1
|
Gao YF, Yang YJ, Qin JB, Yu MY, Hu SW, Zhang HF, Lin FH, Hu HY, Fang MJ, Zeng JZ. Design, synthesis, and biological evaluation of quinolinyl-ureido-phenyl-hydrazide derivatives and quinolinyl-hydrazide derivatives as anticancer agents targeting Nur77-mediated ferroptosis. Eur J Med Chem 2025; 291:117559. [PMID: 40215561 DOI: 10.1016/j.ejmech.2025.117559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/11/2025] [Accepted: 03/21/2025] [Indexed: 05/03/2025]
Abstract
In the recent decade, targeting ferroptosis for cancer therapy has attracted remarkable attention. Interestingly, the transcriptional regulator Nur77, a promising therapeutic target in cancer, has been recently identified as a crucial regulator of ferroptosis. However, no ferroptosis inducer targeting Nur77 has been reported currently. In this study, we built upon our prior research on Nur77 modulator 4-PQBH to design and synthesize four series of new compounds, with the objective of developing novel Nur77-mediated ferroptosis inducers. Among them, compound 8f exhibited the most potency against the tested cancer cell lines, including human estrogen positive breast cancer and triple-negative breast cancer cell lines, while displaying lower toxicity towards human normal cell lines HaCaT and MCF-10A (IC50> 50 μM). Furthermore, 8f demonstrated superior Nur77-binding activity in comparison to the reference compound Csn-B, and it has the capacity to activate the Nur77-driven luciferase activity and increase the protein level of Nur77. Remarkably, 8f induced an increase in the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and lipid peroxidation, concurrently with a reduction in the expression of GPX4 protein, culminating in the induction of ferroptosis in a Nur77-dependent manner. In vivo, 8f treatment has been observed to significantly suppress MCF7 xenograft tumor growth. Consequently, a novel ferroptosis inducer targeting Nur77 (8f) is first reported as a potent anti-EPBC agent, providing may serve as a promising lead for further drug development targeting Nur77-mediated ferroptosis.
Collapse
Affiliation(s)
- Yan-Fang Gao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yi-Jing Yang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jing-Bo Qin
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of the Interventional Medicine Foundation of Guangdong Province, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Ming-Yue Yu
- Xingzhi College, Zhejiang Normal University, Lanxi, 321004, China; College of Chemistry and Bioengineering, Yichun, 336000, China
| | - Sheng-Wei Hu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Hao-Fan Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Fan-Hong Lin
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Hong-Yu Hu
- Xingzhi College, Zhejiang Normal University, Lanxi, 321004, China.
| | - Mei-Juan Fang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China.
| | - Jin-Zhang Zeng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
2
|
Bhatnagar K, Raju S, Patki N, Motiani RK, Chaudhary S. Targeting mineral metabolism in cancer: Insights into signaling pathways and therapeutic strategies. Semin Cancer Biol 2025; 112:1-19. [PMID: 40024314 DOI: 10.1016/j.semcancer.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/29/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
Cancer remains the second leading cause of death worldwide, emphasizing the critical need for effective treatment and control strategies. Essential minerals such as copper, iron, zinc, selenium, phosphorous, calcium, and magnesium are integral to various biological processes and significantly influence cancer progression through altered metabolic pathways. For example, dysregulated copper levels promote tumor growth, while cancer cells exhibit an increased dependency on iron for signaling and redox reactions. Zinc influences tumor development through pathways such as Akt-p21. Selenium, primarily through its role in selenoproteins, exhibits anticancer potential but may also contribute to tumor progression. Similarly, dietary phosphate exacerbates tumorigenesis, metastasis, and angiogenesis through signaling pathway activation. Calcium, the most abundant mineral in the body, is tightly regulated within cells, and its dysregulation is a hallmark of various cancers. Magnesium deficiency, on the other hand, promotes cancer progression by fostering inflammation and free radical-induced DNA mutations. Interestingly, magnesium also plays a dual role, with low levels enhancing epithelial-mesenchymal transition (EMT), a critical process in cancer metastasis. This complex interplay of essential minerals underscores their potential as therapeutic targets. Dysregulation of these minerals and their pathways could be exploited to selectively target cancer cells, offering novel therapeutic strategies. This review summarizes current research on the abnormal accumulation or depletion of these microelements in tumor biology, drawing evidence from animal models, cell lines, and clinical samples. We also highlight the potential of these minerals as biomarkers for cancer diagnosis and prognosis, as well as therapeutic approaches involving metal chelators, pharmacological agents, and nanotechnology. By highlighting the intricate roles of these minerals in cancer biology, we aim to inspire further research in this critical yet underexplored area of oncology.
Collapse
Affiliation(s)
- Kartik Bhatnagar
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India.
| | - Sharon Raju
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-Gurugram Expressway, Faridabad, Haryana 121001, India.
| | - Ninad Patki
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India.
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-Gurugram Expressway, Faridabad, Haryana 121001, India.
| | - Sarika Chaudhary
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India.
| |
Collapse
|
3
|
Chen L, Ma N, Liu D, Li Y, Ci X, Wei Z. Tiliroside induces ferroptosis and suppresses tumor growth by synergistically targeting AKR1B1 and modulating iron metabolism in ovarian cancer cells. Eur J Pharmacol 2025; 997:177591. [PMID: 40187595 DOI: 10.1016/j.ejphar.2025.177591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
AIMS Ovarian cancer (OC) is a common malignant tumor with the greatest mortality rate among gynecological tumors. Tiliroside (TIL) is a glycosidic dietary flavonoid with various pharmacological activities. The purpose of this study was to investigate the exact mechanism by which TIL eliminates OC cells. METHODS/KEY FINDINGS In vitro, TIL exerted anti-tumor activities by inducing cell death and inhibiting the invasion and migration of A2780 and OVCAR8 cells. Additionally, the suppressive effect of TIL on OC cells was mainly due to the induction of ferroptosis, as demonstrated by the fact that only ferroprostatin-1 (Fer-1) significantly inhibited the anti-tumor activity of TIL, with the accumulation of ROS, MDA, and Fe2+ and a reduction in GPX4 expression. SwissTargetPrediction, molecular docking and CETSA assay showed that the direct interaction between AKR1B1 and TIL decreased its stability and expression. Notably, AKR1B1 overexpression significantly attenuated the effects of TIL on the proliferation, invasion, migration and ferroptosis on OC cells, whereas the levels of Fe2+ remained unaffected. Interestingly, the results of the RNA sequencing (RNA-seq) analysis suggested that the regulation of iron homeostasis by TIL might be connected to ion transport. Western blotting and immunofluorescence confirmed that TIL could modulate iron metabolism by regulating iron ion transport and ferritinophagy, ultimately resulting in ferroptosis. In xenograft model mice, TIL treatment inhibited tumor growth without causing substantial tissue damage. SIGNIFICANCE Our research revealed that TIL simultaneously targets AKR1B1 and modulates iron metabolism, thereby inducing ferroptosis and improving anti-tumor efficacy. As a novel drug, TIL is promising for OC treatment.
Collapse
Affiliation(s)
- Lu Chen
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin, 130001, China; Jilin Provincial Key Laboratory of Women's Reproductive Health, Changchun, Jilin, 130001, China
| | - Ning Ma
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin, 130001, China; Jilin Provincial Key Laboratory of Women's Reproductive Health, Changchun, Jilin, 130001, China
| | - Dongzhen Liu
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin, 130001, China; Jilin Provincial Key Laboratory of Women's Reproductive Health, Changchun, Jilin, 130001, China
| | - Yuan Li
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin, 130001, China; Jilin Provincial Key Laboratory of Women's Reproductive Health, Changchun, Jilin, 130001, China
| | - Xinxin Ci
- Jilin Provincial Key Laboratory of Women's Reproductive Health, Changchun, Jilin, 130001, China; Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130001, China.
| | - Zhentong Wei
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin, 130001, China; Jilin Provincial Key Laboratory of Women's Reproductive Health, Changchun, Jilin, 130001, China.
| |
Collapse
|
4
|
Wang Y, Tang C, Wang K, Zhang X, Zhang L, Xiao X, Lin H, Xiong L. The role of ferroptosis in breast cancer: Tumor progression, immune microenvironment interactions and therapeutic interventions. Eur J Pharmacol 2025; 996:177561. [PMID: 40154567 DOI: 10.1016/j.ejphar.2025.177561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Ferroptosis represents a distinctive and distinct form of regulated cellular death, which is driven by the accumulation of lipid peroxidation. It is distinguished by altered redox lipid metabolism and is linked to a spectrum of cellular activities, including cancer. In breast cancer (BC), with triple negative breast cancer (TNBC) being an iron-and lipid-rich tumor, inducing ferroptosis was thought to be a novel approach to killing breast tumor cells. However, in the recent past, a novel conceptual framework has emerged which posits that in addition to the promotion of tumor cell death, ferritin deposition has a potent immunosuppressive effect on the tumor immune microenvironment (TIME) via the influence on both innate and adaptive immune responses. TIME of BC includes various cell populations from both the innate and adaptive immune systems. In this review, the internal association between iron homeostasis and the progression of ferroptosis, along with the common inducers and protectors of ferroptosis in BC, are discussed in detail. Furthermore, a comprehensive analysis is conducted on the dual role of ferroptosis in immune cells and proto-oncogenic functions, along with an evaluation of the potential applications of immunogenic cell death-targeted immunotherapy in TIME of BC. It is anticipated that our review will inform future research endeavors that seek to integrate ferroptosis and immunotherapy in the management of BC.
Collapse
Affiliation(s)
- Yi Wang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Chuanyun Tang
- First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Keqin Wang
- First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiaoan Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lifang Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xinghua Xiao
- Department of Pathology, The First Affiliated Hospital, Nanchang University, 17 Yongwaizheng Road, Nanschang, 330066, China
| | - Hui Lin
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lixia Xiong
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
5
|
Zhan J, Chen Y, Liu Y, Chen Y, Li Z, Li X, He Z, Meng F, Qian X, Yang L, Yang Q. IDO1-mediated AhR activation up-regulates pentose phosphate pathway via NRF2 to inhibit ferroptosis in lung cancer. Biochem Pharmacol 2025; 236:116913. [PMID: 40164341 DOI: 10.1016/j.bcp.2025.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/28/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Ferroptosis is a type of cell death marked by iron-dependent lipid peroxide accumulation. Indoleamine 2,3-dioxygenase 1 (IDO1), a key enzyme in the catabolism of tryptophan through kynurenine pathway, participates in the development of multiple tumor types. However, the role of IDO1 in tumor ferroptosis is unclear. In this study, we identified IDO1 as a key regulator of ferroptosis in lung cancer. With Erastin-treated lung cancer cells, we found that IDO1 inhibited ferroptosis, reduced the generation of lipid peroxide and ROS. Mechanistically, IDO1 promoted the expression of nuclear factor erythroid 2-related factor 2 (NRF2) through activating aryl hydrocarbon receptor (AhR) pathway. IDO1 up-regulated the expression of solute carrier family 7 member 11 (SLC7A11) and the activity of pentose phosphate pathway (PPP) via AhR-NRF2 axis, promoted the production of reduced nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), thereby inhibiting ferroptosis. Moreover, combined treatment with IDO1 inhibitor and Erastin inhibited tumor growth, down-regulated SLC7A11 expression and PPP activity, promoted tumor ferroptosis in lung cancer-bearing mice. In conclusion, this study revealed the function of IDO1 in lung cancer ferroptosis and provided a new strategy for lung cancer therapy.
Collapse
Affiliation(s)
- Jiani Zhan
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Yijia Chen
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Yuying Liu
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Yunqiu Chen
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Zhiyao Li
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Xuewen Li
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Zhenning He
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Fangzhou Meng
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Xiaoyang Qian
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Lili Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.
| | - Qing Yang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Xie P, Qu T, Tang K, Huang Y, Zeng G, Yuan H, Xin Q, Zhao Y, Yang J, Zeng C, Wu X, Yang ST, Tang X. Carbon nanoparticles-Fe(II) complex combined with sorafenib for ferroptosis-induced antitumor effects in triple-negative breast cancer. Colloids Surf B Biointerfaces 2025; 250:114562. [PMID: 39965484 DOI: 10.1016/j.colsurfb.2025.114562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Triple negative breast cancer (TNBC) represents an aggressive subtype of breast cancer that lacks the expression of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2, whose systemic treatment options are currently limited to chemotherapy. Carbon nanoparticles-Fe(II) complex (CNSI-Fe) is a promising antitumor drug that induces ferroptosis to kill tumor cells efficiently. In this study, we combined CNSI-Fe and a ferroptosis inducer sorafenib (SRF) to achieve the efficient chemotherapy of TNBC. CNSI-Fe could adsorb SRF by hydrophobic interaction and π-π stacking with a maximum adsorption capacity of 31 mg/g. During the in vitro assays, CNSI-Fe+SRF combination inhibited the cell viability of 4T1 cells much more efficiently than CNSI-Fe or SRF alone. The high Fe uptake, hydroxyl radical generation and oxidative damages verified the ferroptosis of 4T1 cells upon the CNSI-Fe+SRF treatment. During the in vivo evaluations, SRF enhanced the therapeutic effect of CNSI-Fe as indicated by the higher tumor growth inhibition rate of 67.8 % and the higher survival rate. CNSI captured SRF in tumor to give a 6 mg/kg uptake, which lowered the glutathione peroxidase 4 (GPX4) level and enhanced the hydroxyl radical production of 4T1 tumor. In addition, CNSI-Fe treatment up-regulated the genes associated with antioxidative responses, but the up-regulation was offset by SRF. CNSI-Fe+SRF group showed similar toxicity to mice as SRF alone in the biosafety evaluations. Our results collectively indicated that the combination of CNSI-Fe and SRF could efficiently treat TNBC through ferroptosis.
