1
|
Lau RI, Su Q, Ng SC. Long COVID and gut microbiome: insights into pathogenesis and therapeutics. Gut Microbes 2025; 17:2457495. [PMID: 39854158 PMCID: PMC11776476 DOI: 10.1080/19490976.2025.2457495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
Post-acute coronavirus disease 2019 syndrome (PACS), following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or coronavirus disease 2019 (COVID-19), is typically characterized by long-term debilitating symptoms affecting multiple organs and systems. Unfortunately, there is currently a lack of effective treatment strategies. Altered gut microbiome has been proposed as one of the plausible mechanisms involved in the pathogenesis of PACS; extensive studies have emerged to bridge the gap between the persistent symptoms and the dysbiosis of gut microbiome. Recent clinical trials have indicated that gut microbiome modulation using probiotics, prebiotics, and fecal microbiota transplantation (FMT) led to improvements in multiple symptoms related to PACS, including fatigue, memory loss, difficulty in concentration, gastrointestinal upset, and disturbances in sleep and mood. In this review, we highlight the latest evidence on the key microbial alterations observed in PACS, as well as the use of microbiome-based therapeutics in managing PACS symptoms. These novel findings altogether shed light on the treatment of PACS and other chronic conditions.
Collapse
Affiliation(s)
- Raphaela I. Lau
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong KongSAR, China
- Microbiota I-Center (MagIC), Hong KongSAR, China
| | - Qi Su
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong KongSAR, China
- Microbiota I-Center (MagIC), Hong KongSAR, China
| | - Siew C. Ng
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong KongSAR, China
- Microbiota I-Center (MagIC), Hong KongSAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong KongSAR, China
| |
Collapse
|
2
|
Marchesi N, Allegri M, Bruno GM, Pascale A, Govoni S. Exploring the Potential of Dietary Supplements to Alleviate Pain Due to Long COVID. Nutrients 2025; 17:1287. [PMID: 40219044 PMCID: PMC11990457 DOI: 10.3390/nu17071287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
Long COVID, characterized by persistent symptoms following COVID-19 infection, significantly impacts individuals' health and daily functioning due to fatigue and pain. Focusing on pain, this review addresses nociplastic and chronic pain conditions. Interventions designed to reduce inflammation, oxidative stress, and enhance vagal activity may offer a promising approach to managing post-pandemic pain. This review presents individual components of food supplements with demonstrated efficacy in one or more pain conditions, focusing on their proposed mechanisms and clinical activity in pain, including their use in post-COVID-19 pain when available. Many of these substances have a long history of safe use and may offer an alternative to long-term analgesic drug treatment, which is often associated with potential side effects. This review also explores the potential for synergistic effects when combining these substances with each other or with conventional analgesics, considering the advantages for both patients and the healthcare system in using these substances as adjunctive or primary therapies for pain symptoms related to long COVID. While preclinical scientific literature provides a mechanistic basis for the action of several food supplements on pain control mechanisms and signaling pathways, clinical experience, particularly in the field of long COVID-associated pain, is still limited. However, the reviewed literature strongly suggests that the use of food supplements in long COVID-associated pain is an attainable goal, provided that rigorous clinical trials are conducted.
Collapse
Affiliation(s)
- Nicoletta Marchesi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, 27100 Pavia, Italy; (G.M.B.); (A.P.); (S.G.)
- RedyNeuheart s.r.l., Start-Up, Via Santa Marta 19, 20123 Milan, Italy
| | - Massimo Allegri
- Centre Lémanique de Neuromodulation et Thérapie de la Douleur, Hôpital de Morges, Ensemble Hospitalier de la Côte (EHC), 1110 Morges, Switzerland;
| | - Giacomo Matteo Bruno
- Department of Drug Sciences, Pharmacology Section, University of Pavia, 27100 Pavia, Italy; (G.M.B.); (A.P.); (S.G.)
- Center of Research, SAVE Studi—Health Economics and Outcomes Research, 20123 Milan, Italy
- CEFAT (Center of Pharmaceuticals Economics and Medical Technologies Evaluation), University of Pavia, 27100 Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, 27100 Pavia, Italy; (G.M.B.); (A.P.); (S.G.)
| | - Stefano Govoni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, 27100 Pavia, Italy; (G.M.B.); (A.P.); (S.G.)
- CEFAT (Center of Pharmaceuticals Economics and Medical Technologies Evaluation), University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
3
|
Rubio-Casillas A, Rodríguez-Quintero CM, Hromić-Jahjefendić A, Uversky VN, Redwan EM, Brogna C. The essential role of prebiotics in restoring gut health in long COVID. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:385-411. [PMID: 40246350 DOI: 10.1016/bs.pmbts.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The gut microbiota (GM) plays an essential role in human health, influencing not only digestive processes but also the immune system´s functionality. The COVID-19 pandemic has highlighted the complex interaction between viral infections and the GM. Emerging evidence has demonstrated that SARS-CoV-2 can disrupt microbial homeostasis, leading to dysbiosis and compromised immune responses. The severity of COVID-19 has been associated with a reduction in the abundance of several beneficial bacteria in the gut. It has been proposed that consuming probiotics may help to re-colonize the GM. Although probiotics are important, prebiotics are essential for their metabolism, growth, and re-colonization capabilities. This chapter delves into the critical role of prebiotics in restoring GM after COVID-19 disease. The mechanisms by which prebiotics enhance the metabolism of beneficial bacteria will be described, and how prebiotics mediate the re-colonization of the gut with beneficial bacteria, thereby restoring microbial diversity and promoting the resilience of the gut-associated immune system. The benefits of consuming prebiotics from natural sources are superior to those from chemically purified commercial products.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- Autlan Regional Hospital, Jalisco Health Services, Autlan, Jalisco, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Jalisco, Mexico.
| | | | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| | - Carlo Brogna
- Craniomed Group Srl, Research Facility, Montemiletto (Av), Italy
| |
Collapse
|
4
|
Lim HX, Khalid K, Abdullah ADI, Lee LH, Raja Ali RA. Subphenotypes of Long COVID and the clinical applications of probiotics. Biomed Pharmacother 2025; 183:117855. [PMID: 39862702 DOI: 10.1016/j.biopha.2025.117855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/25/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
As the number of infections and deaths attributable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to rise, it is now becoming apparent that the health impacts of the Coronavirus disease (COVID-19) may not be limited to infection and the subsequent resolution of symptoms. Reports have shown that patients with SARS-CoV-2 infection may experience multiple symptoms across different organ systems that are associated with adverse health outcomes and develop new cardiac, renal, respiratory, musculoskeletal, and nervous conditions, a condition known as Long COVID or the post-acute sequelae of COVID-19 (PASC). This review provides insights into distinct subphenotypes of Long COVID and identifies microbiota dysbiosis as a common theme and crucial target for future therapies. Another important finding is that Long COVID is associated with prolonged and increased inflammation, potentially attributable to immune system dysfunction. A promising solution lies in the potential of probiotics to mitigate Long COVID symptoms by restoring gut microbiota balance and modulating the immune response. By evaluating the current clinical development landscape of the use of probiotics to treat Long COVID symptoms, this paper provides recommendations for future research by stressing the need to understand the modulation of bacterium strains followed by probiotic therapy to understand the association of microbiota dysbiosis with Long COVID symptoms. This will facilitate the development of effective probiotic formulations that could serve as reliable therapies against Long COVID.
Collapse
Affiliation(s)
- Hui Xuan Lim
- Sunway Microbiome Centre, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Selangor 47500, Malaysia.
| | - Kanwal Khalid
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Selangor 47500, Malaysia.
| | | | - Learn-Han Lee
- Microbiome Research Group, Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham, Ningbo 315000, China
| | - Raja Affendi Raja Ali
- School of Medical and Life Sciences, Sunway University, Petaling Jaya, Selangor 47500, Malaysia.
| |
Collapse
|
5
|
Iqbal NT, Khan H, Khalid A, Mahmood SF, Nasir N, Khanum I, de Siqueira I, Van Voorhis W. Chronic inflammation in post-acute sequelae of COVID-19 modulates gut microbiome: a review of literature on COVID-19 sequelae and gut dysbiosis. Mol Med 2025; 31:22. [PMID: 39849406 PMCID: PMC11756069 DOI: 10.1186/s10020-024-00986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/01/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Long COVID or Post-acute sequelae of COVID-19 is an emerging syndrome, recognized in COVID-19 patients who suffer from mild to severe illness and do not recover completely. Most studies define Long COVID, through symptoms like fatigue, brain fog, joint pain, and headache prevailing four or more weeks post-initial infection. Global variations in Long COVID presentation and symptoms make it challenging to standardize features of Long COVID. Long COVID appears to be accompanied by an auto-immune multi-faceted syndrome where the virus or viral antigen persistence causes continuous stimulation of the immune response, resulting in multi-organ immune dysregulation. MAIN TEXT This review is focused on understanding the risk factors of Long COVID with a special emphasis on the dysregulation of the gut-brain axis. Two proposed mechanisms are discussed here. The first mechanism is related to the dysfunction of angiotensin-converting enzyme 2 receptor due to Severe Acute Respiratory Syndrome Corona Virus 2 infection, leading to impaired mTOR pathway activation, reduced AMP secretion, and causing dysbiotic changes in the gut. Secondly, gut-brain axis dysregulation accompanied by decreased production of short-chain fatty acids, impaired enteroendocrine cell function, and increased leakiness of the gut, which favors translocation of pathogens or lipopolysaccharide in circulation causing the release of pro-inflammatory cytokines. The altered Hypothalamic-Pituitary-Adrenal axis is accompanied by the reduced level of neurotransmitter, and decreased stimulation of the vagus nerve, which may cause neuroinflammation and dysregulation of serum cortisol levels. The dysbiotic microbiome in Long COVID patients is characterized by a decrease in beneficial short chain fatty acid-producing bacteria (Faecalibacterium, Ruminococcus, Dorea, and Bifidobacterium) and an increase in opportunistic bacteria (Corynebacterium, Streptococcus, Enterococcus). This dysbiosis is transient and may be impacted by interventions including probiotics, and dietary supplements. CONCLUSIONS Further studies are required to understand the geographic variation, racial and ethnic differences in phenotypes of Long COVID, the influence of viral strains on existing and emerging phenotypes, to explore long-term effects of gut dysbiosis, and gut-brain axis dysregulation, as well as the potential role of diet and probiotics in alleviating those symptoms.
