1
|
Thulasinathan B, Suvilesh KN, Maram S, Grossmann E, Ghouri Y, Teixeiro EP, Chan J, Kaif JT, Rachagani S. The impact of gut microbial short-chain fatty acids on colorectal cancer development and prevention. Gut Microbes 2025; 17:2483780. [PMID: 40189834 PMCID: PMC11980463 DOI: 10.1080/19490976.2025.2483780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/18/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025] Open
Abstract
Cancer is a long-term illness that involves an imbalance in cellular and immune functions. It can be caused by a range of factors, including exposure to environmental carcinogens, poor diet, infections, and genetic alterations. Maintaining a healthy gut microbiome is crucial for overall health, and short-chain fatty acids (SCFAs) produced by gut microbiota play a vital role in this process. Recent research has established that alterations in the gut microbiome led to decreased production of SCFA's in lumen of the colon, which associated with changes in the intestinal epithelial barrier function, and immunity, are closely linked to colorectal cancer (CRC) development and its progression. SCFAs influence cancer progression by modifying epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNA functions thereby affecting tumor initiation and metastasis. This suggests that restoring SCFA levels in colon through microbiota modulation could serve as an innovative strategy for CRC prevention and treatment. This review highlights the critical relationship between gut microbiota and CRC, emphasizing the potential of targeting SCFAs to enhance gut health and reduce CRC risk.
Collapse
Affiliation(s)
- Boobalan Thulasinathan
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| | - Kanve N. Suvilesh
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
| | - Sumanas Maram
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| | - Erik Grossmann
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Department of Medicine, Digestive Centre, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
| | - Yezaz Ghouri
- Department of Medicine, Digestive Centre, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
| | - Emma Pernas Teixeiro
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Joshua Chan
- Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA
| | - Jussuf T. Kaif
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
- Siteman Cancer Centre, Washington University, St. Louis, MO, USA
| | - Satyanarayana Rachagani
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
- Siteman Cancer Centre, Washington University, St. Louis, MO, USA
| |
Collapse
|
2
|
Deng L, Guan G, Cannon RD, Mei L. Age-related oral microbiota dysbiosis and systemic diseases. Microb Pathog 2025; 205:107717. [PMID: 40403989 DOI: 10.1016/j.micpath.2025.107717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 05/08/2025] [Accepted: 05/17/2025] [Indexed: 05/24/2025]
Abstract
The oral microbiota is an essential microbial community within the human body, playing a vital role in maintaining health. In older adults, age-related changes in the oral microbiota are linked to both systemic and oral health impairments. The use of various medications for systemic diseases in the elderly can also contribute to the development of oral diseases. Oral microbiota dysbiosis refers to an imbalance in the composition of oral microbial communities. This imbalance, along with disruptions in the host immune response and prolonged inflammation, is closely associated with the onset and progression of several diseases. It contributes to oral conditions such as dental caries, periodontal disease, and halitosis. It is also linked to systemic diseases, including Alzheimer's disease, type 2 diabetes mellitus, rheumatoid arthritis, atherosclerotic cardiovascular disease, and aspiration pneumonia. This review aims to explore how oral microbiota influences specific health outcomes in older individuals, focusing on Alzheimer's disease, type 2 diabetes mellitus, rheumatoid arthritis, atherosclerotic cardiovascular disease, and aspiration pneumonia. The oral microbiota holds promise as a diagnostic tool, therapeutic target, and prognostic biomarker for managing cardiovascular disease, metabolic diseases, infectious diseases and autoimmune diseases. Emphasizing proper oral health care and instilling an understanding of how drugs prescribed for systemic disease impact the oral microbiome, is anticipated to emerge as a key strategy for promoting the general health of older adults.
Collapse
Affiliation(s)
- Ling Deng
- Department of Oral Pathology, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, PR China
| | - Guangzhao Guan
- Department of Oral Diagnostic and Surgical Sciences, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
| | - Richard D Cannon
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Li Mei
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
3
|
Toraih EA, Alenezy A, Hussein MH, Hashmat S, Mummadi S, Alrawili NF, Abdelmaksoud A, Fawzy MS. The Risk of Vestibular Disorders with Semaglutide and Tirzepatide: Findings from a Large Real-World Cohort. Biomedicines 2025; 13:1049. [PMID: 40426877 DOI: 10.3390/biomedicines13051049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have revolutionized the treatment of type 2 diabetes and obesity. While their metabolic benefits are well-established, their potential effects on vestibular function remain unexplored. This study investigated the association between GLP-1RA use and the risk of vestibular disorders. Methods: Using the TriNetX research network (accessed 3 November 2024), we conducted a retrospective cohort study of adults prescribed semaglutide (n = 419,497) or tirzepatide (n = 77,259) between January 2018 and October 2024. Cases were matched 1:1 with controls using propensity scores based on demographics and comorbidities. The primary outcome was new-onset vestibular disorders, analyzed at 6 months, 1 year, and 3 years after treatment initiation. Results: Both medications were associated with an increased risk of vestibular disorders. Semaglutide users showed a higher cumulative incidence (0.12% at 6 months to 0.41% at 3 years) compared to controls (0.03% to 0.16%, p < 0.001), with hazard ratios ranging from 4.02 (95% CI: 3.33-4.86) at 6 months to 4.95 (95% CI: 4.51-5.43) at 3 years. Tirzepatide users demonstrated similar patterns but lower absolute rates (0.10% at 6 months to 0.19% at 3 years vs. controls 0.04% to 0.15%), with hazard ratios from 3.19 (95% CI: 2.11-4.81) to 4.55 (95% CI: 3.43-6.03). The direct comparison showed a higher risk with semaglutide versus tirzepatide (RR 1.53-2.04, p < 0.001). Conclusions: GLP-1RA therapy is associated with an increased risk of vestibular disorders, with a higher risk observed with semaglutide compared to tirzepatide. These findings suggest the need for vestibular symptom monitoring in patients receiving these medications and warrant further investigation into underlying mechanisms.
Collapse
Affiliation(s)
- Eman A Toraih
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Department of Cardiovascular Perfusion, Interprofessional Research, College of Health Professions, Upstate Medical University, New York, NY 13210, USA
- Medical Genetics Unit, Department of Histology and Cell Biology, Suez Canal University, Ismailia 41522, Egypt
| | - Awwad Alenezy
- Department of Family and Community Medicine, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia
| | | | - Shahmeer Hashmat
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Saitej Mummadi
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Nawaf Farhan Alrawili
- Department of Internal Medicine, College of Medicine, Northern Border University, Arar 91431, Saudi Arabia
| | - Ahmed Abdelmaksoud
- Department of Internal Medicine, University of California, Riverside, CA 92521, USA
| | - Manal S Fawzy
- Center for Health Research, Northern Border University, Arar 73213, Saudi Arabia
| |
Collapse
|
4
|
Liu WH, Liu C, Xue Y, Sun XR, Chen XY, Chen L. Activation of GLP-1R modulates the spontaneous discharge of nigral dopaminergic neurons and motor behavior in mice with chronic MPTP Parkinson's disease. Front Aging Neurosci 2025; 17:1529919. [PMID: 40353061 PMCID: PMC12062123 DOI: 10.3389/fnagi.2025.1529919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/07/2025] [Indexed: 05/14/2025] Open
Abstract
The gradual decline of nigral dopaminergic neurons is the main cause of Parkinson's disease (PD), yet as of now, there exists no conclusive therapeutic intervention. Glucagon-like peptide-1 (GLP-1) is an incretin, which is also a key substance regulating neuronal activity and synaptic transmission. GLP-1 receptors (GLP-1Rs) are widely expressed in the central nervous system. Chronic administration of low doses of 1-methyl-4-phenyl, 1,2,3,6-tetrahydropiridine (MPTP) mitigates mortality in mice during the modeling phase, thereby more closely mirroring the progression of PD. This study aims to observe the effects of GLP-1 receptor agonists (GLP-1RAs) on the firing activity of nigral dopaminergic neurons and motor behaviors in MPTP-induced chronic PD mice. Our findings revealed that peripheral administration of GLP-1RAs exendin-4 significantly alleviated motor impairments in MPTP-induced chronic PD mice. Concurrently, peripheral administration of exendin-4 increased the number of active dopaminergic neurons, improved the spontaneous firing activity, as well as alleviated MPTP-induced dopaminergic neuron loss in MPTP-induced PD mice. Furthermore, local administration of exendin-4 directly increased the firing rate of nigral dopaminergic neurons via GLP-1Rs, suggesting that peripheral administration of exendin-4 may exert neuroprotection through its mild excitation on dopaminergic neurons. These findings collectively imply that peripheral administration of GLP-1RAs may hold potential in the treatment of PD.
Collapse
Affiliation(s)
- Wen-Hong Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Cui Liu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical, Jinan, China
| | - Yan Xue
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiang-Rong Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xin-Yi Chen
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Chen
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
5
|
le Roux CW, Steen O, Lucas KJ, Startseva E, Unseld A, Hussain SA, Hennige AM. Subgroup analysis by sex and baseline BMI in people with a BMI ≥27 kg/m 2 in the phase 2 trial of survodutide, a glucagon/GLP-1 receptor dual agonist. Diabetes Obes Metab 2025; 27:1773-1782. [PMID: 39821928 PMCID: PMC11885088 DOI: 10.1111/dom.16167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
AIM To explore the effects of sex and baseline body mass index (BMI) on the efficacy and safety of survodutide in people with a BMI ≥27 kg/m2. MATERIALS AND METHODS Totally 387 people (aged 18-75 years, BMI ≥27 kg/m2, without diabetes) were randomized 1:1:1:1:1 to once-weekly subcutaneous survodutide (0.6, 2.4, 3.6 or 4.8 mg) or placebo for 46 weeks (20-week dose escalation; 26-week dose maintenance). Participants were categorized according to sex and baseline BMI. Data were analysed descriptively for the full analysis set (FAS), according to dose assigned at randomization (planned treatment) using on-treatment data or all data censored for COVID-19-related treatment discontinuations. (ClinicalTrials.gov number: NCT04667377). RESULTS After 46 weeks of survodutide treatment, females had greater reductions in bodyweight and waist circumference than males. Participants with a lower baseline BMI had greater proportional reductions in bodyweight than those with a higher baseline BMI; the trend was reversed for reductions in waist circumference. Rates of adverse events (AEs) were comparable between subgroups for sex and baseline BMI. Nausea was the most frequently reported gastrointestinal AE in all subgroups. CONCLUSIONS In people with a BMI ≥27 kg/m2, survodutide was associated with clinically meaningful reductions in bodyweight and waist circumference when compared with placebo, in prespecified subgroups based on sex and baseline BMI, and was tolerated at all doses tested.
Collapse
Affiliation(s)
- Carel W. le Roux
- St. Vincent's University Hospital and University College Dublin School of MedicineDublinIreland
| | | | - Kathryn J. Lucas
- Diabetes and Endocrinology ConsultantsMorehead CityNorth CarolinaUSA
| | | | - Anna Unseld
- Boehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | | | | |
Collapse
|
6
|
Saadh MJ, Ahmed HH, Kareem RA, Sanghvi G, Ganesan S, Agarwal M, Kaur P, Taher WM, Alwan M, Jawad MJ, Hamad AK. Short-chain fatty acids in Huntington's disease: Mechanisms of action and their therapeutic implications. Pharmacol Biochem Behav 2025; 249:173972. [PMID: 39983928 DOI: 10.1016/j.pbb.2025.173972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by motor dysfunction, cognitive decline, and emotional instability, primarily resulting from the abnormal accumulation of mutant huntingtin protein. Growing research highlights the role of intestinal microbiota and their metabolites, particularly short-chain fatty acids (SCFAs), in modulating HD progression. SCFAs, including acetate, propionate, and butyrate, are produced by gut bacteria through dietary fiber fermentation and are recognized for their neuroprotective properties. Evidence suggests that SCFAs regulate neuroinflammation, neuronal communication, and metabolic functions within the central nervous system (CNS). In HD, these compounds may support neuronal health, reduce oxidative stress, and enhance blood-brain barrier (BBB) integrity. Their mechanisms of action involve binding to G-protein-coupled receptors (GPCRs) and modulating gene expression through epigenetic pathways, underscoring their therapeutic potential. This analysis examines the significance of SCFAs in HD, emphasizing the gut-brain axis and the benefits of dietary interventions aimed at modifying gut microbiota composition and promoting SCFA production. Further research into these pathways may pave the way for novel HD management strategies and improved therapeutic outcomes.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mohit Agarwal
- Department of Pharmaceutical Chemistry, NIMS Institute of Pharmacy, NIMS University, Rajasthan, Jaipur,302131, India
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | | |
Collapse
|
7
|
Luna Ceron E, Reddy SD, Kattamuri L, Muvva DM, Chozet L, Bright T. Current Insights, Advantages and Challenges of Small Molecule Glucagon-like Peptide 1 Receptor Agonists: A Scoping Review. JOURNAL OF BROWN HOSPITAL MEDICINE 2025; 4:19-32. [PMID: 40191699 PMCID: PMC11966775 DOI: 10.56305/001c.132255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/11/2025] [Indexed: 04/09/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is a prevalent chronic condition with significant morbidity and mortality, largely due to its vascular complications. The emergence of novel pharmacological agents, particularly glucagon-like peptide-1 receptor agonists (GLP-1RAs), has revolutionized T2DM management by addressing glycemic control and comorbidities such as cardiovascular and renal diseases. Traditionally, GLP-1RAs require subcutaneous injection, presenting challenges in patient adherence and limiting combination therapy options. Recent advancements have introduced orally available small-molecule GLP-1RAs, which retain the physiological benefits of peptide-based GLP-1RAs, such as promoting insulin secretion, reducing appetite, and improving weight loss. These small molecules offer enhanced tissue permeability, extended half-lives, and the potential for fixed-dose combinations, addressing limitations of injectable formulations. This review explores the preclinical and clinical progress of small-molecule GLP-1RAs, highlighting their potential to redefine diabetes care by improving convenience, adherence, and accessibility for patients.
