1
|
Fatahi S, Sohouli MH, Vahidshahi K, Rohani P, Safa M, Salehi M, Găman MA, Shidfar F. Changes in gut microbiota following supplementation with chitosan in adolescents with overweight or obesity: a randomized, double-blind clinical trial. Diabetol Metab Syndr 2025; 17:120. [PMID: 40200345 PMCID: PMC11978168 DOI: 10.1186/s13098-025-01681-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 03/24/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Overweight and obesity have been associated with an altered intestinal microbiome. Recent investigations have demonstrated that fiber supplementation, including chitosan, can exert beneficial and protective effects on the composition of gut microbiota in humans diagnosed with overweight/obesity. However, there is still a great deal of heated debate regarding the impact of chitosan supplementation in overweight and obese adolescents. Therefore, the aim of this study is to clarify the effects of chitosan administration on the composition of the gut microbiome in overweight and obese adolescents. METHODS AND ANALYSIS Sixty-four overweight and obese adolescents were subjected to supplementation with 3 g of chitosan for 12 weeks. Anthropometric indices and physical activity were measured at the beginning and at the end of the intervention. After DNA extraction and purification, the quantity of bacteria in the patients' stool samples was determined by real-time polymerase chain reaction (PCR). The RCT was registered on the Iranian Registry of Clinical Trials ( www.irct.ir ) website (IRCT20091114002709 N57; registration date: 2021 - 06 - 20). RESULTS Individuals who received chitosan supplementation experienced a significant decrease in the BMI z-score (P < 0.001). Administration of chitosan led to notable significant decrease in the Firmicutes (P < 0.001) populations and the ratio of Firmicutes to Bacteroidetes (P < 0.001) as well as a notable increase in the Bacteroidetes (P = 0.008) and Akkermansia (P < 0.001) populations, respectively compare to control group. Mean changes in Lactobacillus populations were marginally significant (P = 0.05). Chitosan administration did not alter the composition in Bifidobacterium populations (P = 0.97). CONCLUSION The present study demonstrates beneficial effects of chitosan administration on some bacterial species associated with overweight and obesity in adolescents. Further research is needed to confirm our findings and clarify the impact of this intervention on the Lactobacillus population in the gut.
Collapse
Affiliation(s)
- Somaye Fatahi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Sohouli
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Centre of Excellence, Children'S Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Koroush Vahidshahi
- Department of Pediatrics, School of Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pejman Rohani
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Centre of Excellence, Children'S Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Salehi
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Farzad Shidfar
- Faculty of Public Health Branch, Department of Nutrition, Iran University of Medical, Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Yang M, Qin X, Liu X. A review of polysaccharides from Ganoderma lucidum: Preparation methods, structural characteristics, bioactivities, structure-activity relationships and potential applications. Int J Biol Macromol 2025; 303:140645. [PMID: 39909264 DOI: 10.1016/j.ijbiomac.2025.140645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/16/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Ganoderma lucidum (G. lucidum), commonly known as "fairy grass", is a saprophyte fungus belonging to the Polyporaceae family with a lengthy history of use as a food ingredient and traditional medicine in China. G. lucidum is abundant in diverse chemical compounds that encompass polysaccharides, alkaloids, steroids, terpenoids, proteins, as well as amino acids. Among these, polysaccharides as the main active ingredients prepared from G. lucidum have exhibited a multitude of biological activities, such as anti-tumor effect, antioxidant activity, antidiabetic effect, anti-inflammatory effect, immune regulation and so forth. The main methods for extracting GLPs are hot water extraction, ultrasound-assisted extraction, microwave-assisted extraction and enzyme-assisted extraction. The research on GLPs poses challenges, especially in optimizing extraction and purification processes to enhance the yield and preserve the structural characteristics. Furthermore, it remains ambiguous whether the bioactivities of GLPs are closely related to their extraction methods and structural characteristics, necessitating further exploration and elucidation of the structure-activity relationships. This review comprehensively and systematically outlines an overview of the preparation methods, structural characteristics, bioactivities, structure-activity relationships and potential applications of GLPs. The review emphasizes their therapeutic potential and health functions, providing a reference for further exploitation and application in various fields of GLPs.
Collapse
Affiliation(s)
- Maohui Yang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China.
| | - Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China.
| |
Collapse
|
3
|
Wang X, Zhang J, Zhong R, Chen G, Qi H, Cao Y, Lan Y. Consumption of oleogel alleviates lipid metabolism disorders in high-fat diet-fed rats by inhibiting LPS-induced gut microbiota-mediated inflammation. Food Funct 2025; 16:1130-1141. [PMID: 39831811 DOI: 10.1039/d4fo02974g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
This study investigated the effect of oleogel consumption on lipid metabolism, gut microbiota and low-grade inflammation in rats fed with a high-fat diet. Male SD rats received either a control diet or high-fat diets for six weeks. The high-fat diets included a regular high-fat diet and high-fat diets in which lard was replaced with pure sunflower oil, un-gelled sunflower oil containing a dispersed gelator, or gelled sunflower oil with the gelator (oleogel). Results showed that compared to regular fat, pure sunflower oil and un-gelled sunflower oil consumption, oleogel consumption significantly suppressed weight gain and adipose tissue accumulation as well as serum and liver lipid accumulation. Microscopic observations further confirmed that oleogel intake alleviated white adipose tissue and liver steatosis caused by high-fat diet. Ex vivo biodistribution studies indicated an increased movement of TAGs toward the large intestine in the oleogel group. In the meantime, the dysregulation of gut microbiota was restored by reducing the Firmicutes/Bacteroidetes ratio and the relative abundance of Desulfobacterota and Proteobacteria. The oleogel group also exhibited reduced LPS levels in faeces, serum and liver. Furthermore, oleogel consumption alleviated inflammation, including decreased gene expression of pro-inflammatory cytokines, such as IL-6 and TNF-α, as well as suppressed protein expression of TLR4 and NF-κB in the liver. These results provide theoretical guidance for the regulation of oleogel properties and the potential application of oleogels as healthy fat replacers in high-fat diets.
Collapse
Affiliation(s)
- Xin Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, P.R. China.
| | - Jing Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, P.R. China.
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan, Guangdong, P.R. China
| | - Gangchao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, P.R. China.
| | - Hongjin Qi
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, P.R. China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, P.R. China.
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
4
|
Nechchadi H, Nadir Y, Benhssaine K, Alem C, Sellam K, Boulbaroud S, Berrougui H, Ramchoun M. Hypolipidemic activity of phytochemical combinations: A mechanistic review of preclinical and clinical studies. Food Chem 2024; 459:140264. [PMID: 39068825 DOI: 10.1016/j.foodchem.2024.140264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Hyperlipidemia, a condition characterized by elevated levels of lipids in the blood, poses a significant risk factor for various health disorders, notably cardiovascular diseases. Phytochemical compounds are promising alternatives to the current lipid-lowering drugs, which cause many undesirable effects. Based on in vivo and clinical studies, combining phytochemicals with other phytochemicals, prebiotics, and probiotics and their encapsulation in nanoparticles is more safe and effective for managing hyperlipidemia than monotherapy. To this end, the results obtained and the mechanisms of action of these combinations were examined in detail in this review.
Collapse
Affiliation(s)
- Habiba Nechchadi
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco.
| | - Youssef Nadir
- Laboratory of Biological Engineering, Faculty of Sciences and Techniques, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Khalid Benhssaine
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Chakib Alem
- Biochemistry of Natural Products Team, Faculty of Sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Khalid Sellam
- Biology, Environment and Health Team, Faculty of sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Samira Boulbaroud
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Hicham Berrougui
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Mhamed Ramchoun
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| |
Collapse
|
5
|
Pi Y, Fang M, Li Y, Cai L, Han R, Sun W, Jiang X, Chen L, Du J, Zhu Z, Li X. Interactions between Gut Microbiota and Natural Bioactive Polysaccharides in Metabolic Diseases: Review. Nutrients 2024; 16:2838. [PMID: 39275156 PMCID: PMC11397228 DOI: 10.3390/nu16172838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
The gut microbiota constitutes a complex ecosystem, comprising trillions of microbes that have co-evolved with their host over hundreds of millions of years. Over the past decade, a growing body of knowledge has underscored the intricate connections among diet, gut microbiota, and human health. Bioactive polysaccharides (BPs) from natural sources like medicinal plants, seaweeds, and fungi have diverse biological functions including antioxidant, immunoregulatory, and metabolic activities. Their effects are closely tied to the gut microbiota, which metabolizes BPs into health-influencing compounds. Understanding how BPs and gut microbiota interact is critical for harnessing their potential health benefits. This review provides an overview of the human gut microbiota, focusing on its role in metabolic diseases like obesity, type II diabetes mellitus, non-alcoholic fatty liver disease, and cardiovascular diseases. It explores the basic characteristics of several BPs and their impact on gut microbiota. Given their significance for human health, we summarize the biological functions of these BPs, particularly in terms of immunoregulatory activities, blood sugar, and hypolipidemic effect, thus providing a valuable reference for understanding the potential benefits of natural BPs in treating metabolic diseases. These properties make BPs promising agents for preventing and treating metabolic diseases. The comprehensive understanding of the mechanisms by which BPs exert their effects through gut microbiota opens new avenues for developing targeted therapies to improve metabolic health.
Collapse
Affiliation(s)
- Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Miaoyu Fang
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Cai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruyi Han
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenjuan Sun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Chen
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Jun Du
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Zhigang Zhu
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
6
|
Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:413-444. [PMID: 38937158 DOI: 10.1016/j.joim.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
The property theory of traditional Chinese medicine (TCM) has been practiced for thousands of years, playing a pivotal role in the clinical application of TCM. While advancements in energy metabolism, chemical composition analysis, machine learning, ion current modeling, and supercritical fluid technology have provided valuable insight into how aspects of TCM property theory may be measured, these studies only capture specific aspects of TCM property theory in isolation, overlooking the holistic perspective inherent in TCM. To systematically investigate the modern interpretation of the TCM property theory from multidimensional perspectives, we consulted the Chinese Pharmacopoeia (2020 edition) to compile a list of Chinese materia medica (CMM). Then, using the Latin names of each CMM and gut microbiota as keywords, we searched the PubMed database for relevant research on gut microbiota and CMM. The regulatory patterns of different herbs on gut microbiota were then summarized from the perspectives of the four natures, the five flavors and the meridian tropism. In terms of the four natures, we found that warm-natured medicines promoted the colonization of specific beneficial bacteria, while cold-natured medicines boosted populations of some beneficial bacteria while suppressing pathogenic bacteria. Analysis of the five flavors revealed that sweet-flavored and bitter-flavored CMMs positively influenced beneficial bacteria while inhibiting harmful bacteria. CMMs with different meridian tropism exhibited complex modulative patterns on gut microbiota, with Jueyin (Liver) and Taiyin (Lung) meridian CMMs generally exerting a stronger effect. The gut microbiota may be a biological indicator for characterizing the TCM property theory, which not only enhances our understanding of classic TCM theory but also contributes to its scientific advancement and application in healthcare. Please cite this article as: Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. J Integr Med 2024; 22(4): 413-445.