Collapse
Affiliation(s)
- Ping Xie
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu 610095, China
| | - Ting Qu
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu 610095, China
| | - Kexin Tang
- School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yuanfang Huang
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu 610095, China
| | - Guangfu Zeng
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu 610095, China
| | - Huahui Yuan
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu 610095, China
| | - Qian Xin
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu 610095, China
| | - Yufeng Zhao
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu 610095, China
| | - Jinmei Yang
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu 610095, China
| | - Cheng Zeng
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu 610095, China
| | - Xian Wu
- School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Sheng-Tao Yang
- School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.
| | - Xiaohai Tang
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu 610095, China.
| |
Collapse
|
7
|
Wang ZH, Du WW, Qian FY, Hou HY, Le Deng J, Ren XR, Pan Y, Pan Y, Lee SC, Hu HM, Zhao JZ. Homocapsaicin II induce ferroptosis in colorectal cancer cells via cholesterol-centrosome amplification-multipolarity axis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119894. [PMID: 40319933 DOI: 10.1016/j.jep.2025.119894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/24/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Homocapsaicin II (Hp II), a natural product abundantly found in Capsicum annuum L., is a structural analog of capsaicin. Traditionally, capsaicin is utilized for managing digestive disorders and analgesic applications. Although emerging evidence suggests anti-cancer properties of capsaicin and its analogs, the specific anti-tumor properties and mechanisms of Hp II remain completely unexplored. Our study demonstrates that Hp II suppresses colorectal cancer progression via ferroptosis induction, both in vitro and in vivo. MATERIALS AND METHODS Anti-cancer activity of Hp II was assessed using colorectal cancer cell lines (in vitro) and subcutaneous tumor xenografts in nude mice (in vivo). Potential protein targets were identified through bioinformatic profiling, with KIF11 validated as a direct binding partner via epoxy-activated sepharose 6B-Hp II pull-down assays and microscale thermophoresis (MST). Ferroptotic mechanisms were dissected using molecular and cellular approaches, including intercellular free Fe2+ and lipid peroxidation quantification. RESULTS Hp II was found to target KIF11 in this study. It bound to KIF11 and stabilized it by reducing its ubiquitination. Increased levels of KIF11 promoted cholesterol production, leading to centrosome amplification (CA). Additionally, KIF11 played a role in centrosome separation, contributing to multipolarity. Ultimately, Cholesterol-induced CA and KIF11-mediated multipolarity synergy led to ferroptosis. This was supported by elevated levels of free Fe2+ and lipid peroxidation, a decreased GSH/GSSG ratio, and changes in the protein levels of ferroptosis markers ACSL5 and STEAP3 (upregulated) as well as FTH1 and GPX4 (downregulated). CONCLUSION In summary, Hp II acts as a dual-pathway inducer targeting both cholesterol-driven CA and KIF11-mediated centrosome separation to trigger ferroptosis. These findings position Hp II-KIF11 as a metabolic-mitotic ferroptosis regulator, connecting cholesterol metabolism, centrosome dynamics, and oxidative cell death.
Collapse
Affiliation(s)
- Zi Han Wang
- Lab of Cell Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Wei Wei Du
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, PR China
| | - Fei Yu Qian
- Lab of Cell Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Hao Yu Hou
- Lab of Cell Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Jia Le Deng
- Lab of Cell Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Xuan Rui Ren
- Lab of Cell Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Yi Pan
- Lab of Cell Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Yan Pan
- Lab of Cell Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Shao Chin Lee
- Lab of Cell Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Hong Mei Hu
- Lab of Cell Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Ji Zhong Zhao
- Lab of Cell Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China.
| |
Collapse
|
8
|
Zhang K, Chen S, Zhou Z, Yu S, Zhan Y, Zhang X. Current trends and landscape of drug resistance in renal cell carcinoma: a bibliometric analysis. Discov Oncol 2025; 16:820. [PMID: 40389616 PMCID: PMC12089581 DOI: 10.1007/s12672-025-02594-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 05/06/2025] [Indexed: 05/21/2025] Open
Abstract
INTRODUCTION Renal cell carcinoma (RCC) is a common type of kidney cancer, and the prognosis for patients with advanced-stage disease remains poor. One major obstacle is the development of drug resistance, which severely limits the effectiveness of therapeutic interventions. This bibliometric study aims to provide a comprehensive overview of current research trends on drug resistance in RCC. METHODS This study examines publications on drug resistance in RCC from 2000 to 2023, sourced from the Web of Science Core Collection (WoSCC). Detailed analyses were conducted to identify research hotspots, academic collaborations, and emerging trends. CiteSpace, SCImago Graphica, and VOSviewer were utilized to conduct these analyses comprehensively. RESULTS This study analyzed a total of 2,804 publications from the WoSCC database. The number of annual publications showed a consistent upward trend, with an average annual growth rate of 8.12%. The United States had the highest number of publications, followed by China and Japan. The most productive institutions were the University of Texas System, Harvard University, and the National Institutes of Health (NIH). Alfred H. Schinkel emerged as the most prolific author, also having the highest H-index. The three most frequent research categories were oncology, pharmacology and pharmacy, and biochemistry and molecular biology. The evolution of research topics was assessed in 5-year intervals, revealing that recent themes such as ferroptosis and immunotherapy have gained increasing attention. Keyword analysis indicated a shift in research focus toward cell lipid metabolism, androgen receptor and specific molecular signatures. CONCLUSION This study offers the first comprehensive bibliometric analysis specifically focused on drug resistance in RCC. It identifies current research trends, highlights emerging hotspots, and provides insights into key contributors and ongoing challenges in the field. Our study provides a theoretical reference and guidance to guide future research efforts to address drug resistance in RCC more effectively.
Collapse
Affiliation(s)
- Kenan Zhang
- Department of Urology, the First Hospital Affiliated to Zhengzhou University, No.1 Jianshe Dong Road, District of ErQi, Zhengzhou, 450002, Henan, People's Republic of China
| | - Shixu Chen
- Department of Urology, the First Hospital Affiliated to Zhengzhou University, No.1 Jianshe Dong Road, District of ErQi, Zhengzhou, 450002, Henan, People's Republic of China
| | - Zhenzhen Zhou
- Department of Urology, the First Hospital Affiliated to Zhengzhou University, No.1 Jianshe Dong Road, District of ErQi, Zhengzhou, 450002, Henan, People's Republic of China
| | - Shuanbao Yu
- Department of Urology, the First Hospital Affiliated to Zhengzhou University, No.1 Jianshe Dong Road, District of ErQi, Zhengzhou, 450002, Henan, People's Republic of China
| | - Yonghao Zhan
- Department of Urology, the First Hospital Affiliated to Zhengzhou University, No.1 Jianshe Dong Road, District of ErQi, Zhengzhou, 450002, Henan, People's Republic of China.
| | - Xuepei Zhang
- Department of Urology, the First Hospital Affiliated to Zhengzhou University, No.1 Jianshe Dong Road, District of ErQi, Zhengzhou, 450002, Henan, People's Republic of China.
| |
Collapse
|
9
|
Ding Q, Zhuang Y, Yang HY, Zhao XN, Sun YN. USP31 confers radio-resistance in cervical cancer cells via ferroptosis pathway by deubiquitinating and stabilizing GPX4. Biochem Biophys Res Commun 2025; 770:151990. [PMID: 40382845 DOI: 10.1016/j.bbrc.2025.151990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/29/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025]
Abstract
Ubiquitin-specific peptidase 31 (USP31), a member of the deubiquitinating enzyme family, linked to the pathogenesis of cervical cancer (CC). Despite this association, the precise mechanisms underlying its role remain inadequately understood. Recent studies have identified ferroptosis as a potential mechanism contributing to radiotherapy-mediated tumor suppression and the development of radioresistance. Consequently, this research seeks to inspect the regulatory effect of USP31 in the radioresistance of CC cells, with particular emphasis on the ferroptosis pathway. Our findings indicate that USP31 levels increase in human CC cells after radiation exposure. The knockdown of USP31 through transfection with si-USP31 significantly enhanced the radiosensitivity of SiHa and HeLa cells. This knockdown also promoted ferroptosis, as evidenced by enhanced lipid reactive oxygen species (ROS) generation, higher endocellular Fe2+ contents, and elevated concentrations of 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA), alongside reduced glutathione (GSH) levels and the NADPH/NADP+ ratio. The intervention of Fer-1 mitigated the impact of silencing USP31 on the radiosensitivity of SiHa and HeLa cells. The reduction of USP31 level promoted the ubiquitination and subsequent degradation of GPX4, which in turn influenced the impact of USP31 suppression on ferroptosis and resistance to radiation in CC cells. Collectively, these discoveries indicate that USP31 knockdown augments the radiosensitivity of CC cells by facilitating ferroptosis through the regulation of GPX4 protein ubiquitination and degradation. This research explores the role of USP31 in CC and investigates how USP31 depletion increases radiosensitivity, providing insights into potential avenues for developing advanced therapeutic strategies for CC.
Collapse
Affiliation(s)
- Qi Ding
- Department of Obstetrics and Gynecology, Bethune International Peace Hospital, Shijiazhuang, 050051, Hebei Province, China
| | - Yan Zhuang
- Department of English Teaching and Research, Tianjin Petroleum Vocational and Technical College, Tianjin, 300000, China
| | - Hong-Yu Yang
- Department of Obstetrics and Gynecology, Bethune International Peace Hospital, Shijiazhuang, 050051, Hebei Province, China
| | - Xing-Nan Zhao
- Department of Obstetrics and Gynecology, Bethune International Peace Hospital, Shijiazhuang, 050051, Hebei Province, China
| | - Ya-Nan Sun
- Department of Obstetrics and Gynecology, Bethune International Peace Hospital, Shijiazhuang, 050051, Hebei Province, China.
| |
Collapse
|
10
|
Jing L, Xiao W, Hu Z, Liu X, Yuan M. A Systematic Review of Nanoparticle-Mediated Ferroptosis in Glioma Therapy. Int J Nanomedicine 2025; 20:5779-5797. [PMID: 40351706 PMCID: PMC12065465 DOI: 10.2147/ijn.s523008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 04/22/2025] [Indexed: 05/14/2025] Open
Abstract
Glioma, a highly malignant central nervous system tumor, exhibits aggressive invasiveness, extensive infiltration, and poor prognosis. Conventional treatments such as surgery, radiotherapy, and chemotherapy are hindered by limitations including the inability to overcome the blood-brain barrier (BBB), drug resistance, and high recurrence rates. Ferroptosis induced by nanoparticle-based systems offers an innovative strategy for glioma therapy by efficiently traversing the BBB, precisely delivering ferroptosis inducers, enhancing tumor accumulation, and enabling stimuli-responsive drug release. These features collectively improve the induction efficiency of ferroptosis in glioma cells. Various nanoplatforms, including inorganic nanoparticles, biomimetic carriers, and polymer-based systems, have demonstrated potential in crossing the BBB, inducing ferroptosis, and suppressing glioma progression. These systems enhance reactive oxygen species generation, deplete glutathione, and disrupt tumor microenvironment defense mechanisms, achieving synergistic therapeutic effects. The integration of ferroptosis with nanotechnology is emerging as a promising, non-invasive strategy for the treatment of gliomas, offering substantial therapeutic potential.
Collapse
Affiliation(s)
- Lin Jing
- Guangxi Key Laboratory of Special Biomedicine; School of Medicine, Guangxi University, Nanning, 530004, People’s Republic of China
| | - Wenguang Xiao
- Guangxi Key Laboratory of Special Biomedicine; School of Medicine, Guangxi University, Nanning, 530004, People’s Republic of China
| | - Zhouxing Hu
- Guangxi Key Laboratory of Special Biomedicine; School of Medicine, Guangxi University, Nanning, 530004, People’s Republic of China
| | - Xu Liu
- Guangxi Key Laboratory of Special Biomedicine; School of Medicine, Guangxi University, Nanning, 530004, People’s Republic of China
| | - Mingqing Yuan
- Guangxi Key Laboratory of Special Biomedicine; School of Medicine, Guangxi University, Nanning, 530004, People’s Republic of China
| |
Collapse
|
11
|
Liu X, Cui Y, Gong J, Yu X, Cui Y, Xuan Y. SETD5 facilitates stemness and represses ferroptosis via m6A-mediating PKM2 stabilization in non-small cell lung cancer. Oncogene 2025:10.1038/s41388-025-03426-9. [PMID: 40307507 DOI: 10.1038/s41388-025-03426-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 04/12/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
SETD5, an atypical member of the histone lysine methyltransferase family known for its association with cancer stemness, is a significant predictor of unfavorable survival outcomes in non-small cell lung cancer (NSCLC). However, the function of SETD5 in NSCLC stemness remains unclear, and whether it is an active H3K36me3 is controversial. Consequently, further investigation is required to clarify the pivotal role of SETD5 in NSCLC stemness and its related mechanism. Thus, this study employed the NSCLC tissue microarray and bioinformatics tools to analyze SETD5 expression and determine its effect on stemness and investigated the role of SETD5 in the metastasis of NSCLC using in vitro and in vivo analyses. The findings indicated high SETD5 expression in embryonic and NSCLC tissues, which was related to the pathological tumor stage, lymph node metastasis, and clinical stage, indicating that SETD5 could be used as a biomarker and prognostic factor in NSCLC. In addition, we found that SETD5 can promote glycolysis, thereby inhibiting ferroptosis and promoting the stemness of NSCLC, causing tumor metastasis and adverse prognosis in patients. In terms of mechanism, SETD5 as H3K36me3 facilitates the m6A modification of METTL14 and the recruitment of YTHDF1 and mediates PKM2 nuclear translocation and phosphorylation of p-PKM2 Tyr105, regulating GPX4 mediated ferroptosis resistance and SOX9 mediated stemness in NSCLC. The findings emphasize that SETD5 may serve as a promising indicator of stemness in NSCLC, which can help develop therapeutic targets for NSCLC and prognostic evaluation. This study provides evidence that SETD5 as H3K36me3 facilitates the m6A modification of METTL14 and the recruitment of YTHDF1 and mediates the nuclear translocation of PKM2, regulating GPX4 mediated ferroptosis resistance and SOX9 mediated stemness, causing tumor metastasis and adverse prognosis in patients.
Collapse
Affiliation(s)
- Xingzhe Liu
- Department of Pathology, Yanbian University College of Medicine, Yanji, China
| | - Yuzhen Cui
- Department of Oncology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Jie Gong
- Department of Pathology, Yanbian University College of Medicine, Yanji, China
| | - Xinhui Yu
- Department of Oncology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yan Cui
- Department of Oncology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yanhua Xuan
- Department of Pathology, Yanbian University College of Medicine, Yanji, China.
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, China.