Collapse
Affiliation(s)
- Eder Luna Ceron
- Department of Internal Medicine Texas Tech University Health Sciences Center
| | | | - Lakshmi Kattamuri
- Department of Internal Medicine Texas Tech University Health Sciences Center
| | - Durga Mounika Muvva
- Department of Internal Medicine Texas Tech University Health Sciences Center
| | - Luis Chozet
- Division of Endocrinology Texas Tech University Health Sciences Center
| | - Tamis Bright
- Division of Endocrinology Texas Tech University Health Sciences Center
| |
Collapse
|
8
|
Piątkowska-Chmiel I, Wicha-Komsta K, Pawłowski K, Syrytczyk A, Kocki T, Dudka J, Herbet M. Beyond Diabetes: Semaglutide's Role in Modulating Mood Disorders through Neuroinflammation Pathways. Cell Mol Neurobiol 2025; 45:22. [PMID: 40059125 PMCID: PMC11891103 DOI: 10.1007/s10571-025-01534-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/25/2025] [Indexed: 05/13/2025]
Abstract
Diabetes and mood disorders are intricately interconnected, with each condition elevating the risk of the other. This bidirectional relationship, further exacerbated by neuroinflammation, fosters an environment conducive to the development of anxiety and depression. Glucagon-like peptide-1 receptor agonists, such as semaglutide, offer promising therapeutic options that not only target type 2 diabetes but also can positively influence mood. Our study's primary goal was to evaluate the effectiveness of semaglutide, in mitigating anxiety and depression within an animal model of diabetes. The neuroprotective properties of semaglutide were evaluated by examining its influence on the kynurenine pathway and neurobiological markers (GFAP, NEFL, NSE, and GAL3) in the perfrontal cortex, selected for its key role in cognitive function and emotional regulation, impaired in diabetes and mood disorders. Additionally, we examined semaglutide's impact on peripheral inflammation and stress parameters to elucidate its role in modulating systemic inflammatory responses linked to mood disorders. Additionally, we conducted behavioral assessments to better understand how semaglutide influences anxiety and depression-related behaviors in diabetic mice. Semaglutide therapy significantly improved behavioral patterns and neurochemical markers in diabetic mice. The frequency of administration significantly influenced the outcomes, whereas the dosage appeared to have a limited impact. Here we show that semaglutide expands its therapeutic potential beyond diabetes, significantly influencing mood disorders through neuroinflammatory pathways. Semaglutide has the potential to be a key element in formulating integrated treatment strategies that address both metabolic health and mental well-being, ultimately enhancing the quality of life for individuals navigating these interrelated challenges.
Collapse
Affiliation(s)
- Iwona Piątkowska-Chmiel
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8B Jaczewskiego Street, 20-090, Lublin, Poland.
| | - Katarzyna Wicha-Komsta
- Department of Experimental and Clinical Pharmacology, Faculty of Medicine, Medical University of Lublin, Lublin, Poland
| | - Kamil Pawłowski
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8B Jaczewskiego Street, 20-090, Lublin, Poland
| | - Aleksandra Syrytczyk
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8B Jaczewskiego Street, 20-090, Lublin, Poland
| | - Tomasz Kocki
- Department of Experimental and Clinical Pharmacology, Faculty of Medicine, Medical University of Lublin, Lublin, Poland
| | - Jarosław Dudka
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8B Jaczewskiego Street, 20-090, Lublin, Poland
| | - Mariola Herbet
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8B Jaczewskiego Street, 20-090, Lublin, Poland
| |
Collapse
|
9
|
Yu H, Feng N, Zhong W, Han Y, Cheng Y, Zhang Z, Wang Y, Gao P, Huang R, Zhang C, Liu Z, Dong J, He Z, Lai H, Shen Z, Zhai Q. Nmnat2 deficiency in the arcuate nucleus or paraventricular nucleus induces Sarm1-independent neuron loss and liraglutide-reversible obesity. FASEB J 2025; 39:e70400. [PMID: 39964232 DOI: 10.1096/fj.202402546r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/08/2025] [Accepted: 02/06/2025] [Indexed: 05/10/2025]
Abstract
Nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2) plays an important role in maintaining axon integrity, and the arcuate nucleus (ARC), and paraventricular nucleus (PVN) are crucial nuclei in the control of energy balance. However, the effect of Nmnat2 deficiency in ARC and PVN is still unclear. Nmnat2 loxP/loxP or Nmnat2 loxP/loxP , Sarm1 -/- mice were bilaterally injected with AAV-CMV-GFP-Cre once into the ARC, PVN, or lateral parabrachial nucleus (LPBN) to obtain Nmnat2 ARC-/- , Nmnat2 PVN-/- , Nmnat2 LPBN-/- , Nmnat2 ARC-/- , SKO, Nmnat2 PVN-/- , SKO, or Nmnat2 LPBN-/- , SKO mice. Syn1-Cre mice were bilaterally injected with AAV-EF1a-flex-taCasp3-TEVp once into the ARC or PVN to specifically induce neuron loss. Metabolic changes were measured in the mice intraperitoneally injected with or without liraglutide, a glucagon-like peptide-1 (GLP-1) analog. Neuron loss and neuron activation were monitored by immunofluorescence. Deletion of Nmnat2 in ARC or PVN of mice leads to neuron loss, increased food intake, and obesity in a Sarm1-independent manner. Intraperitoneal injection of liraglutide activates neurons in PVN and LPBN, and attenuates hyperphagia and obesity induced by Nmnat2 deletion or apoptosis of Syn1-positive neurons in ARC or PVN, but has no significant effect on neuron loss. Nmnat2 deficiency in LPBN leads to death within 2 weeks, which can be markedly rescued by Sarm1 deficiency. These data show that deletion of Nmnat2 in ARC or PVN in adult mice leads to Sarm1-independent neuron loss, and liraglutide-reversible hyperphagia and obesity. These findings also elucidate the integrated role of ARC or PVN for downregulating food intake, the requirement of LPBN for survival, and the ARC- or PVN-independent effect of GLP-1 on food intake.
Collapse
Affiliation(s)
- Huimin Yu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ning Feng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wuling Zhong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yumo Han
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yalan Cheng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhentong Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yingqi Wang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Peidong Gao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rui Huang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Cong Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zongyang Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jieya Dong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhishui He
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hejin Lai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ziru Shen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiwei Zhai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
10
|
Yang K, Wu YT, He Y, Dai JX, Luo YL, Xie JH, Ding WJ. GLP-1 and IL-6 regulates obesity in the gut and brain. Life Sci 2025; 362:123339. [PMID: 39730038 DOI: 10.1016/j.lfs.2024.123339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/06/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Obesity is a chronic metabolic disease characterized by excessive nutrient intake leading to increased subcutaneous or visceral fat, resulting in pathological and physiological changes. The incidence rate of obesity, an important form of metabolic syndrome, is increasing worldwide. Excess appetite is a key pathogenesis of obesity, and the inflammatory response induced by obesity has received increasing attention. This review focuses on the role of appetite-regulating factor (Glucogan-like peptide 1) and inflammatory factor (Interleukin-6) in the gut and brain in individuals with obesity and draws insights from the current literature.
Collapse
Affiliation(s)
- Kun Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu-Ting Wu
- Chengdu University of Traditional Chinese Medicine, 1166 Luitai Avenue, Chengdu, Sichuan 611137, China
| | - Yan He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin-Xiu Dai
- Chengdu University of Traditional Chinese Medicine, 1166 Luitai Avenue, Chengdu, Sichuan 611137, China
| | - Yu-Lu Luo
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing-Hui Xie
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei-Jun Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
11
|
Liu C, Xin Y, Huang Y, Xu L, Zhou R, Wang Y, Wang W. Reduction of Hepatic Fat Content by Dulaglutide for the Treatment of Diabetes Mellitus: A Two-Centre Open, Single-Arm Trial. Endocrinol Diabetes Metab 2025; 8:e70021. [PMID: 39718468 DOI: 10.1002/edm2.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/07/2024] [Accepted: 11/06/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND With the elevated level of NAFLD prevalence, the incidence of diabetes, hypertension, metabolic syndrome and other diseases is also significantly elevated. GLP-1RA can exert weight loss, glucose-lowering effects and various nonglycaemic effects. However, the relationship between quantitative reduction in hepatic fat content and improvement of pancreatic islet function by GLP-1RA is unclear. METHODS This trial was a single-arm open cohort study. A total of 38 patients with T2DM and NAFLD were enrolled in the GLP-1RA treatment group. The included patients were tested for biochemical and blood glucose levels, adiponectin and FGF21 levels, and liver fat content was measured using MRI. Measure the above indicators again after at least 3 months of GLP-1RA treatment. Divided into Q1 (average decrease of 0.37%) and Q2 (average decrease of 8.6%) groups based on the degree of reduction in liver fat content. RESULTS Q2 group showed an average reduction in liver fat content of 8.6%, a decrease in glycated haemoglobin of 18.17%, a weight loss of 7.29% and an increase in fasting c-peptide release by 1.03%, 1-h and 2-h postprandial c-peptide release by 28.86% and 18.28% respectively. In contrast, Q1 group had an average reduction in liver fat content of 0.37%, a decrease in glycated haemoglobin of only 6.53%, a weight loss of 3.41%, a decrease in fasting c-peptide release by 1.91% and an increase in 1-h and 2-h postprandial c-peptide release by 19.18% and 11.66% respectively. CONCLUSION Reduction in liver fat content effectively improves pancreatic islet function secretion, particularly postprandial c-peptide secretion, especially in the first hour after a meal. This improvement leads to a decrease in glycated haemoglobin levels and promotes better compliance with blood glucose control.
Collapse
Affiliation(s)
- Chuanfeng Liu
- Department of Hematology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yu Xin
- Department of Endocrinology and Metabolic Diseases, Jiaozuo People's Hospital, Jiaozuo, China
- Department of Endocrinology and Metabolic Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yajing Huang
- Department of Endocrinology and Metabolic Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lili Xu
- Department of Endocrinology and Metabolic Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruizhi Zhou
- Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangang Wang
- Department of Endocrinology and Metabolic Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Wang
- Department of Hematology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Chuansangeam M, Phadungsaksawasdi P, Park HJ, Yang YH. Exploring the link between GLP-1 receptor agonists and dementia: A comprehensive review. J Alzheimers Dis Rep 2025; 9:25424823251342182. [PMID: 40370762 PMCID: PMC12075970 DOI: 10.1177/25424823251342182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/21/2025] [Indexed: 05/16/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) and insulin resistance are associated with an increased risk of cognitive decline and dementia, including Alzheimer's disease (AD). Glucagon-like peptide-1 receptor agonists (GLP-1RAs), originally developed for glycemic control, are emerging as neuroprotective agents. This review evaluates the evidence regarding the effects of GLP-1RAs in populations with T2DM-both with and without cognitive impairment, as well as in individuals diagnosed with AD. We conducted a comprehensive literature search and identified ten studies for inclusion: six randomized controlled trials, one prospective open-label study, and three observational studies. GLP-1RAs consistently demonstrated cognitive benefits in patients with T2DM, even in the absence of metabolic improvements. In cases of early dementia or AD, GLP-1RA treatment preserved brain metabolism and connectivity but did not significantly alter amyloid or tau biomarkers. Notably, cognitive improvements were most evident in individuals with higher body mass index (BMI) or obesity. While some studies reported neural functional changes via imaging, direct modifications in established AD biomarkers were not consistently observed. In conclusion, GLP-1RAs may improve cognitive outcomes and brain function, particularly in the early stages of neurodegeneration and among high-risk T2DM populations. Further well-designed clinical trials are needed to evaluate the impacts of GLP-1RAs on both the clinical progression and underlying pathology of dementia.
Collapse
Affiliation(s)
- Mallika Chuansangeam
- Division of Geriatric Medicine, Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Pawit Phadungsaksawasdi
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Hyo Jin Park
- Department of Family Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Yuan-Han Yang
- Department of Neurology, Kaohsiung Medical University Gangshan Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
13
|
Thakur P, Baraskar K, Shrivastava VK, Medhi B. Cross-talk between adipose tissue and microbiota-gut-brain-axis in brain development and neurological disorder. Brain Res 2024; 1844:149176. [PMID: 39182900 DOI: 10.1016/j.brainres.2024.149176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
The gut microbiota is an important factor responsible for the physiological processes as well as pathogenesis of host. The communication between central nervous system (CNS) and microbiota occurs by different pathways i.e., chemical, neural, immune, and endocrine. Alteration in gut microbiota i.e., gut dysbiosis causes alteration in the bidirectional communication between CNS and gut microbiota and linked to the pathogenesis of neurological and neurodevelopmental disorder. Therefore, now-a-days microbiota-gut-brain-axis (MGBA) has emerged as therapeutic target for the treatment of metabolic disorder. But, experimental data available on MGBA from basic research has limited application in clinical study. In present study we first summarized molecular mechanism of microbiota interaction with brain physiology and pathogenesis via collecting data from different sources i.e., PubMed, Scopus, Web of Science. Furthermore, evidence shows that adipose tissue (AT) is active during metabolic activities and may also interact with MGBA. Hence, in present study we have focused on the relationship among MGBA, brown adipose tissue, and white adipose tissue. Along with this, we have also studied functional specificity of AT, and understanding heterogeneity among MGBA and different types of AT. Therefore, molecular interaction among them may provide therapeutic target for the treatment of neurological disorder.