Collapse
Affiliation(s)
- Ya-Nan Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jia-Guo Zhan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chong-Ming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
7
|
Araújo-Rodrigues H, Sousa AS, Relvas JB, Tavaria FK, Pintado M. An Overview on Mushroom Polysaccharides: Health-promoting Properties, Prebiotic and Gut Microbiota Modulation Effects and Structure-function Correlation. Carbohydr Polym 2024; 333:121978. [PMID: 38494231 DOI: 10.1016/j.carbpol.2024.121978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024]
Abstract
Mushroom polysaccharides are recognized as "biological response modifiers". Besides several bioactivities, a growing interest in their prebiotic potential has been raised due to the gut microbiota modulation potential. This review comprehensively summarizes mushroom polysaccharides' biological properties, structure-function relationship, and underlying mechanisms. It provides a recent overview of the key findings in the field (2018-2024). Key findings and limitations on structure-function correlation are discussed. Although most studies focus on β-glucans or extracts, α-glucans and chitin have gained interest. Prebiotic capacity has been associated with α-glucans and chitin, while antimicrobial and wound healing potential is attributed to chitin. However, further research is of utmost importance. Human fecal fermentation is the most reported approach to assess prebiotic potential, indicating impacts on intestinal biological, mechanical, chemical and immunological barriers. Gut microbiota dysbiosis has been directly connected with intestinal, cardiovascular, metabolic, and neurological diseases. Concerning gut microbiota modulation, animal experiments have suggested proinflammatory cytokines reduction and redox balance re-establishment. Most literature focused on the anticancer and immunomodulatory potential. However, anti-inflammatory, antimicrobial, antiviral, antidiabetic, hypocholesterolemic, antilipidemic, antioxidant, and neuroprotective properties are discussed. A significant overview of the gaps and research directions in synergistic effects, underlying mechanisms, structure-function correlation, clinical trials and scientific data is also given.
Collapse
Affiliation(s)
- Helena Araújo-Rodrigues
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Program of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.
| | - Ana Sofia Sousa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - João Bettencourt Relvas
- Program of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal.
| | - Freni K Tavaria
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
8
|
Yin D, Zhong Y, Liu H, Hu J. Lipid metabolism regulation by dietary polysaccharides with different structural properties. Int J Biol Macromol 2024; 270:132253. [PMID: 38744359 DOI: 10.1016/j.ijbiomac.2024.132253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Lipid metabolism plays an important role in energy homeostasis maintenance in response to stress. Nowadays, hyperlipidemia-related chronic diseases such as obesity, diabetes, atherosclerosis, and fatty liver pose significant health challenges. Dietary polysaccharides (DPs) have gained attention for their effective lipid-lowering properties. This review examines the multifaceted mechanisms that DPs employ to lower lipid levels in subjects with hyperlipidemia. DPs could directly inhibit lipid intake and absorption, promote lipid excretion, and regulate key enzymes involved in lipid metabolism pathways, including triglyceride and cholesterol anabolism and catabolism, fatty acid oxidation, and bile acid synthesis. Additionally, DPs indirectly improve lipid homeostasis by modulating gut microbiota composition and alleviating oxidative stress. Moreover, the lipid-lowering mechanisms of particular structural DPs (including β-glucan, pectin, glucomannan, inulin, arabinoxylan, and fucoidan) are summarized. The relationship between the structure and lipid-lowering activity of DPs is also discussed based on current researches. Finally, potential breakthroughs and future directions in the development of DPs in lipid-lowering activity are discussed. The paper could provide a reference for further exploring the mechanism of DPs for lipid regulations and utilizing DPs as lipid-lowering dietary ingredients.
Collapse
Affiliation(s)
- Dafang Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yadong Zhong
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Huan Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
9
|
Shi E, Wang X, Jing H, Xu Y, Feng L, He F, Li D, Dai Z. Synergistic effect of chitosan and β-carotene in inhibiting MNU-induced retinitis pigmentosa. Int J Biol Macromol 2024; 268:131671. [PMID: 38641272 DOI: 10.1016/j.ijbiomac.2024.131671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
In this study, N-Methyl-N-nitrosourea (MNU) was intraperitoneally injected to construct a mouse retinitis pigmentosa (RP) model to evaluate the protective effect of chitosan and β-carotene on RP. The results demonstrated that chitosan synergized with β-carotene significantly reduced retinal histopathological structural damage in RP mice. The co-treatment group of β-carotene and chitosan restored the retinal thickness and outer nuclear layer thickness better than the group treated with the two alone, and the thickness reached the normal level. The content of β-carotene and retinoids in the liver of chitosan and β-carotene co-treated group increased by 46.75 % and 20.69 %, respectively, compared to the β-carotene group. Chitosan and β-carotene supplement suppressed the expressions of Bax, Calpain2, Caspase3, NF-κB, TNF-α, IL-6, and IL-1β, and promoted the up-regulation of Bcl2. Chitosan and β-carotene interventions remarkably contributed to the content of SCFAs and enhanced the abundance of Ruminococcaceae, Rikenellaceae, Odoribacteraceae and Helicobacteraceae. Correlation analysis demonstrated a strong association between gut microbiota and improvement in retinitis pigmentosa. This study will provide a reference for the study of the gut-eye axis.
Collapse
Affiliation(s)
- Enjuan Shi
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jinan Fruit Research Institute, All China Federation of Supply & Marketing Co-operative, Jinan 250014, China
| | - Xiaoqin Wang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huili Jing
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yayuan Xu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lei Feng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Fatao He
- Jinan Fruit Research Institute, All China Federation of Supply & Marketing Co-operative, Jinan 250014, China
| | - Dajing Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Zhuqing Dai
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
10
|
Qin X, Fang Z, Zhang J, Zhao W, Zheng N, Wang X. Regulatory effect of Ganoderma lucidum and its active components on gut flora in diseases. Front Microbiol 2024; 15:1362479. [PMID: 38572237 PMCID: PMC10990249 DOI: 10.3389/fmicb.2024.1362479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Driven by the good developmental potential and favorable environment at this stage, Ganoderma lucidum is recognized as a precious large fungus with medicinal and nutritional health care values. Among them, polysaccharides, triterpenoids, oligosaccharides, trace elements, etc. are important bioactive components in G. lucidum. These bioactive components will have an impact on gut flora, thus alleviating diseases such as hyperglycemia, hyperlipidemia and obesity caused by gut flora disorder. While numerous studies have demonstrated the ability of G. lucidum and its active components to regulate gut flora, a systematic review of this mechanism is currently lacking. The purpose of this paper is to summarize the regulatory effects of G. lucidum and its active components on gut flora in cardiovascular, gastrointestinal and renal metabolic diseases, and summarize the research progress of G. lucidum active components in improving related diseases by regulating gut flora. Additionally, review delves into the principle by which G. lucidum and its active components can treat or assist treat diseases by regulating gut flora. The research progress of G. lucidum in intestinal tract and its potential in medicine, health food and clinical application were fully explored for researchers.
Collapse
Affiliation(s)
- Xinjie Qin
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| | - Zinan Fang
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| | - Jinkang Zhang
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| | - Wenbo Zhao
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| | - Ni Zheng
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| | - Xiaoe Wang
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| |
Collapse
|
11
|
Zhang Q, Xu Y, Xie L, Shu X, Zhang S, Wang Y, Wang H, Dong Q, Peng W. The function and application of edible fungal polysaccharides. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:45-142. [PMID: 38763529 DOI: 10.1016/bs.aambs.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Edible fungi, commonly known as mushrooms, are precious medicinal and edible homologous gifts from nature to us. Edible fungal polysaccharides (EFPs) are a variety of bioactive macromolecular which isolated from fruiting bodies, mycelia or fermentation broths of edible or medicinal fungus. Increasing researches have confirmed that EFPs possess multiple biological activities both in vitro and in vivo settings, including antioxidant, antiviral, anti-inflammatory, immunomodulatory, anti-tumor, hypoglycemic, hypolipidemic, and regulating intestinal flora activities. As a result, they have emerged as a prominent focus in the healthcare, pharmaceutical, and cosmetic industries. Fungal EFPs have safe, non-toxic, biodegradable, and biocompatible properties with low immunogenicity, bioadhesion ability, and antibacterial activities, presenting diverse potential applications in the food industries, cosmetic, biomedical, packaging, and new materials. Moreover, varying raw materials, extraction, purification, chemical modification methods, and culture conditions can result in variances in the structure and biological activities of EFPs. The purpose of this review is to provide comprehensively and systematically organized information on the structure, modification, biological activities, and potential applications of EFPs to support their therapeutic effects and health functions. This review provides new insights and a theoretical basis for prospective investigations and advancements in EFPs in fields such as medicine, food, and new materials.
Collapse
Affiliation(s)
- Qian Zhang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Yingyin Xu
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Liyuan Xie
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Xueqin Shu
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Shilin Zhang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Yong Wang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Haixia Wang
- Horticulture Institute of Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, P.R. China.
| | - Qian Dong
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Weihong Peng
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| |
Collapse
|
12
|
Deng C, Pan J, Zhu H, Chen ZY. Effect of Gut Microbiota on Blood Cholesterol: A Review on Mechanisms. Foods 2023; 12:4308. [PMID: 38231771 DOI: 10.3390/foods12234308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
The gut microbiota serves as a pivotal mediator between diet and human health. Emerging evidence has shown that the gut microbiota may play an important role in cholesterol metabolism. In this review, we delve into five possible mechanisms by which the gut microbiota may influence cholesterol metabolism: (1) the gut microbiota changes the ratio of free bile acids to conjugated bile acids, with the former being eliminated into feces and the latter being reabsorbed back into the liver; (2) the gut microbiota can ferment dietary fiber to produce short-chain fatty acids (SCFAs) which are absorbed and reach the liver where SCFAs inhibit cholesterol synthesis; (3) the gut microbiota can regulate the expression of some genes related to cholesterol metabolism through their metabolites; (4) the gut microbiota can convert cholesterol to coprostanol, with the latter having a very low absorption rate; and (5) the gut microbiota could reduce blood cholesterol by inhibiting the production of lipopolysaccharides (LPS), which increases cholesterol synthesis and raises blood cholesterol. In addition, this review will explore the natural constituents in foods with potential roles in cholesterol regulation, mainly through their interactions with the gut microbiota. These include polysaccharides, polyphenolic entities, polyunsaturated fatty acids, phytosterols, and dicaffeoylquinic acid. These findings will provide a scientific foundation for targeting hypercholesterolemia and cardiovascular diseases through the modulation of the gut microbiota.