- Institute of Regenerative Medicine, Yanbian University College of Medicine, Yanji, China.
| |
Collapse
|
12
|
Liu J, Zhang G, Chen L, Dong Q, Luo R, Zhang Y, Wen J, He Y, Li L. Natural products targeting ferroptosis in depression: Research progress and therapeutic prospects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156818. [PMID: 40339536 DOI: 10.1016/j.phymed.2025.156818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/02/2025] [Accepted: 04/27/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Depression is recognized as a chronic mental illness, also influenced by neurotransmitter homeostasis, with its incidence increasing annually worldwide. This condition inflicts significant physical and psychological harm, severely compromising human health. It exhibits a broad morbidity spectrum, and some current treatments and medications are hindered by short-term efficacy, strong side effects, and other limitations. PURPOSE Due to the limitations, it is imperative to explore new treatment approaches and develop targeted drugs. Ferroptosis, a cell death mode dependent on iron, is believed to be intricately linked to the onset of depression. Thus, modulating cellular ferroptosis presents a promising avenue for the targeted therapy of depression. METHODS We conducted a comprehensive search of databases such as PubMed, Elsevier ScienceDirect, Google Scholar, and CNKI, using keywords such as "ferroptosis", "depression", "iron death", "safety", "efficacy", and "effectiveness". Our review included original scientific articles, clinical trials, meta-analyses, and review papers published up to February 2025, focusing on studies excluding non-natural products. RESULTS Several natural products derived from plant, animal, or microbial sources effectively target ferroptosis, alleviating depressive symptoms and demonstrating unique and favorable outcomes. This review provides an exhaustive overview of the sources, pharmacological actions, mechanisms, efficacy, and safety of these natural products, highlighting their potential clinical benefits and offering a comprehensive perspective on their properties. CONCLUSION This study offers concrete ideas and valuable insights for the development and application of these natural products in the targeted treatment of depression.
Collapse
Affiliation(s)
- Jing Liu
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Gaoju Zhang
- Sichuan Province Traditional Chinese Medicine Decoction Pieces Co., Ltd, Chengdu 611732, China
| | - Liping Chen
- School of Comprehensive Health Management, Xihua University, Chengdu 610039, China
| | - Qin Dong
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Ranwen Luo
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yuyu Zhang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jianxia Wen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Yuxin He
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Ling Li
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| |
Collapse
|
13
|
Kwun MS, Lee DG. Ferroptosis-Like Death Induction in Saccharomyces cerevisiae by Gold Nanoparticles. J Microbiol Biotechnol 2025; 35:e2501029. [PMID: 40295204 PMCID: PMC12089944 DOI: 10.4014/jmb.2501.01029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 04/30/2025]
Abstract
Ferroptosis, a novel form of regulated cell death (RCD), has emerged as a promising therapeutic strategy for cancer treatment. While gold nanoparticles (AuNPs) are known to induce cell death and ferroptosis in combination with certain antibiotics, the mechanisms underlying ferroptosis in microorganisms remain poorly understood. This study aimed to investigate whether AuNPs induce ferroptosis-like cell death in the eukaryotic microbe Saccharomyces cerevisiae. Our findings revealed that AuNPs significantly reduced cell viability in S. cerevisiae, suggesting their ability to trigger cell death. Ferroptosis-related precursors, including intracellular iron overload and depletion of glutathione (GSH), were observed, leading to the inactivation of glutathione peroxidase (GPx). These changes were associated with the accumulation of reactive oxygen species (ROS) and lipid peroxidation, which amplified oxidative stress within the cells. Elevated ROS levels and lipid peroxidation further resulted in membrane rupture and the formation of 8-hydroxydeoxyguanosine, indicating DNA damage. Mitochondrial dysfunction, a hallmark of ferroptosis, was also evident. AuNP treatment caused mitochondrial membrane potential hyperpolarization and a reduction in mitochondrial membrane density. Unlike previously characterized forms of RCD, ferroptosis-like death in S. cerevisiae did not involve chromatin condensation, DNA fragmentation, or metacaspase activation. Finally, ferroptosis-like characteristics were confirmed using Liperfluo, a lipid ROS-specific probe. In conclusion, this study demonstrated that AuNPs can induce ferroptosis-like cell death in S. cerevisiae. These findings highlight the potential of AuNPs as antifungal agents and contribute to the broader understanding of ferroptosis in eukaryotic microbes.
Collapse
Affiliation(s)
- Min Seok Kwun
- School of Life Science, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong Gun Lee
- School of Life Science, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Institute of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
14
|
Yang Y, Jiang B, Shi L, Wang L, Yang Y, Li Y, Zhang Y, Zhu Z, Zhang X, Liu X. The potential of natural herbal plants in the treatment and prevention of non-small cell lung cancer: An encounter between ferroptosis and mitophagy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119555. [PMID: 40015539 DOI: 10.1016/j.jep.2025.119555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/15/2025] [Accepted: 02/22/2025] [Indexed: 03/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese herbal medicine constitutes a substantial cultural and scientific resource for the Chinese nation, attracting considerable scholarly interest due to its intrinsic characteristics of "multi-component, multi-target, and multi-pathway" interactions. Simultaneously, it aligns accurately with the intricate and continuously evolving progression of non-small cell lung cancer (NSCLC). Furthermore, contemporary pharmacological studies indicate that natural herbaceous plants and their bioactive compounds exhibit a diverse array of biological activities, including antioxidant, anti-inflammatory, and anti-tumor effects, among others. Additionally, these substances have been demonstrated to possess a degree of safety, particularly in terms of exhibiting comparatively lower levels of toxicity to the liver and kidneys when contrasted with conventional Western medicine. Thus, the development of herbal plants, which includes both single herbs and composite formulations, as well as their bioactive constituents, through the targeted regulation of ferroptosis and mitophagy, presents substantial potential and instills considerable hope for individuals diagnosed with NSCLC. AIM OF THE REVIEW This review aims to conduct a critical analysis of the ethnopharmacological applications of natural herbaceous plants in relation to ferroptosis and mitophagy in NSCLC. The objective is to evaluate the potential advantages of prioritizing specific phytochemical constituents found in these plants, which may serve as novel therapeutic candidates informed by ethnobotanical knowledge. Additionally, this study seeks to enhance the current pharmacological applications of natural herbaceous plants. METHODS An investigation into natural herbal remedies for NSCLC was conducted, with a particular emphasis on the ferroptosis and mitophagy pathways. This study utilized traditional medical texts and ethnomedicinal literature as primary sources. Furthermore, relevant information related to ethnobotany, phytochemistry, and pharmacology is obtained from online databases, including PubMed and the China National Knowledge Infrastructure (CNKI), among others. "Traditional Chinese medicine compound preparations", "single herb extracts", "active compounds", "NSCLC", "ferroptosis", and "mitophagy" were used as keywords when searching the databases. Consequently, pertinent articles published in recent years were collected and analyzed. RESULTS Given the complex etiology of NSCLC, treatment strategies that concentrate exclusively on ferroptosis or mitophagy often demonstrate limitations. In this regard, the utilization of herbal plants offers unique benefits in the management of NSCLC. The rationale can be summarized within the following two dimensions: Firstly, due to the molecular mechanisms of ferroptosis and mitophagy involving multiple signaling pathways (including PINK1/Parkin, HMGB1, system Xc-/GPX4/GSH, FSP1/CoQ10/NAD (P) H, and so on), sometimes drugs with a single target are difficult to involve multiple pathways. Fortunately, there is an expanding body of evidence suggesting that various herbaceous plants and their bioactive compounds can affect multiple biological targets. Moreover, these compounds seem to interact with several targets associated with ferroptosis and mitophagy in NSCLC (such as NIX, BNIP3, FUNDC1, GPX4, FSP1, P53, Nrf2, LncRNA, and so on). Secondly, Herbaceous plants and their bioactive compounds have been shown to possess a favorable safety profile, particularly with respect to reduced hepatotoxicity and nephrotoxicity in comparison to conventional Western medicine. For example, Numerous compound formulations, such as Fangji Huangqi decoction, Mufangji decoction, Qiyu Sanlong decoction, and Fuzheng Kangai decoction, have been employed in China for millennia, and their clinical efficacy appears to be quite promising. Notably, In recent years, numerous researchers have sought to isolate active constituents from clinically effective compound formulations through the application of chemical methodologies. This endeavor has been driven by the necessity to tackle challenges related to complex ingredient compositions and sophisticated processing. These active compounds have been employed in cellular and animal studies to elucidate the molecular mechanisms underlying these formulations. CONCLUSIONS The Asian region has a long-standing historical tradition of employing natural herbaceous plants for traditional medicinal purposes. Phytochemical and pharmacological studies have shown that various compound preparations derived from traditional Chinese medicine, along with individual herb extracts and their active constituents, display a range of bioactive effects. These effects encompass anti-tumor, anti-inflammatory, antibacterial, and antioxidant properties, among others. Numerous traditional compound formulations originating from China have emerged as promising candidates for the development of pharmacological agents targeting NSCLC. It is noteworthy that a variety of compound formulations aimed at the ferroptosis and mitophagy pathways, which demonstrate unique therapeutic effects on NSCLC, are presently under extensive investigation by an increasing number of researchers. Therefore, it is imperative to consider in vitro mechanistic studies, in vivo pharmacological evaluations, and assessments of clinical efficacy. Furthermore, it is essential to conduct a comprehensive assessment of plant resources, implement quality control measures, and engage in toxicological research to ensure that the data is appropriate for further examination.
Collapse
Affiliation(s)
- Yujie Yang
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Lijuan Shi
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Lili Wang
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Yaru Yang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Yongyu Li
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Yanmei Zhang
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Zhongbo Zhu
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Xuhui Zhang
- Department of Pulmonary Diseases, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, 730030, China.
| | - Xiping Liu
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
15
|
Taghizadieh M, Kalantari M, Bakhshali R, Kobravi S, Khalilollah S, Baghi HB, Bayat M, Nahand JS, Akhavan-Sigari R. To be or not to be: navigating the influence of MicroRNAs on cervical cancer cell death. Cancer Cell Int 2025; 25:153. [PMID: 40251577 PMCID: PMC12008905 DOI: 10.1186/s12935-025-03786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
With all diagnostic and therapeutic advances, such as surgery, radiation- and chemo-therapy, cervical cancer (CC) is still ranked fourth among the most frequent cancers in women globally. New biomarkers and therapeutic targets are warranted to be discovered for the early detection, treatment, and prognosis of CC. As component of the non-coding RNA's family, microRNAs (miRNAs) participate in several cellular functions such as cell proliferation, gene expression, many signaling cascades, apoptosis, angiogenesis, etc. MiRNAs can suppress or induce programmed cell death (PCD) pathways by altering their regulatory genes. Besides, abnormal expression of miRNAs weakens or promotes various signaling pathways associated with PCD, resulting in the development of human diseases such as CC. For that reason, understanding the effects that miRNAs exert on the various modes of tumor PCD, and evaluating the potential of miRNAs to serve as targets for induction of cell death and reappearance of chemotherapy. The current study aims to define the effect that miRNAs exert on cell apoptosis, autophagy, pyroptosis, ferroptosis, and anoikis in cervical cancer to investigate possible targets for cervical cancer therapy. Manipulating the PCD pathways by miRNAs could be considered a primary therapeutic strategy for cervical cancer.
Collapse
Affiliation(s)
- Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Kalantari
- Department of Biology, Tehran University of health Sciences, Tehran, Iran
| | | | - Sepehr Kobravi
- Department of Oral & Maxillofacial Surgery, Faculty of Dentistry, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
16
|
Bipasha M, Deepali V, Prabal D, Supriya K, Megha B. Ferroptosis: A Mechanism of Cell Death With Potential Scope in Cancer Therapy. Asia Pac J Clin Oncol 2025. [PMID: 40235436 DOI: 10.1111/ajco.14172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/30/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025]
Abstract
Ferroptosis is a type of regulated cell death caused by oxidative imbalance of the intracellular microenvironment. This causes the accumulation of toxic lipid peroxides, depicted by iron overload and lipid peroxidation, which results in disease development. The affected cell population displays unique morphological and biochemical features, which are distinct from other modes of cell death, like apoptosis, pyroptosis, and necroptosis. The individual pathways of each of these modes are interrelated and tend to counterbalance each other in the mechanism of cell death. The process of ferroptosis is associated with disturbances in iron metabolism, in conjunction with glutathione peroxidase and lipid peroxidation, culminating in a reduction of antioxidant capacity and accumulation of lipid peroxides in the dying cell. It has been observed that even excess cellular levels of iron can cause cell death, where ferroptosis is initiated by diminishing the levels of glutathione and glutathione peroxidase 4, and thus leading to excess build-up of lipid reactive oxygen species (ROS). In the case of a neoplastic cell, ferroptosis along with its regulators tends to orchestrate cell death and also affects cancer progression by modulation of proliferation activity, apoptosis suppression, metastasis, and drug resistance. Comprehending the complex network of molecular processes implicated in ferroptosis regulation is vital for developing targeted therapies for diseases where ferroptosis plays a significant role.
Collapse
Affiliation(s)
- Mukherjee Bipasha
- Department of Biochemistry, Dr DY Patil Medical College, Navi Mumbai, India
| | - Vidhate Deepali
- Department of Biochemistry, Dr DY Patil Medical College, Navi Mumbai, India
| | - Deb Prabal
- Sultan Qaboos Comprehensive Cancer Care & Research Centre, University Medical City, Muscat, Sultanate of Oman
| | - Khillare Supriya
- Department of Biochemistry, Dr DY Patil Medical College, Navi Mumbai, India
| | - Bangar Megha
- Department of Biochemistry, Dr DY Patil Medical College, Navi Mumbai, India
| |
Collapse
|
17
|
Hagar FF, Abbas SH, Atef E, Abdelhamid D, Abdel-Aziz M. Benzimidazole scaffold as a potent anticancer agent with different mechanisms of action (2016-2023). Mol Divers 2025; 29:1821-1849. [PMID: 39031290 PMCID: PMC11909089 DOI: 10.1007/s11030-024-10907-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/30/2024] [Indexed: 07/22/2024]
Abstract
Benzimidazole scaffolds have potent anticancer activity due to their structure similarity to nucleoside. In addition, benzimidazoles could function as hydrogen donors or acceptors and bind to different drug targets that participate in cancer progression. The literature had many anticancer agents containing benzimidazole cores that gained much interest. Provoked by our endless interest in benzimidazoles as anticancer agents, we summarized the successful trials of the benzimidazole scaffolds in this concern. Moreover, we discuss the substantial opportunities in cancer treatment using benzimidazole-based drugs that may direct medicinal chemists for a compelling future design of more active chemotherapeutic agents with potential clinical applications. The uniqueness of this work lies in the highlighted benzimidazole scaffold hybridization with different molecules and benzimidazole-metal complexes, detailed mechanisms of action, and the IC50 of the developed compounds determined by different laboratories after 2015.
