1
|
Roura I, Pardo J, Martín-Barceló C, Falcon C, Oltra J, Campabadal A, Bargalló N, Serradell M, Mayà G, Montini A, Pont-Sunyer C, Gaig C, Buongiorno M, Junqué C, Iranzo A, Segura B. Clinical and brain volumetric correlates of decreased DTI-ALPS, suggestive of local glymphatic dysfunction, in iRBD. NPJ Parkinsons Dis 2025; 11:87. [PMID: 40268930 PMCID: PMC12018923 DOI: 10.1038/s41531-025-00942-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
Glymphatic alterations may underlie neurodegeneration in alpha-synucleinopathies. Reduced Diffusion-Tensor Imaging ALong the Perivascular Space (DTI-ALPS), a proxy of perivascular glymphatic activity, has been scarcely studied in isolated REM sleep behaviour disorder (iRBD), a prodromal synucleinopathy stage. Furthermore, its associations with clinical symptoms and brain structural abnormalities remain unexplored. We assessed the DTI-ALPS in sixty-two patients with iRBD and twenty-three healthy controls (HC), exploring its associations with clinical symptoms, cortical thickness and brain volumetric data. iRBD patients exhibited a lower DTI-ALPS and poorer odor identification, semantic fluency and processing speed relative to HC. The DTI-ALPS positively correlated with cognitive performance, olfactory function and amygdalar, hippocampal, brainstem and diencephalic volumes, and negatively with age in iRBD. Perivascular glymphatic activity is compromised in iRBD and is associated with brain atrophy and clinical risk factors of progression to alpha-synucleinopathies, supporting the potential of the DTI-ALPS index as an early imaging neurodegeneration marker.
Collapse
Affiliation(s)
- Ignacio Roura
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Jèssica Pardo
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Cristina Martín-Barceló
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Carles Falcon
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
- Biomedical Imaging Group, Centro de Investigación Biomédica en Red sobre Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Catalonia, Spain
| | - Javier Oltra
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Aging Research Center, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Anna Campabadal
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Neurology Service, Consorci Corporació Sanitària Parc Taulí de Sabadell, Barcelona, Catalonia, Spain
| | - Nuria Bargalló
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Imaging Diagnostic Center (CDI), Hospital Clínic Universitari de Barcelona, Barcelona, Catalonia, Spain
| | - Mònica Serradell
- Sleep Unit, Neurology Service, Hospital Clínic Universitari de Barcelona, University of Barcelona, Barcelona, Catalonia, Spain
| | - Gerard Mayà
- Sleep Unit, Neurology Service, Hospital Clínic Universitari de Barcelona, University of Barcelona, Barcelona, Catalonia, Spain
| | - Angelica Montini
- Sleep Unit, Neurology Service, Hospital Clínic Universitari de Barcelona, University of Barcelona, Barcelona, Catalonia, Spain
| | - Claustre Pont-Sunyer
- Movement Disorders Unit, Neurology Service, Fundació Privada Hospital Asil de, Granollers, Barcelona, Catalonia, Spain
| | - Carles Gaig
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Sleep Unit, Neurology Service, Hospital Clínic Universitari de Barcelona, University of Barcelona, Barcelona, Catalonia, Spain
| | | | - Carme Junqué
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Catalonia, Spain
| | - Alex Iranzo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.
- Sleep Unit, Neurology Service, Hospital Clínic Universitari de Barcelona, University of Barcelona, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Catalonia, Spain.
| | - Bàrbara Segura
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Catalonia, Spain.
| |
Collapse
|
2
|
Tripathi N, Saudrais F, Rysak M, Pieri L, Pin S, Roma G, Renault JP, Boulard Y. Exploring the Interaction of Human α-Synuclein with Polyethylene Nanoplastics: Insights from Computational Modeling and Experimental Corroboration. Biomacromolecules 2025; 26:1476-1497. [PMID: 39441179 DOI: 10.1021/acs.biomac.4c00918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Plastics, particularly microplastics (MPs) and nanoplastics (NP), have become major environmental and health concerns due to their high chemical stability. The highly hydrophobic plastics enter living organisms through reversible interactions with biomolecules, forming biocoronas. Following recent reports on plastics breaching the blood-brain barrier, the binding behavior of human α-synuclein (hαSn) with polyethylene-based (PE) plastics was evaluated by using molecular dynamics simulations and experimental methods. The results provided three important findings: (i) hαSn transitions from an open helical to a compact conformation, enhancing intramolecular interactions, (ii) nonoxidized PE NPs (NPnonox) rapidly adsorb hαSn, as supported by experimental data from dynamic light scattering and adsorption isotherms, altering its structure, and (iii) the oxidized NP (NPox) failed to capture hαSn. These interactions were dominated by the N-terminal domain of hαSn, with major contributions from hydrophobic amino acids. These findings raise concerns about the potential pharmacological effects of NP-protein interactions on human health.
Collapse
Affiliation(s)
- Neha Tripathi
- CEA, CNRS, NIMBE, Université Paris-Saclay, Gif Sur Yvette 91191, France
| | - Florent Saudrais
- CEA, CNRS, NIMBE, Université Paris-Saclay, Gif Sur Yvette 91191, France
| | - Mona Rysak
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Laura Pieri
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Serge Pin
- CEA, CNRS, NIMBE, Université Paris-Saclay, Gif Sur Yvette 91191, France
| | - Guido Roma
- CEA, Service de Recherches en Corrosion et Comportement des Matériaux (SRMP), Université Paris-Saclay, Gif sur Yvette 91191, France
| | | | - Yves Boulard
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette 91198, France
| |
Collapse
|
3
|
Ozer EA, Keskin A, Berrak YH, Cankara F, Can F, Gursoy-Ozdemir Y, Keskin O, Gursoy A, Yapici-Eser H. Shared interactions of six neurotropic viruses with 38 human proteins: a computational and literature-based exploration of viral interactions and hijacking of human proteins in neuropsychiatric disorders. DISCOVER MENTAL HEALTH 2025; 5:18. [PMID: 39987419 PMCID: PMC11846830 DOI: 10.1007/s44192-025-00128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/09/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION Viral infections may disrupt the structural and functional integrity of the nervous system, leading to acute conditions such as encephalitis, and neuropsychiatric conditions as mood disorders, schizophrenia, and neurodegenerative diseases. Investigating viral interactions of human proteins may reveal mechanisms underlying these effects and offer insights for therapeutic interventions. This study explores molecular interactions of virus and human proteins that may be related to neuropsychiatric disorders. METHODS Herpes Simplex Virus-1 (HSV-1), Cytomegalovirus (CMV), Epstein-Barr Virus (EBV), Influenza A virus (IAV) (H1N1, H5N1), and Human Immunodeficiency Virus (HIV1&2) were selected as key viruses. Protein structures for each virus were accessed from the Protein Data Bank and analyzed using the HMI-Pred web server to detect interface mimicry between viral and human proteins. The PANTHER classification system was used to categorize viral-human protein interactions based on function and cellular localization. RESULTS Energetically favorable viral-human protein interactions were identified for HSV-1 (467), CMV (514), EBV (495), H1N1 (3331), H5N1 (3533), and HIV 1&2 (62425). Besides immune and apoptosis-related pathways, key neurodegenerative pathways, including those associated with Parkinson's and Huntington's diseases, were frequently interacted. A total of 38 human proteins, including calmodulin 2, Ras-related botulinum toxin substrate 1 (Rac1), PDGF-β, and vimentin, were found to interact with all six viruses. CONCLUSION The study indicates a substantial number of energetically favorable interactions between human proteins and selected viral proteins, underscoring the complexity and breadth of viral strategies to hijack host cellular mechanisms. Further in vivo and in vitro validation is required to understand the implications of these interactions.
Collapse
Affiliation(s)
| | - Aleyna Keskin
- School of Medicine, Koç University, Istanbul, Turkey
| | | | - Fatma Cankara
- Graduate School of Sciences and Engineering, Computational Sciences and Engineering, Koç University, Istanbul, Turkey
| | - Fusun Can
- Department of Microbiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Yasemin Gursoy-Ozdemir
- Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, College of Engineering, Koç University, Istanbul, Turkey
| | - Attila Gursoy
- Department of Computer Science and Engineering, College of Engineering, Koç University, Istanbul, Turkey.
| | - Hale Yapici-Eser
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey.
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Turkey.
| |
Collapse
|
4
|
Yokoya M, Takata F, Iwao T, Matsumoto J, Tanaka Y, Aridome H, Yasunaga M, Mizoguchi J, Sano K, Dohgu S. α-Synuclein Degradation in Brain Pericytes Is Mediated via Akt, ERK, and p38 MAPK Signaling Pathways. Int J Mol Sci 2025; 26:1615. [PMID: 40004079 PMCID: PMC11855147 DOI: 10.3390/ijms26041615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Parkinson's disease (PD) is characterized by widespread distribution of Lewy bodies, which are composed of phosphorylated and aggregated forms of α-Synuclein (α-Syn), in the brain. Although the accumulation and propagation of α-Syn contribute to the development of PD, the involvement of the blood-brain barrier (BBB) in these processes remains unknown. Pericytes, one of the cell types that constitute the BBB, degrade various forms of α-Syn. However, the detailed mechanisms involved in α-Syn degradation by pericytes remain poorly understood. Therefore, in this study, we aimed to determine the ability of the BBB-constituting cells, particularly primary cultures of rat pericytes, brain endothelial cells, and astrocytes, to degrade α-Syn. After α-Syn uptake by the cells, intracellular α-Syn decreased only in pericytes. This pericyte-specific α-Syn decrease was inhibited by an autophagy inhibitor, bafilomycin A1, and a proteasome inhibitor, MG132. siRNA-mediated knockdown of degradation enzymes or familial PD-associated genes, including cathepsin D, DJ-1, and LRRK2, did not affect α-Syn clearance in pericytes. However, pharmacological inhibitors of Akt, ERK, and p38 MAPK inhibited α-Syn degradation by pericytes. In conclusion, our results suggest that α-Syn degradation by pericytes is mediated by an autophagy-lysosome system and a ubiquitin-proteasome system via α-Syn-activated Akt, ERK, and p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Miki Yokoya
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan; (M.Y.); (F.T.); (T.I.); (J.M.); (Y.T.); (H.A.); (M.Y.); (J.M.)
| | - Fuyuko Takata
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan; (M.Y.); (F.T.); (T.I.); (J.M.); (Y.T.); (H.A.); (M.Y.); (J.M.)
| | - Takuro Iwao
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan; (M.Y.); (F.T.); (T.I.); (J.M.); (Y.T.); (H.A.); (M.Y.); (J.M.)
| | - Junichi Matsumoto
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan; (M.Y.); (F.T.); (T.I.); (J.M.); (Y.T.); (H.A.); (M.Y.); (J.M.)
| | - Yasuyoshi Tanaka
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan; (M.Y.); (F.T.); (T.I.); (J.M.); (Y.T.); (H.A.); (M.Y.); (J.M.)
| | - Hisataka Aridome
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan; (M.Y.); (F.T.); (T.I.); (J.M.); (Y.T.); (H.A.); (M.Y.); (J.M.)
| | - Miho Yasunaga
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan; (M.Y.); (F.T.); (T.I.); (J.M.); (Y.T.); (H.A.); (M.Y.); (J.M.)
| | - Junko Mizoguchi
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan; (M.Y.); (F.T.); (T.I.); (J.M.); (Y.T.); (H.A.); (M.Y.); (J.M.)
| | - Kazunori Sano
- Department of Physiology and Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan;
| | - Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan; (M.Y.); (F.T.); (T.I.); (J.M.); (Y.T.); (H.A.); (M.Y.); (J.M.)
| |
Collapse
|
5
|
Mesentier-Louro LA, Goldman C, Ndayisaba A, Buonfiglioli A, Rooklin RB, Schuldt BR, Uchitelev A, Khurana V, Blanchard JW. Cholesterol-mediated Lysosomal Dysfunction in APOE4 Astrocytes Promotes α-Synuclein Pathology in Human Brain Tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.09.637107. [PMID: 39975381 PMCID: PMC11839026 DOI: 10.1101/2025.02.09.637107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The pathological hallmark of neurodegenerative disease is the aberrant post-translational modification and aggregation of proteins leading to the formation of insoluble protein inclusions. Genetic factors like APOE4 are known to increase the prevalence and severity of tau, amyloid, and α-Synuclein inclusions. However, the human brain is largely inaccessible during this process, limiting our mechanistic understanding. Here, we developed an iPSC-based 3D model that integrates neurons, glia, myelin, and cerebrovascular cells into a functional human brain tissue (miBrain). Like the human brain, we found pathogenic phosphorylation and aggregation of α-Synuclein is increased in the APOE4 miBrain. Combinatorial experiments revealed that lipid-droplet formation in APOE4 astrocytes impairs the degradation of α-synuclein and leads to a pathogenic transformation that seeds neuronal inclusions of α-Synuclein. Collectively, this study establishes a robust model for investigating protein inclusions in human brain tissue and highlights the role of astrocytes and cholesterol in APOE4-mediated pathologies, opening therapeutic opportunities.
