1
|
Bano N, Khan S, Ahamad S, Dar NJ, Alanazi HH, Nazir A, Bhat SA. Microglial NOX2 as a therapeutic target in traumatic brain injury: Mechanisms, consequences, and potential for neuroprotection. Ageing Res Rev 2025; 108:102735. [PMID: 40122395 DOI: 10.1016/j.arr.2025.102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/08/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Traumatic brain injury (TBI) is a leading cause of long-term disability worldwide, with secondary injury mechanisms, including neuroinflammation and oxidative stress, driving much of its chronic pathology. While NADPH oxidase 2 (NOX2)-mediated reactive oxygen species (ROS) production is a recognized factor in TBI, the specific role of microglial NOX2 in perpetuating oxidative and inflammatory damage remains underexplored. Addressing this gap is critical, as current therapeutic approaches primarily target acute symptoms and fail to interrupt the persistent neuroinflammation that contributes to progressive neurodegeneration. Besides NOX, other ROS-generating enzymes, such as CYP1B1, COX2, and XO, also play crucial roles in triggering oxidative stress and neuroinflammatory conditions in TBI. However, this review highlights the pathophysiological role of microglial NOX2 in TBI, focusing on its activation following injury and its impact on ROS generation, neuroinflammatory signaling, and neuronal loss. These insights reveal NOX2 as a critical driver of secondary injury, linked to worsened outcomes, particularly in aged individuals where NOX2 activation is more pronounced. In addition, this review evaluates emerging therapeutic approaches targeting NOX2, such as GSK2795039 and other selective NOX2 inhibitors, which show potential in reducing ROS levels, limiting neuroinflammation, and preserving neurological functions. By highlighting the specific role of NOX2 in microglial ROS production and secondary neurodegeneration, this study advocates for NOX2 inhibition as a promising strategy to improve TBI outcomes by addressing the unmet need for therapies targeting long-term inflammation and neuroprotection. Our review highlights the potential of NOX2-targeted interventions to disrupt the cycle of oxidative stress and inflammation, ultimately offering a pathway to mitigate the chronic impact of TBI.
Collapse
Affiliation(s)
- Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA
| | - Hamad H Alanazi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al Jouf University 77455, Saudi Arabia
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research, New Delhi, India.
| | - Shahnawaz Ali Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
2
|
Tanaka M, Szatmári I, Vécsei L. Quinoline Quest: Kynurenic Acid Strategies for Next-Generation Therapeutics via Rational Drug Design. Pharmaceuticals (Basel) 2025; 18:607. [PMID: 40430428 PMCID: PMC12114834 DOI: 10.3390/ph18050607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/17/2025] [Accepted: 04/19/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Quinoline-derived metabolites exhibit notable chemical complexity. What causes minor structural alterations to induce significant changes in disease outcomes? Historically, eclipsed by more straightforward scaffolds, these chemicals serve as a dynamic hub in tryptophan metabolism, linking immunomodulation, excitotoxicity, and cancer. However, many of these compounds struggle to cross the blood-brain barrier, and we still do not fully understand how certain structural changes affect their bioavailability or off-target effects. Thus, contemporary research highlights halogenation, esterification, and computational modeling to enhance structure-activity relationships. SUMMARY This narrative review emphasizes the integration of rational drug design, multi-target ligands, and prodrug methods in enhancing quinoline scaffolds. We explore each molecule's therapeutic promise, refine each scaffold's design, and develop each derivative to maximize clinical utility. Translating these laboratory findings into clinical practice, however, remains a formidable challenge. CONCLUSIONS Through the synthesis of findings regarding NMDA receptor antagonism, improved oral bioavailability, and reduced metabolic instability, we demonstrate how single-site changes might modulate excitotoxicity and immunological signaling. Advancing quinoline-based medicines will yield significant advancements in neurology, psychiatry, and oncology. This enlarged framework fosters collaborative discovery, engages various audiences, and advances the field towards next-generation disease-modifying therapies. Robust preclinical validation, patient classification, and comprehensive toxicity evaluations are crucial stages for achieving these extensive endeavors and fostering future therapeutic discoveries globally.