Collapse
Affiliation(s)
- Fatma Fouad Hagar
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Samar H Abbas
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt.
| | - Eman Atef
- College of Pharmacy, West Coast University, Los Angeles, CA, USA
| | - Dalia Abdelhamid
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt.
- Raabe College of Pharmacy, Ohio Northern University, Ohio, USA.
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
18
|
Kozieł S, Wojtala D, Szmitka M, Lesiów M, Ziółkowska A, Sawka J, Del Carpio E, Crans DC, Komarnicka UK. Half-Sandwich Organometallic Ir(III) and Ru(II) Compounds and their Interactions with Biomolecules. Chempluschem 2025; 90:e202400621. [PMID: 39878055 DOI: 10.1002/cplu.202400621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/19/2024] [Indexed: 01/31/2025]
Abstract
This review highlights how a Ir(III) and Ru(II) coordination complexes can change theirs cytotoxic activity by interacting with a biomolecules such as deoxyribonucleic acid (DNA), human albumins (HSA), nicotinamide adenine dinucleotide (NADH), and glutathione (GSH). We have selected biomolecules (DNA, NADH, GSH, and HSA) based on their significant biological roles and importance in cellular processes. Moreover, this review may provide useful information for the development of new half-sandwich Ir(III) and Ru(II) complexes with desired properties and relevant biological activities. Additionally, the examples discussed here may help us better understand what happens to a metal-based drug once it enters the body.
Collapse
Affiliation(s)
- Sandra Kozieł
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
- Department of Chemistry, Colorado State University, 80523, Fort Collins, CO, USA
| | - Daria Wojtala
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Magdalena Szmitka
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Monika Lesiów
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Aleksandra Ziółkowska
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Jacek Sawka
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Edgar Del Carpio
- Department of Chemistry, Colorado State University, 80523, Fort Collins, CO, USA
- Facultad de Farmacia, Escuela "Dr. Jesús María Bianco", Universidad Central de Venezuela (UCV), Paseo Los Ilustres, Los Chaguaramos, 1050, Caracas, Venezuela
| | - Debbie C Crans
- Department of Chemistry, Colorado State University, 80523, Fort Collins, CO, USA
- Cell and Molecular Biology Program, Colorado State University, 80523, Fort Collins, CO, USA
| | - Urszula K Komarnicka
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
- Department of Chemistry, Colorado State University, 80523, Fort Collins, CO, USA
| |
Collapse
|
19
|
Liang F, Li C, Liu Y, Sui Y. Apelin-13 Protects Against Myocardial Hypoxia/Reoxygenation (H/R) Injury by Inhibiting Ferroptosis Via Nrf2 Activation. J Biochem Mol Toxicol 2025; 39:e70223. [PMID: 40152053 DOI: 10.1002/jbt.70223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/15/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Ischemia-reperfusion (IR)-induced myocardial damage represents a major pathological event in coronary artery disease (CAD). Effective therapeutic strategies are urgently needed to improve clinical outcomes for CAD patients. Apelin-13, primarily produced by magnocellular neurons, exhibits diverse biological functions across various cell types and tissues. However, its role in myocardial IR injury remains unexplored. In this study, we utilized an in vitro model of myocardial IR injury using H9c2 cardiomyocytes to investigate the potential protective effects of Apelin-13. Our findings reveal that Apelin-13 protects against hypoxia/reoxygenation (H/R)-induced oxidative stress in H9c2 cells by reducing mitochondrial reactive oxygen species (ROS) and malondialdehyde (MDA) levels, while enhancing superoxide dismutase (SOD) activity. Additionally, Apelin-13 alleviates H/R-induced mitochondrial dysfunction, as evidenced by increased mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) production. Crucially, Apelin-13 mitigates H/R-induced cardiomyocyte injury, as shown by reduced levels of creatine kinase-myocardial band (CK-MB), cardiac troponin I (cTnI), and lactate dehydrogenase (LDH). Remarkably, Apelin-13 also counteracts ferroptosis during H/R by decreasing ferrous iron (Fe²⁺) concentrations, increasing glutathione (GSH) levels, and suppressing glutathione peroxidase 4 (GPX4) and ferritin heavy chain 1 (FTH1) expression. These protective actions were negated by the ferroptosis inducer Erastin. Further investigation revealed that Apelin-13 activates the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) through enhanced nuclear translocation and upregulation of heme oxygenase-1 (HO-1). Conversely, Nrf2 knockdown nullified the protective effects of Apelin-13 against ferroptosis and cardiomyocyte injury, underscoring the critical involvement of Nrf2 in mediating these benefits. Collectively, our results highlight the promising therapeutic potential of Apelin-13 in managing CAD.
Collapse
Affiliation(s)
- Fan Liang
- Department of General Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chen Li
- Department of General Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yumiao Liu
- Department of General Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yanbo Sui
- Department of General Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
20
|
Zhang L, Li Y, Qian Y, Xie R, Peng W, Zhou W. Advances in the Development of Ferroptosis-Inducing Agents for Cancer Treatment. Arch Pharm (Weinheim) 2025; 358:e202500010. [PMID: 40178208 DOI: 10.1002/ardp.202500010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 04/05/2025]
Abstract
Cancer is the main leading cause of death worldwide and poses a great threat to human life and health. Although pharmacological treatment with chemotherapy and immunotherapy is the main therapeutic strategy for cancer patients, there are still many shortcomings during the treatment such as incomplete killing of cancer cells and development of drug resistance. Emerging evidence indicates the promise of inducing ferroptosis for cancer treatment, particularly for eliminating aggressive malignancies that are resistant to conventional therapies. This review covers recent advances in important regulatory targets in the ferroptosis metabolic pathway and ferroptosis inducers (focusing mainly on the last 3 years) to delineate their design, mechanisms of action, and anticancer applications. To date, many compounds, including inhibitors, degraders, and active molecules from traditional Chinese medicine, have been demonstrated to have ferroptosis-inducing activity by targeting the different biomolecules in the ferroptosis pathway. However, strictly defined ferroptosis inducers have not yet been approved for clinical use; therefore, the discovery of new highly active, less toxic, and selective compounds remains the goal of further research in the coming years.
Collapse
Affiliation(s)
- Li Zhang
- Maternal and Child Health Department, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, Zhejiang Province, China
| | - Yulong Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yufeng Qian
- Medical Research Center, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Ruliang Xie
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, Jiangsu Province, China
| | - Wei Peng
- Medical Research Center, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
21
|
Su W, Wang H, Pan J, Zhou Q. Advances in Sonodynamic Therapy: Focus on Ferroptosis. J Med Chem 2025; 68:5976-5992. [PMID: 40063557 DOI: 10.1021/acs.jmedchem.4c02603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Ferroptosis is a nonapoptotic form of cell death discovered in 2012. Noninvasive treatments regulating ferroptosis are important for a wide range of diseases. Among the noninvasive treatments, sonodynamic therapy (SDT) has become promising due to its strong tissue penetration and few side effects. In recent years, targeted drug delivery platforms constructed on the basis of SDT have provided an efficient delivery mode for the regulation of ferroptosis. Based on the latest research reports, this Perspective introduces the basic mechanism of SDT and the influencing factors of therapeutic effects, elucidates the significance of ferroptosis-targeted SDT, and summarizes the recent studies on ferroptosis-targeted SDT through different pathways. We also present innovative studies of composite ultrasound-responsive drug delivery platforms. Finally, a brief summary and outlook based on current ferroptosis-targeted SDT are presented.
Collapse
Affiliation(s)
- Wendi Su
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hao Wang
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Juhong Pan
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Zhou
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
22
|
Wei H, Peng J. Integrated Analysis of Bulk and Single-Cell RNA Sequencing Data Reveal a Novel Prognostic Signature of Combining Cuproptosis- and Ferroptosis-Related Genes in Hepatocellular Carcinoma. Int J Mol Sci 2025; 26:2779. [PMID: 40141422 PMCID: PMC11943219 DOI: 10.3390/ijms26062779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
As a common malignancy, hepatocellular carcinoma (HCC) proliferation and metastasis could be promoted by ferroptosis and cuproptosis. In this study, we screened out the differentially expressed cuproptosis- and ferroptosis-related genes (CFRGs) and identified the 17 informative prognosis-associated genes. A CFRG scoring model was constructed based on the subtypes identified by consensus clustering analysis and principal component analysis (PCA). Furthermore, the immune profile, expression of immune checkpoint genes (ICGs) and drug susceptibility were also compared between the two CFRG score groups. The results showed that patients with a high CFRG score had higher survival probabilities. The correlation analysis suggested that CFRG scores were negatively correlated with activated CD4.T.cell. The expression patterns of thirty ICGs and the half-maximal inhibitory concentration (IC50) values of 128 drugs displayed significant differences between the two CFRG score groups. A statistically significant difference in the efficacy of sorafenib was found between the two CFRG score groups. Moreover, based on multivariate COX regression analysis and weighted gene co-expression network analysis (WGCNA), we screened DLAT and SLC2A1 as signature genes. Molecular docking analysis revealed that DLAT and SLC2A1 had a strong binding affinity toward camptothecin, rapamycin, dactolisib, and luminespib. The correlation between the CFRG score and single-cell characteristics was further explored. The study depended on our understanding of the biological function of CFRGs in HCC and provided new insights for developing treatment strategies.
Collapse
Affiliation(s)
- Hua Wei
- School of Resources and Environmental Science and Engineering, Hubei University of Science and Technology, Xianning 437100, China
- Research Center of Beidou, Industrial Development of Key Research Institute of Humanities and Social Sciences of Hubei Province, Hubei University of Science and Technology, Xianning 437100, China
| | - Jiaxin Peng
- School of Computer Science, National Unversity of Defense Technology, Changsha 410073, China;
| |
Collapse
|
23
|
Ding N, Kang Y, Tan X, Tang Y, Zhang Y, He Y. Analysis of expression characteristics of ferroptosis-related lncRNAs in gastrointestinal cancer patients in Asia. Discov Oncol 2025; 16:306. [PMID: 40072763 PMCID: PMC11904047 DOI: 10.1007/s12672-024-01733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/19/2024] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Asian cancer patients have become the highest morbidity and mortality group, and gastrointestinal tumors account for the majority of them, so it is urgent to find effective targets. Therefore, ferroptosis-related lncRNAs models were established to predict the prognosis and clinical immune characteristics of GI cancer. METHODS RNA sequencing and clinical data were collected from the TCGA database (LIHC, STAD, ESCA, PAAD, COAD, CHOL, and READ) of patients with gastrointestinal cancer in Asia. Download ferrodroptosis genes from FerrDb. Through R language, differential genes were identified, prognostic related LncRNAs were screened, and risk scores were obtained by risk formula to build models. Survival analysis, risk heat map, COX regression and ROC were used to evaluate the risk model. Establish Nomogram and clinically relevant heat maps. GSEA software was used to analyze gene enrichment and immune-related characteristics in high and low risk groups. LncRNA expression was validated through paired sample differential analysis and qRT-PCR, and the drug sensitivity of genes was also analyzed. RESULTS The transcriptome data of 297 cases and clinical data of 322 cases were downloaded from TCGA, and the intersection of ferroptosis-related genes were obtaine. Cox analysis revealed 48 ferroptosis-related LncRNAs associated with prognosis. Through survival analysis, risk heatmap, COX regression and ROC, it was found that the risk model was highly accurate and efficient in predicting prognosis. KEGG-related GSEA enrichment analysis showed that 12 related pathways were significantly expressed in the low-risk group. Four immune-related functions were significantly higher in the high-risk group than in the low-risk group, and the expression of all immune checkpoints were significantly higher in the high-risk group than in the low-risk group. The three LncRNAs in the model exhibited varying expression levels across different tumors and obtained drug sensitivity data. CONCLUSIONS Our results reveal innovative and strong evidence that ferroptosis-related lncRNAs can be used as biomarkers for the treatment and prognosis of Asian GI cancer.
Collapse
Affiliation(s)
- Ning Ding
- School of Biomedical Sciences, Hunan University, No. 100, Fubu River Road, Yuelu District, Changsha, 410082, Hunan, People's Republic of China
- Department of Anorectal Surgery, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, 58 Lushan Rd., Yuelu District, Changsha, 410006, Hunan, People's Republic of China
| | - Ying Kang
- School of Biomedical Sciences, Hunan University, No. 100, Fubu River Road, Yuelu District, Changsha, 410082, Hunan, People's Republic of China
| | - Xiaoxiao Tan
- School of Biomedical Sciences, Hunan University, No. 100, Fubu River Road, Yuelu District, Changsha, 410082, Hunan, People's Republic of China
| | - Yanbo Tang
- Department of Anorectal Surgery, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, 58 Lushan Rd., Yuelu District, Changsha, 410006, Hunan, People's Republic of China
| | - Yingjie Zhang
- School of Biomedical Sciences, Hunan University, No. 100, Fubu River Road, Yuelu District, Changsha, 410082, Hunan, People's Republic of China.
| | - Yongheng He
- Department of Anorectal Surgery, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, 58 Lushan Rd., Yuelu District, Changsha, 410006, Hunan, People's Republic of China.
| |
Collapse
|
24
|
Wang D, Shen J, Wang Y, Cui H, Li Y, Zhou L, Li G, Wang Q, Feng X, Qin M, Dong B, Yang P, Li Y, Ma X, Ma J. Mechanisms of Ferroptosis in bone disease: A new target for osteoporosis treatment. Cell Signal 2025; 127:111598. [PMID: 39788305 DOI: 10.1016/j.cellsig.2025.111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Osteoporosis (OP) is a common disease in the elderly, characterized by decreased bone strength, reduced bone density, and increased fracture risk. There are two clinical types of osteoporosis: primary osteoporosis and secondary osteoporosis. The most common form is postmenopausal osteoporosis, which is caused by decreased estrogen production after menopause. Secondary osteoporosis, on the other hand, occurs when certain medications, diabetes, or nutritional deficiencies lead to a decrease in bone density. Ferroptosis, a new iron-dependent programmed cell death process, is critical in regulating the development of osteoporosis, but the underlying molecular mechanisms are complex. In the pathologic process of osteoporosis, several studies have found that ferroptosis may occur in osteocytes, osteoblasts, and osteoclasts, cell types closely related to bone metabolism. The imbalance of iron homeostasis in osteoblasts and excessive iron accumulation can promote lipid peroxidation through the Fenton reaction, which induces ferroptosis in osteoblasts and affects their role in regulating bone metabolism. Ferroptosis in osteoblasts inhibits bone formation and reduces the amount of new bone production. Osteoclast-associated ferroptosis abnormalities, on the other hand, may alter the homeostasis of bone resorption. In this paper, we start from the molecular mechanism of ferroptosis, and introduce the ways in which ferroptosis affects the physiological and pathological processes of the body. After that, the effects of ferroptosis on osteoblasts and osteoclasts will be discussed separately to elucidate the molecular mechanism between ferroptosis and osteoporosis, which will provide a new breakthrough for the prevention and treatment of osteoporosis and a more effective and better idea for the treatment strategy of osteoporosis.
