1
|
Yang K, Li G, Li Q, Wang W, Zhao X, Shao N, Qiu H, Liu J, Xu L, Zhao J. Distribution of gut microbiota across intestinal segments and their impact on human physiological and pathological processes. Cell Biosci 2025; 15:47. [PMID: 40241220 PMCID: PMC12001467 DOI: 10.1186/s13578-025-01385-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
In recent years, advancements in metagenomics, metabolomics, and single-cell sequencing have enhanced our understanding of the intricate relationships between gut microbiota and their hosts. Gut microbiota colonize humans from birth, with their initial composition significantly influenced by the mode of delivery and feeding method. During the transition from infancy to early childhood, exposure to a diverse diet and the maturation of the immune system lead to the gradual stabilization of gut microbiota's composition and distribution. Numerous studies have demonstrated that gut microbiota can influence a wide range of physiological functions and pathological processes by interacting with various tissues and organs through the gut-organ axis. Different intestinal segments exhibit unique physical and chemical conditions, which leads to the formation of vertical gradients along the intestinal tract: aerobes and facultative aerobes mainly live in the small intestine and anaerobic bacteria mainly live in the large intestine, and horizontal gradients: mucosa-associated microbiota and lumen-associated microbiota. In this review, we systematically summarize the distribution characteristics of gut microbiota across six intestinal segments: duodenum, jejunum, ileum, cecum, colon, and rectum. We also draw a conclusion that gut microbiota distributed in different intestinal segments affect the progression of different diseases. We hope to elucidate the role of microbiota at specific anatomic sites within the gut in precisely regulating the processes of particular diseases, thereby providing a solid foundation for developing novel diagnostic and therapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Ke Yang
- The First Clinical Institute, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Guangqin Li
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Qihong Li
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Wei Wang
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xu Zhao
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Guizhou University Medical College, Guiyang, 550025, Guizhou, China
| | - Nan Shao
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Hui Qiu
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Jing Liu
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Lin Xu
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| | - Juanjuan Zhao
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
2
|
Mahmoudi Ghehsareh M, Asri N, Gholam-Mostafaei FS, Houri H, Forouzesh F, Ahmadipour S, Jahani- Sherafat S, Rostami-Nejad M, Mansueto P, Seidita A. The correlation between fecal microbiota profiles and intracellular junction genes expression in young Iranian patients with celiac disease. Tissue Barriers 2025; 13:2347766. [PMID: 38695199 PMCID: PMC11970794 DOI: 10.1080/21688370.2024.2347766] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 01/03/2025] Open
Abstract
Celiac disease (CD) is characterized by the disruption of the intestinal barrier integrity and alterations in the microbiota composition. This study aimed to evaluate the changes in the fecal microbiota profile and mRNA expressions of intracellular junction-related genes in pediatric patients with CD compared to healthy controls (HCs). Thirty treated CD patients, 10 active CD, and 40 HCs were recruited. Peripheral blood (PB) and fecal samples were collected. Microbiota analysis was performed using quantitative real-time PCR (qPCR) test. The mRNA expressions of ZO-1, occludin, β-catenin, E-cadherin, and COX-2 were also evaluated. In active and treated CD patients, the PB expression levels of ZO-1 (p = 0.04 and 0.002, respectively) and β-catenin (p = 0.006 and 0.02, respectively) were lower than in HCs. PB Occludin's level was upregulated in both active and treated CD patients compared to HCs (p = 0.04 and 0.02, respectively). However, PB E-cadherin and COX-2 expression levels and fecal mRNA expressions of ZO-1, occludin, and COX-2 did not differ significantly between cases and HCs (P˃0.05). Active CD patients had a higher relative abundance of the Firmicutes (p = 0.04) and Actinobacteria (p = 0.03) phyla compared to treated subjects. The relative abundance of Veillonella (p = 0.04) and Staphylococcus (p = 0.01) genera was lower in active patients in comparison to HCs. Researchers should explore the precise impact of the gut microbiome on the molecules and mechanisms involved in intestinal damage of CD. Special attention should be given to Bifidobacteria and Enterobacteriaceae, as they have shown a significant correlation with the expression of tight junction-related genes.
Collapse
Affiliation(s)
- Mohadeseh Mahmoudi Ghehsareh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medica lSciences, Islamic Azad University, Tehran, Iran
| | - Nastaran Asri
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Sadat Gholam-Mostafaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Flora Forouzesh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medica lSciences, Islamic Azad University, Tehran, Iran
| | - Shokoufeh Ahmadipour
- Department of Pediatric, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Somayeh Jahani- Sherafat
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pasquale Mansueto
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Aurelio Seidita
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| |
Collapse
|
3
|
Luz VCC, Pereira SG. Celiac disease gut microbiome studies in the third millennium: reviewing the findings and gaps of available literature. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1413637. [PMID: 39355139 PMCID: PMC11444026 DOI: 10.3389/fmedt.2024.1413637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/29/2024] [Indexed: 10/03/2024] Open
Abstract
Celiac disease is an autoimmune enteropathy caused by the ingestion of minute amounts of gluten in a subset of genetically predisposed individuals. Its onset occurs at different ages and with variable symptoms. The gut microbiome may contribute to this variability. This review aims to provide an overview of the available research on celiac disease gut microbiome and identify the knowledge gap that could guide future studies. Following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-analysis extension for Scoping Reviews (PRISMA-ScR), four electronic databases were searched for literature from January 2000 to July 2023 addressing celiac disease gut microbiome characterization using next-generation sequencing (NGS) approaches. From the 489 publications retrieved, 48 publications were selected and analyzed, focusing on sample characterization (patients, controls, and tissues) and methodologies used for NGS microbiome analysis and characterization. The majority of the selected publications regarded children and adults, and four were randomized clinical trials. The number of participants per study greatly varied and was typically low. Feces were the most frequently tested sample matrix, and duodenal samples were analyzed in one-third of the studies. Incomplete and diverse information on the methodological approaches and gut microbiome results was broadly observed. While similar trends regarding the relative abundance of some phyla, such as Pseudomonadota (former Proteobacteria), were detected in some studies, others contradicted those results. The observed high variability of technical approaches and possibly low power and sample sizes may prevent reaching a consensus on celiac disease gut microbiome composition. Standardization of research protocols to allow reproducibility and comparability is required, as interdisciplinary collaborations to further data analysis, interpretation, and, more importantly, health outcome prediction or improvement.
Collapse
Affiliation(s)
| | - Sónia Gonçalves Pereira
- Center for Innovative Care and Health Technology, School of Health Sciences, Polytechnic of Leiria, Leiria, Portugal
| |
Collapse
|
4
|
Annunziato A, Vacca M, Cristofori F, Dargenio VN, Celano G, Francavilla R, De Angelis M. Celiac Disease: The Importance of Studying the Duodenal Mucosa-Associated Microbiota. Nutrients 2024; 16:1649. [PMID: 38892582 PMCID: PMC11174386 DOI: 10.3390/nu16111649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
There is increasing evidence indicating that changes in both the composition and functionality of the intestinal microbiome are closely associated with the development of several chronic inflammatory diseases, with celiac disease (CeD) being particularly noteworthy. Thanks to the advent of culture-independent methodologies, the ability to identify and quantify the diverse microbial communities residing within the human body has been significantly improved. However, in the context of CeD, a notable challenge lies in characterizing the specific microbiota present on the mucosal surfaces of the intestine, rather than relying solely on fecal samples, which may not fully represent the relevant microbial populations. Currently, our comprehension of the composition and functional importance of mucosa-associated microbiota (MAM) in CeD remains an ongoing field of research because the limited number of available studies have reported few and sometimes contradictory results. MAM plays a crucial role in the development and progression of CeD, potentially acting as both a trigger and modulator of the immune response within the intestinal mucosa, given its proximity to the epithelial cells and direct interaction. According to this background, this review aims to consolidate the existing literature specifically focused on MAM in CeD. By elucidating the complex interplay between the host immune system and the gut microbiota, we aim to pave the way for new interventions based on novel therapeutic targets and diagnostic biomarkers for MAM in CeD.
Collapse
Affiliation(s)
- Alessandro Annunziato
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (A.A.); (G.C.); (M.D.A.)
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (A.A.); (G.C.); (M.D.A.)
| | - Fernanda Cristofori
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari Aldo Moro, 70126 Bari, Italy; (F.C.); (V.N.D.); (R.F.)
| | - Vanessa Nadia Dargenio
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari Aldo Moro, 70126 Bari, Italy; (F.C.); (V.N.D.); (R.F.)
| | - Giuseppe Celano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (A.A.); (G.C.); (M.D.A.)
| | - Ruggiero Francavilla
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari Aldo Moro, 70126 Bari, Italy; (F.C.); (V.N.D.); (R.F.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (A.A.); (G.C.); (M.D.A.)
| |
Collapse
|
5
|
Awe T, Fasawe A, Sawe C, Ogunware A, Jamiu AT, Allen M. The modulatory role of gut microbiota on host behavior: exploring the interaction between the brain-gut axis and the neuroendocrine system. AIMS Neurosci 2024; 11:49-62. [PMID: 38617041 PMCID: PMC11007408 DOI: 10.3934/neuroscience.2024004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024] Open
Abstract
The brain-gut axis refers to the communication between the central nervous system and the gastrointestinal tract, with the gut microbiome playing a crucial role. While our understanding of the interaction between the gut microbiome and the host's physiology is still in its nascent stage, evidence suggests that the gut microbiota can indeed modulate host behavior. Understanding the specific mechanisms by which the gut microbiota community modulates the host's behavior remains the focus of present and future neuro-gastroenterology studies. This paper reviews several pieces of evidence from the literature on the impact of gut microbiota on host behavior across animal taxa. We explore the different pathways through which this modulation occurs, with the aim of deepening our understanding of the fascinating relationship between the gut microbiome and the central nervous system.