Collapse
Affiliation(s)
- Louise A. Mesentier-Louro
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- These authors contributed equally
| | - Camille Goldman
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- These authors contributed equally
| | - Alain Ndayisaba
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Alice Buonfiglioli
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Rikki B. Rooklin
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Braxton R. Schuldt
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Abigail Uchitelev
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
- Macaulay Honors College at Hunter College, New York, NY, USA
| | - Vikram Khurana
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Joel W. Blanchard
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Lead contact
| |
Collapse
|
6
|
Church TR, Margolis SS. Mechanisms of ubiquitin-independent proteasomal degradation and their roles in age-related neurodegenerative disease. Front Cell Dev Biol 2025; 12:1531797. [PMID: 39990094 PMCID: PMC11842346 DOI: 10.3389/fcell.2024.1531797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/23/2024] [Indexed: 02/25/2025] Open
Abstract
Neurodegenerative diseases are characterized by the progressive breakdown of neuronal structure and function and the pathological accumulation of misfolded protein aggregates and toxic protein oligomers. A major contributor to the deterioration of neuronal physiology is the disruption of protein catabolic pathways mediated by the proteasome, a large protease complex responsible for most cellular protein degradation. Previously, it was believed that proteolysis by the proteasome required tagging of protein targets with polyubiquitin chains, a pathway called the ubiquitin-proteasome system (UPS). Because of this, most research on proteasomal roles in neurodegeneration has historically focused on the UPS. However, additional ubiquitin-independent pathways and their importance in neurodegeneration are increasingly recognized. In this review, we discuss the range of ubiquitin-independent proteasome pathways, focusing on substrate identification and targeting, regulatory molecules and adaptors, proteasome activators and alternative caps, and diverse proteasome complexes including the 20S proteasome, the neuronal membrane proteasome, the immunoproteasome, extracellular proteasomes, and hybrid proteasomes. These pathways are further discussed in the context of aging, oxidative stress, protein aggregation, and age-associated neurodegenerative diseases, with a special focus on Alzheimer's Disease, Huntington's Disease, and Parkinson's Disease. A mechanistic understanding of ubiquitin-independent proteasome function and regulation in neurodegeneration is critical for the development of therapies to treat these devastating conditions. This review summarizes the current state of ubiquitin-independent proteasome research in neurodegeneration.
Collapse
Affiliation(s)
- Taylor R. Church
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Seth S. Margolis
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Uytterhoeven V, Verstreken P, Nachman E. Synaptic sabotage: How Tau and α-Synuclein undermine synaptic health. J Cell Biol 2025; 224:e202409104. [PMID: 39718548 DOI: 10.1083/jcb.202409104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/07/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024] Open
Abstract
Synaptic dysfunction is one of the earliest cellular defects observed in Alzheimer's disease (AD) and Parkinson's disease (PD), occurring before widespread protein aggregation, neuronal loss, and cognitive decline. While the field has focused on the aggregation of Tau and α-Synuclein (α-Syn), emerging evidence suggests that these proteins may drive presynaptic pathology even before their aggregation. Therefore, understanding the mechanisms by which Tau and α-Syn affect presynaptic terminals offers an opportunity for developing innovative therapeutics aimed at preserving synapses and potentially halting neurodegeneration. This review focuses on the molecular defects that converge on presynaptic dysfunction caused by Tau and α-Syn. Both proteins have physiological roles in synapses. However, during disease, they acquire abnormal functions due to aberrant interactions and mislocalization. We provide an overview of current research on different essential presynaptic pathways influenced by Tau and α-Syn. Finally, we highlight promising therapeutic targets aimed at maintaining synaptic function in both tauopathies and synucleinopathies.
Collapse
Affiliation(s)
- Valerie Uytterhoeven
- Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research , Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Patrik Verstreken
- Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research , Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Eliana Nachman
- Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research , Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Wiseman JA, Reddy K, Dieriks BV. From onset to advancement: the temporal spectrum of α-synuclein in synucleinopathies. Ageing Res Rev 2025; 104:102640. [PMID: 39667671 DOI: 10.1016/j.arr.2024.102640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/21/2024] [Accepted: 12/10/2024] [Indexed: 12/14/2024]
Abstract
This review provides an in-depth analysis of the complex role of alpha-synuclein (α-Syn) in the development of α-synucleinopathies, with a particular focus on its structural diversity and the resulting clinical variability. The ability of α-Syn to form different strains or polymorphs and undergo various post-translational modifications significantly contributes to the wide range of symptoms observed in disorders such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), as well as in lesser-known non-classical α-synucleinopathies. The interaction between genetic predispositions and environmental factors further complicates α-synucleinopathic disease pathogenesis, influencing the disease-specific onset and progression. Despite their common pathological hallmark of α-Syn accumulation, the clinical presentation and progression of α-synucleinopathies differ significantly, posing challenges for diagnosis and treatment. The intricacies of α-Syn pathology highlight the critical need for a deeper understanding of its biological functions and interactions within the neuronal environment to develop targeted therapeutic strategies. The precise point at which α-Syn aggregation transitions from being a byproduct of initial disease triggers to an active and independent driver of disease progression - through the propagation and acceleration of pathogenic processes - remains unclear. By examining the role of α-Syn across various contexts, we illuminate its dual role as both a marker and a mediator of disease, offering insights that could lead to innovative approaches for managing α-synucleinopathies.
Collapse
Affiliation(s)
- James A Wiseman
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand; Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Kreesan Reddy
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand; Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Birger Victor Dieriks
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand; Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia.
| |
Collapse
|
9
|
Pirota V, Monzani E, Dell’Acqua S, Bacchella C. Role of Copper and Zinc Ions in the Hydrolytic Degradation of Neurodegeneration-Related Peptides. Molecules 2025; 30:363. [PMID: 39860233 PMCID: PMC11767661 DOI: 10.3390/molecules30020363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Spontaneous cleavage reactions normally occur in vivo on amino acid peptide backbones, leading to fragmentation products that can have different physiological roles and toxicity, particularly when the substrate of the hydrolytic processes are neuronal peptides and proteins highly related to neurodegeneration. We report a hydrolytic study performed with the HPLC-MS technique at different temperatures (4 °C and 37 °C) on peptide fragments of different neuronal proteins (amyloid-β, tau, and α-synuclein) in physiological conditions in the presence of Cu2+ and Zn2+ ions, two metal ions found at millimolar concentrations in amyloid plaques. The coordination of these metal ions with these peptides significantly protects their backbones toward hydrolytic degradation, preserving the entire sequences over two weeks in solution, while the free peptides in the same buffer are fully fragmented after the same or even shorter incubation period. Our data show that peptide cleavage is not only ruled by the chemical sensitivity of amino acids, but the peptide conformation changes induced by metal coordination influence hydrolytic reactions. The enhanced stability of neuronal peptides provided by metal coordination can increase local levels of amyloidogenic species capable of seeding fibril growth, resulting in aberrant protein depositions and deficits in neuronal activity.
Collapse
Affiliation(s)
| | | | - Simone Dell’Acqua
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy; (V.P.); (E.M.)
| | - Chiara Bacchella
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy; (V.P.); (E.M.)
| |
Collapse
|
10
|
Ioghen OC, Gaina G, Lambrescu I, Manole E, Pop S, Niculescu TM, Mosoia O, Ceafalan LC, Popescu BO. Bacterial products initiation of alpha-synuclein pathology: an in vitro study. Sci Rep 2024; 14:30306. [PMID: 39639092 PMCID: PMC11621565 DOI: 10.1038/s41598-024-81020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Parkinson's Disease (PD) is a prevalent and escalating neurodegenerative disorder with significant societal implications. Despite being considered a proteinopathy, in which the aggregation of α-synuclein is the main pathological change, the intricacies of PD initiation remain elusive. Recent evidence suggests a potential link between gut microbiota and PD initiation, emphasizing the need to explore the effects of microbiota-derived molecules on neuronal cells. In this study, we exposed dopaminergic-differentiated SH-SY5Y cells to microbial molecules such as lipopolysaccharide (LPS), rhamnolipid, curli CsgA and phenol soluble modulin α-1 (PSMα1). We assessed cellular viability, cytotoxicity, growth curves and α-synuclein levels by performing MTS, LDH, real-time impedance readings, qRT-PCR and Western Blot assays respectively. Statistical analysis revealed that rhamnolipid exhibited concentration-dependent effects, reducing viability and inducing cytotoxicity at higher concentrations, increasing α-synuclein mRNA and protein levels with negative effects on cell morphology and adhesion. Furthermore, LPS exposure also increased α-synuclein levels. Curli CsgA and PSMα-1 showed minimal or no changes. Our findings suggest that microbiota-derived molecules, particularly rhamnolipid and LPS, impact dopaminergic neurons by increasing α-synuclein levels. This study highlights the potential involvement of gut microbiota in initiating the upregulation of α-synuclein that may further initiate PD, indicating the complex interplay between microbiota and neuronal cells.
Collapse
Grants
- 31PFE/30.12.2021 Ministry of Research, Innovation, and Digitalization in Romania
- 31PFE/30.12.2021 Ministry of Research, Innovation, and Digitalization in Romania
- 31PFE/30.12.2021 Ministry of Research, Innovation, and Digitalization in Romania
- 31PFE/30.12.2021 Ministry of Research, Innovation, and Digitalization in Romania
- 31PFE/30.12.2021 Ministry of Research, Innovation, and Digitalization in Romania
- 31PFE/30.12.2021 Ministry of Research, Innovation, and Digitalization in Romania
- 31PFE/30.12.2021 Ministry of Research, Innovation, and Digitalization in Romania
- 31PFE/30.12.2021 Ministry of Research, Innovation, and Digitalization in Romania
- 31PFE/30.12.2021 Ministry of Research, Innovation, and Digitalization in Romania
Collapse
Affiliation(s)
- Octavian Costin Ioghen
- "Victor Babeș" National Institute of Pathology, 050096, Bucharest, Romania
- "Carol Davila" University of Medicine and Pharmacy, 050474, Bucharest, Romania
| | - Gisela Gaina
- "Victor Babeș" National Institute of Pathology, 050096, Bucharest, Romania
- "Carol Davila" University of Medicine and Pharmacy, 050474, Bucharest, Romania
| | - Ioana Lambrescu
- "Victor Babeș" National Institute of Pathology, 050096, Bucharest, Romania
- "Carol Davila" University of Medicine and Pharmacy, 050474, Bucharest, Romania
| | - Emilia Manole
- "Victor Babeș" National Institute of Pathology, 050096, Bucharest, Romania
| | - Sevinci Pop
- "Victor Babeș" National Institute of Pathology, 050096, Bucharest, Romania
| | | | - Oana Mosoia
- "Victor Babeș" National Institute of Pathology, 050096, Bucharest, Romania
| | - Laura Cristina Ceafalan
- "Victor Babeș" National Institute of Pathology, 050096, Bucharest, Romania.
- "Carol Davila" University of Medicine and Pharmacy, 050474, Bucharest, Romania.
| | - Bogdan Ovidiu Popescu
- "Victor Babeș" National Institute of Pathology, 050096, Bucharest, Romania
- "Carol Davila" University of Medicine and Pharmacy, 050474, Bucharest, Romania
| |
Collapse
|
11
|
Pareek A, Singhal R, Pareek A, Ghazi T, Kapoor DU, Ratan Y, Singh AK, Jain V, Chuturgoon AA. Retinoic acid in Parkinson's disease: Molecular insights, therapeutic advances, and future prospects. Life Sci 2024; 355:123010. [PMID: 39181315 DOI: 10.1016/j.lfs.2024.123010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Parkinson's disease (PD) is a common and progressively worsening neurodegenerative disorder characterized by abnormal protein homeostasis and the degeneration of dopaminergic neurons, particularly in the substantia nigra pars compacta. The prevalence of PD has doubled in the past 25 years, now affecting over 8.5 million individuals worldwide, underscoring the need for effective management strategies. While current pharmacological therapies provide symptom relief, they face challenges in treating advanced PD stages. Recent research highlights the therapeutic benefits of retinoic acid (RA) in PD, demonstrating its potential to mitigate neuroinflammation and oxidative stress, regulate brain aging, promote neuronal plasticity, and influence circadian rhythm gene expression and retinoid X receptor heterodimerization. Additionally, RA helps maintain intestinal homeostasis and modulates the enteric nervous system, presenting significant therapeutic potential for managing PD. This review explores RA as a promising alternative to conventional therapies by summarizing the molecular mechanisms underlying its role in PD pathophysiology and presenting up-to-date insights into both preclinical and clinical studies of RA in PD treatment. It also delves into cutting-edge formulations incorporating RA, highlighting ongoing efforts to refine therapeutic strategies by integrating RA into novel treatments. This comprehensive overview aims to advance progress in the field, contribute to the development of effective, targeted treatments for PD, and enhance patient well-being. Further research is essential to fully explore RA's therapeutic potential and validate its efficacy in PD treatment.
Collapse
Affiliation(s)
- Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India.
| | - Runjhun Singhal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | | | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India
| | - Arun Kumar Singh
- Department of Pharmacy, Vivekananda Global University, Jaipur 303012, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur 313001, India
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa.