Collapse
Affiliation(s)
- Dong Wang
- College of Integrative Medicine of Tianjin University of traditional Chinese Medicine, Tianjin 301617,China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin 301617, China
| | - Jiahui Shen
- College of Integrative Medicine of Tianjin University of traditional Chinese Medicine, Tianjin 301617,China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Wang
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Hongwei Cui
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Yanxin Li
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Liyun Zhou
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Guang Li
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Qiyu Wang
- College of Integrative Medicine of Tianjin University of traditional Chinese Medicine, Tianjin 301617,China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaotian Feng
- College of Integrative Medicine of Tianjin University of traditional Chinese Medicine, Tianjin 301617,China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin 301617, China
| | - Mengran Qin
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Benchao Dong
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Peichuan Yang
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Yan Li
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Xinlong Ma
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Jianxiong Ma
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China.
| |
Collapse
|
25
|
Jin N, Qian YY, Jiao XF, Wang Z, Li X, Pan W, Jiang JK, Huang P, Wang SY, Jin P, Gao QL, Liu D, Xia Y. Niraparib restricts intraperitoneal metastases of ovarian cancer by eliciting CD36-dependent ferroptosis. Redox Biol 2025; 80:103528. [PMID: 39922130 PMCID: PMC11851289 DOI: 10.1016/j.redox.2025.103528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025] Open
Abstract
Ovarian cancer (OC) is prone to peritoneum or omentum dissemination, thus giving rise to the formidable challenge of unresectable surgery and a dismal survival rate. Although niraparib holds a pivotal role in the maintenance treatment of OC, its effect on suppressing metastases during primary intervention remains enigmatic. Recently, we initiated a prospective clinical study (NCT04507841) in order to evaluate the therapeutic efficacy of neoadjuvant niraparib monotherapy for advanced OC with homologous recombination deficiency. An analysis of patient tumor burden before and after the niraparib challenge showed a remarkable vulnerability of OC intraperitoneal metastases to niraparib exposure. This killing capacity of niraparib was closely associated with the accumulation of fatty acids within the abdomen, which was confirmed by the increased susceptibility of tumor cells to niraparib treatment in the presence of fatty acids. In the context of abundant fatty acids, niraparib elevated intracellular levels of fatty acids and lipid peroxidation, leading to subsequent tumor cell ferroptosis in a p53 and BRCA-independent manner. Notably, under niraparib exposure, a critical fatty acid transporter CD36 was dramatically upregulated in tumors, facilitating excessive uptake of fatty acids. Pharmacological inhibition of either ferroptosis or CD36 impaired the anti-tumor activity of niraparib both in vitro and in murine intraperitoneal ID8 tumor models. Our findings demonstrate ferroptosis as a novel mechanism underlying the regression of OC metastases induced by niraparib, thereby offering tantalizing prospects for the frontline application of this agent in the management of OC.
Collapse
Affiliation(s)
- Ning Jin
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi-yu Qian
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-fei Jiao
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhen Wang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Clinical Medicine Research Centre of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, China
| | - Xin Li
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wen Pan
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jin-kai Jiang
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pu Huang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Si-yuan Wang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ping Jin
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qing-lei Gao
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Liu
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Xia
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
26
|
Lin C, Xin L, Xie S. Knockdown of VDAC1 Promotes Ferroptosis in Diffuse Large B-Cell Lymphoma. Hematol Oncol 2025; 43:e70054. [PMID: 39983084 DOI: 10.1002/hon.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/22/2025] [Accepted: 02/11/2025] [Indexed: 02/23/2025]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a prevalent subtype of non-Hodgkin's lymphoma (NHL). Ferroptosis is a novel form of cell death involved in multiple tumor development. However, the relationship between ferroptosis-related genes and DLBCL has not been extensively studied. The GSE95290 dataset was downloaded from the Gene Expression Omnibus (GEO) database and merged with genes associated with ferroptosis to screen differentially expressed genes (DEGs). Hub genes were identified by constructing a protein-protein interaction (PPI) network. The messenger RNA (mRNA) expressions of hub genes were subsequently detected in vitro using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). The impact of voltage dependent anion channel 1 (VDAC1) on the proliferation, apoptosis, and ferroptosis of DLBCL was evaluated using Cell Counting Kit-8, flow cytometry, and relevant ferroptosis assays, respectively. Six highly expressed hub genes were identified, all of which could be used as diagnostic biomarkers for DLBCL. In vitro studies revealed that suppressing VDAC1 expression inhibited DLBCL cell proliferation and promoted apoptosis. Furthermore, knockdown of VDAC1 promoted ferroptosis in DLBCL cells and xenograft tumor models, resulting in elevated levels of malondialdehyde (MDA) and iron and increased protein levels of Acyl-CoA synthetase long-chain family 4 (ACSL4) and cyclooxygenase-2 (COX2). Conversely, glutathione (GSH) and superoxide dismutase (SOD) levels were reduced, accompanied by decreased protein levels of glutathione peroxidase 4 (GPX4) and ferritin heavy chain1 (FTH1). VDAC1 knockdown induces ferroptosis in DLBCL, which provides new insights into the pathogenic mechanisms of DLBCL.
Collapse
Affiliation(s)
- Chuanming Lin
- Department of Hematology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Liuyan Xin
- Department of Hematology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shuiling Xie
- Department of Hematology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
27
|
Deng RM, Huang G, Wang T, Zhou J. Regulated programmed cell death in sepsis associated acute lung injury: From pathogenesis to therapy. Int Immunopharmacol 2025; 148:114111. [PMID: 39832461 DOI: 10.1016/j.intimp.2025.114111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/28/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Sepsis associated acute lung injury (SALI) is a common complication in patients with severe sepsis and a disease with high morbidity and mortality in ICU patients. The main mechanism of SALI is pulmonary hypoperfusion due to hypotension and shock caused by sepsis, which leads to ischemic necrosis of alveolar endothelial cells and eventually lung failure. At present, SALI therapy mainly includes antibiotic therapy, fluid resuscitation, transfusion products and vasoactive drugs, but these strategies are not satisfactory. Therefore, focusing on the role of different cell death patterns in SALI may help in the search for effective treatments. Understanding the molecular mechanisms of SALI and identifying pathways that inhibit lung cell death are critical to developing effective drug therapies to prevent the progression of SALI. Cell death is controlled by programmed cell death (PCD) pathways, including apoptosis, necroptosis, ferroptosis, pyroptosis and autophagy. There is growing evidence that PCD plays an important role in the pathogenesis of SALI, and inhibitors of various types of PCD represent a promising therapeutic strategy. Therefore, understanding the role and mechanism of PCD in SALI is conducive to our understanding of its pathological mechanism, and is of great significance for the treatment of SALI. In this article, we discuss recent advances in the role of PCD in SALI, show how different signaling pathways (such as NF-κB, PI3K/Akt, mTOR, and Nrf2) regulate PCD to regulate SALI development, and discuss the associations between various types of PCD. The aim is to explore the molecular mechanism behind SALI and to find new targets for SALI therapy.
Collapse
Affiliation(s)
- Rui-Ming Deng
- Department of Anesthesiology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| | - Guiming Huang
- Department of Anesthesiology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Tingting Wang
- Department of Anaesthesia, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, PR China
| | - Juan Zhou
- Department of Thyroid and Breast Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
28
|
Eskander G, Abdelhamid SG, Wahdan SA, Radwan SM. Insights on the crosstalk among different cell death mechanisms. Cell Death Discov 2025; 11:56. [PMID: 39929794 PMCID: PMC11811070 DOI: 10.1038/s41420-025-02328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/23/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
The phenomenon of cell death has garnered significant scientific attention in recent years, emerging as a pivotal area of research. Recently, novel modalities of cellular death and the intricate interplay between them have been unveiled, offering insights into the pathogenesis of various diseases. This comprehensive review delves into the intricate molecular mechanisms, inducers, and inhibitors of the underlying prevalent forms of cell death, including apoptosis, autophagy, ferroptosis, necroptosis, mitophagy, and pyroptosis. Moreover, it elucidates the crosstalk and interconnection among the key pathways or molecular entities associated with these pathways, thereby paving the way for the identification of novel therapeutic targets, disease management strategies, and drug repurposing.
Collapse
Affiliation(s)
- Georgette Eskander
- Postgraduate program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | - Sara A Wahdan
- Pharmacology and toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sara M Radwan
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
29
|
Lenoci D, Serafini MS, Lucchetta M, Cavalieri S, Brakenhoff RH, Hoebers F, Scheckenbach K, Poli T, Licitra L, De Cecco L. Ferroptosis-Related Gene Signatures: Prognostic Role in HPV-Positive Oropharyngeal Squamous Cell Carcinoma. Cancers (Basel) 2025; 17:530. [PMID: 39941896 PMCID: PMC11817470 DOI: 10.3390/cancers17030530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Despite advances in the management of head and neck squamous cell carcinoma (HNSCC), prognostic models and treatment strategies remain inadequate, particularly for HPV-positive oropharyngeal squamous cell carcinoma (OPSCC). The rising incidence of HPV-positive OPSCC highlights an urgent need for innovative therapeutic approaches. Ferroptosis, a regulated form of non-apoptotic cell death, has gained attention for its role in cancer progression, but its potential as a prognostic and therapeutic target in HPV-positive OPSCC remains largely unexplored. This study investigates the role of ferroptosis in HPV-positive OPSCC, aiming to identify prognostic markers and provide insights into potential therapeutic strategies that could improve patient outcomes. METHODS Thirteen ferroptosis gene expression signatures were retrieved from the literature, and their performance and association to the immune microenvironment were validated on a meta-analysis of 267 HPV-positive cases (Metanalysis-HPV267) and 286 samples from the BD2Decide project (BD2-HPV286). RESULTS Our analysis revealed that specific ferroptosis-related gene expression signatures, particularly FER3, FER4, FER6, and FER12, are significantly associated (p-value < 0.05) with high-risk patient groups and adverse tumor microenvironment features, including suppressed immune activity and enhanced stromal involvement. Elevated expression of CAV1, a ferroptosis suppressor, further delineates high-risk profiles. CONCLUSIONS These findings highlight the prognostic significance of ferroptosis in stratifying patients and identifying those with poorer clinical outcomes. Targeting ferroptosis pathways represents a novel and promising approach to addressing the unmet need for effective prognostic and therapeutic strategies in HPV-positive OPSCC. Future research should focus on translating these findings into clinical applications to advance precision oncology and improve outcomes for this growing patient population.
Collapse
Affiliation(s)
- Deborah Lenoci
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy; (D.L.); (M.S.S.); (M.L.)
| | - Mara Serena Serafini
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy; (D.L.); (M.S.S.); (M.L.)
| | - Marta Lucchetta
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy; (D.L.); (M.S.S.); (M.L.)
| | - Stefano Cavalieri
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy; (S.C.); (L.L.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Ruud H. Brakenhoff
- Department of Otolaryngology-Head and Neck Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
- Cancer Biology and Immunology, Cancer Center Amsterdam (CCA), 1081 HV Amsterdam, The Netherlands
| | - Frank Hoebers
- Department of Radiation Oncology (MAASTRO), Research Institute GROW, Maastricht University, 6229 ET Maastricht, The Netherlands;
| | - Kathrin Scheckenbach
- Department of Otolaryngology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Tito Poli
- Unit of Maxillofacial Surgery, Department of Medicine and Surgery, University of Parma-University Hospital of Parma, 43126 Parma, Italy;
| | - Lisa Licitra
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy; (S.C.); (L.L.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Loris De Cecco
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy; (D.L.); (M.S.S.); (M.L.)
| |
Collapse
|
30
|
Zhang Z, Wang H, Kan X, Zhang X, Xu S, Cai J, Guo J. The interplay of ferroptosis and oxidative stress in the pathogenesis of aortic dissection. Front Pharmacol 2025; 16:1519273. [PMID: 39974735 PMCID: PMC11835687 DOI: 10.3389/fphar.2025.1519273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/09/2025] [Indexed: 02/21/2025] Open
Abstract
Aortic dissection (AD) is a life-threatening vascular condition marked by the separation or tearing of the aortic media. Ferroptosis, a form of iron-dependent programmed cell death, occurs alongside lipid peroxidation and the accumulation of reactive oxygen species (ROS). The relationship between ferroptosis and AD lies in its damaging effect on vascular cells. In AD, ferroptosis worsens the damage to vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), thereby weakening the vascular wall's structural integrity and accelerating the onset and progression of the condition. However, the molecular mechanisms through which ferroptosis regulates the onset and progression of AD remain poorly understood. This article explores the relationship between ferroptosis and AD.