Collapse
Affiliation(s)
- Temitope Awe
- Department of Cell Biology and Genetics, University of Lagos, Lagos, Nigeria
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Ayoola Fasawe
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Caleb Sawe
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Adedayo Ogunware
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | | | - Michael Allen
- Department of Physiology, College of Medicine, Lagos State University, Lagos, Nigeria
| |
Collapse
|
6
|
Mikulska J, Pietrzak D, Rękawek P, Siudaj K, Walczak-Nowicka ŁJ, Herbet M. Celiac disease and depressive disorders as nutritional implications related to common factors - A comprehensive review. Behav Brain Res 2024; 462:114886. [PMID: 38309373 DOI: 10.1016/j.bbr.2024.114886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Celiac disease (CD) is an immune-mediated disease affecting the small intestine. The only treatment strategy for CD is the gluten-free diet (GFD). One of the more common mental disorders in CD patients is major depressive disorder (MDD). The influence of GFD on the occurrence of MDD symptoms in patients with CD will be evaluated. This diet often reduces nutritional deficiencies in these patients and also helps to reduce depressive symptoms. Both disease entities are often dominated by the same deficiencies of nutrients such as iron, zinc, selenium, iodine, or B and D vitamins. Deficiencies of particular components in CD can favor MDD and vice versa. Gluten can adversely affect the mental state of patients without CD. Also, intestinal microbiota may play an important role in the described process. This work aims to comprehensively assess the common factors involved in the pathomechanisms of MDD and CD, with particular emphasis on nutrient imbalances. Given the complexity of both disease entities, and the many common links, more research related to improving mental health in these patients and the implementation of a GFD would need to be conducted, but it appears to be a viable pathway to improving the quality of life and health of people struggling with CD and MDD. Therefore, probiotics, micronutrients, macronutrients, and vitamin supplements are recommended to reduce the risk of MDD, given that they may alleviate the symptoms of both these disease entities. In turn, in patients with MDD, it is worth considering testing for CD.
Collapse
Affiliation(s)
- Joanna Mikulska
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland
| | - Diana Pietrzak
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland
| | - Paweł Rękawek
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland
| | - Krystian Siudaj
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland
| | - Łucja Justyna Walczak-Nowicka
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland.
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland
| |
Collapse
|
7
|
Shuai He, Zhang KH, Jin QY, Wang QJ, Huang J, Li JJ, Guo Y, Liu P, Liu ZY, Liu D, Geng SX, Li Q, Li MY, Liu M, Wu ZH. The effects of ambient temperature and feeding regimens on cecum bacteria composition and circadian rhythm in growing rabbits. Front Microbiol 2024; 15:1344992. [PMID: 38476945 PMCID: PMC10927733 DOI: 10.3389/fmicb.2024.1344992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
Seasonal environmental shifts and improper eating habits are the important causes of diarrhea in children and growing animals. Whether adjusting feeding time at varying temperatures can modify cecal bacterial structure and improve diarrhea remains unknown. Three batches growing rabbits with two groups per batch were raised under different feeding regimens (fed at daytime vs. nighttime) in spring, summer and winter separately, and contents were collected at six time points in 1 day and used 16S rRNA sequencing to investigate the effects of feeding regimens and season on the composition and circadian rhythms of cecum bacteria. Randomized forest regression screened 12 genera that were significantly associated with seasonal ambient temperature changes. Nighttime feeding reduced the abundance of the conditionally pathogenic bacteria Desulfovibrio and Alistipes in summer and Campylobacter in winter. And also increases the circadian rhythmic Amplicon Sequence Variants in the cecum, enhancing the rhythm of bacterial metabolic activity. This rhythmic metabolic profile of cecum bacteria may be conducive to the digestion and absorption of nutrients in the host cecum. In addition, this study has identified 9 genera that were affected by the combination of seasons and feeding time. In general, we found that seasons and feeding time and their combinations affect cecum composition and circadian rhythms, and that daytime feeding during summer and winter disrupts the balance of cecum bacteria of growing rabbits, which may adversely affect cecum health and induce diarrhea risk.
Collapse
Affiliation(s)
- Shuai He
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ke-Hao Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiong-Yu Jin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiang-Jun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jie Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jun-Jiao Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Handan Livestock Technology Extension Station, Handan, China
| | - Yao Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Peng Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong-Ying Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shi-Xia Geng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qin Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ming-Yong Li
- National Rabbit Industry Technology System Qingdao Comprehensive Experimental Station, Qingdao, China
| | - Man Liu
- National Rabbit Industry Technology System Qingdao Comprehensive Experimental Station, Qingdao, China
| | - Zhong-Hong Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Marasco G, Buttitta F, Cremon C, Barbaro MR, Stanghellini V, Barbara G. The role of microbiota and its modulation in colonic diverticular disease. Neurogastroenterol Motil 2023; 35:e14615. [PMID: 37243442 DOI: 10.1111/nmo.14615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/06/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Diverticular disease (DD) is a common condition in Western countries. The role of microbiota in the pathogenesis of DD and its related symptoms has been frequently postulated since most complications of this disease are bacteria-driven and most therapies rely on microbiota modulation. Preliminary data showed fecal microbial imbalance in patients with DD, particularly when symptomatic, with an increase of pro-inflammatory and potentially pathogenetic bacteria. In addition, bacterial metabolic markers can mirror specific pathways of the disease and may be even used for monitoring treatment effects. All treatments currently suggested for DD can affect microbiota structure and metabolome compositions. PURPOSE Sparse evidence is available linking gut microbiota perturbations, diverticular disease pathophysiology, and symptom development. We aimed to summarize the available knowledge on gut microbiota evaluation in diverticular disease, with a focus on symptomatic uncomplicated DD, and the relative treatment strategies.
Collapse
Affiliation(s)
- Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Francesco Buttitta
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Hurych J, Oscarsson E, Håkanson Å, Jirků-Pomajbíková K, Jirků M, Aronson CA, Cinek O, Agardh D. Effects of Lactiplantibacillus plantarum and Lacticaseibacillus paracasei supplementation on the single-cell fecal parasitome in children with celiac disease autoimmunity: a randomized, double-blind placebo-controlled clinical trial. Parasit Vectors 2023; 16:411. [PMID: 37946274 PMCID: PMC10636941 DOI: 10.1186/s13071-023-06027-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Lactiplantibacillus plantarum HEAL9 and Lacticaseibacillus paracasei 8700:2 positively affect the fecal bacteriome in children with celiac disease autoimmunity after 6 months of supplementation. The aim of the present investigation was to study the effects of Lactiplantibacillus plantarum HEAL9 and Lacticaseibacillus paracasei 8700:2 on the single-cell parasitome, with a primary focus on Blastocystis. METHODS Stool samples were collected from 78 Swedish children with celiac disease autoimmunity participating in a randomized, double-blind, placebo-controlled clinical trial to either receive a mixture of supplementation with L. plantarum HEAL9 and L. paracasei 8700:2 (n = 38) or placebo (n = 40). A total of 227 stool samples collected at baseline and after 3 and 6 months of intervention, respectively, were retrospectively analyzed for Blastocystis by quantitative real-time PCR and subtyped by massively parallel amplicon sequencing. Other single-cell parasites were detected by untargeted 18S rDNA amplicon sequencing and verified by real-time PCR. The relation between the parasites and the bacteriome community was characterized by using 16S rDNA profiling of the V3-V4 region. RESULTS Three different single-cell protists were identified, of which the highest prevalence was found for Dientamoeba fragilis (23.1%, 18/78 children), followed by Blastocystis (15.4%, 12/78) and Entamoeba spp. (2.6%, 2/78). The quantity of the protists was stable over time and not affected by probiotic intervention (P = 0.14 for Blastocystis, P = 0.10 for D. fragilis). The positivity of the protists was associated with increased bacteriome diversity (measured by multiple indices, P < 0.03). Bacterial composition was influenced by the presence of the protists: positivity of Blastocystis was inversely associated with Akkermansia (at the levels of the genus as well as its family, order, class and phylum); P < 0.002), Faecalibacterium (P = 0.003) and Romboutsia (P = 0.029); positivity of D. fragilis was inversely associated with families Enterobacteriaceae (P = 0.016) and Coriobacteriaceae (P = 0.022) and genera Flavonifractor (P < 0.001), Faecalibacterium (P = 0.009), Lachnoclostridium (P = 0.029), Ruminococcus (P < 0.001) and Granulicatella (P = 0.018). CONCLUSIONS The prevalence of single-cell protists is low in children with celiac disease autoimmunity. The colonization was stable regardless of the probiotic intervention and associated with increased diversity of the fecal bacteriome but inversely associated with some beneficial bacteria.
Collapse
Affiliation(s)
- Jakub Hurych
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, Prague, Czechia
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University, Prague, Czechia
| | - Elin Oscarsson
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Åsa Håkanson
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | | | - Milan Jirků
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Carin Andrén Aronson
- Celiac Disease and Diabetes Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Ondřej Cinek
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, Prague, Czechia
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University, Prague, Czechia
| | - Daniel Agardh
- Celiac Disease and Diabetes Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.
| |
Collapse
|
10
|
Xu MM, Guo Y, Chen Y, Zhang W, Wang L, Li Y. Electro-acupuncture promotes gut motility and alleviates functional constipation by regulating gut microbiota and increasing butyric acid generation in mice. JOURNAL OF INTEGRATIVE MEDICINE 2023:S2095-4964(23)00042-0. [PMID: 37331860 DOI: 10.1016/j.joim.2023.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/17/2023] [Indexed: 06/20/2023]
Abstract
OBJECTIVE Abnormalities in the gut microbiota and intestinal short-chain fatty acid (SCFA) levels are implicated in the pathogenesis of functional constipation (FC). Electro-acupuncture (EA) has been shown to improve constipation-related symptoms and rebalance the gut microbiota. However, it is currently unknown whether the gut microbiota is a key mechanistic target for EA or how EA promotes gut motility by regulating the gut microbiota and SCFAs. Therefore, we assessed the effects of EA in FC mice and pseudo-germfree (PGF) mice to address these questions. METHODS Forty female Kunming mice were randomly separated into a normal control group (n = 8), an FC group (n = 8), an FC + EA group (n = 8), a PGF group (n = 8) and a PGF + EA group (n = 8). The FC group and FC + EA group were treated with diphenoxylate to establish the FC model; the PGF group and PGF + EA group were given an antibiotic cocktail to initiate the PGF model. After maintaining the model for 14 d, mice in the FC + EA and PGF + EA groups received EA stimulation at the ST25 and ST37 acupoints, once a day, 5 times per week, for 2 weeks. Fecal parameters and intestinal transit rate were calculated to assess the efficacy of EA on constipation and gastrointestinal motility. Colonic contents were used to quantify gut microbial diversity using 16S rRNA sequencing, and measure SCFA concentrations using gas chromatography-mass spectrometry. RESULTS EA significantly shortened the first black stool defecation time (P < 0.05) and increased the intestinal transit rate (P < 0.01), and fecal pellet number (P < 0.05), wet weight (P < 0.05) and water content (P < 0.01) over 8 h, compared with the FC group, showing that EA promoted gut motility and alleviated constipation. However, EA treatment did not reverse slow-transit colonic motility in PGF mice (P > 0.05), demonstrating that the gut microbiota may play a mechanistic role in the EA treatment of constipation. In addition, EA treatment restored the Firmicutes to Bacteroidetes ratio and significantly increased butyric acid generation in FC mice (P < 0.05), most likely due to the upregulation of Staphylococcaceae microorganisms (P < 0.01). CONCLUSION EA-mediated resolution of constipation occurs through rebalancing the gut microbiota and promoting butyric acid generation. Please cite this article as: Xu MM, Guo Y, Chen Y, Zhang W, Wang L, Li Y. Electro-acupuncture promotes gut motility and alleviates functional constipation by regulating gut microbiota and increasing butyric acid generation in mice. J Integr Med. 2023; Epub ahead of print.