Collapse
Affiliation(s)
- Pratibha Thakur
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India.
| | - Kirti Baraskar
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Vinoy K Shrivastava
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab 160012, India.
| |
Collapse
|
14
|
Verma A, Goyal A. Beyond insulin: The Intriguing role of GLP-1 in Parkinson's disease. Eur J Pharmacol 2024; 982:176936. [PMID: 39182542 DOI: 10.1016/j.ejphar.2024.176936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
GLP-1 (Glucagon-like peptide 1) serves as both a peptide hormone and a growth factor, is released upon nutrient intake and contributes to insulin secretion stimulated by glucose levels. Also, GLP-1 is synthesized within several brain areas and plays a vital function in providing neuroprotection and reducing inflammation through the activation of the GLP-1 receptor. Parkinson's Disease (PD) is a neurodegenerative illness that worsens with time and is defined by considerable morbidity. Presently, there are few pharmaceutical choices available, and none of the existing therapies are capable of modifying the course of the disease. There is a suggestion that type 2 diabetes mellitus (T2DM) could increase the risk of PD, and the presence of both conditions concurrently might exacerbate PD symptoms and hasten neurodegeneration. GLP-1 receptor (GLP-1R) agonists exhibit numerous implications like enhancement of glucose-dependent insulin release and biosynthesis, suppression of glucagon secretion and gastric emptying. Also, some GLP-1R agonists have received clinical approval for the management of T2DM. Moreover, the use of GLP-1R agonists has demonstrated counter-inflammatory, neurotrophic, and neuroprotective actions in various preclinical models of neurodegenerative disorders. Considering the significant amount of evidence backing the potential of GLP-1R agonists to protect the nervous system across different research settings, this article delves into examining the hopeful prospect of GLP-1R agonists as a treatment option for PD. This review sheds light on combined neuroprotective benefits of GLP-1R agonists and the possible mechanisms driving the protective effects on the PD brain, through the collection of data from various preclinical and clinical investigations.
Collapse
Affiliation(s)
- Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
15
|
Martinelli S, Mazzotta A, Longaroni M, Petrucciani N. Potential role of glucagon-like peptide-1 (GLP-1) receptor agonists in substance use disorder: A systematic review of randomized trials. Drug Alcohol Depend 2024; 264:112424. [PMID: 39288591 DOI: 10.1016/j.drugalcdep.2024.112424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Increasing evidence suggests that GLP-1 receptor agonists (GLP-1RA) have a potential use in addiction treatment. Few studies have assessed the impact of GLP-1RA on substance use disorder (SUD), particularly in humans. The study aimed to do systematic review of clinical trials to assess GLP-1RA's effect on reducing SUD in patients. METHODS The scientific literature was reviewed using the MEDLINE, Scopus and Cochrane Library databases, following PRISMA guidelines. Studies including patients with a diagnosis of SU who were treated with GLP-1RA were selected. The primary outcome was GLP-1RA's therapeutic effect on SUD, and the secondary outcomes were therapeutic effects of GLP-1RA on weight, BMI and HbA1c. RESULTS 1218 studies were retrieved, resulting in 507 papers after title and abstract screening. Following full-text review, only 5 articles met inclusion criteria. We incorporated a total of 630 participants utilizing Exenatide (n=3) and Dulaglutide (n=2) as GLP-1RAs. Therapeutic effect of GLP-1RA on SUD was assessed in 5 studies, with 3 demonstrating a significant decrease in SUD (alcohol and nicotine). GLP-1RA's impact on body weight, BMI, and HbA1c, was reported in 3 studies. These revealed a notable reduction in these parameters among the GLP-1RA treated group. CONCLUSION This review will give an overview of current new findings in human studies; we suggest that the effects of GLP-1RA in SUD is a possible new option of therapy in addiction medicine.
Collapse
Affiliation(s)
- Silvia Martinelli
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy; Department of Mental Health, Local Health Authority Viterbo, Viterbo, Italy
| | - Alessandro Mazzotta
- Department of Surgery, M.G. General Vannini Hospital, Istituto Figlie Di San Camillo, Rome, Italy
| | - Mattia Longaroni
- Department of Surgery, Santa Maria della Misericordia Hospital, University of Perugia, Italy
| | - Niccolò Petrucciani
- Department of Medical and Surgical Sciences and Translational Medicine, Division of General and Hepatobiliary Surgery, St. Andrea Hospital, Sapienza University of Rome, Italy.
| |
Collapse
|
16
|
Qiao L, Yang G, Wang P, Xu C. The potential role of mitochondria in the microbiota-gut-brain axis: Implications for brain health. Pharmacol Res 2024; 209:107434. [PMID: 39332752 DOI: 10.1016/j.phrs.2024.107434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Mitochondria are crucial organelles that regulate cellular energy metabolism, calcium homeostasis, and oxidative stress responses, playing pivotal roles in brain development and neurodegeneration. Concurrently, the gut microbiota has emerged as a key modulator of brain physiology and pathology through the microbiota-gut-brain axis. Recent evidence suggests an intricate crosstalk between the gut microbiota and mitochondrial function, mediated by microbial metabolites that can influence mitochondrial activities in the brain. This review aims to provide a comprehensive overview of the emerging role of mitochondria as critical mediators in the microbiota-gut-brain axis, shaping brain health and neurological disease pathogenesis. We discuss how gut microbial metabolites such as short-chain fatty acids, secondary bile acids, tryptophan metabolites, and trimethylamine N-oxide can traverse the blood-brain barrier and modulate mitochondrial processes including energy production, calcium regulation, mitophagy, and oxidative stress in neurons and glial cells. Additionally, we proposed targeting the mitochondria through diet, prebiotics, probiotics, or microbial metabolites as a promising potential therapeutic approach to maintain brain health by optimizing mitochondrial fitness. Overall, further investigations into how the gut microbiota and its metabolites regulate mitochondrial bioenergetics, dynamics, and stress responses will provide valuable insights into the microbiota-gut-brain axis in both health and disease states.
Collapse
Affiliation(s)
- Lei Qiao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ge Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Peng Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Department of Psychiatry, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710000, China
| | - Chunlan Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
17
|
Hamed K, Alosaimi MN, Ali BA, Alghamdi A, Alkhashi T, Alkhaldi SS, Altowarqi NA, Alzahrani H, Alshehri AM, Alkhaldi RK, Alqahtani KW, Alharbi NH, Alhulayfi HF, Sharifi SY, Dighriri IM. Glucagon-Like Peptide-1 (GLP-1) Receptor Agonists: Exploring Their Impact on Diabetes, Obesity, and Cardiovascular Health Through a Comprehensive Literature Review. Cureus 2024; 16:e68390. [PMID: 39355484 PMCID: PMC11444311 DOI: 10.7759/cureus.68390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2024] [Indexed: 10/03/2024] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1-RAs) are a novel class of medications promising for treating type 2 diabetes mellitus (T2DM) and obesity-related conditions such as cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD). This comprehensive literature review examines available research on these medications, focusing on their mechanisms of action, clinical effectiveness, safety profiles, and socioeconomic implications. A comprehensive search was performed using the PubMed, EMBASE, and Cochrane Library databases. Although initially developed for glucose management, these drugs have also demonstrated efficacy in promoting weight loss and reducing the risk of CVD. GLP-1-RAs function similarly to naturally occurring incretins. They stimulate insulin secretion in response to glucose levels, inhibit glucagon release, delay stomach emptying, and generate a sense of fullness via brain pathways. Head-to-head clinical studies have indicated that GLP-1-RAs outperform conventional antidiabetic medicines in terms of glycemic management and weight reduction. According to cardiovascular outcome studies, various drugs in this category have been found to reduce the frequency of severe adverse cardiovascular events. A common side effect is gastrointestinal toxicity, which can be mitigated by gradually increasing the dose. Personalized treatment is likely because the effectiveness, safety, and dose regimens of currently available GLP-1-RAs differ. GLP-1-RAs are a superior choice for patients with T2DM, especially those who already have CVD or require weight-control support. The high cost of these drugs creates hurdles to access and fair healthcare. Current research mainly focuses on increasing therapeutic uses and producing orally delivered medicines with greater potency and bioavailability. Integrating GLP-1-RAs into clinical practice can enhance patient outcomes and reduce the community burden of cardiometabolic disease.
Collapse
Affiliation(s)
- Khalid Hamed
- Department of Clinical Toxicology, Umm Al-Qura University, Mecca, SAU
| | | | - Bashaer A Ali
- Department of Pharmacy, Nahdi Medical Company, Jeddah, SAU
| | | | | | | | | | | | | | | | - Khalid W Alqahtani
- Department of Pharmacy, Dr. Sulaiman Al Habib Medical Group, Riyadh, SAU
| | | | | | | | | |
Collapse
|
18
|
Stratina E, Stanciu C, Nastasa R, Zenovia S, Stafie R, Rotaru A, Cuciureanu T, Muzica C, Sfarti C, Girleanu I, Minea H, Petrea O, Huiban L, Chiriac S, Singeap AM, Vlad O, Cojocariu C, Trifan A. New Insights on Using Oral Semaglutide versus Dapagliflozin in Patients with Type 2 Diabetes and Metabolic Dysfunction-Associated Steatotic Liver Disease. Diagnostics (Basel) 2024; 14:1475. [PMID: 39061612 PMCID: PMC11275343 DOI: 10.3390/diagnostics14141475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND AND AIMS Increases in both the prevalence and severity of metabolic dysfunction-associated steatotic liver disease (MASLD) and obesity are closely related. Type 2 diabetes (T2DM) has been associated with metabolic dysfunction-associated steatohepatitis (MASH)-related cirrhosis and hepatocellular carcinoma. Semaglutide is a glucagon-like peptide-1 (GLP-1) receptor agonist approved for the treatment of T2DM and has an important role in weight loss. Also, it may represent a new therapeutic option for the treatment of MASH in obese diabetic patients. The main outcomes were changes from baseline in liver steatosis and fibrosis at week 24. MATERIAL AND METHODS A total of one hundred eighty-seven patients with T2DM were eligible for this prospective study; ninety-five subjects were treated with oral semaglutide, and ninety-two patients were treated with dapagliflozin as an add-on to metformin. All the subjects were evaluated using Vibration Controlled Transient Elastography (VCTE) from June to December 2022. RESULTS From our cohort, 54% of the patients were females, with a mean age of 59.92 ± 11.89 years and a mean body mass index (BMI) of 29.53 ± 5.33 kg/m2. Following a six-month medication period, we observed a substantial reduction in anthropometric measurements, including the BMI, waist circumference (WC), and waist-to-hip ratio (WtHr), in both groups. Regarding HbA1c, a notable decrease was observed in the semaglutide group (p < 0.001) when compared to the dapagliflozin group (p = 0.011). In addition, the liver stiffness measurement (LSM) according to VCTE improved significantly in the semaglutide group participants from 8.07 ± 2.90 kPa at baseline to 6.51 ± 3.09 kPa after medication (p < 0.001). CONCLUSION The superior metabolic effects of semaglutide, correlated to dapagliflozin, may contribute to a more efficient decrease in hepatic stress and injury, leading to a substantial enhancement of liver function in T2DM patients. Further investigations conducted over an ideal timeframe are necessary to confirm the evidence presented in this study.
Collapse
Affiliation(s)
- Ermina Stratina
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (E.S.); (C.S.); (S.Z.); (R.S.); (A.R.); (T.C.); (C.M.); (C.S.); (I.G.); (H.M.); (O.P.); (L.H.); (S.C.); (A.-M.S.); (C.C.); (A.T.)
- “St. Spiridon” Emergency Hospital, Institute of Gastroenterology and Hepatology, 700111 Iasi, Romania
| | - Carol Stanciu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (E.S.); (C.S.); (S.Z.); (R.S.); (A.R.); (T.C.); (C.M.); (C.S.); (I.G.); (H.M.); (O.P.); (L.H.); (S.C.); (A.-M.S.); (C.C.); (A.T.)
- “St. Spiridon” Emergency Hospital, Institute of Gastroenterology and Hepatology, 700111 Iasi, Romania
| | - Robert Nastasa
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (E.S.); (C.S.); (S.Z.); (R.S.); (A.R.); (T.C.); (C.M.); (C.S.); (I.G.); (H.M.); (O.P.); (L.H.); (S.C.); (A.-M.S.); (C.C.); (A.T.)
- “St. Spiridon” Emergency Hospital, Institute of Gastroenterology and Hepatology, 700111 Iasi, Romania
| | - Sebastian Zenovia
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (E.S.); (C.S.); (S.Z.); (R.S.); (A.R.); (T.C.); (C.M.); (C.S.); (I.G.); (H.M.); (O.P.); (L.H.); (S.C.); (A.-M.S.); (C.C.); (A.T.)
- “St. Spiridon” Emergency Hospital, Institute of Gastroenterology and Hepatology, 700111 Iasi, Romania
| | - Remus Stafie
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (E.S.); (C.S.); (S.Z.); (R.S.); (A.R.); (T.C.); (C.M.); (C.S.); (I.G.); (H.M.); (O.P.); (L.H.); (S.C.); (A.-M.S.); (C.C.); (A.T.)
- “St. Spiridon” Emergency Hospital, Institute of Gastroenterology and Hepatology, 700111 Iasi, Romania
| | - Adrian Rotaru
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (E.S.); (C.S.); (S.Z.); (R.S.); (A.R.); (T.C.); (C.M.); (C.S.); (I.G.); (H.M.); (O.P.); (L.H.); (S.C.); (A.-M.S.); (C.C.); (A.T.)
- “St. Spiridon” Emergency Hospital, Institute of Gastroenterology and Hepatology, 700111 Iasi, Romania
| | - Tudor Cuciureanu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (E.S.); (C.S.); (S.Z.); (R.S.); (A.R.); (T.C.); (C.M.); (C.S.); (I.G.); (H.M.); (O.P.); (L.H.); (S.C.); (A.-M.S.); (C.C.); (A.T.)
- “St. Spiridon” Emergency Hospital, Institute of Gastroenterology and Hepatology, 700111 Iasi, Romania
| | - Cristina Muzica
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (E.S.); (C.S.); (S.Z.); (R.S.); (A.R.); (T.C.); (C.M.); (C.S.); (I.G.); (H.M.); (O.P.); (L.H.); (S.C.); (A.-M.S.); (C.C.); (A.T.)
- “St. Spiridon” Emergency Hospital, Institute of Gastroenterology and Hepatology, 700111 Iasi, Romania
| | - Catalin Sfarti
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (E.S.); (C.S.); (S.Z.); (R.S.); (A.R.); (T.C.); (C.M.); (C.S.); (I.G.); (H.M.); (O.P.); (L.H.); (S.C.); (A.-M.S.); (C.C.); (A.T.)
