1
|
Luo Y, Bai R. Analysis of correlation between dietary fiber intake and risk of diabetic kidney disease in adults with type 2 diabetes mellitus: results from the United States National Health and Nutrition Examination Surveys 2009-2018. Ren Fail 2025; 47:2479573. [PMID: 40125863 PMCID: PMC11934183 DOI: 10.1080/0886022x.2025.2479573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/15/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
OBJECTIVE Given the significant impact of diabetic kidney disease (DKD) on morbidity and mortality in patients with type 2 diabetes mellitus (T2DM) and the potential preventive role of dietary factors, particularly dietary fiber, this study aimed to investigate the relationship between dietary fiber intake and the risk of DKD in adults with T2DM. METHODS The medical records and other relevant data from patients with T2DM were retrieved from the United States National Health and Nutrition Examination Surveys (U.S. NHANES) from 2009 to 2018. Multivariate logistic regression and restricted cubic spline (RCS) regression were employed to investigate the relationship between dietary fiber intake and the risk of DKD in adult T2DM patients. RESULTS The study involved 4,520 T2DM patients with a mean age of 59.16 years, consisting of 2,346 male patients (51.9%) and 2,174 female patients (48.1%). The prevalence of T2DM patients with DKD was 37.92% in the overall population. Regression analyses, after adjusting for confounders, showed that dietary fiber intake was negatively correlated with the prevalence of DKD. RCS analysis demonstrated a nonlinear negative correlation between the level of dietary fiber intake and the prevalence of DKD, with a threshold inflection point of 13.96 g/day. Subgroup analyses revealed that age, gender, race, smoking status, body mass index, hypertension, diabetes duration, glycosylated hemoglobin, and ACEI/ARB medication use did not significantly affect the negative correlations (p > 0.05). CONCLUSIONS Dietary fiber intake was negatively correlated with the prevalence of DKD in T2DM patients.
Collapse
Affiliation(s)
- Yuanyuan Luo
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Ruojing Bai
- Department of Geriatric Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Zhang X, Chao P, Zhang L, Lu J, Yang A, Jiang H, Lu C. Integrating network pharmacology, molecular docking and simulation approaches with machine learning reveals the multi-target pharmacological mechanism of Berberis integerrima against diabetic nephropathy. J Biomol Struct Dyn 2025; 43:2092-2108. [PMID: 38379386 DOI: 10.1080/07391102.2023.2294165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/02/2023] [Indexed: 02/22/2024]
Abstract
Diabetic nephropathy (DN) is one of the most feared complications of diabetes and key cause of end-stage renal disease (ESRD). Berberis integerrima has been widely used to treat diabetic complications, but exact molecular mechanism is yet to be discovered. Data on active ingredients of B. integerrima and target genes of both diabetic nephropathy and B.integerrima were obtained from public databases. Common results between B. integerrima and DN targets were used to create protein-protein interaction (PPI) network using STRING database and exported to Cytoscape software for the selection of hub genes based on degree of connectivity. Future, PPI network between constituents and overlapping targets was created using Cytoscape to investigate the network pharmacological effects of B. integerrima on DN. KEGG pathway analysis of core genes exposed their involvement in excess glucose-activated signaling pathway. Then, expression of core genes was validated through machine learning classifiers. Finally, PyRx and AMBER18 software was used for molecular docking and simulation. We found that Armepavine, Berberine, Glaucine, Magnoflorine, Reticuline, Quercetin inhibits the growth of diabetic nephropathy by affecting ICAM1, PRKCB, IKBKB, KDR, ALOX5, VCAM1, SYK, TBXA2R, LCK, and F3 genes. Machine learning revealed SYK and PRKCB as potential genes that could use as diagnostic biomarkers against DN. Furthermore, docking and simulation analysis showed the binding affinity and stability of the active compound with target genes. Our study revealed that B. integerrima has preventive effect on DN by acting on glucose-activated signaling pathways. However, experimental studies are needed to reveal biosafety profiles of B. integerrima in DN.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xueqin Zhang
- Department of Nephrology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Peng Chao
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Lei Zhang
- Department of Endocrine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jinyu Lu
- Xinjiang Medical University, Urumqi, China
| | - Aiping Yang
- Department of Traditional Chinese Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Hong Jiang
- Department of Nephrology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chen Lu
- Department of Nephrology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
3
|
He X, Xia M, Ying G, He Q, Chen Z, Liu L, Zhang Q, Cai J. FOSL2 activates TGF-β1-mediated GLUT1/mTOR signaling to promote diabetic kidney disease. J Diabetes Investig 2025; 16:187-203. [PMID: 39569837 PMCID: PMC11786189 DOI: 10.1111/jdi.14360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
AIMS/INTRODUCTION Diabetic kidney disease (DKD) is a major cause of kidney failure. FOS-like antigen 2 (FOSL2) has been revealed to be increased in kidney biopsies of patients with lupus nephritis, while its association with DKD remains unsolved. This study aimed to characterize the role of FOSL2 in DKD and its mechanism. METHOD The kidney tissues of DKD mice induced by STZ and a high-fat diet were subjected to PAS and Masson's staining. Glomerular mesangial cells (MCs) were treated with high glucose (HG) or normal glucose (NG). CCK-8 and EdU assays were performed to detect cell proliferation, and immunoblotting was conducted to analyze ECM deposition. ChIP-qPCR was performed on MCs to detect the binding of FOSL2 on the TGF-β1 promoter and a dual-luciferase assay to detect the impact of FOSL2 on the transcription of the TGF-β1 promoter. RESULTS FOSL2 was elevated in the kidney tissues of DKD mice. Knockdown of FOSL2 reduced the mRNA expression of TGF-β1 to decrease the protein expression of GLUT1 and mTOR in the kidney tissues of DKD mice, and TGF-β1 reversed the effects caused by knockdown of FOSL2. The mTOR inhibitor Rapamycin alleviated kidney injury in the presence of FOSL2. Knockdown of FOSL2 inhibited the proliferation and improved ECM deposition of MCs, which were reversed by TGF-β1. Rapamycin and GLUT1 inhibitor BAY-876 reversed the promotion effect of FOSL2 on the proliferation of NG-MCs/HG-MCs and improved ECM deposition of MCs. CONCLUSIONS Our data demonstrated that FOSL2 accentuates DKD in mice by increasing TGF-β1-induced GLUT1/mTOR signaling.
Collapse
Affiliation(s)
- Xuelin He
- Kidney Disease Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Department of NephrologyBeilun People's HospitalNingboZhejiangChina
| | - Min Xia
- Department of NephrologyBeilun People's HospitalNingboZhejiangChina
| | - Guanghui Ying
- Department of NephrologyBeilun People's HospitalNingboZhejiangChina
| | - Qien He
- Department of NephrologyBeilun People's HospitalNingboZhejiangChina
| | - Zhaogui Chen
- Department of NephrologyBeilun People's HospitalNingboZhejiangChina
| | - Li Liu
- Department of LibraryThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Qiao Zhang
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, The First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Jianxin Cai
- Department of PediatricWuhan Hospital of Traditional Chinese MedicineWuhanHubeiChina
| |
Collapse
|
4
|
Hashimoto K, Yoshida Y, Kamesawa M, Yazawa N, Tominaga H, Aisyah R, Chen S, Bumrungkit C, Kawamoto S, Kumrungsee T, Yanaka N. Glucosyl Hesperidin Supplementation Prevents Tubulointerstitial Fibrosis and Immune Activation in Diabetic Nephropathy in Mice. Nutrients 2025; 17:383. [PMID: 39940240 PMCID: PMC11820413 DOI: 10.3390/nu17030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a serious condition that can result in end-stage renal failure. Recent evidence has focused on the dietary effects of polyphenols on blood glucose levels and the complications of diabetes. OBJECTIVES In this study, we investigated the protective effect of glucosyl hesperidin (G-Hes), composed of glucose and hesperidin, against streptozotocin (STZ)-induced nephropathy in mice. METHODS We used an STZ-induced diabetic mouse model to investigate the preventive effect of G-Hes on renal pathology. After G-Hes supplementation for 4 weeks, we investigated the renal gene expression profiles using DNA microarray analysis and renal histology to examine the underlying molecular mechanism. RESULTS G-Hes suppressed the increase in kidney weight without any change in the blood glucose levels. This study identified 511 genes whose expression levels were substantially increased during DN development but were downregulated by G-Hes supplementation. G-Hes prevented mRNA expression associated with renal tubule injury, fibrosis, and immune responses. Notably, G-Hes supplementation considerably decreased the complement component C3 at the mRNA and protein levels in the glomeruli and ameliorated glomerular and mesangial matrix expansion in diabetic nephropathy. CONCLUSIONS G-Hes supplementation is useful in preventing tubulointerstitial fibrosis and inflammation in a mouse model of DN, without exhibiting a hypoglycemic effect.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Noriyuki Yanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan (S.K.); (T.K.)
| |
Collapse
|
5
|
Mirzababaei A, Abaj F, Roumi Z, Clark CCT, Mirzaei K. Adherence of Plant-Based Dietary Index in Odds of Diabetic Nephropathy in Women: A Case-Control Study. J Ren Nutr 2025; 35:118-127. [PMID: 39074598 DOI: 10.1053/j.jrn.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 07/01/2024] [Accepted: 07/21/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND & AIMS Recent research has suggested that adherence to plant-based dietary index (PDI) may reduce the risk of type 2 diabetes and related complications like diabetic nephropathy (DN). Therefore, the aim of this study was to investigate the possible association of PDI with the odds of DN. METHODS We enrolled 105 eligible women with DN and 105 controls without DN (30-65 years). A 147-item food frequency questionnaire was used to evaluate an overall PDI, healthy plant-based dietary index (hPDI), and unhealthful PDI. Biochemical variables and anthropometric measurements were assessed for all patients using predefined protocols. RESULTS According to our final analyses, after controlling for potential confounders, participants with greater adherence to overall PDI (OR: 0.29; 95% CI: 0.15-0.56; P < .001) and hPDI (OR: 0.30; 95% CI: 0.15-0.56; P < .001) had 71% and 70% lower odds of DN compared to those with a low adherence, respectively. Conversely, subjects with a higher adherence to the unhealthful PDI had a positive association with increased odds of DN in the crude (OR = 5.00; 95% CI = 2.78-8.98; P < .001) and adjusted models (OR = 4.27; 95% CI = 2.24-8.14; P < .001), respectively. CONCLUSION The results of this study showed that greater adherence to overall PDI and hPDI was inversely associated with the odds of DN. However, further prospective studies are warranted to confirm these results.
Collapse
Affiliation(s)
- Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Student's Scientific Research Center, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Faezeh Abaj
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - Zahra Roumi
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Cain C T Clark
- Institute for Health and Wellbeing, Coventry University, Coventry, United Kingdom
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Hu Z, Zhou Y, Gao C, Liu J, Pan C, Guo J. Astragaloside IV attenuates podocyte apoptosis via regulating TXNIP/NLRP3/GSDMD signaling pathway in diabetic nephropathy. Diabetol Metab Syndr 2024; 16:296. [PMID: 39696607 DOI: 10.1186/s13098-024-01546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVES Among all the diabetes complications brought on by persistent inflammation is diabetic kidney disease (DKD). One essential method of the inflammatory response's programmed cell death is anthrax. One of the main causes of diabetic renal disease progression in a high-glycemic environment is the lysis of renal resident cells. METHOD This investigation sought to determine whether Astragaloside IV (AS-IV)'s anti-pyroptosis action provides a protective function for the kidneys. For 12 weeks, db/db mice received 40 mg/kg of AS-IV by transgastric gavage. To validate the possible in vitro mechanism, mouse podocytes were cultivated for additional experiments. RESULTS In vitro, AS-IV led to a significant reduction in blood urea nitrogen (BUN), urine albumen-to-creatinine ratio (UACR), serum creatinine (CREA), and hyperglycemia in db/db mice and lessen the pathological alterations in the kidney. Moreover, pyrin structural domain of the NLR family pyrin domain containing 3 (NLRP3), cleaved-caspase-1, gasdermin D (GSDMD), IL-18, and IL-1β were down-expressed and podocyte markers podocin and nphs1 were up-regulated following AS-IV intervention. By silencing GSDMD, we demonstrated in vitro that HG-stimulated podocytes undergo pyroptosis. We also discovered that AS-IV can mitigate this pyroptosis. To confirm that AS-IV prevented the NLRP3 inflammasome from activating, the NLRP3 inhibitor CY-09 was employed. It was also discovered that AS-IV prevents the expression of TXNIP and NLRP3 as well as their interaction. GSDMD expression was significantly downregulated following TXNIP-siRNA treatment, whereas GSDMD expression was upregulated in TXNIP overexpression cells; this upregulation could be undone with AS-IV. CONCLUSIONS The anti-pyroptosis effect of AS-IV via the TXNIP-NLRP3-GSDMD axis improves the renal function and podocyte damage of db/db mice and delays the onset of DKD, according to in vivo and in vitro experimental data.