| |
Collapse
|
12
|
Burré J, Edwards RH, Halliday G, Lang AE, Lashuel HA, Melki R, Murayama S, Outeiro TF, Papa SM, Stefanis L, Woerman AL, Surmeier DJ, Kalia LV, Takahashi R. Research Priorities on the Role of α-Synuclein in Parkinson's Disease Pathogenesis. Mov Disord 2024; 39:1663-1678. [PMID: 38946200 PMCID: PMC11808831 DOI: 10.1002/mds.29897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Various forms of Parkinson's disease, including its common sporadic form, are characterized by prominent α-synuclein (αSyn) aggregation in affected brain regions. However, the role of αSyn in the pathogenesis and evolution of the disease remains unclear, despite vast research efforts of more than a quarter century. A better understanding of the role of αSyn, either primary or secondary, is critical for developing disease-modifying therapies. Previous attempts to hone this research have been challenged by experimental limitations, but recent technological advances may facilitate progress. The Scientific Issues Committee of the International Parkinson and Movement Disorder Society (MDS) charged a panel of experts in the field to discuss current scientific priorities and identify research strategies with potential for a breakthrough. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jacqueline Burré
- Appel Institute for Alzheimer's Disease Research and Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Robert H. Edwards
- Department of Physiology and NeurologyUniversity of California, San Francisco School of MedicineSan FranciscoCaliforniaUSA
| | - Glenda Halliday
- Brain and Mind Centre, School of Medical Sciences, The University of SydneyCamperdownNew South WalesAustralia
| | - Anthony E. Lang
- Edmond J. Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health NetworkTorontoOntarioCanada
- Division of Neurology, Department of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Hilal A. Lashuel
- Laboratory of Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Ronald Melki
- Institut Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRSFontenay‐Aux‐RosesFrance
| | - Shigeo Murayama
- Department of NeuropathologyTokyo Metropolitan Institute for Geriatrics and GerontologyTokyoJapan
- The Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child DevelopmentOsaka UniversityOsakaJapan
| | - Tiago F. Outeiro
- Department of Experimental NeurodegenerationUniversity Medical CenterGöttingenGermany
- Faculty of Medical Sciences, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Stella M. Papa
- Department of NeurologySchool of Medicine, and Emory National Primate Research Center, Emory UniversityAtlantaGeorgiaUSA
| | - Leonidas Stefanis
- First Department of NeurologyEginitio Hospital, School of Medicine, National and Kapodistrian University of AthensAthensGreece
- Biomedical Research Foundation of the Academy of AthensAthensGreece
| | - Amanda L. Woerman
- Department of BiologyInstitute for Applied Life Sciences, University of Massachusetts AmherstAmherstMassachusettsUSA
- Department of Microbiology, Immunology, and PathologyPrion Research Center, Colorado State UniversityFort CollinsColoradoUSA
| | - Dalton James Surmeier
- Department of Neuroscience, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMarylandUSA
| | - Lorraine V. Kalia
- Edmond J. Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health NetworkTorontoOntarioCanada
- Division of Neurology, Department of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Ryosuke Takahashi
- Department of NeurologyGraduate School of Medicine, Kyoto UniversityKyotoJapan
| |
Collapse
|
13
|
Sung CC, Lam WY, Chung KKK. The role of polo-like kinases 2 in the proteasomal and lysosomal degradation of alpha-synuclein in neurons. FASEB J 2024; 38:e70121. [PMID: 39436202 PMCID: PMC11580719 DOI: 10.1096/fj.202401035r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by the degeneration of dopaminergic neurons in the brain stem. PD is mostly sporadic, but familial PD (FPD) cases are recorded in different studies. The first gene mutation that is linked to FPD is α-synuclein (α-syn). It was then found that α-syn is also accumulated in Lewy body (LB), a classical pathological hallmark in PD patients. Different studies have shown that α-syn accumulation and aggregation can be a crucial factor contributing to the degeneration of dopaminergic neurons in PD. α-syn has been found to be degraded by the ubiquitin proteasomal system (UPS) and autophagy-lysosomal pathway (ALP). In this study, we initially explored how α-syn phosphorylation by GRK6, PLK2 and CK2α would facilitate its degradation in relation to the UPS or ALP. Unexpectedly, we found that the degradation of α-syn through PLK2 phosphorylation could be modulated by UPS and ALP in a novel mechanism. Specially, attenuation of UPS could increase the amount of PLK2 and then could facilitate the phosphorylation and degradation of α-syn through ALP. To test this further in vivo, we attenuate the proteasomal activity in a well-established A53T α-syn transgenic PD mouse model. We found that attenuation of proteasomal activity in the A53T α-syn transgenic mice could reduce the accumulation of α-syn in the striatum and midbrain. Based on our results, this study provides a new insight into how α-syn is degraded through the UPS and ALP.
Collapse
Affiliation(s)
- Chun Chau Sung
- Division of Life Science, State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyHong KongChina
| | - Wai Yun Lam
- Division of Life Science, State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyHong KongChina
| | - Kenny K. K. Chung
- Division of Life Science, State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyHong KongChina
| |
Collapse
|
14
|
Leak RK, Clark RN, Abbas M, Xu F, Brodsky JL, Chen J, Hu X, Luk KC. Current insights and assumptions on α-synuclein in Lewy body disease. Acta Neuropathol 2024; 148:18. [PMID: 39141121 PMCID: PMC11324801 DOI: 10.1007/s00401-024-02781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/28/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Lewy body disorders are heterogeneous neurological conditions defined by intracellular inclusions composed of misshapen α-synuclein protein aggregates. Although α-synuclein aggregates are only one component of inclusions and not strictly coupled to neurodegeneration, evidence suggests they seed the propagation of Lewy pathology within and across cells. Genetic mutations, genomic multiplications, and sequence polymorphisms of the gene encoding α-synuclein are also causally linked to Lewy body disease. In nonfamilial cases of Lewy body disease, the disease trigger remains unidentified but may range from industrial/agricultural toxicants and natural sources of poisons to microbial pathogens. Perhaps due to these peripheral exposures, Lewy inclusions appear at early disease stages in brain regions connected with cranial nerves I and X, which interface with inhaled and ingested environmental elements in the nasal or gastrointestinal cavities. Irrespective of its identity, a stealthy disease trigger most likely shifts soluble α-synuclein (directly or indirectly) into insoluble, cross-β-sheet aggregates. Indeed, β-sheet-rich self-replicating α-synuclein multimers reside in patient plasma, cerebrospinal fluid, and other tissues, and can be subjected to α-synuclein seed amplification assays. Thus, clinicians should be able to capitalize on α-synuclein seed amplification assays to stratify patients into potential responders versus non-responders in future clinical trials of α-synuclein targeted therapies. Here, we briefly review the current understanding of α-synuclein in Lewy body disease and speculate on pathophysiological processes underlying the potential transmission of α-synucleinopathy across the neuraxis.
Collapse
Affiliation(s)
- Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA.
| | - Rachel N Clark
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA
| | - Muslim Abbas
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA
| | - Fei Xu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Chen
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Xiaoming Hu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Pennsylvania, PA, USA
| |
Collapse
|
15
|
Li B, Xiao X, Bi M, Jiao Q, Chen X, Yan C, Du X, Jiang H. Modulating α-synuclein propagation and decomposition: Implications in Parkinson's disease therapy. Ageing Res Rev 2024; 98:102319. [PMID: 38719160 DOI: 10.1016/j.arr.2024.102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/03/2024] [Accepted: 04/27/2024] [Indexed: 05/14/2024]
Abstract
α-Synuclein (α-Syn) is closely related to the pathogenesis of Parkinson's disease (PD). Under pathological conditions, the conformation of α-syn changes and different forms of α-syn lead to neurotoxicity. According to Braak stages, α-syn can propagate in different brain regions, inducing neurodegeneration and corresponding clinical manifestations through abnormal aggregation of Lewy bodies (LBs) and lewy axons in different types of neurons in PD. So far, PD lacks early diagnosis biomarkers, and treatments are mainly targeted at some clinical symptoms. There is no effective therapy to delay the progression of PD. This review first summarized the role of α-syn in physiological and pathological states, and the relationship between α-syn and PD. Then, we focused on the origin, secretion, aggregation, propagation and degradation of α-syn as well as the important regulatory factors in these processes systematically. Finally, we reviewed some potential drug candidates for alleviating the abnormal aggregation of α-syn in order to provide valuable targets for the treatment of PD to cope with the occurrence and progression of this disease.
Collapse
Affiliation(s)
- Beining Li
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xue Xiao
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Mingxia Bi
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Qian Jiao
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xi Chen
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Chunling Yan
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xixun Du
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China.
| | - Hong Jiang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China; School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China.
| |
Collapse
|
16
|
Masato A, Bubacco L. The αSynuclein half-life conundrum. Neurobiol Dis 2024; 196:106524. [PMID: 38705490 DOI: 10.1016/j.nbd.2024.106524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024] Open
Abstract
αSynuclein (αSyn) misfolding and aggregation frequently precedes neuronal loss associated with Parkinson's Disease (PD) and other Synucleinopathies. The progressive buildup of pathological αSyn species results from alterations on αSyn gene and protein sequence, increased local concentrations, variations in αSyn interactome and protein network. Therefore, under physiological conditions, it is mandatory to regulate αSyn proteostasis as an equilibrium among synthesis, trafficking, degradation and extracellular release. In this frame, a crucial parameter is protein half-life. It provides indications of the turnover of a specific protein and depends on mRNA synthesis and translation regulation, subcellular localization, function and clearance by the designated degradative pathways. For αSyn, the molecular mechanisms regulating its proteostasis in neurons have been extensively investigated in various cellular models, either using biochemical or imaging approaches. Nevertheless, a converging estimate of αSyn half-life has not emerged yet. Here, we discuss the challenges in studying αSyn proteostasis under physiological and pathological conditions, the advantages and disadvantages of the experimental strategies proposed so far, and the relevance of determining αSyn half-life from a translational perspective.
Collapse
Affiliation(s)
- Anna Masato
- UK Dementia Research Institute at University College London, London, United Kingdom.
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova, Italy; Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy.
| |
Collapse
|
17
|
Kurepa J, Bruce KA, Gerhardt GA, Smalle JA. A Plant Model of α-Synucleinopathy: Expression of α-Synuclein A53T Variant in Hairy Root Cultures Leads to Proteostatic Stress and Dysregulation of Iron Metabolism. APPLIED BIOSCIENCES 2024; 3:233-249. [PMID: 38835931 PMCID: PMC11149894 DOI: 10.3390/applbiosci3020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Synucleinopathies, typified by Parkinson's disease (PD), entail the accumulation of α-synuclein (αSyn) aggregates in nerve cells. Various αSyn mutants, including the αSyn A53T variant linked to early-onset PD, increase the propensity for αSyn aggregate formation. In addition to disrupting protein homeostasis and inducing proteostatic stress, the aggregation of αSyn in PD is associated with an imbalance in iron metabolism, which increases the generation of reactive oxygen species and causes oxidative stress. This study explored the impact of αSyn A53T expression in transgenic hairy roots of four medicinal plants (Lobelia cardinalis, Artemisia annua, Salvia miltiorrhiza, and Polygonum multiflorum). In all tested plants, αSyn A53T expression triggered proteotoxic stress and perturbed iron homeostasis, mirroring the molecular profile observed in human and animal nerve cells. In addition to the common eukaryotic defense mechanisms against proteostatic and oxidative stresses, a plant stress response generally includes the biosynthesis of a diverse set of protective secondary metabolites. Therefore, the hairy root cultures expressing αSyn A53T offer a platform for identifying secondary metabolites that can ameliorate the effects of αSyn, thereby aiding in the development of possible PD treatments and/or treatments of synucleinopathies.
Collapse
Affiliation(s)
- Jasmina Kurepa
- Department of Plant and Soil Sciences, Martin-Gatton College of Agriculture Food and Environment, Kentucky Tobacco Research & Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Kristen A. Bruce
- Naprogenix, Inc., UK-AsTeCC, 145 Graham Avenue, Lexington, KY 40506, USA
| | - Greg A. Gerhardt
- Brain Restoration Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurosurgery, University of Kentucky, Lexington, KY 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA
| | - Jan A. Smalle
- Department of Plant and Soil Sciences, Martin-Gatton College of Agriculture Food and Environment, Kentucky Tobacco Research & Development Center, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
18
|
Fu X, Qu L, Xu H, Xie J. Ndfip1 protected dopaminergic neurons via regulating mitochondrial function and ferroptosis in Parkinson's disease. Exp Neurol 2024; 375:114724. [PMID: 38365133 DOI: 10.1016/j.expneurol.2024.114724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Increasing evidence has shown that mitochondrial dysfunction and iron accumulation contribute to the pathogenesis of Parkinson's disease (PD). Nedd4 family interacting protein 1 (Ndfip1) is an adaptor protein of the Nedd4 E3 ubiquitin ligases. We have previously reported that Ndfip1 showed a neuroprotective effect in cell models of PD. However, whether Ndfip1 could protect dopaminergic neurons in PD animal models in vivo and the possible mechanisms are not known. Here, our results showed that the expression of Ndfip1 decreased in the substantia nigra (SN) of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD mouse model. Overexpression of Ndfip1 could improve MPTP-induced motor dysfunction significantly and antagonize the loss of dopaminergic neurons in the SN of MPTP-induced mice. Further study showed that overexpression of Ndfip1 might protect against MPTP-induced neurotoxicity through regulation of voltage-dependent anion-selective channel (VDAC). In addition, we observed the downregulation of Ndfip1 and upregulation of VDAC1/2 in 1-methyl-4-phenylpyridinium ion (MPP+)-induced SH-SY5Y cells. Furthermore, high expression of Ndfip1 in SH-SY5Y cells inhibited MPP+-induced increase of VDAC1/2 and restored MPP+-induced mitochondrial dysfunction. Furthermore, Ndfip1 prevented MPP+-induced increase in the expression of long-chain acyl-CoA synthetase 4 (ACSL4), suggesting the possible role of Ndfip1 in regulating ferroptosis. Our results provide new evidence for the neuroprotective effect of Ndfip1 on dopaminergic neurons in PD animal models and provide promising targets for the treatment of iron-related diseases, including PD.
Collapse
Affiliation(s)
- Xiaomin Fu
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao 266021, China
| | - Le Qu
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao 266021, China
| | - Huamin Xu
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao 266021, China.
| | - Junxia Xie
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
19
|
Galka D, Ali TT, Bast A, Niederleithinger M, Gerhardt E, Motosugi R, Sakata E, Knop M, Outeiro TF, Popova B, Braus GH. Inhibition of 26S proteasome activity by α-synuclein is mediated by the proteasomal chaperone Rpn14/PAAF1. Aging Cell 2024; 23:e14128. [PMID: 38415292 PMCID: PMC11113265 DOI: 10.1111/acel.14128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 02/29/2024] Open
Abstract
Parkinson's disease (PD) is characterized by aggregation of α-synuclein (α-syn) into protein inclusions in degenerating brains. Increasing amounts of aggregated α-syn species indicate significant perturbation of cellular proteostasis. Altered proteostasis depends on α-syn protein levels and the impact of α-syn on other components of the proteostasis network. Budding yeast Saccharomyces cerevisiae was used as eukaryotic reference organism to study the consequences of α-syn expression on protein dynamics. To address this, we investigated the impact of overexpression of α-syn and S129A variant on the abundance and stability of most yeast proteins using a genome-wide yeast library and a tandem fluorescent protein timer (tFT) reporter as a measure for protein stability. This revealed that the stability of in total 377 cellular proteins was altered by α-syn expression, and that the impact on protein stability was significantly enhanced by phosphorylation at Ser129 (pS129). The proteasome assembly chaperone Rpn14 was identified as one of the top candidates for increased protein stability by expression of pS129 α-syn. Elevated levels of Rpn14 enhanced the growth inhibition by α-syn and the accumulation of ubiquitin conjugates in the cell. We found that Rpn14 interacts physically with α-syn and stabilizes pS129 α-syn. The expression of α-syn along with elevated levels of Rpn14 or its human counterpart PAAF1 reduced the proteasome activity in yeast and in human cells, supporting that pS129 α-syn negatively affects the 26S proteasome through Rpn14. This comprehensive study into the alternations of protein homeostasis highlights the critical role of the Rpn14/PAAF1 in α-syn-mediated proteasome dysfunction.