Collapse
Affiliation(s)
- Ming-Min Xu
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China; School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Yu Guo
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Ying Chen
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Wei Zhang
- Office of Educational Administration, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Lu Wang
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Ying Li
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China.
| |
Collapse
|
11
|
Fenneman AC, Weidner M, Chen LA, Nieuwdorp M, Blaser MJ. Antibiotics in the pathogenesis of diabetes and inflammatory diseases of the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 2023; 20:81-100. [PMID: 36258032 PMCID: PMC9898198 DOI: 10.1038/s41575-022-00685-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
Antibiotic use is increasing worldwide. However, the use of antibiotics is clearly associated with changes in gut microbiome composition and function, and perturbations have been identified as potential environmental risk factors for chronic inflammatory disorders of the gastrointestinal tract. In this Review, we examine the association between the use of antibiotics and the onset and development of both type 1 and type 2 diabetes, inflammatory bowel disease, including ulcerative colitis and Crohn's disease, as well as coeliac disease and eosinophilic oesophagitis. We discuss the key findings of epidemiological studies, provide mechanistic insights into the pathways by which the gut microbiota might contribute to these diseases, and assess clinical trials investigating the effects of antibiotics. Such studies indicate that antibiotic exposures, varying in type, timing and dosage, could explain differences in disease risk. There seems to be a critical window in early life in which perturbation of the microbiome has a substantial effect on disease development. Identifying the antibiotic-perturbed gut microbiota as a factor that contributes to the pathophysiology of these inflammatory disorders might stimulate new approaches to prevention, diagnosis and treatment.
Collapse
Affiliation(s)
- Aline C Fenneman
- Department of Clinical and Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Melissa Weidner
- Department of Paediatrics, Rutgers University, New Brunswick, NJ, USA
| | - Lea Ann Chen
- Department of Medicine, Rutgers University, New Brunswick, NJ, USA
| | - Max Nieuwdorp
- Department of Clinical and Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Martin J Blaser
- Department of Medicine, Rutgers University, New Brunswick, NJ, USA.
- Department of Pathology and Laboratory Medicine, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
12
|
Girdhar K, Dogru YD, Huang Q, Yang Y, Tolstikov V, Raisingani A, Chrudinova M, Oh J, Kelley K, Ludvigsson JF, Kiebish MA, Palm NW, Ludvigsson J, Altindis E. Dynamics of the gut microbiome, IgA response, and plasma metabolome in the development of pediatric celiac disease. MICROBIOME 2023; 11:9. [PMID: 36639805 PMCID: PMC9840338 DOI: 10.1186/s40168-022-01429-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Celiac disease (CD) is an autoimmune disorder triggered by gluten consumption. Almost all CD patients possess human leukocyte antigen (HLA) DQ2/DQ8 haplotypes; however, only a small subset of individuals carrying these alleles develop CD, indicating the role of environmental factors in CD pathogenesis. The main objective of this study was to determine the contributory role of gut microbiota and microbial metabolites in CD onset. To this end, we obtained fecal samples from a prospective cohort study (ABIS) at ages 2.5 and 5 years. Samples were collected from children who developed CD after the final sample collection (CD progressors) and healthy children matched by age, HLA genotype, breastfeeding duration, and gluten-exposure time (n=15-16). We first used 16S sequencing and immunoglobulin-A sequencing (IgA-seq) using fecal samples obtained from the same children (i) 16 controls and 15 CD progressors at age 2.5 and (ii) 13 controls and 9 CD progressors at age 5. We completed the cytokine profiling, and plasma metabolomics using plasma samples obtained at age 5 (n=7-9). We also determined the effects of one microbiota-derived metabolite, taurodeoxycholic acid (TDCA), on the small intestines and immune cell composition in vivo. RESULTS CD progressors have a distinct gut microbiota composition, an increased IgA response, and unique IgA targets compared to healthy subjects. Notably, 26 plasma metabolites, five cytokines, and one chemokine were significantly altered in CD progressors at age 5. Among 26 metabolites, we identified a 2-fold increase in TDCA. TDCA treatment alone caused villous atrophy, increased CD4+ T cells, Natural Killer cells, and two important immunoregulatory proteins, Qa-1 and NKG2D expression on T cells while decreasing T-regulatory cells in intraepithelial lymphocytes (IELs) in C57BL/6J mice. CONCLUSIONS Pediatric CD progressors have a distinct gut microbiota composition, plasma metabolome, and cytokine profile before diagnosis. Furthermore, CD progressors have more IgA-coated bacteria and unique targets of IgA in their gut microbiota. TDCA feeding alone stimulates an inflammatory immune response in the small intestines of C57BJ/6 mice and causes villous atrophy, the hallmark of CD. Thus, a microbiota-derived metabolite, TDCA, enriched in CD progressors' plasma, has the potential to drive inflammation in the small intestines and enhance CD pathogenesis. Video Abstract.
Collapse
Affiliation(s)
- Khyati Girdhar
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA
| | | | - Qian Huang
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA
| | - Yi Yang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | | | - Amol Raisingani
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA
| | | | - Jaewon Oh
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA
| | - Kristina Kelley
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Paediatrics, Örebro University Hospital, Örebro, Sweden
| | | | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Johnny Ludvigsson
- Crown Princess Victoria Children's Hospital, Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, 58185, Linköping, SE, Sweden
| | - Emrah Altindis
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
13
|
Masucci L, D’Ippolito S, De Maio F, Quaranta G, Mazzarella R, Bianco DM, Castellani R, Inversetti A, Sanguinetti M, Gasbarrini A, Scambia G, Di Simone N. Celiac Disease Predisposition and Genital Tract Microbiota in Women Affected by Recurrent Pregnancy Loss. Nutrients 2023; 15:221. [PMID: 36615877 PMCID: PMC9823693 DOI: 10.3390/nu15010221] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
The incidence of Idiopathic Recurrent Pregnancy Loss (RPL) is doubled in patients suffering from Celiac Disease (CD) compared to healthy populations. CD genetic components are HLA class II genes known as HLA-DQ2 and DQ8. Genetically susceptible women can remain asymptomatic even though they are exposed to a doubled risk of RPL compared to the general population. Furthermore, CD has been associated with microbiota alterations. The aim of this study is to evaluate endometrial and vaginal microbiota in HLA-DQ2/DQ8 positive and negative RPL patients compared to healthy pregnant women. Endometrial and vaginal microbiota of 3 subgroups were evaluated: 15 HLA-DQ2/DQ8 positive RPL women, 25 HLA DQ2/DQ8 negative RPL women (for a total of 40 RPL women) and 7 healthy fertile controls with previous uncomplicated pregnancies (all HLA-DQ2/DQ8 negative). The 2 RPL subgroups (HLA-DQ2/DQ8 positive and negative) showed a different endometrial and vaginal composition in the Lactobacillacae family compared to controls: Lactobacillus acidophilus was absent both in the vaginal and endometrial samples of RPL women, while Lactobaciluus iners, which can favor a less stable vaginal microbiota, was found only in RPL women (26.4% in HLA DQ2/DQ8 positive and 22.1% HLA DQ2/DQ8 negative) in both the vaginal and endometrial districts. In conclusion, both HLA DQ2/DQ8 positive-RPL and HLA DQ2/DQ8 negative-RPL women showed different endometrial and vaginal microbiota composition compared to healthy controls.
Collapse
Affiliation(s)
- Luca Masucci
- Dipartimento di Scienze Biotecnologiche Di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Dipartimento Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), 00168 Rome, Italy
| | - Silvia D’Ippolito
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), 00168 Rome, Italy
| | - Flavio De Maio
- Dipartimento Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), 00168 Rome, Italy
| | - Gianluca Quaranta
- Dipartimento Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), 00168 Rome, Italy
| | - Roberta Mazzarella
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), 00168 Rome, Italy
| | - Delia Mercedes Bianco
- Dipartimento di Scienze Biotecnologiche Di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Roberta Castellani
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), 00168 Rome, Italy
| | - Annalisa Inversetti
- Humanitas University Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche Di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Dipartimento Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), 00168 Rome, Italy
| | - Antonio Gasbarrini
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giovanni Scambia
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), 00168 Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Nicoletta Di Simone
- Humanitas University Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| |
Collapse
|
14
|
Dewala S, Bodkhe R, Nimonkar Y, Prakash OM, Ahuja V, Makharia GK, Shouche YS. Human small-intestinal gluten-degrading bacteria and its potential implication in celiac disease. J Biosci 2023; 48:18. [PMID: 37309172 DOI: 10.1007/s12038-023-00337-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/11/2023] [Indexed: 08/30/2023]
Abstract
Celiac disease (CeD) is an immune-mediated chronic disorder triggered by the ingestion of wheat gluten in genetically predisposed individuals. Gluten is a major food ingredient, infamously containing proline and glutamine-rich domains that are highly resistant to digestion by mammalian proteolytic enzymes. Thus, adhering to a gluten-free diet (GFD) is the only known treatment for CeD, albeit with many complications. Therefore, any therapy that eliminates the gluten immunogenic part before it reaches the small intestine is highly desirable. Probiotic therapy containing gluten-degrading bacteria (GDB) and their protease enzymes are possibly new approaches to treating CeD. Our study aimed to identify novel GDB from the duodenal biopsy of the first-degree relative (FDR) subjects (relatives of diseased individuals who are healthy but susceptible to celiac disease) with the potential to reduce gluten immunogenicity. Using the gluten agar plate technique, bacterial strains Brevibacterium casei NAB46 and Staphylococcus arlettae R2AA77 displaying glutenase activity were screened, identified, and characterized. Whole-genome sequencing found gluten-degrading prolyl endopeptidase (PEP) in the B. casei NAB46 genome and glutamyl endopeptidase (GEP) in the S. arlettae R2AA77 genome. Partially purified PEP has a specific activity of 1.15 U/mg, while GEP has a specific activity of 0.84 U/mg, which are, respectively, 6- and 9-fold times higher after concentrating the enzymes. Our results showed that these enzymes could hydrolyse immunotoxic gliadin peptides recognized in western blot using an anti-gliadin antibody. Additionally, a docking model was proposed for representative gliadin peptide PQPQLPYPQPQLP in the active site of the enzymes, where the residues of the N-terminal peptide extensively interact with the catalytic domain of the enzymes. These bacteria and their associated glutenase enzymes efficiently neutralize gliadin immunogenic epitopes, opening possibilities for their application as a dietary supplement in treating CeD patients.