Collapse
Affiliation(s)
- Zhibo Hu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Yu Zhou
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Cailing Gao
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Junfen Liu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Congqing Pan
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| | - Jun Guo
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
7
|
Liu J, Song XY, Li XT, Yang M, Wang F, Han Y, Jiang Y, Lei YX, Jiang M, Zhang W, Tang DQ. β-Arrestin-2 enhances endoplasmic reticulum stress-induced glomerular endothelial cell injury by activating transcription factor 6 in diabetic nephropathy. World J Diabetes 2024; 15:2322-2337. [PMID: 39676815 PMCID: PMC11580586 DOI: 10.4239/wjd.v15.i12.2322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/23/2024] [Accepted: 09/18/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Glomerular endothelial cell (GENC) injury is a characteristic of early-stage diabetic nephropathy (DN), and the investigation of potential therapeutic targets for preventing GENC injury is of clinical importance. AIM To investigate the role of β-arrestin-2 in GENCs under DN conditions. METHODS Eight-week-old C57BL/6J mice were intraperitoneally injected with streptozotocin to induce DN. GENCs were transfected with plasmids containing siRNA-β-arrestin-2, shRNA-activating transcription factor 6 (ATF6), pCDNA-β-arrestin-2, or pCDNA-ATF6. Additionally, adeno-associated virus (AAV) containing shRNA-β-arrestin-2 was administered via a tail vein injection in DN mice. RESULTS The upregulation of β-arrestin-2 was observed in patients with DN as well as in GENCs from DN mice. Knockdown of β-arrestin-2 reduced apoptosis in high glucose-treated GENCs, which was reversed by the overexpression of ATF6. Moreover, overexpression of β-arrestin-2 Led to the activation of endoplasmic reticulum (ER) stress and the apoptosis of GENCs which could be mitigated by silencing of ATF6. Furthermore, knockdown of β-arrestin-2 by the administration of AAV-shRNA-β-arrestin-2 alleviated renal injury in DN mice. CONCLUSION Knockdown of β-arrestin-2 prevents GENC apoptosis by inhibiting ATF6-mediated ER stress in vivo and in vitro. Consequently, β-arrestin-2 may represent a promising therapeutic target for the clinical management of patients with DN.
Collapse
Affiliation(s)
- Jiang Liu
- Center for Gene and Immunotherapy, Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Xiao-Yun Song
- Center for Gene and Immunotherapy, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Xiu-Ting Li
- Medical Device and Pharmaceutical Packaging Inspection, Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, Jinan 250101, Shandong Province, China
| | - Mu Yang
- Center for Gene and Immunotherapy, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Fang Wang
- Center of Animal, Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Ying Han
- Center of Animal, Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Ying Jiang
- Center for Gene and Immunotherapy, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Yu-Xin Lei
- Center for Gene and Immunotherapy, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Miao Jiang
- Clinical Skill Training Centre, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Wen Zhang
- Center for Gene and Immunotherapy, Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Dong-Qi Tang
- Center for Gene and Immunotherapy, Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| |
Collapse
|
8
|
Morones J, Pérez M, Muñoz M, Sánchez E, Ávila M, Topete J, Ventura J, Martínez S. Evaluation of the Effect of an α-Adrenergic Blocker, a PPAR-γ Receptor Agonist, and a Glycemic Regulator on Chronic Kidney Disease in Diabetic Rats. Int J Mol Sci 2024; 25:11372. [PMID: 39518925 PMCID: PMC11545748 DOI: 10.3390/ijms252111372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetic nephropathy (DN) is a globally widespread complication of diabetes mellitus (DM). Research indicates that pioglitazone and linagliptin mitigate the risk of DN by reducing inflammation, oxidative stress, and fibrosis. The role of tamsulosin in DN is less studied, but it may contribute to reducing oxidative stress and inflammatory responses. The protective effects of combining pioglitazone, linagliptin, and tamsulosin on the kidneys have scarcely been investigated. This study examines the individual and combined effects of these drugs on DN in Wistar rats. Diabetic rats were treated with tamsulosin, pioglitazone, and linagliptin for six weeks. We assessed food and water intake, estimated glomerular filtration rate (eGFR), histological markers, urea, creatinine, glucose, NF-κB, IL-1, IL-10, TGF-β, and Col-IV using immunofluorescence and qPCR. The DN group exhibited hyperglycaemia, reduced eGFR, and tissue damage. Tamsulosin and linagliptin improved eGFR, decreased urinary glucose, and repaired tissue damage. Pioglitazone and its combinations restored serum and urinary markers and reduced tissue damage. Linagliptin lowered serum creatinine and tissue injury. In conclusion, tamsulosin, linagliptin, and pioglitazone demonstrated renoprotective effects in DN.
Collapse
Affiliation(s)
- Jorge Morones
- Department of Morphology, Basic Sciences Center, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (J.M.); (M.P.); (E.S.); (M.Á.)
| | - Mariana Pérez
- Department of Morphology, Basic Sciences Center, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (J.M.); (M.P.); (E.S.); (M.Á.)
| | - Martín Muñoz
- Department of Chemistry, Basic Sciences Center, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico;
| | - Esperanza Sánchez
- Department of Morphology, Basic Sciences Center, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (J.M.); (M.P.); (E.S.); (M.Á.)
- Family Medicine Unit 8, Instituto Mexicano del Seguro Social (IMSS), Aguascalientes 20180, Mexico
| | - Manuel Ávila
- Department of Morphology, Basic Sciences Center, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (J.M.); (M.P.); (E.S.); (M.Á.)
| | - Jorge Topete
- Department of Nephrology, Regional General Hospital No. 46, Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44910, Mexico;
| | - Javier Ventura
- Department of Morphology, Basic Sciences Center, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (J.M.); (M.P.); (E.S.); (M.Á.)
| | - Sandra Martínez
- Department of Microbiology, Basic Sciences Center, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico
| |
Collapse
|
9
|
Wu Y, Xu Y, Deng H, Sun J, Li X, Tang J. Poricoic acid a ameliorates high glucose-induced podocyte injury by regulating the AMPKα/FUNDC1 pathway. Mol Biol Rep 2024; 51:1003. [PMID: 39305364 DOI: 10.1007/s11033-024-09921-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Poricoic acid A (PAA), a major triterpenoid component of Poria cocos with anti-tumor, anti-fibrotic, anti-inflammatory, and immune-regulating activities, has been shown to induce podocyte autophagy in diabetic kidney disease (DKD) by downregulating FUN14 domain containing 1 (FUNDC1). This study aimed to identify the role of adenosine monophosphate-activated protein kinase alpha (AMPKα) in PAA-mediated phosphorylation of FUNDC1 in podocyte injury occurring in the pathogenesis of DKD. METHODS AND RESULTS A cellular model of renal podocyte injury was established by culturing MPC5 cells under high-glucose (HG) conditions. MPC5 cells were subjected to transfection with small interfering RNA (siRNA) targeting AMPKα or siRNA targeting FUNDC1, an AMPKα activator, or PAA. PAA treatment induced the phosphorylation of AMPKα in HG-cultured podocytes. AMPKα activation was implicated in the inhibitory effect of PAA on FUNDC phosphorylation in HG-cultured podocytes. Treatment targeting the AMPKα activator also significantly augmented proliferation, migration, mitochondrial membrane potential, and autophagy levels, while reducing apoptosis levels, inhibiting oxidative stress, and suppressing the release of proinflammatory factors in HG-cultured MPC5 cells. In contrast, insufficient expression of AMPKα reversed the effects of PAA on the proliferation, migration, and apoptosis of podocytes and further exacerbated the reduction of phosphorylated FUNDC1 expression in podocytes under HG conditions. CONCLUSIONS AMPKα is involved in the regulation of FUNDC1 phosphorylation by PAA in HG-induced podocyte injury. Furthermore, the AMPKα/FUNDC1 pathway plays a crucial regulatory role in HG-induced podocyte injury. These findings support AMPKα, FUNDC1, and the AMPKα/FUNDC1 pathway as targets for PAA intervention.
Collapse
Affiliation(s)
- Yuwen Wu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, No.167 Donghu Road, Wuhan, 430071, Hubei, China.
| | - Yancheng Xu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, No.167 Donghu Road, Wuhan, 430071, Hubei, China
| | - Haohua Deng
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, No.167 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jiazhong Sun
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, No.167 Donghu Road, Wuhan, 430071, Hubei, China
| | - Xin Li
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, No.167 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jun Tang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, No.167 Donghu Road, Wuhan, 430071, Hubei, China
| |
Collapse
|
10
|
Chen JH, Ye L, Zhu SL, Yang Y, Xu N. DNMT1-Mediated the Downregulation of FOXF1 Promotes High Glucose-induced Podocyte Damage by Regulating the miR-342-3p/E2F1 Axis. Cell Biochem Biophys 2024; 82:2957-2975. [PMID: 39014186 DOI: 10.1007/s12013-024-01409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
Podocyte damage plays a crucial role in the occurrence and development of diabetic nephropathy (DN). Accumulating evidence suggests that dysregulation of transcription factors plays a crucial role in podocyte damage in DN. However, the biological functions and underlying mechanisms of most transcription factors in hyperglycemia-induced podocytes damage remain largely unknown. Through integrated analysis of data mining, bioinformatics, and RT-qPCR validation, we identified a critical transcription factor forkhead box F1 (FOXF1) implicated in DN progression. Moreover, we discovered that FOXF1 was extensively down-regulated in renal tissue and serum from DN patients as well as in high glucose (HG)-induced podocyte damage. Meanwhile, our findings showed that FOXF1 might be a viable diagnostic marker for DN patients. Functional experiments demonstrated that overexpression of FOXF1 strikingly enhanced proliferation, outstandingly suppressed apoptosis, and dramatically reduced inflammation and fibrosis in HG-induced podocytes damage. Mechanistically, we found that the downregulation of FOXF1 in HG-induced podocyte damage was caused by DNMT1 directly binding to FOXF1 promoter and mediating DNA hypermethylation to block FOXF1 transcriptional activity. Furthermore, we found that FOXF1 inhibited the transcriptional expression of miR-342-3p by binding to the promoter of miR-342, resulting in reduced sponge adsorption of miR-342-3p to E2F1, promoting the expression of E2F1, and thereby inhibiting HG-induced podocytes damage. In conclusion, our findings showed that blocking the FOXF1/miR-342-3p/E2F1 axis greatly alleviated HG-induced podocyte damage, which provided a fresh perspective on the pathogenesis and therapeutic strategies for DN patients.
Collapse
Affiliation(s)
- Jie-Hui Chen
- Department of Nephrology, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 510082, China.
| | - Ling Ye
- Department of Nephrology, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 510082, China
| | - Sheng-Lang Zhu
- Department of Nephrology, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 510082, China
| | - Yun Yang
- Department of Nephrology, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 510082, China
| | - Ning Xu
- Department of Nephrology, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 510082, China
| |
Collapse
|
11
|
Tu X, Zhang H, Ren H. LINC01232 targeting miR-1250-3p/MSH2 axis attenuates mesangial cell proliferation and fibrosis in diabetic nephropathy. Mol Cell Biochem 2024; 479:2093-2103. [PMID: 37642881 DOI: 10.1007/s11010-023-04828-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
The significance of long non-coding RNA (ncRNAs) in the initiation and progression of diabetic nephropathy (DN) has attracted much interest. The purpose of this work was to ascertain the role of LINC01232 in cell models and animal models of DN. C57BL/6 J mice were administered with streptozotocin (STZ) to develop animal models of DN, and mouse glomerular mesangial cells (MCs) were exposed to high glucose (HG) to establish cell models of DN. Expression levels of LINC01232, miR-1250-3p and MSH2 were identified by quantitative real-time PCR (qPCR) or western blotting. Fibrosis-related proteins were quantified by western blotting. MC proliferative capacity was checked by EdU assay. DN progression and fibrosis level in animal models were assessed by hematoxylin and eosin (HE) and Masson staining. The potential binding sites between miR-1250-3p and LINC01232 or MSH2 were examined by dual-luciferase reporter assay. LINC01232 expression was heightened in kidney tissues of DN patients. Its overexpression in HG-treated MCs alleviated MC proliferation and fibrosis. Overexpression of LINC01232 alleviated the pathological state of glomerular hypertrophy, MC hyperplasia, basement membrane thickening, and fibrosis in the DN models. LINC01232 bound to miR-1250-3p and competed for miR-1250-3p binding sites with MSH2. LINC01232 overexpression decoyed miR-1250-3p to increase MSH2 expression, and MSH2 depletion restored LINC01232 overexpression-inhibited MC proliferation and fibrosis. LINC01232 alleviated the mesangial cell proliferation and fibrosis in the progression of DN by targeting miR-1250-3p/MSH2 pathway.
Collapse
Affiliation(s)
- Xian Tu
- Nephrology Department, Wuhan Asia General Hospital, Wuhan, 430050, Hubei, China
| | - Hualei Zhang
- Health Check Center, Wuhan Asia General Hospital, No. 300 Taizihu North Road, Economic and Technological Development Zone, Wuhan, 430050, Hubei, China
| | - Hongyan Ren
- Health Check Center, Wuhan Asia General Hospital, No. 300 Taizihu North Road, Economic and Technological Development Zone, Wuhan, 430050, Hubei, China.
| |
Collapse
|
12
|
Xiao X, Wu L, Deng J, Li J, Zhou Y, He S, Li F, Wang Y. Effects of insonification on repairing the renal injury of diabetic nephropathy rats. BMJ Open Diabetes Res Care 2024; 12:e004146. [PMID: 39025793 PMCID: PMC11261688 DOI: 10.1136/bmjdrc-2024-004146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
INTRODUCTION Prolonged hyperglycemia in diabetes mellitus can result in the development of diabetic nephropathy (DN) and increase the susceptibility to kidney failure. Low-intensity pulsed ultrasound (LIPUS) is a non-invasive modality that has demonstrated effective tissue repair capabilities. The objective of this study was to showcase the reparative potential of LIPUS on renal injury at both animal and cellular levels, while also determining the optimal pulse length (PL). RESEARCH DESIGN AND METHODS We established a rat model of DN, and subsequently subjected the rats' kidneys to ultrasound irradiation (PL=0.2 ms, 10 ms, 20 ms). Subsequently, we assessed the structural and functional changes in the kidneys. Additionally, we induced podocyte apoptosis and evaluated its occurrence following ultrasound irradiation. RESULTS Following irradiation, DN rats exhibited improved mesangial expansion and basement membrane thickening. Uric acid expression increased while urinary microalbumin, podocalyxin in urine, blood urea nitrogen, and serum creatinine levels decreased (p<0.05). These results suggest that the optimal PL was 0.2 ms. Using the optimal PL further demonstrated the reparative effect of LIPUS on DN, it was found that LIPUS could reduce podococyte apoptosis and alleviate kidney injury. Metabolomics revealed differences in metabolites including octanoic acid and seven others and western blot results showed a significant decrease in key enzymes related to lipolysis (p<0.05). Additionally, after irradiating podocytes with different PLs, we observed suppressed apoptosis (p<0.05), confirming the optimal PL as 0.2 ms. CONCLUSIONS LIPUS has been demonstrated to effectively restore renal structure and function in DN rats, with an optimal PL of 0.2 ms. The mechanism underlying the alleviation of DN by LIPUS is attributed to its ability to improve lipid metabolism disorder. These findings suggest that LIPUS may provide a novel perspective for future research in this field.