Collapse
Affiliation(s)
- Dajana Galka
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and GeneticsUniversity of GöttingenGöttingenGermany
| | - Tariq T. Ali
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and GeneticsUniversity of GöttingenGöttingenGermany
| | - Alexander Bast
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and GeneticsUniversity of GöttingenGöttingenGermany
| | - Marie Niederleithinger
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and GeneticsUniversity of GöttingenGöttingenGermany
| | - Ellen Gerhardt
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of NeurodegenerationUniversity Medical Center GöttingenGöttingenGermany
| | - Ryo Motosugi
- Institute for Auditory NeuroscienceUniversity Medical Center GöttingenGöttingenGermany
- Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC)University of GöttingenGöttingenGermany
| | - Eri Sakata
- Institute for Auditory NeuroscienceUniversity Medical Center GöttingenGöttingenGermany
- Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC)University of GöttingenGöttingenGermany
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ‐ZMBH AllianceHeidelberg UniversityHeidelbergGermany
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of NeurodegenerationUniversity Medical Center GöttingenGöttingenGermany
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)GöttingenGermany
| | - Blagovesta Popova
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and GeneticsUniversity of GöttingenGöttingenGermany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and GeneticsUniversity of GöttingenGöttingenGermany
| |
Collapse
|
20
|
Kinger S, Jagtap YA, Kumar P, Choudhary A, Prasad A, Prajapati VK, Kumar A, Mehta G, Mishra A. Proteostasis in neurodegenerative diseases. Adv Clin Chem 2024; 121:270-333. [PMID: 38797543 DOI: 10.1016/bs.acc.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Proteostasis is essential for normal function of proteins and vital for cellular health and survival. Proteostasis encompasses all stages in the "life" of a protein, that is, from translation to functional performance and, ultimately, to degradation. Proteins need native conformations for function and in the presence of multiple types of stress, their misfolding and aggregation can occur. A coordinated network of proteins is at the core of proteostasis in cells. Among these, chaperones are required for maintaining the integrity of protein conformations by preventing misfolding and aggregation and guide those with abnormal conformation to degradation. The ubiquitin-proteasome system (UPS) and autophagy are major cellular pathways for degrading proteins. Although failure or decreased functioning of components of this network can lead to proteotoxicity and disease, like neuron degenerative diseases, underlying factors are not completely understood. Accumulating misfolded and aggregated proteins are considered major pathomechanisms of neurodegeneration. In this chapter, we have described the components of three major branches required for proteostasis-chaperones, UPS and autophagy, the mechanistic basis of their function, and their potential for protection against various neurodegenerative conditions, like Alzheimer's, Parkinson's, and Huntington's disease. The modulation of various proteostasis network proteins, like chaperones, E3 ubiquitin ligases, proteasome, and autophagy-associated proteins as therapeutic targets by small molecules as well as new and unconventional approaches, shows promise.
Collapse
Affiliation(s)
- Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, India
| | - Gunjan Mehta
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India.
| |
Collapse
|
21
|
Giamogante F, Barazzuol L, Maiorca F, Poggio E, Esposito A, Masato A, Napolitano G, Vagnoni A, Calì T, Brini M. A SPLICS reporter reveals [Formula: see text]-synuclein regulation of lysosome-mitochondria contacts which affects TFEB nuclear translocation. Nat Commun 2024; 15:1516. [PMID: 38374070 PMCID: PMC10876553 DOI: 10.1038/s41467-024-46007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
Mitochondrial and lysosomal activities are crucial to maintain cellular homeostasis: optimal coordination is achieved at their membrane contact sites where distinct protein machineries regulate organelle network dynamics, ions and metabolites exchange. Here we describe a genetically encoded SPLICS reporter for short- and long- juxtapositions between mitochondria and lysosomes. We report the existence of narrow and wide lysosome-mitochondria contacts differently modulated by mitophagy, autophagy and genetic manipulation of tethering factors. The overexpression of α-synuclein (α-syn) reduces the apposition of mitochondria/lysosomes membranes and affects their privileged Ca2+ transfer, impinging on TFEB nuclear translocation. We observe enhanced TFEB nuclear translocation in α-syn-overexpressing cells. We propose that α-syn, by interfering with mitochondria/lysosomes tethering impacts on local Ca2+ regulated pathways, among which TFEB mediated signaling, and in turn mitochondrial and lysosomal function. Defects in mitochondria and lysosome represent a common hallmark of neurodegenerative diseases: targeting their communication could open therapeutic avenues.
Collapse
Affiliation(s)
- Flavia Giamogante
- Department of Biomedical Sciences (DSB), University of Padova, Padova, Italy
| | - Lucia Barazzuol
- Department of Biomedical Sciences (DSB), University of Padova, Padova, Italy
| | | | - Elena Poggio
- Department of Biology (DIBIO), University of Padova, Padova, Italy
| | - Alessandra Esposito
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Anna Masato
- Department of Biology (DIBIO), University of Padova, Padova, Italy
- UK-Dementia Research Institute at UCL, University College London, London, UK
| | - Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Alessio Vagnoni
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Tito Calì
- Department of Biomedical Sciences (DSB), University of Padova, Padova, Italy.
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.
- Study Center for Neurodegeneration (CESNE), University of Padova, Padova, Italy.
| | - Marisa Brini
- Department of Biology (DIBIO), University of Padova, Padova, Italy.
- Study Center for Neurodegeneration (CESNE), University of Padova, Padova, Italy.
- Department of Pharmaceutical and Pharmacological Sciences (DSF), University of Padova, Padova, Italy.
| |
Collapse
|
22
|
Abe T, Kuwahara T, Suenaga S, Sakurai M, Takatori S, Iwatsubo T. Lysosomal stress drives the release of pathogenic α-synuclein from macrophage lineage cells via the LRRK2-Rab10 pathway. iScience 2024; 27:108893. [PMID: 38313055 PMCID: PMC10835446 DOI: 10.1016/j.isci.2024.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/26/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
α-Synuclein and LRRK2 are associated with both familial and sporadic Parkinson's disease (PD), although the mechanistic link between these two proteins has remained elusive. Treating cells with lysosomotropic drugs causes the recruitment of LRRK2 and its substrate Rab10 onto overloaded lysosomes and induces extracellular release of lysosomal contents. Here we show that lysosomal overload elicits the release of insoluble α-synuclein from macrophages and microglia loaded with α-synuclein fibrils. This release occurred specifically in macrophage lineage cells, was dependent on the LRRK2-Rab10 pathway and involved exosomes. Also, the uptake of α-synuclein fibrils enhanced the LRRK2 phosphorylation of Rab10, which was accompanied by an increased recruitment of LRRK2 and Rab10 onto lysosomal surface. Our data collectively suggest that α-synuclein fibrils taken up in lysosomes activate the LRRK2-Rab10 pathway, which in turn upregulates the extracellular release of α-synuclein aggregates, leading to a vicious cycle that could enhance α-synuclein propagation in PD pathology.
Collapse
Affiliation(s)
- Tetsuro Abe
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shoichi Suenaga
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Maria Sakurai
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sho Takatori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
23
|
Cara-Esteban M, Marín MP, Martínez-Alonso E, Martínez-Bellver S, Teruel-Martí V, Martínez-Menárguez JA, Tomás M. The Golgi complex of dopaminergic enteric neurons is fragmented in a hemiparkinsonian rat model. Microsc Res Tech 2024; 87:373-386. [PMID: 37855309 DOI: 10.1002/jemt.24442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/14/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023]
Abstract
Since gastrointestinal disorders are early consequences of Parkinson's disease (PD), this disease is clearly not restricted to the central nervous system (CNS), but also significantly affects the enteric nervous system (ENS). Large aggregates of the protein α-synuclein forming Lewy bodies, the prototypical cytopathological marker of this disease, have been observed in enteric nervous plexuses. However, their value in early prognosis is controversial. The Golgi complex (GC) of nigral neurons appears fragmented in Parkinson's disease, a characteristic common in most neurodegenerative diseases. In addition, the distribution and levels of regulatory proteins such as Rabs and SNAREs are altered, suggesting that PD is a membrane traffic-related pathology. Whether the GC of enteric dopaminergic neurons is affected by the disease has not yet been analyzed. In the present study, dopaminergic neurons in colon nervous plexuses behave as nigral neurons in a hemiparkinsonian rat model based on the injection of the toxin 6-OHDA. Their GCs are fragmented, and some regulatory proteins' distribution and expression levels are altered. The putative mechanisms of the transmission of the neurotoxin to the ENS are discussed. Our results support the possibility that GC structure and the level of some proteins, especially syntaxin 5, could be helpful as early indicators of the disease. RESEARCH HIGHLIGHTS: The Golgi complexes of enteric dopaminergic neurons appear fragmented in a Parkinson's disease rat model. Our results support the hypothesis that the Golgi complex structure and levels of Rab1 and syntaxin 5 could be helpful as early indicators of the disease.
Collapse
Affiliation(s)
- Mireia Cara-Esteban
- Department of Human Anatomy and Embryology, Medical School, Universitat de Valencia, Valencia, Spain
- Cell Biology Platform, Health Research Institute La Fe, Valencia, Spain
| | - María Pilar Marín
- Cell Biology Platform, Health Research Institute La Fe, Valencia, Spain
| | - Emma Martínez-Alonso
- Department of Cell Biology and Histology, Medical School, University of Murcia, Murcia, Spain
| | - Sergio Martínez-Bellver
- Department of Human Anatomy and Embryology, Medical School, Universitat de Valencia, Valencia, Spain
| | - Vicent Teruel-Martí
- Department of Human Anatomy and Embryology, Medical School, Universitat de Valencia, Valencia, Spain
| | | | - Mónica Tomás
- Department of Human Anatomy and Embryology, Medical School, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
24
|
Furthmann N, Bader V, Angersbach L, Blusch A, Goel S, Sánchez-Vicente A, Krause LJ, Chaban SA, Grover P, Trinkaus VA, van Well EM, Jaugstetter M, Tschulik K, Damgaard RB, Saft C, Ellrichmann G, Gold R, Koch A, Englert B, Westenberger A, Klein C, Jungbluth L, Sachse C, Behrends C, Glatzel M, Hartl FU, Nakamura K, Christine CW, Huang EJ, Tatzelt J, Winklhofer KF. NEMO reshapes the α-Synuclein aggregate interface and acts as an autophagy adapter by co-condensation with p62. Nat Commun 2023; 14:8368. [PMID: 38114471 PMCID: PMC10730909 DOI: 10.1038/s41467-023-44033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023] Open
Abstract
NEMO is a ubiquitin-binding protein which regulates canonical NF-κB pathway activation in innate immune signaling, cell death regulation and host-pathogen interactions. Here we identify an NF-κB-independent function of NEMO in proteostasis regulation by promoting autophagosomal clearance of protein aggregates. NEMO-deficient cells accumulate misfolded proteins upon proteotoxic stress and are vulnerable to proteostasis challenges. Moreover, a patient with a mutation in the NEMO-encoding IKBKG gene resulting in defective binding of NEMO to linear ubiquitin chains, developed a widespread mixed brain proteinopathy, including α-synuclein, tau and TDP-43 pathology. NEMO amplifies linear ubiquitylation at α-synuclein aggregates and promotes the local concentration of p62 into foci. In vitro, NEMO lowers the threshold concentrations required for ubiquitin-dependent phase transition of p62. In summary, NEMO reshapes the aggregate surface for efficient autophagosomal clearance by providing a mobile phase at the aggregate interphase favoring co-condensation with p62.
Collapse
Affiliation(s)
- Nikolas Furthmann
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Verian Bader
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Lena Angersbach
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Alina Blusch
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, 44791, Bochum, Germany
| | - Simran Goel
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Ana Sánchez-Vicente
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Laura J Krause
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
- Cluster of Excellence RESOLV, 44801, Bochum, Germany
| | - Sarah A Chaban
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Prerna Grover
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Victoria A Trinkaus
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Eva M van Well
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Maximilian Jaugstetter
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Kristina Tschulik
- Cluster of Excellence RESOLV, 44801, Bochum, Germany
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Rune Busk Damgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Carsten Saft
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, 44791, Bochum, Germany
| | - Gisa Ellrichmann
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, 44791, Bochum, Germany
- Department of Neurology, Klinikum Dortmund, University Witten/Herdecke, 44135, Dortmund, Germany
| | - Ralf Gold
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, 44791, Bochum, Germany
| | - Arend Koch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Benjamin Englert
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Charitéplatz 1, 10117, Berlin, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University, 81377, Munich, Germany
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Lisa Jungbluth
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, Jülich, Germany
- Institute for Biological Information Processing (IBI-6/Cellular Structural Biology), Forschungszentrum Jülich, Jülich, Germany
| | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, Jülich, Germany
- Institute for Biological Information Processing (IBI-6/Cellular Structural Biology), Forschungszentrum Jülich, Jülich, Germany
- Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Christian Behrends
- Munich Cluster for Systems Neurology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251, Hamburg, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Chadwick W Christine
- Department of Neurology, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Eric J Huang
- Department of Neurology, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
- Cluster of Excellence RESOLV, 44801, Bochum, Germany
| | - Konstanze F Winklhofer
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany.