Collapse
Affiliation(s)
- Najeeha Talat Iqbal
- Department of Biological and Biomedical Sciences, Department of Pediatrics and Child Health, Aga Khan University, Stadium Road, P. O Box 3500, Karachi, 74800, Pakistan.
- Department of Pediatrics & Child Health, Aga Khan University, Karachi, Pakistan.
| | - Hana Khan
- Undergraduate Medical Education (UGME), Year II, Aga Khan University, Karachi, Pakistan
| | - Aqsa Khalid
- Department of Pediatrics & Child Health, Aga Khan University, Karachi, Pakistan
| | | | - Nosheen Nasir
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Iffat Khanum
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | | | - Wes Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, USA
| |
Collapse
|
6
|
An Y, He L, Xu X, Piao M, Wang B, Liu T, Cao H. Gut microbiota in post-acute COVID-19 syndrome: not the end of the story. Front Microbiol 2024; 15:1500890. [PMID: 39777148 PMCID: PMC11703812 DOI: 10.3389/fmicb.2024.1500890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has led to major global health concern. However, the focus on immediate effects was assumed as the tip of iceberg due to the symptoms following acute infection, which was defined as post-acute COVID-19 syndrome (PACS). Gut microbiota alterations even after disease resolution and the gastrointestinal symptoms are the key features of PACS. Gut microbiota and derived metabolites disorders may play a crucial role in inflammatory and immune response after SARS-CoV-2 infection through the gut-lung axis. Diet is one of the modifiable factors closely related to gut microbiota and COVID-19. In this review, we described the reciprocal crosstalk between gut and lung, highlighting the participation of diet and gut microbiota in and after COVID-19 by destroying the gut barrier, perturbing the metabolism and regulating the immune system. Therefore, bolstering beneficial species by dietary supplements, probiotics or prebiotics and fecal microbiota transplantation (FMT) may be a novel avenue for COVID-19 and PACS prevention. This review provides a better understanding of the association between gut microbiota and the long-term consequences of COVID-19, which indicates modulating gut dysbiosis may be a potentiality for addressing this multifaceted condition.
Collapse
Affiliation(s)
| | | | | | | | | | - Tianyu Liu
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin, China
| | - Hailong Cao
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
7
|
Fallah A, Sedighian H, Kachuei R, Fooladi AAI. Human microbiome in post-acute COVID-19 syndrome (PACS). CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100324. [PMID: 39717208 PMCID: PMC11665312 DOI: 10.1016/j.crmicr.2024.100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
The global COVID-19 pandemic, which began in 2019, is still ongoing. SARS-CoV-2, also known as the severe acute respiratory syndrome coronavirus 2, is the causative agent. Diarrhea, nausea, and vomiting are common GI symptoms observed in a significant number of COVID-19 patients. Additionally, the respiratory and GI tracts express high level of transmembrane protease serine 2 (TMPRSS2) and angiotensin-converting enzyme-2 (ACE2), making them primary sites for human microbiota and targets for SARS-CoV-2 infection. A growing body of research indicates that individuals with COVID-19 and post-acute COVID-19 syndrome (PACS) exhibit considerable alterations in their microbiome. In various human disorders, including diabetes, obesity, cancer, ulcerative colitis, Crohn's disease, and several viral infections, the microbiota play a significant immunomodulatory role. In this review, we investigate the potential therapeutic implications of the interactions between host microbiota and COVID-19. Microbiota-derived metabolites and components serve as primary mediators of microbiota-host interactions, influencing host immunity. We discuss the various mechanisms through which these metabolites or components produced by the microbiota impact the host's immune response to SARS-CoV-2 infection. Additionally, we address confounding factors in microbiome studies. Finally, we examine and discuss about a range of potential microbiota-based prophylactic measures and treatments for COVID-19 and PACS, as well as their effects on clinical outcomes and disease severity.
Collapse
Affiliation(s)
- Arezoo Fallah
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Chaudhary S, Kaur P, Singh TA, Bano KS, Vyas A, Mishra AK, Singh P, Mehdi MM. The dynamic crosslinking between gut microbiota and inflammation during aging: reviewing the nutritional and hormetic approaches against dysbiosis and inflammaging. Biogerontology 2024; 26:1. [PMID: 39441393 DOI: 10.1007/s10522-024-10146-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
The early-life gut microbiota (GM) is increasingly recognized for its contributions to human health and disease over time. Microbiota composition, influenced by factors like race, geography, lifestyle, and individual differences, is subject to change. The GM serves dual roles, defending against pathogens and shaping the host immune system. Disruptions in microbial composition can lead to immune dysregulation, impacting defense mechanisms. Additionally, GM aids digestion, releasing nutrients and influencing physiological systems like the liver, brain, and endocrine system through microbial metabolites. Dysbiosis disrupts intestinal homeostasis, contributing to age-related diseases. Recent studies are elucidating the bacterial species that characterize a healthy microbiota, defining what constitutes a 'healthy' colonic microbiota. The present review article focuses on the importance of microbiome composition for the development of homeostasis and the roles of GM during aging and the age-related diseases caused by the alteration in gut microbial communities. This article might also help the readers to find treatments targeting GM for the prevention of various diseases linked to it effectively.
Collapse
Affiliation(s)
- Sakshi Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Pardeep Kaur
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Thokchom Arjun Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Kaniz Shahar Bano
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ashish Vyas
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alok Kumar Mishra
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Prabhakar Singh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
9
|
Griffin DO. Postacute Sequelae of COVID (PASC or Long COVID): An Evidenced-Based Approach. Open Forum Infect Dis 2024; 11:ofae462. [PMID: 39220656 PMCID: PMC11363684 DOI: 10.1093/ofid/ofae462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
While the acute manifestations of infectious diseases are well known, in some individuals, symptoms can either persist or appear after the acute period. Postviral fatigue syndromes are recognized with other viral infections and are described after coronavirus disease 2019 (COVID-19). We have a growing number of individuals with symptoms that persist for weeks, months, and years. Here, we share the evidence regarding the abnormalities associated with postacute sequelae of COVID-19 (PASC) and therapeutics. We describe physiological and biochemical abnormalities seen in individuals reporting PASC. We describe the several evidence-based interventions to offer patients. It is expected that this growing understanding of the mechanisms driving PASC and the benefits seen with certain therapeutics may not only lead to better outcomes for those with PASC but may also have the potential for understanding and treating other postinfectious sequelae.
Collapse
Affiliation(s)
- Daniel O Griffin
- Division of Infectious Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
10
|
Zhai X, Wu W, Zeng S, Miao Y. Advance in the mechanism and clinical research of myalgia in long COVID. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2024; 13:142-164. [PMID: 39310121 PMCID: PMC11411160 DOI: 10.62347/txvo6284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/18/2024] [Indexed: 09/25/2024]
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, mortality rates of coronavirus disease 2019 (COVID-19) have significantly decreased. However, a variable proportion of patients exhibit persistent prolonged symptoms of COVID-19 infection (long COVID). This virus primarily attacks respiratory system, but numerous individuals complain persistent skeletal muscle pain or worsening pre-existing muscle pain post COVID-19, which severely affects the quality of life and recovery. Currently, there is limited research on the skeletal muscle pain in long COVID. In this brief review, we review potential pathological mechanisms of skeletal muscle pain in long COVID, and summarize the various auxiliary examinations and treatments for skeletal muscle pain in long COVID. We consider abnormal activation of inflammatory response, myopathy, and neurological damages as pivotal pathological mechanisms of skeletal muscle pain in long COVID. A comprehensive examination is significantly important in order to work out effective treatment plans and relieve skeletal muscle pain. So far, rehabilitation interventions for myalgia in long COVID contain but are not limited to drug, nutraceutical therapy, gut microbiome-targeted therapy, interventional therapy and strength training. Our study provides a potential mechanism reference for clinical researches, highlighting the importance of comprehensive approach and management of skeletal muscle pain in long COVID. The relief of skeletal muscle pain will accelerate rehabilitation process, improve activities of daily living and enhance the quality of life, promoting individuals return to society with profound significance.