Collapse
Affiliation(s)
- Chuanling Deng
- School of Food Science and Engineering/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528011, China
| | - Jingjin Pan
- School of Food Science and Engineering/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528011, China
| | - Hanyue Zhu
- School of Food Science and Engineering/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528011, China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
13
|
Mo R, Zhang M, Wang H, Liu T, Liu P, Wu Y. Chitosan Enhances Intestinal Health in Cats by Altering the Composition of Gut Microbiota and Metabolites. Metabolites 2023; 13:metabo13040529. [PMID: 37110186 PMCID: PMC10145270 DOI: 10.3390/metabo13040529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
The interaction between gut microbiota and the health of the host has gained increasing attention. Chitosan is a natural alkaline polysaccharide with a wide range of beneficial effects. However, rare studies have been observed on the effects of dietary chitosan supplementation on intestinal health in cats. A total of 30 cats with mild diarrhea were divided into three groups, receiving a basic diet with 0 (CON), 500 (L-CS) or 2000 (H-CS) mg/kg chitosan. Samples of blood and feces were collected and analyzed for serology and gut microbiota composition. The results demonstrated that chitosan alleviated symptoms of diarrhea, with enhanced antioxidant capability and decreased inflammatory biomarker levels in serum. Chitosan reshaped the composition of gut microbiota in cats that the beneficial bacteria Allobaculum was significantly increased in the H-CS group. Acetate and butyrate contents in feces were significantly higher in the H-CS group in comparison to the CON group (p < 0.05). In conclusion, the addition of dietary chitosan in cats enhanced intestinal health by modulating their intestinal microbes and improved microbiota-derived SCFA production. Our results provided insights into the role of chitosan in the gut microbiota of felines.
Collapse
Affiliation(s)
- Ruixia Mo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mingrui Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Haotian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tianyi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Pan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yi Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
14
|
Zhao W, Huang Y, Cui N, Wang R, Xiao Z, Su X. Glucose oxidase as an alternative to antibiotic growth promoters improves the immunity function, antioxidative status, and cecal microbiota environment in white-feathered broilers. Front Microbiol 2023; 14:1100465. [PMID: 36937262 PMCID: PMC10020722 DOI: 10.3389/fmicb.2023.1100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
This study aimed to demonstrate the effects of glucose oxidase (GOD) on broilers as a potential antibiotic substitute. A total of four hundred twenty 1-day-old male Cobb500 broilers were randomly assigned into five dietary treatments, each with six replicates (12 chicks per replicate). The treatments included two control groups (a basal diet and a basal diet with 50 mg/kg aureomycin) and three GOD-additive groups involving three different concentrations of GOD. Analysis after the t-test showed that, on day 21, the feed:gain ratio significantly decreased in the 1,200 U/kg GOD-supplied group (GOD1200) compared to the antibiotic group (Ant). The same effect was also observed in GOD1200 during days 22-42 and in the 600 U/kg GOD-supplied group (GOD600) when compared to the control group (Ctr). The serum tests indicated that, on day 21, the TGF-β cytokine was significantly decreased in both GOD600 and GOD1200 when compared with Ctr. A decrease in malondialdehyde and an increase in superoxide dismutase in GOD1200 were observed, which is similar to the effects seen in Ant. On day 42, the D-lactate and glutathione peroxidase activity changed remarkably in GOD1200 and surpassed Ant. Furthermore, GOD upregulated the expression of the jejunal barrier genes (MUC-2 and ZO-1) in two phases relative to Ctr. In the aureomycin-supplied group, the secretory immunoglobulin A significantly decreased in the jejunum at 42 days. Changes in microbial genera were also discovered in the cecum by sequencing 16S rRNA genes at 42 days. The biomarkers for GOD supplementation were identified as Colidextribacter, Oscillibacter, Flavonifractor, Oscillospira, and Shuttleworthia. Except for Shuttleworthia, all the abovementioned genera were n-butyrate producers known for imparting their various benefits to broilers. The PICRUSt prediction of microbial communities revealed 11 pathways that were enriched in both the control and GOD-supplied groups. GOD1200 accounted for an increased number of metabolic pathways, demonstrating their potential in aiding nutrient absorption and digestion. In conclusion, a diet containing GOD can be beneficial to broiler health, particularly at a GOD concentration of 1,200 U/kg. The improved feed conversion ratio, immunity, antioxidative capacity, and intestinal condition demonstrated that GOD could be a valuable alternative to antibiotics in broiler breeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoou Su
- Key Laboratory of Agro-Product Quality and Safety of the Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Zhao J, Hu Y, Qian C, Hussain M, Liu S, Zhang A, He R, Sun P. The Interaction between Mushroom Polysaccharides and Gut Microbiota and Their Effect on Human Health: A Review. BIOLOGY 2023; 12:biology12010122. [PMID: 36671814 PMCID: PMC9856211 DOI: 10.3390/biology12010122] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
Mushroom polysaccharides are a kind of biological macromolecule extracted from the fruiting body, mycelium or fermentation liquid of edible fungi. In recent years, the research on mushroom polysaccharides for alleviating metabolic diseases, inflammatory bowel diseases, cancers and other symptoms by changing the intestinal microenvironment has been increasing. Mushroom polysaccharides could promote human health by regulating gut microbiota, increasing the production of short-chain fatty acids, improving intestinal mucosal barrier, regulating lipid metabolism and activating specific signaling pathways. Notably, these biological activities are closely related to the molecular weight, monosaccharide composition and type of the glycosidic bond of mushroom polysaccharide. This review aims to summarize the latest studies: (1) Regulatory effects of mushroom polysaccharides on gut microbiota; (2) The effect of mushroom polysaccharide structure on gut microbiota; (3) Metabolism of mushroom polysaccharides by gut microbiota; and (4) Effects of mushroom polysaccharides on gut microbe-mediated diseases. It provides a theoretical basis for further exploring the mechanism of mushroom polysaccharides for regulating gut microbiota and gives a reference for developing and utilizing mushroom polysaccharides as promising prebiotics in the future.
Collapse
Affiliation(s)
- Jiahui Zhao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yixin Hu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chao Qian
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shizhu Liu
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
| | - Anqiang Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Rongjun He
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
- Bioactives and Functional Foods Research Center, China National Light Industry, Hangzhou 310014, China
- Correspondence: (R.H.); (P.S.)
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, Hangzhou 310014, China
- Correspondence: (R.H.); (P.S.)
| |
Collapse
|
16
|
Liu M, Shi W, Huang Y, Wu Y, Wu K. Intestinal flora: A new target for traditional Chinese medicine to improve lipid metabolism disorders. Front Pharmacol 2023; 14:1134430. [PMID: 36937840 PMCID: PMC10014879 DOI: 10.3389/fphar.2023.1134430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Lipid metabolism disorders (LMD) can cause a series of metabolic diseases, including hyperlipidemia, obesity, non-alcoholic fatty liver disease (NAFLD) and atherosclerosis (AS). Its development is caused by more pathogenic factors, among which intestinal flora dysbiosis is considered to be an important pathogenic mechanism of LMD. In recent years, the research on intestinal flora has made great progress, opening up new perspectives on the occurrence and therapeutic effects of diseases. With its complex composition and wide range of targets, traditional Chinese medicine (TCM) is widely used to prevent and treat LMD. This review takes intestinal flora as a target, elaborates on the scientific connotation of TCM in the treatment of LMD, updates the therapeutic thinking of LMD, and provides a reference for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Min Liu
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wei Shi
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yefang Huang
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Keming Wu
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Deng S, AGA E, Xie H, Xiong H, Ye B. Evaluation of the acute toxicity and 28-days subacute toxicity of the alcoholic extract from Ganoderma leucocontextum. Food Sci Nutr 2023; 11:434-442. [PMID: 36655071 PMCID: PMC9834818 DOI: 10.1002/fsn3.3075] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/02/2022] [Accepted: 09/10/2022] [Indexed: 01/21/2023] Open
Abstract
Ganoderma leucocontextum is a well-known traditional medicine in Tibet Autonomous Region, which has benefits, such as anti-hypoxia, neurotrophic action on nerves, easing coughs and relieving asthma, strengthening the body and prolonging life. However, few research have focused on its negative effects, possibly jeopardizing its safety. The purpose of this study is to evaluate the acute and subacute toxicity of an alcoholic extract from G. leucocontextum (GLA) in vivo. The phytochemical characterization analysis showed that alcoholic extract from G. leucocontextum were rich in polysaccharides, triterpenoids. Then, in acute oral toxicity, male and female mice from Institute of Cancer Research (ICR) were orally administered with 16 g/kg GLA and were observed for 14 days. In the subacute toxicity, male and female Sprague-Dawley (SD) rats were orally administered with 2, 4, and 8 g/kg doses of GLA for 28 days. There was no death or clinical changes in male and female mice in the acute toxicity test. During the subacute toxicity test, the difference in body weights, food consumption, biochemical and hematological parameters, and organ coefficients between treated and control groups were unrelated to GLA treatment. The obtained data show that the GLA had no significant toxic effects when administered orally to male and female rats in acute and subacute toxicity.
Collapse
Affiliation(s)
- Shizhan Deng
- Medical College of Tibet UniversityLasaChina
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of Pharmacy Sichuan UniversityChengduChina
| | - Er‐bu AGA
- Medical College of Tibet UniversityLasaChina
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of Pharmacy Sichuan UniversityChengduChina
| | - Hongjun Xie
- Medical College of Tibet UniversityLasaChina
| | - Hai Xiong
- Medical College of Tibet UniversityLasaChina
| | - Bengui Ye
- Medical College of Tibet UniversityLasaChina
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of Pharmacy Sichuan UniversityChengduChina
| |
Collapse
|
18
|
Tong A, Wu W, Chen Z, Wen J, Jia R, Liu B, Cao H, Zhao C. Modulation of gut microbiota and lipid metabolism in rats fed high-fat diets by Ganoderma lucidum triterpenoids. Curr Res Food Sci 2022; 6:100427. [PMID: 36632433 PMCID: PMC9826932 DOI: 10.1016/j.crfs.2022.100427] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/05/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Ganoderma lucidum triterpenoids (GP) have been reported to help prevent and improve hyperlipidemia. Modulation of the gut microbiota was proposed as underlying factor as well as a novel measure to prevent and treat hyperlipidemia. The effects of GP on high-fat diet (HFD)-induced hyperlipidemia and gut microbiota modulation were determined in rats. Ultra-performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-QTOF MS-MS) indicated that GP were enriched with ganoderic acids G, B, H, A, and F. After feeding with GP supplementation, serum lipid levels including total triglyceride, total cholesterol, and low-density-lipoprotein cholesterol were significantly decreased in hyperlipidemic rats. Furthermore, administration of GP also has reversed the HFD-induced gut microbiota dysbiosis, including a significant increase in Alloprevotella and reduced proportion of Blautia. The result above suggests that GP would be developed as a functional food to ameliorate lipid metabolic disorders and hyperlipidemia.