Collapse
Affiliation(s)
- Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry and HUN-REN–SZTE Stereochemistry Research Group, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
| | - László Vécsei
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
3
|
Lee E, Chang Y. Modulating Neuroinflammation as a Prospective Therapeutic Target in Alzheimer's Disease. Cells 2025; 14:168. [PMID: 39936960 PMCID: PMC11817173 DOI: 10.3390/cells14030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
The recent approval of lecanemab highlights that the amyloid beta (Aβ) protein is an important pathological target in Alzheimer's disease (AD) and further emphasizes the significance of neuroinflammatory pathways in regulating Aβ accumulation. Indeed, Aβ accumulation triggers microglia activation, which are key mediators in neuroinflammation. The inflammatory responses in this process can lead to neuronal damage and functional decline. Microglia secrete proinflammatory cytokines that accelerate neuronal death and release anti-inflammatory cytokines and growth factors contributing to neuronal recovery and protection. Thus, microglia play a dual role in neurodegeneration and neuroprotection, complicating their function in AD. Therefore, elucidating the complex interactions between Aβ protein, microglia, and neuroinflammation is essential for developing new strategies for treating AD. This review investigates the receptors and pathways involved in activating microglia and aims to enhance understanding of how these processes impact neuroinflammation in AD, as well as how they can be regulated. This review also analyzed studies reported in the existing literature and ongoing clinical trials. Overall, these studies will contribute to understanding the regulatory mechanisms of neuroinflammation and developing new therapies that can slow the pathological progression of AD.
Collapse
Affiliation(s)
- Eunshil Lee
- Institute of Biomedical Engineering Research, Kyungpook National University, Daegu 41944, Republic of Korea;
| | - Yongmin Chang
- Institute of Biomedical Engineering Research, Kyungpook National University, Daegu 41944, Republic of Korea;
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Radiology, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| |
Collapse
|
4
|
Shi L, Liu S, Chen J, Wang H, Wang Z. Microglial polarization pathways and therapeutic drugs targeting activated microglia in traumatic brain injury. Neural Regen Res 2024; 21:01300535-990000000-00617. [PMID: 39665832 PMCID: PMC12094552 DOI: 10.4103/nrr.nrr-d-24-00810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/03/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
Traumatic brain injury can be categorized into primary and secondary injuries. Secondary injuries are the main cause of disability following traumatic brain injury, which involves a complex multicellular cascade. Microglia play an important role in secondary injury and can be activated in response to traumatic brain injury. In this article, we review the origin and classification of microglia as well as the dynamic changes of microglia in traumatic brain injury. We also clarify the microglial polarization pathways and the therapeutic drugs targeting activated microglia. We found that regulating the signaling pathways involved in pro-inflammatory and anti-inflammatory microglia, such as the Toll-like receptor 4 / nuclear factor-kappa B, mitogen-activated protein kinase, Janus kinase/signal transducer and activator of transcription, phosphoinositide 3-kinase/protein kinase B, Notch, and high mobility group box 1 pathways, can alleviate the inflammatory response triggered by microglia in traumatic brain injury, thereby exerting neuroprotective effects. We also reviewed the strategies developed on the basis of these pathways, such as drug and cell replacement therapies. Drugs that modulate inflammatory factors, such as rosuvastatin, have been shown to promote the polarization of anti-inflammatory microglia and reduce the inflammatory response caused by traumatic brain injury. Mesenchymal stem cells possess anti-inflammatory properties, and clinical studies have confirmed their significant efficacy and safety in patients with traumatic brain injury. Additionally, advancements in mesenchymal stem cell-delivery methods-such as combinations of novel biomaterials, genetic engineering, and mesenchymal stem cell exosome therapy-have greatly enhanced the efficiency and therapeutic effects of mesenchymal stem cells in animal models. However, numerous challenges in the application of drug and mesenchymal stem cell treatment strategies remain to be addressed. In the future, new technologies, such as single-cell RNA sequencing and transcriptome analysis, can facilitate further experimental studies. Moreover, research involving non-human primates can help translate these treatment strategies to clinical practice.
Collapse
Affiliation(s)
- Liping Shi
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Shuyi Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Jialing Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Hong Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| |
Collapse
|
5
|
Tomasini MC, Loche A, Cacciaglia R, Ferraro L, Beggiato S. GET73 modulates lipopolysaccharide- and ethanol-induced increase in cytokine/chemokine levels in primary cultures of microglia of rat cerebral cortex. Pharmacol Rep 2024; 76:1174-1183. [PMID: 39088104 DOI: 10.1007/s43440-024-00632-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND - Alcohol-induced pro-inflammatory activation might influence cellular and synaptic pathology, thus contributing to the behavioral phenotypes associated with alcohol use disorders. In the present study, the possible anti-inflammatory properties of N-[(4-trifluoromethyl)-benzyl]4-methoxybutyramide (GET73), a promising therapeutic agent for alcohol use disorder treatment, were evaluated in primary cultures of rat cortical microglia. METHODS - Primary cultures of cerebral cortex microglial cells were treated with 100 ng/ml lipopolysaccharide (LPS; 8 h, 37 °C) or 75 mM ethanol (EtOH; 4 days, 37 °C) alone or in the presence of GET73 (1-30 µM). At the end of the incubation period, multiparametric quantification of cytokines/chemokines was performed by using the xMAP technology and Luminex platform. Furthermore, cultured microglial cell viability following the treatment with EtOH and GET73, alone or in combination, has been measured by a colorimetric assay (i.e. MTT assay). RESULTS - GET73 (10 and 30 µM) partially or fully prevented the LPS-induced increase of IL-6, IL-1β, RANTES/CCL5 protein and MCP-1/CCL2 levels. On the contrary, GET73 failed to attenuate the TNF-α level increase induced by LPS. Furthermore, GET73 treatment (10-30 µM) significantly attenuated or prevented the EtOH-induced increase of TNF-α, IL-6, IL-1β and MCP-1/CCL2 levels. Finally, at all the concentrations tested (1-30 µM), the GET73 treatment did not alter the EtOH-induced reduction of microglial cell viability. CONCLUSIONS - The current results provide the first in vitro evidence of GET73 protective properties against EtOH-induced neuroinflammation. These data add more information on the complex and multifactorial profile of action of the compound, further supporting the significance of developing GET73 as a therapeutic tool for the treatment of individuals with alcohol use disorders.