Collapse
Affiliation(s)
- Xinfang Xiao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Liu Wu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Juan Deng
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Junfen Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yiqing Zhou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Sicheng He
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Faqi Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yan Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Liang L, He M, Zhou P, Pan S, Chen J, Lv L, Hu M, Zhou S, Liu D, Liu Z. c-Cbl induced podocin ubiquitination contributes to the podocytes injury in diabetic nephropathy. FASEB J 2024; 38:e23662. [PMID: 38752545 DOI: 10.1096/fj.202400356r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/05/2024] [Accepted: 04/29/2024] [Indexed: 07/16/2024]
Abstract
The ubiquitination function in diabetic nephropathy (DN) has attracted much attention, but there is a lack of information on its ubiquitylome profile. To examine the differences in protein content and ubiquitination in the kidney between db/db mice and db/m mice, we deployed liquid chromatography-mass spectrometry (LC-MS/MS) to conduct analysis. We determined 145 sites in 86 upregulated modified proteins and 66 sites in 49 downregulated modified proteins at the ubiquitinated level. Moreover, 347 sites among the 319 modified proteins were present only in the db/db mouse kidneys, while 213 sites among the 199 modified proteins were present only in the db/m mouse kidneys. The subcellular localization study indicated that the cytoplasm had the highest proportion of ubiquitinated proteins (31.87%), followed by the nucleus (30.24%) and the plasma membrane (20.33%). The enrichment analysis revealed that the ubiquitinated proteins are mostly linked to tight junctions, oxidative phosphorylation, and thermogenesis. Podocin, as a typical protein of slit diaphragm, whose loss is a crucial cause of proteinuria in DN. Consistent with the results of ubiquitination omics, the K261R mutant of podocin induced the weakest ubiquitination compared with the K301R and K370R mutants. As an E3 ligase, c-Cbl binds to podocin, and the regulation of c-Cbl can impact the ubiquitination of podocin. In conclusion, in DN, podocin ubiquitination contributes to podocyte injury, and K261R is the most significant site. c-Cbl participates in podocin ubiquitination and may be a direct target for preserving the integrity of the slit diaphragm structure, hence reducing proteinuria in DN.
Collapse
Affiliation(s)
- Lulu Liang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengfei He
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Panpan Zhou
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaokang Pan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingfang Chen
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linxiao Lv
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingyang Hu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sijie Zhou
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Hu S, Hang X, Wei Y, Wang H, Zhang L, Zhao L. Crosstalk among podocytes, glomerular endothelial cells and mesangial cells in diabetic kidney disease: an updated review. Cell Commun Signal 2024; 22:136. [PMID: 38374141 PMCID: PMC10875896 DOI: 10.1186/s12964-024-01502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/28/2024] [Indexed: 02/21/2024] Open
Abstract
Diabetic kidney disease (DKD) is a long-term and serious complication of diabetes that affects millions of people worldwide. It is characterized by proteinuria, glomerular damage, and renal fibrosis, leading to end-stage renal disease, and the pathogenesis is complex and involves multiple cellular and molecular mechanisms. Among three kinds of intraglomerular cells including podocytes, glomerular endothelial cells (GECs) and mesangial cells (MCs), the alterations in one cell type can produce changes in the others. The cell-to-cell crosstalk plays a crucial role in maintaining the glomerular filtration barrier (GFB) and homeostasis. In this review, we summarized the recent advances in understanding the pathological changes and interactions of these three types of cells in DKD and then focused on the signaling pathways and factors that mediate the crosstalk, such as angiopoietins, vascular endothelial growth factors, transforming growth factor-β, Krüppel-like factors, retinoic acid receptor response protein 1 and exosomes, etc. Furthermore, we also simply introduce the application of the latest technologies in studying cell interactions within glomerular cells and new promising mediators for cell crosstalk in DKD. In conclusion, this review provides a comprehensive and updated overview of the glomerular crosstalk in DKD and highlights its importance for the development of novel intervention approaches.
Collapse
Affiliation(s)
- Shiwan Hu
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xing Hang
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yu Wei
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Han Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Lili Zhang
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
15
|
Liang LL, He MF, Zhou PP, Pan SK, Liu DW, Liu ZS. GSK3β: A ray of hope for the treatment of diabetic kidney disease. FASEB J 2024; 38:e23458. [PMID: 38315453 DOI: 10.1096/fj.202302160r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/09/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Diabetic kidney disease (DKD), a major microvascular complication of diabetes, is characterized by its complex pathogenesis, high risk of chronic renal failure, and lack of effective diagnosis and treatment methods. GSK3β (glycogen synthase kinase 3β), a highly conserved threonine/serine kinase, was found to activate glycogen synthase. As a key molecule of the glucose metabolism pathway, GSK3β participates in a variety of cellular activities and plays a pivotal role in multiple diseases. However, these effects are not only mediated by affecting glucose metabolism. This review elaborates on the role of GSK3β in DKD and its damage mechanism in different intrinsic renal cells. GSK3β is also a biomarker indicating the progression of DKD. Finally, the protective effects of GSK3β inhibitors on DKD are also discussed.
Collapse
Affiliation(s)
- Lu-Lu Liang
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P.R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P.R. China
| | - Meng-Fei He
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P.R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P.R. China
| | - Pan-Pan Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P.R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P.R. China
| | - Shao-Kang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P.R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P.R. China
| | - Dong-Wei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P.R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P.R. China
| | - Zhang-Suo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P.R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P.R. China
| |
Collapse
|
16
|
Tang S, An X, Sun W, Zhang Y, Yang C, Kang X, Sun Y, Jiang L, Zhao X, Gao Q, Ji H, Lian F. Parallelism and non-parallelism in diabetic nephropathy and diabetic retinopathy. Front Endocrinol (Lausanne) 2024; 15:1336123. [PMID: 38419958 PMCID: PMC10899692 DOI: 10.3389/fendo.2024.1336123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Diabetic nephropathy (DN) and diabetic retinopathy (DR), as microvascular complications of diabetes mellitus, are currently the leading causes of end-stage renal disease (ESRD) and blindness, respectively, in the adult working population, and they are major public health problems with social and economic burdens. The parallelism between the two in the process of occurrence and development manifests in the high overlap of disease-causing risk factors and pathogenesis, high rates of comorbidity, mutually predictive effects, and partial concordance in the clinical use of medications. However, since the two organs, the eye and the kidney, have their unique internal environment and physiological processes, each with specific influencing molecules, and the target organs have non-parallelism due to different pathological changes and responses to various influencing factors, this article provides an overview of the parallelism and non-parallelism between DN and DR to further recognize the commonalities and differences between the two diseases and provide references for early diagnosis, clinical guidance on the use of medication, and the development of new drugs.
Collapse
Affiliation(s)
- Shanshan Tang
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Xuedong An
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjie Sun
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Cunqing Yang
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuting Sun
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Jiang
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefei Zhao
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Gao
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hangyu Ji
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, Algehainy N, Alanazi MA, Abou-Samra AB, Kumar R, Al-Shabeeb Akil AS, Macha MA, Mir R, Bhat AA. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther 2024; 9:27. [PMID: 38311623 PMCID: PMC10838959 DOI: 10.1038/s41392-024-01735-1] [Citation(s) in RCA: 166] [Impact Index Per Article: 166.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, membranous structures secreted into the extracellular space. They exhibit diverse sizes, contents, and surface markers and are ubiquitously released from cells under normal and pathological conditions. Human serum is a rich source of these EVs, though their isolation from serum proteins and non-EV lipid particles poses challenges. These vesicles transport various cellular components such as proteins, mRNAs, miRNAs, DNA, and lipids across distances, influencing numerous physiological and pathological events, including those within the tumor microenvironment (TME). Their pivotal roles in cellular communication make EVs promising candidates for therapeutic agents, drug delivery systems, and disease biomarkers. Especially in cancer diagnostics, EV detection can pave the way for early identification and offers potential as diagnostic biomarkers. Moreover, various EV subtypes are emerging as targeted drug delivery tools, highlighting their potential clinical significance. The need for non-invasive biomarkers to monitor biological processes for diagnostic and therapeutic purposes remains unfulfilled. Tapping into the unique composition of EVs could unlock advanced diagnostic and therapeutic avenues in the future. In this review, we discuss in detail the roles of EVs across various conditions, including cancers (encompassing head and neck, lung, gastric, breast, and hepatocellular carcinoma), neurodegenerative disorders, diabetes, viral infections, autoimmune and renal diseases, emphasizing the potential advancements in molecular diagnostics and drug delivery.
Collapse
Affiliation(s)
- Mudasir A Kumar
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Sadaf K Baba
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Sara Al Marzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
18
|
Tang C, Yang C, Wang P, Li L, Lin Y, Yi Q, Tang F, Liu L, Zhou W, Liu D, Zhang L, Yuan X. Identification and Validation of Glomeruli Cellular Senescence-Related Genes in Diabetic Nephropathy by Multiomics. Adv Biol (Weinh) 2024; 8:e2300453. [PMID: 37957539 DOI: 10.1002/adbi.202300453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/08/2023] [Indexed: 11/15/2023]
Abstract
Accumulating evidence indicates that cellular premature senescence of the glomerulus, including endothelial cells, mesangial cells, and podocytes leads to diabetic nephropathy (DN), and DN is regarded as a clinical model of premature senescence. However, the role of cellular senescence-associated genes in the glomerulus in DN progression remains unclear. Therefore, this work aims to identify and validate potential cellular aging-related genes in the glomerulus in DN to provide novel clues for DN treatment based on anti-aging. The microarray GSE96804 dataset, including 41 diabetic glomeruli and 20 control glomeruli, is retrieved from the Gene Expression Omnibus (GEO) database and cellular senescence-related genes (CSRGs) are obtained from the GeneCards database and literature reports. Subsequently, PPI, GO, and KEGG enrichment are analyzed by screening the intersection between differentially expressed genes (DEGs) and CSRGs. scRNA-seq dataset GSE127235 is used to verify core genes expression in glomerulocytes of mice. Finally, db/db mice are utilized to validate the hub gene expression in the glomeruli, and high glucose-induced mesangial cells are used to confirm key gene expression. This study reveals that FOS and ZFP36 may play an anti-aging role in DN to ameliorate cell intracellular premature aging in mesangial cells of glomeruli.
Collapse
Affiliation(s)
- Chunyin Tang
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610000, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Chunsong Yang
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610000, China
| | - Peiwen Wang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Luxin Li
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Yunzhu Lin
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610000, China
| | - Qiusha Yi
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610000, China
| | - Fengru Tang
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610000, China
| | - Lantao Liu
- Postgraduate Department, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Wei Zhou
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610000, China
| | - Dongwen Liu
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610000, China
| | - Lingli Zhang
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610000, China
| | - Xiaohuan Yuan
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, China
| |
Collapse
|
19
|
Du Y, Feng Y, Cai Y, Tian C. CircLARP1B promotes pyroptosis of high glucose-induced renal mesangial cells by regulating the miR-578/TLR4 axis. Int Urol Nephrol 2024; 56:283-293. [PMID: 37341906 DOI: 10.1007/s11255-023-03672-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 06/11/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a main cause of end-stage renal disease with high mortality. Circular RNAs (circRNAs) are associated with the pathogenesis of DN. This study aimed to explore the role of circLARP1B in DN. METHODS The levels of circLARP1B, miR-578, TLR4 in DN and high glucose (HG)-treated cells using quantitative real-time PCR. Their relationship was analyzed using dual-luciferase reporter assay. The biological behaviors were assessed by MTT assay, EDU assay, flow cytometry, ELISA, and western blot. RESULTS The results indicated that circLARP1B and TLR4 were highly expressed, and miR-578 was low expressed in patients with DN and HG-induced cells. Knockdown of circLARP1B promoted the proliferation and cell cycle, and inhibited pyroptosis and inflammation of HG-induced cells. CircLARP1B is a sponge of miR-578, which targets TLR4. Rescue experiments showed that inhibition of miR-578 reversed the effects of circLARP1B knockdown, while TLR4 reversed the effects of miR-578. CONCLUSION CircLARP1B/miR-578/TLR4 axis suppressed the proliferation, blocked cell cycle at the G0-G1 phase, promoted pyroptosis, and inflammatory factor release of renal mesangial cells induced by HG. The findings suggested that circLARP1B may be a target for the treatment of DN.