Collapse
|
15
|
Ruigrok RAAA, Weersma RK, Vich Vila A. The emerging role of the small intestinal microbiota in human health and disease. Gut Microbes 2023; 15:2201155. [PMID: 37074215 PMCID: PMC10120449 DOI: 10.1080/19490976.2023.2201155] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/03/2023] [Indexed: 04/20/2023] Open
Abstract
The human gut microbiota continues to demonstrate its importance in human health and disease, largely owing to the countless number of studies investigating the fecal microbiota. Underrepresented in these studies, however, is the role played by microbial communities found in the small intestine, which, given the essential function of the small intestine in nutrient absorption, host metabolism, and immunity, is likely highly relevant. This review provides an overview of the methods used to study the microbiota composition and dynamics along different sections of the small intestine. Furthermore, it explores the role of the microbiota in facilitating the small intestine in its physiological functions and discusses how disruption of the microbial equilibrium can influence disease development. The evidence suggests that the small intestinal microbiota is an important regulator of human health and its characterization has the potential to greatly advance gut microbiome research and the development of novel disease diagnostics and therapeutics.
Collapse
Affiliation(s)
- Renate A. A. A. Ruigrok
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Agnihotri N, Mohajeri MH. Involvement of Intestinal Microbiota in Adult Neurogenesis and the Expression of Brain-Derived Neurotrophic Factor. Int J Mol Sci 2022; 23:ijms232415934. [PMID: 36555576 PMCID: PMC9783874 DOI: 10.3390/ijms232415934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Growing evidence suggests a possible involvement of the intestinal microbiota in generating new neurons, but a detailed breakdown of the microbiota composition is lacking. In this report, we systematically reviewed preclinical rodent reports addressing the connection between the composition of the intestinal microbiota and neurogenesis and neurogenesis-affecting neurotrophins in the hippocampus. Various changes in bacterial composition from low taxonomic resolution at the phylum level to high taxonomic resolution at the species level were identified. As for neurogenesis, studies predominantly used doublecortin (DCX) as a marker of newly formed neurons or bromodeoxyuridine (BrdU) as a marker of proliferation. Brain-derived neurotrophic factor (BDNF) was the only neurotrophin found researched in relation to the intestinal microbiota. Phylum Actinobacteria, genus Bifidobacterium and genus Lactobacillus found the strongest positive. In contrast, phylum Firmicutes, phylum Bacteroidetes, and family Enterobacteriaceae, as well as germ-free status, showed the strongest negative correlation towards neurogenesis or BDNF mRNA expression. Age, short-chain fatty acids (SCFA), obesity, and chronic stress were recurring topics in all studies identified. Overall, these findings add to the existing evidence of a connection between microbiota and processes in the brain. To better understand this interaction, further investigation based on analyses of higher taxonomic resolution and clinical studies would be a gain to the matter.
Collapse
|
17
|
Wagh SK, Lammers KM, Padul MV, Rodriguez-Herrera A, Dodero VI. Celiac Disease and Possible Dietary Interventions: From Enzymes and Probiotics to Postbiotics and Viruses. Int J Mol Sci 2022; 23:ijms231911748. [PMID: 36233048 PMCID: PMC9569549 DOI: 10.3390/ijms231911748] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022] Open
Abstract
Celiac Disease (CeD) is a chronic small intestinal immune-mediated enteropathy caused by the ingestion of dietary gluten proteins in genetically susceptible individuals. CeD is one of the most common autoimmune diseases, affecting around 1.4% of the population globally. To date, the only acceptable treatment for CeD is strict, lifelong adherence to a gluten-free diet (GFD). However, in some cases, GFD does not alter gluten-induced symptoms. In addition, strict adherence to a GFD reduces patients’ quality of life and is often a socio-economic burden. This narrative review offers an interdisciplinary overview of CeD pathomechanism and the limitations of GFD, focusing on current research on possible dietary interventions. It concentrates on the recent research on the degradation of gluten through enzymes, the modulation of the microbiome, and the different types of “biotics” strategies, from probiotics to the less explored “viromebiotics” as possible beneficial complementary interventions for CeD management. The final aim is to set the context for future research that may consider the role of gluten proteins and the microbiome in nutritional and non-pharmacological interventions for CeD beyond the sole use of the GFD.
Collapse
Affiliation(s)
- Sandip K. Wagh
- Department of Organic and Bioorganic Chemistry, Bielefeld University, 33615 Bielefeld, Germany
- Department of Biochemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India
| | | | - Manohar V. Padul
- Department of Biochemistry, The Institute of Science, Dr. Homi Bhabha State University, Mumbai 400032, India
| | | | - Veronica I. Dodero
- Department of Organic and Bioorganic Chemistry, Bielefeld University, 33615 Bielefeld, Germany
- Correspondence:
| |
Collapse
|
18
|
Wagh SK, Lammers KM, Padul MV, Rodriguez-Herrera A, Dodero VI. Celiac Disease and Possible Dietary Interventions: From Enzymes and Probiotics to Postbiotics and Viruses. Int J Mol Sci 2022. [PMID: 36233048 DOI: 10.3390/ijms231911748.pmid:36233048;pmcid:pmc9569549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Celiac Disease (CeD) is a chronic small intestinal immune-mediated enteropathy caused by the ingestion of dietary gluten proteins in genetically susceptible individuals. CeD is one of the most common autoimmune diseases, affecting around 1.4% of the population globally. To date, the only acceptable treatment for CeD is strict, lifelong adherence to a gluten-free diet (GFD). However, in some cases, GFD does not alter gluten-induced symptoms. In addition, strict adherence to a GFD reduces patients' quality of life and is often a socio-economic burden. This narrative review offers an interdisciplinary overview of CeD pathomechanism and the limitations of GFD, focusing on current research on possible dietary interventions. It concentrates on the recent research on the degradation of gluten through enzymes, the modulation of the microbiome, and the different types of "biotics" strategies, from probiotics to the less explored "viromebiotics" as possible beneficial complementary interventions for CeD management. The final aim is to set the context for future research that may consider the role of gluten proteins and the microbiome in nutritional and non-pharmacological interventions for CeD beyond the sole use of the GFD.
Collapse
Affiliation(s)
- Sandip K Wagh
- Department of Organic and Bioorganic Chemistry, Bielefeld University, 33615 Bielefeld, Germany
- Department of Biochemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India
| | | | - Manohar V Padul
- Department of Biochemistry, The Institute of Science, Dr. Homi Bhabha State University, Mumbai 400032, India
| | | | - Veronica I Dodero
- Department of Organic and Bioorganic Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
19
|
Kozhakhmetova A, Aidossov S, Kapassova A, Borsoldayeva K. Current knowledge and "myths" about celiac disease among physicians in the Republic of Kazakhstan: A countrywide cross-sectional study. Front Public Health 2022; 10:956135. [PMID: 36033766 PMCID: PMC9411637 DOI: 10.3389/fpubh.2022.956135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/25/2022] [Indexed: 01/24/2023] Open
Abstract
Background Celiac disease (CD) is a common genetically predisposed autoimmune condition affecting the gut and other organs. Disease awareness is one of the key components of early case identification. This study aimed to assess awareness about CD among primary care physicians, who are the front-liners in suspecting the diagnosis, and other medical specialists. Methods and findings The questionnaire for this survey-based study was created based on the latest international guidelines on CD and included a consent form, 5 general questions (age, gender, etc.), and 10 specific questions concerning CD. Overall, 232 respondents from 13 country provinces (out of 14) and two republican cities were recruited for this study. Of them, 110 (47.4%) were primary care physicians and 122 (52.6%) other medical specialists, including 10 (4.3%) gastroenterologists. A scoring system was used to classify the level of awareness of participants into 3 categories, namely, poor, fair, and good. Analysis of responses revealed poor awareness in 59.4% of physicians, associated with work in republican/province/district/rural/village hospitals (p = 0.004), male gender (p = 0.006), and age of 40-50 years (p = 0.02). The most common "myths" about CD were the following: "symptoms are always obvious in children" or "in adults" (92.5 or 88.4% of respondents, respectively); "genetic mutation HLA DQ2/DQ8 causes the development of CD in all carriers of the mutation" (51.3%); "CD is a disease of children only" (12.5%); and "is triggered by dairy products" (8.6%). Genotyping of HLA DQ genes has been recommended in case of CD suspicion by every third respondent and was advocated as a "golden standard" confirmatory test by every fifth respondent. A quarter of respondents revealed their incorrect treatment strategies: gluten-free diet for 1 month, dairy-free diet, Helicobacter pylori eradication therapy, or responded that did not know how to treat. Overall, 93.5% of respondents expressed intention to learn more about CD, while the rest 6.5% thought that they knew enough, although their knowledge was poor. Conclusion This study revealed a poor level of awareness among physicians in Kazakhstan and identified common misconceptions about CD, which potentially could lead to incorrect application of diagnostic tests, delay in diagnosis, and inefficient treatment. Development and implementation of educational programs as well as promotion of self-learning would increase awareness and unravel misconceptions.
Collapse
Affiliation(s)
- Aizhan Kozhakhmetova
- Biology Department, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | | | - Aissulu Kapassova
- General Practice Department, Astana Medical University, Nur-Sultan, Kazakhstan
| | | |
Collapse
|
20
|
Marasco G, Cremon C, Barbaro MR, Stanghellini V, Barbara G. Gut microbiota signatures and modulation in irritable bowel syndrome. MICROBIOME RESEARCH REPORTS 2022; 1:11. [PMID: 38045643 PMCID: PMC10688783 DOI: 10.20517/mrr.2021.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/27/2022] [Accepted: 02/15/2022] [Indexed: 12/05/2023]
Abstract
Irritable bowel syndrome (IBS) affects approximately one tenth of the general population and is characterized by abdominal pain associated with abnormalities in bowel habits. Visceral hypersensitivity, abnormal intestinal motor function, mucosal immune activation, and increased intestinal permeability concur to its pathophysiology. Psychological factors can influence symptom perception at the central nervous system level. In addition, recent evidence suggests that dysbiosis may be a key pathophysiological factor in patients with IBS. Increasing understanding of the pathophysiological mechanisms translates into new and more effective therapeutic approaches. Indeed, in line with this evidence, IBS therapies nowadays include agents able to modulate gut microbiota function and composition, such as diet, prebiotics, probiotics, and antibiotics. In addition, in the last decade, an increasing interest in fecal microbiota transplantation has been paid. An in-depth understanding of the intestinal microenvironment through accurate faucal microbiota and metabolite analysis may provide valuable insights into the pathophysiology of IBS, finally shaping new tailored IBS therapies.