- “St. Spiridon” Emergency Hospital, Institute of Gastroenterology and Hepatology, 700111 Iasi, Romania
| | - Irina Girleanu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (E.S.); (C.S.); (S.Z.); (R.S.); (A.R.); (T.C.); (C.M.); (C.S.); (I.G.); (H.M.); (O.P.); (L.H.); (S.C.); (A.-M.S.); (C.C.); (A.T.)
- “St. Spiridon” Emergency Hospital, Institute of Gastroenterology and Hepatology, 700111 Iasi, Romania
| | - Horia Minea
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (E.S.); (C.S.); (S.Z.); (R.S.); (A.R.); (T.C.); (C.M.); (C.S.); (I.G.); (H.M.); (O.P.); (L.H.); (S.C.); (A.-M.S.); (C.C.); (A.T.)
- “St. Spiridon” Emergency Hospital, Institute of Gastroenterology and Hepatology, 700111 Iasi, Romania
| | - Oana Petrea
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (E.S.); (C.S.); (S.Z.); (R.S.); (A.R.); (T.C.); (C.M.); (C.S.); (I.G.); (H.M.); (O.P.); (L.H.); (S.C.); (A.-M.S.); (C.C.); (A.T.)
- “St. Spiridon” Emergency Hospital, Institute of Gastroenterology and Hepatology, 700111 Iasi, Romania
| | - Laura Huiban
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (E.S.); (C.S.); (S.Z.); (R.S.); (A.R.); (T.C.); (C.M.); (C.S.); (I.G.); (H.M.); (O.P.); (L.H.); (S.C.); (A.-M.S.); (C.C.); (A.T.)
- “St. Spiridon” Emergency Hospital, Institute of Gastroenterology and Hepatology, 700111 Iasi, Romania
| | - Stefan Chiriac
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (E.S.); (C.S.); (S.Z.); (R.S.); (A.R.); (T.C.); (C.M.); (C.S.); (I.G.); (H.M.); (O.P.); (L.H.); (S.C.); (A.-M.S.); (C.C.); (A.T.)
- “St. Spiridon” Emergency Hospital, Institute of Gastroenterology and Hepatology, 700111 Iasi, Romania
| | - Ana-Maria Singeap
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (E.S.); (C.S.); (S.Z.); (R.S.); (A.R.); (T.C.); (C.M.); (C.S.); (I.G.); (H.M.); (O.P.); (L.H.); (S.C.); (A.-M.S.); (C.C.); (A.T.)
- “St. Spiridon” Emergency Hospital, Institute of Gastroenterology and Hepatology, 700111 Iasi, Romania
| | - Oana Vlad
- Unit of Diabetes, Nutrition and Metabolic Diseases, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Camelia Cojocariu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (E.S.); (C.S.); (S.Z.); (R.S.); (A.R.); (T.C.); (C.M.); (C.S.); (I.G.); (H.M.); (O.P.); (L.H.); (S.C.); (A.-M.S.); (C.C.); (A.T.)
- “St. Spiridon” Emergency Hospital, Institute of Gastroenterology and Hepatology, 700111 Iasi, Romania
| | - Anca Trifan
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (E.S.); (C.S.); (S.Z.); (R.S.); (A.R.); (T.C.); (C.M.); (C.S.); (I.G.); (H.M.); (O.P.); (L.H.); (S.C.); (A.-M.S.); (C.C.); (A.T.)
- “St. Spiridon” Emergency Hospital, Institute of Gastroenterology and Hepatology, 700111 Iasi, Romania
| |
Collapse
|
19
|
Duan WX, Wang F, Liu JY, Liu CF. Relationship Between Short-chain Fatty Acids and Parkinson's Disease: A Review from Pathology to Clinic. Neurosci Bull 2024; 40:500-516. [PMID: 37755674 PMCID: PMC11003953 DOI: 10.1007/s12264-023-01123-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/15/2023] [Indexed: 09/28/2023] Open
Abstract
Parkinson's disease (PD) is a complicated neurodegenerative disease, characterized by the accumulation of α-synuclein (α-syn) in Lewy bodies and neurites, and massive loss of midbrain dopamine neurons. Increasing evidence suggests that gut microbiota and microbial metabolites are involved in the development of PD. Among these, short-chain fatty acids (SCFAs), the most abundant microbial metabolites, have been proven to play a key role in brain-gut communication. In this review, we analyze the role of SCFAs in the pathology of PD from multiple dimensions and summarize the alterations of SCFAs in PD patients as well as their correlation with motor and non-motor symptoms. Future research should focus on further elucidating the role of SCFAs in neuroinflammation, as well as developing novel strategies employing SCFAs and their derivatives to treat PD.
Collapse
Affiliation(s)
- Wen-Xiang Duan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Jun-Yi Liu
- Department of Neurology, Dushu Lake Hospital affiliated to Soochow University, Suzhou, 215125, China.
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
20
|
le Roux CW, Steen O, Lucas KJ, Startseva E, Unseld A, Hennige AM. Glucagon and GLP-1 receptor dual agonist survodutide for obesity: a randomised, double-blind, placebo-controlled, dose-finding phase 2 trial. Lancet Diabetes Endocrinol 2024; 12:162-173. [PMID: 38330987 DOI: 10.1016/s2213-8587(23)00356-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/16/2023] [Accepted: 11/16/2023] [Indexed: 02/10/2024]
Abstract
BACKGROUND Obesity is a widespread and chronic condition that requires long-term management; research into additional targets to improve treatment outcomes remains a priority. This study aimed to investigate the safety, tolerability, and efficacy of glucagon receptor-GLP-1 receptor dual agonist survodutide (BI 456906) in obesity management. METHODS In this randomised, double-blind, placebo-controlled, dose-finding phase 2 trial conducted in 43 centres in 12 countries, we enrolled participants (aged 18-75 years, BMI ≥27 kg/m2, without diabetes) and randomly assigned them by interactive response technology (1:1:1:1:1; stratified by sex) to subcutaneous survodutide (0·6, 2·4, 3·6, or 4·8 mg) or placebo once-weekly for 46 weeks (20 weeks dose escalation; 26 weeks dose maintenance). The primary endpoint was the percentage change in bodyweight from baseline to week 46. Primary analysis included the modified intention-to-treat population (defined as all randomly assigned patients who received at least one dose of trial medication and who had analysable data for at least one efficacy endpoint) and was based on the dose assigned at randomisation (planned treatment), including all data censored for COVID-19-related discontinuations; the sensitivity analysis was based on the actual dose received during maintenance phase (actual treatment) and included on-treatment data. Safety analysis included all participants who received at least one dose of study drug. The trial is registered with ClinicalTrials.gov (NCT04667377) and EudraCT (2020-002479-37). FINDINGS Between March 30, 2021, and Nov 11, 2021, we enrolled 387 participants; 386 (100%) participants were treated (0·6 mg, n=77; 2·4 mg, n=78; 3·6 mg, n=77; 4·8 mg, n=77; placebo n=77) and 233 (60·4%) of 386 completed the 46-week treatment period (187 [61%] of 309 receiving survodutide; 46 [60%] of 77 receiving placebo). When analysed according to planned treatment, mean (95% CI) changes in bodyweight from baseline to week 46 were -6·2% (-8·3 to -4·1; 0·6 mg); -12·5% (-14·5 to -10·5; 2·4 mg); -13·2% (-15·3 to -11·2; 3·6 mg); -14·9% (-16·9 to -13·0; 4·8 mg); -2·8% (-4·9 to -0·7; placebo). Adverse events occurred in 281 (91%) of 309 survodutide recipients and 58 (75%) of 77 placebo recipients; these were primarily gastrointestinal in 232 (75%) of 309 survodutide recipients and 32 (42%) of 77 placebo recipients. INTERPRETATION All tested survodutide doses were tolerated, and dose-dependently reduced bodyweight. FUNDING Boehringer Ingelheim.
Collapse
Affiliation(s)
- Carel W le Roux
- Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland
| | - Oren Steen
- LMC Diabetes and Endocrinology, Toronto, ON, Canada
| | - Kathryn J Lucas
- Diabetes and Endocrinology Consultants, Morehead City, NC, USA
| | | | - Anna Unseld
- Boehringer Ingelheim Pharma GmbH, Biberach an der Riß, Germany
| | - Anita M Hennige
- Boehringer Ingelheim International GmbH, Biberach an der Riß, Germany.
| |
Collapse
|
21
|
Elangovan A, Dahiya B, Kirola L, Iyer M, Jeeth P, Maharaj S, Kumari N, Lakhanpal V, Michel TM, Rao KRSS, Cho SG, Yadav MK, Gopalakrishnan AV, Kadhirvel S, Kumar NS, Vellingiri B. Does gut brain axis has an impact on Parkinson's disease (PD)? Ageing Res Rev 2024; 94:102171. [PMID: 38141735 DOI: 10.1016/j.arr.2023.102171] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
Parkinson's Disease (PD) is becoming a growing global concern by being the second most prevalent disease next to Alzheimer's Disease (AD). Henceforth new exploration is needed in search of new aspects towards the disease mechanism and origin. Evidence from recent studies has clearly stated the role of Gut Microbiota (GM) in the maintenance of the brain and as a root cause of various diseases and disorders including other neurological conditions. In the case of PD, with an unknown etiology, the GM is said to have a larger impact on the disease pathophysiology. Although GM and its metabolites are crucial for maintaining the normal physiology of the host, it is an undeniable fact that there is an influence of GM in the pathophysiology of PD. As such the Enteroendocrine Cells (EECs) in the epithelium of the intestine are one of the significant regulators of the gut-brain axis and act as a communication mediator between the gut and the brain. The communication is established via the molecules of neuroendocrine which are said to have a crucial part in neurological diseases such as AD, PD, and other psychiatry-related disorders. This review is focused on understanding the proper role of GM and EECs in PD. Here, we also focus on some of the metabolites and compounds that can interact with the PD genes causing various dysfunctions in the cell and facilitating the disease conditions using bioinformatical tools. Various mechanisms concerning EECs and PD, their identification, the latest studies, and available current therapies have also been discussed.
Collapse
Affiliation(s)
- Ajay Elangovan
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Bhawna Dahiya
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Laxmi Kirola
- Department of Biotechnology, School of Health Sciences and Technology (SoHST), UPES University, Dehradun, Uttarakhand 248007, India
| | - Mahalaxmi Iyer
- Department of Microbiology, Central University of Punjab, Bathinda 151401, Punjab, India; Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, Tamil Nadu, India
| | - Priyanka Jeeth
- Department of Computational Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Sakshi Maharaj
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Nikki Kumari
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Vikas Lakhanpal
- Department of Neurology, All India Institute of Medical Sciences, Bathinda 151005, Punjab, India
| | - Tanja Maria Michel
- Research Unit of Psychiatry, Dept. of Psychiatry Odense, Clinical Institute, University of Southern Denmark, J.B. Winslowsvej 20, Indg. 220B, Odense, Denmark
| | - K R S Sambasiva Rao
- Mangalayatan University - Jabalpur, Jabalpur - 481662, Madhya Pradesh, India
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Mukesh Kumar Yadav
- Department of Microbiology, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632 014, India
| | - Saraboji Kadhirvel
- Department of Computational Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Nachimuthu Senthil Kumar
- Department of Biotechnology, Mizoram University (A Central University), Aizawl, 796 004 Mizoram, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India.
| |
Collapse
|
22
|
Kong H, Xu T, Wang S, Zhang Z, Li M, Qu S, Li Q, Gao P, Cong Z. The molecular mechanism of polysaccharides in combating major depressive disorder: A comprehensive review. Int J Biol Macromol 2024; 259:129067. [PMID: 38163510 DOI: 10.1016/j.ijbiomac.2023.129067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/10/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Major depressive disorder (MDD) is a complex psychiatric condition with diverse etiological factors. Typical pathological features include decreased cerebral cortex, subcortical structures, and grey matter volumes, as well as monoamine transmitter dysregulation. Although medications exist to treat MDD, unmet needs persist due to limited efficacy, induced side effects, and relapse upon drug withdrawal. Polysaccharides offer promising new therapies for MDD, demonstrating antidepressant effects with minimal side effects and multiple targets. These include neurotransmitter, neurotrophin, neuroinflammation, hypothalamic-pituitary-adrenal axis, mitochondrial function, oxidative stress, and intestinal flora regulation. This review explores the latest advancements in understanding the pharmacological actions and mechanisms of polysaccharides in treating major depression. We discuss the impact of polysaccharides' diverse structures and properties on their pharmacological actions, aiming to inspire new research directions and facilitate the discovery of novel anti-depressive drugs.
Collapse
Affiliation(s)
- Hongwei Kong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianren Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shengguang Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhiyuan Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Min Li
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Suyan Qu
- Tai 'an Taishan District People's Hospital, China
| | - Qinqing Li
- Shanxi University of Chinese Medicine, China
| | - Peng Gao
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Zhufeng Cong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Affiliated Cancer Hospital of Shandong First Medical University, China.
| |
Collapse
|
23
|
Barakat G, Assi G, Khalil H, El Khatib S. A Comprehensive Review on GLP-1 Signaling Pathways in the Management of Diabetes Mellitus - Focus on the Potential Role of GLP-1 Receptors Agonists and Selenium among Various Organ Systems. Curr Diabetes Rev 2024; 21:e160424228945. [PMID: 38629376 DOI: 10.2174/0115733998287178240403055901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 10/30/2024]
Abstract
Diabetes Mellitus develops when the body becomes unable to fuel its cells with glucose, which results in the accumulation of sugar excess in the bloodstream. Because it has diverse pathophysiological impacts on the body, diabetes mellitus represents a significant issue of concern in an attempt to find suitable treatment modalities and medications for afflicted diabetic patients. Glucagon-like peptide 1 (GLP-1) plays a pivotal role in the incretin effect, emerging as a prospective treatment for diabetes mellitus and a promising means of regenerating pancreatic cells, whether directly or through its receptor agonists. It has been shown that GLP-1 efficiently increases insulin production, lowers blood sugar levels in patients with type 2 diabetes mellitus, and decreases appetite, craving, and hunger, therefore amplifying the sensation of fullness and satiety. Moreover, since they are all dependent on GLP-1 effect, intricate signaling pathways share some similarities during specific phases, although the pathways continue to exhibit significant divergence engendered by specific reactions and effects in each organ, which encompasses the rationale behind observed differences. This triggers an expanding range of GLP-1 R agonists, creating new unforeseen research and therapeutic application prospects. This review aims to explain the incretin effect, discuss how GLP-1 regulates blood glucose levels, and how it affects different body organs, as well as how it transmits signals, before introducing selenium's role in the incretin impact.