Collapse
Affiliation(s)
- Yan Du
- Department of Nephrology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Yu Feng
- Department of Clinical Pharmacy, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Yu Cai
- Department of General Surgery, The First Affiliated Hospital of Xi'an Medical University, No. 48, Fenghao West Road, Lianhu District, Xi'an, 710077, Shaanxi, China.
| | - Chang Tian
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China.
| |
Collapse
|
20
|
Ye L, Chen JH, Zhu SL, Xu DD, Yang Y, Shi MP. Hsa_circ_0001162 Inhibition Alleviates High Glucose-Induced Human Podocytes Injury by the miR-149-5p/MMP9 Signaling Pathway. Appl Biochem Biotechnol 2023; 195:7255-7276. [PMID: 36988849 DOI: 10.1007/s12010-023-04431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
Emerging evidences suggested that circular RNAs (circRNAs) are involved in diabetic nephropathy (DN). Accumulating evidence had suggested that the degree of podocyte is a major prognostic determinant of DN progression. However, the function and in-depth mechanisms of hsa_circ_0001162 in podocyte injury of DN remain unclear. Hsa_circ_0001162 expression was detected by real-time quantitative PCR (RT-qPCR) in peripheral blood of DN patients and high glucose-induced podocytes injury model. The cell counting kit 8, 5-ethynyl-2'-deoxyuridine, flow cytometry with Annexin V-FITC/PI staining, caspase-3 activity assay Kit, enzyme linked immunosorbent assay (ELISA), RT-qPCR and western blotting were used to evaluate the effect of hsa_circ_0001162 / miR-149-5p / MMP9 axis on high glucose-induced podocyte injury. Mechanistically, dual luciferase reporter was used to confirm the relationship of miR-149-5p and hsa_circ_0001162 or MMP9. Furthermore, RNA-pull down and immunoprecipitation assay were implemented to verify the potential regulatory effects of EIF4A3 on biogenesis of hsa_circ_0001162. Our results showed that hsa_circ_0001162 was highly expressed in peripheral blood of DN patients and high glucose-induced podocytes injury model, and the knockdown of hsa_circ_0001162 increased the proliferation, inhibited the apoptosis, and suppressed inflammatory response in high glucose-induced podocytes injury. Mechanism studies demonstrated that EIF4A3 bound with flanking sequences of hsa_circ_0001162 to promote hsa_circ_0001162 expression, upregulated hsa_circ_0001162 increased the MMP9 expression via sponging miR-149-5p, thus aggravating the high glucose-induced podocytes injury. Overall, our data demonstrated that knockdown of hsa_circ_0001162 inhibited high glucose-induced podocytes injury by regulating miR-149-5p/MMP9 axis, and intervention of hsa_circ_0001162/miR-149-5p/MMP9 axis may be a potentially promising therapeutic strategy for podocyte injury in DN patients.
Collapse
Affiliation(s)
- Ling Ye
- Department of Nephrology, Shenzhen Nanshan People's Hospital and The 6Th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China.
| | - Jie-Hui Chen
- Department of Nephrology, Shenzhen Nanshan People's Hospital and The 6Th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Sheng-Lang Zhu
- Department of Nephrology, Shenzhen Nanshan People's Hospital and The 6Th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Dan-Dan Xu
- Department of Nephrology, Shenzhen Nanshan People's Hospital and The 6Th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Yun Yang
- Department of Nephrology, Shenzhen Nanshan People's Hospital and The 6Th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Ming-Pei Shi
- Department of Nephrology, Shenzhen Nanshan People's Hospital and The 6Th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
21
|
Yu B, Zhou M, Dong Z, Zheng H, Zhao Y, Zhou J, Zhang C, Wei F, Yu G, Liu WJ, Liu H, Wang Y. Integrating network pharmacology and experimental validation to decipher the mechanism of the Chinese herbal prescription modified Shen-Yan-Fang-Shuai formula in treating diabetic nephropathy. PHARMACEUTICAL BIOLOGY 2023; 61:1222-1233. [PMID: 37565668 PMCID: PMC10424623 DOI: 10.1080/13880209.2023.2241521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/02/2023] [Accepted: 07/23/2023] [Indexed: 08/12/2023]
Abstract
CONTEXT Diabetic nephropathy (DN) is the main cause of end-stage renal disease. Modified Shen-Yan-Fang-Shuai formula (M-SYFSF) has excellent clinical efficacy in treating diabetic kidney disease. However, the potential mechanism of M-SYFSF remains unknown. OBJECTIVE To investigate the mechanism of M-SYFSF against DN by network pharmacological analysis and biological experiments. MATERIALS AND METHODS Utilizing a web-based pharmacology database, the potential mechanisms of M-SYFSF against DN were identified. In vivo experiments, male SD rats were injected with streptozotocin (50 mg/kg) and got uninephrectomy to construct a model of DN. M-SYFSF (11.34 g/kg/d) was gavaged once per day for 12 weeks after model establishment. In vitro experiments, human proximal tubular cells (HK-2) were performed with advanced glycation end-products (AGEs) (100 μg/mL), then intervened with M-SYFSF freeze-dried powder. Pathological staining, WB, IHC, ELISA were conducted to explore the mechanism of M-SYFSF against DN. RESULTS Network pharmacological analysis showed that MAPK pathway was the potential pathway. Results showed that compared with the Model group, M-SYFSF significantly reduced 24h urine albumin, UACR, and serum creatinine levels (54.90 ± 26.67 vs. 111.78 ± 4.28, 8.87 ± 1.69 vs. 53.94 ± 16.01, 11.56 ± 1.70 vs. 118.70 ± 49.57, respectively), and improved renal pathological changes. Furthermore, the intervention of M-SYFSF reduced the expression of pro-inflammatory cytokines and inhibited the activation of MAPK pathway in AGEs-treated HK-2 cells. DISCUSSION AND CONCLUSION M-SYFSF is likely to reduce inflammation in DN by inhibiting the MAPK pathway. It provides a theoretical basis for the clinical application of M-SYFSF in the treatment of DN.
Collapse
Affiliation(s)
- Borui Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Mengqi Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Zhaocheng Dong
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Huijuan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Yuxue Zhao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
- Beijing Dongcheng First People’s Hospital, Beijing, P.R. China
| | - Jingwei Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Chao Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Fudong Wei
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Guoyong Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Wei Jing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Hongfang Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Yaoxian Wang
- Beijing University of Chinese Medicine, Beijing, P.R. China
| |
Collapse
|
22
|
Kong Z, Lv W, Wang Y, Huang Y, Che K, Nan H, Xin Y, Wang J, Chen J, Wang Y, Chi J. Sinensetin ameliorates high glucose-induced diabetic nephropathy via enhancing autophagy in vitro and in vivo. J Biochem Mol Toxicol 2023; 37:e23445. [PMID: 37393522 DOI: 10.1002/jbt.23445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/01/2023] [Accepted: 06/14/2023] [Indexed: 07/03/2023]
Abstract
Diabetic nephropathy (DN) affects around 40% of people with diabetes, the final outcome of which is end-stage renal disease. The deficiency of autophagy and excessive oxidative stress have been found to participate in the pathogenesis of DN. Sinensetin (SIN) has been proven to have strong antioxidant capability. However, the effect of SIN on DN has not been studied. We examined the effect of SIN on cell viability and autophagy in the podocyte cell line, MPC5 cells, treated with high glucose (HG). For in vivo studies, DN mice models were established by intraperitoneal injected with streptozotocin (40 mg/kg) for 5 consecutive days and fed with a 60% high-fat diet, and SIN was given (10, 20, and 40 mg/kg) for 8 weeks via intraperitoneal injection. The results showed that SIN could protect MPC5 cells against HG-induced damage and significantly improve the renal function of DN mice. Moreover, SIN remarkably restored the autophagy activity of MPC5 cells which was inhibited under HG conditions. Consistent with this, SIN efficiently improved autophagy in the kidney tissue of DN mice. In brief, our findings demonstrated the protective effect of SIN on DN via restoring the autophagic function, which might provide a basis for drug development.
Collapse
Affiliation(s)
- Zili Kong
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Endocrinology and Metabolism, Qingdao Key Laboratory of Thyroid Diseases, Medical Research Center, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenshan Lv
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yunyang Wang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yajing Huang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kui Che
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Endocrinology and Metabolism, Qingdao Key Laboratory of Thyroid Diseases, Medical Research Center, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huiqi Nan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yu Xin
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jiaxuan Wang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jintao Chen
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangang Wang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingwei Chi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Endocrinology and Metabolism, Qingdao Key Laboratory of Thyroid Diseases, Medical Research Center, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
23
|
Zeng Y, Xiong C, Chen Y, Yang C, Li Q. Effects and mechanism of Rictor interference in podocyte injury induced by high glucose. Exp Ther Med 2023; 26:473. [PMID: 37753299 PMCID: PMC10518650 DOI: 10.3892/etm.2023.12172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/07/2023] [Indexed: 09/28/2023] Open
Abstract
Rapamycin-insensitive companion of mTOR (Rictor) is a critical effector of mTOR protein complex 2 (mTORC2). The aim of the present study was to investigate the effect of Rictor in the mTORC2 signaling pathway in high glucose (HG)-induced diabetic podocyte injury by silencing the expression of Rictor. In the present study, mouse podocytes were treated with glucose (150 mM) and mannitol (200 mM), the Rictor gene was silenced using small interfering RNA (siRNA). Apoptosis was detected by flow cytometry, whereas podocyte cytoskeletal protein expression was detected by western blotting (WB) and immunofluorescence staining. The results demonstrated that, compared with that in the control group, the podocyte apoptotic rate was significantly increased in the mannitol group (negative group) and the groups that were treated with glucose (model groups). The podocyte apoptotic rate in the model + Rictor siRNA group was significantly decreased compared with that in the negative, model and the model glucose + siRNA negative control (NC) groups. WB indicated that the protein expression levels of podocalyxin and synaptopodin were reduced in the model and model + siRNA NC groups compared with those in the normal control and negative groups. Additionally, the protein expression levels of α-smooth muscle actin (α-SMA) and P-AKT/AKT were increased in the model and model + siRNA NC groups compared with the those in control and negative groups. Compared with those the model and model + siRNA NC groups, the protein expression levels of podocalyxin and synaptopodin were increased, whilst those of the α-SMA and P-AKT/AKT proteins were decreased, in the model + Rictor siRNA group. Results from immunofluorescence analysis were basically consistent with those of WB. Therefore, results of the present study suggest that silencing of the Rictor gene may reduce the damage to podocytes induced by HG, such that the Rictor/mTORC2 signaling pathway may be involved in the remodeling of podocyte actin cytoskeletal in diabetes.
Collapse
Affiliation(s)
- Yan Zeng
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Changbin Xiong
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yinxiang Chen
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chunyun Yang
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiuyue Li
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
24
|
Sang Y, Tsuji K, Nakanoh H, Fukushima K, Kitamura S, Wada J. Role of Semaphorin 3A in Kidney Development and Diseases. Diagnostics (Basel) 2023; 13:3038. [PMID: 37835781 PMCID: PMC10572269 DOI: 10.3390/diagnostics13193038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Kidney diseases are worldwide public health problems affecting millions of people. However, there are still limited therapeutic options against kidney diseases. Semaphorin 3A (SEMA3A) is a secreted and membrane-associated protein, which regulates diverse functions, including immune regulation, cell survival, migration and angiogenesis, thus involving in the several pathogeneses of diseases, including eyes and neurons, as well as kidneys. SEMA3A is expressed in podocytes and tubular cells in the normal adult kidney, and recent evidence has revealed that excess SEMA3A expression and the subsequent signaling pathway aggravate kidney injury in a variety of kidney diseases, including nephrotic syndrome, diabetic nephropathy, acute kidney injury, and chronic kidney disease. In addition, several reports have demonstrated that the inhibition of SEMA3A ameliorated kidney injury via a reduction in cell apoptosis, fibrosis and inflammation; thus, SEMA3A may be a potential therapeutic target for kidney diseases. In this review article, we summarized the current knowledge regarding the role of SEMA3A in kidney pathophysiology and their potential use in kidney diseases.
Collapse
Affiliation(s)
- Yizhen Sang
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; (Y.S.)
- Department of Rheumatology and Immunology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Kenji Tsuji
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; (Y.S.)
| | - Hiroyuki Nakanoh
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; (Y.S.)
| | - Kazuhiko Fukushima
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; (Y.S.)
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shinji Kitamura
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; (Y.S.)
- Department of Nursing Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan; (Y.S.)
| |
Collapse
|
25
|
Akhter MS, Goodwin JE. Endothelial Dysfunction in Cardiorenal Conditions: Implications of Endothelial Glucocorticoid Receptor-Wnt Signaling. Int J Mol Sci 2023; 24:14261. [PMID: 37762564 PMCID: PMC10531724 DOI: 10.3390/ijms241814261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The endothelium constitutes the innermost lining of the blood vessels and controls blood fluidity, vessel permeability, platelet aggregation, and vascular tone. Endothelial dysfunction plays a key role in initiating a vascular inflammatory cascade and is the pivotal cause of various devastating diseases in multiple organs including the heart, lung, kidney, and brain. Glucocorticoids have traditionally been used to combat vascular inflammation. Endothelial cells express glucocorticoid receptors (GRs), and recent studies have demonstrated that endothelial GR negatively regulates vascular inflammation in different pathological conditions such as sepsis, diabetes, and atherosclerosis. Mechanistically, the anti-inflammatory effects of GR are mediated, in part, through the suppression of Wnt signaling. Moreover, GR modulates the fatty acid oxidation (FAO) pathway in endothelial cells and hence can influence FAO-mediated fibrosis in several organs including the kidneys. This review summarizes the relationship between GR and Wnt signaling in endothelial cells and the effects of the Wnt pathway in different cardiac and renal diseases. Available data suggest that GR plays a significant role in restoring endothelial integrity, and research on endothelial GR-Wnt interactions could facilitate the development of novel therapies for many cardiorenal conditions.