Collapse
Affiliation(s)
- Xiuyun Zhai
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiaotong UniversityNo. 100, Haining Road, Shanghai 200080, China
| | - Weijun Wu
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiaotong UniversityNo. 100, Haining Road, Shanghai 200080, China
| | - Siliang Zeng
- Department of Rehabilitation Therapy, School of Health, Shanghai Normal University Tianhua CollegeNo. 1661, North Shengxin Road, Shanghai 201815, China
| | - Yun Miao
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiaotong UniversityNo. 100, Haining Road, Shanghai 200080, China
- Department of Rehabilitation, School of International Medical Technology, Shanghai Sanda UniversityNo. 2727, Jinhai Road, Shanghai 201209, China
| |
Collapse
|
11
|
Shafqat A, Masters MC, Tripathi U, Tchkonia T, Kirkland JL, Hashmi SK. Long COVID as a disease of accelerated biological aging: An opportunity to translate geroscience interventions. Ageing Res Rev 2024; 99:102400. [PMID: 38945306 DOI: 10.1016/j.arr.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
It has been four years since long COVID-the protracted consequences that survivors of COVID-19 face-was first described. Yet, this entity continues to devastate the quality of life of an increasing number of COVID-19 survivors without any approved therapy and a paucity of clinical trials addressing its biological root causes. Notably, many of the symptoms of long COVID are typically seen with advancing age. Leveraging this similarity, we posit that Geroscience-which aims to target the biological drivers of aging to prevent age-associated conditions as a group-could offer promising therapeutic avenues for long COVID. Bearing this in mind, this review presents a translational framework for studying long COVID as a state of effectively accelerated biological aging, identifying research gaps and offering recommendations for future preclinical and clinical studies.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Mary Clare Masters
- Division of Infectious Diseases, Northwestern University, Chicago, IL, USA
| | - Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shahrukh K Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA; Research and Innovation Center, Department of Health, Abu Dhabi, UAE; College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
12
|
Bani Saeid A, De Rubis G, Williams KA, Yeung S, Chellappan DK, Singh SK, Gupta G, Hansbro PM, Shahbazi MA, Gulati M, Kaur IP, Santos HA, Paudel KR, Dua K. Revolutionizing lung health: Exploring the latest breakthroughs and future prospects of synbiotic nanostructures in lung diseases. Chem Biol Interact 2024; 395:111009. [PMID: 38641145 DOI: 10.1016/j.cbi.2024.111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
The escalating prevalence of lung diseases underscores the need for innovative therapies. Dysbiosis in human body microbiome has emerged as a significant factor in these diseases, indicating a potential role for synbiotics in restoring microbial equilibrium. However, effective delivery of synbiotics to the target site remains challenging. Here, we aim to explore suitable nanoparticles for encapsulating synbiotics tailored for applications in lung diseases. Nanoencapsulation has emerged as a prominent strategy to address the delivery challenges of synbiotics in this context. Through a comprehensive review, we assess the potential of nanoparticles in facilitating synbiotic delivery and their structural adaptability for this purpose. Our review reveals that nanoparticles such as nanocellulose, starch, and chitosan exhibit high potential for synbiotic encapsulation. These offer flexibility in structure design and synthesis, making them promising candidates for addressing delivery challenges in lung diseases. Furthermore, our analysis highlights that synbiotics, when compared to probiotics alone, demonstrate superior anti-inflammatory, antioxidant, antibacterial and anticancer activities. This review underscores the promising role of nanoparticle-encapsulated synbiotics as a targeted and effective therapeutic approach for lung diseases, contributing valuable insights into the potential of nanomedicine in revolutionizing treatment strategies for respiratory conditions, ultimately paving the way for future advancements in this field.
Collapse
Affiliation(s)
- Ayeh Bani Saeid
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kylie A Williams
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, 144411, India
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, AV, 9713, Groningen, the Netherlands
| | - Monica Gulati
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Punjab University Chandigarh, India
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, AV, 9713, Groningen, the Netherlands; Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
13
|
Bhattacharya M, Chatterjee S, Saxena S, Nandi SS, Lee SS, Chakraborty C. Current landscape of long COVID clinical trials. Int Immunopharmacol 2024; 132:111930. [PMID: 38537538 DOI: 10.1016/j.intimp.2024.111930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 05/01/2024]
Abstract
Long COVID was reported as a multi-systemic condition after the infection of SARS-CoV-2, and more than 65 million people are suffering from this disease. It has been noted that around 10% of severe SARS-CoV-2 infected individuals are suffering from the enduring effects of long COVID. The symptoms of long COVID have also been noted in several mild or asymptomatic SARS-CoV-2 infected individuals. While limited reports on clinical trials investigating new therapeutics for long COVID exist, there is an abundance of scattered information available regarding these trials. This review explores the extensive literature search, and complete clinical trial database search to map the current status of long COVID clinical trials worldwide. The study listed about 110 long COVID clinical trials. In addition to conducting extensive long COVID clinical trials, we have comprehensively presented an overview of the condition, its symptoms, notable manifestations, associated clinical trials, the unique challenges it poses, and our recommendations for addressing long COVID.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Srijan Chatterjee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Sanskriti Saxena
- Division of Biology, Indian Institute of Science Education and Research-Tirupati, Panguru, Tirupati 517619, Andhra Pradesh, India
| | - Shyam Sundar Nandi
- ICMR-National Institute of Virology, (Mumbai unit), Indian Council of Medical Research, Haffkine Institute Compound, A. D. Marg, Parel, Mumbai 400012, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea.
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India.
| |
Collapse
|
14
|
Lang K. What do we know about covid-19's effects on the gut? BMJ 2024; 385:q842. [PMID: 38692677 DOI: 10.1136/bmj.q842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
|
15
|
Yousef M, Rob M, Varghese S, Rao S, Zamir F, Paul P, Chaari A. The effect of microbiome therapy on COVID-19-induced gut dysbiosis: A narrative and systematic review. Life Sci 2024; 342:122535. [PMID: 38408636 DOI: 10.1016/j.lfs.2024.122535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
AIMS Emerging evidence highlights the role of COVID-19 in instigating gut dysbiosis, with repercussions on disease severity and bidirectional gut-organ communication involving the lung, heart, brain, and liver. This study aims to evaluate the efficacy of probiotics, prebiotics, synbiotics, and fecal microbiota transplantation (FMT) in addressing gut dysbiosis associated with COVID-19, as well as their impact on related disease severity and clinical outcomes. MATERIALS AND METHODS We systematically review 27 studies exploring the efficacy of different microbiome-modulating therapies: probiotics, prebiotics, synbiotics, and fecal microbiota transplantation as potential interventions for COVID-19. KEY FINDINGS The probiotics and synbiotics investigated encompassed a spectrum of eight bacterial and fungal genera, namely Lactobacillus, Bifidobacterium, Streptococcus, Enterococcus, Pediococcus, Bacillus, Saccharomyces, and Kluyveromyces. Noteworthy prebiotics employed in these studies included chestnut tannin, galactooligosaccharides, fructooligosaccharides, xylooligosaccharide, and resistant dextrin. The majority of the investigated biotics exhibited positive effects on COVID-19 patients, manifesting in symptom alleviation, inflammation reduction, and notable decreases in mortality rates. Five studies reported death rates, showing an average mortality ranging from 0 % to 11 % in the intervention groups, as compared to 3 % to 30 % in the control groups. Specifically, probiotics, prebiotics, and synbiotics demonstrated efficacy in diminishing the duration and severity of symptoms while significantly accelerating viral and symptomatic remission. FMT emerged as a particularly effective strategy, successfully restoring gut microbiota and ameliorating gastrointestinal disorders. SIGNIFICANCE The insights gleaned from this review significantly contribute to our broader comprehension of the therapeutic potential of biotics in addressing COVID-19-related gut dysbiosis and mitigating secondary multi-organ complications.