Collapse
Affiliation(s)
- Maria C Tomasini
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 4412µ, Ferrara, Italy
| | | | | | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 4412µ, Ferrara, Italy.
- LTTA Centre, University of Ferrara, Ferrara, Italy.
- Psychiatric Department, School of Medicine, University of Maryland, Baltimore, MD, USA.
| | - Sarah Beggiato
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 4412µ, Ferrara, Italy
- Psychiatric Department, School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
6
|
El-ezz DA, Aldahmash W, Esatbeyoglu T, Afifi SM, Elbaset MA. Cilostazol Combats Lipopolysaccharide-Induced Hippocampal Injury in Rats: Role of AKT/GSK3 β/CREB Curbing Neuroinflammation. Adv Pharmacol Pharm Sci 2024; 2024:3465757. [PMID: 39364299 PMCID: PMC11449543 DOI: 10.1155/2024/3465757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 10/05/2024] Open
Abstract
Neuroinflammation is important in the pathophysiology of several degenerative brain disorders. This study looked at the potential neuroprotective benefits of cilostazol, a phosphodiesterase inhibitor, against LPS-induced hippocampus damage in rodents and the principal molecular involvement of AKT/GSK3β/CREB signaling pathways. Behavioral tests revealed that cilostazol successfully corrected LPS-induced neurobehavioral impairments. Furthermore, cilostazol therapy lowered hippocampal levels of amyloid beta 1-42 (Aβ1-42) and p-tau protein, both of which are critical pathological indicators of neurodegenerative disorders. Furthermore, cilostazol administration suppressed LPS-induced rises in hippocampus caspase-3 and NF-κB levels while elevating rat B-cell/lymphoma 2 (BCL2) and brain-derived neurotrophic factor (BDNF) levels, which are implicated in neuronal survival and synaptic plasticity. Cilostazol treatment also restored the decreased phosphorylation of protein kinase B (p-AKT) and reduced the elevated levels of phosphorylated glycogen synthase kinase-3 beta (p-GSK3β) and cAMP response element-binding protein (CREB) in the hippocampus of LPS-treated rats. Histopathological examination revealed that cilostazol ameliorated LPS-induced brain damage with reduced neuronal loss and gliosis. Immunohistochemistry analysis showed a decrease in Iba-1 expression, indicating a reduction in microglial activation in the cilostazol-treated group compared to the LPS group. The findings advocate that cilostazol exerts neuroprotective effects against LPS-induced hippocampal injury by modulating the AKT/GSK3β/CREB pathway and curbing neuroinflammation. Cilostazol may hold promise as a therapeutic agent for neuroinflammatory conditions associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Doaa Abou El-ezz
- Pharmacology and Toxicology DepartmentFaculty of PharmacyOctober University for Modern Sciences and Arts University, Giza 12556, Egypt
| | - Waleed Aldahmash
- Department of ZoologyCollege of ScienceKing Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food DevelopmentInstitute of Food and One HealthGottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, Hannover 30167, Germany
| | - Sherif M. Afifi
- Department for Life Quality StudiesRimini CampusUniversity of Bologna, Corso d'Augusto 237, Rimini 47921, Italy
| | - Marawan Abd Elbaset
- Department of PharmacologyMedical Research and Clinical Studies InstituteNational Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
7
|
Navabi SP, Badreh F, Khombi Shooshtari M, Hajipour S, Moradi Vastegani S, Khoshnam SE. Microglia-induced neuroinflammation in hippocampal neurogenesis following traumatic brain injury. Heliyon 2024; 10:e35869. [PMID: 39220913 PMCID: PMC11365414 DOI: 10.1016/j.heliyon.2024.e35869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Traumatic brain injury (TBI) is one of the most causes of death and disability among people, leading to a wide range of neurological deficits. The important process of neurogenesis in the hippocampus, which includes the production, maturation and integration of new neurons, is affected by TBI due to microglia activation and the inflammatory response. During brain development, microglia are involved in forming or removing synapses, regulating the number of neurons, and repairing damage. However, in response to injury, activated microglia release a variety of pro-inflammatory cytokines, chemokines and other neurotoxic mediators that exacerbate post-TBI injury. These microglia-related changes can negatively affect hippocampal neurogenesis and disrupt learning and memory processes. To date, the intracellular signaling pathways that trigger microglia activation following TBI, as well as the effects of microglia on hippocampal neurogenesis, are poorly understood. In this review article, we discuss the effects of microglia-induced neuroinflammation on hippocampal neurogenesis following TBI, as well as the intracellular signaling pathways of microglia activation.