Collapse
Affiliation(s)
- Mohammad Shohel Akhter
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06511, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Julie Elizabeth Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06511, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
26
|
Daehn IS, Ekperikpe US, Stadler K. Redox regulation in diabetic kidney disease. Am J Physiol Renal Physiol 2023; 325:F135-F149. [PMID: 37262088 PMCID: PMC10393330 DOI: 10.1152/ajprenal.00047.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/08/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the most devastating complications of diabetes mellitus, where currently there is no cure available. Several important mechanisms contribute to the pathogenesis of this complication, with oxidative stress being one of the key factors. The past decades have seen a large number of publications with various aspects of this topic; however, the specific details of redox regulation in DKD are still unclear. This is partly because redox biology is very complex, coupled with a complex and heterogeneous organ with numerous cell types. Furthermore, often times terms such as "oxidative stress" or reactive oxygen species are used as a general term to cover a wide and rich variety of reactive species and their differing reactions. However, no reactive species are the same, and not all of them are capable of biologically relevant reactions or "redox signaling." The goal of this review is to provide a biochemical background for an array of specific reactive oxygen species types with varying reactivity and specificity in the kidney as well as highlight some of the advances in redox biology that are paving the way to a better understanding of DKD development and risk.
Collapse
Affiliation(s)
- Ilse S Daehn
- Division of Nephrology, Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Ubong S Ekperikpe
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Krisztian Stadler
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| |
Collapse
|
27
|
Taslamacioglu Duman T, Ozkul FN, Balci B. Could Systemic Inflammatory Index Predict Diabetic Kidney Injury in Type 2 Diabetes Mellitus? Diagnostics (Basel) 2023; 13:2063. [PMID: 37370958 DOI: 10.3390/diagnostics13122063] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The systemic inflammatory index (SII) is a new inflammatory marker that has been the subject of various studies in diseases with chronic inflammation. Diabetic nephropathy is a disease associated with chronic inflammation. We aimed to evaluate the relationship between SII and diabetic nephropathy. METHODS Patients with diabetes who applied to our outpatient clinic were included in the study. Diabetic patients were divided into two groups: those with diabetic nephropathy and those without. In addition, healthy individuals who applied to our clinic for general check-ups during these dates were included as the control group. The SII values and other characteristics of the three study groups were compared. RESULTS The median SII value for those with DKI was 584 (178-4819); for those without DKI, it was 282 (64-618); and for the control group, it was 236 (77.5-617) (p < 0.001). SII was significantly and positively correlated with BMI, weight, blood glucose, HbA1c, CRP, and creatinine, and negatively correlated with the glomerular filtration rate (GFR) value. SII values higher than 336 have 75% sensitivity and 70% specificity in detecting DKI. CONCLUSION The SII value can predict diabetic kidney injury in diabetics, and it can be used as an adjunctive diagnostic tool.
Collapse
Affiliation(s)
| | - Feyza Nihal Ozkul
- Department of Internal Medicine, Abant Izzet Baysal University Hospital, 14200 Bolu, Turkey
| | - Buse Balci
- Department of Internal Medicine, Abant Izzet Baysal University Hospital, 14200 Bolu, Turkey
| |
Collapse
|
28
|
Li Q, Zhang K, Hou L, Liao J, Zhang H, Han Q, Guo J, Li Y, Hu L, Pan J, Yu W, Tang Z. Endoplasmic reticulum stress contributes to pyroptosis through NF-κB/NLRP3 pathway in diabetic nephropathy. Life Sci 2023; 322:121656. [PMID: 37011874 DOI: 10.1016/j.lfs.2023.121656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
AIMS Diabetic nephropathy (DN) is known as a major microvascular complication in type 1 diabetes. Endoplasmic reticulum (ER) stress and pyroptosis play a critical role in the pathological process of DN, but their mechanism in DN has been litter attention. MAIN METHODS Here, we firstly used large mammal beagles as DN model for 120 d to explored the mechanism of endoplasmic reticulum stress-mediated pyroptosis in DN. Meanwhile, 4-Phenylbutytic acid (4-PBA) and BYA 11-7082 were added in the MDCK (Madin-Daby canine kidney) cells by high glucose (HG) treatment. ER stress and pyroptosis related factors expression levels were analyzed by immunohistochemistry, immunofluorescence, western blotting, and quantitative real-time PCR assay. KEY FINDINGS We identified that glomeruli atrophy, renal capsules were increased, and renal tubules thickened in diabetes. Masson and PAS staining resulted showed that the collagen fibers and glycogen were accumulated in kidney. Meanwhile, the ER stress and pyroptosis-related factors were significantly activated in vitro. Importantly, 4-PBA significantly inhibited the ER stress, which also alleviated the HG-induced pyroptosis in MDCK cells. Furthermore, BYA 11-7082 could reduce the expression levels of NLRP3 and GSDMD genes and proteins. SIGNIFICANCE These data provide evidence for ER stress contributes to pyroptosis through NF-κΒ/ΝLRP3 pathway in canine type 1 diabetic nephropathy.
Collapse
|
29
|
Kirwan JP, Heintz EC, Rebello CJ, Axelrod CL. Exercise in the Prevention and Treatment of Type 2 Diabetes. Compr Physiol 2023; 13:4559-4585. [PMID: 36815623 DOI: 10.1002/cphy.c220009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Type 2 diabetes is a systemic, multifactorial disease that is a leading cause of morbidity and mortality globally. Despite a rise in the number of available medications and treatments available for management, exercise remains a first-line prevention and intervention strategy due to established safety, efficacy, and tolerability in the general population. Herein we review the predisposing risk factors for, prevention, pathophysiology, and treatment of type 2 diabetes. We emphasize key cellular and molecular adaptive processes that provide insight into our evolving understanding of how, when, and what types of exercise may improve glycemic control. © 2023 American Physiological Society. Compr Physiol 13:1-27, 2023.
Collapse
Affiliation(s)
- John P Kirwan
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Elizabeth C Heintz
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Candida J Rebello
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Christopher L Axelrod
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
30
|
The Mechanism of Hyperglycemia-Induced Renal Cell Injury in Diabetic Nephropathy Disease: An Update. Life (Basel) 2023; 13:life13020539. [PMID: 36836895 PMCID: PMC9967500 DOI: 10.3390/life13020539] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Diabetic Nephropathy (DN) is a serious complication of type I and II diabetes. It develops from the initial microproteinuria to end-stage renal failure. The main initiator for DN is chronic hyperglycemia. Hyperglycemia (HG) can stimulate the resident and non-resident renal cells to produce humoral mediators and cytokines that can lead to functional and phenotypic changes in renal cells and tissues, interference with cell growth, interacting proteins, advanced glycation end products (AGEs), etc., ultimately resulting in glomerular and tubular damage and the onset of kidney disease. Therefore, poor blood glucose control is a particularly important risk factor for the development of DN. In this paper, the types and mechanisms of DN cell damage are classified and summarized by reviewing the related literature concerning the effect of hyperglycemia on the development of DN. At the cellular level, we summarize the mechanisms and effects of renal damage by hyperglycemia. This is expected to provide therapeutic ideas and inspiration for further studies on the treatment of patients with DN.
Collapse
|
31
|
Atia T, Sakr HI, Damanhory AA, Moawad K, Alsawy M. The protective effect of green tea on diabetes-induced hepato-renal pathological changes: a histological and biochemical study. Arch Physiol Biochem 2023; 129:168-179. [PMID: 32816576 DOI: 10.1080/13813455.2020.1806885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
We investigated the protective effect of green tea on diabetic hepato-renal complications. Thirty male Wistar rats were randomly divided into five equal groups: normal control, diabetic control, glibenclamide-treated, green tea-treated, and combined therapy-treated groups; ethical approval number "BERC-014-01-20." After eight weeks, animals were sacrificed by CO2 euthanasia method, liver and kidney tissues were processed and stained for pathological changes, and blood samples were collected for biochemical analysis. Diabetic rats showed multiple hepato-renal morphological and apoptotic changes associated with significantly increased some biochemical parameters, while serum albumin and HDL decreased significantly compared to normal control (p < .05). Monotherapy can induce significant improvements in pathological and biochemical changes but has not been able to achieve normal patterns. In conclusion, green tea alone has a poor hypoglycaemic effect but can reduce diabetic complications, whereas glibenclamide cannot prevent diabetic complications. The addition of green tea to oral hypoglycaemic therapy has shown a potent synergistic effect.
Collapse
Affiliation(s)
- Tarek Atia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences Prince, Sattam Bin Abdulaziz University, Al-Kharj, KSA
- Department of Histology and Cytology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Hader I Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Batterjee Medical College, Jeddah, KSA
| | - Ahmed A Damanhory
- Batterjee Medical College, Jeddah, KSA
- Department of Biochemistry, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Karim Moawad
- School of Biological Science, UCI, Irvine, CA, USA
| | - Moustfa Alsawy
- Department of Histology and Cytology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Batterjee Medical College, Jeddah, KSA
| |
Collapse
|
32
|
Tochiya M, Makino H, Tamanaha T, Omura-Ohata Y, Matsubara M, Koezuka R, Noguchi M, Tomita T, Asaumi Y, Miyamoto Y, Yasuda S, Hosoda K. Diabetic microvascular complications predicts non-heart failure with reduced ejection fraction in type 2 diabetes. ESC Heart Fail 2023; 10:1158-1169. [PMID: 36630988 PMCID: PMC10053357 DOI: 10.1002/ehf2.14280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/29/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023] Open
Abstract
AIMS The relationship between diabetic microvascular complications and the incidence of two types of heart failure-heart failure with reduced ejection fraction (HFrEF) (left ventricular ejection fraction [LVEF] < 40%) and non-HFrEF (LVEF ≥ 40%)-in patients without prior heart failure has not been clarified. We herein examined the association between diabetic microvascular complications and HFrEF or non-HFrEF in patients with type 2 diabetes mellitus (T2DM) without prior heart failure. METHODS AND RESULTS In this retrospective cohort study, we assessed the relationship between the presence of diabetic microvascular complications or severity of diabetic retinopathy (no apparent, non-proliferative and proliferative retinopathy) and nephropathy (normoalbuminuria, microalbuminuria, and macroalbuminuria) at baseline, with the primary outcome of first heart failure hospitalization classified as HFrEF or non-HFrEF in patients with type 2 diabetes mellitus without prior heart failure. Among 568 patients (69.2% males, mean age 66.2 ± 9.6 years), 70 experienced heart failure hospitalization (HFrEF: 24 and non-HFrEF: 46). Non-HFrEF hospitalization but not HFrEF hospitalization was significantly associated with the presence of diabetic microvascular complications. The incidence of non-HFrEF hospitalization was significantly higher in the proliferative retinopathy group than that in the no apparent retinopathy group (adjusted hazard ratio [HR] 2.96, 95% confidence interval [CI]: 1.09-6.83, P = 0.035) and in those with macroalbuminuria than in those with normoalbuminuria (adjusted HR 4.23, 95% CI: 2.24-7.85, P < 0.001) even after adjustment for age and sex. When non-HFrEF was classified into heart failure with mildly reduced ejection fraction (HFmrEF) (40% ≤ LVEF < 50%) and heart failure with preserved ejection fraction (HFpEF) (50% ≤ LVEF), HFmrEF and HFpEF hospitalizations were also found to be associated with the progression of retinopathy and nephropathy. CONCLUSIONS In patients with T2DM without prior heart failure, non-HFrEF hospitalization was more closely associated with the progression of diabetic microangiopathy than HFrEF. The development of non-HFrEF may be mediated through a mechanism similar to that of microvascular complications in these patients.
Collapse
Affiliation(s)
- Mayu Tochiya
- Division of Diabetes and Lipid Metabolism, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, Japan.,Department of Advanced Cardiovascular Prevention and Epidemiology, Tohoku University Graduate School of Medicine and Tohoku University Hospital, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Hisashi Makino
- Division of Diabetes and Lipid Metabolism, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, Japan
| | - Tamiko Tamanaha
- Division of Diabetes and Lipid Metabolism, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, Japan.,Department of Advanced Cardiovascular Prevention and Epidemiology, Tohoku University Graduate School of Medicine and Tohoku University Hospital, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Yoko Omura-Ohata
- Division of Diabetes and Lipid Metabolism, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, Japan.,Department of Advanced Cardiovascular Prevention and Epidemiology, Tohoku University Graduate School of Medicine and Tohoku University Hospital, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Masaki Matsubara
- Division of Diabetes and Lipid Metabolism, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, Japan
| | - Ryo Koezuka
- Division of Diabetes and Lipid Metabolism, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, Japan.,Department of Advanced Cardiovascular Prevention and Epidemiology, Tohoku University Graduate School of Medicine and Tohoku University Hospital, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Michio Noguchi
- Division of Diabetes and Lipid Metabolism, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, Japan
| | - Tsutomu Tomita
- Division of Diabetes and Lipid Metabolism, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, Japan
| | - Yasuhide Asaumi
- Division of Preventive Cardiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, Japan
| | - Yoshihiro Miyamoto
- Department of Advanced Cardiovascular Prevention and Epidemiology, Tohoku University Graduate School of Medicine and Tohoku University Hospital, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan.,Open Innovation Center, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, Japan
| | - Satoshi Yasuda
- Department of Advanced Cardiovascular Prevention and Epidemiology, Tohoku University Graduate School of Medicine and Tohoku University Hospital, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan.,Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine and Tohoku University Hospital, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Kiminori Hosoda
- Division of Diabetes and Lipid Metabolism, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, Japan
| |
Collapse
|
33
|
PLVAP as an Early Marker of Glomerular Endothelial Damage in Mice with Diabetic Kidney Disease. Int J Mol Sci 2023; 24:ijms24021094. [PMID: 36674624 PMCID: PMC9865597 DOI: 10.3390/ijms24021094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/09/2023] Open
Abstract
Plasmalemma vesicle-associated protein (PLVAP) is the main component of endothelial diaphragms in fenestrae, caveolae, and transendothelial channels. PLVAP is expressed in the adult kidney glomerulus upon injury. Glomerular endothelial injury is associated with progressive loss of kidney function in diabetic kidney disease (DKD). This study aimed to investigate whether PLVAP could serve as a marker for glomerular endothelial damage in DKD. Glomerular PLVAP expression was analyzed in different mouse models of DKD and their respective healthy control animals using automatic digital quantification of histological whole kidney sections. Transgenic mice expressing a dominant-negative GIP receptor (GIPRdn) in pancreatic beta-cells as a model for diabetes mellitus (DM) type 1 and black and tan brachyuric (BTBR) ob/ob mice, as a model for DM type 2, were used. Distinct PLVAP induction was observed in all diabetic models studied. Traces of glomerular PLVAP expression could be identified in the healthy control kidneys using automated quantification. Stainings for other endothelial injury markers such as CD31 or the erythroblast transformation-specific related gene (ERG) displayed no differences between diabetic and healthy groups at the time points when PLVAP was induced. The same was also true for the mesangial cells marker α8Integrin, while the podocyte marker nephrin appeared to be diminished only in BTBR ob/ob mice. Glomerular hypertrophy, which is one of the initial morphological signs of diabetic kidney damage, was observed in both diabetic models. These findings suggest that PLVAP is an early marker of glomerular endothelial injury in diabetes-induced kidney damage in mice.
