |
Collapse
|
38
|
Wang Y, Safirstein R, Velazquez H, Guo XJ, Hollander L, Chang J, Chen TM, Mu JJ, Desir GV. Extracellular renalase protects cells and organs by outside-in signalling. J Cell Mol Med 2017; 21:1260-1265. [PMID: 28238213 PMCID: PMC5487909 DOI: 10.1111/jcmm.13062] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/18/2016] [Indexed: 01/07/2023] Open
Abstract
Renalase was discovered as a protein synthesized by the kidney and secreted in blood where it circulates at a concentration of approximately 3-5 μg/ml. Initial reports suggested that it functioned as an NAD(P)H oxidase and could oxidize catecholamines. Administration of renalase lowers blood pressure and heart rate and also protects cells and organs against ischaemic and toxic injury. Although renalase's protective effect was initially ascribed to its oxidase properties, a paradigm shift in our understanding of the cellular actions of renalase is underway. We now understand that, independent of its enzymatic properties, renalase functions as a cytokine that provides protection to cells, tissues and organs by interacting with its receptor to activate protein kinase B, JAK/STAT, and the mitogen-activated protein kinase pathways. In addition, recent studies suggest that dysregulated renalase signalling may promote survival of several tumour cells due to its capacity to augment expression of growth-related genes. In this review, we focus on the cytoprotective actions of renalase and its capacity to sustain cancer cell growth and also the translational opportunities these findings represent for the development of novel therapeutic strategies for organ injury and cancer.
Collapse
Affiliation(s)
- Yang Wang
- Department of Medicine, Veterans Affairs Connecticut Healthcare System, Yale University, New Haven, CT, USA.,Department of Cardiology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Robert Safirstein
- Department of Medicine, Veterans Affairs Connecticut Healthcare System, Yale University, New Haven, CT, USA
| | - Heino Velazquez
- Department of Medicine, Veterans Affairs Connecticut Healthcare System, Yale University, New Haven, CT, USA
| | - Xiao-Jia Guo
- Department of Medicine, Veterans Affairs Connecticut Healthcare System, Yale University, New Haven, CT, USA
| | - Lindsay Hollander
- Department of Medicine, Veterans Affairs Connecticut Healthcare System, Yale University, New Haven, CT, USA.,Department of Surgery, University of Connecticut, Farmington, CT, USA
| | - John Chang
- Department of Medicine, Veterans Affairs Connecticut Healthcare System, Yale University, New Haven, CT, USA
| | - Tian-Min Chen
- Department of Medicine, Veterans Affairs Connecticut Healthcare System, Yale University, New Haven, CT, USA
| | - Jian-Jun Mu
- Department of Cardiology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Gary V Desir
- Department of Medicine, Veterans Affairs Connecticut Healthcare System, Yale University, New Haven, CT, USA
| |
Collapse
|
39
|
Lu Z, Cheng D, Yin J, Wu R, Zhang G, Zhao Q, Wang N, Wang F, Liang M. Antithrombin III Protects Against Contrast-Induced Nephropathy. EBioMedicine 2017; 17:101-107. [PMID: 28219627 PMCID: PMC5360582 DOI: 10.1016/j.ebiom.2017.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 11/26/2022] Open
Abstract
We previously reported that insufficiency of antithrombin III (ATIII), the major anti-coagulation molecule in vivo, exacerbated renal ischemia-reperfusion injury in animal models and possibly humans. In the present study, we investigated the relationship between ATIII level and contrast induced nephropathy (CIN) in patients and examined therapeutic effect of ATIII on CIN in Sprague-Dawley rats. Patients with low ATIII activity presented a higher incidence of acute kidney injury (AKI) following coronary angiography. ATIII (500 μg/kg) was intravenously injected before or after the induction of AKI in rats. Our data demonstrated ATIII significantly attenuated the elevation of serum creatinine, blood urea nitrogen, and renal histological injury. The beneficial effects of ATIII were accompanied by diminished renal inflammatory response, oxidative stress, cell apoptosis and improved renal blood flow in rats. In conclusion, ATIII appears to attenuate CIN through inhibiting inflammation, oxidative stress, apoptosis and improving renal blood flow. ATIII administration may represent a promising strategy for the prevention and treatment of contrast-induced AKI. Patients with low ATIII activity presented a higher incidence of acute kidney injury following coronary angiography. ATIII supplementation attenuated renal injury in animal models of contrast induced nephropathy. ATIII exerted renoprotective effect by inhibiting inflammation, oxidative stress, apoptosis and improving renal blood flow.