Collapse
Affiliation(s)
- Mahmoud Yousef
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha, Qatar
| | - Mlaak Rob
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha, Qatar
| | - Sanish Varghese
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha, Qatar
| | - Shrinidhi Rao
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha, Qatar
| | - Fahad Zamir
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha, Qatar
| | - Pradipta Paul
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha, Qatar
| | - Ali Chaari
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
16
|
Lau RI, Su Q, Lau ISF, Ching JYL, Wong MCS, Lau LHS, Tun HM, Mok CKP, Chau SWH, Tse YK, Cheung CP, Li MKT, Yeung GTY, Cheong PK, Chan FKL, Ng SC. A synbiotic preparation (SIM01) for post-acute COVID-19 syndrome in Hong Kong (RECOVERY): a randomised, double-blind, placebo-controlled trial. THE LANCET. INFECTIOUS DISEASES 2024; 24:256-265. [PMID: 38071990 DOI: 10.1016/s1473-3099(23)00685-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND Post-acute COVID-19 syndrome (PACS) affects over 65 million individuals worldwide but treatment options are scarce. We aimed to assess a synbiotic preparation (SIM01) for the alleviation of PACS symptoms. METHODS In this randomised, double-blind, placebo-controlled trial at a tertiary referral centre in Hong Kong, patients with PACS according to the US Centers for Disease Control and Prevention criteria were randomly assigned (1:1) by random permuted blocks to receive SIM01 (10 billion colony-forming units in sachets twice daily) or placebo orally for 6 months. Inclusion criterion was the presence of at least one of 14 PACS symptoms for 4 weeks or more after confirmed SARS-CoV-2 infection, including fatigue, memory loss, difficulty in concentration, insomnia, mood disturbance, hair loss, shortness of breath, coughing, inability to exercise, chest pain, muscle pain, joint pain, gastrointestinal upset, or general unwellness. Individuals were excluded if they were immunocompromised, were pregnant or breastfeeding, were unable to receive oral fluids, or if they had received gastrointestinal surgery in the 30 days before randomisation. Participants, care providers, and investigators were masked to group assignment. The primary outcome was alleviation of PACS symptoms by 6 months, assessed by an interviewer-administered 14-item questionnaire in the intention-to-treat population. Forward stepwise multivariable logistical regression was performed to identify predictors of symptom alleviation. The trial is registered with ClinicalTrials.gov, NCT04950803. FINDINGS Between June 25, 2021, and Aug 12, 2022, 463 patients were randomly assigned to receive SIM01 (n=232) or placebo (n=231). At 6 months, significantly higher proportions of the SIM01 group had alleviation of fatigue (OR 2·273, 95% CI 1·520-3·397, p=0·0001), memory loss (1·967, 1·271-3·044, p=0·0024), difficulty in concentration (2·644, 1·687-4·143, p<0·0001), gastrointestinal upset (1·995, 1·304-3·051, p=0·0014), and general unwellness (2·360, 1·428-3·900, p=0·0008) compared with the placebo group. Adverse event rates were similar between groups during treatment (SIM01 22 [10%] of 232 vs placebo 25 [11%] of 231; p=0·63). Treatment with SIM01, infection with omicron variants, vaccination before COVID-19, and mild acute COVID-19, were predictors of symptom alleviation (p<0·0036). INTERPRETATION Treatment with SIM01 alleviates multiple symptoms of PACS. Our findings have implications on the management of PACS through gut microbiome modulation. Further studies are warranted to explore the beneficial effects of SIM01 in other chronic or post-infection conditions. FUNDING Health and Medical Research Fund of Hong Kong, Hui Hoy and Chow Sin Lan Charity Fund, and InnoHK of the HKSAR Government. TRANSLATION For the Chinese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Raphaela I Lau
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Microbiota I-Center, Hong Kong Special Administrative Region, China
| | - Qi Su
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Microbiota I-Center, Hong Kong Special Administrative Region, China
| | - Ivan S F Lau
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jessica Y L Ching
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Microbiota I-Center, Hong Kong Special Administrative Region, China
| | - Martin C S Wong
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Louis H S Lau
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hein M Tun
- Microbiota I-Center, Hong Kong Special Administrative Region, China; The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chris K P Mok
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Steven W H Chau
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yee Kit Tse
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chun Pan Cheung
- Microbiota I-Center, Hong Kong Special Administrative Region, China
| | - Moses K T Li
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Microbiota I-Center, Hong Kong Special Administrative Region, China
| | - Giann T Y Yeung
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Pui Kuan Cheong
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Francis K L Chan
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Microbiota I-Center, Hong Kong Special Administrative Region, China; Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Siew C Ng
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Microbiota I-Center, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
17
|
Álvarez-Santacruz C, Tyrkalska SD, Candel S. The Microbiota in Long COVID. Int J Mol Sci 2024; 25:1330. [PMID: 38279329 PMCID: PMC10816132 DOI: 10.3390/ijms25021330] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024] Open
Abstract
Interest in the coronavirus disease 2019 (COVID-19) has progressively decreased lately, mainly due to the great effectivity of vaccines. Furthermore, no new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants able to circumvent the protection of these vaccines, while presenting high transmissibility and/or lethality, have appeared. However, long COVID has emerged as a huge threat to human health and economy globally. The human microbiota plays an important role in health and disease, participating in the modulation of innate and adaptive immune responses. Thus, multiple studies have found that the nasopharyngeal microbiota is altered in COVID-19 patients, with these changes associated with the onset and/or severity of the disease. Nevertheless, although dysbiosis has also been reported in long COVID patients, mainly in the gut, little is known about the possible involvement of the microbiota in the development of this disease. Therefore, in this work, we aim to fill this gap in the knowledge by discussing and comparing the most relevant studies that have been published in this field up to this point. Hence, we discuss that the relevance of long COVID has probably been underestimated, and that the available data suggest that the microbiota could be playing a pivotal role on the pathogenesis of the disease. Further research to elucidate the involvement of the microbiota in long COVID will be essential to explore new therapeutic strategies based on manipulation of the microbiota.
Collapse
Affiliation(s)
| | - Sylwia D. Tyrkalska
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain;
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sergio Candel
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain;
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
18
|
Righi E, Dalla Vecchia I, Auerbach N, Morra M, Górska A, Sciammarella C, Lambertenghi L, Gentilotti E, Mirandola M, Tacconelli E, Sartor A. Gut Microbiome Disruption Following SARS-CoV-2: A Review. Microorganisms 2024; 12:131. [PMID: 38257958 PMCID: PMC10820238 DOI: 10.3390/microorganisms12010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
COVID-19 has been associated with having a negative impact on patients' gut microbiome during both active disease and in the post-acute phase. In acute COVID-19, rapid alteration of the gut microbiome composition was observed, showing on one side a reduction in beneficial symbionts (e.g., Roseburia, Lachnospiraceae) and on the other side an increase in opportunistic pathogens such as Enterococcus and Proteobacteria. Alpha diversity tends to decrease, especially initially with symptom onset and hospital admission. Although clinical recovery appears to align with improved gut homeostasis, this process could take several weeks, even in mild infections. Moreover, patients with COVID-19 post-acute syndrome showed changes in gut microbiome composition, with specific signatures associated with decreased respiratory function up to 12 months following acute disease. Potential treatments, especially probiotic-based therapy, are under investigation. Open questions remain on the possibility to use gut microbiome data to predict disease progression and on potential confounders that may impair result interpretation (e.g., concomitant therapies in the acute phase; reinfection, vaccines, and occurrence of novel conditions or diseases in the post-acute syndrome). Understanding the relationships between gut microbiome dynamics and disease progression may contribute to better understanding post-COVID syndrome pathogenesis or inform personalized treatment that can affect specific targets or microbiome markers.
Collapse
Affiliation(s)
- Elda Righi
- IMID Laboratory, Department of Diagnostics and Public Health, Infectious Diseases Division, University of Verona, 37134 Verona, Italy (A.G.); (C.S.); (E.T.)
| | - Ilaria Dalla Vecchia
- IMID Laboratory, Department of Diagnostics and Public Health, Infectious Diseases Division, University of Verona, 37134 Verona, Italy (A.G.); (C.S.); (E.T.)
| | - Nina Auerbach
- IMID Laboratory, Department of Diagnostics and Public Health, Infectious Diseases Division, University of Verona, 37134 Verona, Italy (A.G.); (C.S.); (E.T.)
| | - Matteo Morra
- IMID Laboratory, Department of Diagnostics and Public Health, Infectious Diseases Division, University of Verona, 37134 Verona, Italy (A.G.); (C.S.); (E.T.)
| | - Anna Górska
- IMID Laboratory, Department of Diagnostics and Public Health, Infectious Diseases Division, University of Verona, 37134 Verona, Italy (A.G.); (C.S.); (E.T.)
| | - Concetta Sciammarella
- IMID Laboratory, Department of Diagnostics and Public Health, Infectious Diseases Division, University of Verona, 37134 Verona, Italy (A.G.); (C.S.); (E.T.)
| | - Lorenza Lambertenghi
- IMID Laboratory, Department of Diagnostics and Public Health, Infectious Diseases Division, University of Verona, 37134 Verona, Italy (A.G.); (C.S.); (E.T.)
| | - Elisa Gentilotti
- IMID Laboratory, Department of Diagnostics and Public Health, Infectious Diseases Division, University of Verona, 37134 Verona, Italy (A.G.); (C.S.); (E.T.)
| | - Massimo Mirandola
- IMID Laboratory, Department of Diagnostics and Public Health, Infectious Diseases Division, University of Verona, 37134 Verona, Italy (A.G.); (C.S.); (E.T.)
| | - Evelina Tacconelli
- IMID Laboratory, Department of Diagnostics and Public Health, Infectious Diseases Division, University of Verona, 37134 Verona, Italy (A.G.); (C.S.); (E.T.)
| | - Assunta Sartor
- Microbiology Unit, Udine University Hospital, 33100 Udine, Italy;
| |
Collapse
|
19
|
Patel P, Bhattacharjee M. Microbiome and the COVID-19 pandemic. MICROBES, MICROBIAL METABOLISM, AND MUCOSAL IMMUNITY 2024:287-348. [DOI: 10.1016/b978-0-323-90144-4.00008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Liu S, Zhao Y, Feng X, Xu H. SARS-CoV-2 infection threatening intestinal health: A review of potential mechanisms and treatment strategies. Crit Rev Food Sci Nutr 2023; 63:12578-12596. [PMID: 35894645 DOI: 10.1080/10408398.2022.2103090] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The outbreak of the COVID-19 pandemic has brought great problems to mankind, including economic recession and poor health. COVID-19 patients are frequently reported with gastrointestinal symptoms such as diarrhea and vomiting in clinical diagnosis. Maintaining intestinal health is the key guarantee to maintain the normal function of multiple organs, otherwise it will be a disaster. Therefore, the purpose of this review was deeply understanded the potential mechanism of SARS-CoV-2 infection threatening intestinal health and put forward reasonable treatment strategies. Combined with the existing researches, we summarized the mechanism of SARS-CoV-2 infection threatening intestinal health, including intestinal microbiome disruption, intestinal barrier dysfunction, intestinal oxidative stress and intestinal cytokine storm. These adverse intestinal events may affect other organs through the circulatory system or aggravate the course of the disease. Typically, intestinal disadvantage may promote the progression of SARS-CoV-2 through the gut-lung axis and increase the disease degree of COVID-19 patients. In view of the lack of specific drugs to inhibit SARS-CoV-2 replication, the current review described new strategies of probiotics, prebiotics, postbiotics and nutrients to combat SARS-CoV-2 infection and maintain intestinal health. To provide new insights for the prevention and treatment of gastrointestinal symptoms and pneumonia in patients with COVID-19.