Collapse
|
34
|
Wang X, Zhao J, Li Y, Rao J, Xu G. Epigenetics and endoplasmic reticulum in podocytopathy during diabetic nephropathy progression. Front Immunol 2022; 13:1090989. [PMID: 36618403 PMCID: PMC9813850 DOI: 10.3389/fimmu.2022.1090989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Proteinuria or nephrotic syndrome are symptoms of podocytopathies, kidney diseases caused by direct or indirect podocyte damage. Human health worldwide is threatened by diabetic nephropathy (DN), the leading cause of end-stage renal disease (ESRD) in the world. DN development and progression are largely dependent on inflammation. The effects of podocyte damage on metabolic disease and inflammatory disorders have been documented. Epigenetic and endoplasmic reticulum (ER) stress are also evident in DN. Targeting inflammation pathway and ER stress in podocytes may be a prospective therapy to prevent the progression of DN. Here, we review the mechanism of epigenetics and ER stress on podocyte inflammation and apoptosis, and discuss the potential amelioration of podocytopathies by regulating epigenetics and ER stress as well as by targeting inflammatory signaling, which provides a theoretical basis for drug development to ameliorate DN.
Collapse
Affiliation(s)
- Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China,*Correspondence: Xiaokang Wang,
| | - Jingqian Zhao
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yuanqing Li
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Jiaoyu Rao
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Gengrui Xu
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
35
|
Liang M, Zhu X, Zhang D, He W, Zhang J, Yuan S, He Q, Jin J. Yi-Shen-Hua-Shi granules inhibit diabetic nephropathy by ameliorating podocyte injury induced by macrophage-derived exosomes. Front Pharmacol 2022; 13:962606. [PMID: 36506555 PMCID: PMC9732029 DOI: 10.3389/fphar.2022.962606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
Abstract
Objective: To observe the therapeutic effect of Yi-Shen-Hua-Shi (YSHS) granule in podocyte damage and diabetic nephropathy (DN) proteinuria and to explore the corresponding mechanism. Methods: The db/db mice were used to establish the DN model. Serum creatinine (SCr), blood urea nitrogen (BUN), and 24 h urinary proteinuria were detected with specific kits. Glomerular structural lesions and podocyte apoptosis were detected through HE staining, TUNEL assay, and immunofluorescence. The medicated serum of YSHS granule (YSHS-serum) or control serum was prepared. Macrophage-derived exosomes were extracted using an exosome extraction kit. Morphology and the protein concentration of exosomes were evaluated by a transmission electron microscope (TEM) and BCA kit. The activity and apoptosis of podocyte MPC5 cells, the M1 macrophage polarization, and the protein expression of an exosome marker and cleaved caspase were detected by the CCK8 experiment, flow cytometry, and Western blot, respectively. The miR-21a-5p expression in podocytes and the exosomes from macrophages were measured by qRT-PCR. The effect of YSHS granule on the infiltration of M1 macrophages in the kidney tissue in db/db mice was measured by immunofluorescence. Results: The YSHS granule could improve renal function, reduce proteinuria, and inhibit glomerular structural lesions and podocyte apoptosis in db/db mice. High-glucose (HG) stimulation and YSHS granule treatment did not affect the protein concentration in macrophage-derived exosomes. Macrophage-derived exosomes could inhibit the cell viability and increase apoptosis of podocytes, especially the exosomes from macrophages treated with HG and control serum. Compared with the exosomes secreted by macrophages after an HG treatment, the exosome from macrophages treated with HG and YSHS granule showed lower inhibitory effects on podocyte activity, accompanied by the decreased upregulating effects of macrophage-derived exosomes on the miR-21a-5p in podocytes. miR-21a-5p mimics could reduce podocyte activity and promote caspase-3 shearing. M1 polarization of macrophages could change the content of miR-21a-5p in macrophage-derived exosomes. In addition, YSHS granule could inhibit HG-induced M1 polarization of macrophages and M1 macrophage infiltration in renal tissues. Conclusion: The YSHS granule could improve the podocyte injury induced by macrophage-derived exosomes and alleviate the progression of DN. This regulation might be related to the inhibition of M1 macrophage polarization by YSHS granule and the reduction of the miR-21a-5p content in macrophage-derived exosomes.
Collapse
Affiliation(s)
- Mingzhu Liang
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China,Department of Nephrology, The Medical College of Qingdao University, Qingdao, China
| | - Xiaodong Zhu
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Di Zhang
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Wenfang He
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jinshi Zhang
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Shizhu Yuan
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qiang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China,*Correspondence: Qiang He, ; Juan Jin,
| | - Juan Jin
- Urology and Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China,*Correspondence: Qiang He, ; Juan Jin,
| |
Collapse
|
36
|
Cao Y, Lin JH, Hammes HP, Zhang C. Cellular phenotypic transitions in diabetic nephropathy: An update. Front Pharmacol 2022; 13:1038073. [PMID: 36408221 PMCID: PMC9666367 DOI: 10.3389/fphar.2022.1038073] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetic nephropathy (DN) is a major cause of morbidity and mortality in diabetes and is the most common cause of end stage renal disease (ESRD). Renal fibrosis is the final pathological change in DN. It is widely believed that cellular phenotypic switching is the cause of renal fibrosis in diabetic nephropathy. Several types of kidney cells undergo activation and differentiation and become reprogrammed to express markers of mesenchymal cells or podocyte-like cells. However, the development of targeted therapy for DN has not yet been identified. Here, we discussed the pathophysiologic changes of DN and delineated the possible origins that contribute to myofibroblasts and podocytes through phenotypic transitions. We also highlight the molecular signaling pathways involved in the phenotypic transition, which would provide valuable information for the activation of phenotypic switching and designing effective therapies for DN.
Collapse
Affiliation(s)
- Yiling Cao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Hong Lin
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Kaushik A, Sangtani R, Parmar HS, Bala K. Algal metabolites: Paving the way towards new generation antidiabetic therapeutics. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Bai F, Yu K, Yang Y, Zhang Y, Ding L, An X, Feng F, Sun N, Fan J, Liu L, Yang H, Yang X. Identification and validation of P4HB as a novel autophagy-related biomarker in diabetic nephropathy. Front Genet 2022; 13:965816. [PMID: 36226178 PMCID: PMC9548632 DOI: 10.3389/fgene.2022.965816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN), a frequent microvascular complication of diabetes, has been recognized as a primary cause of chronic kidney disease (CKD) and end-stage renal disease (ESRD). Previous studies found that autophagy of renal tubular epithelial cells plays an important role in DN pathogenesis. Our research aimed to investigate the differentially expressed autophagy-related genes (DEARGs) between DN and healthy renal tubule samples and identify a novel autophagy-related biomarker associated with tubulointerstitial injury in DN. In this study, gene expression profiles of renal tubules from 10 DN patients and 24 healthy controls in the GSE30122 dataset were analyzed, and 43 DEARGs were identified by bioinformatics analysis. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and correlation analysis were performed on DEARGs, and the hub gene prolyl 4-hydroxylase subunit beta (P4HB) was screened by protein–protein interaction and verified by utilizing other datasets and stimulating HK-2 cells under high glucose concentration. We found that the expression of P4HB in renal tubules was correlated with renal function. In summary, our research provided novel insights for comprehension of DN molecular mechanisms and identified P4HB as a novel autophagy-related biomarker of DN.
Collapse
Affiliation(s)
- Fang Bai
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Kuipeng Yu
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yanjiang Yang
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yimeng Zhang
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lin Ding
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin An
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Feng Feng
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Nan Sun
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jiahui Fan
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lei Liu
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Huimin Yang
- Department of General Practice, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiangdong Yang
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- *Correspondence: Xiangdong Yang,
| |
Collapse
|
39
|
Cao H, Rao X, Jia J, Yan T, Li D. Identification of tubulointerstitial genes and ceRNA networks involved in diabetic nephropathy via integrated bioinformatics approaches. Hereditas 2022; 159:36. [PMID: 36154667 PMCID: PMC9511769 DOI: 10.1186/s41065-022-00249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
Background Diabetic nephropathy (DN) is the major cause of end-stage renal disease worldwide. The mechanism of tubulointerstitial lesions in DN is not fully elucidated. This article aims to identify novel genes and clarify the molecular mechanisms for the progression of DN through integrated bioinformatics approaches. Method We downloaded microarray datasets from Gene Expression Omnibus (GEO) database and identified the differentially expressed genes (DEGs). Enrichment analyses, construction of Protein–protein interaction (PPI) network, and visualization of the co-expressed network between mRNAs and microRNAs (miRNAs) were performed. Additionally, we validated the expression of hub genes and analyzed the Receiver Operating Characteristic (ROC) curve in another GEO dataset. Clinical analysis and ceRNA networks were further analyzed. Results Totally 463 DEGs were identified, and enrichment analyses demonstrated that extracellular matrix structural constituents, regulation of immune effector process, positive regulation of cytokine production, phagosome, and complement and coagulation cascades were the major enriched pathways in DN. Three hub genes (CD53, CSF2RB, and LAPTM5) were obtained, and their expression levels were validated by GEO datasets. Pearson analysis showed that these genes were negatively correlated with the glomerular filtration rate (GFR). After literature searching, the ceRNA networks among circRNAs/IncRNAs, miRNAs, and mRNAs were constructed. The predicted RNA pathway of NEAT1/XIST-hsa-miR-155-5p/hsa-miR-486-5p-CSF2RB provides an important perspective and insights into the molecular mechanism of DN. Conclusion In conclusion, we identified three genes, namely CD53, CSF2RB, and LAPTM5, as hub genes of tubulointerstitial lesions in DN. They may be closely related to the pathogenesis of DN and the predicted RNA regulatory pathway of NEAT1/XIST-hsa-miR-155-5p/hsa-miR-486-5p-CSF2RB presents a biomarker axis to the occurrence and development of DN.
Collapse
Affiliation(s)
- Haiyan Cao
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiaosheng Rao
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Junya Jia
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Tiekun Yan
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Dong Li
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
40
|
Effects of Genistein on Common Kidney Diseases. Nutrients 2022; 14:nu14183768. [PMID: 36145144 PMCID: PMC9506319 DOI: 10.3390/nu14183768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 12/16/2022] Open
Abstract
Genistein is a naturally occurring phytoestrogen (soy or soybean products) that is classified as an isoflavone, and its structure is similar to that of endogenous estrogens; therefore, genistein can exert an estrogen-like effect via estrogen receptors. Additionally, genistein is a tyrosine kinase inhibitor, which enables it to block abnormal cell growth and proliferation signals through the inhibition of tyrosine kinase. Genistein is also an angiogenesis inhibitor and an antioxidant. Genistein has effects on kidney cells, some of the kidney’s physiological functions, and a variety of kidney diseases. First, genistein exerts a protective effect on normal cells by reducing the inflammatory response, inhibiting apoptosis, inhibiting oxidative stress, inhibiting remodeling, etc., but after cell injury, the protective effect of genistein decreases or even has the opposite effect. Second, genistein can regulate renin intake to maintain blood pressure balance, regulate calcium uptake to regulate Ca2+ and Pi balances, and reduce vasodilation to promote diuresis. Third, genistein has beneficial effects on a variety of kidney diseases (including acute kidney disease, kidney cancer, and different chronic kidney diseases), such as reducing symptoms, delaying disease progression, and improving prognosis. Therefore, this paper reviews animal and human studies on the protective effects of genistein on the kidney in vivo and in vitro to provide a reference for clinical research in the future.