Collapse
Affiliation(s)
- Ghinwa Barakat
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon
| | - Ghaith Assi
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Hussein Khalil
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon
| | - Sami El Khatib
- Department of Biomedical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa, Lebanon
- Center for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology (GUST), Mubarak Al-Abdullah, Kuwait
| |
Collapse
|
24
|
Lisco G, De Tullio A, Iovino M, Disoteo O, Guastamacchia E, Giagulli VA, Triggiani V. Dopamine in the Regulation of Glucose Homeostasis, Pathogenesis of Type 2 Diabetes, and Chronic Conditions of Impaired Dopamine Activity/Metabolism: Implication for Pathophysiological and Therapeutic Purposes. Biomedicines 2023; 11:2993. [PMID: 38001993 PMCID: PMC10669051 DOI: 10.3390/biomedicines11112993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Dopamine regulates several functions, such as voluntary movements, spatial memory, motivation, sleep, arousal, feeding, immune function, maternal behaviors, and lactation. Less clear is the role of dopamine in the pathophysiology of type 2 diabetes mellitus (T2D) and chronic complications and conditions frequently associated with it. This review summarizes recent evidence on the role of dopamine in regulating insular metabolism and activity, the pathophysiology of traditional chronic complications associated with T2D, the pathophysiological interconnection between T2D and chronic neurological and psychiatric disorders characterized by impaired dopamine activity/metabolism, and therapeutic implications. Reinforcing dopamine signaling is therapeutic in T2D, especially in patients with dopamine-related disorders, such as Parkinson's and Huntington's diseases, addictions, and attention-deficit/hyperactivity disorder. On the other hand, although specific trials are probably needed, certain medications approved for T2D (e.g., metformin, pioglitazone, incretin-based therapy, and gliflozins) may have a therapeutic role in such dopamine-related disorders due to anti-inflammatory and anti-oxidative effects, improvement in insulin signaling, neuroinflammation, mitochondrial dysfunction, autophagy, and apoptosis, restoration of striatal dopamine synthesis, and modulation of dopamine signaling associated with reward and hedonic eating. Last, targeting dopamine metabolism could have the potential for diagnostic and therapeutic purposes in chronic diabetes-related complications, such as diabetic retinopathy.
Collapse
Affiliation(s)
- Giuseppe Lisco
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari, 70124 Bari, Italy; (G.L.); (A.D.T.); (M.I.); (E.G.); (V.A.G.)
| | - Anna De Tullio
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari, 70124 Bari, Italy; (G.L.); (A.D.T.); (M.I.); (E.G.); (V.A.G.)
| | - Michele Iovino
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari, 70124 Bari, Italy; (G.L.); (A.D.T.); (M.I.); (E.G.); (V.A.G.)
| | - Olga Disoteo
- Diabetology Unit, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy;
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari, 70124 Bari, Italy; (G.L.); (A.D.T.); (M.I.); (E.G.); (V.A.G.)
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari, 70124 Bari, Italy; (G.L.); (A.D.T.); (M.I.); (E.G.); (V.A.G.)
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari, 70124 Bari, Italy; (G.L.); (A.D.T.); (M.I.); (E.G.); (V.A.G.)
| |
Collapse
|
25
|
Cao T, Wang L, Jiao S, Chen H, Lin C, Zhang B, Cai H. The Involvement of PGRMC1 Signaling in Cognitive Impairment Induced by Long-Term Clozapine Treatment in Rats. Neuropsychobiology 2023; 82:346-358. [PMID: 37673050 DOI: 10.1159/000533148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 07/09/2023] [Indexed: 09/08/2023]
Abstract
INTRODUCTION Progesterone receptor component 1 (PGRMC1) has been identified as a potential target in atypical antipsychotic drug-induced metabolic disturbances as well as neuroprotection in the central nervous system. In our study, we aimed to figure out the essential role of PGRMC1 signaling pathway underlying clozapine-induced cognitive impairment. METHODS In male SD rats, we utilized recombinant adeno-associated viruses (BBB 2.0) and the specific inhibitor of PGRMC1 (AG205) to regulate the expression of PGRMC1 in the brain, with a special focus on the hippocampus. Treatments of clozapine and AG205 were conducted for 28 days, and subsequent behavioral tests including modified elevated plus maze and Morris water maze were conducted to evaluate the cognitive performance. Hippocampal protein expressions were measured by Western blotting. RESULTS Our study showed that long-term clozapine administration led to cognitive impairment as confirmed by behavioral tests as well as histopathological examination in the hippocampus. Clozapine inhibited neural survival through the PGRMC1/EGFR/GLP1R-PI3K-Akt signaling pathway, leading to a decrease in the downstream survival factor, brain-derived neurotrophic factor (BDNF), and simultaneously promoted neural apoptosis in the rat hippocampus. Intriguingly, by targeting at the hippocampal PGRMC1, we found that inhibiting PGRMC1 mimics, while its upregulation notably mitigates clozapine-induced cognitive impairment through PGRMC1 and its downstream signaling pathways. CONCLUSION PGRMC1-overexpression could protect hippocampus-dependent cognitive impairment induced by clozapine. This effect appears to arise, in part, from the upregulated expression of PGRMC1/EGFR/GLP1R and the activation of downstream PI3K-Akt-BDNF and caspase-3 signaling pathways.
Collapse
Affiliation(s)
- Ting Cao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - LiWei Wang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - ShiMeng Jiao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - ChenQuan Lin
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - BiKui Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - HuaLin Cai
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| |
Collapse
|
26
|
Sheth S, Patel A, Foreman M, Mumtaz M, Reddy A, Sharaf R, Sheth S, Lucke-Wold B. The protective role of GLP-1 in neuro-ophthalmology. EXPLORATION OF DRUG SCIENCE 2023; 1:221-238. [PMID: 37711214 PMCID: PMC10501042 DOI: 10.37349/eds.2023.00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/22/2023] [Indexed: 09/16/2023]
Abstract
Despite recent advancements in the field of neuro-ophthalmology, the rising rates of neurological and ophthalmological conditions, mismatches between supply and demand of clinicians, and an aging population underscore the urgent need to explore new therapeutic approaches within the field. Glucagon-like peptide 1 receptor agonists (GLP-1RAs), traditionally used in the treatment of type 2 diabetes, are becoming increasingly appreciated for their diverse applications. Recently, GLP-1RAs have been approved for the treatment of obesity and recognized for their cardioprotective effects. Emerging evidence indicates some GLP-1RAs can cross the blood-brain barrier and may have neuroprotective effects. Therefore, this article aims to review the literature on the neurologic and neuro-ophthalmic role of glucagon-like peptide 1 (GLP-1). This article describes GLP-1 peptide characteristics and the mechanisms mediating its known role in increasing insulin, decreasing glucagon, delaying gastric emptying, and promoting satiety. This article identifies the sources and targets of GLP-1 in the brain and review the mechanisms which mediate its neuroprotective effects, as well as implications for Alzheimer's disease (AD) and Parkinson's disease (PD). Furthermore, the preclinical works which unravel the effects of GLP-1 in ocular dynamics and the preclinical literature regarding GLP-1RA use in the management of several neuro-ophthalmic conditions, including diabetic retinopathy (DR), glaucoma, and idiopathic intracranial hypertension (IIH) are discussed.
Collapse
Affiliation(s)
- Sohum Sheth
- College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Aashay Patel
- College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Marco Foreman
- College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Mohammed Mumtaz
- College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Akshay Reddy
- College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Ramy Sharaf
- College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Siddharth Sheth
- College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
27
|
Ullah H, Arbab S, Tian Y, Liu CQ, Chen Y, Qijie L, Khan MIU, Hassan IU, Li K. The gut microbiota-brain axis in neurological disorder. Front Neurosci 2023; 17:1225875. [PMID: 37600019 PMCID: PMC10436500 DOI: 10.3389/fnins.2023.1225875] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
The gut microbiota (GM) plays an important role in the physiology and pathology of the host. Microbiota communicate with different organs of the organism by synthesizing hormones and regulating body activity. The interaction of the central nervous system (CNS) and gut signaling pathways includes chemical, neural immune and endocrine routes. Alteration or dysbiosis in the gut microbiota leads to different gastrointestinal tract disorders that ultimately impact host physiology because of the abnormal microbial metabolites that stimulate and trigger different physiologic reactions in the host body. Intestinal dysbiosis leads to a change in the bidirectional relationship between the CNS and GM, which is linked to the pathogenesis of neurodevelopmental and neurological disorders. Increasing preclinical and clinical studies/evidence indicate that gut microbes are a possible susceptibility factor for the progression of neurological disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS) and autism spectrum disorder (ASD). In this review, we discuss the crucial connection between the gut microbiota and the central nervous system, the signaling pathways of multiple biological systems and the contribution of gut microbiota-related neurological disorders.
Collapse
Affiliation(s)
- Hanif Ullah
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Safia Arbab
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yali Tian
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Chang-qing Liu
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Yuwen Chen
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Li Qijie
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Muhammad Inayat Ullah Khan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Inam Ul Hassan
- Department of Microbiology, Hazara University Mansehra, Mansehra, Pakistan
| | - Ka Li
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Panfili E, Frontino G, Pallotta MT. GLP-1 receptor agonists as promising disease-modifying agents in WFS1 spectrum disorder. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2023; 4:1171091. [PMID: 37333802 PMCID: PMC10275359 DOI: 10.3389/fcdhc.2023.1171091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
WFS1 spectrum disorder (WFS1-SD) is a rare monogenic neurodegenerative disorder whose cardinal symptoms are childhood-onset diabetes mellitus, optic atrophy, deafness, diabetes insipidus, and neurological signs ranging from mild to severe. The prognosis is poor as most patients die prematurely with severe neurological disabilities such as bulbar dysfunction and organic brain syndrome. Mutation of the WFS1 gene is recognized as the prime mover of the disease and responsible for a dysregulated ER stress signaling, which leads to neuron and pancreatic β-cell death. There is no currently cure and no treatment that definitively arrests the progression of the disease. GLP-1 receptor agonists appear to be an efficient way to reduce elevated ER stress in vitro and in vivo, and increasing findings suggest they could be effective in delaying the progression of WFS1-SD. Here, we summarize the characteristics of GLP-1 receptor agonists and preclinical and clinical data obtained by testing them in WFS1-SD as a feasible strategy for managing this disease.
Collapse
Affiliation(s)
- Eleonora Panfili
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giulio Frontino
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Hospital, Milano, Italy
| | | |
Collapse
|
29
|
An Y, Dai H, Duan Y, Cheng L, Shi L, He C, Wang C, Lv Y, Li H, Zhang H, Huang Y, Fu W, Sun W, Zhao B. The relationship between gut microbiota and susceptibility to type 2 diabetes mellitus in rats. Chin Med 2023; 18:49. [PMID: 37147692 PMCID: PMC10161507 DOI: 10.1186/s13020-023-00717-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/30/2023] [Indexed: 05/07/2023] Open
Abstract
PURPOSE The purpose of this study is to investigate the relationship between the susceptibility to type 2 diabetes and gut microbiota in rats and to explore the potential mechanism involved. METHODS Thirty-two SPF-grade SD rats were raised as donor rats, and divided into control, type 2 diabetes mellitus (T2DM, fasting blood glucose ≥ 11.1 mmol/L), and Non-T2DM (fasting blood glucose < 11.1 mmol/L) groups. Feces were collected and prepared as fecal bacteria supernatants Diab (fecal bacteria supernatant of T2DM group rats), Non (fecal bacteria supernatant of Non-T2DM group rats), and Con (fecal bacteria supernatant of control group rats). Another seventy-nine SPF-grade SD rats were separated into normal saline (NS) and antibiotics (ABX) groups and given normal saline and antibiotics solutions, respectively. In addition, the ABX group rats were randomly separated into ABX-ord (fed with a 4-week ordinary diet), ABX-fat (fed with a 4-week high-fat diet and STZ ip), FMT-Diab (with transplanted fecal bacteria supernatant Diab and fed with a 4-week high-fat diet and STZ ip), FMT-Non (with transplanted fecal bacteria supernatant Non and fed with a 4-week high-fat diet and STZ ip), and FMT-Con (with transplanted fecal bacteria supernatant Con and fed with a 4-week high-fat diet and STZ ip) groups. Furthermore, the NS group was randomly divided into NS-ord (fed with a 4-week ordinary diet) and NS-fat (fed with a 4-week high-fat diet and STZ ip) groups. After this, the short-chain fatty acids (SCFAs) in the feces were detected using gas chromatography, and the gut microbiota were detected using 16S rRNA gene sequencing. Finally, G protein-coupled receptor 41 (GPR41) and GPR43 were detected by western blot and quantitative real-time polymerase chain reaction. RESULTS G__Ruminococcus_gnavus_group were more abundant in the FMT-Diab group compared to the ABX-fat and FMT-Non groups. The levels of blood glucose, serum insulin, total cholesterol, triglycerides, and low-density lipoprotein cholesterol were also higher in the FMT-Diab group compared to those of the ABX-fat group. Compared to the ABX-fat group, both the FMT-Diab and FMT-Non groups had higher contents of acetic and butyric acid, and the expression of GPR41/43 were significantly higher as well. CONCLUSIONS G__Ruminococcus_gnavus_group might make rats more susceptible to T2DM; T2DM-susceptible flora transplantation increased the susceptibility to T2DM in rats. Additionally, gut microbiota-SCFAs-GPR41/43 may play a role in the development of T2DM. Lowering blood glucose by regulating gut microbiota may therefore become a new strategy for the treatment of T2DM in humans.