Antithrombin III (ATIII), a potent anti-coagulation molecule in vivo, has been reported that it can exert reno-protective effects in ischemia-reperfusion model. Nevertheless, whether exogenous ATIII administration can protect against contrast induced nephropathy (CIN) in animal models remains unclear. This study revealed that ATIII administration has therapeutic effects against CIN in Sprague-Dawley Rats. Furthermore, the reno-protection conferred by ATIII might be mediated by inhibition of inflammation, oxidative stress, apoptosis and improving renal blood flow. ATIII supplementation represents a promising prophylactic and treatment strategies for contrast induced AKI.
Collapse
Affiliation(s)
- Zeyuan Lu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Dongsheng Cheng
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Jianyong Yin
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Rui Wu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Guangyuan Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China.
| | - Qing Zhao
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Feng Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
40
|
Yin J, Chen W, Ma F, Lu Z, Wu R, Zhang G, Wang N, Wang F. Sulodexide pretreatment attenuates renal ischemia-reperfusion injury in rats. Oncotarget 2017; 8:9986-9995. [PMID: 28036282 PMCID: PMC5354786 DOI: 10.18632/oncotarget.14309] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/13/2016] [Indexed: 02/07/2023] Open
Abstract
Sulodexide is a potent antithrombin agent, however, whether it has beneficial effects on renal ischemia-reperfusion injury (IRI) remains unknown. In the present study, we assessed the therapeutic effects of sulodexide in renal IRI and tried to investigate the potential mechanism. One dose of sulodexide was injected intravenously in Sprague-Dawley rats 30 min before bilateral kidney ischemia for 45 min. The animals were sacrificed at 3h and 24h respectively. Our results showed that sulodexide pretreatment improved renal dysfunction and alleviated tubular pathological injury at 24h after reperfusion, which was accompanied with inhibition of oxidative stress, inflammation and cell apoptosis. Moreover, we noticed that antithrombin III (ATIII) was activated at 3h after reperfusion, which preceded the alleviation of renal injury. For in vitro study, hypoxia/reoxygenation (H/R) injury model for HK2 cells was carried out and apoptosis and reactive oxygen species (ROS) levels were evaluated after sulodexide pretreatment. Consistently, sulodexide pretreatment could reduce apoptosis and ROS level in HK2 cells under H/R injury. Taken together, sulodexide pretreatment might attenuate renal IRI through inhibition of inflammation, oxidative stress and apoptosis, and activation of ATIII.
Collapse
Affiliation(s)
- Jianyong Yin
- Department of Nephrology, Shanghai Eighth People's Hospital, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weibin Chen
- Department of Laboratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Fenfen Ma
- Department of Pharmacy, Shanghai Pudong Hospital, Shanghai 201399, China
| | - Zeyuan Lu
- Department of Nephrology, Shanghai Eighth People's Hospital, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Rui Wu
- Department of Nephrology, Shanghai Eighth People's Hospital, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Guangyuan Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Niansong Wang
- Department of Nephrology, Shanghai Eighth People's Hospital, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Feng Wang
- Department of Nephrology, Shanghai Eighth People's Hospital, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
41
|
Skrzypczyk P, Przychodzień J, Mizerska-Wasiak M, Kuźma-Mroczkowska E, Okarska-Napierała M, Górska E, Stelmaszczyk-Emmel A, Demkow U, Pańczyk-Tomaszewska M. Renalase in Children with Glomerular Kidney Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1021:81-92. [PMID: 28405891 DOI: 10.1007/5584_2017_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Studies suggest that renalase, a renal catecholamine-inactivating enzyme, plays a major role in the pathogenesis of kidney and cardiovascular diseases in adults. This study seeks to determine the role of renalase in children with glomerular kidney diseases. We evaluated the serum renalase, arterial stiffness, intima-media thickness, blood pressure, and clinical and biochemical parameters in 78 children (11.9 ± 4.6 years of age) with glomerulopathies such as idiopathic nephrotic syndrome (40 cases), IgA nephropathy (12 cases), Henoch-Schönlein nephropathy (12 cases), and other glomerulopathies (14 cases). The control group consisted of 38 healthy children aged 11.8 ± 3.3 years. The mean renalase was 25.74 ± 8.94 μg/mL in the glomerulopathy group, which was not significantly different from the 27.22 ± 5.15 in the control group. The renalase level did not differ among various glomerulopathies either. However, proteinuric patients had a higher renalase level than those without proteinuria (28.43 ± 11.71 vs. 24.05 ± 6.23, respectively; p = 0.03). In proteinuric patients, renalase correlated with daily proteinuria. In the entire glomerulopathy group, renalase correlated with age, systolic central blood pressure (BP), diastolic peripheral and central BP, mean peripheral and central BP; peripheral diastolic BP Z-score, glomerular filtration rate, cholesterol, triglycerides, and pulse wave velocity. We conclude that in children with glomerulopathies renalase, although basically not enhanced, may underlie blood pressure elevation and arterial damage.