Collapse
|
41
|
Li Y, Ou S, Liu Q, Gan L, Zhang L, Wang Y, Qin J, Liu J, Wu W. Genistein improves mitochondrial function and inflammatory in rats with diabetic nephropathy via inhibiting MAPK/NF-κB pathway. Acta Cir Bras 2022; 37:e370601. [PMID: 35976278 PMCID: PMC9377651 DOI: 10.1590/acb370601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/20/2022] [Indexed: 12/11/2022] Open
Abstract
Purpose: To investigate the effect of genistein on inflammation and mitochondrial function of diabetic nephropathy. Methods: Diabetic nephropathy model was established in Sprague-Dawley rats. Automatic biochemical analyzer was employed to detect the kidney function index, serum creatinine, serum urea nitrogen, and 24 h-urine protein and blood glucose. Hematoxylin and eosin staining and periodic acid Schiff staining were used to observe renal morphology. Mitochondrial changes and podocyte integrity were monitored by transmission electron microscope. The expression levels of mfn2, NOX4, P53, MAPK, and NF-κB were detected by Western blotting. The changes of mitochondrial membrane potential were measured by JC-1. The level of mfn2 was assessed by immunofluorescence assay. Results: Genistein ameliorated the kidney function with reduced Scr and blood glucose. The expressions of NOX4, MAPK, p65 and p53 were downregulated, while the expression of mnf2 was the opposite in genistein-treated kidneys. Further investigations revealed that genistein reduced expansion of mesangial matrix and oxidative stress, protected podocyte integrity and increased mitochondrial membrane potential. Conclusions: Genistein could alleviate diabetic nephropathy through inhibiting MAPK/NF-κB pathway, improving mitochondrial function and anti-inflammatory.
Collapse
Affiliation(s)
- Ying Li
- MD. SiChuan Clinical Research Center for Nephropathy - Affiliated Hospital of Southwest Medical University - Department of Nephrology - Luzhou, China
| | - Santao Ou
- MD. SiChuan Clinical Research Center for Nephropathy - Affiliated Hospital of Southwest Medical University - Department of Nephrology - Luzhou, China
| | - Qi Liu
- MD. SiChuan Clinical Research Center for Nephropathy - Affiliated Hospital of Southwest Medical University - Department of Nephrology - Luzhou, China
| | - Linwang Gan
- MD. SiChuan Clinical Research Center for Nephropathy - Affiliated Hospital of Southwest Medical University - Department of Nephrology - Luzhou, China
| | - Liling Zhang
- MD. SiChuan Clinical Research Center for Nephropathy - Affiliated Hospital of Southwest Medical University - Department of Nephrology - Luzhou, China
| | - Yujie Wang
- MD. SiChuan Clinical Research Center for Nephropathy - Affiliated Hospital of Southwest Medical University - Department of Nephrology - Luzhou, China
| | - Jianhua Qin
- MD. SiChuan Clinical Research Center for Nephropathy - Affiliated Hospital of Southwest Medical University - Department of Nephrology - Luzhou, China
| | - Jin Liu
- MD. SiChuan Clinical Research Center for Nephropathy - Affiliated Hospital of Southwest Medical University - Department of Nephrology - Luzhou, China
| | - Weihua Wu
- MD. SiChuan Clinical Research Center for Nephropathy - Affiliated Hospital of Southwest Medical University - Department of Nephrology - Luzhou, China
| |
Collapse
|
42
|
Dong Q, Dong L, Zhu Y, Wang X, Li Z, Zhang L. Circular ribonucleic acid nucleoporin 98 knockdown alleviates high glucose-induced proliferation, fibrosis, inflammation and oxidative stress in human glomerular mesangial cells by regulating the microribonucleic acid-151-3p-high mobility group AT-hook 2 axis. J Diabetes Investig 2022; 13:1303-1315. [PMID: 35482475 PMCID: PMC9340880 DOI: 10.1111/jdi.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/27/2022] [Accepted: 04/27/2022] [Indexed: 11/27/2022] Open
Abstract
AIMS/INTRODUCTION This study aimed to investigate the role and mechanism of circular ribonucleic acid nucleoporin 98 (circNUP98) in diabetic nephropathy (DN). MATERIALS AND METHODS Human glomerular mesangial cells (HMCs) were stimulated with high glucose (HG) to imitate the growth environment of cells under the DN condition. Levels of genes and proteins were tested by quantitative reverse transcription polymerase chain reaction and western blot. Cell proliferation, apoptosis and inflammatory response were analyzed by using cell counting kit-8, flow cytometry and enzyme-linked immunosorbent assay analysis, respectively. Oxidative stress and fibrosis were evaluated by detecting the activity of reactive oxygen species, malondialdehyde, superoxide dismutase, fibronectin and collagen IV. The binding interaction between microribonucleic acid (miR)-151-3p and high mobility group AT-hook 2 (HMGA2) or circNUP98 was confirmed using dual-luciferase reporter, pull-down and ribonucleic acid immunoprecipitation assays. Exosomes were isolated by ultracentrifugation, and qualified by transmission electron microscopy, nanoparticle tracking analysis and western blot. RESULTS CircNUP98 expression was higher in the serum of DN patients and HG-stimulated HMCs. Functionally, circNUP98 knockdown alleviated HG-induced proliferation, fibrosis, inflammatory response and oxidative stress in HMCs. Mechanistically, circNUP98 directly sponged miR-151-3p, which targeted HMGA2. Rescue experiments showed that miR-151-3p reversed the inhibitory effects of circNUP98 knockdown on HG-induced HMC dysfunction. Furthermore, miR-151-3p re-expression also led to an inhibition of the aforementioned biological behaviors, which was attenuated by HMGA2 upregulation. Besides that, CircNUP98 was found to be packaged into exosomes of DN, and exosomal circNUP98 possessed diagnostic value for DN patients. CONCLUSION CircNUP98 knockdown alleviates HG-induced proliferation, fibrosis inflammation and oxidative stress in HMCs by regulating the miR-151-3p-HMGA2 axis, which might provide a potential approach for DN therapeutics.
Collapse
Affiliation(s)
- Qianlan Dong
- Kidney Disease and Dialysis CenterShaanxi Provincial People's HospitalXi'an, ShaanxiChina
| | - Longhao Dong
- Department of EmergencyTongchuan People's HospitalTongchuan, ShaanxiChina
| | - Yanting Zhu
- Kidney Disease and Dialysis CenterShaanxi Provincial People's HospitalXi'an, ShaanxiChina
| | - Xiaoming Wang
- Kidney Disease and Dialysis CenterShaanxi Provincial People's HospitalXi'an, ShaanxiChina
| | - Zhenjiang Li
- Kidney Disease and Dialysis CenterShaanxi Provincial People's HospitalXi'an, ShaanxiChina
| | - Linping Zhang
- Kidney Disease and Dialysis CenterShaanxi Provincial People's HospitalXi'an, ShaanxiChina
| |
Collapse
|
43
|
Liu B, Cao Y, Wang D, Zhou Y, Zhang P, Wu J, Chen J, Qiu J, Zhou J. Zhen-Wu-Tang Induced Mitophagy to Protect Mitochondrial Function in Chronic Glomerulonephritis via PI3K/AKT/mTOR and AMPK Pathways. Front Pharmacol 2022; 12:777670. [PMID: 35757387 PMCID: PMC9231558 DOI: 10.3389/fphar.2021.777670] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic glomerulonephritis (CGN) is one of the major causes of end-stage kidney disease. Zhen-wu-tang (ZWT), as a famous Chinese herbal prescription, is widely used in China for CGN therapy in clinic. However, the mechanism of ZWT in CGN has not been fully understood. The present study explored the therapeutic effect and the underlying mechanism of ZWT on mitochondrial function in cationic bovine serum albumin (C-BSA)-induced CGN model rats and tumor necrosis factor (TNF-α)-damaged mouse podocytes. The renal functions were measured by serum creatinine (Scr) and blood urea nitrogen (BUN). Renal pathological changes and ultrastructure of kidney tissues were evaluated by periodic acid-Schiff (PAS) staining and transmission electron microscopy. The levels of antioxidases, including mitochondrial catalase (CAT), superoxide dismutase 2 (SOD2), and peroxiredoxin 3 (PRDX3), in CGN rats were examined by real-time PCR. The mitochondrial functions of podocytes were measured by ATP concentration, mitochondrial membrane potential (MMP), and mitochondrial ROS (mtROS). For mitophagy level detection, the expressions of mitophagy-related proteins, including LC3, p62, heat shock protein 60 (HSP60), and translocase of outer mitochondrial membrane 20 (TOMM20), were measured by Western blot, as the colocation of LC3 and mitochondrial marker COX IV were evaluated by immunofluorescence. Our results manifested that ZWT ameliorated CGN model rats by a remarkable decrease in Scr and BUN, inhibition of mesangial matrix proliferation, protection against foot processes fusion, and basement membrane thickening. More importantly, ZWT protected against mitochondrial dysfunction by increasing the expressions of CAT, SOD2, and PRDX3 in CGN model rats, increased ATP content and MMP in podocytes, and decreased excessive mtROS. Furthermore, ZWT induced mitophagy in CGN through increasing the expression of LC3, and decreasing p62, HSP60, TOMM20, and ZWT also enhanced the colocation of LC3 to the mitochondria. We found that ZWT inhibited the PI3K/AKT/mTOR pathway, which could be disturbed by PI3K inhibitor LY294002 and agonist insulin-like growth factor 1. Moreover, ZWT reversed the inhibition of the AMPK pathway in CGN. Overall, ZWT ameliorated renal mitochondrial dysfunction probably by inducing mitophagy via the PI3K/AKT/mTOR and AMPK pathways.
Collapse
Affiliation(s)
- Bihao Liu
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen Univerisity, Guangzhou, China
| | - Yiwen Cao
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dejuan Wang
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuan Zhou
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen Univerisity, Guangzhou, China
| | - Peichun Zhang
- Department of Pharmacy, Zhongshan Jishuitan Orthp Aedic Hospital, Zhongshan, China
| | - Junbiao Wu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junqi Chen
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianguang Qiu
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jiuyao Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
44
|
Yagi K, Imamura T, Tada H, Liu J, Miyamoto Y, Ohbatake A, Ito N, Shikata M, Enkaku A, Takikawa A, Honoki H, Fujisaka S, Chujo D, Origasa H, Kinugawa K, Tobe K. Fragmented QRS on electrocardiography as a predictor for diastolic cardiac dysfunction in type 2 diabetes. J Diabetes Investig 2022; 13:1052-1061. [PMID: 35092353 PMCID: PMC9153843 DOI: 10.1111/jdi.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 11/28/2022] Open
Abstract
AIMS/INTRODUCTION Diastolic cardiac dysfunction in type 2 diabetes (DD2D) is a critical risk of heart failure with preserved ejection fraction. However, there is no established biomarker to detect DD2D. We aimed to investigate the predictive impact of fragmented QRS (fQRS) on electrocardiography on the existence of DD2D. MATERIALS AND METHODS We included in-hospital patients with type 2 diabetes without heart failure symptoms who were admitted to our institution for glycemic management between November 2017 and April 2021. An fQRS was defined as an additional R' wave or notching/splitting of the S wave in two contiguous electrocardiography leads. DD2D was diagnosed according to the latest guidelines of the American Society of Echocardiography. RESULTS Of 320 participants, 122 patients (38.1%) had fQRS. DD2D was diagnosed in 82 (25.6%). An fQRS was significantly associated with the existence of DD2D (odds ratio 4.37, 95% confidence interval 2.33-8.20; p < 0.0001) adjusted for seven potential confounders. The correlation between DD2D and diabetic microvascular disease was significant only among those with fQRS. Classification and regression tree analysis showed that fQRS was the most relevant optimum split for DD2D. CONCLUSIONS An fQRS might be a simple and promising predictor of the existence of DD2D. The findings should be validated in a larger-scale cohort.
Collapse
Affiliation(s)
- Kunimasa Yagi
- 1st Department of Internal MedicineUniversity of ToyamaToyamaJapan
- 2nd Department of Internal MedicineKanazawa University Graduate School of Medical ScienceKanazawaJapan
| | - Teruhiko Imamura
- 2nd Department of Internal MedicineUniversity of ToyamaToyamaJapan
| | - Hayato Tada
- 2nd Department of Internal MedicineKanazawa University Graduate School of Medical ScienceKanazawaJapan
| | - Jianhui Liu
- 1st Department of Internal MedicineUniversity of ToyamaToyamaJapan
- 2nd Department of Internal MedicineKanazawa University Graduate School of Medical ScienceKanazawaJapan
| | - Yukiko Miyamoto
- 2nd Department of Internal MedicineKanazawa University Graduate School of Medical ScienceKanazawaJapan
| | - Azusa Ohbatake
- 2nd Department of Internal MedicineKanazawa University Graduate School of Medical ScienceKanazawaJapan
| | - Naoko Ito
- 2nd Department of Internal MedicineKanazawa University Graduate School of Medical ScienceKanazawaJapan
| | - Masataka Shikata
- 1st Department of Internal MedicineUniversity of ToyamaToyamaJapan
| | - Asako Enkaku
- 1st Department of Internal MedicineUniversity of ToyamaToyamaJapan
| | - Akiko Takikawa
- 1st Department of Internal MedicineUniversity of ToyamaToyamaJapan
| | - Hisae Honoki
- 1st Department of Internal MedicineUniversity of ToyamaToyamaJapan
| | - Shiho Fujisaka
- 1st Department of Internal MedicineUniversity of ToyamaToyamaJapan
| | - Daisuke Chujo
- 1st Department of Internal MedicineUniversity of ToyamaToyamaJapan
- 2nd Department of Internal MedicineKanazawa University Graduate School of Medical ScienceKanazawaJapan
| | - Hideki Origasa
- Biostatistics and Clinical EpidemiologyGraduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| | | | - Kazuyuki Tobe
- 1st Department of Internal MedicineUniversity of ToyamaToyamaJapan
| |
Collapse
|
45
|
Quaglia M, Merlotti G, Fornara L, Colombatto A, Cantaluppi V. Extracellular Vesicles Released from Stem Cells as a New Therapeutic Strategy for Primary and Secondary Glomerulonephritis. Int J Mol Sci 2022; 23:ijms23105760. [PMID: 35628570 PMCID: PMC9142886 DOI: 10.3390/ijms23105760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
Current treatment of primary and secondary glomerulopathies is hampered by many limits and a significant proportion of these disorders still evolves towards end-stage renal disease. A possible answer to this unmet challenge could be represented by therapies with stem cells, which include a variety of progenitor cell types derived from embryonic or adult tissues. Stem cell self-renewal and multi-lineage differentiation ability explain their potential to protect and regenerate injured cells, including kidney tubular cells, podocytes and endothelial cells. In addition, a broad spectrum of anti-inflammatory and immunomodulatory actions appears to interfere with the pathogenic mechanisms of glomerulonephritis. Of note, mesenchymal stromal cells have been particularly investigated as therapy for Lupus Nephritis and Diabetic Nephropathy, whereas initial evidence suggest their beneficial effects in primary glomerulopathies such as IgA nephritis. Extracellular vesicles mediate a complex intercellular communication network, shuttling proteins, nucleic acids and other bioactive molecules from origin to target cells to modulate their functions. Stem cell-derived extracellular vesicles recapitulate beneficial cytoprotective, reparative and immunomodulatory properties of parental cells and are increasingly recognized as a cell-free alternative to stem cell-based therapies for different diseases including glomerulonephritis, also considering the low risk for potential adverse effects such as maldifferentiation and tumorigenesis. We herein summarize the renoprotective potential of therapies with stem cells and extracellular vesicles derived from progenitor cells in glomerulonephritis, with a focus on their different mechanisms of actions. Technological progress and growing knowledge are paving the way for wider clinical application of regenerative medicine to primary and secondary glomerulonephritis: this multi-level, pleiotropic therapy may open new scenarios overcoming the limits and side effects of traditional treatments, although the promising results of experimental models need to be confirmed in the clinical setting.