Collapse
Affiliation(s)
- Aijun Tong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weihao Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhengxin Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiahui Wen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruibo Jia
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China,National Engineering Research Center of Juncao, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hui Cao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, 524088, China,Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004, Ourense, Spain,Corresponding author. College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, 524088, China.
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China,Corresponding author. College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
19
|
Xu X, Liu S, Zhao Y, Wang M, Hu L, Li W, Xu H. Combination of Houttuynia cordata polysaccharide and Lactiplantibacillus plantarum P101 alleviates acute liver injury by regulating gut microbiota in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6848-6857. [PMID: 35639719 DOI: 10.1002/jsfa.12046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Polysaccharides and probiotics can play an outstanding role in the treatment of liver disease by regulating gut microbiota. Recently, the combined therapeutic effect of probiotics and polysaccharides has attracted the attention of researchers. Houttuynia cordata polysaccharide (HCP) combined with Lactiplantibacillus plantarum P101 was used to prevent carbon tetrachloride (CCl4 )-induced acute liver injury (ALI) in mice, and its effect on gut microbiota regulation was explored. RESULTS Results showed that, in mice, HCP combined with L. plantarum P101 significantly alleviated oxidative stress and inflammatory injury in the liver by activating Nrf2 signals and inhibiting NF-κB signals. The analysis of gut microbiota revealed that the combination of HCP and L. plantarum P101 increased the abundance of beneficial bacteria such as Alloprevotella, Roseburia, and Akkermansia, but reduced that of the pro-inflammatory bacteria Alistipes, Enterorhabdus, Anaerotruncus, and Escherichia-Shigella. Correlation analysis also indicated that the expression of Nrf2 and TLR4/NF-κB was connected to the changes in gut microbiota composition. Houttuynia cordata polysaccharide combined with L. plantarum P101 can regulate the gut microbiota and then mediate the gut-liver axis to activate the antioxidant pathway and inhibit inflammatory responses, thereby alleviating CCl4 -induced ALI. CONCLUSION Our study provided a new perspective on the use of polysaccharides combined with probiotics in the treatment of liver disease. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaowei Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Shanji Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Mengqi Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Liehai Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wenjuan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
20
|
Zhong P, Zhou J, Fan YT, Guo MF, Zhu H, Zhou SS, Zhu JH, Zhang HH, Zhou GR, Miao XL, Li SL, Mao Q. Co-existing polysaccharides affect the systemic exposure of major bioactive ingredients in Chang-Kang-Fang, a multi-herb prescription for treatment of irritable bowel syndrome. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115601. [PMID: 35963422 DOI: 10.1016/j.jep.2022.115601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/20/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chang-Kang-Fang (CKF) is a traditional Chinese herbal formula used for treatment of irritable bowel syndrome (IBS) in China. Decoction is the administration form of CKF in clinical practice. Previously, CKF has been confirmed with activities of releasing pain and reversing disorders of intestinal propulsion. And alkaloids, monoglycosides, chromones were found as the main bioactive components potentially contributing to the efficacy of CKF. Polysaccharide was also a major constituent in CKF. But if and how polysaccharides influence the systemic exposure of bioactive components in CKF is unknown. AIM OF THE STUDY In this study, we aimed to demonstrate the contribution of the co-existed polysaccharides on the systemic exposure of the major bioactive components from CKF in normal and IBS model rats. MATERIALS AND METHODS An UPLC-TQ-MS with multiple reaction monitoring (MRM) scan method was developed and validated for quantifying six major small molecular bioactive ingredients of CKF in the plasma samples, including magnoflorine (MAG), berberine (BBR), albiflorin (ALB), paeoniflorin (PAE), 5-O-methylvisamminol (5-OM) and prim-O-glucosylcimifugin (POG). The rats received CKF decoction (CKF) and CKF small molecule portion (knockout of polysaccharides, CKFSM), respectively. IBS model rats were induced by daily bondage and gavage of Sennae Folium decoction (derived from the leaf of Cassia angustifolia Vahl). The effects of the co-existing polysaccharides on the pharmacokinetic parameters of six small molecular bioactive components in normal and IBS model rats were systematically evaluated. The potential gut microbiota involved mechanisms of the effects was validated by broad-spectrum antibiotic (ABX) treatment. RESULTS The selectivity, precision, accuracy, recovery and matrix effect of the established quantification method were all within acceptable limits of biological sample. In normal rats, the co-existing polysaccharides significantly reduced the AUC(0-t) of MAG and PAE compared with CKFSM group. The Cmax and AUC(0-t) of other four compound were not influenced by co-existing polysaccharides. However, in IBS model rats, compared with CKFSM group, the Cmax and AUC(0-t) of the six ingredients significantly increased in CKF group. For CKF + ABX group, the Cmax of six ingredients decreased significantly when compared with CKF group, and the AUC(0-t) of MAG, BBR, ALB, PAE also reduced with significant differences. CONCLUSIONS A reliable and sensitive UPLC-TQ-MS method was successfully developed and validated for evaluating influence of co-existing polysaccharides on pharmacokinetic behavior of six major small molecules components in CKF. The co-existing polysaccharides enhanced the systemic exposure of six bioactive small molecules in CKF under IBS pathological state potentially via gut microbiota involvement.
Collapse
Affiliation(s)
- Ping Zhong
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, PR China
| | - Jing Zhou
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, PR China
| | - Yan-Ting Fan
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, PR China
| | - Meng-Fei Guo
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, PR China
| | - He Zhu
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, PR China
| | - Shan-Shan Zhou
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, PR China
| | - Jin-Hao Zhu
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, PR China
| | - Huan-Huan Zhang
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, PR China
| | - Gui-Rong Zhou
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Group Co. Ltd., Tianjin, 300000, PR China
| | - Xing-Long Miao
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Group Co. Ltd., Tianjin, 300000, PR China
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, PR China.
| | - Qian Mao
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, PR China.
| |
Collapse
|
21
|
The beneficial mechanism of chitosan and chitooligosaccharides in the intestine on different health status. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Telle-Hansen VH, Gaundal L, Bastani N, Rud I, Byfuglien MG, Gjøvaag T, Retterstøl K, Holven KB, Ulven SM, Myhrstad MCW. Replacing saturated fatty acids with polyunsaturated fatty acids increases the abundance of Lachnospiraceae and is associated with reduced total cholesterol levels-a randomized controlled trial in healthy individuals. Lipids Health Dis 2022; 21:92. [PMID: 36163070 PMCID: PMC9511723 DOI: 10.1186/s12944-022-01702-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/12/2022] [Indexed: 11/12/2022] Open
Abstract
Background Improving dietary fat quality strongly affects serum cholesterol levels and hence the risk of cardiovascular diseases (CVDs). Recent studies have identified dietary fat as a potential modulator of the gut microbiota, a central regulator of host metabolism including lipid metabolism. We have previously shown a significant reduction in total cholesterol levels after replacing saturated fatty acids (SFAs) with polyunsaturated fatty acids (PUFAs). The aim of the present study was to investigate the effect of dietary fat quality on gut microbiota, short-chain fatty acids (SCFAs), and bile acids in healthy individuals. In addition, to investigate how changes in gut microbiota correlate with blood lipids, bile acids, and fatty acids. Methods Seventeen participants completed a randomized, controlled dietary crossover study. The participants received products with SFAs (control) or PUFAs in random order for three days. Fecal samples for gut microbiota analyses and fasting blood samples (lipids, fatty acids, and bile acids) were measured before and after the three-day intervention. Results Of a panel of 40 bacteria, Lachnospiraceae and Bifidobacterium spp. were significantly increased after intervention with PUFAs compared with SFAs. Interestingly, changes in Lachnospiraceae, as well as Phascolarlactobacterium sp. and Eubacterium hallii, was also found to be negatively correlated with changes in total cholesterol levels after replacing the intake of SFAs with PUFAs for three days. No significant differences in SCFAs or bile acids were found after the intervention. Conclusion Replacing SFAs with PUFAs increased the abundance of the gut microbiota family of Lachnospiraceae and Bifidobacterium spp. Furthermore, the reduction in total cholesterol after improving dietary fat quality correlated with changes in the gut microbiota family Lachnospiraceae. Future studies are needed to reveal whether Lachnospiraceae may be targeted to reduce total cholesterol levels. Trial registration The study was registered at Clinical Trials (https://clinicaltrials.gov/, registration identification number: NCT03658681).
Collapse
Affiliation(s)
- Vibeke H Telle-Hansen
- Faculty of Health Sciences, Oslo Metropolitan University, St. Olavsplass, Postbox 4, 0130, Oslo, Norway.
| | - Line Gaundal
- Faculty of Health Sciences, Oslo Metropolitan University, St. Olavsplass, Postbox 4, 0130, Oslo, Norway
| | - Nasser Bastani
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, P.O. Box 1046, 0317, Oslo, Norway
| | - Ida Rud
- Nofima -Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, 1433, Ås, Norway
| | | | - Terje Gjøvaag
- Faculty of Health Sciences, Oslo Metropolitan University, St. Olavsplass, Postbox 4, 0130, Oslo, Norway
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, P.O. Box 1046, 0317, Oslo, Norway.,The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424, Oslo, Norway
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, P.O. Box 1046, 0317, Oslo, Norway.,The Norwegian National Advisory Unit On Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, P.O. Box 1046, 0317, Oslo, Norway
| | - Mari C W Myhrstad
- Faculty of Health Sciences, Oslo Metropolitan University, St. Olavsplass, Postbox 4, 0130, Oslo, Norway
| |
Collapse
|
23
|
Xia H, Zhou B, Sui J, Ma W, Wang S, Yang L, Sun G. Lycium barbarum Polysaccharide Regulates the Lipid Metabolism and Alters Gut Microbiota in High-Fat Diet Induced Obese Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912093. [PMID: 36231391 PMCID: PMC9566073 DOI: 10.3390/ijerph191912093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 05/13/2023]
Abstract
Bioactive compounds provide new insights into the prevention and treatment of obesity. Lycium barbarum polysaccharide (LBP), a biological macromolecule extracted from Goji berry, has displayed potential for regulating lipid metabolism. However, the relationship between gut microbiota regulation and lipid metabolism is not entirely clear. In the present study, 50, 100, and 150 mg/kg LBP were intragastrically administered to C57BL/6J male mice fed with a high-fat diet simultaneously lasting for twelve weeks. The results showed that 150 mg/kg LBP showed significant results and all doses of LBP feeding (50, 100, 150 mg/kg) remarkably decreased both serum and liver total cholesterol (TC) and triglyceride (TG) levels. Treatment of 150 mg/kg LBP seems to be more effective in weight loss, lowering free fatty acid (FFA) levels in serum and liver tissues of mice. LBP feeding increased the gene expression of adiponectin and decreased the gene expression of peroxisome proliferator-activated receptor γ, Cluster of Differentiation 36, acetyl-coA carboxylase, and fatty acid synthase in a dose-dependent manner. In addition, the 16s rDNA Sequencing analysis showed that 150 mg/kg LBP feeding may significantly increase the richness of gut microbiota by up-regulation of the ACE and Chao1 index and altered β-diversity among groups. Treatment of 150 mg/kg LBP feeding significantly regulated the microbial distribution by decreasing the relative abundance of Firmicutes and increasing the relative abundance of Bacteroidetes at the phylum level. Furthermore, the relative abundance of Faecalibaculum, Pantoea, and uncultured_bacterium_f_Muribaculaceae at the genus level was significantly affected by LBP feeding. A significant correlation was observed between body weight, TC, TG, FFA and bile acid and phyla at the genus level. The above results indicate that LBP plays a vital role in preventing obesity by co-regulating lipid metabolism and gut microbiota, but its effects vary with the dose.