Collapse
Affiliation(s)
- Zhaoshan Zhang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| | - Haichao Wang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| | - Xi Kan
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| | - Xiaozhao Zhang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| | - Senping Xu
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| | - Jie Cai
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| | - Jiawei Guo
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| |
Collapse
|
31
|
Yu Y, Zhang L, Zhang D, Dai Q, Hou M, Chen M, Gao F, Liu XL. The role of ferroptosis in acute kidney injury: mechanisms and potential therapeutic targets. Mol Cell Biochem 2025; 480:759-784. [PMID: 38943027 DOI: 10.1007/s11010-024-05056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Acute kidney injury (AKI) is one of the most common and severe clinical renal syndromes with high morbidity and mortality. Ferroptosis is a form of programmed cell death (PCD), is characterized by iron overload, reactive oxygen species accumulation, and lipid peroxidation. As ferroptosis has been increasingly studied in recent years, it is closely associated with the pathophysiological process of AKI and provides a target for the treatment of AKI. This review offers a comprehensive overview of the regulatory mechanisms of ferroptosis, summarizes its role in various AKI models, and explores its interaction with other forms of cell death, it also presents research on ferroptosis in AKI progression to other diseases. Additionally, the review highlights methods for detecting and assessing AKI through the lens of ferroptosis and describes potential inhibitors of ferroptosis for AKI treatment. Finally, the review presents a perspective on the future of clinical AKI treatment, aiming to stimulate further research on ferroptosis in AKI.
Collapse
Affiliation(s)
- Yanxin Yu
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Lei Zhang
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Die Zhang
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Qiangfang Dai
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Mingzheng Hou
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Meini Chen
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Feng Gao
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Xiao-Long Liu
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China.
| |
Collapse
|
32
|
Chen Y, Luo W, Wu Y. Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity and the underlying mechanism. Toxicol Appl Pharmacol 2025; 495:117179. [PMID: 39645202 DOI: 10.1016/j.taap.2024.117179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/06/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Ferroptosis is a key process in doxorubicin (DOX)-induced cardiotoxicity and is a potentially important therapeutic target. Thymoquinone (TQ) is a monoterpenoid compound isolated from black cumin extract that exhibits antitumor effects and acts as a powerful mitochondrial-targeted antioxidant. In this study, we investigated the effect of TQ on DOX-induced cardiotoxicity and the potential underlying mechanisms. METHODS AND RESULTS Mice were randomly assigned to the control (CON) group, DOX (20 mg/kg) group, TQ10 (10 mg/kg/d) group, and TQ20 (20 mg/kg/d) group and intraperitoneally injected with DOX and different doses of TQ. The electrocardiogram, blood pressure, and cardiac ultrasound changes during the experiments showed that TQ exerted a protective effect against DOX-induced cardiotoxicity. The glutathione (GSH), malondialdehyde (MDA), and total antioxidant capacity (T-AOC) levels in the mouse heart tissue were significantly different from those in the CON group. Western blot analysis revealed that the expression of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), glutathione peroxidase 4 (GPX4), and ferritin heavy chain 1 (FTH1) in the DOX group was lower than that in the control group. TQ treatment decreased these changes, indicating that TQ alleviated DOX-induced cardiotoxicity and increased the antioxidant capacity of murine cardiomyocytes. The mechanism might involve activating the Nrf2/HO-1 signaling pathway and reducing iron-mediated death. Immunohistochemical staining revealed similar effects on the expression levels of NQO1, COX-2, and NOX4. Moreover, transmission electron microscopy indicated that TQ protected murine cardiomyocytes against DOX-induced mitochondrial damage. CONCLUSION The results of this study suggested that TQ can decrease oxidative stress levels and DOX-induced cardiotoxicity by activating the Nrf2/HO-1 signaling pathway to alleviate ferroptosis in murine cardiomyocytes.
Collapse
Affiliation(s)
- Yi Chen
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi, No. 1 Minde Road, Nanchang, Jiangxi 330006, China
| | - Wei Luo
- Department of Cardiology, The First People's Hospital of Nankang District, Ganzhou of Jiangxi, Xinkang East Avenue, Dongshan Street Office, Ganzhou, Jiangxi 341000, China.
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi, No. 1 Minde Road, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
33
|
Mokhtari Tabar MM, Ghasemian A, Kouhpayeh A, Behmard E. Computational discovery of novel GPX4 inhibitors from herbal sources as potential ferroptosis inducers in cancer therapy. Arch Biochem Biophys 2025; 764:110231. [PMID: 39603376 DOI: 10.1016/j.abb.2024.110231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Ferroptosis, a cell death regulation process dependent on iron levels, represents a promising therapeutic target in cancer treatment. However, the scarcity of potent ferroptosis inducers hinders advancement in this area. This study addresses this gap by screening the PubChem database for compounds with favorable ADMET properties to identify potential GPX4 inhibitors. A structure-based virtual screening was conducted to compare binding affinities of selected compounds to that of RSL3. The candidates-isochondrodendrine, hinokiflavone, irinotecan, and ginkgetin-were further analyzed through molecular dynamics (MD) simulations to assess their stability within the GPX4-ligand complexes. The computed binding free energies for RSL3, isochondrodendrine, hinokiflavone, irinotecan and ginkgetin were -80.12, -107.31, -132.03, and -137.52 and -91.11 kJ/mol, respectively, indicating their significantly higher inhibitory effects compared to RSL3. These findings highlight the potential for developing novel GPX4 inhibitors to promote ferroptosis, warranting further experimental validation.
Collapse
Affiliation(s)
- Mohammad Mahdi Mokhtari Tabar
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran; Department of Biochemistry, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Amin Kouhpayeh
- Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Esmaeil Behmard
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
34
|
Naderi S, Khodagholi F, Janahmadi M, Motamedi F, Torabi A, Batool Z, Heydarabadi MF, Pourbadie HG. Ferroptosis and cognitive impairment: Unraveling the link and potential therapeutic targets. Neuropharmacology 2025; 263:110210. [PMID: 39521042 DOI: 10.1016/j.neuropharm.2024.110210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases, share key characteristics, notably cognitive impairment and significant cell death in specific brain regions. Cognition, a complex mental process allowing individuals to perceive time and place, is disrupted in these conditions. This consistent disruption suggests the possibility of a shared underlying mechanism across all neurodegenerative diseases. One potential common factor is the activation of pathways leading to cell death. Despite significant progress in understanding cell death pathways, no definitive treatments have emerged. This has shifted focus towards less-explored mechanisms like ferroptosis, which holds potential due to its involvement in oxidative stress and iron metabolism. Unlike apoptosis or necrosis, ferroptosis offers a novel therapeutic avenue due to its distinct biochemical and genetic underpinnings, making it a promising target in neurodegenerative disease treatment. Ferroptosis is distinguished from other cellular death mechanisms, by distinctive characteristics such as an imbalance of iron hemostasis, peroxidation of lipids in the plasma membrane, and dysregulated glutathione metabolism. In this review, we discuss the potential role of ferroptosis in cognitive impairment. We then summarize the evidence linking ferroptosis biomarkers to cognitive impairment brought on by neurodegeneration while highlighting recent advancements in our understanding of the molecular and genetic mechanisms behind the condition. Finally, we discuss the prospective therapeutic implications of targeting ferroptosis for the treatment of cognitive abnormalities associated with neurodegeneration, including natural and synthetic substances that suppress ferroptosis via a variety of mechanisms. Promising therapeutic candidates, including antioxidants and iron chelators, are being explored to inhibit ferroptosis and mitigate cognitive decline.
Collapse
Affiliation(s)
- Soudabeh Naderi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center, Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Torabi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zehra Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | - Hamid Gholami Pourbadie
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
35
|
Zou Q, Zhou X, Lai J, Zhou H, Su J, Zhang Z, Zhuang X, Liu L, Yuan R, Li S, Yang S, Qu X, Feng J, Liu Y, Li Z, Huang S, Shi Z, Yan Y, Zheng Z, Ye W, Qi Q. Targeting p62 by sulforaphane promotes autolysosomal degradation of SLC7A11, inducing ferroptosis for osteosarcoma treatment. Redox Biol 2025; 79:103460. [PMID: 39657365 PMCID: PMC11681892 DOI: 10.1016/j.redox.2024.103460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024] Open
Abstract
Osteosarcoma (OS) is the most prevalent malignant bone tumor in children and adolescents worldwide. Identification of novel therapeutic targets and development of targeted drugs are one of the most feasible strategies for OS treatment. Ferroptosis, a recently discovered mode of programmed cell death, has been implicated as a potential strategy for cancer therapy. Sulforaphane (SFN), the main bioactive compound derived from cruciferous vegetables, has shown potential anti-cancer effects with negligible toxicity. However, the role of ferroptosis in the effect of SFN on OS remains unknown. In the present study, we found that SFN acted as a potent ferroptosis inducer in OS, which was demonstrated by various inhibitors of cell death. The SFN-induced ferroptotic cell death was characterized by elevated ROS levels, lipid peroxidation, and GSH depletion, which was dependent on decreased levels of SLC7A11. Mechanically, SFN directly targeted p62 protein and enhanced p62/SLC7A11 protein-protein interaction, thereby promoting the lysosomal degradation of SLC7A11 and triggering ferroptosis. Notably, both subcutaneous and intratibial OS models in nude mice confirmed the ferroptosis associated anti-cancer efficacy of SFN in vivo. Hence, our findings demonstrate that SFN exerts its anti-cancer effects through inducing SLC7A11-dependent ferroptosis in OS, providing compelling evidence for the application of SFN in OS treatment.
Collapse
Affiliation(s)
- Qiuming Zou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaofeng Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianqin Lai
- Department of Gastrointestinal Surgery, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Haixia Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jinxuan Su
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhijing Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaosong Zhuang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Lili Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Ruijie Yuan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Sijia Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Siyu Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xinyi Qu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jiezhu Feng
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yongqi Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zisheng Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shiting Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, Guangdong Provincial Biotechnology & Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Genomic Medicine Engineering Research Center of Ministry of Education, MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yu Yan
- Functional Experimental Teaching Center, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Zhiming Zheng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| | - Wencai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Qi Qi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
36
|
Zhang X, Zhang F, Li M, Sun Q, Li Y, Fu Y, Zhang Y. Epicatechin attenuates emamectin benzoate-induced liver injury in grass carp by activating Nrf2/GPX4 signaling pathway. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110118. [PMID: 39809417 DOI: 10.1016/j.fsi.2025.110118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Emamectin benzoate (EMB) is an antibiotic insecticide pesticide modified from avermectin. In the current study, we performed an in-depth investigation of the protective effects of epicatechin on EMB-induced liver injury in common carps. The carps were cultured in an aquatic environment containing 2.4 μg/L of EMB for 30 days to establish the model. The results provide direct evidence that epicatechin could attenuate EMB-induced liver injury, as confirmed by the inhibition of epicatechin on EMB-induced liver pathological injury, serum glucose (GLU), cortisol (COR), aspartate aminotransferase (AST), alanine aminotransferase (ALT), adenosine deaminase (ADA), and alkaline phosphatase (ALP) levels. Epicatechin also inhibited EMB-induced inflammation, as confirmed by the inhibition of epicatechin on tumor necrosis factor (TNF-α) and Interleukin-1β (IL-1β) production, and nuclear factor kappa-B (NF-κB) activation induced by EMB. Moreover, epicatechin could attenuate EMB-induced ferroptosis, as confirmed by the inhibition of epicatechin on malondialdehyde (MDA) and Fe2+ production, and up-regulation of Adenosine Triphosphate (ATP), Glutathione (GSH) production, and Glutathione Peroxidase 4 (Gpx4) and xCT expression. In addition, epicatechin increased the expression of nuclear factor erythroid-2 related factor 2 (Nrf2) and hemeoxygenase-1 (HO-1). We therefore conclude that epicatechin protected EMB-induced liver injury by preventing ferroptosis through activating Nrf2.
Collapse
Affiliation(s)
- Xinhui Zhang
- College of Animal Science and Technology, Jilin Agriculture Science and Technology University, Jilin City, China
| | - Fengyan Zhang
- College of Animal Science and Technology, Jilin Agriculture Science and Technology University, Jilin City, China
| | - Musen Li
- College of Animal Science and Technology, Jilin Agriculture Science and Technology University, Jilin City, China
| | - Qingsong Sun
- College of Animal Science and Technology, Jilin Agriculture Science and Technology University, Jilin City, China
| | - Yuehong Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Yue Zhang
- College of Animal Science and Technology, Jilin Agriculture Science and Technology University, Jilin City, China.
| |
Collapse
|
37
|
Seok BG, Park E, Park YJ, Kwon HN, Chung SW. PGC1α is a key regulator of erastin-induced mitochondrial dysfunction during ferroptotic cell death. BMB Rep 2025; 58:89-94. [PMID: 39681411 PMCID: PMC11875744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/09/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024] Open
Abstract
A type of programmed cell death called ferroptosis is defined by increased iron-dependent lipid peroxidation. Mitochondria play a central role in iron metabolism. Mitochondrial defects include decreased cristae density, membrane rupture, and decreased mitochondrial membrane density, which occur as a result of ferroptosis. One of the important regulator of mitochondrial biogenesis is PGC1α. While recent studies have begun to explore the association between PGC1α and ferroptosis, the specific role of PGC1α in erastin-induced mitochondrial dysfunction during ferroptotic cell death has not been fully elucidated. In this study, we demonstrate for the first time that PGC1α is a key regulator of erastin-induced mitochondrial-dependent lipid peroxidation and dysfunction during ferroptosis in HT1080 fibrosarcoma cells. In this study, we examined PGC1α function in ferroptosis. Erastin, an inducer of ferroptosis, boosted the expression of PGC1α. Moreover, PGC1α down-regulation reduced erastin-induced ferroptosis. The most important biochemical feature of ferroptosis is the increase in iron ion (Fe2+)-dependent lipid peroxide (LOOH) concentration. Mitochondrial-dependent lipid peroxidation was abolished by PGC1α downregulation. In addition, PGC1α was induced during mitochondrial dysfunction in erastin-induced ferroptosis. Mitochondrial membrane potential loss and mitochondrial ROS production associated with erastin-induced mitochondrial dysfunction were blocked by PGC1α inhibition. In addition, erastin-induced lipid peroxidation in HT1080 fibrosarcoma cells was regulated by PGC1α inhibitor. This phenomenon was also consistent in HT1080 cells transfected with PGC1α shRNA. Taken together, these results suggest that PGC1α is a key factor in erastin-induced mitochondrial-dependent lipid peroxidation and dysfunction during ferroptosis cell death. [BMB Reports 2025; 58(2): 89-92].