Collapse
|
46
|
Han X, Zhang J, Zhou L, Wei J, Tu Y, Shi Q, Zhang Y, Ren J, Wang Y, Ying H, Liang G. Sclareol ameliorates hyperglycemia‐induced renal injury through inhibiting the
MAPK
/
NF‐κB
signaling pathway. Phytother Res 2022; 36:2511-2523. [DOI: 10.1002/ptr.7465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/26/2022] [Accepted: 04/01/2022] [Indexed: 12/29/2022]
Affiliation(s)
- Xue Han
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research Hangzhou Medical College Hangzhou China
- School of Pharmaceutical Sciences Hangzhou Medical College Hangzhou China
| | - Jiajia Zhang
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research Hangzhou Medical College Hangzhou China
| | - Li Zhou
- College of Pharmaceutical Science Zhejiang Chinese Medical University Hangzhou China
| | - Jiajia Wei
- School of Pharmaceutical Sciences Hangzhou Medical College Hangzhou China
| | - Yu Tu
- School of Pharmaceutical Sciences Hangzhou Medical College Hangzhou China
| | - Qiaojuan Shi
- School of Pharmaceutical Sciences Hangzhou Medical College Hangzhou China
| | - Yi Zhang
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research Hangzhou Medical College Hangzhou China
| | - Juan Ren
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research Hangzhou Medical College Hangzhou China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou China
| | - Huazhong Ying
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research Hangzhou Medical College Hangzhou China
- College of Pharmaceutical Science Zhejiang Chinese Medical University Hangzhou China
| | - Guang Liang
- School of Pharmaceutical Sciences Hangzhou Medical College Hangzhou China
- Chemical Biology Research Center, School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou China
| |
Collapse
|
47
|
METTL3 enhances NSD2 mRNA stability to reduce renal impairment and interstitial fibrosis in mice with diabetic nephropathy. BMC Nephrol 2022; 23:124. [PMID: 35354439 PMCID: PMC8969340 DOI: 10.1186/s12882-022-02753-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
Background Nuclear receptor-binding SET domain protein 2 (NSD2) is a histone methyltransferase that has been demonstrated to regulate insulin secretion and glucose concentration. This study focused on the role of NSD2 in the renal impairment during diabetic nephropathy (DN). Methods Serum NSD2 level in patients with DN was examined, and its correlations with the renal impairment-related indicators were examined. A murine model of DN was established, and mouse mesangial cells (SV40-MES-13) were treated with high-glucose (HG) to mimic a DN-like condition in vitro. Overexpression of NSD2 was introduced into mice or cells for in vivo and in vitro studies. The m6A level in HG-treated SV40-MES-13 cells was analyzed. METTL3 expression and its correlation with NSD2 were determined. Results NSD2 was poorly expressed in the serum of patients with DN and was negatively correlated with the levels of fasting blood sugar (FBG), serum creatinine (SCr), serum cystatin C (S-Cys-C), the 24-h urine protein (24-h U-protein) and the urine cystatin C (U-Cys-C). NSD2 overexpression reduced the kidney weight and reduced renal impairment in mice. It also suppressed interstitial fibrosis in mouse kidney tissues and reduced fibrosis-related markers in HG-treated SV40-MES-13 cells. HG treatment reduced the m6A level in the cells. METTL3 promoted m6A modification of NDS2 mRNA and enhanced its stability by YTHDF1. METTL3 overexpression alleviated renal impairment and fibrosis in vivo and in vitro. But the protective role was blocked upon NSD2 silencing. Conclusion This study demonstrates that METTL3 promotes NSD2 mRNA stability by YTHDF1 to alleviate progression of DN. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-022-02753-3.
Collapse
|
48
|
Bianco A, Tiribelli C, Bellarosa C. Translational Approach to the Protective Effect of Bilirubin in Diabetic Kidney Disease. Biomedicines 2022; 10:696. [PMID: 35327498 PMCID: PMC8945513 DOI: 10.3390/biomedicines10030696] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Bilirubin has been regarded as a powerful endogenous antioxidant and anti-inflammatory molecule, able to act on cellular pathways as a hormone. Diabetic kidney disease (DKD) is a common chronic complication of diabetes, and it is the leading cause of end-stage renal disease. Here, we will review the clinical and molecular features of mild hyperbilirubinemia in DKD. The pathogenesis of DKD involves oxidative stress, inflammation, fibrosis, and apoptosis. Serum bilirubin levels are positively correlated with the levels of the antioxidative enzymes as superoxide dismutase, catalase, and glutathione peroxidase, while it is inversely correlated with C-reactive protein, TNF-α, interleukin (IL)-2, IL-6, and IL-10 release in diabetic kidney disease. Bilirubin downregulates NADPH oxidase, reduces the induction of pro-fibrotic factor HIF-1α expression, cleaved caspase-3, and cleaved PARP induction showing lower DNA fragmentation. Recent experimental and clinical studies have demonstrated its effects in the development and progression of renal diseases, pointing out that only very mild elevations of bilirubin concentrations result in real clinical benefits. Future controlled studies are needed to explore the precise role of bilirubin in the pathogenesis of DKD and to understand if the use of serum bilirubin levels as a marker of progression or therapeutic target in DKD is feasible and realistic.
Collapse
Affiliation(s)
- Annalisa Bianco
- Italian Liver Foundation (FIF), 34149 Trieste, Italy; (A.B.); (C.T.)
- National Research Council, Institute of Biomedical Technologies, Bari Unit, 70126 Bari, Italy
| | - Claudio Tiribelli
- Italian Liver Foundation (FIF), 34149 Trieste, Italy; (A.B.); (C.T.)
| | | |
Collapse
|
49
|
Ren L, Wan R, Chen Z, Huo L, Zhu M, Yang Y, Chen Q, Zhang X, Wang X. Triptolide Alleviates Podocyte Epithelial-Mesenchymal Transition via Kindlin-2 and EMT-Related TGF-β/Smad Signaling Pathway in Diabetic Kidney Disease. Appl Biochem Biotechnol 2022; 194:1000-1012. [PMID: 34596829 DOI: 10.1007/s12010-021-03661-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/03/2021] [Indexed: 11/25/2022]
Abstract
Diabetes-induced chronic kidney diseases are widespread and decrease the quality of life for millions of affected individuals in China. To date, no therapies effectively alleviate these conditions. Triptolide, a traditionally used Chinese medicine, has shown promise in treating renal diseases. Here, the study aimed to decipher the exact mechanism by which it functions. It was hypothesized that triptolide might prevent the epithelial-mesenchymal transition (EMT) of podocytes by activating the kindlin-2 and TGF-β/Smad pathways. Triptolide or telmisartan was intragastrically administered to 9-week-old db/db and dm/dm mice with diabetic nephropathy (DN) for 12 weeks. In addition, biochemical parameters and body weight were detected. WT-1, nephrin, podocin, E-cadherin, and α-SMA were determined by immunohistochemistry in the renal tissues of treated mice. Protein and mRNA expression of podocyte EMT markers, kindlin-2 and TGF-β/Smad, were analyzed to elucidate the underlying mechanism. It was observed that triptolide treatment relieved structural injuries and functional variations in diabetic mice. It also increased the protein and mRNA levels of nephrin, podocin, and E-cadherin and decreased the expression of α-SMA in diabetic mice. The protein and mRNA expressions of TGF-β1, p-SMAD3, and kindlin-2 decreased in diabetic kidneys following triptolide treatment. The findings demonstrated that triptolide might protect podocytes during DN by inhibiting podocyte EMT through inactivation of kindlin-2, combined with the downregulation of P-SMAD3 in the TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Lingyan Ren
- Department of Nephrology, the First Affiliated Hospital of Huzhou Teachers College, the First People's Hospital of Huzhou, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Renrui Wan
- Department of General Surgery, Huzhou Central Hospital, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Zheng Chen
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Lixia Huo
- Department of Central Laboratory, the First Affiliated Hospital of Huzhou Teachers College, the First People's Hospital of Huzhou, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Ming Zhu
- Department of Nephrology, the First Affiliated Hospital of Huzhou Teachers College, the First People's Hospital of Huzhou, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Yong Yang
- Department of Nephrology, the First Affiliated Hospital of Huzhou Teachers College, the First People's Hospital of Huzhou, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Qi Chen
- Department of Nephrology, the First Affiliated Hospital of Huzhou Teachers College, the First People's Hospital of Huzhou, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Xiaolan Zhang
- Department of Pathology, the First Affiliated Hospital of Huzhou Teachers College, the First People's Hospital of Huzhou, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Xiaoyi Wang
- Department of Nephrology, the First Affiliated Hospital of Huzhou Teachers College, the First People's Hospital of Huzhou, Huzhou, Zhejiang, 313000, People's Republic of China.
| |
Collapse
|
50
|
Ha KB, Sangartit W, Jeong AR, Lee ES, Kim HM, Shim S, Kukongviriyapan U, Kim DK, Lee EY, Chung CH. EW-7197 Attenuates the Progression of Diabetic Nephropathy in db/db Mice through Suppression of Fibrogenesis and Inflammation. Endocrinol Metab (Seoul) 2022; 37:96-111. [PMID: 35255604 PMCID: PMC8901963 DOI: 10.3803/enm.2021.1305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/27/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is characterized by albuminuria and accumulation of extracellular matrix (ECM) in kidney. Transforming growth factor-β (TGF-β) plays a central role in promoting ECM accumulation. We aimed to examine the effects of EW-7197, an inhibitor of TGF-β type 1 receptor kinase (ALK5), in retarding the progression of DN, both in vivo, using a diabetic mouse model (db/db mice), and in vitro, in podocytes and mesangial cells. METHODS In vivo study: 8-week-old db/db mice were orally administered EW-7197 at a dose of 5 or 20 mg/kg/day for 10 weeks. Metabolic parameters and renal function were monitored. Glomerular histomorphology and renal protein expression were evaluated by histochemical staining and Western blot analyses, respectively. In vitro study: DN was induced by high glucose (30 mM) in podocytes and TGF-β (2 ng/mL) in mesangial cells. Cells were treated with EW-7197 (500 nM) for 24 hours and the mechanism associated with the attenuation of DN was investigated. RESULTS Enhanced albuminuria and glomerular morphohistological changes were observed in db/db compared to that of the nondiabetic (db/m) mice. These alterations were associated with the activation of the TGF-β signaling pathway. Treatment with EW-7197 significantly inhibited TGF-β signaling, inflammation, apoptosis, reactive oxygen species, and endoplasmic reticulum stress in diabetic mice and renal cells. CONCLUSION EW-7197 exhibits renoprotective effect in DN. EW-7197 alleviates renal fibrosis and inflammation in diabetes by inhibiting downstream TGF-β signaling, thereby retarding the progression of DN. Our study supports EW-7197 as a therapeutically beneficial compound to treat DN.
Collapse
Affiliation(s)
- Kyung Bong Ha
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju,
Korea
| | - Weerapon Sangartit
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen,
Thailand
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen,
Thailand
| | - Ah Reum Jeong
- Department of Internal Medicine and Institute of Tissue Regeneration, Soonchunhyang University College of Medicine, Cheonan,
Korea
| | - Eun Soo Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju,
Korea
- Institution of Genetic Cohort, Yonsei University Wonju College of Medicine, Wonju,
Korea
| | - Hong Min Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju,
Korea
| | - Soyeon Shim
- Department of Pharmacy, Ewha Womans University College of Pharmacy, Seoul,
Korea
| | - Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen,
Thailand
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen,
Thailand
| | - Dae-Kee Kim
- Department of Pharmacy, Ewha Womans University College of Pharmacy, Seoul,
Korea
| | - Eun Young Lee
- Department of Internal Medicine and Institute of Tissue Regeneration, Soonchunhyang University College of Medicine, Cheonan,
Korea
| | - Choon Hee Chung
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju,
Korea
- Institution of Genetic Cohort, Yonsei University Wonju College of Medicine, Wonju,
Korea
| |
Collapse
|