Collapse
Affiliation(s)
- Yongcheng An
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Hongyu Dai
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yuhui Duan
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Long Cheng
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Lu Shi
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Changhao He
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Chen Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yinglan Lv
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Huimin Li
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Huilin Zhang
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yan Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wanxin Fu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Weiguang Sun
- Guangzhou Baiyunshan Xingqun Pharmaceutical Company Limited, Guangzhou, 510288, China.
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
30
|
Siddiqui N, Ali J, Parvez S, Najmi AK, Akhtar M. Neuroprotective Role of DPP-4 Inhibitor Linagliptin Against Neurodegeneration, Neuronal Insulin Resistance and Neuroinflammation Induced by Intracerebroventricular Streptozotocin in Rat Model of Alzheimer's Disease. Neurochem Res 2023:10.1007/s11064-023-03924-w. [PMID: 37079222 DOI: 10.1007/s11064-023-03924-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/09/2023] [Accepted: 03/24/2023] [Indexed: 04/21/2023]
Abstract
Alzheimer's disease (AD) is an age-related, multifactorial progressive neurodegenerative disorder manifested by cognitive impairment and neuronal death in the brain areas like hippocampus, yet the precise neuropathology of AD is still unclear. Continuous failure of various clinical trial studies demands the utmost need to explore more therapeutic targets against AD. Type 2 Diabetes Mellitus and neuronal insulin resistance due to serine phosphorylation of Insulin Receptor Substrate-1 at 307 exhibits correlation with AD. Dipeptidyl Peptidase-4 inhibitors (DPP-4i) have also indicated therapeutic effects in AD by increasing the level of Glucagon-like peptide-1 in the brain after crossing Blood Brain Barrier. The present study is hypothesized to examine Linagliptin, a DPP-4i in intracerebroventricular streptozotocin induced neurodegeneration, and neuroinflammation and hippocampal insulin resistance in rat model of AD. Following infusion on 1st and 3rd day, animals were treated orally with Linagliptin (0.513 mg/kg, 3 mg/kg, and 5 mg/kg) and donepezil (5 mg/kg) as a standard for 8 weeks. Neurobehavioral, biochemical and histopathological analysis was done at the end of treatment. Dose-dependently Linagliptin significantly reversed behavioral alterations done through locomotor activity (LA) and morris water maze (MWM) test. Moreover, Linagliptin augmented hippocampal GLP-1 and Akt-ser473 level and mitigated soluble Aβ (1-42), IRS-1 (s307), GSK-3β, TNF-α, IL-1β, IL-6, AchE and oxidative/nitrosative stress level. Histopathological analysis also exhibited neuroprotective and anti-amylodogenic effect in Hematoxylin and eosin and Congo red staining respectively. The findings of our study concludes remarkable dose-dependent therapeutic potential of Linagliptin against neuronal insulin resistance via IRS-1 and AD-related complication. Thus, demonstrates unique molecular mechanism that underlie AD.
Collapse
Affiliation(s)
- Nazia Siddiqui
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| |
Collapse
|
31
|
Jungnik A, Arrubla Martinez J, Plum-Mörschel L, Kapitza C, Lamers D, Thamer C, Schölch C, Desch M, Hennige AM. Phase I studies of the safety, tolerability, pharmacokinetics and pharmacodynamics of the dual glucagon receptor/glucagon-like peptide-1 receptor agonist BI 456906. Diabetes Obes Metab 2023; 25:1011-1023. [PMID: 36527386 DOI: 10.1111/dom.14948] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/21/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
AIM To report two phase I studies of the novel subcutaneous glucagon-like peptide-1 receptor/glucagon receptor (GLP-1R/GCGR) dual agonist BI 456906 versus placebo in healthy volunteers and people with overweight/obesity. MATERIALS AND METHODS A phase Ia study (NCT03175211) investigated single rising doses (SRDs) of BI 456906 in 24 males with a body mass index (BMI) of 20-<30 kg/m2 . A phase Ib study (NCT03591718) investigated multiple rising doses (MRDs) of BI 456906 (escalated over 6 [Part A] or 16 [Part B] weeks) in 125 adults with a BMI of 27-40 kg/m2 . RESULTS In the SRD study (N = 24), mean body weight decreased with increasing BI 456906 dose. In the MRD study, the maximum decreases in placebo-corrected mean body weight were at week 6 (-5.79%, dosage schedule [DS] 1; Part A) and week 16 (-13.8%, DS7; Part B). BI 456906 reduced plasma amino acids and glucagon, indicating target engagement at GCGRs and GLP-1Rs. Drug-related adverse events (AEs) increased with BI 456906 dose. The most frequent drug-related AE with SRDs was decreased appetite (n = 9, 50.0%), and two subjects (8.3%) did not complete the trial because of AEs (nausea and vomiting). During MRD Part A (N = 80), 10 subjects (12.5%) discontinued BI 456906, most commonly because of a cardiac or vascular AE (n = 6, 7.5%); during Part B (N = 45), eight subjects (17.8%) discontinued BI 456906, mainly because of AEs (n = 6, 13.3%), most commonly gastrointestinal disorders. CONCLUSIONS BI 456906 produced a placebo-corrected body weight loss of 13.8% (week 16), highlighting its potential to promote clinically meaningful body weight loss in people with overweight/obesity.
Collapse
Affiliation(s)
| | | | | | - Christoph Kapitza
- Profil Institute for Metabolic Research, Neuss, Germany
- Profil Mainz GmbH & Co. KG, Mainz, Germany
| | | | - Claus Thamer
- Boehringer Ingelheim Pharma GmbH, Biberach, Germany
| | | | | | | |
Collapse
|
32
|
Chen L, Zhang J, Sun Y, Zhao Y, Liu X, Fang Z, Feng L, He B, Zou Q, Tracey GJ. A phase I open-label clinical trial to study drug-drug interactions of Dorzagliatin and Sitagliptin in patients with type 2 diabetes and obesity. Nat Commun 2023; 14:1405. [PMID: 36918550 PMCID: PMC10014962 DOI: 10.1038/s41467-023-36946-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
This is a phase 1, open-label, single-sequence, multiple-dose, single-center trial conducted in the US (NCT03790839), to evaluate the clinical pharmacokinetics, safety and pharmacodynamics of dorzagliatin co-administered with sitagliptin in patients with T2D and obesity. The trial has completed. 15 patients with T2D and obesity were recruited and treated with sitagliptin 100 mg QD on Day 1-5, followed by a combination of sitagliptin 100 mg QD with dorzagliatin 75 mg BID at second stage on Day 6-10 and the third stage of dorzagliatin 75 mg BID alone on Day 11-15. Primary outcomes include pharmacokinetic geometric mean ratio (GMR), safety and tolerability. Secondary outcomes include the incremental area under the curve for 4 hours post oral glucose tolerance test (iAUC) of pharmacodynamic biomarkers and glucose sensitivity. GMR for AUC0-24h and Cmax were 92.63 (90% CI, 85.61, 100.22) and 98.14 (90% CI, 83.73, 115.03) in combination/sitagliptin, and 100.34 (90% CI, 96.08, 104.79) and 102.34 (90% CI, 86.92, 120.50) in combination/dorzagliatin, respectively. Combination treatment did not increase the adverse events and well-tolerated in T2D patients. Lack of clinically meaningful pharmacokinetic interactions between dorzagliatin and sitagliptin, and an improvement of glycemic control under combination potentially support their co-administration for diabetes management.
Collapse
Affiliation(s)
- Li Chen
- Hua Medicine (Shanghai) Limited, Shanghai, China.
| | - Jiayi Zhang
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Yu Sun
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Yu Zhao
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Xiang Liu
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Zhiyin Fang
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Lingge Feng
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Bin He
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Quanfei Zou
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | | |
Collapse
|
33
|
Sadek MA, Kandil EA, El Sayed NS, Sayed HM, Rabie MA. Semaglutide, a novel glucagon-like peptide-1 agonist, amends experimental autoimmune encephalomyelitis-induced multiple sclerosis in mice: Involvement of the PI3K/Akt/GSK-3β pathway. Int Immunopharmacol 2023; 115:109647. [PMID: 36584570 DOI: 10.1016/j.intimp.2022.109647] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/17/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Multiple sclerosis (MS) is a disabling neurodegenerative disease that causes demyelination and axonal degeneration of the central nervous system. Current treatments are partially effective in managing MS relapses and have a negligible impact on treating MS cognitive deficits and cannot enhance neuronal remyelination, imposing a need for a new MS remedy. Semaglutide, a novel glucagon-like peptide-1 agonist, has recently displayed a neuroprotective effect on several neurodegenerative diseases, suggesting that it may have a protective effect in MS. Therefore, this study was conducted to investigate the influence of semaglutide on experimental autoimmune encephalomyelitis (EAE)-induced MS in mice. Here, EAE was induced in mice using spinal cord homogenate, which eventually altered the mice's cognitive and motor functions, similar to what is observed in MS. Interestingly, intraperitoneally administered semaglutide (25 nmol/kg/day) amended EAE-induced cognitive and motor deficits observed in novel object recognition, open field, rotarod, and grip strength tests. Moreover, histological examination revealed that semaglutide treatment attenuated hippocampal damage and corpus callosum demyelination caused by EAE. Additionally, biochemical testing revealed that semaglutide activates the PI3K/Akt axis, which eventually hampers GSK-3β activity. GSK-3β activity inhibition attenuates demyelination and triggers remyelination through CREB/BDNF; furthermore, it boosts Nrf2 and SOD levels, protecting the mice from EAE-induced oxidative stress. Additionally, GSK-3β inhibition minimizes neuroinflammation, as reflected by decreased NF-kβ and TNF-α levels. In conclusion, semaglutide has a neuroprotective effect in EAE-induced MS in mice, which is mediated by activating the ramified PI3K/Akt/GSK-3β pathway.
Collapse
Affiliation(s)
- Mohamed A Sadek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Esraa A Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Helmy M Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
34
|
Animali S, Steinwurzel C, Dardano A, Sancho-Bornez V, Del Prato S, Morrone MC, Daniele G, Binda P. Effect of fasting on short-term visual plasticity in adult humans. Eur J Neurosci 2023; 57:148-162. [PMID: 36437778 PMCID: PMC10108283 DOI: 10.1111/ejn.15873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
Brain plasticity and function is impaired in conditions of metabolic dysregulation, such as obesity. Less is known on whether brain function is also affected by transient and physiological metabolic changes, such as the alternation between fasting and fed state. Here we asked whether these changes affect the transient shift of ocular dominance that follows short-term monocular deprivation, a form of homeostatic plasticity. We further asked whether variations in three of the main metabolic and hormonal pathways affected in obesity (glucose metabolism, leptin signalling and fatty acid metabolism) correlate with plasticity changes. We measured the effects of 2 h monocular deprivation in three conditions: post-absorptive state (fasting), after ingestion of a standardised meal and during infusion of glucagon-like peptide-1 (GLP-1), an incretin physiologically released upon meal ingestion that plays a key role in glucose metabolism. We found that short-term plasticity was less manifest in fasting than in fed state, whereas GLP-1 infusion did not elicit reliable changes compared to fasting. Although we confirmed a positive association between plasticity and supraphysiological GLP-1 levels, achieved by GLP-1 infusion, we found that none of the parameters linked to glucose metabolism could predict the plasticity reduction in the fasting versus fed state. Instead, this was selectively associated with the increase in plasma beta-hydroxybutyrate (B-OH) levels during fasting, which suggests a link between neural function and energy substrates alternative to glucose. These results reveal a previously unexplored link between homeostatic brain plasticity and the physiological changes associated with the daily fast-fed cycle.
Collapse
Affiliation(s)
- Silvia Animali
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Cecilia Steinwurzel
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy.,Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Angela Dardano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Stefano Del Prato
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maria Concetta Morrone
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,IRCCS Stella Maris Foundation, Pisa, Italy
| | - Giuseppe Daniele
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Binda
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
35
|
Elevated Glucagon-like Peptide-1 Receptor Level in the Paraventricular Hypothalamic Nucleus of Type 2 Diabetes Mellitus Patients. Int J Mol Sci 2022; 23:ijms232415945. [PMID: 36555587 PMCID: PMC9781792 DOI: 10.3390/ijms232415945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists have been approved for the treatment of type 2 diabetes mellitus (T2DM); however, the brain actions of these drugs are not properly established. We used post mortem microdissected human hypothalamic samples for RT-qPCR and Western blotting. For in situ hybridization histochemistry and immunolabelling, parallel cryosections were prepared from the hypothalamus. We developed in situ hybridization probes for human GLP-1R and oxytocin. In addition, GLP-1 and oxytocin were visualized by immunohistochemistry. Radioactive in situ hybridization histochemistry revealed abundant GLP-1R labelling in the human paraventricular hypothalamic nucleus (PVN), particularly in its magnocellular subdivision (PVNmc). Quantitative analysis of the mRNA signal demonstrated increased GLP-1R expression in the PVNmc in post mortem hypothalamic samples from T2DM subjects as compared to controls, while there was no difference in the expression level of GLP-1R in the other subdivisions of the PVN, the hypothalamic dorsomedial and infundibular nuclei. Our results in the PVN were confirmed by RT-qPCR. Furthermore, we demonstrated by Western blot technique that the GLP-1R protein level was also elevated in the PVN of T2DM patients. GLP-1 fibre terminals were also observed in the PVNmc closely apposing oxytocin neurons using immunohistochemistry. The data suggest that GLP-1 activates GLP-1Rs in the PVNmc and that GLP-1R is elevated in T2DM patients, which may be related to the dysregulation of feeding behaviour and glucose homeostasis in T2DM.