- Cluster of Excellence RESOLV, 44801, Bochum, Germany.
| |
Collapse
|
25
|
Pan Z, Yu CW, Zhao C, Shao M, Yang X, Liang X, Li H, Lu Y, Ye Q, Chern JW, Lu J, Zhou H, Lee SMY. Antagonizing pathological α-synuclein-mediated neurodegeneration by J24335 via the activation of immunoproteasome. Toxicol Appl Pharmacol 2023; 480:116745. [PMID: 37931757 DOI: 10.1016/j.taap.2023.116745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/21/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
The aggregation of misfolded proteins, such as α-synuclein in Parkinson's disease (PD), occurs intracellularly or extracellularly in the majority of neurodegenerative diseases. The immunoproteasome has more potent chymotrypsin-like activity than normal proteasome. Thus, degradation of α-synuclein aggregation via immunoproteasome is an attractive approach for PD drug development. Herein, we aimed to determine if novel compound, 11-Hydroxy-1-(8-methoxy-5-(trifluoromethyl)quinolin-2-yl)undecan-1-one oxime (named as J24335), is a promising candidate for disease-modifying therapy to prevent the pathological progression of neurodegenerative diseases, such as PD. The effects of J24335 on inducible PC12/A53T-α-syn cell viability and cytotoxicity were evaluated by MTT assay and LDH assay, respectively. Evaluation of various proteasome activities was done by measuring the luminescence of enzymatic activity after the addition of different amounts of aminoluciferin. Immunoblotting and real-time PCR were employed to detect the expression of various proteins and genes, respectively. We also used a transgenic mouse model for behavioral testing and immunochemical analysis, to assess the neuroprotective effects of J24335. J24335 inhibited wild-type and mutant α-synuclein aggregation without affecting the growth or death of neuronal cells. The inhibition of α-synuclein aggregation by J24335 was caused by activation of immunoproteasome, as mediated by upregulation of LMP7, and increased cellular chymotrypsin-like activity in 20S proteasome. J24335-enhanced immunoproteasome activity was mediated by PKA/Akt/mTOR pathway activation. Moreover, animal studies revealed that J24335 treatment markedly mitigated both the loss of tyrosine hydroxylase-positive (TH-) neurons and impaired motor skill development. This is the first report to use J24335 as an immunoproteasome enhancing agent to antagonize pathological α-synuclein-mediated neurodegeneration.
Collapse
Affiliation(s)
- Zhijian Pan
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Chao-Wu Yu
- School of Pharmacy, National Taiwan University, Taipei 10050, Taiwan, China
| | - Chen Zhao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Min Shao
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Xuanjun Yang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Biology, South University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaonan Liang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Haitao Li
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Yucong Lu
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Qingqing Ye
- School of Pharmacy, National Taiwan University, Taipei 10050, Taiwan, China
| | - Ji-Wang Chern
- School of Pharmacy, National Taiwan University, Taipei 10050, Taiwan, China
| | - Jiahong Lu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hefeng Zhou
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China.
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macao.
| |
Collapse
|
26
|
Hayashi Y, Takatori S, Warsame WY, Tomita T, Fujisawa T, Ichijo H. TOLLIP acts as a cargo adaptor to promote lysosomal degradation of aberrant ER membrane proteins. EMBO J 2023; 42:e114272. [PMID: 37929762 PMCID: PMC10690474 DOI: 10.15252/embj.2023114272] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
Endoplasmic reticulum (ER) proteostasis is maintained by various catabolic pathways. Lysosomes clear entire ER portions by ER-phagy, while proteasomes selectively clear misfolded or surplus aberrant proteins by ER-associated degradation (ERAD). Recently, lysosomes have also been implicated in the selective clearance of aberrant ER proteins, but the molecular basis remains unclear. Here, we show that the phosphatidylinositol-3-phosphate (PI3P)-binding protein TOLLIP promotes selective lysosomal degradation of aberrant membrane proteins, including an artificial substrate and motoneuron disease-causing mutants of VAPB and Seipin. These cargos are recognized by TOLLIP through its misfolding-sensing intrinsically disordered region (IDR) and ubiquitin-binding CUE domain. In contrast to ER-phagy receptors, which clear both native and aberrant proteins by ER-phagy, TOLLIP selectively clears aberrant cargos by coupling them with the PI3P-dependent lysosomal trafficking without promoting bulk ER turnover. Moreover, TOLLIP depletion augments ER stress after ERAD inhibition, indicating that TOLLIP and ERAD cooperatively safeguard ER proteostasis. Our study identifies TOLLIP as a unique type of cargo-specific adaptor dedicated to the clearance of aberrant ER cargos and provides insights into molecular mechanisms underlying lysosome-mediated quality control of membrane proteins.
Collapse
Affiliation(s)
- Yuki Hayashi
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Sho Takatori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | | | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Takao Fujisawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
27
|
Santos ABD, Thaneshwaran S, Ali LK, Leguizamón CRR, Wang Y, Kristensen MP, Langkilde AE, Kohlmeier KA. Sex-dependent neuronal effects of α-synuclein reveal that GABAergic transmission is neuroprotective of sleep-controlling neurons. Cell Biosci 2023; 13:172. [PMID: 37710341 PMCID: PMC10500827 DOI: 10.1186/s13578-023-01105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Sleep disorders (SDs) are a symptom of the prodromal phase of neurodegenerative disorders that are mechanistically linked to the protein α-synuclein (α-syn) including Parkinson's disease (PD). SDs during the prodromal phase could result from neurodegeneration induced in state-controlling neurons by accumulation of α-syn predominant early in the disease, and consistent with this, we reported the monomeric form of α-syn (monomeric α-syn; α-synM) caused cell death in the laterodorsal tegmental nucleus (LDT), which controls arousal as well as the sleep and wakefulness state. However, we only examined the male LDT, and since sex is considered a risk factor for the development of α-syn-related diseases including prodromal SDs, the possibility exists of sex-based differences in α-synM effects. Accordingly, we examined the hypothesis that α-synM exerts differential effects on membrane excitability, intracellular calcium, and cell viability in the LDT of females compared to males. METHODS Patch clamp electrophysiology, bulk load calcium imaging, and cell death histochemistry were used in LDT brain slices to monitor responses to α-synM and effects of GABA receptor acting agents. RESULTS Consistent with our hypothesis, we found differing effects of α-synM on female LDT neurons when compared to male. In females, α-synM induced a decrease in membrane excitability and heightened reductions in intracellular calcium, which were reliant on functional inhibitory acid transmission, as well as decreased the amplitude and frequency of spontaneous excitatory postsynaptic currents (sEPSCs) with a concurrent reduction in action potential firing rate. Cell viability studies showed higher α-synM-mediated neurodegeneration in males compared to females that depended on inhibitory amino acid transmission. Further, presence of GABA receptor agonists was associated with reduced cell death in males. CONCLUSIONS When taken together, we conclude that α-synM induces a sex-dependent effect on LDT neurons involving a GABA receptor-mediated mechanism that is neuroprotective. Understanding the potential sex differences in neurodegenerative processes, especially those occurring early in the disease, could enable implementation of sex-based strategies to identify prodromal PD cases, and promote efforts to illuminate new directions for tailored treatment and management of PD.
Collapse
Affiliation(s)
- Altair Brito Dos Santos
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100 Denmark
- Dept of Neuroscience, University of Copenhagen, Copenhagen, 2200 Denmark
| | - Siganya Thaneshwaran
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100 Denmark
| | - Lara Kamal Ali
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100 Denmark
| | - César Ramón Romero Leguizamón
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100 Denmark
| | - Yang Wang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100 Denmark
| | | | - Annette E. Langkilde
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100 Denmark
| | - Kristi A. Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100 Denmark
| |
Collapse
|
28
|
Tong Y, Zhu W, Chen J, Zhang W, Xu F, Pang J. Targeted Degradation of Alpha-Synuclein by Autophagosome-Anchoring Chimera Peptides. J Med Chem 2023; 66:12614-12628. [PMID: 37652467 DOI: 10.1021/acs.jmedchem.3c01303] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Targeted protein degradation (TPD) confers knockdown of "undruggable" targets such as alpha-synuclein (αSyn), a pathogenic protein in multiple neurodegenerative diseases. Though many of these proteins were mainly degraded through the autophagy-lysosome pathway (ALP), few TPD tools harnessing the ALP were reported. Herein, we developed a strategy termed autophagosome-anchoring chimera (ATACC), in which the protein of interest (POI) can be anchored to microtubule-associated protein-1 light chain-3B (LC3B) on the autophagosome with the assistance of an LC3-interacting region (LIR)-containing bifunctional peptide, and the selective autophagy of the POI is thus facilitated. A series of αSyn-targeting ATACC peptides were designed and synthesized. Biological evaluations demonstrated that these compounds could degrade αSyn specifically and effectively through a "chemical-induced cargo recognition-ALP degradation" mechanism. The neuroprotective effects of ATACC peptide P1 were further validated in vitro and in vivo. Collectively, our results provided a new TPD tool and revealed a potential therapeutic strategy against synucleinopathies.
Collapse
Affiliation(s)
- Yichen Tong
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Wentao Zhu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Jian Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenqian Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Fang Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) & Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiyan Pang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
29
|
Lomeli-Lepe AK, Castañeda-Cabral JL, López-Pérez SJ. Synucleinopathies: Intrinsic and Extrinsic Factors. Cell Biochem Biophys 2023; 81:427-442. [PMID: 37526884 DOI: 10.1007/s12013-023-01154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
α-Synucleinopathies are a group of neurodegenerative disorders characterized by alterations in α-synuclein (α-syn), a protein associated with membrane phospholipids, whose precise function in normal cells is still unknown. These kinds of diseases are caused by multiple factors, but the regulation of the α-syn gene is believed to play a central role in the pathology of these disorders; therefore, the α-syn gene is one of the most studied genes. α-Synucleinopathies are complex disorders that derive from the interaction between genetic and environmental factors. Here, we offer an update on the landscape of the epigenetic regulation of α-syn gene expression that has been linked with α-synucleinopathies. We also delve into the reciprocal influence between epigenetic modifications and other factors related to these disorders, such as posttranslational modifications, microbiota participation, interactions with lipids, neuroinflammation and oxidative stress, to promote α-syn aggregation by acting on the transcription and/or translation of the α-syn gene.
Collapse
Affiliation(s)
- Alma Karen Lomeli-Lepe
- Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, JAL, México
| | - Jose Luis Castañeda-Cabral
- Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, JAL, México
| | | |
Collapse
|
30
|
Chandran A, Oliver HJ, Rochet JC. Role of NFE2L1 in the Regulation of Proteostasis: Implications for Aging and Neurodegenerative Diseases. BIOLOGY 2023; 12:1169. [PMID: 37759569 PMCID: PMC10525699 DOI: 10.3390/biology12091169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/29/2023]
Abstract
A hallmark of aging and neurodegenerative diseases is a disruption of proteome homeostasis ("proteostasis") that is caused to a considerable extent by a decrease in the efficiency of protein degradation systems. The ubiquitin proteasome system (UPS) is the major cellular pathway involved in the clearance of small, short-lived proteins, including amyloidogenic proteins that form aggregates in neurodegenerative diseases. Age-dependent decreases in proteasome subunit expression coupled with the inhibition of proteasome function by aggregated UPS substrates result in a feedforward loop that accelerates disease progression. Nuclear factor erythroid 2- like 1 (NFE2L1) is a transcription factor primarily responsible for the proteasome inhibitor-induced "bounce-back effect" regulating the expression of proteasome subunits. NFE2L1 is localized to the endoplasmic reticulum (ER), where it is rapidly degraded under basal conditions by the ER-associated degradation (ERAD) pathway. Under conditions leading to proteasome impairment, NFE2L1 is cleaved and transported to the nucleus, where it binds to antioxidant response elements (AREs) in the promoter region of proteasome subunit genes, thereby stimulating their transcription. In this review, we summarize the role of UPS impairment in aging and neurodegenerative disease etiology and consider the potential benefit of enhancing NFE2L1 function as a strategy to upregulate proteasome function and alleviate pathology in neurodegenerative diseases.
Collapse
Affiliation(s)
- Aswathy Chandran
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Haley Jane Oliver
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
31
|
Yang HM, Cheng YZ, Hou TZ, Fan JK, Gu L, Zhang JN, Zhang H. Upregulation of Parkinson's disease-associated protein alpha-synuclein suppresses tumorigenesis via interaction with mGluR5 and gamma-synuclein in liver cancer. Arch Biochem Biophys 2023; 744:109698. [PMID: 37487948 DOI: 10.1016/j.abb.2023.109698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 06/29/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Numerous epidemiological studies suggest a link between Parkinson's disease (PD) and cancer, indicating that PD-associated proteins may mediate the development of cancer. Here, we investigated a potential role of PD-associated protein α-synuclein in regulating liver cancer progression in vivo and in vitro. We found the negative correlation of α-synuclein with metabotropic glutamate receptor 5 (mGluR5) and γ-synuclein by analyzing the data from The Cancer Genome Atlas database, liver cancer patients and hepatoma cells with overexpressed α-synuclein. Moreover, upregulated α-synuclein suppressed the growth, migration, and invasion. α-synuclein was found to associate with mGluR5 and γ-synuclein, and the truncated N-terminal of α-synuclein was essential for the interaction. Furthermore, overexpressed α-synuclein exerted the inhibitory effect on hepatoma cells through the degradation of mGluR5 and γ-synuclein via α-synuclein-dependent autophagy-lysosomal pathway (ALP). Consistently, in vivo experiments with rotenone-induced rat model of PD also confirmed that, upregulated α-synuclein in liver cancer tissues through targeting on mGluR5/α-synuclein/γ-synuclein complex inhibited tumorigenesis involving in ALP-dependent degradation of mGluR5 and γ-synuclein. These findings give an insight into an important role of PD-associated protein α-synuclein accompanied by the complex of mGluR5/α-synuclein/γ-synuclein in distant communications between PD and liver cancer, and provide a new strategy in therapeutics for the treatment of liver cancer.