Collapse
Affiliation(s)
- Seyedeh Parisa Navabi
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Maryam Khombi Shooshtari
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Hajipour
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sadegh Moradi Vastegani
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
8
|
Zhang Q, Gao S, Li B, Li Q, Li X, Cheng J, Peng Z, Liang J, Zhang K, Hai J, Zhang B. Lithium-Doped Titanium Dioxide-Based Multilayer Hierarchical Structure for Accelerating Nerve-Induced Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38663861 PMCID: PMC11082843 DOI: 10.1021/acsami.4c01520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
Despite considerable advances in artificial bone tissues, the absence of neural network reconstruction in their design often leads to delayed or ineffective bone healing. Hence, we propose a multilayer hierarchical lithium (Li)-doped titanium dioxide structure, constructed through microarc oxidation combined with alkaline heat treatment. This structure can induce the sustained release of Li ions, mimicking the environment of neurogenic osteogenesis characterized by high brain-derived neurotrophic factor (BDNF) expression. During in vitro experiments, the structure enhanced the differentiation of Schwann cells (SCs) and the growth of human umbilical vein endothelial cells (HUVECs) and mouse embryo osteoblast progenitor cells (MC3T3-E1). Additionally, in a coculture system, the SC-conditioned media markedly increased alkaline phosphatase expression and the formation of calcium nodules, demonstrating the excellent potential of the material for nerve-induced bone regeneration. In an in vivo experiment based on a rat distal femoral lesion model, the structure substantially enhanced bone healing by increasing the density of the neural network in the tissue around the implant. In conclusion, this study elucidates the neuromodulatory pathways involved in bone regeneration, providing a promising method for addressing bone deformities.
Collapse
Affiliation(s)
- Qianqian Zhang
- School
(Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Shuting Gao
- Dental
Materials Science, Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China
| | - Bo Li
- The
Third Affiliated Hospital of AFMU, Air Force
Medical University, Xi’an 710000, China
| | - Qian Li
- School
(Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Xinjie Li
- School
(Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Jingyang Cheng
- Suzhou
Huaxia Stomatological Hospital, Su Zhou 215000, China
| | - Zhenjun Peng
- State
Key Laboratory of Solid Lubrication, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics, Lanzhou 730000, China
| | - Jun Liang
- Research
Institute of Interdisciplinary Science, Dongguan University of Technology, Dongguan 523808, China
| | - Kailiang Zhang
- School
(Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Jun Hai
- CAS
Key Laboratory of Chemistry of Northwestern Plant Resources and Key
Laboratory of Natural Medicine of Gansu Province, Chinese Academy
of Sciences, Lanzhou Institute of Chemical
Physics, Lanzhou 730000, China
| | - Baoping Zhang
- School
(Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
9
|
Rojas-Colón LA, Redell JB, Dash PK, Vegas PE, Vélez-Torres W. 4R-cembranoid suppresses glial cells inflammatory phenotypes and prevents hippocampal neuronal loss in LPS-treated mice. J Neurosci Res 2024; 102:e25336. [PMID: 38656664 PMCID: PMC11073245 DOI: 10.1002/jnr.25336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/08/2024] [Accepted: 04/06/2024] [Indexed: 04/26/2024]
Abstract
Chronic neuroinflammation has been implicated in neurodegenerative disease pathogenesis. A key feature of neuroinflammation is neuronal loss and glial activation, including microglia and astrocytes. 4R-cembranoid (4R) is a natural compound that inhibits hippocampal pro-inflammatory cytokines and increases memory function in mice. We used the lipopolysaccharide (LPS) injection model to study the effect of 4R on neuronal density and microglia and astrocyte activation. C57BL/6J wild-type mice were injected with LPS (5 mg/kg) and 2 h later received either 4R (6 mg/kg) or vehicle. Mice were sacrificed after 72 h for analysis of brain pathology. Confocal images of brain sections immunostained for microglial, astrocyte, and neuronal markers were used to quantify cellular hippocampal phenotypes and neurons. Hippocampal lysates were used to measure the expression levels of neuronal nuclear protein (NeuN), inducible nitrous oxide synthase (iNOS), arginase-1, thrombospondin-1 (THBS1), glial cell-derived neurotrophic factor (GDNF), and orosomucoid-2 (ORM2) by western blot. iNOS and arginase-1 are widely used protein markers of pro- and anti-inflammatory microglia, respectively. GDNF promotes neuronal survival, and ORM2 and THBS1 are astrocytic proteins that regulate synaptic plasticity and inhibit microglial activation. 4R administration significantly reduced neuronal loss and the number of pro-inflammatory microglia 72 h after LPS injection. It also decreased the expression of the pro-inflammatory protein iNOS while increasing arginase-1 expression, supporting its anti-inflammatory role. The protein expression of THBS1, GDNF, and ORM2 was increased by 4R. Our data show that 4R preserves the integrity of hippocampal neurons against LPS-induced neuroinflammation in mice.