Collapse
|
36
|
Psilopanagioti A, Nikou S, Logotheti S, Arbi M, Chartoumpekis DV, Papadaki H. Glucagon-like Peptide-1 Receptor in the Human Hypothalamus Is Associated with Body Mass Index and Colocalizes with the Anorexigenic Neuropeptide Nucleobindin-2/Nesfatin-1. Int J Mol Sci 2022; 23:ijms232314899. [PMID: 36499229 PMCID: PMC9740138 DOI: 10.3390/ijms232314899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Data on animals emphasize the importance of the neuronal glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) for feeding suppression, although it is unclear whether astrocytes participate in the transduction of anorectic GLP-1R-dependent signals. In humans, the brain circuitry underlying these effects remains insufficiently investigated. The present study aimed to explore GLP-1R protein expression in the human hypothalamus and its correlation with body mass index (BMI). Sections of hypothalamus from 28 autopsy cases, 11 with normal weight (BMI < 25 kg/m2) and 17 with non-normal weight (BMI ≥ 25 kg/m2), were examined using immunohistochemistry and double immunofluorescence labeling. Prominent GLP-1R immunoexpression was detected in neurons of several hypothalamic nuclei, including paraventricular, supraoptic, and infundibular nuclei; the lateral hypothalamic area (LH); and basal forebrain nuclei. Interestingly, in the LH, GLP-1R was significantly decreased in individuals with BMI ≥ 25 kg/m2 compared with their normal weight counterparts (p = 0.03). Furthermore, GLP-1R was negatively correlated (τb = −0.347, p = 0.024) with BMI levels only in the LH. GLP-1R extensively colocalized with the anorexigenic and antiobesogenic neuropeptide nucleobindin-2/nesfatin-1 but not with the astrocytic marker glial fibrillary acidic protein. These data suggest a potential role for GLP-1R in the regulation of energy balance in the human hypothalamus. In the LH, an appetite- and reward-related brain region, reduced GLP-1R immunoexpression may contribute to the dysregulation of homeostatic and/or hedonic feeding behavior. Possible effects of NUCB2/nesfatin-1 on central GLP-1R signaling require further investigation.
Collapse
Affiliation(s)
- Aristea Psilopanagioti
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, 26504 Patras, Greece
- Correspondence:
| | - Sofia Nikou
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Souzana Logotheti
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Marina Arbi
- Department of Biology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Dionysios V. Chartoumpekis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Helen Papadaki
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
37
|
Andraini T, Mardatillah J, Kartinah N, Paramita N, Santoso D, Yolanda S, Puspasari B, Rusli H. Physical exercise promotes memory function in diabetes mellitus rats: a look at glucagon like peptide-1 and glucagon like peptide-1 receptor. COMPARATIVE EXERCISE PHYSIOLOGY 2022. [DOI: 10.3920/cep220020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disorder associated with declining of memory function. Glucagon like peptide-1 (GLP-1) has a role on memory function; binding of GLP-1 and GLP-1 receptor (GLP-1R) can enhance synaptic plasticity. Physical exercise has effect in increasing GLP-1 levels mediated by interleukin (IL)-6 in plasma. However, the effect of physical exercise on GLP-1 and GLP-1R in hippocampus is still unclear. Therefore, we investigated the effect of continuous and interval training on memory function through GLP-1/GLP-1R and its relation to hippocampal IL-6 of DM rats. This was an experimental study using 8-week-old Wistar rats, divided into four groups: normal control (Con); DM control (ConDM); DM with continuous training (DM-CT); and DM with interval training (DM-IT). DM-CT and DM-IT rats were trained six times a week for six weeks. All rats performed the forced alteration Y-maze test to verify spatial memory function. We analysed GLP-1 and IL-6 level by ELISA and GLP-1R by RT-PCR. We found decreased spatial memory function in DM rats accompanied by decreased hippocampal GLP-1 and GLP-1R. Physical exercise promote memory function in DM rats associated with restoration of hippocampal GLP-1 or GLP-1R level. The GLP-1 level is associated with hippocampal IL-6 level. Continuous training slightly increases GLP-1 level while interval training can maintain expression of hippocampal GLP-1R in DM rats. Our findings suggest that physical exercise may promote memory function by slightly increase the level of hippocampal GLP-1 and maintaining expression hippocampal GLP-1R.
Collapse
Affiliation(s)
- T. Andraini
- Department of Medical Physiology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia. Jalan Salemba Raya No. 6 Jakarta Pusat, Daerah Khusus Ibukota Jakarta 10430, Indonesia
| | - J. Mardatillah
- Master’s Programme in Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia. Jalan Salemba Raya No. 6 Jakarta Pusat, 10430, Indonesia
| | - N.T. Kartinah
- Department of Medical Physiology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia. Jalan Salemba Raya No. 6 Jakarta Pusat, Daerah Khusus Ibukota Jakarta 10430, Indonesia
| | - N. Paramita
- Department of Medical Physiology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia. Jalan Salemba Raya No. 6 Jakarta Pusat, Daerah Khusus Ibukota Jakarta 10430, Indonesia
| | - D.I.S. Santoso
- Department of Medical Physiology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia. Jalan Salemba Raya No. 6 Jakarta Pusat, Daerah Khusus Ibukota Jakarta 10430, Indonesia
| | - S. Yolanda
- Department of Medical Physiology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia. Jalan Salemba Raya No. 6 Jakarta Pusat, Daerah Khusus Ibukota Jakarta 10430, Indonesia
| | - B.C. Puspasari
- Master’s Programme in Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia. Jalan Salemba Raya No. 6 Jakarta Pusat, 10430, Indonesia
| | - H. Rusli
- Master’s Programme in Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia. Jalan Salemba Raya No. 6 Jakarta Pusat, 10430, Indonesia
| |
Collapse
|
38
|
Regulation of feeding and therapeutic application of bioactive peptides. Pharmacol Ther 2022; 239:108187. [DOI: 10.1016/j.pharmthera.2022.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
39
|
Intestinal Flora Affect Alzheimer's Disease by Regulating Endogenous Hormones. Neurochem Res 2022; 47:3565-3582. [DOI: 10.1007/s11064-022-03784-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/13/2022] [Accepted: 10/01/2022] [Indexed: 11/25/2022]
|
40
|
Ogura J, Yamaguchi H. The Effectiveness of Antidiabetic Drugs in Treating Dementia: A Peek into Pharmacological and Pharmacokinetic Properties. Int J Mol Sci 2022; 23:6542. [PMID: 35742986 PMCID: PMC9223777 DOI: 10.3390/ijms23126542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/04/2022] Open
Abstract
Dementia dramatically affects the activities of daily living and quality of life; thus, many therapeutic approaches for overcoming dementia have been developed. However, an effective treatment regimen is yet to be developed. As diabetes is a well-known risk factor for dementia, drug repositioning and repurposing of antidiabetic drugs are expected to be effective dementia treatments. Several observational studies have been useful for understanding the effectiveness of antidiabetic drugs in treating dementia, but it is difficult to conclusively analyze the association between antidiabetic drug treatment and the risk of developing dementia after correcting for potential confounding factors. Mechanism-based approaches may provide a better understanding of the effectiveness of antidiabetic drugs for treating dementia. Since the peripheral circulation and the central nerve system are separated by the blood-brain barrier, it is important to understand the regulation of the central glucose metabolism. In this review, we discuss the pharmacological and pharmacokinetic properties of antidiabetic drugs in relation to treating dementia.
Collapse
Affiliation(s)
- Jiro Ogura
- Department of Pharmacy, Yamagata University Hospital, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan;
| | | |
Collapse
|
41
|
Mahapatra MK, Karuppasamy M, Sahoo BM. Therapeutic Potential of Semaglutide, a Newer GLP-1 Receptor Agonist, in Abating Obesity, Non-Alcoholic Steatohepatitis and Neurodegenerative diseases: A Narrative Review. Pharm Res 2022; 39:1233-1248. [PMID: 35650449 PMCID: PMC9159769 DOI: 10.1007/s11095-022-03302-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Semaglutide, a peptidic GLP-1 receptor agonist, has been clinically approved for treatment of type 2 diabetes mellitus and is available in subcutaneous and oral dosage form. Diabetes, insulin resistance, and obesity are responsible for the pathological manifestations of non-alcoholic steatohepatitis (NASH). Similarly, insulin resistance in brain is also responsible for neurodegeneration and impaired cognitive functions. BACKGROUND Observations from phase-3 clinical trials like SUSTAIN and PIONEER indicated anti-obesity potential of semaglutide, which was established in STEP trials. Various pre-clinical and phase-2 studies have indicated the therapeutic potential of semaglutide in non-alcoholic steatohepatitis and neurodegenerative disorders like Parkinson's and Alzheimer's disease. DISCUSSION Significant weight reduction ability of semaglutide has been demonstrated in various phase-3 clinical trials, for which recently semaglutide became the first long-acting GLP-1 receptor agonist to be approved by the United States Food and Drug Administration for management of obesity. Various pre-clinical and clinical studies have revealed the hepatoprotective effect of semaglutide in NASH and neuroprotective effect in Parkinson's and Alzheimer's disease. CONCLUSION Many GLP-1 receptor agonists have shown hepatoprotective and neuroprotective activity in animal and human trials. As semaglutide is an already clinically approved drug, successful human trials would hasten its inclusion into therapeutic treatment of NASH and neurodegenerative diseases. Semaglutide improves insulin resistance, insulin signalling pathway, and reduce body weight which are responsible for prevention or progression of NASH and neurodegenerative diseases.
Collapse
Affiliation(s)
- Manoj K Mahapatra
- Department of Pharmaceutical Chemistry, Kanak Manjari Institute of Pharmaceutical Sciences, Chhend, Rourkela, 769015, Odisha, India.
| | - Muthukumar Karuppasamy
- YaAn Pharmaceutical and Medical Communications, 1798, Balaji Nagar, Sithurajapuram, Sivakasi, 626189, Tamilnadu, India
| | - Biswa M Sahoo
- Roland Institute of Pharmaceutical Sciences, Berhampur, 760010, Odisha, India
| |
Collapse
|
42
|
O'Riordan KJ, Collins MK, Moloney GM, Knox EG, Aburto MR, Fülling C, Morley SJ, Clarke G, Schellekens H, Cryan JF. Short chain fatty acids: Microbial metabolites for gut-brain axis signalling. Mol Cell Endocrinol 2022; 546:111572. [PMID: 35066114 DOI: 10.1016/j.mce.2022.111572] [Citation(s) in RCA: 220] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/08/2023]
Abstract
The role of the intestinal microbiota as a regulator of gut-brain axis signalling has risen to prominence in recent years. Understanding the relationship between the gut microbiota, the metabolites it produces, and the brain will be critical for the subsequent development of new therapeutic approaches, including the identification of novel psychobiotics. A key focus in this regard have been the short-chain fatty acids (SCFAs) produced by bacterial fermentation of dietary fibre, which include butyrate, acetate, and propionate. Ongoing research is focused on the entry of SCFAs into systemic circulation from the gut lumen, their migration to cerebral circulation and across the blood brain barrier, and their potential to exert acute and chronic effects on brain structure and function. This review aims to discuss our current mechanistic understanding of the direct and indirect influence that SCFAs have on brain function, behaviour and physiology, which will inform future microbiota-targeted interventions for brain disorders.
Collapse
Affiliation(s)
| | - Michael K Collins
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Gerard M Moloney
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Emily G Knox
- APC Microbiome Ireland, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | - María R Aburto
- APC Microbiome Ireland, University College Cork, Ireland
| | | | - Shane J Morley
- APC Microbiome Ireland, University College Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland.
| |
Collapse
|
43
|
Araújo MC, Soczek SHS, Pontes JP, Marques LAC, Santos GS, Simão G, Bueno LR, Maria-Ferreira D, Muscará MN, Fernandes ES. An Overview of the TRP-Oxidative Stress Axis in Metabolic Syndrome: Insights for Novel Therapeutic Approaches. Cells 2022; 11:cells11081292. [PMID: 35455971 PMCID: PMC9030853 DOI: 10.3390/cells11081292] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/19/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome (MS) is a complex pathology characterized by visceral adiposity, insulin resistance, arterial hypertension, and dyslipidaemia. It has become a global epidemic associated with increased consumption of high-calorie, low-fibre food and sedentary habits. Some of its underlying mechanisms have been identified, with hypoadiponectinemia, inflammation and oxidative stress as important factors for MS establishment and progression. Alterations in adipokine levels may favour glucotoxicity and lipotoxicity which, in turn, contribute to inflammation and cellular stress responses within the adipose, pancreatic and liver tissues, in addition to hepatic steatosis. The multiple mechanisms of MS make its clinical management difficult, involving both non-pharmacological and pharmacological interventions. Transient receptor potential (TRP) channels are non-selective calcium channels involved in a plethora of physiological events, including energy balance, inflammation and oxidative stress. Evidence from animal models of disease has contributed to identify their specific contributions to MS and may help to tailor clinical trials for the disease. In this context, the oxidative stress sensors TRPV1, TRPA1 and TRPC5, play major roles in regulating inflammatory responses, thermogenesis and energy expenditure. Here, the interplay between these TRP channels and oxidative stress in MS is discussed in the light of novel therapies to treat this syndrome.
Collapse
Affiliation(s)
- Mizael C. Araújo
- Programa de Pós-Graduação, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (M.C.A.); (G.S.S.)
| | - Suzany H. S. Soczek
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Jaqueline P. Pontes
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 565085-080, MA, Brazil;
| | - Leonardo A. C. Marques
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; (L.A.C.M.); (M.N.M.)
| | - Gabriela S. Santos
- Programa de Pós-Graduação, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (M.C.A.); (G.S.S.)
| | - Gisele Simão
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Laryssa R. Bueno
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Daniele Maria-Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Marcelo N. Muscará
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; (L.A.C.M.); (M.N.M.)
| | - Elizabeth S. Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
- Correspondence:
| |
Collapse
|
44
|
Song S, Guo R, Mehmood A, Zhang L, Yin B, Yuan C, Zhang H, Guo L, Li B. Liraglutide attenuate central nervous inflammation and demyelination through AMPK and pyroptosis-related NLRP3 pathway. CNS Neurosci Ther 2022; 28:422-434. [PMID: 34985189 PMCID: PMC8841291 DOI: 10.1111/cns.13791] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022] Open
Abstract
Aims Multiple sclerosis (MS) still maintains increasing prevalence and poor prognosis, while glucagon‐like peptide‐1 receptor (GLP‐1R) agonists show excellent neuroprotective capacities recently. Thus, we aim to evaluate whether the GLP‐1R agonist liraglutide (Lira) could ameliorate central nervous system demyelination and inflammation. Methods The therapeutic effect of Lira was tested on experimental autoimmune encephalitis (EAE) in vivo and a microglia cell line BV2 in vitro. Results Lira administration could ameliorate the disease score of EAE mice, delay the disease onset, ameliorate pathological demyelination and inflammation score in lumbar spinal cord, reduce pathogenic T helper cell transcription in spleen, restore phosphorylated adenosine monophosphate‐activated protein kinase (pAMPK) level, autophagy level, and inhibit pyroptosis‐related NLR family, pyrin domain‐containing protein 3 (NLRP3) pathway in lumbar spinal cord. Additionally, cell viability test, lactate dehydrogenase release test, and dead/live cell staining test for BV2 cells showed Lira could not salvage BV2 from nigericin‐induced pyroptosis significantly. Conclusion Lira has anti‐inflammation and anti‐demyelination effect on EAE mice, and the protective effect of Lira in the EAE model may be related to regulation of pAMPK pathway, autophagy, and NLRP3 pathway. However, Lira treatment cannot significantly inhibit pyroptosis of BV2 cells in vitro. Our study provides Lira as a potential candidate for Multiple Sclerosis treatment.