Collapse
Affiliation(s)
- Hui-Min Yang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Yun-Zhong Cheng
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China; Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Tian-Zhong Hou
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Jing-Kai Fan
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Li Gu
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Jian-Nan Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Hong Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
32
|
Zheng W, Han X, Han B, Li G, Gan J, Wang T, Xu B, He J, Du W, Cao X, Wang Z. LAR Downregulation Protects the Astrocytic U251 and Cocultured SH-SY5Y Cells in a Rotenone-Induced Parkinson's Disease Cell Model. Int J Mol Sci 2023; 24:11111. [PMID: 37446291 DOI: 10.3390/ijms241311111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Leukocyte common antigen-related protein tyrosine phosphatase (LAR) is a member of the protein tyrosine phosphatase family that serves as a key regulator of cellular survival. It is also involved in neurodevelopment and brain disorders. This study was designed to investigate the role of LAR in a cell-based model of Parkinson's disease (PD) in which U251 and SH-SY5Y cells were used as models of astrocytes and dopaminergic neurons, respectively. Cell viability, cell death, cell morphology, protein phosphorylation and expression, ATP levels, reactive oxygen species (ROS) generation, and mitochondrial membrane potential were analyzed in the wild-type (WT) and heterozygous LAR-knockout astrocytoma U251 cells to assess the cell state, signal transduction, and mitochondrial function. LAR downregulation showed a protective effect in rotenone-exposed U251 cells by increasing cell viability, reducing cell mortality, and restoring appropriate cellular morphology. LAR downregulation enhanced IGF-1R phosphorylation and downstream signal transduction as evidenced by increases in the Akt and GSK-3β phosphorylation, as well as the upregulation of NRF2 and HO-1. The downregulation of LAR also augmented DJ-1 levels in these cells. The enhanced Akt and GSK-3β phosphorylation contributed to a reduced Bax/Bcl2 ratio and suppressed apoptosis after rotenone exposure. Heterozygous LAR-knockout U251 cells exhibited higher mitochondrial function evidenced by increased mitochondrial membrane potential, ATP contents, and reduced ROS production compared to the WT cells following rotenone exposure. Further studies showed that the astrocytic protection mediated by the heterozygous knockout of LAR was associated with the activation of Akt. A specific Akt inhibitor, MK2206, reduced the cell viability, Akt and GSK3β phosphorylation, and HO-1 and NRF2 expression in U251 cells exposed to rotenone. Astrocytes provide structural and metabolic support to maintain neuronal health. Astrocytic glial cell-derived neurotrophic factor (GDNF) production is vital for dopaminergic neuron survival. Heterozygous LAR-knockout U251 cells produced higher amounts of GDNF than the WT cells. The SH-SY5Y cells cocultured with heterozygous LAR-knockout U251 cells exhibited greater viability than that of cells cocultured with WT U251 cells in response to rotenone. Together, these findings demonstrate that the heterozygous knockout of LAR in astrocytes can play a key role in protecting both astrocytic cells and cocultured neurons in a rotenone-induced cell-based model of PD. This neuroprotective effect is attributable to the augmentation of IGF1R-Akt-GDNF signaling and the maintenance of astrocytic mitochondrial function.
Collapse
Affiliation(s)
- Wei Zheng
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Xiao Han
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Bing Han
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Gang Li
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Jing Gan
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Tian Wang
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Bo Xu
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Jie He
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Wenxiao Du
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Xiaolin Cao
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, China
| |
Collapse
|
33
|
Yuan YG, Wang JL, Zhang YX, Li L, Reza AMMT, Gurunathan S. Biogenesis, Composition and Potential Therapeutic Applications of Mesenchymal Stem Cells Derived Exosomes in Various Diseases. Int J Nanomedicine 2023; 18:3177-3210. [PMID: 37337578 PMCID: PMC10276992 DOI: 10.2147/ijn.s407029] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023] Open
Abstract
Exosomes are nanovesicles with a wide range of chemical compositions used in many different applications. Mesenchymal stem cell-derived exosomes (MSCs-EXOs) are spherical vesicles that have been shown to mediate tissue regeneration in a variety of diseases, including neurological, autoimmune and inflammatory, cancer, ischemic heart disease, lung injury, and liver fibrosis. They can modulate the immune response by interacting with immune effector cells due to the presence of anti-inflammatory compounds and are involved in intercellular communication through various types of cargo. MSCs-EXOs exhibit cytokine storm-mitigating properties in response to COVID-19. This review discussed the potential function of MSCs-EXOs in a variety of diseases including neurological, notably epileptic encephalopathy and Parkinson's disease, cancer, angiogenesis, autoimmune and inflammatory diseases. We provided an overview of exosome biogenesis and factors that regulate exosome biogenesis. Additionally, we highlight the functions and potential use of MSCs-EXOs in the treatment of the inflammatory disease COVID-19. Finally, we covered a strategies and challenges of MSCs-EXOs. Finally, we discuss conclusion and future perspectives of MSCs-EXOs.
Collapse
Affiliation(s)
- Yu-Guo Yuan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Jia-Lin Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Ya-Xin Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Ling Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Abu Musa Md Talimur Reza
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Türkiye
| | | |
Collapse
|
34
|
Wolff A, Schumacher NU, Pürner D, Machetanz G, Demleitner AF, Feneberg E, Hagemeier M, Lingor P. Parkinson's disease therapy: what lies ahead? J Neural Transm (Vienna) 2023; 130:793-820. [PMID: 37147404 PMCID: PMC10199869 DOI: 10.1007/s00702-023-02641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
The worldwide prevalence of Parkinson's disease (PD) has been constantly increasing in the last decades. With rising life expectancy, a longer disease duration in PD patients is observed, further increasing the need and socioeconomic importance of adequate PD treatment. Today, PD is exclusively treated symptomatically, mainly by dopaminergic stimulation, while efforts to modify disease progression could not yet be translated to the clinics. New formulations of approved drugs and treatment options of motor fluctuations in advanced stages accompanied by telehealth monitoring have improved PD patients care. In addition, continuous improvement in the understanding of PD disease mechanisms resulted in the identification of new pharmacological targets. Applying novel trial designs, targeting of pre-symptomatic disease stages, and the acknowledgment of PD heterogeneity raise hopes to overcome past failures in the development of drugs for disease modification. In this review, we address these recent developments and venture a glimpse into the future of PD therapy in the years to come.
Collapse
Affiliation(s)
- Andreas Wolff
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Nicolas U Schumacher
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Dominik Pürner
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Gerrit Machetanz
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Antonia F Demleitner
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Emily Feneberg
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Maike Hagemeier
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Paul Lingor
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
35
|
Terrin F, Tesoriere A, Plotegher N, Dalla Valle L. Sex and Brain: The Role of Sex Chromosomes and Hormones in Brain Development and Parkinson's Disease. Cells 2023; 12:1486. [PMID: 37296608 PMCID: PMC10252697 DOI: 10.3390/cells12111486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Sex hormones and genes on the sex chromosomes are not only key factors in the regulation of sexual differentiation and reproduction but they are also deeply involved in brain homeostasis. Their action is crucial for the development of the brain, which presents different characteristics depending on the sex of individuals. The role of these players in the brain is fundamental in the maintenance of brain function during adulthood as well, thus being important also with respect to age-related neurodegenerative diseases. In this review, we explore the role of biological sex in the development of the brain and analyze its impact on the predisposition toward and the progression of neurodegenerative diseases. In particular, we focus on Parkinson's disease, a neurodegenerative disorder that has a higher incidence in the male population. We report how sex hormones and genes encoded by the sex chromosomes could protect from the disease or alternatively predispose toward its development. We finally underline the importance of considering sex when studying brain physiology and pathology in cellular and animal models in order to better understand disease etiology and develop novel tailored therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Nicoletta Plotegher
- Department of Biology, University of Padova, 35131 Padova, Italy; (F.T.); (A.T.)
| | - Luisa Dalla Valle
- Department of Biology, University of Padova, 35131 Padova, Italy; (F.T.); (A.T.)
| |
Collapse
|
36
|
Brembati V, Faustini G, Longhena F, Bellucci A. Alpha synuclein post translational modifications: potential targets for Parkinson's disease therapy? Front Mol Neurosci 2023; 16:1197853. [PMID: 37305556 PMCID: PMC10248004 DOI: 10.3389/fnmol.2023.1197853] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative disorder with motor symptoms. The neuropathological alterations characterizing the brain of patients with PD include the loss of dopaminergic neurons of the nigrostriatal system and the presence of Lewy bodies (LB), intraneuronal inclusions that are mainly composed of alpha-synuclein (α-Syn) fibrils. The accumulation of α-Syn in insoluble aggregates is a main neuropathological feature in PD and in other neurodegenerative diseases, including LB dementia (LBD) and multiple system atrophy (MSA), which are therefore defined as synucleinopathies. Compelling evidence supports that α-Syn post translational modifications (PTMs) such as phosphorylation, nitration, acetylation, O-GlcNAcylation, glycation, SUMOylation, ubiquitination and C-terminal cleavage, play important roles in the modulation α-Syn aggregation, solubility, turnover and membrane binding. In particular, PTMs can impact on α-Syn conformational state, thus supporting that their modulation can in turn affect α-Syn aggregation and its ability to seed further soluble α-Syn fibrillation. This review focuses on the importance of α-Syn PTMs in PD pathophysiology but also aims at highlighting their general relevance as possible biomarkers and, more importantly, as innovative therapeutic targets for synucleinopathies. In addition, we call attention to the multiple challenges that we still need to face to enable the development of novel therapeutic approaches modulating α-Syn PTMs.
Collapse
Affiliation(s)
| | | | | | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
37
|
Sampognaro PJ, Arya S, Knudsen GM, Gunderson EL, Sandoval-Perez A, Hodul M, Bowles K, Craik CS, Jacobson MP, Kao AW. Mutations in α-synuclein, TDP-43 and tau prolong protein half-life through diminished degradation by lysosomal proteases. Mol Neurodegener 2023; 18:29. [PMID: 37131250 PMCID: PMC10155372 DOI: 10.1186/s13024-023-00621-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/21/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Autosomal dominant mutations in α-synuclein, TDP-43 and tau are thought to predispose to neurodegeneration by enhancing protein aggregation. While a subset of α-synuclein, TDP-43 and tau mutations has been shown to increase the structural propensity of these proteins toward self-association, rates of aggregation are also highly dependent on protein steady state concentrations, which are in large part regulated by their rates of lysosomal degradation. Previous studies have shown that lysosomal proteases operate precisely and not indiscriminately, cleaving their substrates at very specific linear amino acid sequences. With this knowledge, we hypothesized that certain coding mutations in α-synuclein, TDP-43 and tau may lead to increased protein steady state concentrations and eventual aggregation by an alternative mechanism, that is, through disrupting lysosomal protease cleavage recognition motifs and subsequently conferring protease resistance to these proteins. RESULTS To test this possibility, we first generated comprehensive proteolysis maps containing all of the potential lysosomal protease cleavage sites for α-synuclein, TDP-43 and tau. In silico analyses of these maps indicated that certain mutations would diminish cathepsin cleavage, a prediction we confirmed utilizing in vitro protease assays. We then validated these findings in cell models and induced neurons, demonstrating that mutant forms of α-synuclein, TDP-43 and tau are degraded less efficiently than wild type despite being imported into lysosomes at similar rates. CONCLUSIONS Together, this study provides evidence that pathogenic mutations in the N-terminal domain of α-synuclein (G51D, A53T), low complexity domain of TDP-43 (A315T, Q331K, M337V) and R1 and R2 domains of tau (K257T, N279K, S305N) directly impair their own lysosomal degradation, altering protein homeostasis and increasing cellular protein concentrations by extending the degradation half-lives of these proteins. These results also point to novel, shared, alternative mechanism by which different forms of neurodegeneration, including synucleinopathies, TDP-43 proteinopathies and tauopathies, may arise. Importantly, they also provide a roadmap for how the upregulation of particular lysosomal proteases could be targeted as potential therapeutics for human neurodegenerative disease.
Collapse
Affiliation(s)
- Paul J. Sampognaro
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA USA
- Neuromuscular Division, Department of Neurology, University of California, San Francisco, CA USA
| | - Shruti Arya
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA USA
| | | | - Emma L. Gunderson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA USA
| | - Angelica Sandoval-Perez
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA USA
| | - Molly Hodul
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA USA
| | - Kathryn Bowles
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Edinburgh, UK
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA USA
| | - Matthew P. Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA USA
| | - Aimee W. Kao
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA USA
| |
Collapse
|
38
|
Nim S, O'Hara DM, Corbi-Verge C, Perez-Riba A, Fujisawa K, Kapadia M, Chau H, Albanese F, Pawar G, De Snoo ML, Ngana SG, Kim J, El-Agnaf OMA, Rennella E, Kay LE, Kalia SK, Kalia LV, Kim PM. Disrupting the α-synuclein-ESCRT interaction with a peptide inhibitor mitigates neurodegeneration in preclinical models of Parkinson's disease. Nat Commun 2023; 14:2150. [PMID: 37076542 PMCID: PMC10115881 DOI: 10.1038/s41467-023-37464-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 03/14/2023] [Indexed: 04/21/2023] Open
Abstract
Accumulation of α-synuclein into toxic oligomers or fibrils is implicated in dopaminergic neurodegeneration in Parkinson's disease. Here we performed a high-throughput, proteome-wide peptide screen to identify protein-protein interaction inhibitors that reduce α-synuclein oligomer levels and their associated cytotoxicity. We find that the most potent peptide inhibitor disrupts the direct interaction between the C-terminal region of α-synuclein and CHarged Multivesicular body Protein 2B (CHMP2B), a component of the Endosomal Sorting Complex Required for Transport-III (ESCRT-III). We show that α-synuclein impedes endolysosomal activity via this interaction, thereby inhibiting its own degradation. Conversely, the peptide inhibitor restores endolysosomal function and thereby decreases α-synuclein levels in multiple models, including female and male human cells harboring disease-causing α-synuclein mutations. Furthermore, the peptide inhibitor protects dopaminergic neurons from α-synuclein-mediated degeneration in hermaphroditic C. elegans and preclinical Parkinson's disease models using female rats. Thus, the α-synuclein-CHMP2B interaction is a potential therapeutic target for neurodegenerative disorders.