Collapse
Affiliation(s)
- Shanji Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xiaoyan Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
21
|
Li J, Zhou Y, Ma J, Zhang Q, Shao J, Liang S, Yu Y, Li W, Wang C. The long-term health outcomes, pathophysiological mechanisms and multidisciplinary management of long COVID. Signal Transduct Target Ther 2023; 8:416. [PMID: 37907497 PMCID: PMC10618229 DOI: 10.1038/s41392-023-01640-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/04/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023] Open
Abstract
There have been hundreds of millions of cases of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). With the growing population of recovered patients, it is crucial to understand the long-term consequences of the disease and management strategies. Although COVID-19 was initially considered an acute respiratory illness, recent evidence suggests that manifestations including but not limited to those of the cardiovascular, respiratory, neuropsychiatric, gastrointestinal, reproductive, and musculoskeletal systems may persist long after the acute phase. These persistent manifestations, also referred to as long COVID, could impact all patients with COVID-19 across the full spectrum of illness severity. Herein, we comprehensively review the current literature on long COVID, highlighting its epidemiological understanding, the impact of vaccinations, organ-specific sequelae, pathophysiological mechanisms, and multidisciplinary management strategies. In addition, the impact of psychological and psychosomatic factors is also underscored. Despite these crucial findings on long COVID, the current diagnostic and therapeutic strategies based on previous experience and pilot studies remain inadequate, and well-designed clinical trials should be prioritized to validate existing hypotheses. Thus, we propose the primary challenges concerning biological knowledge gaps and efficient remedies as well as discuss the corresponding recommendations.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Zhou
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jiechao Ma
- AI Lab, Deepwise Healthcare, Beijing, China
| | - Qin Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Department of Postgraduate Student, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jun Shao
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Shufan Liang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yizhou Yu
- Department of Computer Science, The University of Hong Kong, Hong Kong, China.
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
22
|
Hafezi SG, Seifi N, Bahari H, Mohammadi M, Ghasemabadi A, ferns GA, Farkhani EM, Ghayour-mobarhan M. The association between macronutrient intakes and coronavirus disease 2019 (COVID-19) in an Iranian population: applying a dynamical system model. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2023; 42:114. [PMID: 37884984 PMCID: PMC10601229 DOI: 10.1186/s41043-023-00448-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
AIMS The possible role of lifestyle including diet on immunity led us to investigate the association between dietary macronutrient intake and COVID-19 in an Iranian population. METHODS Dietary intakes were recorded in the first phase of the MASHAD cohort study (started in 2007), using a 24-h dietary recall. To determine the COVID-19 incidence, data from all PCR-positive patients in Mashhad were recorded between February 2020 and June 2022. Dietary macronutrients were included in the regression model, adjusting for age and sex. System dynamical models were also applied. RESULTS The analysis included 1957 participants, including 193 COVID-19-positive patients. Dietary intakes of non-starch polysaccharides (NSP) and fiber were significantly lower in COVID-19 patients (P < 0.05). After adjusting for age and sex, starch and total sugar were significantly associated with COVID-19 infection ((OR = 1.0008, P = 0.001) and (OR = 1.0006, P = 0.026), respectively). There was also a significant association between dietary fiber intake and hospitalization (OR = 0.99, P = 0.018). In the dynamical system models, dietary intakes of cholesterol, polyunsaturated fatty acids (PUFA), and total sugar above 180.2 mg, 13.11 g, and 79.53 mg, respectively, were associated with an increased susceptibility to COVID-19 infection, while dietary fiber had a protective role. CONCLUSION Dietary intake of starch and total sugars was associated with increased odds of COVID-19, while fiber intake decreased the odds of hospitalization due to COVID-19. The dynamical system models showed that dietary intake of cholesterol, PUFAs, and total sugar was associated with an increased risk of COVID-19, while fiber had a protective role.
Collapse
Affiliation(s)
- Somayeh Ghiasi Hafezi
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Najmeh Seifi
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Bahari
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mohammadi
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Gordon A. ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex UK
| | | | - Majid Ghayour-mobarhan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Antony MA, Patel S, Verma V, Kant R. The Role of Gut Microbiome Supplementation in COVID-19 Management. Cureus 2023. [DOI: https:/doi.org/10.7759/cureus.46960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025] Open
|
24
|
Antony MA, Patel S, Verma V, Kant R. The Role of Gut Microbiome Supplementation in COVID-19 Management. Cureus 2023; 15:e46960. [PMID: 38021562 PMCID: PMC10640765 DOI: 10.7759/cureus.46960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
COVID-19, which is caused by the RNA virus, SARS-CoV-2, mainly affects the respiratory system and has a varied clinical presentation. However, several studies have shown that COVID-19 can also affect the gastrointestinal (GI) system. Patients can experience various GI symptoms, such as vomiting and diarrhea, and the virus has been detected in the stool samples of patients hospitalized with COVID-19. There have also been rare reports of COVID-19 presenting with isolated GI symptoms and lack of respiratory symptoms, and the virus has also been detected for prolonged periods in the fecal samples of COVID-19 patients. Major alterations in the gut microbiome in the form of depletion of beneficial organisms and an abundance of pathogenic organisms have been reported in the fecal samples of hospitalized COVID-19 patients. Although the US FDA has approved several drugs to manage COVID-19, their efficacy remains modest. So, there is a constant ongoing effort to investigate novel treatment options for COVID-19. Health supplements like probiotics, prebiotics, postbiotics, and synbiotics have been popularly known for their various health benefits. In this review, we have summarized the current literature, which shows the potential benefit of these health supplements to mitigate and/or prevent the clinical presentation of COVID-19.
Collapse
Affiliation(s)
- Mc Anto Antony
- Department of Endocrinology, Diabetes and Metabolism, Medical University of South Carolina, Anderson, USA
| | - Siddharth Patel
- Department of Internal Medicine, Decatur Morgan Hospital, Decatur, USA
| | - Vipin Verma
- Department of Internal Medicine, Medical University of South Carolina, Anderson, USA
| | - Ravi Kant
- Department of Endocrinology, Diabetes and Metabolism, Medical University of South Carolina, Anderson, USA
| |
Collapse
|
25
|
Haldar S, Jadhav SR, Gulati V, Beale DJ, Balkrishna A, Varshney A, Palombo EA, Karpe AV, Shah RM. Unravelling the gut-lung axis: insights into microbiome interactions and Traditional Indian Medicine's perspective on optimal health. FEMS Microbiol Ecol 2023; 99:fiad103. [PMID: 37656879 PMCID: PMC10508358 DOI: 10.1093/femsec/fiad103] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023] Open
Abstract
The microbiome of the human gut is a complex assemblage of microorganisms that are in a symbiotic relationship with one another and profoundly influence every aspect of human health. According to converging evidence, the human gut is a nodal point for the physiological performance matrixes of the vital organs on several axes (i.e. gut-brain, gut-lung, etc). As a result of COVID-19, the importance of gut-lung dysbiosis (balance or imbalance) has been realised. In view of this, it is of utmost importance to develop a comprehensive understanding of the microbiome, as well as its dysbiosis. In this review, we provide an overview of the gut-lung axial microbiome and its importance in maintaining optimal health. Human populations have successfully adapted to geophysical conditions through traditional dietary practices from around the world. In this context, a section has been devoted to the traditional Indian system of medicine and its theories and practices regarding the maintenance of optimally customized gut health.
Collapse
Affiliation(s)
- Swati Haldar
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249405, Uttarakhand, India
| | - Snehal R Jadhav
- Consumer-Analytical-Safety-Sensory (CASS) Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Vandana Gulati
- Biomedical Science, School of Science and Technology Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia
| | - David J Beale
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249405, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar 249405, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249405, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar 249405, Uttarakhand, India
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Avinash V Karpe
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Socio-Eternal Thinking for Unity (SETU), Melbourne, VIC 3805, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Acton, ACT 2601, Australia
| | - Rohan M Shah
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora West, VIC 3083, Australia
| |
Collapse
|
26
|
Martín Giménez VM, Modrego J, Gómez-Garre D, Manucha W, de las Heras N. Gut Microbiota Dysbiosis in COVID-19: Modulation and Approaches for Prevention and Therapy. Int J Mol Sci 2023; 24:12249. [PMID: 37569625 PMCID: PMC10419057 DOI: 10.3390/ijms241512249] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Inflammation and oxidative stress are critical underlying mechanisms associated with COVID-19 that contribute to the complications and clinical deterioration of patients. Additionally, COVID-19 has the potential to alter the composition of patients' gut microbiota, characterized by a decreased abundance of bacteria with probiotic effects. Interestingly, certain strains of these bacteria produce metabolites that can target the S protein of other coronaviruses, thereby preventing their transmission and harmful effects. At the same time, the presence of gut dysbiosis can exacerbate inflammation and oxidative stress, creating a vicious cycle that perpetuates the disease. Furthermore, it is widely recognized that the gut microbiota can metabolize various foods and drugs, producing by-products that may have either beneficial or detrimental effects. In this regard, a decrease in short-chain fatty acid (SCFA), such as acetate, propionate, and butyrate, can influence the overall inflammatory and oxidative state, affecting the prevention, treatment, or worsening of COVID-19. This review aims to explore the current evidence regarding gut dysbiosis in patients with COVID-19, its association with inflammation and oxidative stress, the molecular mechanisms involved, and the potential of gut microbiota modulation in preventing and treating SARS-CoV-2 infection. Given that gut microbiota has demonstrated high adaptability, exploring ways and strategies to maintain good intestinal health, as well as an appropriate diversity and composition of the gut microbiome, becomes crucial in the battle against COVID-19.