Collapse
Affiliation(s)
- Giovanni Marasco
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum Università di Bologna, Bologna 40138, Italy
| | - Cesare Cremon
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Maria Raffaella Barbaro
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Vincenzo Stanghellini
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum Università di Bologna, Bologna 40138, Italy
| | - Giovanni Barbara
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum Università di Bologna, Bologna 40138, Italy
| |
Collapse
|
21
|
Guo X, Huang C, Xu J, Xu H, Liu L, Zhao H, Wang J, Huang W, Peng W, Chen Y, Nie Y, Zhou Y, Zhou Y. Gut Microbiota Is a Potential Biomarker in Inflammatory Bowel Disease. Front Nutr 2022; 8:818902. [PMID: 35127797 PMCID: PMC8814525 DOI: 10.3389/fnut.2021.818902] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD), is characterized by relapse and remission alternately. It remains a great challenge to diagnose and assess disease activity during IBD due to the lack of specific markers. While traditional biomarkers from plasma and stool, such as C-reactive protein (CRP), fecal calprotectin (FC), and S100A12, can be used to measure inflammation, they are not specific to IBD and difficult to determine an effective cut-off value. There is consensus that gut microbiota is crucial for intestinal dysbiosis is closely associated with IBD etiopathology and pathogenesis. Multiple studies have documented differences in the composition of gut microbiota between patients with IBD and healthy individuals, particularly regarding microbial diversity and relative abundance of specific bacteria. Patients with IBD have higher levels of Proteobacteria and lower amounts of Bacteroides, Eubacterium, and Faecalibacterium than healthy individuals. This review summarizes the pros and cons of using traditional and microbiota biomarkers to assess disease severity and treatment outcomes and addresses the possibility of using microbiota-focused interventions during IBD treatment. Understanding the role of microbial biomarkers in the assessment of disease activity and treatment outcomes has the potential to change clinical practice and lead to the development of more personalized therapies.
Collapse
Affiliation(s)
- Xue Guo
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chen Huang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Haoming Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Le Liu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Hailan Zhao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiaqi Wang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wenqi Huang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wu Peng
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ye Chen
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yuqiang Nie
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Youlian Zhou
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
22
|
Singh A, Kaur H, Midha V, Sood A. Microorganisms in the Pathogenesis and Management of Celiac Disease (CeD). ROLE OF MICROORGANISMS IN PATHOGENESIS AND MANAGEMENT OF AUTOIMMUNE DISEASES 2022:287-307. [DOI: 10.1007/978-981-19-4800-8_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
23
|
Nobel YR, Rozenberg F, Park H, Freedberg DE, Blaser MJ, Green PH, Uhlemann AC, Lebwohl B. Lack of Effect of Gluten Challenge on Fecal Microbiome in Patients With Celiac Disease and Non-Celiac Gluten Sensitivity. Clin Transl Gastroenterol 2021; 12:e00441. [PMID: 34928868 PMCID: PMC8691493 DOI: 10.14309/ctg.0000000000000441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/24/2021] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Celiac disease (CD) may be associated with gut microbial dysbiosis. Whether discrete gluten exposure in subjects with well-controlled disease on a gluten-free diet impacts the gut microbiome is unknown and may have implications for understanding disease activity and symptoms. We conducted a prospective study to evaluate the impact of gluten exposure on the gut microbiome in patients with CD and nonceliac gluten sensitivity (NCGS). METHODS Subjects with CD (n = 9) and NCGS (n = 8) previously on a gluten-free diet were administered a 14-day gluten challenge (5 g of gluten per day) and compared with controls (n = 8) on a usual gluten-containing diet. Stool was collected for fecal microbiome analysis using 16S rRNA gene and metagenomic sequencing before, during, and after the gluten challenge. Symptoms were assessed using 2 validated clinical scales. RESULTS Among subjects with CD and NCGS, there were no significant fecal microbial changes in response to gluten challenge. Gut microbiome composition differed among controls, subjects with CD, and subjects with NCGS at baseline, and these differences persisted despite gluten exposure. Gastrointestinal and general health symptoms reported by subjects with CD and NCGS were worst in the middle of gluten challenge and lessened by its end, with no consistent associations with gut microbiome composition. DISCUSSION Pre-existing fecal microbiome diversity was unaffected by gluten challenge in adult subjects with CD and NCGS. These findings suggest that current microbiome status is unrelated to current disease activity and disease severity.
Collapse
Affiliation(s)
- Yael R. Nobel
- Celiac Disease Center, Columbia University Irving Medical Center, New York, New York, USA;
| | - Felix Rozenberg
- Microbiome and Pathogen Genomics Collaborative Center, Columbia University Irving Medical Center, New York, New York, USA;
| | - Heekuk Park
- Microbiome and Pathogen Genomics Collaborative Center, Columbia University Irving Medical Center, New York, New York, USA;
| | - Daniel E. Freedberg
- Celiac Disease Center, Columbia University Irving Medical Center, New York, New York, USA;
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, New Jersey, USA;
| | - Peter H.R. Green
- Celiac Disease Center, Columbia University Irving Medical Center, New York, New York, USA;
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, New York, USA;
| | - Anne-Catrin Uhlemann
- Microbiome and Pathogen Genomics Collaborative Center, Columbia University Irving Medical Center, New York, New York, USA;
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA.
| | - Benjamin Lebwohl
- Celiac Disease Center, Columbia University Irving Medical Center, New York, New York, USA;
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, New York, USA;
| |
Collapse
|
24
|
Horii T, Suzuki S, Takano C, Shibuya H, Ichijima R, Kusano C, Ikehara H, Gotoda T. Lower impact of vonoprazan-amoxicillin dual therapy on gut microbiota for Helicobacter pylori eradication. J Gastroenterol Hepatol 2021; 36:3314-3321. [PMID: 34107551 DOI: 10.1111/jgh.15572] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/11/2021] [Accepted: 06/05/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIM Helicobacter pylori eradication can disrupt the gut microbiome. Here, we investigated the short-term impact of minimum antibiotic treatment-a 7-day vonoprazan and low-dose amoxicillin regimen (VA-dual therapy)-on gut microbiota and compared it with that of vonoprazan-based triple therapy (VAC-triple therapy). METHODS Fifty-nine patients with H. pylori infection were recruited (UMIN000034140) from March to May 2019 and randomly assigned to the VAC-triple therapy or VA-dual therapy groups, according to the first-line H. pylori treatment received. Fecal samples were collected before treatment initiation and 1 and 8 weeks after eradication therapy completion. The composition ratios of the bacterial taxa and the alpha and beta diversities were evaluated in both groups via polymerase chain reaction amplification of the V3-V4 region of the 16S rRNA gene and sequencing using the MiSeq system. RESULTS Nineteen patients were assigned to the VA-dual group and 24 to the VAC-triple group. Compared with baseline, the alpha diversity reduced significantly 1 and 8 weeks after VAC-triple therapy. However, for VA-dual therapy, the alpha diversities at 1 and 8 weeks after the treatment did not change significantly compared with those at baseline. Additionally, the beta diversity differed significantly between baseline and 1 and 8 weeks after VAC-triple therapy. VAC-triple therapy led to significant alteration in the relative abundance of Actinobacteria at the phylum level and Collinsella, Blautia, and Streptococcus at the genus level. CONCLUSIONS Compared with VAC-triple therapy, VA-dual therapy induced minimal changes in the diversity and relative abundance of gut microbiota.
Collapse
Affiliation(s)
- Toshiki Horii
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Yuri Kumiai General Hospital, Akita, Japan
| | - Sho Suzuki
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Chika Takano
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Hitoshi Shibuya
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Ryoji Ichijima
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Chika Kusano
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Hisatomo Ikehara
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Takuji Gotoda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Corrigendum: Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr 2021; 8:790387. [PMID: 34790692 PMCID: PMC8591313 DOI: 10.3389/fnut.2021.790387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Falangone
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
26
|
Di Biase AR, Marasco G, Ravaioli F, Colecchia L, Dajti E, Lecis M, Passini E, Alemanni LV, Festi D, Iughetti L, Colecchia A. Clinical Presentation of Celiac Disease and Diagnosis Accuracy in a Single-Center European Pediatric Cohort over 10 Years. Nutrients 2021; 13:4131. [PMID: 34836386 PMCID: PMC8625284 DOI: 10.3390/nu13114131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022] Open
Abstract
(1) Background: Changes in the clinical presentation of celiac disease (CD) in children have been reported. The guidelines of the European Society of Pediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) allow esophagogastroduodenoscopy (EGD) with biopsies to be avoided under specific circumstances. We aimed to assess the clinical picture of pediatric CD patients at diagnosis and to validate ESPGHAN non-biopsy criteria. (2) Methods: Patients with suspected CD or undergoing screening from 2004 to 2014 at the University Hospital in Modena, Italy were enrolled. The accuracy of ESPGHAN non-biopsy criteria and modified versions were assessed. (3) Results: In total, 410 patients were enrolled, of whom 403 were considered for analysis. Of the patients considered, 45 were asymptomatic and diagnosed with CD (11.2%) while 358 patients (88.2%) were symptomatic, of whom 295 were diagnosed with CD. Among symptomatic CD patients, 57 (19.3%) had gastrointestinal symptoms, 98 (33%) had atypical symptoms and 140 (47.4%) had both. No difference was found for the presence of gastrointestinal symptoms at different ages. The non-biopsy ESPGHAN criteria yielded an accuracy of 59.4% with a positive predictive value (PPV) of 100%; 173 out of 308 EGD (56.2%) could have been avoided. The modified 7× and 5× upper limit of normal cut-offs for IgA anti tissue-transglutaminase reached 60.7% and 64.3% of EGD avoided, respectively. (4) Conclusions: Over 10 years, late age at diagnosis and increased rates of atypical CD presentation were found. ESPGHAN non-biopsy criteria are accurate for CD diagnosis and allow half of unneeded EGD to be avoided. Modified versions allowed sparing a greater number of EGD.