Collapse
Affiliation(s)
- Satra Nim
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Darren M O'Hara
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Carles Corbi-Verge
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Albert Perez-Riba
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Kazuko Fujisawa
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Minesh Kapadia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Hien Chau
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Federica Albanese
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Grishma Pawar
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Mitchell L De Snoo
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Sophie G Ngana
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Jisun Kim
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Omar M A El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Enrico Rennella
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Suneil K Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
| | - Lorraine V Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.
| | - Philip M Kim
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
39
|
Simon C, Soga T, Parhar I. Kisspeptin-10 Mitigates α-Synuclein-Mediated Mitochondrial Apoptosis in SH-SY5Y-Derived Neurons via a Kisspeptin Receptor-Independent Manner. Int J Mol Sci 2023; 24:ijms24076056. [PMID: 37047030 PMCID: PMC10094180 DOI: 10.3390/ijms24076056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 04/14/2023] Open
Abstract
The hypothalamic neurohormone kisspeptin-10 (KP-10) was inherently implicated in cholinergic pathologies when aberrant fluctuations of expression patterns and receptor densities were discerned in neurodegenerative micromilieus. That said, despite variable degrees of functional redundancy, KP-10, which is biologically governed by its cognate G-protein-coupled receptor, GPR54, attenuated the progressive demise of α-synuclein (α-syn)-rich cholinergic-like neurons. Under explicitly modeled environments, in silico algorithms further rationalized the surface complementarities between KP-10 and α-syn when KP-10 was unambiguously accommodated in the C-terminal binding pockets of α-syn. Indeed, the neuroprotective relevance of KP-10's binding mechanisms can be insinuated in the amelioration of α-syn-mediated neurotoxicity; yet it is obscure whether these extenuative circumstances are contingent upon prior GPR54 activation. Herein, choline acetyltransferase (ChAT)-positive SH-SY5Y neurons were engineered ad hoc to transiently overexpress human wild-type or E46K mutant α-syn while the mitigation of α-syn-induced neuronal death was ascertained via flow cytometric and immunocytochemical quantification. Recapitulating the specificity observed on cell viability, exogenously administered KP-10 (0.1 µM) substantially suppressed wild-type and E46K mutant α-syn-mediated apoptosis and mitochondrial depolarization in cholinergic differentiated neurons. In particular, co-administrations with a GPR54 antagonist, kisspeptin-234 (KP-234), failed to abrogate the robust neuroprotection elicited by KP-10, thereby signifying a GPR54 dispensable mechanism of action. Consistent with these observations, KP-10 treatment further diminished α-syn and ChAT immunoreactivity in neurons overexpressing wild-type and E46K mutant α-syn. Overall, these findings lend additional credence to the previous notion that KP-10's binding zone may harness efficacious moieties of neuroprotective intent.
Collapse
Affiliation(s)
- Christopher Simon
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Tomoko Soga
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Ishwar Parhar
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
40
|
Contaldi E, Magistrelli L, Comi C. Disease mechanisms as subtypes: Immune dysfunction in Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:67-93. [PMID: 36803824 DOI: 10.1016/b978-0-323-85555-6.00008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
In recent years, the contraposition between inflammatory and neurodegenerative processes has been increasingly challenged. Inflammation has been emphasized as a key player in the onset and progression of Parkinson disease (PD) and other neurodegenerative disorders. The strongest indicators of the involvement of the immune system derived from evidence of microglial activation, profound imbalance in phenotype and composition of peripheral immune cells, and impaired humoral immune responses. Moreover, peripheral inflammatory mechanisms (e.g., involving the gut-brain axis) and immunogenetic factors are likely to be implicated. Even though several lines of preclinical and clinical studies are supporting and defining the complex relationship between the immune system and PD, the exact mechanisms are currently unknown. Similarly, the temporal and causal connections between innate and adaptive immune responses and neurodegeneration are unsettled, challenging our ambition to define an integrated and holistic model of the disease. Despite these difficulties, current evidence is providing the unique opportunity to develop immune-targeted approaches for PD, thus enriching our therapeutic armamentarium. This chapter aims to provide an extensive overview of past and present studies that explored the implication of the immune system in neurodegeneration, thus paving the road for the concept of disease modification in PD.
Collapse
Affiliation(s)
- Elena Contaldi
- Movement Disorders Centre, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Luca Magistrelli
- Movement Disorders Centre, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Cristoforo Comi
- Neurology Unit, S.Andrea Hospital, Department of Translational Medicine, University of Piemonte Orientale, Vercelli, Italy.
| |
Collapse
|
41
|
Fridolf S, Pham QD, Pallbo J, Bernfur K, Linse S, Topgaard D, Sparr E. Ganglioside GM3 stimulates lipid-protein co-assembly in α-synuclein amyloid formation. Biophys Chem 2023; 293:106934. [PMID: 36493587 DOI: 10.1016/j.bpc.2022.106934] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
Parkinson's disease is characterized by the aggregation of the presynaptic protein α-synuclein (αSyn), and its co-assembly with lipids and other cellular matter in the brain. Here we investigated lipid-protein co-assembly in a system composed of αSyn and model membranes containing the glycolipid ganglioside GM3. We quantified the uptake of lipids into the co-assembled aggregates and investigated how lipid molecular dynamics is altered by being present in the co-assemblies using solution 1H- and solid-state 13C NMR spectroscopy. Aggregate morphology was studied using cryo-TEM. The overall lipid uptake in the co-assembled aggregates was found to increase with the molar ratio of GM3 in the vesicles. The lipids present in the co-assembled aggregates have reduced acyl chain and headgroup dynamics compared to the protein-free bilayer system. These findings may improve our understanding of how different types of lipids can influence the composition of αSyn aggregates, which may have consequences for amyloid formation in vivo.
Collapse
Affiliation(s)
- Simon Fridolf
- Division of Physical Chemistry, Lund University, Box 124, 221 00 Lund, Sweden.
| | - Quoc Dat Pham
- Division of Physical Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| | - Jon Pallbo
- Division of Physical Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| | - Katja Bernfur
- Biochemistry and Structural Biology, Lund University, Box 124, 221 00 Lund, Sweden
| | - Sara Linse
- Biochemistry and Structural Biology, Lund University, Box 124, 221 00 Lund, Sweden
| | - Daniel Topgaard
- Division of Physical Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| | - Emma Sparr
- Division of Physical Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| |
Collapse
|
42
|
Myers AJ, Brahimi A, Jenkins IJ, Koob AO. The Synucleins and the Astrocyte. BIOLOGY 2023; 12:biology12020155. [PMID: 36829434 PMCID: PMC9952504 DOI: 10.3390/biology12020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Synucleins consist of three proteins exclusively expressed in vertebrates. α-Synuclein (αS) has been identified as the main proteinaceous aggregate in Lewy bodies, a pathological hallmark of many neurodegenerative diseases. Less is understood about β-synuclein (βS) and γ-synuclein (γS), although it is known βS can interact with αS in vivo to inhibit aggregation. Likewise, both γS and βS can inhibit αS's propensity to aggregate in vitro. In the central nervous system, βS and αS, and to a lesser extent γS, are highly expressed in the neural presynaptic terminal, although they are not strictly located there, and emerging data have shown a more complex expression profile. Synapse loss and astrocyte atrophy are early aspects of degenerative diseases of the brain and correlate with disease progression. Synucleins appear to be involved in synaptic transmission, and astrocytes coordinate and organize synaptic function, with excess αS degraded by astrocytes and microglia adjacent to the synapse. βS and γS have also been observed in the astrocyte and may provide beneficial roles. The astrocytic responsibility for degradation of αS as well as emerging evidence on possible astrocytic functions of βS and γS, warrant closer inspection on astrocyte-synuclein interactions at the synapse.
Collapse
Affiliation(s)
- Abigail J. Myers
- Neuroscience Program, Health Science Research Facility, University of Vermont, 149 Beaumont Ave., Burlington, VT 05405, USA
| | - Ayat Brahimi
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
| | - Imani J. Jenkins
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
| | - Andrew O. Koob
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
- Correspondence: ; Tel.: +1-860-768-5780
| |
Collapse
|
43
|
Neupane S, De Cecco E, Aguzzi A. The Hidden Cell-to-Cell Trail of α-Synuclein Aggregates. J Mol Biol 2022:167930. [PMID: 36566800 DOI: 10.1016/j.jmb.2022.167930] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
The progressive accumulation of insoluble aggregates of the presynaptic protein alpha-synuclein (α-Syn) is a hallmark of neurodegenerative disorders including Parkinson's disease (PD), Multiple System Atrophy, and Dementia with Lewy Bodies, commonly referred to as synucleinopathies. Despite considerable progress on the structural biology of these aggregates, the molecular mechanisms mediating their cell-to-cell transmission, propagation, and neurotoxicity remain only partially understood. Numerous studies have highlighted the stereotypical spatiotemporal spreading of pathological α-Syn aggregates across different tissues and anatomically connected brain regions over time. Experimental evidence from various cellular and animal models indicate that α-Syn transfer occurs in two defined steps: the release of pathogenic α-Syn species from infected cells, and their uptake via passive or active endocytic pathways. Once α-Syn aggregates have been internalized, little is known about what drives their toxicity or how they interact with the endogenous protein to promote its misfolding and subsequent aggregation. Similarly, unknown genetic factors modulate different cellular responses to the aggregation and accumulation of pathogenic α-Syn species. Here we discuss the current understanding of the molecular phenomena associated with the intercellular spreading of pathogenic α-Syn seeds and summarize the evidence supporting the transmission hypothesis. Understanding the molecular mechanisms involved in α-Syn aggregates transmission is essential to develop novel targeted therapeutics against PD and related synucleinopathies.
Collapse
Affiliation(s)
- Sandesh Neupane
- Institute of Neuropathology, University Hospital of Zurich, University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland. https://twitter.com/neuron_sandesh
| | - Elena De Cecco
- Institute of Neuropathology, University Hospital of Zurich, University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland.
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zurich, University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland.
| |
Collapse
|
44
|
Croft CL, Paterno G, Vause AR, Rowe LA, Ryu DH, Goodwin MS, Moran CA, Cruz PE, Giasson BI, Golde TE. Optical pulse labeling studies reveal exogenous seeding slows α-synuclein clearance. NPJ Parkinsons Dis 2022; 8:173. [PMID: 36535953 PMCID: PMC9763367 DOI: 10.1038/s41531-022-00434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
The accumulation of α-synuclein (α-syn) in intracellular formations known as Lewy bodies (LBs) is associated with several neurodegenerative diseases including Parkinson's disease and Lewy Body Dementia. There is still limited understanding of how α-syn and LB formation is associated with cellular dysfunction and degeneration in these diseases. To examine the clearance and production dynamics of α-syn we transduced organotypic murine brain slice cultures (BSCs) with recombinant adeno-associated viruses (rAAVs) to express Dendra2-tagged human wild-type (WT) and mutant A53T α-syn, with and without the addition of exogenous α-syn fibrillar seeds and tracked them over several weeks in culture using optical pulse labeling. We found that neurons expressing WT or mutant A53T human α-syn show similar rates of α-syn turnover even when insoluble, phosphorylated Ser129 α-syn has accumulated. Taken together, this data reveals α-syn aggregation and overexpression, pSer129 α-syn, nor the A53T mutation affect α-syn dynamics in this system. Prion-type seeding with exogenous α-syn fibrils significantly slows α-syn turnover, in the absence of toxicity but is associated with the accumulation of anti-p62 immunoreactivity and Thiazin Red positivity. Prion-type induction of α-syn aggregation points towards a potential protein clearance deficit in the presence of fibrillar seeds and the ease of this system to explore precise mechanisms underlying these processes. This system facilitates the exploration of α-syn protein dynamics over long-term culture periods. This platform can further be exploited to provide mechanistic insight on what drives this slowing of α-syn turnover and how therapeutics, other genes or different α-syn mutations may affect α-syn protein dynamics.
Collapse
Affiliation(s)
- Cara L. Croft
- grid.83440.3b0000000121901201UK Dementia Research Institute, UCL Institute of Neurology, University College London, London, UK ,grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL USA ,grid.451388.30000 0004 1795 1830The Francis Crick Institute, London, UK
| | - Giavanna Paterno
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL USA
| | - Ava R. Vause
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL USA
| | - Lyla A. Rowe
- grid.83440.3b0000000121901201UK Dementia Research Institute, UCL Institute of Neurology, University College London, London, UK ,grid.451388.30000 0004 1795 1830The Francis Crick Institute, London, UK
| | - Daniel H. Ryu
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL USA
| | - Marshall S. Goodwin
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL USA
| | - Corey A. Moran
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL USA
| | - Pedro E. Cruz
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL USA
| | - Benoit I. Giasson
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL USA
| | - Todd E. Golde
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL USA ,grid.189967.80000 0001 0941 6502Department of Pharmacology and Chemical Biology, Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA USA
| |
Collapse
|
45
|
Lysophospholipids: A Potential Drug Candidates for Neurodegenerative Disorders. Biomedicines 2022; 10:biomedicines10123126. [PMID: 36551882 PMCID: PMC9775253 DOI: 10.3390/biomedicines10123126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases (NDs) commonly present misfolded and aggregated proteins. Considerable research has been performed to unearth the molecular processes underpinning this pathological aggregation and develop therapeutic strategies targeting NDs. Fibrillary deposits of α-synuclein (α-Syn), a highly conserved and thermostable protein, are a critical feature in the development of NDs such as Alzheimer's disease (AD), Lewy body disease (LBD), Parkinson's disease (PD), and multiple system atrophy (MSA). Inhibition of α-Syn aggregation can thus serve as a potential approach for therapeutic intervention. Recently, the degradation of target proteins by small molecules has emerged as a new therapeutic modality, gaining the hotspot in pharmaceutical research. Additionally, interest is growing in the use of food-derived bioactive compounds as intervention agents against NDs via functional foods and dietary supplements. According to reports, dietary bioactive phospholipids may have cognition-enhancing and neuroprotective effects, owing to their abilities to influence cognition and mental health in vivo and in vitro. However, the mechanisms by which lipids may prevent the pathological aggregation of α-Syn warrant further clarification. Here, we review evidence for the potential mechanisms underlying this effect, with a particular focus on how porcine liver decomposition product (PLDP)-derived lysophospholipids (LPLs) may inhibit α-Syn aggregation.