Collapse
Affiliation(s)
- Virna Margarita Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, San Juan 5400, Argentina;
| | - Javier Modrego
- Laboratorio de Riesgo Cardiovascular y Microbiota, Hospital Clínico San Carlos-Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Dulcenombre Gómez-Garre
- Laboratorio de Riesgo Cardiovascular y Microbiota, Hospital Clínico San Carlos-Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Plaza Ramón y Cajal, s/n. Universidad Complutense, 28040 Madrid, Spain
| | - Walter Manucha
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina;
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Mendoza 5500, Argentina
| | - Natalia de las Heras
- Departamento de Fisiología, Facultad de Medicina, Plaza Ramón y Cajal, s/n. Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
27
|
Golla R, Vuyyuru SK, Kante B, Kedia S, Ahuja V. Disorders of gut-brain interaction in post-acute COVID-19 syndrome. Postgrad Med J 2023; 99:834-843. [PMID: 37130814 DOI: 10.1136/pmj-2022-141749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/18/2022] [Indexed: 11/03/2022]
Abstract
The novel coronavirus SARS-CoV-2 is responsible for the devastating pandemic which has caused more than 5 million deaths across the world until today. Apart from causing acute respiratory illness and multiorgan dysfunction, there can be long-term multiorgan sequalae after recovery, which is termed 'long COVID-19' or 'post-acute COVID-19 syndrome'. Little is known about long-term gastrointestinal (GI) consequences, occurrence of post-infection functional gastrointestinal disorders and impact the virus may have on overall intestinal health. In this review, we put forth the various mechanisms which may lead to this entity and possible ways to diagnose and manage this disorder. Hence, making physicians aware of this spectrum of disease is of utmost importance in the present pandemic and this review will help clinicians understand and suspect the occurrence of functional GI disease post recovery from COVID-19 and manage it accordingly, avoiding unnecessary misconceptions and delay in treatment.
Collapse
Affiliation(s)
- Rithvik Golla
- Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Sudheer Kumar Vuyyuru
- Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Bhaskar Kante
- Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Saurabh Kedia
- Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Vineet Ahuja
- Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, Delhi, India
| |
Collapse
|
28
|
Wang L, Wang Y, Xuan C, Zhang B, Wu H, Gao J. Predicting potential microbe-disease associations based on multi-source features and deep learning. Brief Bioinform 2023; 24:bbad255. [PMID: 37406190 DOI: 10.1093/bib/bbad255] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Studies have confirmed that the occurrence of many complex diseases in the human body is closely related to the microbial community, and microbes can affect tumorigenesis and metastasis by regulating the tumor microenvironment. However, there are still large gaps in the clinical observation of the microbiota in disease. Although biological experiments are accurate in identifying disease-associated microbes, they are also time-consuming and expensive. The computational models for effective identification of diseases related microbes can shorten this process, and reduce capital and time costs. Based on this, in the paper, a model named DSAE_RF is presented to predict latent microbe-disease associations by combining multi-source features and deep learning. DSAE_RF calculates four similarities between microbes and diseases, which are then used as feature vectors for the disease-microbe pairs. Later, reliable negative samples are screened by k-means clustering, and a deep sparse autoencoder neural network is further used to extract effective features of the disease-microbe pairs. In this foundation, a random forest classifier is presented to predict the associations between microbes and diseases. To assess the performance of the model in this paper, 10-fold cross-validation is implemented on the same dataset. As a result, the AUC and AUPR of the model are 0.9448 and 0.9431, respectively. Furthermore, we also conduct a variety of experiments, including comparison of negative sample selection methods, comparison with different models and classifiers, Kolmogorov-Smirnov test and t-test, ablation experiments, robustness analysis, and case studies on Covid-19 and colorectal cancer. The results fully demonstrate the reliability and availability of our model.
Collapse
Affiliation(s)
- Liugen Wang
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan Wang
- School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chenxu Xuan
- School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bai Zhang
- School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hanwen Wu
- School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Gao
- School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
29
|
Romani A, Sergi D, Zauli E, Voltan R, Lodi G, Vaccarezza M, Caruso L, Previati M, Zauli G. Nutrients, herbal bioactive derivatives and commensal microbiota as tools to lower the risk of SARS-CoV-2 infection. Front Nutr 2023; 10:1152254. [PMID: 37324739 PMCID: PMC10267353 DOI: 10.3389/fnut.2023.1152254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
The SARS-CoV-2 outbreak has infected a vast population across the world, causing more than 664 million cases and 6.7 million deaths by January 2023. Vaccination has been effective in reducing the most critical aftermath of this infection, but some issues are still present regarding re-infection prevention, effectiveness against variants, vaccine hesitancy and worldwide accessibility. Moreover, although several old and new antiviral drugs have been tested, we still lack robust and specific treatment modalities. It appears of utmost importance, facing this continuously growing pandemic, to focus on alternative practices grounded on firm scientific bases. In this article, we aim to outline a rigorous scientific background and propose complementary nutritional tools useful toward containment, and ultimately control, of SARS-CoV-2 infection. In particular, we review the mechanisms of viral entry and discuss the role of polyunsaturated fatty acids derived from α-linolenic acid and other nutrients in preventing the interaction of SARS-CoV-2 with its entry gateways. In a similar way, we analyze in detail the role of herbal-derived pharmacological compounds and specific microbial strains or microbial-derived polypeptides in the prevention of SARS-CoV-2 entry. In addition, we highlight the role of probiotics, nutrients and herbal-derived compounds in stimulating the immunity response.
Collapse
Affiliation(s)
- Arianna Romani
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Domenico Sergi
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Rebecca Voltan
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giada Lodi
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Mauro Vaccarezza
- Curtin Medical School & Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Lorenzo Caruso
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Maurizio Previati
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Obermoser K, Brigo N, Schroll A, Monfort-Lanzas P, Gostner JM, Engl S, Geisler S, Knoll M, Schennach H, Weiss G, Fuchs D, Bellmann-Weiler R, Kurz K. Positive Effects of Probiotic Therapy in Patients with Post-Infectious Fatigue. Metabolites 2023; 13:metabo13050639. [PMID: 37233680 DOI: 10.3390/metabo13050639] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
Post-infectious fatigue is a common complication that can lead to decreased physical efficiency, depression, and impaired quality of life. Dysbiosis of the gut microbiota has been proposed as a contributing factor, as the gut-brain axis plays an important role in regulating physical and mental health. This pilot study aimed to investigate the severity of fatigue and depression, as well as the quality of life of 70 patients with post-infectious fatigue who received a multi-strain probiotic preparation or placebo in a double-blind, placebo-controlled trial. Patients completed questionnaires to assess their fatigue (fatigue severity scale (FSS)), mood (Beck Depression Inventory II (BDI-II)), and quality of life (short form-36 (SF-36)) at baseline and after 3 and 6 months of treatment. Routine laboratory parameters were also assessed, including immune-mediated changes in tryptophan and phenylalanine metabolism. The intervention was effective in improving fatigue, mood, and quality of life in both the probiotic and placebo groups, with greater improvements seen in the probiotic group. FSS and BDI-II scores declined significantly under treatment with both probiotics and placebo, but patients who received probiotics had significantly lower FSS (p < 0.001) and BDI-II (p < 0.001) scores after 6 months. Quality of life scores improved significantly in patients who received probiotics (p < 0.001), while patients taking a placebo only saw improvements in the "Physical limitation" and "Energy/Fatigue" subcategories. After 6 months neopterin was higher in patients receiving placebo, while no longitudinal changes in interferon-gamma mediated biochemical pathways were observed. These findings suggest that probiotics may be a promising intervention for improving the health of patients with post-infectious fatigue, potentially through modulating the gut-brain axis.
Collapse
Affiliation(s)
- Katharina Obermoser
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Natascha Brigo
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Andrea Schroll
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Pablo Monfort-Lanzas
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Johanna M Gostner
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Sabine Engl
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Simon Geisler
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Miriam Knoll
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schoepfstrasse 41, 6020 Innsbruck, Austria
| | - Harald Schennach
- Central Institute of Blood Transfusion and Immunology, University Hospital, Anichstr. 35, 6020 Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Rosa Bellmann-Weiler
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Katharina Kurz
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| |
Collapse
|
31
|
Zhang F, Lau RI, Liu Q, Su Q, Chan FKL, Ng SC. Gut microbiota in COVID-19: key microbial changes, potential mechanisms and clinical applications. Nat Rev Gastroenterol Hepatol 2023; 20:323-337. [PMID: 36271144 PMCID: PMC9589856 DOI: 10.1038/s41575-022-00698-4] [Citation(s) in RCA: 129] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 01/14/2023]
Abstract
The gastrointestinal tract is involved in coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The gut microbiota has important roles in viral entry receptor angiotensin-converting enzyme 2 (ACE2) expression, immune homeostasis, and crosstalk between the gut and lungs, the 'gut-lung axis'. Emerging preclinical and clinical studies indicate that the gut microbiota might contribute to COVID-19 pathogenesis and disease outcomes; SARS-CoV-2 infection was associated with altered intestinal microbiota and correlated with inflammatory and immune responses. Here, we discuss the cutting-edge evidence on the interactions between SARS-CoV-2 infection and the gut microbiota, key microbial changes in relation to COVID-19 severity and host immune dysregulations with the possible underlying mechanisms, and the conceivable consequences of the pandemic on the human microbiome and post-pandemic health. Finally, potential modulatory strategies of the gut microbiota are discussed. These insights could shed light on the development of microbiota-based interventions for COVID-19.
Collapse
Affiliation(s)
- Fen Zhang
- Microbiota I-Center (MagIC), Shatin, Hong Kong S.A.R., China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
- State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
| | - Raphaela I Lau
- Microbiota I-Center (MagIC), Shatin, Hong Kong S.A.R., China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
- State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
| | - Qin Liu
- Microbiota I-Center (MagIC), Shatin, Hong Kong S.A.R., China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
- State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
| | - Qi Su
- Microbiota I-Center (MagIC), Shatin, Hong Kong S.A.R., China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
- State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Shatin, Hong Kong S.A.R., China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
- State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
| | - Siew C Ng
- Microbiota I-Center (MagIC), Shatin, Hong Kong S.A.R., China.