Collapse
Affiliation(s)
- Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Beijia Zhou
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jing Sui
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Wenqing Ma
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
- Correspondence: ; Tel.: +86-02583272567
| |
Collapse
|
24
|
Zhang L, Wang X, Zhang X. Modulation of Intestinal Flora by Dietary Polysaccharides: A Novel Approach for the Treatment and Prevention of Metabolic Disorders. Foods 2022; 11:2961. [PMID: 36230037 PMCID: PMC9562892 DOI: 10.3390/foods11192961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Intestinal flora is numerous and diverse, and play a key role in maintaining human health. Dietary polysaccharides are widely present in the daily diet and have a moderating effect on the intestinal flora. Past studies have confirmed that intestinal flora is involved in the metabolic process in the human body, and the change in intestinal flora structure is closely related to the metabolic disorders in the human body. Therefore, regulating intestinal flora through dietary polysaccharides is an effective way to treat and prevent common metabolic diseases and has great research value. However, this area has not received enough attention. In this review, we provide an overview of the modulatory effects of dietary polysaccharides on intestinal flora and the key role of intestinal flora in improving metabolic disorders in humans. In addition, we highlight the therapeutic and preventive effects of intestinal flora modulation through dietary polysaccharides on metabolic disorders, aiming to find new ways to treat metabolic disorders and facilitate future exploration in this field.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China
| | - Xinzhou Wang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
25
|
Zheng M, Pi X, Li H, Cheng S, Su Y, Zhang Y, Man C, Jiang Y. Ganoderma spp. polysaccharides are potential prebiotics: a review. Crit Rev Food Sci Nutr 2022; 64:909-927. [PMID: 35980144 DOI: 10.1080/10408398.2022.2110035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The gut microbiota (GM) is a complex ecosystem that is closely linked to host health. Ganoderma spp. polysaccharides (GPs), a major bioactive component of the fungal genus Ganoderma, can modulate the GM, exhibiting various health effects and prebiotic potential. This review comprehensively concluded the structural features and extraction method of GPs. The mechanism of GPs for anti-obesity, anti-diabetes, anti-inflammatory, and anti-cancer were further evaluated. The simulated gastrointestinal digestion of GPs and the utilization mechanism of host microorganisms were discussed. It was found that the physicochemical properties and biological activities of GPs depend on their structural characteristics (molecular weight, monosaccharide composition, glycosidic bonds, etc.). Their extraction method also affects the structure and bioactivities of polysaccharides. GPs supplementation could increase the relative abundance of beneficial bacteria (e.g. Bacteroides, Parabacteroides, Akkermansia, and Bifidobacterium), while reducing that of pathogenic bacteria (e.g. Aerococcus, Ruminococcus), thus promoting health. Moreover, GPs are resistant to digestion in the stomach and small intestine but are digested in the large intestine. Therefore, GPs can be considered as potential prebiotics. However, further studies should investigate how GPs as prebiotics regulate GM and improve host health.
Collapse
Affiliation(s)
- Miao Zheng
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiaowen Pi
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Hongxuan Li
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Shasha Cheng
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yue Su
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yu Zhang
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chaoxin Man
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yujun Jiang
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
26
|
Histamine Causes Pyroptosis of Liver by Regulating Gut-Liver Axis in Mice. Int J Mol Sci 2022; 23:ijms23073710. [PMID: 35409071 PMCID: PMC8998596 DOI: 10.3390/ijms23073710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
Huangjiu usually caused rapid-drunkenness and components such as β-benzyl ethanol (β-be), isopentanol (Iso), histamine (His), and phenethylamine (PEA) have been reported linked with intoxication. However, the destructive effect of these components on gut microbiota and liver is unclear. In this study, we found oral treatment of these components, especially His, stimulated the level of oxidative stress and inflammatory cytokines in liver and serum of mice. The gut microbiota community was changed and the level of lipopolysaccharide (LPS) increased significantly. Additionally, cellular pyroptosis pathway has been assessed and correlation analysis revealed a possible relationship between gut microbiota and liver pyroptosis. We speculated oral His treatment caused the reprogramming of gut microbiota metabolism, and increased LPS modulated the gut-liver interaction, resulting in liver pyroptosis, which might cause health risks. This study provided a theoretical basis for the effect of Huangjiu, facilitating the development of therapeutic and preventive strategies for related inflammatory disorders.
Collapse
|
27
|
An Insight into Antihyperlipidemic Effects of Polysaccharides from Natural Resources. Molecules 2022; 27:molecules27061903. [PMID: 35335266 PMCID: PMC8952498 DOI: 10.3390/molecules27061903] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 11/17/2022] Open
Abstract
Hyperlipidemia is a chronic metabolic disease caused by the abnormal metabolism of lipoproteins in the human body. Its main hazard is to accelerate systemic atherosclerosis, which causes cerebrovascular diseases such as coronary heart disease and thrombosis. At the same time, although the current hypolipidemic drugs have a certain therapeutic effect, they have side effects such as liver damage and digestive tract discomfort. Many kinds of polysaccharides from natural resources possess therapeutic effects on hyperlipidemia but still lack a comprehensive understanding. In this paper, the research progress of natural polysaccharides on reducing blood lipids in recent years is reviewed. The pharmacological mechanisms and targets of natural polysaccharides are mainly introduced. The relationship between structure and hypolipidemic activity is also discussed in detail. This review will help to understand the value of polysaccharides in lowering blood lipids and provide guidance for the development and clinical application of new hypolipidemic drugs.
Collapse
|
28
|
Verhoeven J, Keller D, Verbruggen S, Abboud KY, Venema K. A blend of 3 mushrooms dose-dependently increases butyrate production by the gut microbiota. Benef Microbes 2021; 12:601-612. [PMID: 34590532 DOI: 10.3920/bm2021.0015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gut microbiota has been indicated to play a crucial role in health and disease. Apart from changes in composition between healthy individuals and those with a disease or disorder, it has become clear that also microbial activity is important for health. For instance, butyrate has been proven to be beneficial for health, because, amongst others, it is a substrate for the colonocytes, and modulates the host's immune system and metabolism. Here, we studied the effect of a blend of three mushrooms (Ganoderma lucidum GL AM P-38, Grifola frondosa GF AM P36 and Pleurotus ostreatus PO AM-GP37)) on gut microbiota composition and activity in a validated, dynamic, computer-controlled in vitro model of the colon (TIM-2). Predigested mushroom blend at three doses (0.5, 1.0 and 1.5 g/day of ingested mushroom blend) was fed to a pooled microbiota of healthy adults for 72 h, and samples were taken every day for microbiota composition (sequencing of amplicons of the V3-V4 region of the 16S rRNA gene) and activity (short-chain fatty acid (SCFA) production). The butyrate producing genera Lachnospiraceae UCG-004, Lachnoclostridium, Ruminococcaceae UCG-002 and Ruminococcaceae NK4A214-group are all dose-dependently increased when the mushroom blend was fed. Entirely in line with the increase of these butyrate-producers, the cumulative amount of butyrate also dose-dependently increased, to roughly twice the amount compared to the control (medium without mushroom blend) on the high-dose mushroom blend. Butyrate proportionally made up 53.1% of the total SCFA upon feeding the high-dose mushroom blend, compared to 27% on the control medium. In conclusion, the (polysaccharides in the) mushroom blend led to substantial increase in butyrate by the gut microbiota. These results warrant future mechanistic research on the mushroom blend, as butyrate is considered to be one of the microbial metabolites that contributes to health, by increasing barrier function and modulating inflammation.
Collapse
Affiliation(s)
- J Verhoeven
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, Villafloraweg 1, 5928 SZ Venlo, the Netherlands
| | - D Keller
- Keller Consulting Group, 2417 Beachwood Blvd., Beachwood, OH 44122, USA
| | - S Verbruggen
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, Villafloraweg 1, 5928 SZ Venlo, the Netherlands
| | - K Youssef Abboud
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, Villafloraweg 1, 5928 SZ Venlo, the Netherlands
| | - K Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, Villafloraweg 1, 5928 SZ Venlo, the Netherlands
| |
Collapse
|
29
|
Chang L, Lin F, Cheng K, Li J, Sun X, Figeys D, Jiang J, Ye Y, Liu J. A simultaneous identification and quantification strategy for determination of sulfhydryl-containing metabolites in normal- and high-fat diet hamsters using stable isotope labeling combined with LC-MS. Anal Chim Acta 2021; 1184:339016. [PMID: 34625243 DOI: 10.1016/j.aca.2021.339016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/25/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Sulfur-containing metabolites are related to several physiologic disorders and metabolic diseases. In this study, a simultaneous identification and quantification strategy in one batch for determination of sulfhydryl-containing metabolites was developed using stable isotope labeling combined with liquid chromatography-tandem mass spectrometry (SIL-LC-MS). In the proposed method, a pair of isotope labeling reagents, D0/D5-N-ethylmaleimide (D0/D5-NEM), was used to derivatize sulfhydryl-containing metabolites in blood and plasma of normal- and high-fat-diet (NFD and HFD) hamsters for reduced (-SH) and total (-SH, -S-S-, S-glutathionylated proteins) analysis. Quality control (QC) samples and test samples were prepared for LC-MS analysis. First, both QC samples and stable isotope labeled internal standards were used to monitor the status of the instrument and ensure the reliability of the analysis. Subsequently, an inhouse database containing 45 sulfhydryl-containing metabolites was established by MS1 based on QC samples. Then, qualitatively differential sulfhydryl-containing metabolites were found by MS2 between the NFD and HFD hamsters of the test samples, including 3 in reduced and 8 in total analysis of blood samples, and 2 in reduced and 2 in total analysis of plasma samples. Next, in quantitative analysis, satisfied linearities for 6 sulfhydryl-containing metabolites were obtained with the correlation coefficient (R2) > 0.99 and absolute quantification was carried out. The results showed that glutathione and cysteine have different concentrations in blood and plasma of hamsters. Finally, the correlation of sulfhydryl-containing metabolites with blood lipid and oxidative stress levels was determined, which provided insight into the hyperlipidemia-related oxidative stress. Taken together, the developed method of simultaneous identification with the inhouse database and MS2 and quantification with standards in one batch provides a promising strategy for the analysis of sulfhydryl-containing metabolites in biological samples, which may promote the in-depth investigation on sulfhydryl-containing metabolites and related diseases.