Collapse
|
46
|
Ardianto C, Shen R, Barus JF, Sasmita PK, Turana Y, Lilis L, Sidharta VM. Secretome as neuropathology-targeted intervention of Parkinson’s disease. Regen Ther 2022; 21:288-293. [PMID: 36092507 PMCID: PMC9441294 DOI: 10.1016/j.reth.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/17/2022] [Accepted: 08/04/2022] [Indexed: 12/05/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common progressive neurodegenerative disease, characterized by apoptosis of dopaminergic neurons in substansia nigra pars compacta (SNpc) caused by ⍺-synuclein aggregation. The use of secretomes released by medicinal signaling cells (MSCs) is one the promising preventive approaches that target several mechanisms in the neuropathology of PD. Its components target the lack of neurotrophin factors, proteasome dysfunction, oxidative stress, mitochondrial dysfunction, and at last neuroinflammation via several pathways. The complex and obscure pathology of PD induce the difficulty of the search of potential preventive approach for this disease. We described the potential of secretome of MSC as the novel preventive approach for PD, especially by targeting the said major pathogenesis of PD. Secretome targets the major pathogenesis of PD. Secretome regulates inflammation by balancing pro- and anti-inflammatory cytokines. Secretome induces autophagy providing cytoprotective effects. Secretome has anti-oxidative, neuroprotective, and neurotrophic due to neurotrophic factors as its component.
Collapse
Affiliation(s)
- Christian Ardianto
- Department of Histology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Indonesia
- Master Program in Biomedical Sciences, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Indonesia
| | - Robert Shen
- Master Program in Biomedical Sciences, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Indonesia
| | - Jimmy F.A. Barus
- Master Program in Biomedical Sciences, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Indonesia
- Department of Neurology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Indonesia
| | - Poppy Kristina Sasmita
- Department of Anatomy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Indonesia
| | - Yuda Turana
- Department of Neurology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Indonesia
| | - Lilis Lilis
- Department of Anatomical Pathology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Indonesia
| | - Veronika Maria Sidharta
- Department of Histology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Indonesia
- Master Program in Biomedical Sciences, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Indonesia
- Corresponding author. Jalan Pluit Raya No. 2, Pluit, Jakarta Utara, Indonesia,
| |
Collapse
|
47
|
Dieriks BV, Highet B, Alik A, Bellande T, Stevenson TJ, Low V, Park TIH, Correia J, Schweder P, Faull RLM, Melki R, Curtis MA, Dragunow M. Human pericytes degrade diverse α-synuclein aggregates. PLoS One 2022; 17:e0277658. [PMID: 36399706 PMCID: PMC9674377 DOI: 10.1371/journal.pone.0277658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022] Open
Abstract
Parkinson's disease (PD) is a progressive, neurodegenerative disorder characterised by the abnormal accumulation of α-synuclein (α-syn) aggregates. Central to disease progression is the gradual spread of pathological α-syn. α-syn aggregation is closely linked to progressive neuron loss. As such, clearance of α-syn aggregates may slow the progression of PD and lead to less severe symptoms. Evidence is increasing that non-neuronal cells play a role in PD and other synucleinopathies such as Lewy body dementia and multiple system atrophy. Our previous work has shown that pericytes-vascular mural cells that regulate the blood-brain barrier-contain α-syn aggregates in human PD brains. Here, we demonstrate that pericytes efficiently internalise fibrillar α-syn irrespective of being in a monoculture or mixed neuronal cell culture. Pericytes cleave fibrillar α-syn aggregates (Fibrils, Ribbons, fibrils65, fibrils91 and fibrils110), with cleaved α-syn remaining present for up to 21 days. The number of α-syn aggregates/cell and average aggregate size depends on the type of strain, but differences disappear within 5 five hours of treatment. Our results highlight the role brain vasculature may play in reducing α-syn aggregate burden in PD.
Collapse
Affiliation(s)
- Birger Victor Dieriks
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- * E-mail: (BVD); (MD)
| | - Blake Highet
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Ania Alik
- Molecular Imaging Research Center, Francois Jacob Institute, Alternative Energies and Atomic Energy Commission, and Laboratory of Neurodegenerative Diseases, National Center for Scientific Research, Fontenay‐ Aux‐Roses, France
| | - Tracy Bellande
- Molecular Imaging Research Center, Francois Jacob Institute, Alternative Energies and Atomic Energy Commission, and Laboratory of Neurodegenerative Diseases, National Center for Scientific Research, Fontenay‐ Aux‐Roses, France
| | - Taylor J. Stevenson
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Victoria Low
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Thomas I-H Park
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Department of Pharmacology, University of Auckland, Auckland, New Zealand
| | - Jason Correia
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Auckland City Hospital, Auckland, New Zealand
| | - Patrick Schweder
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Auckland City Hospital, Auckland, New Zealand
| | - Richard L. M. Faull
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Ronald Melki
- Molecular Imaging Research Center, Francois Jacob Institute, Alternative Energies and Atomic Energy Commission, and Laboratory of Neurodegenerative Diseases, National Center for Scientific Research, Fontenay‐ Aux‐Roses, France
| | - Maurice A. Curtis
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Mike Dragunow
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Department of Pharmacology, University of Auckland, Auckland, New Zealand
- * E-mail: (BVD); (MD)
| |
Collapse
|
48
|
Lapshina KV, Abramova YY, Guzeev MA, Ekimova IV. TGN-020, an Inhibitor of the Water Channel Aquaporin-4, Accelerates Nigrostriatal Neurodegeneration in the Rat Model of Parkinson’s Disease. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Stevenson TJ, Johnson RH, Savistchenko J, Rustenhoven J, Woolf Z, Smyth LCD, Murray HC, Faull RLM, Correia J, Schweder P, Heppner P, Turner C, Melki R, Dieriks BV, Curtis MA, Dragunow M. Pericytes take up and degrade α-synuclein but succumb to apoptosis under cellular stress. Sci Rep 2022; 12:17314. [PMID: 36243723 PMCID: PMC9569325 DOI: 10.1038/s41598-022-20261-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/12/2022] [Indexed: 01/10/2023] Open
Abstract
Parkinson's disease (PD) is characterised by the progressive loss of midbrain dopaminergic neurons and the presence of aggregated α-synuclein (α-syn). Pericytes and microglia, two non-neuronal cells contain α-syn in the human brain, however, their role in disease processes is poorly understood. Pericytes, found surrounding the capillaries in the brain are important for maintaining the blood-brain barrier, controlling blood flow and mediating inflammation. In this study, primary human brain pericytes and microglia were exposed to two different α-synuclein aggregates. Inflammatory responses were assessed using immunocytochemistry, cytometric bead arrays and proteome profiler cytokine array kits. Fixed flow cytometry was used to investigate the uptake and subsequent degradation of α-syn in pericytes. We found that the two α-syn aggregates are devoid of inflammatory and cytotoxic actions on human brain derived pericytes and microglia. Although α-syn did not induce an inflammatory response, pericytes efficiently take up and degrade α-syn through the lysosomal pathway but not the ubiquitin-proteasome system. Furthermore, when pericytes were exposed the ubiquitin proteasome inhibitor-MG132 and α-syn aggregates, there was profound cytotoxicity through the production of reactive oxygen species resulting in apoptosis. These results suggest that the observed accumulation of α-syn in pericytes in human PD brains likely plays a role in PD pathogenesis, perhaps by causing cerebrovascular instability, under conditions of cellular stress.
Collapse
Affiliation(s)
- Taylor J. Stevenson
- grid.9654.e0000 0004 0372 3343Department of Pharmacology, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand ,grid.9654.e0000 0004 0372 3343Centre for Brain Research, University of Auckland, Private Bag 920139, Auckland, 1142 New Zealand
| | - Rebecca H. Johnson
- grid.9654.e0000 0004 0372 3343Department of Pharmacology, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand ,grid.9654.e0000 0004 0372 3343Centre for Brain Research, University of Auckland, Private Bag 920139, Auckland, 1142 New Zealand
| | - Jimmy Savistchenko
- grid.4444.00000 0001 2112 9282Alternative Energies and Atomic Energy Commission and Laboratory of Neurodegenerative Diseases, Molecular Imaging Research Center, Francois Jacob Institute, National Center for Scientific Research, Fontenay-Aux-Roses, France
| | - Justin Rustenhoven
- grid.9654.e0000 0004 0372 3343Department of Pharmacology, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand ,grid.9654.e0000 0004 0372 3343Centre for Brain Research, University of Auckland, Private Bag 920139, Auckland, 1142 New Zealand
| | - Zoe Woolf
- grid.9654.e0000 0004 0372 3343Department of Pharmacology, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand ,grid.9654.e0000 0004 0372 3343Centre for Brain Research, University of Auckland, Private Bag 920139, Auckland, 1142 New Zealand
| | - Leon C. D. Smyth
- grid.9654.e0000 0004 0372 3343Department of Pharmacology, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand ,grid.9654.e0000 0004 0372 3343Centre for Brain Research, University of Auckland, Private Bag 920139, Auckland, 1142 New Zealand
| | - Helen C. Murray
- grid.9654.e0000 0004 0372 3343Centre for Brain Research, University of Auckland, Private Bag 920139, Auckland, 1142 New Zealand ,grid.9654.e0000 0004 0372 3343Department of Anatomy and Medical Imaging, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | - Richard L. M. Faull
- grid.9654.e0000 0004 0372 3343Centre for Brain Research, University of Auckland, Private Bag 920139, Auckland, 1142 New Zealand ,grid.9654.e0000 0004 0372 3343Department of Anatomy and Medical Imaging, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | - Jason Correia
- grid.9654.e0000 0004 0372 3343Centre for Brain Research, University of Auckland, Private Bag 920139, Auckland, 1142 New Zealand ,grid.414055.10000 0000 9027 2851Auckland City Hospital, 2 Park Road, Auckland, 1010 New Zealand
| | - Patrick Schweder
- grid.9654.e0000 0004 0372 3343Centre for Brain Research, University of Auckland, Private Bag 920139, Auckland, 1142 New Zealand ,grid.414055.10000 0000 9027 2851Auckland City Hospital, 2 Park Road, Auckland, 1010 New Zealand
| | - Peter Heppner
- grid.9654.e0000 0004 0372 3343Centre for Brain Research, University of Auckland, Private Bag 920139, Auckland, 1142 New Zealand ,grid.414054.00000 0000 9567 6206Starship Children’s Hospital, 2 Park Road, Auckland, 1010 New Zealand
| | - Clinton Turner
- grid.9654.e0000 0004 0372 3343Centre for Brain Research, University of Auckland, Private Bag 920139, Auckland, 1142 New Zealand ,grid.414055.10000 0000 9027 2851Department of Anatomical Pathology, Lab Plus, Auckland City Hospital, 2 Park Road, Auckland, New Zealand
| | - Ronald Melki
- grid.4444.00000 0001 2112 9282Alternative Energies and Atomic Energy Commission and Laboratory of Neurodegenerative Diseases, Molecular Imaging Research Center, Francois Jacob Institute, National Center for Scientific Research, Fontenay-Aux-Roses, France
| | - Birger V. Dieriks
- grid.9654.e0000 0004 0372 3343Centre for Brain Research, University of Auckland, Private Bag 920139, Auckland, 1142 New Zealand ,grid.9654.e0000 0004 0372 3343Department of Anatomy and Medical Imaging, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | - Maurice A. Curtis
- grid.9654.e0000 0004 0372 3343Centre for Brain Research, University of Auckland, Private Bag 920139, Auckland, 1142 New Zealand ,grid.9654.e0000 0004 0372 3343Department of Anatomy and Medical Imaging, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | - Michael Dragunow
- grid.9654.e0000 0004 0372 3343Department of Pharmacology, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand ,grid.9654.e0000 0004 0372 3343Centre for Brain Research, University of Auckland, Private Bag 920139, Auckland, 1142 New Zealand
| |
Collapse
|
50
|
Valencia J, Ferreira M, Merino-Torres JF, Marcilla A, Soriano JM. The Potential Roles of Extracellular Vesicles as Biomarkers for Parkinson’s Disease: A Systematic Review. Int J Mol Sci 2022; 23:ijms231911508. [PMID: 36232833 PMCID: PMC9569867 DOI: 10.3390/ijms231911508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022] Open
Abstract
Parkinson’s disease (PD) is a slowly progressive neurodegenerative disorder, characterized by the misfolding and aggregation of α-synuclein (α-syn) into Lewy bodies and the degeneration of dopaminergic neurons in the substantia nigra pars compacta. The urge for an early diagnosis biomarker comes from the fact that clinical manifestations of PD are estimated to appear once the substantia nigra has deteriorated and there has been a reduction of the dopamine levels from the striatum. Nowadays, extracellular vesicles (EVs) play an important role in the pathogenesis of neuro-degenerative diseases as PD. A systematic review dated August 2022 was carried out with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses with the aim to analyze the potential role of EVs as biomarkers for PD. From a total of 610 articles retrieved, 29 were eligible. This review discusses the role of EVs biochemistry and their cargo proteins, such as α-syn and DJ-1 among others, detected by a proteomic analysis as well as miRNAs and lncRNAs, as potential biomarkers that can be used to create standardized protocols for early PD diagnosis as well as to evaluate disease severity and progression.
Collapse
Affiliation(s)
- Jessica Valencia
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Paterna, Valencia, Spain
| | - Marta Ferreira
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Paterna, Valencia, Spain
| | - J. Francisco Merino-Torres
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe-University of Valencia, 46026 Valencia, Valencia, Spain
- Department of Endocrinology and Nutrition, University and Polytechnic Hospital La Fe, 46026 Valencia, Valencia, Spain
| | - Antonio Marcilla
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe-University of Valencia, 46026 Valencia, Valencia, Spain
- Department of Pharmacy and Pharmaceutic Technology and Parasitology, University of Valencia, 46010 Burjassot, Valencia, Spain
| | - Jose M. Soriano
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Paterna, Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe-University of Valencia, 46026 Valencia, Valencia, Spain
- Correspondence:
| |
Collapse
|