Collapse
Affiliation(s)
- Piotr Skrzypczyk
- Department of Pediatrics and Nephrology, Medical University of Warsaw, 63A Zwirki i Wigury Street, 02-091, Warsaw, Poland.
| | - Joanna Przychodzień
- Department of Pediatrics and Nephrology, Medical University of Warsaw, 63A Zwirki i Wigury Street, 02-091, Warsaw, Poland
| | - Małgorzata Mizerska-Wasiak
- Department of Pediatrics and Nephrology, Medical University of Warsaw, 63A Zwirki i Wigury Street, 02-091, Warsaw, Poland
| | - Elżbieta Kuźma-Mroczkowska
- Department of Pediatrics and Nephrology, Medical University of Warsaw, 63A Zwirki i Wigury Street, 02-091, Warsaw, Poland
| | | | - Elżbieta Górska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Anna Stelmaszczyk-Emmel
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata Pańczyk-Tomaszewska
- Department of Pediatrics and Nephrology, Medical University of Warsaw, 63A Zwirki i Wigury Street, 02-091, Warsaw, Poland
| |
Collapse
|
42
|
Zbroch E, Musialowska D, Koc-Zorawska E, Malyszko J. Age influence on renalase and catecholamines concentration in hypertensive patients, including maintained dialysis. Clin Interv Aging 2016; 11:1545-1550. [PMID: 27822026 PMCID: PMC5094527 DOI: 10.2147/cia.s106109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Hypertension in elderly patients is one of the main problems in cardiovascular diseases. The sympathetic nervous system hyperactivity seen in older patients is a known risk factor for hypertension and other cardiovascular events as well as chronic kidney disease. Renalase, secreted by the kidney and circulated in blood, may regulate the sympathetic tone by catecholamine degradation and in this way has an impact on cardiovascular and renal complications. OBJECTIVE To assess the impact of age on renalase and catecholamine concentration in hypertensive patients, including those on dialyses and its possible relation to blood pressure control and cardiovascular disease. METHODS The study cohort of 211 patients was divided into two groups according to age below 65 years (range 19-64) and above 65 years (range 65-86). The older group represented 38% of the whole studied population and 75% of them were dialyzed. The two groups of different ages were also divided into dialysis and nondialysis subgroups. The serum renalase, dopamine, and norepinephrine concentration together with blood pressure value and echocardiography were assessed. RESULTS Patients aged 65 years and more had higher renalase (20.59 vs 13.14 µg/mL, P=0.02) and dopamine (41.71 vs 15.46 pg/mL, P<0.001) concentration as well as lower diastolic blood pressure (75.33 vs 85 mmHg, P=0.001), advanced abnormalities in echocardiography, and more often suffered from diabetes and coronary artery disease. The significant correlation between age and renalase (r=0.16; P=0.019), norepinephrine (r=0.179; P=0.013), and dopamine (r=0.21; P=0.003) was found in the whole study population. In the nondialysis subgroup, 44% had chronic kidney disease, mostly in the stage 2 (83%). There was a significantly higher norepinephrine concentration (1.21 vs 0.87 ng/mL; P=0.008) in older patients of that population. In the dialysis subgroup, there were no differences between renalase and catecholamine level but older participants had lower diastolic blood pressure (69 vs 78 mmHg, P=0.001) and ejection fraction (51% vs 56.8%, P=0.03). CONCLUSION The elevated renalase level in older hypertensive patients is related rather to kidney function and cardiovascular diseases than to age itself. Thus, renalase appears to be the possible new marker of these indications in this special population.
Collapse
Affiliation(s)
- Edyta Zbroch
- Second Department of Nephrology and Hypertension with Dialysis Centre, Medical University of Bialystok, Bialystok, Poland
| | - Dominika Musialowska
- Second Department of Nephrology and Hypertension with Dialysis Centre, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Koc-Zorawska
- Second Department of Nephrology and Hypertension with Dialysis Centre, Medical University of Bialystok, Bialystok, Poland
| | - Jolanta Malyszko
- Second Department of Nephrology and Hypertension with Dialysis Centre, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|