Collapse
Affiliation(s)
- Anna Rita Di Biase
- Pediatric Unit, Modena University Hospital, 41124 Modena, Italy; (A.R.D.B.); (M.L.); (E.P.); (L.I.)
| | - Giovanni Marasco
- Department of Digestive Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (F.R.); (E.D.); (L.V.A.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (L.C.); (D.F.)
| | - Federico Ravaioli
- Department of Digestive Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (F.R.); (E.D.); (L.V.A.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (L.C.); (D.F.)
| | - Luigi Colecchia
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (L.C.); (D.F.)
| | - Elton Dajti
- Department of Digestive Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (F.R.); (E.D.); (L.V.A.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (L.C.); (D.F.)
| | - Marco Lecis
- Pediatric Unit, Modena University Hospital, 41124 Modena, Italy; (A.R.D.B.); (M.L.); (E.P.); (L.I.)
| | - Erica Passini
- Pediatric Unit, Modena University Hospital, 41124 Modena, Italy; (A.R.D.B.); (M.L.); (E.P.); (L.I.)
| | - Luigina Vanessa Alemanni
- Department of Digestive Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (F.R.); (E.D.); (L.V.A.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (L.C.); (D.F.)
| | - Davide Festi
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (L.C.); (D.F.)
| | - Lorenzo Iughetti
- Pediatric Unit, Modena University Hospital, 41124 Modena, Italy; (A.R.D.B.); (M.L.); (E.P.); (L.I.)
| | - Antonio Colecchia
- Gastroenterology Unit, Modena University Hospital, 41124 Modena, Italy;
| |
Collapse
|
27
|
Sample D, Fouhse J, King S, Huynh HQ, Dieleman LA, Willing BP, Turner J. Baseline Fecal Microbiota in Pediatric Patients With Celiac Disease Is Similar to Controls But Dissimilar After 1 Year on the Gluten-Free Diet. JPGN REPORTS 2021; 2:e127. [PMID: 37206457 PMCID: PMC10191547 DOI: 10.1097/pg9.0000000000000127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/02/2021] [Indexed: 05/21/2023]
Abstract
The objectives of this pilot study were to examine fecal microbiota composition of pediatric patients with celiac disease (CD) before and after a 1-year gluten-free diet (GFD) and to determine the association with symptoms and anti-tissue transglutaminase (aTTG) antibody. Methods Stool samples were obtained from pediatric patients with CD and from healthy controls. Patients were classified by the presence (diarrhea, abdominal pain, weight loss) or absence (asymptomatic, headache, fatigue, etc.) of typical CD gastrointestinal symptoms and by aTTG normalization post-GFD intervention (< 7 U/mL). Fecal microbial composition was measured using 16S ribosomal RNA gene amplicon sequencing of the V3-V4 region. Results At diagnosis, 13 of 22 patients with CD had typical gastrointestinal symptoms, the remaining patients having atypical or asymptomatic presentations. After a 1-year GFD, all symptomatic patients improved and 9 of 19 had normalized aTTG. Prior to GFD, no distinct microbial signature was observed between patients and controls (P = 0.39). Post-GFD, patients with CD had a unique microbial signature with reductions in known fiber-degrading bacteria, including Blautia, Dorea, Lactobacillus, and Prevotella compared with controls. Within the patients with CD, microbial composition was not associated with reported symptom presentation or aTTG normalization. Conclusions Pediatric patients with CD only had a unique microbial signature compared with healthy controls when placed on the GFD. These results suggest that pediatric patients with CD may not have a unique fecal microbial signature indicative of inherent dysbiosis, in contrast to that suggested for older patients. In children with CD, diet may play a role in shaping microbial composition more so than disease status.
Collapse
Affiliation(s)
- Dory Sample
- From the Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Janelle Fouhse
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Seema King
- Department of Medicine, Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Hien Q. Huynh
- From the Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Levinus A. Dieleman
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Benjamin P. Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Justine Turner
- From the Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
28
|
Verdu EF, Schuppan D. Co-factors, Microbes, and Immunogenetics in Celiac Disease to Guide Novel Approaches for Diagnosis and Treatment. Gastroenterology 2021; 161:1395-1411.e4. [PMID: 34416277 DOI: 10.1053/j.gastro.2021.08.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022]
Abstract
Celiac disease (CeD) is a frequent immune-mediated disease that affects not only the small intestine but also many extraintestinal sites. The role of gluten proteins as dietary triggers, HLA-DQ2 or -DQ8 as major necessary genetic predisposition, and tissue transglutaminase (TG2) as mechanistically involved autoantigen, are unique features of CeD. Recent research implicates many cofactors working in synergism with these key triggers, including the intestinal microbiota and their metabolites, nongluten dietary triggers, intestinal barrier defects, novel immune cell phenotypes, and mediators and cytokines. In addition, apart from HLA-DQ2 and -DQ8, multiple and complex predisposing genetic factors and interactions have been defined, most of which overlap with predispositions in other, usually autoimmune, diseases that are linked to CeD. The resultant better understanding of CeD pathogenesis, and its manifold manifestations has already paved the way for novel therapeutic approaches beyond the lifelong strict gluten-free diet, which poses a burden to patients and often does not lead to complete mucosal healing. Thus, supported by improved mouse models for CeD and in vitro organoid cultures, several targeted therapies are in phase 2-3 clinical studies, such as highly effective gluten-degrading oral enzymes, inhibition of TG2, cytokine therapies, induction of tolerance to gluten ingestion, along with adjunctive and preventive approaches using beneficial probiotics and micronutrients. These developments are supported by novel noninvasive markers of CeD severity and activity that may be used as companion diagnostics, allow easy-to perform and reliable monitoring of patients, and finally support personalized therapy for CeD.
Collapse
Affiliation(s)
- Elena F Verdu
- Division of Gastroenterology, Department of Internal Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Detlef Schuppan
- Institute of Translational Immunology,Research Center for Immune Therapy and Celiac Center, University Medical Center, Johannes Gutenberg University, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
29
|
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr 2021; 8:718356. [PMID: 34589512 PMCID: PMC8475765 DOI: 10.3389/fnut.2021.718356] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
The intestinal epithelial barrier (IEB) is one of the largest interfaces between the environment and the internal milieu of the body. It is essential to limit the passage of harmful antigens and microorganisms and, on the other side, to assure the absorption of nutrients and water. The maintenance of this delicate equilibrium is tightly regulated as it is essential for human homeostasis. Luminal solutes and ions can pass across the IEB via two main routes: the transcellular pathway or the paracellular pathway. Tight junctions (TJs) are a multi-protein complex responsible for the regulation of paracellular permeability. TJs control the passage of antigens through the IEB and have a key role in maintaining barrier integrity. Several factors, including cytokines, gut microbiota, and dietary components are known to regulate intestinal TJs. Gut microbiota participates in several human functions including the modulation of epithelial cells and immune system through the release of several metabolites, such as short-chain fatty acids (SCFAs). Mediators released by immune cells can induce epithelial cell damage and TJs dysfunction. The subsequent disruption of the IEB allows the passage of antigens into the mucosa leading to further inflammation. Growing evidence indicates that dysbiosis, immune activation, and IEB dysfunction have a role in several diseases, including irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and gluten-related conditions. Here we summarize the interplay between the IEB and gut microbiota and mucosal immune system and their involvement in IBS, IBD, and gluten-related disorders.
Collapse
Affiliation(s)
- Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Falangone
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
30
|
Leonard MM, Valitutti F, Karathia H, Pujolassos M, Kenyon V, Fanelli B, Troisi J, Subramanian P, Camhi S, Colucci A, Serena G, Cucchiara S, Trovato CM, Malamisura B, Francavilla R, Elli L, Hasan NA, Zomorrodi AR, Colwell R, Fasano A. Microbiome signatures of progression toward celiac disease onset in at-risk children in a longitudinal prospective cohort study. Proc Natl Acad Sci U S A 2021; 118:e2020322118. [PMID: 34253606 PMCID: PMC8307711 DOI: 10.1073/pnas.2020322118] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Other than exposure to gluten and genetic compatibility, the gut microbiome has been suggested to be involved in celiac disease (CD) pathogenesis by mediating interactions between gluten/environmental factors and the host immune system. However, to establish disease progression markers, it is essential to assess alterations in the gut microbiota before disease onset. Here, a prospective metagenomic analysis of the gut microbiota of infants at risk of CD was done to track shifts in the microbiota before CD development. We performed cross-sectional and longitudinal analyses of gut microbiota, functional pathways, and metabolites, starting from 18 mo before CD onset, in 10 infants who developed CD and 10 matched nonaffected infants. Cross-sectional analysis at CD onset identified altered abundance of six microbial strains and several metabolites between cases and controls but no change in microbial species or pathway abundance. Conversely, results of longitudinal analysis revealed several microbial species/strains/pathways/metabolites occurring in increased abundance and detected before CD onset. These had previously been linked to autoimmune and inflammatory conditions (e.g., Dialister invisus, Parabacteroides sp., Lachnospiraceae, tryptophan metabolism, and metabolites serine and threonine). Others occurred in decreased abundance before CD onset and are known to have anti-inflammatory effects (e.g., Streptococcus thermophilus, Faecalibacterium prausnitzii, and Clostridium clostridioforme). Additionally, we uncovered previously unreported microbes/pathways/metabolites (e.g., Porphyromonas sp., high mannose-type N-glycan biosynthesis, and serine) that point to CD-specific biomarkers. Our study establishes a road map for prospective longitudinal study designs to better understand the role of gut microbiota in disease pathogenesis and therapeutic targets to reestablish tolerance and/or prevent autoimmunity.