Collapse
Affiliation(s)
- Byeong Geun Seok
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Eunhee Park
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Young-Jun Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Hyuk Nam Kwon
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Su Wol Chung
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Korea
- Brain Korea 21 Project, University of Ulsan College of Medicine, University of Ulsan, Seoul 05505, Korea
| |
Collapse
|
38
|
Han H, Li Y, Lin Z, Ma X, Huang W, Lu C, Ma R, Han R. Exosomal miR-130a-3p confers cisplatin resistance in esophageal cancer by regulating ferroptosis via the suppression of METTL14-mediated m6A RNA methylation of FSP1. Int Immunopharmacol 2025; 146:113804. [PMID: 39689599 DOI: 10.1016/j.intimp.2024.113804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Exosomal microRNA (miRNA)s have been proven to affect recipient cell chemoresistance in several cancers. This research attempted to uncover the role of exosomal miRNA and the regulatory mechanism in cisplatin resistance of esophageal cancer (EC). Cisplatin-resistant EC cells (KYSE-150-CisR and TE-1-CisR) were established by the parental cells (KYSE-150 and TE-1) treated with a gradual increase of cisplatin concentration. Exosomes from both cisplatin-resistant EC cells and the parental one were obtained with ultracentrifugation (CisR-exo and CisS-exo), and identified by transmission electron microscopy and nanoparticle tracking analysis. The effect of CisR-exo on the cisplatin resistance of EC was assessed by in vitro (and in vivo functional experiments.Intracellular reactive oxygen species and iron were determined by the corresponding kits. The m6A dot blot assay and methylated RIP-qPCR was conducted to analyze the m6A modification level. Dual-luciferase reporter assay was performed to confirm the intermolecular interaction. Increased levels of miR-130a-3p were observed in both KYSE-150CisR and TE-1CisR cells, as well as their derived CisR-exos when compared with the parental cells and CisS-exos. Exosomal miR-130a-3p from cisplatin-resistant EC cells conferred cisplatin resistance to EC in vitro and in vivo, which might be mediated by the suppression of ferroptosis. Mechanically, KYSE-150CisR derived exosomal miR-130a-3p interacted with METTL14 to inhibit FSP1 (a ferroptosis suppressor) m6A modification of recipient cells. Overexpressing METTL14 restrained the cisplatin resistance disseminated by CisR-exos in KYSE-150 cells. Cisplatin-resistant EC cell-isolated exosomal miR-130a-3p suppressed the m6A modification of FSP1 to modulate ferroptosis, enhancing cisplatin resistance.
Collapse
Affiliation(s)
- Hu Han
- Department of Oncology, The First Affiliated Hospital of Shihezi University, Shihezi 832008, China.
| | - Yan Li
- Medical Department, The First Affiliated Hospital of Shihezi University, Shihezi 832008, China.
| | - Zhiyi Lin
- Department of Oncology, The First Affiliated Hospital of Shihezi University, Shihezi 832008, China.
| | - Xiaoping Ma
- Department of Oncology, The First Affiliated Hospital of Shihezi University, Shihezi 832008, China.
| | - Wukui Huang
- Department of Interventional Diagnosis and Treatment, Affiliated Cancer Hospital, Xinjiang Medical University, Urumqi 830054, China.
| | - Cengceng Lu
- Department of Oncology, The First Affiliated Hospital of Shihezi University, Shihezi 832008, China.
| | - Rongyan Ma
- Department of Oncology, The First Affiliated Hospital of Shihezi University, Shihezi 832008, China.
| | - Rui Han
- Medical Department, The First Affiliated Hospital of Shihezi University, Shihezi 832008, China.
| |
Collapse
|
39
|
Desterke C, Fu Y, Bonifacio-Mundaca J, Monge C, Pineau P, Mata-Garrido J, Francés R. Ferroptosis Transcriptional Regulation and Prognostic Impact in Medulloblastoma Subtypes Revealed by RNA-Seq. Antioxidants (Basel) 2025; 14:96. [PMID: 39857430 PMCID: PMC11761645 DOI: 10.3390/antiox14010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children, typically arising during infancy and childhood. Despite multimodal therapies achieving a response rate of 70% in children older than 3 years, treatment remains challenging. Ferroptosis, a form of regulated cell death, can be induced in medulloblastoma cells in vitro using erastin or RSL3. Using two independent medulloblastoma RNA-sequencing cohorts (MB-PBTA and MTAB-10767), we investigated the expression of ferroptosis-related molecules through multiple approaches, including Weighted Gene Co-Expression Network Analysis (WGCNA), molecular subtype stratification, protein-protein interaction (PPI) networks, and univariable and multivariable overall survival analyses. A prognostic expression score was computed based on a cross-validated ferroptosis signature. In training and validation cohorts, the regulation of the ferroptosis transcriptional program distinguished the four molecular subtypes of medulloblastoma. WGCNA identified nine gene modules in the MB tumor transcriptome; five correlated with molecular subtypes, implicating pathways related to oxidative stress, hypoxia, and trans-synaptic signaling. One module, associated with disease recurrence, included epigenetic regulators and nucleosome organizers. Univariable survival analyses identified a 45-gene ferroptosis prognostic signature associated with nutrient sensing, cysteine and methionine metabolism, and trans-sulfuration within a one-carbon metabolism. The top ten unfavorable ferroptosis genes included CCT3, SNX5, SQOR, G3BP1, CARS1, SLC39A14, FAM98A, FXR1, TFAP2C, and ATF4. Patients with a high ferroptosis score showed a worse prognosis, particularly in the G3 and SHH subtypes. The PPI network highlighted IL6 and CBS as unfavorable hub genes. In a multivariable overall survival model, which included gender, age, and the molecular subtype classification, the ferroptosis expression score was validated as an independent adverse prognostic marker (hazard ratio: 5.8; p-value = 1.04 × 10-9). This study demonstrates that the regulation of the ferroptosis transcriptional program is linked to medulloblastoma molecular subtypes and patient prognosis. A cross-validated ferroptosis signature was identified in two independent RNA-sequencing cohorts, and the ferroptosis score was confirmed as an independent and adverse prognostic factor in medulloblastoma.
Collapse
Affiliation(s)
- Christophe Desterke
- INSERM UMRS-1310, Faculté de Médecine du Kremlin Bicêtre, Université Paris-Saclay, F-94270 Le Kremlin-Bicêtre, France;
| | - Yuanji Fu
- INSERM, CNRS, Institut Necker Enfants Malades, Université Paris Cité, F-75015 Paris, France;
| | - Jenny Bonifacio-Mundaca
- National Tumor Bank, Department of Pathology, National Institute of Neoplastic Diseases, Surquillo 15038, Peru;
| | - Claudia Monge
- Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, INSERM U993, F-75015 Paris, France; (C.M.); (P.P.)
| | - Pascal Pineau
- Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, INSERM U993, F-75015 Paris, France; (C.M.); (P.P.)
| | - Jorge Mata-Garrido
- Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, INSERM U993, F-75015 Paris, France; (C.M.); (P.P.)
| | - Raquel Francés
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, F-75006 Paris, France
| |
Collapse
|
40
|
Chen Z, Zhao Y. The mechanism underlying metastasis in triple-negative breast cancer: focusing on the interplay between ferroptosis, epithelial-mesenchymal transition, and non-coding RNAs. Front Pharmacol 2025; 15:1437022. [PMID: 39881868 PMCID: PMC11774878 DOI: 10.3389/fphar.2024.1437022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a type of breast cancer with lack the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). It is the most aggressive breast cancer and the most difficult to treat due to its poor response to treatments and extremely invasive characteristics. The typical treatment for TNBC frequently results in relapse because of the lack of particular treatment choices. It is urgent to focus on identifying a workable and effective target for the treatment of TNBC. Cancer metastasis is significantly influenced by epithelial-mesenchymal transition (EMT). Ferroptosis is an iron-dependent cell death form, and changes its key factor to affect the proliferation and metastasis of TNBC. Several reports have established associations between EMT and ferroptosis in TNBC metastasis. Furthermore, non-coding RNA (ncRNA), which has been previously described, can also control cancer cell death and metastasis. Thus, in this review, we summarize the correlation and pathways among the ferroptosis, EMT, and ncRNAs in TNBC metastasis. Also, aim to find out a novel strategy for TNBC treatment through the ncRNA-ferroptosis-EMT axis.
Collapse
Affiliation(s)
- Ziyi Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yi Zhao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Healthcare Hospital of Shandong Province Affiliated to Qingdao University, Jinan, Shandong, China
| |
Collapse
|
41
|
Yu FF, Zuo J, Wang M, Yu SY, Luo KT, Sha TT, Li Q, Dong ZC, Zhou GY, Zhang F, Guo X, Ba Y, Wang YJ. Selenomethionine alleviates T-2 toxin-induced articular chondrocyte ferroptosis via the system Xc -/GSH/GPX4 axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117569. [PMID: 39700767 DOI: 10.1016/j.ecoenv.2024.117569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
T-2 toxin can induce bone and cartilage development disorder, and oxidative stress plays an important role in it. It is well known that selenomethionine (Se-Met) has antioxidative stress properties and promotes the repair of cartilage lesion, but it remains unclear whether Se-Met can relieve damaged cartilage exposure to T-2 toxin. Here, the oxidative stress and ferroptosis of chondrocytes exposure to T-2 toxin were observed. Mechanistically, T-2 toxin increased ROS, lipid ROS, MDA and Fe2+ contents in chondrocytes, decreased GSH and GPX4 activity, and inhibited the system Xc-/GSH/GPX4 antioxidant axis. In addition, the mitochondria of chondrocytes shrunk and the mitochondrial crest decreased or disappeared. However, Fer-1 (Ferrostatin-1) inhibited ferroptosis induced by T-2 toxin in chondrocytes. The Se-Met alleviated lipid peroxidation, oxidative stress, and damaged mitochondrial in T-2 toxin-infected chondrocytes, enhanced antioxidant enzyme activity, and activated the system Xc-/GSH/GPX4 axis, thereby antagonizing ferroptosis of chondrocytes and alleviating articular cartilage damage. In conclusion, our findings highlight the essentiality of ferroptosis in chondrocyte caused by T-2 toxin, elucidate how Se-Met offers protection against this injury and provide research evidence for the drug treatment target of Kashin-Beck disease.
Collapse
Affiliation(s)
- Fang-Fang Yu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Juan Zuo
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Department of Medical Technology, Zhengzhou Shuqing Medical College, Zhengzhou, Henan 450064, PR China.
| | - Miao Wang
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Shui-Yuan Yu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Kang-Ting Luo
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Tong-Tong Sha
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Qian Li
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Zai-Chao Dong
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Guo-Yu Zhou
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Feng Zhang
- Institute of Endemic Diseases, School of Public Health of Health Science Center, Xi'an, Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an 710061, PR China.
| | - Xiong Guo
- Institute of Endemic Diseases, School of Public Health of Health Science Center, Xi'an, Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an 710061, PR China.
| | - Yue Ba
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Yan-Jie Wang
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
42
|
Si L, An Y, Zhou J, Lai Y. Neuroprotective effects of baicalin and baicalein on the central nervous system and the underlying mechanisms. Heliyon 2025; 11:e41002. [PMID: 39758400 PMCID: PMC11699331 DOI: 10.1016/j.heliyon.2024.e41002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Baicalin and baicalein are the primary flavonoids derived from the desiccated root of Scutellaria baicalensis, which is a member of the Lamiaceae family; these flavonoids have diverse pharmacological properties and show significant potential for the management of central nervous system disorders. Multiple studies have indicated that these substances effectively reduce the severity of illnesses such as depression, stroke, and degenerative disorders of the central nervous system by exerting antioxidant and anti-inflammatory effects, regulating programmed cell death, and reducing mitochondrial malfunction. Recent studies have highlighted the connection between the accumulation of iron and the ability of baicalein to protect the nervous system. Given the diverse therapeutic effects of baicalein, this review aims to thoroughly investigate the regulatory pharmacological mechanisms through which baicalein influences the development of central nervous system disorders. By elucidating these mechanisms, this review contributes to the development of therapeutic approaches that target disorders of the central nervous system.
Collapse
Affiliation(s)
- Lujia Si
- Acupunture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yupu An
- Acupunture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiahang Zhou
- College of Humanities and Social Sciences, North University of China, Taiyuan, China
| | - Yu Lai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
43
|
Jian J, Wei J. Ferroptosis: A New Pathway in the Interaction between Gut Microbiota and Multiple Sclerosis. FRONT BIOSCI-LANDMRK 2025; 30:26265. [PMID: 39862079 DOI: 10.31083/fbl26265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 01/27/2025]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is a pivotal contributor to the oxidative stress observed in MS. Concurrently, the gut microbiota, known to affect systemic immunity and neurological health, emerges as an important regulator of iron homeostasis and inflammatory responses, thereby influencing ferroptotic pathways. This review investigates how gut microbiota dysbiosis and ferroptosis impact MS, emphasizing their potential as therapeutic targets. Through an integrated examination of mechanistic pathways and clinical evidence, we discuss how targeting these interactions could lead to novel interventions that not only modulate disease progression but also offer personalized treatment strategies based on gut microbiota profiling. This synthesis aims at deepening insights into the microbial contributions to ferroptosis and their implications in MS, setting the stage for future research and therapeutic exploration.
Collapse
Affiliation(s)
- Junjie Jian
- The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China
- Department of Neurology, Yichang Central People's Hospital, 443003 Yichang, Hubei, China
| | - Jun Wei
- The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China
- Department of Neurology, Yichang Central People's Hospital, 443003 Yichang, Hubei, China
| |
Collapse
|
44
|
Amontailak S, Titapun A, Jusakul A, Thanan R, Kimawaha P, Jamnongkan W, Thanee M, Sirithawat P, Haohan S, Techasen A. Evaluation of HMGB1 Expression as a Clinical Biomarker for Cholangiocarcinoma. Cancer Genomics Proteomics 2025; 22:81-89. [PMID: 39730185 PMCID: PMC11696321 DOI: 10.21873/cgp.20489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND/AIM Cholangiocarcinoma (CCA) is an epithelial malignancy that is most prevalent in Southeast Asia, particularly in the northeast of Thailand. Identifying and establishing specific biomarkers of CCA is crucial for ensuring accurate prognosis and enabling effective treatment. High-mobility group box 1 (HMGB1) is a damage-associated molecular pattern (DAMP) molecule that can be released by dead or injured cells and is associated with tumor progression. This study aimed to investigate the expression levels of HMGB1 in CCA. MATERIALS AND METHODS The clinical significance of HMGB1 levels was assessed by examining their correlation with patients' clinicopathological data. A bioinformatics analysis was conducted to examine HMGB1 mRNA expression and perform survival analysis. The expression levels of 137 tissue cases were evaluated using the immunohistochemical technique, whereas the serum levels of 31 cases were evaluated using indirect ELISA. RESULTS The GEPIA analysis demonstrated that HMGB1 exhibited elevated mRNA expression in CCA compared to the normal group. Immunohistochemical staining revealed that HMGB1 expression was primarily localized in the nucleus. High HMGB1 expression was observed in 57.6% of tissue samples, while low expression was detected in 42.4%. There was a significant positive correlation between high HMGB1 expression and the extrahepatic type of CCA as well as lymph node metastasis. The measurement of HMGB1 levels were assessed using indirect ELISA in 31 CCA serum samples, where 51.6% exhibited elevated concentrations of HMGB1. Elevated serum HMGB1 levels were significantly associated with advanced tumor stages and high levels of bilirubin levels. CONCLUSION HMGB1 in both tissue biopsies and blood serum shows potential as a predictive biomarker in CCA patients. These biomarkers could form the basis for facilitating more effective treatment planning.