Collapse
Affiliation(s)
- Luis A Rojas-Colón
- Department of Biochemistry, Universidad Central del Caribe School of Medicine, Bayamón, Puerto Rico
| | - John B Redell
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Pedro E Vegas
- Department of Biochemistry, Universidad Central del Caribe School of Medicine, Bayamón, Puerto Rico
| | - Wanda Vélez-Torres
- Department of Biochemistry, Universidad Central del Caribe School of Medicine, Bayamón, Puerto Rico
| |
Collapse
|
10
|
Pileggi S, Colombo EA, Ancona S, Quadri R, Bernardelli C, Colapietro P, Taiana M, Fontana L, Miozzo M, Lesma E, Sirchia SM. Dysfunction in IGF2R Pathway and Associated Perturbations in Autophagy and WNT Processes in Beckwith-Wiedemann Syndrome Cell Lines. Int J Mol Sci 2024; 25:3586. [PMID: 38612397 PMCID: PMC11011696 DOI: 10.3390/ijms25073586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Beckwith-Wiedemann Syndrome (BWS) is an imprinting disorder characterized by overgrowth, stemming from various genetic and epigenetic changes. This study delves into the role of IGF2 upregulation in BWS, focusing on insulin-like growth factor pathways, which are poorly known in this syndrome. We examined the IGF2R, the primary receptor of IGF2, WNT, and autophagy/lysosomal pathways in BWS patient-derived lymphoblastoid cell lines, showing different genetic and epigenetic defects. The findings reveal a decreased expression and mislocalization of IGF2R protein, suggesting receptor dysfunction. Additionally, our results point to a dysregulation in the AKT/GSK-3/mTOR pathway, along with imbalances in autophagy and the WNT pathway. In conclusion, BWS cells, regardless of the genetic/epigenetic profiles, are characterized by alteration of the IGF2R pathway that is associated with the perturbation of the autophagy and lysosome processes. These alterations seem to be a key point of the molecular pathogenesis of BWS and potentially contribute to BWS's characteristic overgrowth and cancer susceptibility. Our study also uncovers alterations in the WNT pathway across all BWS cell lines, consistent with its role in growth regulation and cancer development.
Collapse
Affiliation(s)
- Silvana Pileggi
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (S.P.)
| | - Elisa A. Colombo
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (S.P.)
| | - Silvia Ancona
- Pharmacology, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy (E.L.)
| | - Roberto Quadri
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Clara Bernardelli
- Pharmacology, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy (E.L.)
| | - Patrizia Colapietro
- Medical Genetics, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Michela Taiana
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Laura Fontana
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (S.P.)
- Unit of Medical Genetics, ASST Santi Paolo e Carlo, 20142 Milan, Italy
| | - Monica Miozzo
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (S.P.)
- Unit of Medical Genetics, ASST Santi Paolo e Carlo, 20142 Milan, Italy
| | - Elena Lesma
- Pharmacology, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy (E.L.)
| | - Silvia M. Sirchia
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (S.P.)
| |
Collapse
|
11
|
Silvestro S, Raffaele I, Quartarone A, Mazzon E. Innovative Insights into Traumatic Brain Injuries: Biomarkers and New Pharmacological Targets. Int J Mol Sci 2024; 25:2372. [PMID: 38397046 PMCID: PMC10889179 DOI: 10.3390/ijms25042372] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
A traumatic brain injury (TBI) is a major health issue affecting many people across the world, causing significant morbidity and mortality. TBIs often have long-lasting effects, disrupting daily life and functionality. They cause two types of damage to the brain: primary and secondary. Secondary damage is particularly critical as it involves complex processes unfolding after the initial injury. These processes can lead to cell damage and death in the brain. Understanding how these processes damage the brain is crucial for finding new treatments. This review examines a wide range of literature from 2021 to 2023, focusing on biomarkers and molecular mechanisms in TBIs to pinpoint therapeutic advancements. Baseline levels of biomarkers, including neurofilament light chain (NF-L), ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1), Tau, and glial fibrillary acidic protein (GFAP) in TBI, have demonstrated prognostic value for cognitive outcomes, laying the groundwork for personalized treatment strategies. In terms of pharmacological progress, the most promising approaches currently target neuroinflammation, oxidative stress, and apoptotic mechanisms. Agents that can modulate these pathways offer the potential to reduce a TBI's impact and aid in neurological rehabilitation. Future research is poised to refine these therapeutic approaches, potentially revolutionizing TBI treatment.