Collapse
Affiliation(s)
- Lu Chang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Feifei Lin
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Kai Cheng
- SIMM-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology and Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada
| | - Jiaomeng Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Xiaochu Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Daniel Figeys
- SIMM-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology and Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada
| | - Jianlan Jiang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| | - Yang Ye
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China.
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310058, PR China.
| |
Collapse
|
30
|
Li Y, Ji X, Wu H, Li X, Zhang H, Tang D. Mechanisms of traditional Chinese medicine in modulating gut microbiota metabolites-mediated lipid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114207. [PMID: 34000365 DOI: 10.1016/j.jep.2021.114207] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/23/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The gut microbiome plays an important role in advancing the process of host lipid metabolism directly or indirectly. Traditional Chinese medicine (TCM) can improve the intestinal environment by intervening with gut microbiota metabolites to potentially regulate lipid levels. However, the underlying mechanisms remain unclear. Therefore, we examined the current databases to search for studies related to influence of TCM on the gut microbiota metabolites-mediated lipid metabolism. AIM OF THE STUDY This paper aims to review the TCM that could regulate lipid metabolism mediated by microbial metabolites and their pharmacological targets and provides perspectives for future investigation. METHODS Electronic databases including PubMed, Web of Science, EMBASE, the Cochrane Library, Chinese Biological Medicine Database, and China National Knowledge Infrastructure were searched up to April 2021 to identify eligible studies. RESULTS A total of 30 active compounds, five Chinese herbal formulae, and three proprietary Chinese medicines were included in this review. We found that TCM can effectively improve lipid metabolism by increasing short chain fatty acids (SCFA) levels, regulating bile acid (BA) metabolism, reducing the production of trimethylamine N-oxide (TMAO), alleviating the release of inflammatory factors, and altering branched-chain amino acids (BCAA) biosynthesis. This process is accompanied by changes in the structure of the gut microbiota, blood lipids, and expression of lipid metabolism genes. CONCLUSION In summary, studies on the regulation of lipid metabolism by microbial metabolites in TCM will provide a new approach for better management of dyslipidemia, which may facilitate future clinical treatments.
Collapse
Affiliation(s)
- Yingying Li
- Experimental Research Center of China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xinyu Ji
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haonan Wu
- Experimental Research Center of China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiang Li
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huamin Zhang
- Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Danli Tang
- Experimental Research Center of China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
31
|
Hao Y, Zhang R, Morris R, Cheng F, Zhu Z, Xu Y, Wang Y. Metabolome and microbiome alterations in tongue coating of gastric precancerous lesion patients. Expert Rev Gastroenterol Hepatol 2021; 15:949-963. [PMID: 33252275 DOI: 10.1080/17474124.2021.1850259] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective: This paper seeks to provide mechanistic insight into the pathological transition through the analysis of metabolites and microorganisms in the tongue coating of gastric precancerous lesions (GPL) patients.Methods: GC-TOF-MS and UHPLC-QE-MS metabolomics, combined with 16S rRNA microbiome techniques, were performed to explore the changes in metabolites and microorganisms in the tongue coating of GPL patients.Results: When compared with 15 controls, 133 metabolites were found to be differentially expressed in 60 GPL cases, of which could be divided into ten categories. Among them, most of the differentially expressed metabolites identified were lipids or lipid-like molecules. These metabolites were implicated in 6 metabolic pathways including glycine, serine and threonine metabolism, arginine and proline metabolism, sphingolipid metabolism, valine, leucine and isoleucine degradation, arachidonic acid metabolism, and tyrosine metabolism. The relative abundances of Alloprevotella, Solobacterium, Rothia, Eikenella, and Aggregatibacter in the GPL group increased significantly relative to the controls and were associated with lipids and lipid-like molecules, organic nitrogen compounds, organic oxygen compounds, phenylpropanoids and polyketides, and organoheterocyclic compounds, respectively.Conclusions: Compared with healthy people, the changes of tongue coating metabolites in GPL patients were mainly characterized by alterations in lipid metabolism and were associated with localized changes in the microbiome.
Collapse
Affiliation(s)
- Yiming Hao
- Shanghai Key Laboratory of Health Identification and Assessment/Laboratory of TCM Four Diagnostic Information, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Renling Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Robert Morris
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Feng Cheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Zhujing Zhu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifeng Xu
- Shanghai Key Laboratory of Health Identification and Assessment/Laboratory of TCM Four Diagnostic Information, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiqin Wang
- Shanghai Key Laboratory of Health Identification and Assessment/Laboratory of TCM Four Diagnostic Information, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
32
|
Ren F, Chen Q, Meng C, Chen H, Zhou Y, Zhang H, Chen W. Serum metabonomics revealed the mechanism of Ganoderma amboinense polysaccharides in preventing non-alcoholic fatty liver disease (NAFLD) induced by high-fat diet. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104496] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
33
|
Li B, Qiu H, Zheng N, Wu G, Gu Y, Zhong J, Hong Y, Ma J, Zhou W, Sheng L, Li H. Integrated Metagenomic and Transcriptomic Analyses Reveal the Dietary Dependent Recovery of Host Metabolism From Antibiotic Exposure. Front Cell Dev Biol 2021; 9:680174. [PMID: 34222250 PMCID: PMC8250461 DOI: 10.3389/fcell.2021.680174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/20/2021] [Indexed: 01/10/2023] Open
Abstract
The balance of gut microbiome is essential for maintaining host metabolism homeostasis. Despite widespread antibiotic use, the potential long-term detrimental consequences of antibiotics for host health are getting more and more attention. However, it remains unclear whether diet affects the post-antibiotic recovery of gut microbiome and host metabolism. In this study, through metagenomic sequencing and hepatic transcriptome analysis, we investigated the divergent impacts of short-term vancomycin (Vac), or combination of ciprofloxacin and metronidazole (CM) treatment on gut microbiome and host metabolism, as well as their recovery extent from antibiotic exposure on chow diet (CD) and high-fat diet (HFD). Our results showed that short-term Vac intervention affected insulin signaling, while CM induced more functional changes in the microbiome. However, Vac-induced long-term (45 days) changes of species were more apparent when recovered on CD than HFD. The effects of antibiotic intervention on host metabolism were long-lasting, antibiotic-specific, and diet-dependent. The number of differentially expressed gene was doubled by Vac than CM, but was comparable after recovery on CD as revealed by the hepatic transcriptomic analysis. In contrast, HFD intake during recovery could worsen the extent of post-antibiotic recovery by altering infection, immunity, and cancer-related pathways in short-term Vac-exposed rats and by shifting endocrine system-associated pathways in CM-exposed rats. Together, the presented data demonstrated the long-term recovery extent after different antibiotic exposure was diet-related, highlighting the importance of dietary management during post-antibiotic recovery.
Collapse
Affiliation(s)
- Bingbing Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huihui Qiu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ningning Zheng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gaosong Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Gu
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Jing Zhong
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, China
| | - Ying Hong
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junli Ma
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lili Sheng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Houkai Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
34
|
Ma G, Du H, Hu Q, Yang W, Pei F, Xiao H. Health benefits of edible mushroom polysaccharides and associated gut microbiota regulation. Crit Rev Food Sci Nutr 2021; 62:6646-6663. [PMID: 33792430 DOI: 10.1080/10408398.2021.1903385] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Edible mushrooms have been an important part of the human diet for thousands of years, and over 100 varieties have been cultivated for their potential human health benefits. In recent years, edible mushroom polysaccharides (EMPs) have been studied for their activities against obesity, inflammatory bowel disease (IBD), and cancer. Particularly, accumulating evidence on the exact causality between these health risks and specific gut microbiota species has been revealed and characterized, and most of the beneficial health effects of EMPs have been associated with its reversal impacts on gut microbiota dysbiosis. This demonstrates the key role of EMPs in decreasing health risks through gut microbiota modulation effects. This review article compiles and summarizes the latest studies that focus on the health benefits and underlying functional mechanisms of gut microbiota regulation via EMPs. We conclude that EMPs can be considered a dietary source for the improvement and prevention of several health risks, and this review provides the theoretical basis and technical guidance for the development of novel functional foods with the utilization of edible mushrooms.
Collapse
Affiliation(s)
- Gaoxing Ma
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Qiuhui Hu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Wenjian Yang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Fei Pei
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
35
|
Tang F, Huang G, Lin L, Yin H, Shao L, Xu R, Cui X. Anti-HBV Activities of Polysaccharides from Thais clavigera (Küster) by In Vitro and In Vivo Study. Mar Drugs 2021; 19:md19040195. [PMID: 33808126 PMCID: PMC8066037 DOI: 10.3390/md19040195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) infection remains a major global health problem. It is therefore imperative to develop drugs for anti-hepatitis B with high-efficiency and low toxicity. Attracted by the observations and evidence that the symptoms of some patients from the Southern Fujian, China, suffering from hepatitis B were alleviated after daily eating an edible marine mollusk, Thais clavigera (Küster 1860) (TCK). Water-soluble polysaccharide from TCK (TCKP1) was isolated and characterized. The anti-HBV activity of TCKP1 and its regulatory pathway were investigated on both HepG2.2.15 cell line and HBV transgenic mice. The data obtained from in vitro studies showed that TCKP1 significantly enhanced the production of IFN-α, and reduced the level of HBV antigens and HBV DNA in the supernatants of HepG2.2.15 cells in a dose-dependent manner with low cytotoxicity. The result of the study on the HBV transgenic mice further revealed that TCKP1 significantly decreased the level of transaminases, HBsAg, HBeAg, and HBV DNA in the serum, as well as HBsAg, HBeAg, HBV DNA, and HBV RNA in the liver of HBV transgenic (HBV-Tg) mice. Furthermore, TCKP1 exhibited equivalent inhibitory effect with the positive control tenofovir alafenamide (TAF) on the markers above except for HBV DNA even in low dosage in a mouse model. However, the TCKP1 high-dose group displayed stronger inhibition of transaminases and liver HBsAg, HBeAg, and HBV RNA when compared with those of TAF. Meanwhile, inflammation of the liver was, by pathological observation, relieved in a dose-dependent manner after being treated with TCKP1. In addition, elevated levels of interleukin-12 (IL-12) and interferon γ (IFN-γ), and reduced level of interleukin-4 (IL-4) in the serum were observed, indicating that the anti-HBV effect of TCKP1 was achieved by potentiating immunocyte function and regulating the balance of Th1/Th2 cytokines.