Collapse
Affiliation(s)
- Maureen M Leonard
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School, Boston, MA 02114
- Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School, Boston, MA 02129
- Celiac Research Program, Harvard Medical School, Boston, MA 02114
| | - Francesco Valitutti
- European Biomedical Research Institute of Salerno, 84125 Salerno, Italy
- Pediatric Unit, Maternal and Child Health Department, Azienda Ospedaliera Universitaria San Giovanni di Dio e Ruggi d'Aragona, 84125 Salerno, Italy
| | | | | | - Victoria Kenyon
- Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School, Boston, MA 02129
- Celiac Research Program, Harvard Medical School, Boston, MA 02114
| | | | - Jacopo Troisi
- European Biomedical Research Institute of Salerno, 84125 Salerno, Italy
- Theoreo srl, University of Salerno, 20851 Salerno, Italy
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84090 Salerno, Italy
| | | | - Stephanie Camhi
- Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School, Boston, MA 02129
- Celiac Research Program, Harvard Medical School, Boston, MA 02114
| | - Angelo Colucci
- Theoreo srl, University of Salerno, 20851 Salerno, Italy
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84090 Salerno, Italy
| | - Gloria Serena
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School, Boston, MA 02114
- Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School, Boston, MA 02129
- Celiac Research Program, Harvard Medical School, Boston, MA 02114
| | | | | | - Basilio Malamisura
- Pediatric Unit, Maternal and Child Health Department, Azienda Ospedaliera Universitaria San Giovanni di Dio e Ruggi d'Aragona, 00185 Salerno, Italy
| | | | - Luca Elli
- Center for Prevention and Diagnosis of Celiac Disease, Fondazione Department and University Hospital (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, 70126 Milan, Italy
| | | | - Ali R Zomorrodi
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School, Boston, MA 02114
- Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School, Boston, MA 02129
- Celiac Research Program, Harvard Medical School, Boston, MA 02114
| | - Rita Colwell
- CosmosID Inc., Rockville, MD 84100;
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20122
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School, Boston, MA 02114;
- Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School, Boston, MA 02129
- Celiac Research Program, Harvard Medical School, Boston, MA 02114
- European Biomedical Research Institute of Salerno, 84125 Salerno, Italy
| |
Collapse
|
31
|
Zafeiropoulou K, Hansen R, Gerasimidis K. Reply. Gastroenterology 2021; 161:359-360. [PMID: 33689745 DOI: 10.1053/j.gastro.2021.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/02/2022]
Affiliation(s)
- Konstantina Zafeiropoulou
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Richard Hansen
- Department of Paediatric Gastroenterology, Royal Hospital for Children, Glasgow, Scotland
| | - Konstantinos Gerasimidis
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| |
Collapse
|
32
|
Oscarsson E, Håkansson Å, Andrén Aronsson C, Molin G, Agardh D. Effects of Probiotic Bacteria Lactobacillaceae on the Gut Microbiota in Children With Celiac Disease Autoimmunity: A Placebo-Controlled and Randomized Clinical Trial. Front Nutr 2021; 8:680771. [PMID: 34249990 PMCID: PMC8267153 DOI: 10.3389/fnut.2021.680771] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Disturbances of the gut microbiota may influence the development of various autoimmune diseases. This study investigated the effects of supplementations with the probiotic bacteria, Lactiplantibacillus plantarum HEAL9 and Lacticaseibacillus paracasei 8700:2, on the microbial community in children with celiac disease autoimmunity (CDA). The study included 78 genetically predisposed children for celiac disease with elevated levels of tissue transglutaminase autoantibodies (tTGA) signaling for ongoing CDA. Among those children, 38 received a placebo and 40 received the probiotic supplement daily for 6 months. Fecal and plasma samples were collected at baseline and after 3 and 6 months, respectively. The bacterial community was investigated with 16S rRNA gene sequencing and terminal restriction fragment length polymorphism (T-RFLP), and tTGA levels were measured in radiobinding assays. In children that received probiotic supplementation, the relative abundance of Lactobacillaceae increased over time, while it remained unchanged in the placebo group. There was no overall correlation between tTGA levels and bacterial genus except for a positive correlation between Dialister and IgG-tTG in the probiotic group. The abundance of specific bacterial amplicon sequence variant (ASV:s) changed during the study in both groups, indicating that specific bacterial strains might be affected by probiotic supplementation.
Collapse
Affiliation(s)
- Elin Oscarsson
- The Diabetes and Celiac Disease Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Åsa Håkansson
- Department of Food Technology Engineering and Nutrition, Lund University, Lund, Sweden
| | - Carin Andrén Aronsson
- The Diabetes and Celiac Disease Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Göran Molin
- Department of Food Technology Engineering and Nutrition, Lund University, Lund, Sweden
| | - Daniel Agardh
- The Diabetes and Celiac Disease Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
33
|
Yang ZD, Guo YS, Huang JS, Gao YF, Peng F, Xu RY, Su HH, Zhang PJ. Isomaltulose Exhibits Prebiotic Activity, and Modulates Gut Microbiota, the Production of Short Chain Fatty Acids, and Secondary Bile Acids in Rats. Molecules 2021; 26:molecules26092464. [PMID: 33922589 PMCID: PMC8122910 DOI: 10.3390/molecules26092464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
In vitro experiments have indicated prebiotic activity of isomaltulose, which stimulates the growth of probiotics and the production of short chain fatty acids (SCFAs). However, the absence of in vivo trials undermines these results. This study aims to investigate the effect of isomaltulose on composition and functionality of gut microbiota in rats. Twelve Sprague–Dawley rats were divided into two groups: the IsoMTL group was given free access to water containing 10% isomaltulose (w/w), and the control group was treated with normal water for five weeks. Moreover, 16S rRNA sequencing showed that ingestion of isomaltulose increased the abundances of beneficial microbiota, such as Faecalibacterium and Phascolarctobacterium, and decreased levels of pathogens, including Shuttleworthia. Bacterial functional prediction showed that isomaltulose affected gut microbial functionalities, including secondary bile acid biosynthesis. Targeted metabolomics demonstrated that isomaltulose supplementation enhanced cholic acid concentration, and reduced levels of lithocholic acid, deoxycholic acid, dehydrocholic acid, and hyodeoxycholic acid. Moreover, the concentrations of propionate and butyrate were elevated in the rats administered with isomaltulose. This work suggests that isomaltulose modulates gut microbiota and the production of SCFAs and secondary bile acids in rats, which provides a scientific basis on the use of isomaltulose as a prebiotic.
Collapse
Affiliation(s)
- Zhan-Dong Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China;
| | - Yi-Shan Guo
- Guangdong Engineering Lab of High Value Utilization of Biomass, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China; (Y.-S.G.); (J.-S.H.); (Y.-F.G.); (R.-Y.X.)
| | - Jun-Sheng Huang
- Guangdong Engineering Lab of High Value Utilization of Biomass, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China; (Y.-S.G.); (J.-S.H.); (Y.-F.G.); (R.-Y.X.)
| | - Ya-Fei Gao
- Guangdong Engineering Lab of High Value Utilization of Biomass, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China; (Y.-S.G.); (J.-S.H.); (Y.-F.G.); (R.-Y.X.)
| | - Fei Peng
- School of Food Science and Engineering, Nanchang University, Nanchang 330000, China;
| | - Ri-Yi Xu
- Guangdong Engineering Lab of High Value Utilization of Biomass, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China; (Y.-S.G.); (J.-S.H.); (Y.-F.G.); (R.-Y.X.)
| | - Hui-Hui Su
- Guangdong Engineering Lab of High Value Utilization of Biomass, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China; (Y.-S.G.); (J.-S.H.); (Y.-F.G.); (R.-Y.X.)
- Correspondence: (H.-H.S.); (P.-J.Z.); Tel.: +86-020-8416-8316 (H.-H.S.)
| | - Ping-Jun Zhang
- Guangdong Engineering Lab of High Value Utilization of Biomass, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China; (Y.-S.G.); (J.-S.H.); (Y.-F.G.); (R.-Y.X.)
- Correspondence: (H.-H.S.); (P.-J.Z.); Tel.: +86-020-8416-8316 (H.-H.S.)
| |
Collapse
|
34
|
Abdukhakimova D, Dossybayeva K, Poddighe D. Fecal and Duodenal Microbiota in Pediatric Celiac Disease. Front Pediatr 2021; 9:652208. [PMID: 33968854 PMCID: PMC8100229 DOI: 10.3389/fped.2021.652208] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Background and Objective: The gut microbiota plays a role in regulating the host immunity. Therefore, alterations in gut microbiota (or dysbiosis) have been investigated in several gastrointestinal diseases, including Celiac Disease (CD). The aim of this study is to summarize the main characteristics of the gut microbiota in pediatric CD. Methods: We performed a systematic review to retrieve the available studies investigating the gut microbiota in pediatric CD patients and controls. In detail, after the screening of >2,200 titles from the medical literature, 397 articles were assessed for eligibility based on the abstracts: of those, 114 full-text original articles were considered as eligible according to the aim of this systematic review. Results: The final search output consisted of 18 articles describing the gut microbiota of CD children and including one or more control groups. Eleven pediatric studies provided information on the duodenal microbiota and as many investigated the fecal microbiota; three articles analyzed the microbiota on both fecal and duodenal samples from the same cohorts of patients. Conclusion: Due to the heterogeneity of the experimental procedures and study design, it is not possible to evidence any specific celiac signature in the fecal and/or duodenal microbiota of CD children. However, some specific components of the fecal microbiota and, in detail, Bifidobacterium spp. (e.g., Bifidobacterium longum) may deserve additional research efforts, in order to understand their potential value as both probiotic therapy and diagnostic/prognostic biomarker.
Collapse
Affiliation(s)
- Diyora Abdukhakimova
- Department of Medicine, Nazarbayev University School of Medicine (NUSOM), Nur-Sultan, Kazakhstan
| | - Kuanysh Dossybayeva
- Department of Medicine, Nazarbayev University School of Medicine (NUSOM), Nur-Sultan, Kazakhstan
| | - Dimitri Poddighe
- Department of Medicine, Nazarbayev University School of Medicine (NUSOM), Nur-Sultan, Kazakhstan
- Department of Pediatrics, National Research Center for Maternal and Child Health, University Medical Center, Nur-Sultan, Kazakhstan
| |
Collapse
|
35
|
Warbeck C, Dowd AJ, Kronlund L, Parmar C, Daun JT, Wytsma-Fisher K, Millet GY, Schick A, Reimer RA, Fung T, Culos-Reed SN. Feasibility and effects on the gut microbiota of a 12-week high-intensity interval training plus lifestyle education intervention on inactive adults with celiac disease. Appl Physiol Nutr Metab 2021; 46:325-336. [DOI: 10.1139/apnm-2020-0459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study assessed the feasibility and benefits of high-intensity interval training (HIIT) plus lifestyle education among inactive adults with celiac disease. Forty-one participants were randomized to receive the intervention (HIIT plus lifestyle education; HIIT+) for 12 weeks or waitlist control (WLC). Testing was completed at baseline, immediately post-intervention, and 3 months post-intervention. Generalized estimating equations were used to assess changes in the outcome variables over time between the groups. Mean percent of age-predicted maximum heart rate was 97.9% and average rating of perceived exertion was 6.33 (out of 10) during HIIT intervals. Following the intervention, the HIIT+ showed enrichment in relative abundance of Parabacteroides and Defluviitaleaceae_UCG_011 while WLC showed enrichment in relative abundance of Roseburia intestinalis, Klebsiella, and Adlercreutzia. A unique set of taxa were differentially abundant between the groups at 3 months post-intervention. HIIT+ participants experienced a reduction in resting heart rate (−6.6 bpm) immediately post-intervention compared with WLC. Further research is needed to establish an optimal HIIT protocol that may improve maximal oxygen uptake and metabolic syndrome biomarkers. Findings from this pilot study provide preliminary evidence that an HIIT intervention is feasible for inactive adults with celiac disease and leads to favourable changes in resting heart rate alongside potentially beneficial shifts in gut microbiota. Trial registration number: ClinicalTrials.gov number NCT03520244. Novelty: HIIT leads to potentially beneficial changes in the gut microbiota of adults with celiac disease. An HIIT exercise intervention is feasible and well tolerated for patients with celiac disease.