Collapse
Affiliation(s)
| | | | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi Bonino Pulejo, Via Provinciale Palermo, SS 113, Contrada Casazza, 98124 Messina, Italy; (S.S.); (I.R.); (A.Q.)
| |
Collapse
|
12
|
Hu M, Zheng M, Wang C, Li Q, Li J, Zhou X, Ying X, Quan S, Gu L, Zhang X. Andrographolide derivative Andro-III modulates neuroinflammation and attenuates neuropathological changes of Alzheimer's disease via GSK-3β/NF-κB/CREB pathway. Eur J Pharmacol 2024; 965:176305. [PMID: 38160932 DOI: 10.1016/j.ejphar.2023.176305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/23/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Andrographolide has anti-inflammatory and neuroprotective effects, making it a potential therapeutic option for Alzheimer's disease (AD). Our research group optimized its structure in a previous study to minimize the risk of renal toxicity, which would beneficial for future clinical research. This study aims to examine the impact of Andro-III on enhancing cognitive learning ability in 3xTg-AD mice, as well as the mechanisms involved. Andro-III improved spatial learning ability, prevented the loss of Nysted's vesicles, reduced the accumulation of β-amyloid (Aβ) and tau proteins, and suppressed microglial activation. Further research found that the expression of nuclear factor kappa-B RelA (NF-κB p65) expression and glycogen synthase kinase-3β (GSK-3β) activity were inhibited, while CREB was upregulated in brain tissue treated with Andro-III. Moreover, Andro-III downregulated the expression of IBA1 and inflammatory factors in microglial cells of mice induced by Aβ. The regulation of the GSK-3β/NF-κB/CREB pathway was similar to that observed in 3xTg-AD mice. Therefore, Andro-III modulates neuroinflammation and attenuates neuropathological changes of AD via the GSK-3β/NF-κB/CREB pathway.
Collapse
Affiliation(s)
- Min Hu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, PR China; Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China
| | - Miao Zheng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, PR China; Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China
| | - Can Wang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, PR China; Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China
| | - Qin Li
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, PR China; Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China
| | - Jinhua Li
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, PR China; Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China
| | - Xuebin Zhou
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, PR China; Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China
| | - XinYi Ying
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, PR China; Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China
| | - Shengli Quan
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, PR China; Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China
| | - Lili Gu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, PR China; Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China.
| | - Xinyue Zhang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, PR China; Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China.
| |
Collapse
|
13
|
Liu C, Wang C, Zhang H, Gao X, Xiao P, Yu M, Wang X, Wang X, Wang X. Hypoxia ischemia results in blood brain barrier damage via AKT/GSK-3β/CREB pathway in neonatal rats. Brain Res 2024; 1822:148640. [PMID: 37863169 DOI: 10.1016/j.brainres.2023.148640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Previous studies have showed that the permeability of blood brain barrier (BBB) increased after hypoxia ischemia (HI). The current research uncovered the mechanism of altered BBB permeability after hypoxic-ischemic brain damage (HIBD) through AKT/GSK-3β/CREB signaling pathway in neonatal rats. Firstly, Magnetic resonance imaging (MRI) combined with hematoxylin-eosin (H&E) staining was used to assess brain injury. Initial findings showed abnormal signals in T2-weighted imaging (T2WI) and diffusion weighted imaging (DWI). Changes also happened in the morphology of nerve cells. Subsequently, we found that BBB damage is manifested as leakage of immunoglobulin G (IgG) and destruction of BBB-related proteins and ultrastructure. Meanwhile, the levels of matrix metalloproteinase-9 (MMP-9) significantly increased at 24 h after HIBD compared to a series of time points. Additionally, immunohistochemical (IHC) staining combined with Western blot (WB) was used to verify the function of the AKT/GSK-3β/CREB signaling pathway in BBB damage after HI in neonatal rats. Results showed that less Claudin-5, ZO-1, p-AKT, p-GSK-3β and p-CREB, along with more MMP-9 protein expression were visible on the damaged side of the cerebral cortex in the HIBD group in contrast to the sham and HIBD + SC79 groups. Together, our findings demonstrated that HI in neonatal rats might upregulate the levels of MMP-9 protein and downregulate the levels of Claudin-5 and ZO-1 by inhibiting the AKT/GSK-3β/CREB pathway, thus disrupting the BBB, which in turn aggravates brain damage after HI in neonatal rats.