Collapse
Affiliation(s)
- Fei Tang
- Engineering Research Center of Molecular Medicine, Ministry of Education, School of Medicine, Huaqiao University, Xiamen 361021, China; (F.T.); (G.H.); (L.L.); (H.Y.); (L.S.)
- Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, Xiamen 361021, China
| | - Guanghua Huang
- Engineering Research Center of Molecular Medicine, Ministry of Education, School of Medicine, Huaqiao University, Xiamen 361021, China; (F.T.); (G.H.); (L.L.); (H.Y.); (L.S.)
- Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, Xiamen 361021, China
| | - Liping Lin
- Engineering Research Center of Molecular Medicine, Ministry of Education, School of Medicine, Huaqiao University, Xiamen 361021, China; (F.T.); (G.H.); (L.L.); (H.Y.); (L.S.)
- Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, Xiamen 361021, China
| | - Hong Yin
- Engineering Research Center of Molecular Medicine, Ministry of Education, School of Medicine, Huaqiao University, Xiamen 361021, China; (F.T.); (G.H.); (L.L.); (H.Y.); (L.S.)
| | - Lili Shao
- Engineering Research Center of Molecular Medicine, Ministry of Education, School of Medicine, Huaqiao University, Xiamen 361021, China; (F.T.); (G.H.); (L.L.); (H.Y.); (L.S.)
| | - Ruian Xu
- Engineering Research Center of Molecular Medicine, Ministry of Education, School of Medicine, Huaqiao University, Xiamen 361021, China; (F.T.); (G.H.); (L.L.); (H.Y.); (L.S.)
- Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, Xiamen 361021, China
- Correspondence: (R.X.); (X.C.)
| | - Xiuling Cui
- Engineering Research Center of Molecular Medicine, Ministry of Education, School of Medicine, Huaqiao University, Xiamen 361021, China; (F.T.); (G.H.); (L.L.); (H.Y.); (L.S.)
- Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, Xiamen 361021, China
- Correspondence: (R.X.); (X.C.)
| |
Collapse
|
36
|
Su L, Li D, Su J, Zhang E, Chen S, Zheng C, Luo T, Li M, Chen X, Huang G, Xie Y, Li S. Polysaccharides of Sporoderm-Broken Spore of Ganoderma lucidum Modulate Adaptive Immune Function via Gut Microbiota Regulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8842062. [PMID: 33859713 PMCID: PMC8009716 DOI: 10.1155/2021/8842062] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/24/2020] [Accepted: 01/13/2021] [Indexed: 12/26/2022]
Abstract
Ganoderma lucidum (Leyss.Fr.) Karst is one of the well-known medicinal macrofungi all over the world, and mounting researches have focused on the polysaccharides derived from the spores of G. lucidum. In the present study, BALB/c mice (n = 8-10) were administered with crude polysaccharides of G. lucidum spores (CPGS) and the refined polysaccharides of G. lucidum spores (RPGS) for 30 days to investigate their effect on the adaptive immune system. Results showed that CPGS and RPGS displayed diverse effects on the lymphocyte activity in the spleen. The splenocyte proliferation activity upon mitogen was suppressed by CPGS and RPGS, while the NK cell's tumor-killing ability was promoted by CPGS. Both CPGS and RPGS could increase the proportion of naïve T cells in thymus, but only RPGS significantly uplifted the percentage of T cells, as well as the T cell subsets, in peripheral blood, and promoted the activation by upregulating the expression of costimulatory factor CD28. Moreover, 16S sequencing results showed that the effects of CPGS and RPGS were closely related to the regulation of gut microbiota. β-diversity of the microbiome was evidently changed by CPGS and RPGS. The phytoestrogen/polysaccharide-metabolizing bacteria (Adlercreutzia, Parabacteroides, and Prevotella), and an unclassified Desulfovibrionaceae, were remarkably enriched by CPGS or RPGS, and functions involving carbohydrate metabolism, membrane transport, and lipid metabolism were regulated. Moreover, the enrichments of Adlercreutzia, Prevotella, and Desulfovibrionaceae were positively related to the immune regulation by CPGS and RPGS, while that of Parabacteroides displayed a negative correlation. These findings suggested a promising effect of the polysaccharide from sporoderm-broken spore of G. lucidum in immune regulation to promote health control.
Collapse
Affiliation(s)
- Lu Su
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Dan Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou, Guangdong, China
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, Guangdong, China
| | - Jiyan Su
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Enqi Zhang
- Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Shaodan Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou, Guangdong, China
| | - Chaoqun Zheng
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou, Guangdong, China
| | - Ting Luo
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, Guangdong, China
| | - Muxia Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou, Guangdong, China
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, Guangdong, China
| | - Xiaohong Chen
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou, Guangdong, China
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, Guangdong, China
| | - Guoxin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yizhen Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou, Guangdong, China
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, Guangdong, China
| | - Shanshan Li
- Department of Traditional Chinese Medicine, The People's Hospital of Dongying, Dongying, Shandong, China
| |
Collapse
|
37
|
Ashrafizadeh M, Delfi M, Hashemi F, Zabolian A, Saleki H, Bagherian M, Azami N, Farahani MV, Sharifzadeh SO, Hamzehlou S, Hushmandi K, Makvandi P, Zarrabi A, Hamblin MR, Varma RS. Biomedical application of chitosan-based nanoscale delivery systems: Potential usefulness in siRNA delivery for cancer therapy. Carbohydr Polym 2021; 260:117809. [PMID: 33712155 DOI: 10.1016/j.carbpol.2021.117809] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022]
Abstract
Gene therapy is an emerging and promising strategy in cancer therapy where small interfering RNA (siRNA) system has been deployed for down-regulation of targeted gene and subsequent inhibition in cancer progression; some issues with siRNA, however, linger namely, its off-targeting property and degradation by enzymes. Nanoparticles can be applied for the encapsulation of siRNA thus enhancing its efficacy in gene silencing where chitosan (CS), a linear alkaline polysaccharide derived from chitin, with superb properties such as biodegradability, biocompatibility, stability and solubility, can play a vital role. Herein, the potential of CS nanoparticles has been discussed for the delivery of siRNA in cancer therapy; proliferation, metastasis and chemoresistance are suppressed by siRNA-loaded CS nanoparticles, especially the usage of pH-sensitive CS nanoparticles. CS nanoparticles can provide a platform for the co-delivery of siRNA and anti-tumor agents with their enhanced stability via chemical modifications. As pre-clinical experiments are in agreement with potential of CS-based nanoparticles for siRNA delivery, and these carriers possess biocompatibiliy and are safe, further studies can focus on evaluating their utilization in cancer patients.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Masoud Delfi
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy
| | - Farid Hashemi
- PhD Student of Pharmacology, Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Morteza Bagherian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negar Azami
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Soodeh Hamzehlou
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pooyan Makvandi
- Centre for Materials Interface, Istituto Italiano di Tecnologia, Pontedera 56025, Pisa, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
38
|
Mexican Ganoderma Lucidum Extracts Decrease Lipogenesis Modulating Transcriptional Metabolic Networks and Gut Microbiota in C57BL/6 Mice Fed with a High-Cholesterol Diet. Nutrients 2020; 13:nu13010038. [PMID: 33374283 PMCID: PMC7823885 DOI: 10.3390/nu13010038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022] Open
Abstract
Prevention of hyperlipidemia and associated diseases is a health priority. Natural products, such as the medicinal mushroom Ganoderma lucidum (Gl), have demonstrated hypocholesterolemic, prebiotic and antidiabetic properties. However, the underlying transcriptomic mechanisms by which Gl exerts bioactivities are not completely understood. We report a comprehensive hepatic and renal transcriptome profiling of C57BL/6 mice under the consumption of a high-cholesterol diet and two standardized Gl extracts obtained from basidiocarps cultivated on conventional substrate (Gl-1) or substrate containing acetylsalicylic acid (ASA; Gl-2). We showed that Gl extracts modulate relevant metabolic pathways involving the restriction of lipid biosynthesis and the enrichment of lipid degradation and secretion. The Gl-2 extract exerts a major modulation over gene expression programs showing the highest similarity with simvastatin druggable-target-genes and these are enriched more in processes related to human obesity alterations in the liver. We further show a subset of Gl-modulated genes correlated with Lactobacillus enrichment and the reduction of circulating cholesterol-derived fats. Moreover, Gl extracts induce a significant decrease of macrophage lipid storage, which occurs concomitantly with the down-modulation of Fasn and Elovl6. Collectively, this evidence suggests a new link between Gl hypocholesterolemic and prebiotic activity, revealing thereby that standardized Mexican Gl extracts are a novel transcriptome modulator to prevent metabolic disorders associated with hypercholesterolemia.
Collapse
|
39
|
Satitsri S, Muanprasat C. Chitin and Chitosan Derivatives as Biomaterial Resources for Biological and Biomedical Applications. Molecules 2020; 25:molecules25245961. [PMID: 33339290 PMCID: PMC7766609 DOI: 10.3390/molecules25245961] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/30/2023] Open
Abstract
Chitin is a long-chain polymer of N-acetyl-glucosamine, which is regularly found in the exoskeleton of arthropods including insects, shellfish and the cell wall of fungi. It has been known that chitin can be used for biological and biomedical applications, especially as a biomaterial for tissue repairing, encapsulating drug for drug delivery. However, chitin has been postulated as an inducer of proinflammatory cytokines and certain diseases including asthma. Likewise, chitosan, a long-chain polymer of N-acetyl-glucosamine and d-glucosamine derived from chitin deacetylation, and chitosan oligosaccharide, a short chain polymer, have been known for their potential therapeutic effects, including anti-inflammatory, antioxidant, antidiarrheal, and anti-Alzheimer effects. This review summarizes potential utilization and limitation of chitin, chitosan and chitosan oligosaccharide in a variety of diseases. Furthermore, future direction of research and development of chitin, chitosan, and chitosan oligosaccharide for biomedical applications is discussed.