Collapse
Affiliation(s)
- Cassandra Warbeck
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - A. Justine Dowd
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Liam Kronlund
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Candice Parmar
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Julia T. Daun
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | - Guillaume Y. Millet
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, EA 7424, F-42023, Saint-Etienne, France
| | - Alana Schick
- International Microbiome Centre, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Raylene A. Reimer
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Children’s Hospital Research Institute, Calgary, AB T3B 6A8, Canada
| | - Tak Fung
- Research Computing Services, Information Technologies, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - S. Nicole Culos-Reed
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
36
|
Contribution of Infectious Agents to the Development of Celiac Disease. Microorganisms 2021; 9:microorganisms9030547. [PMID: 33800833 PMCID: PMC8001938 DOI: 10.3390/microorganisms9030547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
The ingestion of wheat gliadin (alcohol-soluble proteins, an integral part of wheat gluten) and related proteins induce, in genetically predisposed individuals, celiac disease (CD), which is characterized by immune-mediated impairment of the small intestinal mucosa. The lifelong omission of gluten and related grain proteins, i.e., a gluten-free diet (GFD), is at present the only therapy for CD. Although a GFD usually reduces CD symptoms, it does not entirely restore the small intestinal mucosa to a fully healthy state. Recently, the participation of microbial components in pathogenetic mechanisms of celiac disease was suggested. The present review provides information on infectious diseases associated with CD and the putative role of infections in CD development. Moreover, the involvement of the microbiota as a factor contributing to pathological changes in the intestine is discussed. Attention is paid to the mechanisms by which microbes and their components affect mucosal immunity, including tolerance to food antigens. Modulation of microbiota composition and function and the potential beneficial effects of probiotics in celiac disease are discussed.
Collapse
|
37
|
Li GH, Huang SJ, Li X, Liu XS, Du QL. Response of gut microbiota to serum metabolome changes in intrahepatic cholestasis of pregnant patients. World J Gastroenterol 2020; 26:7338-7351. [PMID: 33362388 PMCID: PMC7739160 DOI: 10.3748/wjg.v26.i46.7338] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/09/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intrahepatic cholestasis in pregnancy (ICP) is the most common liver disease during pregnancy, and its exact etiology and course of progression are still poorly understood.
AIM To investigate the link between the gut microbiota and serum metabolome in ICP patients.
METHODS In this study, a total of 30 patients were recruited, including 15 patients with ICP (disease group) and 15 healthy pregnant patients (healthy group). The serum nontarget metabolomes from both groups were determined. Amplification of the 16S rRNA V3-V4 region was performed using fecal samples from the disease and healthy groups. By comparing the differences in the microbiota and metabolite compositions between the two groups, the relationship between the gut microbiota and serum metabolites was also investigated.
RESULTS The Kyoto Encyclopedia of Genes and Genomes analysis results showed that the primary bile acid biosynthesis, bile secretion and taurine and hypotaurine metabolism pathways were enriched in the ICP patients compared with the healthy controls. In addition, some pathways related to protein metabolism were also enriched in the ICP patients. The principal coordination analysis results showed that there was a distinct difference in the gut microbiota composition (beta diversity) between the ICP patients and healthy controls. At the phylum level, we observed that the relative abundance of Firmicutes was higher in the healthy group, while Bacteroidetes were enriched in the disease group. At the genus level, most of the bacteria depleted in ICP are able to produce short-chain fatty acids (e.g., Faecalibacterium, Blautia and Eubacterium hallii), while the bacteria enriched in ICP are associated with bile acid metabolism (e.g., Parabacteroides and Bilophila). Our results also showed that specific genera were associated with the serum metabolome.
CONCLUSION Our study showed that the serum metabolome was altered in ICP patients compared to healthy controls, with significant differences in the bile, taurine and hypotaurine metabolite pathways. Alterations in the metabolization of these pathways may lead to disturbances in the gut microbiota, which may further affect the course of progression of ICP.
Collapse
Affiliation(s)
- Guo-Hua Li
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China
| | - Shi-Jia Huang
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China
| | - Xiang Li
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China
| | - Xiao-Song Liu
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China
| | - Qiao-Ling Du
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China
| |
Collapse
|
38
|
Marasco G, Cirota GG, Rossini B, Lungaro L, Di Biase AR, Colecchia A, Volta U, De Giorgio R, Festi D, Caio G. Probiotics, Prebiotics and Other Dietary Supplements for Gut Microbiota Modulation in Celiac Disease Patients. Nutrients 2020; 12:2674. [PMID: 32887325 PMCID: PMC7551848 DOI: 10.3390/nu12092674] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
To date, the only available treatment for celiac disease (CD) patients is a life-lasting gluten-free diet (GFD). Lack of adherence to the GFD leads to a significant risk of adverse health consequences. Food cross-contamination, nutritional imbalances, and persistent gastrointestinal symptoms are the main concerns related to GFD. Moreover, despite rigid compliance to GFD, patients struggle in achieving a full restoring of the gut microbiota, which plays a role in the nutritive compounds processing, and absorption. Pivotal studies on the supplementation of GFD with probiotics, such as Bifidobacterium and Lactobacilli, reported a potential to restore gut microbiota composition and to pre-digest gluten in the intestinal lumen, reducing the inflammation associated with gluten intake, the intestinal permeability, and the cytokine and antibody production. These findings could explain an improvement in symptoms and quality of life in patients treated with GFD and probiotics. On the other hand, the inclusion of prebiotics in GFD could also be easy to administer and cost-effective as an adjunctive treatment for CD, having the power to stimulate the growth of potentially health-promoting bacteria strains. However, evidence regarding the use of prebiotics and probiotics in patients with CD is still insufficient to justify their use in clinical practice.
Collapse
Affiliation(s)
- Giovanni Marasco
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.G.C.); (B.R.); (U.V.); (D.F.)
| | - Giovanna Grazia Cirota
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.G.C.); (B.R.); (U.V.); (D.F.)
| | - Benedetta Rossini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.G.C.); (B.R.); (U.V.); (D.F.)
| | - Lisa Lungaro
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44124 Ferrara, Italy; (L.L.); (R.D.G.)
| | - Anna Rita Di Biase
- Department of Pediatrics, Policlinic Hospital, University of Modena, Via del Pozzo 71, 41126 Modena, Italy;
| | - Antonio Colecchia
- Gastroenterology Unit, Borgo Trento University Hospital of Verona, P.le Aristide Stefani 1, 37126 Verona, Italy;
| | - Umberto Volta
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.G.C.); (B.R.); (U.V.); (D.F.)
| | - Roberto De Giorgio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44124 Ferrara, Italy; (L.L.); (R.D.G.)
| | - Davide Festi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.G.C.); (B.R.); (U.V.); (D.F.)
| | - Giacomo Caio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44124 Ferrara, Italy; (L.L.); (R.D.G.)
- Celiac Center and Mucosal Immunology and Biology Research, Massachusetts General Hospital-Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
39
|
Sharifi-Rad J, Rodrigues CF, Stojanović-Radić Z, Dimitrijević M, Aleksić A, Neffe-Skocińska K, Zielińska D, Kołożyn-Krajewska D, Salehi B, Milton Prabu S, Schutz F, Docea AO, Martins N, Calina D. Probiotics: Versatile Bioactive Components in Promoting Human Health. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E433. [PMID: 32867260 PMCID: PMC7560221 DOI: 10.3390/medicina56090433] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
The positive impact of probiotic strains on human health has become more evident than ever before. Often delivered through food, dietary products, supplements, and drugs, different legislations for safety and efficacy issues have been prepared. Furthermore, regulatory agencies have addressed various approaches toward these products, whether they authorize claims mentioning a disease's diagnosis, prevention, or treatment. Due to the diversity of bacteria and yeast strains, strict approaches have been designed to assess for side effects and post-market surveillance. One of the most essential delivery systems of probiotics is within food, due to the great beneficial health effects of this system compared to pharmaceutical products and also due to the increasing importance of food and nutrition. Modern lifestyle or various diseases lead to an imbalance of the intestinal flora. Nonetheless, as the amount of probiotic use needs accurate calculations, different factors should also be taken into consideration. One of the novelties of this review is the presentation of the beneficial effects of the administration of probiotics as a potential adjuvant therapy in COVID-19. Thus, this paper provides an integrative overview of different aspects of probiotics, from human health care applications to safety, quality, and control.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran;
| | - Célia F. Rodrigues
- LEPABE—Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal;
| | - Zorica Stojanović-Radić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, 18000 Niš, Serbia; (Z.S.-R.); (M.D.); (A.A.)
| | - Marina Dimitrijević
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, 18000 Niš, Serbia; (Z.S.-R.); (M.D.); (A.A.)
| | - Ana Aleksić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, 18000 Niš, Serbia; (Z.S.-R.); (M.D.); (A.A.)
| | - Katarzyna Neffe-Skocińska
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences (WULS), 02-776 Warszawa, Poland; (K.N.-S.); (D.Z.); (D.K.-K.)
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences (WULS), 02-776 Warszawa, Poland; (K.N.-S.); (D.Z.); (D.K.-K.)
| | - Danuta Kołożyn-Krajewska
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences (WULS), 02-776 Warszawa, Poland; (K.N.-S.); (D.Z.); (D.K.-K.)
| | - Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam 44340847, Iran
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Selvaraj Milton Prabu
- Department of Zoology, Annamalai University, Annamalai Nagar 608002, Chidambaram, India;
| | - Francine Schutz
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Natália Martins
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|