Collapse
Affiliation(s)
- Chenmeng Liu
- School of Medical Imaging, Weifang Medical University, Weifang 261053, China
| | - Can Wang
- School of Medical Imaging, Weifang Medical University, Weifang 261053, China
| | - Haimo Zhang
- School of Medical Imaging, Weifang Medical University, Weifang 261053, China
| | - Xiaotian Gao
- School of Medical Imaging, Weifang Medical University, Weifang 261053, China
| | - Peilun Xiao
- Department of Anatomy, School of Basic Medicine, Weifang Medical University, Weifang 261053, China
| | - Miao Yu
- School of Medical Imaging, Weifang Medical University, Weifang 261053, China
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xizhen Wang
- Medical Imaging Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China.
| | - Xiaoli Wang
- School of Medical Imaging, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
14
|
Karunakaran K, Muniyan R. Identification of allosteric inhibitor against AKT1 through structure-based virtual screening. Mol Divers 2023; 27:2803-2822. [PMID: 36522517 DOI: 10.1007/s11030-022-10582-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
AKT (serine/threonine protein kinase) is a potential therapeutic target for many types of cancer as it plays a vital role in cancer progression. Many AKT inhibitors are already in practice under single and combinatorial therapy. However, most of these inhibitors are orthosteric / pan-AKT that are non-selective and non-specific to AKT kinase and their isoforms. Hence, researchers are searching for novel allosteric inhibitors that bind in the interface between pH and kinase domain. In this study, we performed structure-based virtual screening from the afroDB (a diverse natural compounds library) to find the potential inhibitor targeting the AKT1. These compounds were filtered through Lipinski, ADMET properties, combined with a molecular docking approach to obtain the 8 best compounds. Then we performed molecular dynamics simulation for apoprotein, AKT1 with 8 complexes, and AKT1 with the positive control (Miransertib). Molecular docking and simulation analysis revealed that Bianthracene III (hit 1), 10-acetonyl Knipholonecyclooxanthrone (hit 2), Abyssinoflavanone VII (hit 5) and 8-c-p-hydroxybenzyldiosmetin (hit 6) had a better binding affinity, stability, and compactness than the reference compound. Notably, hit 1, hit 2 and hit 5 had molecular features required for allosteric inhibition.
Collapse
Affiliation(s)
- Keerthana Karunakaran
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Rajiniraja Muniyan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
15
|
Ahn JJ, Islam Y, Clarkson-Paredes C, Karl MT, Miller RH. B cell depletion modulates glial responses and enhances blood vessel integrity in a model of multiple sclerosis. Neurobiol Dis 2023; 187:106290. [PMID: 37709209 DOI: 10.1016/j.nbd.2023.106290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
Multiple sclerosis (MS) is characterized by a compromised blood-brain barrier (BBB) resulting in central nervous system (CNS) entry of peripheral lymphocytes, including T cells and B cells. While T cells have largely been considered the main contributors to neuroinflammation in MS, the success of B cell depletion therapies suggests an important role for B cells in MS pathology. Glial cells in the CNS are essential components in both disease progression and recovery, raising the possibility that they represent targets for B cell functions. Here, we examine astrocyte and microglia responses to B cell depleting treatments in an animal model of MS, experimental autoimmune encephalomyelitis (EAE). B cell depleted EAE animals had markedly reduced disease severity and myelin damage accompanied by reduced microglia and astrocyte reactivity 20 days after symptom onset. To identify potential initial mechanisms mediating functional changes following B cell depletion, astrocyte and microglia transcriptomes were analyzed 3 days following B cell depletion. In control EAE animals, transcriptomic analysis revealed astrocytic inflammatory pathways were activated and microglial influence on neuronal function were inhibited. Following B cell depletion, initial functional recovery was associated with an activation of astrocytic pathways linked with restoration of neurovascular integrity and of microglial pathways associated with neuronal function. These studies reveal an important role for B cell depletion in influencing glial function and CNS vasculature in an animal model of MS.
Collapse
Affiliation(s)
- Julie J Ahn
- The George Washington University School of Medicine and Health Sciences, Department of Anatomy and Cell Biology, Ross Hall, 2300 I St NW, Washington, DC 20037, United States of America
| | - Yusra Islam
- The George Washington University School of Medicine and Health Sciences, Department of Anatomy and Cell Biology, Ross Hall, 2300 I St NW, Washington, DC 20037, United States of America
| | - Cheryl Clarkson-Paredes
- The George Washington University School of Medicine and Health Sciences, Nanofabrication and Imaging Center, Science and Engineering Hall, 800 22(nd) St NW, Washington, DC 20037, United States of America
| | - Molly T Karl
- The George Washington University School of Medicine and Health Sciences, Department of Anatomy and Cell Biology, Ross Hall, 2300 I St NW, Washington, DC 20037, United States of America
| | - Robert H Miller
- The George Washington University School of Medicine and Health Sciences, Department of Anatomy and Cell Biology, Ross Hall, 2300 I St NW, Washington, DC 20037, United States of America.