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China.
- State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China.
| |
Collapse
|
32
|
Liang JQ, Zeng Y, Lau EYT, Sun Y, Huang Y, Zhou T, Xu Z, Yu J, Ng SC, Chan FKL. A Probiotic Formula for Modulation of Colorectal Cancer Risk via Reducing CRC-Associated Bacteria. Cells 2023; 12:cells12091244. [PMID: 37174650 PMCID: PMC10177585 DOI: 10.3390/cells12091244] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Gut microbiota dysbiosis with increased pathogenic bacteria and decreased beneficial bacteria is associated with colorectal cancer (CRC) development. This study examined the effect of a newly developed probiotic formula in modulating CRC-related bacteria. We developed a probiotic formula containing three bifidobacteria (B. adolescentis, B. longum, and B. bifidum) based on the identification of bacterial species that showed significant correlations with CRC-related bacteria including Fusobacterium nucleatum (Fn), Lachnoclostridium sp. m3, Clostridium hathewayi (Ch), and Bacteroides clarus (Bc). We co-cultured Fn with each bifidobacterium or the combined formula and examined the growth of Fn by qPCR. The three individual bifidobacteria significantly inhibited the growth of Fn compared to the control treatment (24~65% inhibition; all p < 0.001). The combination of the three bifidobacteria showed a greater inhibitory effect on Fn growth (70% inhibition) than the individual bifidobacteria (all p < 0.05). We further examined the effect of the probiotic formula in a pilot study of 72 subjects (40 on probiotics; 32 with no intervention) for 4 weeks and followed them up for 12 weeks. The relative fecal abundances of the bifidobacteria in the formula and the CRC-related markers (Fn, m3, Ch, and Bc) were quantitated by qPCR before and after the intervention, and the combined CRC risk score (4Bac; Fn, m3, Ch, and Bc) was evaluated. Subjects with probiotics intervention showed significantly increased abundances of the bifidobacteria from week 2 to week 5 compared to baseline (p < 0.05), and the abundances dropped to baseline levels after the cessation of the intervention. There were significant decreases in the levels of CRC-related markers (Fn and m3) and the CRC risk score (4Bac) from week 2 to week 12 compared to baseline levels (p < 0.05) in the intervention group but not in the control group. A novel probiotic formula containing B. adolescentis, B. longum, and B. bifidum was effective in inhibiting the growth of F. nucleatum in vitro and improving the gut microbial environment against CRC development.
Collapse
Affiliation(s)
- Jessie Qiaoyi Liang
- Department of Medicine and Therapeutics, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yao Zeng
- Department of Medicine and Therapeutics, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Effie Yin Tung Lau
- Department of Medicine and Therapeutics, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuting Sun
- Department of Medicine and Therapeutics, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yao Huang
- Department of Medicine and Therapeutics, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Tingyu Zhou
- Department of Medicine and Therapeutics, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhilu Xu
- Department of Medicine and Therapeutics, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center (MagIC), Hong Kong, China
| | - Jun Yu
- Department of Medicine and Therapeutics, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Siew Chien Ng
- Department of Medicine and Therapeutics, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center (MagIC), Hong Kong, China
| | - Francis Ka Leung Chan
- Department of Medicine and Therapeutics, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center (MagIC), Hong Kong, China
| |
Collapse
|
33
|
Wong MCS, Zhang L, Ching JYL, Mak JWY, Huang J, Wang S, Mok CKP, Wong A, Chiu OL, Fung YT, Cheong PK, Tun HM, Ng SC, Chan FKL. Effects of Gut Microbiome Modulation on Reducing Adverse Health Outcomes among Elderly and Diabetes Patients during the COVID-19 Pandemic: A Randomised, Double-Blind, Placebo-Controlled Trial (IMPACT Study). Nutrients 2023; 15:1982. [PMID: 37111201 PMCID: PMC10143994 DOI: 10.3390/nu15081982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Gut microbiota is believed to be a major determinant of health outcomes. We hypothesised that a novel oral microbiome formula (SIM01) can reduce the risk of adverse health outcomes in at-risk subjects during the coronavirus disease 2019 (COVID-19) pandemic. In this single-centre, double-blind, randomised, placebo-controlled trial, we recruited subjects aged ≥65 years or with type two diabetes mellitus. Eligible subjects were randomised in a 1:1 ratio to receive three months of SIM01 or placebo (vitamin C) within one week of the first COVID-19 vaccine dose. Both the researchers and participants were blinded to the groups allocated. The rate of adverse health outcomes was significantly lower in the SIM01 group than the placebo at one month (6 [2.9%] vs. 25 [12.6], p < 0.001) and three months (0 vs. 5 [3.1%], p = 0.025). At three months, more subjects who received SIM01 than the placebo reported better sleep quality (53 [41.4%] vs. 22 [19.3%], p < 0.001), improved skin condition (18 [14.1%] vs. 8 [7.0%], p = 0.043), and better mood (27 [21.2%] vs. 13 [11.4%], p = 0.043). Subjects who received SIM01 showed a significant increase in beneficial Bifidobacteria and butyrate-producing bacteria in faecal samples and strengthened the microbial ecology network. SIM01 reduced adverse health outcomes and restored gut dysbiosis in elderly and diabetes patients during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Martin C. S. Wong
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Health Education and Health Promotion, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lin Zhang
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jessica Y. L. Ching
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joyce W. Y. Mak
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Junjie Huang
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Health Education and Health Promotion, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shilan Wang
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chris K. P. Mok
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Angie Wong
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Oi-Lee Chiu
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yee-Ting Fung
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pui-Kuan Cheong
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hein-Min Tun
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Siew C. Ng
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Francis K. L. Chan
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
34
|
Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol 2023; 21:133-146. [PMID: 36639608 PMCID: PMC9839201 DOI: 10.1038/s41579-022-00846-2] [Citation(s) in RCA: 2037] [Impact Index Per Article: 1018.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/15/2023]
Abstract
Long COVID is an often debilitating illness that occurs in at least 10% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. More than 200 symptoms have been identified with impacts on multiple organ systems. At least 65 million individuals worldwide are estimated to have long COVID, with cases increasing daily. Biomedical research has made substantial progress in identifying various pathophysiological changes and risk factors and in characterizing the illness; further, similarities with other viral-onset illnesses such as myalgic encephalomyelitis/chronic fatigue syndrome and postural orthostatic tachycardia syndrome have laid the groundwork for research in the field. In this Review, we explore the current literature and highlight key findings, the overlap with other conditions, the variable onset of symptoms, long COVID in children and the impact of vaccinations. Although these key findings are critical to understanding long COVID, current diagnostic and treatment options are insufficient, and clinical trials must be prioritized that address leading hypotheses. Additionally, to strengthen long COVID research, future studies must account for biases and SARS-CoV-2 testing issues, build on viral-onset research, be inclusive of marginalized populations and meaningfully engage patients throughout the research process.
Collapse
Affiliation(s)
| | | | - Julia Moore Vogel
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA, USA
| | - Eric J Topol
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
35
|
Vaezi M, Ravanshad S, Akbari Rad M, Zarrinfar H, Kabiri M. The effect of synbiotic adjunct therapy on clinical and paraclinical outcomes in hospitalized COVID-19 patients: A randomized placebo-controlled trial. J Med Virol 2023; 95:e28463. [PMID: 36602047 DOI: 10.1002/jmv.28463] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Therapeutic approaches with immune-modulatory effects such as probiotics and prebiotics adjuvant therapy may be essential to combat against COVID-19 pandemic. The present trial aimed to reveal the efficacy of synbiotic supplementation on clinical and paraclinical outcomes of hospitalized COVID-19 patients. The current randomized placebo-controlled trial enrolled 78 hospitalized patients with confirmed COVID-19 infection. Participants were randomly allocated to intervention and control groups that received synbiotic or placebo capsules twice daily for 2 weeks, respectively. The synbiotic capsule contains multi-strain probiotics such as Lactobacillus (L.) rhamnosus, L. helveticus, L. casei, Bifidobacterium (B.) lactis, L. acidophilus, B. breve, L. bulgaricus, B. longum, L. plantarum, B. bifidum, L. gasseri, and Streptococcus (S.) thermophilus (109 CFU), as well as fructooligosaccharides prebiotic agent. Besides COVID-19 clinical features, levels of proinflammatory interleukin-6 (IL-6), C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), liver and renal function markers, as well as hematological parameters, were assessed during follow-up. The serum level of IL-6 was significantly decreased in the intervention group compared to the placebo after 2 weeks of intervention (p = 0.002). A significant difference was found regarding the count of white blood cells (WBC) within the synbiotic group from pre to post-treatment (p = 0.004). The levels of ESR (p = 0.935) and CRP (p = 0.952) had a higher reduction trend in the synbiotic group relative to the placebo, with no significant between-group differences. Other findings had no statistical differences between groups. Our results provide the support that synbiotic adjuvant therapy for 2 weeks can be effective to modulate inflammatory responses against COVID-19 infection.