Collapse
Affiliation(s)
- Supakan Amontailak
- Medical Science Program, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Attapol Titapun
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Apinya Jusakul
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Phongsaran Kimawaha
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Wassana Jamnongkan
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Malinee Thanee
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Papitchaya Sirithawat
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Songpol Haohan
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Anchalee Techasen
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand;
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
45
|
Ghosal J, Sinchana VK, Chakrabarty S. Ferroptosis meets microRNAs: A new frontier in anti-cancer therapy. Free Radic Biol Med 2025; 226:266-278. [PMID: 39547521 DOI: 10.1016/j.freeradbiomed.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
Ferroptosis is an iron-dependent lipid peroxidation-mediated cell death. It is distinct from other types of cellular death and is recognized as a potential target for cancer therapy. This review discusses the mechanisms of ferroptosis, including its induction and inhibition pathways, its role in lipid metabolism, and its connection to various signaling pathways. We also explored the relationship between microRNAs and ferroptosis, highlighting the potential role of miRNAs targeting genes involved in ferroptosis. Role of miRNAs in metabolic reprogramming during carcinogenesis is well documented. We have discussed the role of miRNAs regulating expression of genes involved in iron metabolism, lipid metabolism, and redox metabolism which are associated with regulation of ferroptosis. In conclusion, we addressed various opportunities and challenges identified in ferroptosis research and its clinical implementation stressing the necessity of customized treatment plans based on each patient's unique vulnerability to the disease. Our article provides a complete overview of microRNAs and ferroptosis, with possible implications for cancer therapy.
Collapse
Affiliation(s)
- Joydeep Ghosal
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - V K Sinchana
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
46
|
Wang L, Li X, Chen L, Mei S, Shen Q, Liu L, Liu X, Liao S, Zhao B, Chen Y, Hou J. Mitochondrial Uncoupling Protein-2 Ameliorates Ischemic Stroke by Inhibiting Ferroptosis-Induced Brain Injury and Neuroinflammation. Mol Neurobiol 2025; 62:501-517. [PMID: 38874704 DOI: 10.1007/s12035-024-04288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Ischemic stroke is a devastating disease in which mitochondrial damage or dysfunction substantially contributes to brain injury. Mitochondrial uncoupling protein-2 (UCP2) is a member of the UCP family, which regulates production of mitochondrial superoxide anion. UCP2 is reported to be neuroprotective for ischemic stroke-induced brain injury. However, the molecular mechanisms of UCP2 in ischemic stroke remain incompletely understood. In this study, we investigated whether and how UCP2 modulates neuroinflammation and regulates neuronal ferroptosis following ischemic stroke in vitro and in vivo. Wild-type (WT) and UCP2 knockout (Ucp2-/-) mice were subjected to middle cerebral artery occlusion (MCAO). BV2 cells (mouse microglial cell line) and HT-22 cells (mouse hippocampal neuronal cell line) were transfected with small interfering (si)-RNA or overexpression plasmids to knockdown or overexpress UCP2 levels. Cells were then exposed to oxygen-glucose deprivation and reoxygenation (OGD/RX) to simulate hypoxic injury in vitro. We found that UCP2 expression was markedly reduced in a time-dependent manner in both in vitro and in vivo ischemic stroke models. In addition, UCP2 was mainly expressed in neurons. UCP2 deficiency significantly enlarged infarct volumes, aggravated neurological deficit scores, and exacerbated cerebral edema in mice after MCAO. In vitro knockdown of Ucp2 and in vivo genetic depletion of Ucp2 (Ucp2-/- mice) increased neuronal ferroptosis-related indicators, including Fe2+, malondialdehyde, glutathione, and lipid peroxidation. Overexpression of UCP2 in neuronal cells resulted in reduced ferroptosis. Moreover, knockdown of UCP2 exacerbated neuroinflammation in BV2 microglia and mouse ischemic stroke models, suggesting that endogenous UCP2 inhibits neuroinflammation following ischemic stroke. Upregulation of UCP2 expression in microglia appeared to decrease the release of pro-inflammatory factors and increase the levels of anti-inflammatory factors. Further investigation showed that UCP2 deletion inhibited expression of AMPKα/NRF1 pathway-related proteins, including p-AMPKα, t-AMPKα, NRF1, and TFAM. Thus, UCP2 protects the brain from ischemia-induced ferroptosis by activating AMPKα/NRF1 signaling. Activation of UCP2 represents an attractive strategy for the prevention and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaona Li
- Department of Pain Medicine, Wuhan Fourth Hospital, Wuhan, 430033, China
| | - Lili Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Shenglan Mei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Qianni Shen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Lian Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Xuke Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Shichong Liao
- Department of Thyroid and Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Yannan Chen
- Department of Endocrinology, Wuhan Fourth Hospital, Wuhan, 430033, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China.
| |
Collapse
|
47
|
Zhang S, Guo L, Tao R, Liu S. Ferroptosis-targeting drugs in breast cancer. J Drug Target 2025; 33:42-59. [PMID: 39225187 DOI: 10.1080/1061186x.2024.2399181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/07/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
In 2020, breast cancer surpassed lung cancer as the most common cancer in the world for the first time. Due to the resistance of some breast cancer cell lines to apoptosis, the therapeutic effect of anti-breast cancer drugs is limited. According to recent report, the susceptibility of breast cancer cells to ferroptosis affects the progress, prognosis and drug resistance of breast cancer. For instance, roblitinib induces ferroptosis of trastuzumab-resistant human epidermal growth factor receptor 2 (HER2)-positive breast cancer cells by diminishing fibroblast growth factor receptor 4 (FGFR4) expression, thereby augmenting the susceptibility of these cells to HER2-targeted therapies. In tamoxifen-resistant breast cancer cells, Fascin exacerbates their resistance by repressing solute carrier family 7 member 11 (SLC7A11) expression, which in turn heightens their responsiveness to tamoxifen. In recent years, Chinese herbs extracts and therapeutic drugs have been demonstrated to elicit ferroptosis in breast cancer cells by modulating a spectrum of regulatory factors pertinent to ferroptosis, including SLC7A11, glutathione peroxidase 4 (GPX4), acyl-CoA synthetase long chain family member 4 (ACSL4), and haem oxygenase 1 (HO-1). Here, we review the roles and mechanisms of Chinese herbal extracts and therapeutic drugs in regulating ferroptosis in breast cancer, providing potential therapeutic options for anti-breast cancer.
Collapse
Affiliation(s)
- Shuxian Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Lijuan Guo
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Ran Tao
- Department of Anatomy, Medical College, Dalian University, Dalian, China
| | - Shuangping Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| |
Collapse
|
48
|
Lu CL, Liu J, Yang JF. LncRNA-XIST Promotes Lung Adenocarcinoma Growth and Inhibits Ferroptosis by Regulating GPX4. Mol Biotechnol 2025; 67:187-195. [PMID: 38153663 DOI: 10.1007/s12033-023-00993-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/13/2023] [Indexed: 12/29/2023]
Abstract
This study aimed to explore the regulatory effects and molecular mechanisms of long non-coding RNA X-inactive-specific transcript (LncRNA-XIST) in lung adenocarcinoma. si-XIST or glutathione peroxidase 4 (GPX4) plasmids were transfected in PC-9 cells to suppress LncRNA-XIST expression or over-express GPX4, respectively. The mRNA expression levels of LncRNA-XIST and GPX4 in lung adenocarcinoma tissues or cells were assessed using RT-qPCR. CCK-8 assay was performed to examine cell activity, and corresponding biochemical kits were used to measure the levels of Fe2+, reactive oxygen species (ROS), malondialdehyde (MDA) in cells. Western blot is used to examine relative protein expression of FANCD2, SLC7A11, and GPX4 in lung adenocarcinoma cells. The mRNA and protein expression levels of LncRNA-XIST in clinical tissues and cells of lung adenocarcinoma were significantly higher than those in adjacent tissues and normal cells. Functional analysis showed that knockdown of LncRNA-XIST notably weakened the viability of lung adenocarcinoma cells and promoted ferroptosis (manifested by significantly up-regulated levels of ROS, MDA, and Fe2+ and down-regulated the expression of SLC7A11 and FANCD2, P < 0.05). Further mechanism analysis revealed that knockdown of LncRNA-XIST markedly inhibited the expression of GPX4 in lung adenocarcinoma cells and that GPX4 was significantly over-expressed in clinical tissues and cells of lung adenocarcinoma. Notably, the expression of GPX4 was positively correlated with that of LncRNA-XIST. Over-expression of GPX4 remarkably promoted cell proliferation and inhibited ferroptosis in lung adenocarcinoma. Besides, the GPX4 over-expression reversed the LncRNA-XIST knockdown-induced ferroptosis and decrease in lung adenocarcinoma cell viability. LncRNA-XIST increases the activity of lung adenocarcinoma cells and inhibits ferroptosis by up-regulating GPX4. Knocking down LncRNA-XIST may be an effective treatment for lung adenocarcinoma.
Collapse
Affiliation(s)
- Chen-Lin Lu
- Department of Respiratory and Critical Care Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China
| | - Jie Liu
- Department of Orthopedics, The Affiliated Taizhou People's Hospital of Nanjing Medical University Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China
| | - Jun-Fa Yang
- Department of Respiratory and Critical Care Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China.
| |
Collapse
|
49
|
Wang Y, Guan WX, Zhou Y, Zhang XY, Zhao HJ. Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3. Cancer Biol Ther 2024; 25:2284849. [PMID: 38051132 PMCID: PMC10761076 DOI: 10.1080/15384047.2023.2284849] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/10/2023] [Indexed: 12/07/2023] Open
Abstract
OBJECTIVE This study aims to investigate the effect of red ginseng polysaccharide (RGP) on gastric cancer (GC) development and explore its mechanism. METHODS GC cell lines AGS were treated with varying concentrations of RGP (50, 100, and 200 μg/mL). AGS cells treated with 200 μg/mL RGP were transfected with aquaporin 3 (AQP3) overexpression vector. Cell proliferation, viability, and apoptosis were evaluated by MTT, colony formation assay, and flow cytometry, respectively. Real-time quantitative reverse transcription PCR (qRT-PCR) was used to detect the expression of AQP3. The levels of Fe2+, malondialdehyde, and lactate dehydrogenase were measured using their respective detection kits, and the reactive oxygen species levels was determined by probe 2',7'-dichlorodihydrofluorescein diacetate. The expression of ferroptosis-related protein and PI3K/Akt pathway-related protein were assessed by western blot. In vivo experiments in nude mice were performed and the mice were divided into four groups (n = 5/group) which gavage administrated with 150 mg/kg normal saline, and 75, 150, 300 mg/kg RGP, respectively. Their tumor weight and volume were recorded. RESULTS RGP treatment effectively inhibited the proliferation and viability of AGS cells in a dosage-dependent manner and induced apoptosis. It induced ferroptosis in AGS cells, as well as inhibiting the expression of PI3K/Akt-related proteins. AQP3 overexpression could reversed the effect of RGP treatment on ferroptosis. Confirmatory in vivo experiments showed that RGP could reduce the growth of implanted tumor, with increased RGP concentration resulting in greater tumor inhibitory effects. CONCLUSION RGP might have therapeutic potential against GC, effectively inhibiting the proliferation and viability of AGS cells.
Collapse
Affiliation(s)
- Yan Wang
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Gastrointestinal Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Wen-Xian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan Zhou
- Department of Gastrointestinal Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Xiao-Yu Zhang
- Department of Gastrointestinal Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Hai-Jian Zhao
- Department of Gastrointestinal Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
50
|
Zhu K, Cai Y, Lan L, Luo N. Tumor Metabolic Reprogramming and Ferroptosis: The Impact of Glucose, Protein, and Lipid Metabolism. Int J Mol Sci 2024; 25:13413. [PMID: 39769177 PMCID: PMC11676715 DOI: 10.3390/ijms252413413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 01/03/2025] Open
Abstract
Ferroptosis, a novel form of cell death discovered in recent years, is typically accompanied by significant iron accumulation and lipid peroxidation during the process. This article systematically elucidates how tumor metabolic reprogramming affects the ferroptosis process in tumor cells. The paper outlines the basic concepts and physiological significance of tumor metabolic reprogramming and ferroptosis, and delves into the specific regulatory mechanisms of glucose metabolism, protein metabolism, and lipid metabolism on ferroptosis. We also explore how complex metabolic changes in the tumor microenvironment further influence the response of tumor cells to ferroptosis. Glucose metabolism modulates ferroptosis sensitivity by influencing intracellular energetic status and redox balance; protein metabolism, involving amino acid metabolism and protein synthesis, plays a crucial role in the initiation and progression of ferroptosis; and the relationship between lipid metabolism and ferroptosis primarily manifests in the generation and elimination of lipid peroxides. This review aims to provide a new perspective on how tumor cells regulate ferroptosis through metabolic reprogramming, with the ultimate goal of offering a theoretical basis for developing novel therapeutic strategies targeting tumor metabolism and ferroptosis.
Collapse
Affiliation(s)
- Keyu Zhu
- School of Medicine, Nankai University, Tianjin 300071, China; (K.Z.); (Y.C.)
| | - Yuang Cai
- School of Medicine, Nankai University, Tianjin 300071, China; (K.Z.); (Y.C.)
| | - Lan Lan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China;
| | - Na Luo
- School of Medicine, Nankai University, Tianjin 300071, China; (K.Z.); (Y.C.)
| |
Collapse
|