Collapse
|
40
|
The Impact of Mushroom Polysaccharides on Gut Microbiota and Its Beneficial Effects to Host: A Review. Carbohydr Polym 2020; 250:116942. [DOI: 10.1016/j.carbpol.2020.116942] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
|
41
|
Changes in the Gut Microbiota are Associated with Hypertension, Hyperlipidemia, and Type 2 Diabetes Mellitus in Japanese Subjects. Nutrients 2020; 12:nu12102996. [PMID: 33007825 PMCID: PMC7601322 DOI: 10.3390/nu12102996] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/11/2022] Open
Abstract
The human gut microbiota is involved in host health and disease development. Therefore, lifestyle-related diseases such as hypertension (HT), hyperlipidemia (HL), and type 2 diabetes mellitus (T2D) may alter the composition of gut microbiota. Here, we investigated gut microbiota changes related to these diseases and their coexistence. This study involved 239 Japanese subjects, including healthy controls (HC). The fecal microbiota was analyzed through the isolation of bacterial genomic DNA obtained from fecal samples. Although there were no significant differences in the microbial structure between groups, there was a significant difference in the α-diversity between HC and the patients in whom two diseases coexisted. Moreover, Actinobacteria levels were significantly increased, whereas Bacteroidetes levels were significantly decreased in all disease groups. At the genus level, Bifidobacterium levels were significantly increased in the HL and T2D groups, as were those of Collinsella in all disease groups. In contrast, Alistipes levels were significantly lower in the HL group. Furthermore, metabolic enzyme families were significantly increased in all disease groups. Interestingly, the structure and function of the gut microbiota showed similar profiles in all the studied diseases. In conclusion, several changes in the structure of the gut microbiota are associated with T2D, HT, and HL in Japanese subjects.
Collapse
|
42
|
Xiao H, Fang Z, He X, Ding P, Cao Y, Chan S, Hou S, Liang J. Recombinant ling zhi-8 enhances Tregs function to restore glycemic control in streptozocin-induced diabetic rats. J Pharm Pharmacol 2020; 72:1946-1955. [PMID: 32803752 DOI: 10.1111/jphp.13360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/25/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To explore the effect of recombinant LZ-8 (rLZ-8) on streptozocin (STZ)-induced diabetic rats and further illustrate its underlying mechanism. METHODS Rats were intraperitoneally injected with single-dose STZ 50 mg/kg for induction of type 1 diabetes (T1D), and then, the diabetic rats were treated with rLZ-8 for 3 months. The clinical symptoms, fasting blood glucose, insulin, cytokines, histopathology, flow cytometry and immunofluorescence were used to evaluate the therapeutic effect and underlying mechanism of rLZ-8 on alleviating diabetes mellitus (DM). KEY FINDINGS Treatment with rLZ-8 obviously alleviated the clinical symptoms of T1D and dose-dependently reduced the levels of blood glucose, blood lipid and haemoglobin A1c (HbA1c) in diabetic rat model. Meanwhile, rLZ-8 markedly increased insulin secretion and protected against STZ-induced pancreatic tissue injury. Additionally, rLZ-8 dramatically inhibited the levels of TNF-α and IL-1β, and obviously increased the level of IL-10 in serum and pancreas. Further investigation indicated that rLZ-8 treatment significantly increased the number of regulatory T cells (Tregs) and up-regulated the expression of Foxp3 to restore balance between anti-inflammatory and inflammatory cytokines. CONCLUSIONS These data suggest that rLZ-8 can antagonize STZ-induced T1D, and its mechanism may be related to inhibit inflammation and enhance Tregs generation.
Collapse
Affiliation(s)
- Hongyu Xiao
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhi Fang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xueling He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ping Ding
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yongkai Cao
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Shamyuen Chan
- Shenzhen Fan Mao Pharmaceutical Co., Limited, Shenzhen, China
| | - Shaozhen Hou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jian Liang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
43
|
Ishikawa H, Ino S, Nakashima T, Matsuo H, Takahashi Y, Kohda C, Ōmura S, Iyoda M, Tanaka K. Oral administration of trehangelin-A alleviates metabolic disorders caused by a high-fat diet through improvement of lipid metabolism and restored beneficial microbiota. Obes Res Clin Pract 2020; 14:360-367. [PMID: 32620362 DOI: 10.1016/j.orcp.2020.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/08/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
The present study investigated whether or not the oral administration of trehangelin-A (THG-A) is effective for metabolic disorders caused by a high-fat diet, as we previously showed that the intraperitoneal administration of THG-A improved metabolic disorders caused by a high-fat diet. Mice received a control diet or high-fat diet for eight weeks. Concurrently, mice were orally administered 0.2 ml/mouse phosphate-buffered saline (PBS) or 1 or 10 mg/0.2 ml/mouse of THG-A once daily during the experiment. The weight gain caused by a high-fat diet was significantly suppressed by oral THG-A compared to a high-fat diet without THG-A. In addition, at eight weeks after starting the diet, the increased plasma total-cholesterol (T-CHO) and low-density lipoprotein-cholesterol (LDL-C) levels caused by a high-fat diet were significantly reduced by 10 mg/mouse THG-A and tended to attenuated by 1 mg/mouse THG-A. The LDL receptor and CYP7A1 mRNA expression in liver associated with lipid metabolism for reducing plasma LDL-C levels was significantly enhanced by oral THG-A. In contrast, oral THG-A exerted no marked effects on mice fed the control diet. The dysbiosis of a high-fat diet fed mice, which is in the form of an increased Firmicutes-to-Bacteroidetes ratio, also recovered, and the high-fat diet induced decreased levels of Bacteroides and Akkermansia genera, which are beneficial microbiota against metabolic disorders, were also restored by oral THG-A. These results indicate that oral THG-A administration acts on metabolic disorders by improving the lipid metabolism and restoring beneficial microbiota to resolve high-fat diet induced dysbiosis.
Collapse
Affiliation(s)
- Hiroki Ishikawa
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Satoshi Ino
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Takuji Nakashima
- Kitasato Institute for Life Sciences, Kitasato University, Minato-ku, Tokyo 108-8641, Japan; Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo 108-8641, Japan
| | - Hirotaka Matsuo
- Kitasato Institute for Life Sciences, Kitasato University, Minato-ku, Tokyo 108-8641, Japan; Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo 108-8641, Japan
| | - Yōko Takahashi
- Kitasato Institute for Life Sciences, Kitasato University, Minato-ku, Tokyo 108-8641, Japan
| | - Chikara Kohda
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Satoshi Ōmura
- Kitasato Institute for Life Sciences, Kitasato University, Minato-ku, Tokyo 108-8641, Japan
| | - Masayuki Iyoda
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Kazuo Tanaka
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
44
|
Lopez-Santamarina A, Mondragon ADC, Lamas A, Miranda JM, Franco CM, Cepeda A. Animal-Origin Prebiotics Based on Chitin: An Alternative for the Future? A Critical Review. Foods 2020; 9:E782. [PMID: 32545663 PMCID: PMC7353569 DOI: 10.3390/foods9060782] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
The human gut microbiota has been revealed in recent years as a factor that plays a decisive role in the maintenance of human health, as well as in the development of many non-communicable diseases. This microbiota can be modulated by various dietary factors, among which complex carbohydrates have a great influence. Although most complex carbohydrates included in the human diet come from vegetables, there are also options to include complex carbohydrates from non-vegetable sources, such as chitin and its derivatives. Chitin, and its derivatives such as chitosan can be obtained from non-vegetable sources, the best being insects, crustacean exoskeletons and fungi. The present review offers a broad perspective of the current knowledge surrounding the impacts of chitin and its derived polysaccharides on the human gut microbiota and the profound need for more in-depth investigations into this topic. Overall, the effects of whole insects or meal on the gut microbiota have contradictory results, possibly due to their high protein content. Better results are obtained for the case of chitin derivatives, regarding both metabolic effects and effects on the gut microbiota composition.
Collapse
Affiliation(s)
| | | | | | | | | | - Alberto Cepeda
- Laboratorio de Higiene Inspección y Control de Alimentos. Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.L.-S.); (A.d.C.M.); (A.L.); (J.M.M.); (C.M.F.)
| |
Collapse
|
45
|
Villette R, Kc P, Beliard S, Salas Tapia MF, Rainteau D, Guerin M, Lesnik P. Unraveling Host-Gut Microbiota Dialogue and Its Impact on Cholesterol Levels. Front Pharmacol 2020; 11:278. [PMID: 32308619 PMCID: PMC7145900 DOI: 10.3389/fphar.2020.00278] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Disruption in cholesterol metabolism, particularly hypercholesterolemia, is a significant cause of atherosclerotic cardiovascular disease. Large interindividual variations in plasma cholesterol levels are traditionally related to genetic factors, and the remaining portion of their variance is accredited to environmental factors. In recent years, the essential role played by intestinal microbiota in human health and diseases has emerged. The gut microbiota is currently viewed as a fundamental regulator of host metabolism and of innate and adaptive immunity. Its bacterial composition but also the synthesis of multiple molecules resulting from bacterial metabolism vary according to diet, antibiotics, drugs used, and exposure to pollutants and infectious agents. Microbiota modifications induced by recent changes in the human environment thus seem to be a major factor in the current epidemic of metabolic/inflammatory diseases (diabetes mellitus, liver diseases, inflammatory bowel disease, obesity, and dyslipidemia). Epidemiological and preclinical studies report associations between bacterial communities and cholesterolemia. However, such an association remains poorly investigated and characterized. The objectives of this review are to present the current knowledge on and potential mechanisms underlying the host-microbiota dialogue for a better understanding of the contribution of microbial communities to the regulation of cholesterol homeostasis.
Collapse
Affiliation(s)
- Remy Villette
- INSERM, UMRS U1166, "Integrative Biology of Atherosclerosis" and Sorbonne Université, Paris, France
| | - Pukar Kc
- INSERM, UMRS U1166, "Integrative Biology of Atherosclerosis" and Sorbonne Université, Paris, France
| | - Sophie Beliard
- Aix-Marseille Université, INSERM U1263, INRA, C2VN, Marseille, France.,APHM, La Conception Hospital, Marseille, France
| | | | - Dominique Rainteau
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint Antoine, Département de Métabolomique Clinique, Paris, France
| | - Maryse Guerin
- INSERM, UMRS U1166, "Integrative Biology of Atherosclerosis" and Sorbonne Université, Paris, France
| | - Philippe Lesnik
- INSERM, UMRS U1166, "Integrative Biology of Atherosclerosis" and Sorbonne Université, Paris, France
| |
Collapse
|