Collapse
Affiliation(s)
- Mahsa Vaezi
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Ravanshad
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Akbari Rad
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Zarrinfar
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Kabiri
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
36
|
Wang M, Zhang Y, Li C, Chang W, Zhang L. The relationship between gut microbiota and COVID-19 progression: new insights into immunopathogenesis and treatment. Front Immunol 2023; 14:1180336. [PMID: 37205106 PMCID: PMC10185909 DOI: 10.3389/fimmu.2023.1180336] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a global health crisis. Increasing evidence underlines the key role of competent immune responses in resisting SARS-CoV-2 infection and manifests the disastrous consequence of host immune dysregulation. Elucidating the mechanisms responsible for deregulated host immunity in COVID-19 may provide a theoretical basis for further research on new treatment modalities. Gut microbiota comprises trillions of microorganisms colonizing the human gastrointestinal tract and has a vital role in immune homeostasis and the gut-lung crosstalk. Particularly, SARS-CoV-2 infection can lead to the disruption of gut microbiota equilibrium, a condition called gut dysbiosis. Due to its regulatory effect on host immunity, gut microbiota has recently received considerable attention in the field of SARS-CoV-2 immunopathology. Imbalanced gut microbiota can fuel COVID-19 progression through production of bioactive metabolites, intestinal metabolism, enhancement of the cytokine storm, exaggeration of inflammation, regulation of adaptive immunity and other aspects. In this review, we provide an overview of the alterations in gut microbiota in COVID-19 patients, and their effects on individuals' susceptibility to viral infection and COVID-19 progression. Moreover, we summarize currently available data on the critical role of the bidirectional regulation between intestinal microbes and host immunity in SARS-CoV-2-induced pathology, and highlight the immunomodulatory mechanisms of gut microbiota contributing to COVID-19 pathogenesis. In addition, we discuss the therapeutic benefits and future perspectives of microbiota-targeted interventions including faecal microbiota transplantation (FMT), bacteriotherapy and traditional Chinese medicine (TCM) in COVID-19 treatment.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- *Correspondence: Man Wang, ; Chunmei Li,
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Chunmei Li
- Department of Radiology, Qingdao Municipal Hospital, Qingdao, China
- *Correspondence: Man Wang, ; Chunmei Li,
| | - Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
37
|
Bacorn M, Romero-Soto HN, Levy S, Chen Q, Hourigan SK. The Gut Microbiome of Children during the COVID-19 Pandemic. Microorganisms 2022; 10:microorganisms10122460. [PMID: 36557713 PMCID: PMC9783902 DOI: 10.3390/microorganisms10122460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
The gut microbiome has been shown to play a critical role in maintaining a healthy state. Dysbiosis of the gut microbiome is involved in modulating disease severity and potentially contributes to long-term outcomes in adults with COVID-19. Due to children having a significantly lower risk of severe illness and limited sample availability, much less is known about the role of the gut microbiome in children with COVID-19. It is well recognized that the developing gut microbiome of children differs from that of adults, but it is unclear if this difference contributes to the different clinical presentations and complications. In this review, we discuss the current knowledge of the gut microbiome in children with COVID-19, with gut microbiome dysbiosis being found in pediatric COVID-19 but specific taxa change often differing from those described in adults. Additionally, we discuss possible mechanisms of how the gut microbiome may mediate the presentation and complications of COVID-19 in children and the potential role for microbial therapeutics.
Collapse
|
38
|
Li S, Zhou Y, Yan D, Wan Y. An Update on the Mutual Impact between SARS-CoV-2 Infection and Gut Microbiota. Viruses 2022; 14:1774. [PMID: 36016396 PMCID: PMC9415881 DOI: 10.3390/v14081774] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022] Open
Abstract
The gut microbiota is essential for good health. It has also been demonstrated that the gut microbiota can regulate immune responses against respiratory tract infections. Since the outbreak of the COVID-19 pandemic, accumulating evidence suggests that there is a link between the severity of COVID-19 and the alteration of one's gut microbiota. The composition of gut microbiota can be profoundly affected by COVID-19 and vice versa. Here, we summarize the observations of the mutual impact between SARS-CoV-2 infection and gut microbiota composition. We discuss the consequences and mechanisms of the bi-directional interaction. Moreover, we also discuss the immune cross-reactivity between SARS-CoV-2 and commensal bacteria, which represents a previously overlooked connection between COVID-19 and commensal gut bacteria. Finally, we summarize the progress in managing COVID-19 by utilizing microbial interventions.
Collapse
Affiliation(s)
- Shaoshuai Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Shanghai Public Health Clinical Center, Department of Laboratory Medicine, Shanghai 201508, China
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi 154000, China
| | - Yang Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Dongmei Yan
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi 154000, China
| | - Yanmin Wan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Shanghai Public Health Clinical Center, Department of Radiology, Shanghai 201508, China
| |
Collapse
|
39
|
Chen J, Vitetta L. The Role of the Gut-Lung Axis in COVID-19 Infections and Its Modulation to Improve Clinical Outcomes. Front Biosci (Schol Ed) 2022; 14:23. [PMID: 36137978 DOI: 10.31083/j.fbs1403023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 04/26/2022] [Accepted: 05/24/2022] [Indexed: 06/16/2023]
Abstract
The main entry point of SARS-CoV-2 is the respiratory tract and as such immune defence in this site determines if the virus will spill-over to the systemic circulation and circulate and infect other major organs. The first line of mucosal immune defence is composed of mucins, an epithelial barrier, and immune cells in the nasal cavity. The lung immune defence is carried out by numerous alveoli. The lung microbiota is a key factor in determining the efficacy of lung mucosal immunity protection. The intestinal microbiota has been demonstrated to affect the severity of COVID-19. Gut dysbiosis is involved in hyperinflammation and multiple organ failure through communications with multiple organs. The gut lung axis could be the earliest axis affected in COVID-19. Through the gut-lung axis, gut dysbiosis can affect the pathogenesis of the lung in COVID-19. In this review, we summarise the effects that gut dysbiosis can progress on the lung, and the lung microbiota. The possible mechanisms and approaches for modulation are discussed.
Collapse
Affiliation(s)
- Jiezhong Chen
- Research Department, Medlab Clinical, Sydney, NSW 2015, Australia
| | - Luis Vitetta
- Research Department, Medlab Clinical, Sydney, NSW 2015, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
40
|
Zhang L, Chan FK, Ng SC. Reply. Gastroenterology 2022; 162:2135. [PMID: 35189091 PMCID: PMC8856751 DOI: 10.1053/j.gastro.2022.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 12/02/2022]
|
41
|
SARS CoV-2-Induced Viral Sepsis: The Role of Gut Barrier Dysfunction. Microorganisms 2022; 10:microorganisms10051050. [PMID: 35630492 PMCID: PMC9143860 DOI: 10.3390/microorganisms10051050] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022] Open
Abstract
A considerable proportion of patients with severe COVID-19 meet Sepsis-3 criteria and share common pathophysiological mechanisms of multiorgan injury with bacterial sepsis, in absence of secondary bacterial infections, a process characterized as “viral sepsis”. The intestinal barrier exerts a central role in the pathophysiological sequence of events that lead from SARS-CoV-2 infection to severe systemic complications. Accumulating evidence suggests that SARS-CoV-2 disrupts the integrity of the biological, mechanical and immunological gut barrier. Specifically, microbiota diversity and beneficial bacteria population are reduced, concurrently with overgrowth of pathogenic bacteria (dysbiosis). Enterocytes’ tight junctions (TJs) are disrupted, and the apoptotic death of intestinal epithelial cells is increased leading to increased gut permeability. In addition, mucosal CD4(+) and CD8(+) T cells, Th17 cells, neutrophils, dendritic cells and macrophages are activated, and T-regulatory cells are decreased, thus promoting an overactivated immune response, which further injures the intestinal epithelium. This dysfunctional gut barrier in SARS-CoV-2 infection permits the escape of luminal bacteria, fungi and endotoxin to normally sterile extraintestinal sites and the systemic circulation. Pre-existing gut barrier dysfunction and endotoxemia in patients with comorbidities including cardiovascular disease, obesity, diabetes and immunosuppression predisposes to aggravated endotoxemia. Bacterial and endotoxin translocation promote the systemic inflammation and immune activation, which characterize the SARS-CoV-2 induced “viral sepsis” syndrome associated with multisystemic complications of severe COVID-19.
Collapse
|
42
|
Trukhan DI. Disorders of intestinal microbiocenosis: expanding the application of probiotics. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2022:132-143. [DOI: 10.21518/2079-701x-2022-16-7-132-143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The problem of interaction between a person and the intestinal microbiome is surrounded by many secrets and mysteries. The bacterial flora of the gastrointestinal tract has a local and systemic effect not only on the digestive system, but also on the entire body as a whole. Numerous studies have proved the pathogenetic relationship of the state of the intestinal biocenosis not only with diseases of the gastrointestinal tract, but also with pathological processes from other organs and systems of the body. In terms of its role in maintaining homeostasis, the intestinal microflora is not inferior to any other vital organ. In the presented review, the current aspects of the terminology and clinic of disorders of intestinal microbiocenosis are considered. Probiotics occupy an important place in the complex therapy of intestinal microbiocenosis disorders and the corresponding clinical manifestations. The review considers the main mechanisms of probiotic / host interaction, non-immunological and immunological effects of probiotics and the requirements for them, the main directions of use of representatives of the normal microflora Bifidobacterium and Lactobacillus. The data of meta-analyzes and systematic reviews, testifying to the expansion of indications for the appointment of probiotics, are considered the possibilities of probiotics in the complex therapy of Helicobacter pylori infection, syndrome of increased epithelial intestinal permeability, and the prevention of respiratory infections.The review concludes with the results of a search in the PubMed database on the possibility of using probiotics in the prevention and treatment of a new coronavirus infection COVID-19. The availability of modern, effective and safe probiotics in the arsenal of a practical doctor (primarily a general practitioner and general practitioner), and their use, contributes to the optimization of drug therapy not only in gastroenterological patients, but also in patients with other somatic pathologies, including those with new coronavirus infection COVID-19.
Collapse
|