Collapse
Affiliation(s)
- Shuang Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Ruoyi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Lu Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Bowen Yin
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China.,Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Congcong Yuan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China.,Department of Neurology, Baoding First Central Hospital, Baoding, China
| | - Huining Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| |
Collapse
|
45
|
Intestinal Gpr17 deficiency improves glucose metabolism by promoting GLP-1 secretion. Cell Rep 2022; 38:110179. [PMID: 34986353 PMCID: PMC8972502 DOI: 10.1016/j.celrep.2021.110179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/01/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptors (GPCRs) in intestinal enteroendocrine cells (EECs) respond to nutritional, neural, and microbial cues and modulate the release of gut hormones. Here we show that Gpr17, an orphan GPCR, is co-expressed in glucagon-like peptide-1 (GLP-1)-expressing EECs in human and rodent intestinal epithelium. Acute genetic ablation of Gpr17 in intestinal epithelium improves glucose tolerance and glucose-stimulated insulin secretion (GSIS). Importantly, inducible knockout (iKO) mice and Gpr17 null intestinal organoids respond to glucose or lipid ingestion with increased secretion of GLP-1, but not the other incretin glucose-dependent insulinotropic polypeptide (GIP). In an in vitro EEC model, overexpression or agonism of Gpr17 reduces voltage-gated calcium currents and decreases cyclic AMP (cAMP) production, and these are two critical factors regulating GLP-1 secretion. Together, our work shows that intestinal Gpr17 signaling functions as an inhibitory pathway for GLP-1 secretion in EECs, suggesting intestinal GPR17 is a potential target for diabetes and obesity intervention. Yan et al. locate GPR17 expression in the enteroendocrine cells of human and rodent intestinal epithelium. They find that GPR17 signaling inhibits intracellular rise of cAMP and calcium and that loss of intestinal Gpr17 in rodents leads to better glucose tolerance via increased hormone secretion in response to nutrient ingestion.
Collapse
|
46
|
Liu C, Liu Y, Xin Y, Wang Y. Circadian secretion rhythm of GLP-1 and its influencing factors. Front Endocrinol (Lausanne) 2022; 13:991397. [PMID: 36531506 PMCID: PMC9755352 DOI: 10.3389/fendo.2022.991397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Circadian rhythm is an inherent endogenous biological rhythm in living organisms. However, with the improvement of modern living standards, many factors such as prolonged artificial lighting, sedentarism, short sleep duration, intestinal flora and high-calorie food intake have disturbed circadian rhythm regulation on various metabolic processes, including GLP-1 secretion, which plays an essential role in the development of various metabolic diseases. Herein, we focused on GLP-1 and its circadian rhythm to explore the factors affecting GLP-1 circadian rhythm and its potential mechanisms and propose some feasible suggestions to improve GLP-1 secretion.
Collapse
|
47
|
Frausto DM, Forsyth CB, Keshavarzian A, Voigt RM. Dietary Regulation of Gut-Brain Axis in Alzheimer's Disease: Importance of Microbiota Metabolites. Front Neurosci 2021; 15:736814. [PMID: 34867153 PMCID: PMC8639879 DOI: 10.3389/fnins.2021.736814] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that impacts 45 million people worldwide and is ranked as the 6th top cause of death among all adults by the Centers for Disease Control and Prevention. While genetics is an important risk factor for the development of AD, environment and lifestyle are also contributing risk factors. One such environmental factor is diet, which has emerged as a key influencer of AD development/progression as well as cognition. Diets containing large quantities of saturated/trans-fats, refined carbohydrates, limited intake of fiber, and alcohol are associated with cognitive dysfunction while conversely diets low in saturated/trans-fats (i.e., bad fats), high mono/polyunsaturated fats (i.e., good fats), high in fiber and polyphenols are associated with better cognitive function and memory in both humans and animal models. Mechanistically, this could be the direct consequence of dietary components (lipids, vitamins, polyphenols) on the brain, but other mechanisms are also likely to be important. Diet is considered to be the single greatest factor influencing the intestinal microbiome. Diet robustly influences the types and function of micro-organisms (called microbiota) that reside in the gastrointestinal tract. Availability of different types of nutrients (from the diet) will favor or disfavor the abundance and function of certain groups of microbiota. Microbiota are highly metabolically active and produce many metabolites and other factors that can affect the brain including cognition and the development and clinical progression of AD. This review summarizes data to support a model in which microbiota metabolites influence brain function and AD.
Collapse
Affiliation(s)
- Dulce M. Frausto
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Christopher B. Forsyth
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Ali Keshavarzian
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
- Department of Physiology, Rush University Medical Center, Chicago, IL, United States
| | - Robin M. Voigt
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
48
|
Mehmood Siddiqui E, Mehan S, Upadhayay S, Khan A, Halawi M, Ahmed Halawi A, Alsaffar RM. Neuroprotective efficacy of 4-Hydroxyisoleucine in experimentally induced intracerebral hemorrhage. Saudi J Biol Sci 2021; 28:6417-6431. [PMID: 34764759 PMCID: PMC8568986 DOI: 10.1016/j.sjbs.2021.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 07/04/2021] [Indexed: 02/08/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a severe form of brain injury, which is a major cause of mortality in humans. Hydrocephalus and cerebral hematoma lead to severe neurological deficits. A single autologous blood (ALB) injection in rats' brains induces hemorrhage and other conditions that regularly interfere with the standard treatment of several cellular and molecular pathways. Several studies have found that IGF-1/GLP-1 decreases the production of inflammatory markers in peripheral tissues, while some have found that they also have pro-inflammatory functions. Since these receptors are down-regulated in hemorrhagic situations, we looked into the potential neuroprotective effect of 4-hydroxyisoleucine (4-HI); 50 mg/kg and 100 mg/kg, an active compound Trigonellafoenum-graecum, on post-hemorrhagic deficits in rats. Long-term oral administration of 4-HI for 35 days has improved behavioral and neurochemical deficits and severe pathological changes and improved cellular and molecular markers, apoptotic markers in the ALB-induced ICH experimental model. Furthermore, the findings revealed that 4-HI also improved the levels of other neurotransmitters (Ach, DOPA, GABA, glutamate); inflammatory cytokines (TNF-alpha, IL-1β, IL-17), and oxidative stress markers (MDA, nitrite, LDH, AchE, SOD, CAT, GPx, GSH) in the brain when evaluated after Day 35. There is no proven treatment available for the prevention of post-brain hemorrhage and neurochemical malfunction; available therapy is only for symptomatic relief of the patient. Thus, 4-HI could be a potential clinical approach for treating post-brain haemorrhage and neurochemical changes caused by neurological damage. Furthermore, 4-HI may be linked to other standard therapeutic therapies utilized in ICH as a potential pharmacological intervention.
Collapse
Affiliation(s)
- Ehraz Mehmood Siddiqui
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Shubham Upadhayay
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Maryam Halawi
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | | | - Rana M Alsaffar
- Department of Pharmacology & Toxicology, College of Pharmacy Girls Section, Prince Sattam Bin Abdulaziz University, P.O.Box-173, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
49
|
Liu X, Patel KP, Zheng H. Role of Renal Sympathetic Nerves in GLP-1 (Glucagon-Like Peptide-1) Receptor Agonist Exendin-4-Mediated Diuresis and Natriuresis in Diet-Induced Obese Rats. J Am Heart Assoc 2021; 10:e022542. [PMID: 34713714 PMCID: PMC8751817 DOI: 10.1161/jaha.121.022542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background The gut‐derived hormone GLP‐1 (glucagon‐like peptide‐1) exerts beneficial effects against established risk factors for chronic kidney disease. GLP‐1 influences renal function by stimulating diuresis and natriuresis and thus lowering arterial blood pressure. The role of the sympathetic nervous system has been implicated as an important link between obesity with elevated arterial pressure and chronic kidney disease. The primary aim of this study was to determine the contribution of renal sympathetic nerves on intrapelvic GLP‐1‐mediated diuresis and natriuresis in high‐fat diet (HFD)‐induced obese rats. Methods and Results Obesity was induced in rats by HFD for 12 weeks, followed by either surgical bilateral renal denervation or chronic subcutaneous endopeptidase neprilysin inhibition by sacubitril for a week. Diuretic and natriuretic responses to intrapelvic administration of the GLP‐1R (GLP‐1 receptor) agonist exendin‐4 were monitored in anesthetized control and HFD rats. Renal GLP‐1R expression and neprilysin expression and activity were measured. The effects of norepinephrine on the expression of GLP‐1R and neprilysin in kidney epithelial LLC‐PK1 cells were also examined. We found that diuretic and natriuretic responses to exendin‐4 were significantly reduced in the HFD obese rats compared with the control rats (cumulative urine flow at 40 minutes, 387±32 versus 650±65 µL/gkw; cumulative sodium excretion at 40 minutes, 42±5 versus 75±10 µEq/gkw, P<0.05). These responses in the HFD rats were restored after ablation of renal nerves (cumulative urine flow at 40 minutes, 625±62 versus 387±32 µL/gkw; cumulative sodium excretion at 40 minutes, 70±9 versus 42±5 µEq/gkw, P<0.05). Renal denervation induced significant reductions in arterial pressure and heart rate responses to intrapelvic GLP‐1 in the HFD rats. Renal denervation also significantly increased the GLP‐1R expression and reduced neprilysin expression and activity in renal tissues from the HFD rats. Chronic subcutaneous neprilysin inhibition by sacubitril increased GLP‐1–induced diuretic and natriuretic effects in the HFD rats. Finally, exposure of the renal epithelial cells to norepinephrine in vitro led to downregulation of GLP‐1R expression but upregulation of neprilysin expression and activity. Conclusions These results suggest that renal sympathetic nerve activation contributes to the blunted diuretic and natriuretic effects of GLP‐1 in HFD obese rats. This study provides significant novel insight into the potential renal nerve–neprilysin–GLP‐1 pathway involved in renal dysfunction during obesity that leads to hypertension.
Collapse
Affiliation(s)
- Xuefei Liu
- Division of Basic Biomedical Sciences Sanford School of Medicine of the University of South Dakota Vermillion SD
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology University of Nebraska Medical Center Omaha NE
| | - Hong Zheng
- Division of Basic Biomedical Sciences Sanford School of Medicine of the University of South Dakota Vermillion SD
| |
Collapse
|
50
|
Ruze R, Xu Q, Liu G, Li Y, Chen W, Cheng Z, Xiong Y, Liu S, Zhang G, Hu S, Yan Z. Central GLP-1 contributes to improved cognitive function and brain glucose uptake after duodenum-jejunum bypass on obese and diabetic rats. Am J Physiol Endocrinol Metab 2021; 321:E392-E409. [PMID: 34370593 DOI: 10.1152/ajpendo.00126.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022]
Abstract
The improvement of cognitive function following bariatric surgery has been highlighted, yet its underlying mechanisms remain elusive. Finding the improved brain glucose uptake of patients after Roux-en-Y gastric bypass (RYGB), duodenum-jejunum bypass (DJB), and sham surgery (Sham) were performed on obese and diabetic Wistar rats, and intracerebroventricular (ICV) injection of glucagon-like peptide-1 (GLP-1) analog liraglutide (Lira), antagonist exendin-(9-39) (Exe-9), and the viral-mediated GLP-1 receptor (Glp-1r) knockdown (KD) were applied on both groups to elucidate the role of GLP-1 in mediating cognitive function and brain glucose uptake assessed with the Morris water maze (MWM) and positron emission tomography (PET). Insulin and GLP-1 in serum and cerebral spinal fluid (CSF) were measured, and the expression of glucose uptake-related proteins including glucose transporter 1 (GLUT-1), GLUT-4, phospho-Akt substrate of 160kDa (pAS160), AS160, Rab10, Myosin-Va as well as the c-fos marker in the brain were examined. Along with augmented glucose homeostasis following DJB, central GLP-1 was correlated with the improved cognitive function and ameliorated brain glucose uptake, which was further confirmed by the enhancive role of Lira on both groups whereas the Exe-9 and Glp-1r KD were opposite. Known to activate insulin-signaling pathways, central GLP-1 contributes to improved cognitive function and brain glucose uptake after DJB.NEW & NOTEWORTHY The improvement of cognitive function following bariatric surgery has been highlighted while its mechanisms remain elusive. The brain glucose uptake of patients was improved after RYGB, and the DJB and sham surgery performed on obese and diabetic Wistar rats revealed that the elevated central GLP-1 contributes to the dramatic improvement of cognitive function, brain glucose uptake, transport, glucose sensing, and neuronal activation.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qian Xu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, People's Republic of China
| | - Guoqin Liu
- Department of General Surgery, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China
| | - Yuekai Li
- Department of Nuclear Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Weijie Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhiqiang Cheng
- Department of Colorectal Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yacheng Xiong
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, People's Republic of China
| | - Shaozhuang Liu
- Department of Bariatric and Metabolic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Guangyong Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China
| | - Sanyuan Hu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China
| | - Zhibo Yan
- Department of Colorectal Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| |
Collapse
|