| |
Collapse
|
16
|
Pan K, Garaschuk O. The role of intracellular calcium-store-mediated calcium signals in in vivo sensor and effector functions of microglia. J Physiol 2023; 601:4203-4215. [PMID: 35315518 DOI: 10.1113/jp279521] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/09/2022] [Indexed: 11/08/2022] Open
Abstract
Under physiological conditions microglia, the immune sentinels of the brain, constantly monitor their microenvironment. In the case of danger, damage or cell/tissue dyshomeostasis, they react with changes in process motility, polarization, directed process movement, morphology and gene expression profile; release pro- and anti-inflammatory mediators; proliferate; and clean brain parenchyma by means of phagocytosis. Based on recent transcriptomic and in vivo Ca2+ imaging data, we argue that the local cell/tissue dyshomeostasis is sensed by microglia via intracellular Ca2+ signals, many of which are mediated by Ca2+ release from the intracellular Ca2+ stores. These signals encode the strength, duration and spatiotemporal pattern of the stimulus and, at the same time, relay this information further to trigger the respective Ca2+ -dependent effector pathways. We also point to the fact that microglial Ca2+ signalling is sexually dimorphic and undergoes profound changes across the organism's lifespan. Interestingly, the first changes in microglial Ca2+ signalling are visible already in 9- to 11-month-old mice, roughly corresponding to 40-year-old humans.
Collapse
Affiliation(s)
- Kuang Pan
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Olga Garaschuk
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Lv H, Jia S, Sun Y, Pang M, Lv E, Li X, Meng Q, Wang Y. Else_BRB_110660Docosahexaenoic acid promotes M2 microglia phenotype via activating PPARγ-mediated ERK/AKT pathway against cerebral ischemia-reperfusion injury. Brain Res Bull 2023; 199:110660. [PMID: 37149267 DOI: 10.1016/j.brainresbull.2023.110660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
In ischemia-reperfusion stroke, microglia play a dual role in brain injury as well as brain repair, and promoting their switch from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype is considered to be a potential therapeutic strategy. Docosahexaenoic acid (DHA) is an essential long-chain omega-3 polyunsaturated fatty acid that exhibits potent anti-inflammatory properties in the acute phase of ischemic stroke, but its effect on microglia polarization is unknown. Thus, the objective of this study was to investigate the neuroprotective effects of DHA on rat brain following ischemia-reperfusion injury, and to investigate the mechanism by which DHA regulates microglia polarization. We administered DHA 5mg/kg intraperitoneally daily for 3 d following a transient middle cerebral artery occlusion reperfusion model in rats. The protective effects of DHA on cerebral ischemia-reperfusion injury were detected by TTC staining, HE staining, Nissler staining, and TUNEL staining. Quantitative real-time PCR, immunofluorescence, western blot, and enzyme-linked immunosorbent assay were used to detect the expression of M1 and M2 microglia-associated markers and PPARγ-mediated ERK/AKT signaling pathway proteins. We found that DHA significantly improved brain injury by decreasing the expression of the M1 phenotypic marker (iNOS, CD16) and increasing the expression of the M2 phenotypic marker (Arg-1, CD206). DHA also increased the expression of peroxisome proliferator-activated receptor gamma (PPARγ) mRNA and protein, increased the expression of the pathway protein AKT, and decreased the expression of ERK1/2. In addition, DHA promoted the expression of anti-inflammatory factor IL-10 and decreased the expression of pro-inflammatory factors TNF-α and IL-1β. However, the PPARγ antagonist GW9662 greatly blocked these beneficial effects. These results suggest that DHA may activate PPARγ to inhibit ERK and activate AKT signaling pathways to regulate microglia polarization, thereby reducing neuroinflammation and promoting neurological recovery to alleviate cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Huijing Lv
- School of Nursing, Wei fang Medical University, Weifang, Shandong, China
| | - Shuai Jia
- Department II of Neurology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yanan Sun
- School of Nursing, Wei fang Medical University, Weifang, Shandong, China
| | - Meng Pang
- Department II of Neurology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - E Lv
- Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China
| | - Xiangling Li
- Department of Internal Medicine, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Qinghui Meng
- School of Nursing, Wei fang Medical University, Weifang, Shandong, China.
| | - Yanqiang Wang
- Department II of Neurology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
18
|
Isik S, Yeman Kiyak B, Akbayir R, Seyhali R, Arpaci T. Microglia Mediated Neuroinflammation in Parkinson’s Disease. Cells 2023; 12:cells12071012. [PMID: 37048085 PMCID: PMC10093562 DOI: 10.3390/cells12071012] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Parkinson’s Disease (PD) is the second most common neurodegenerative disorder seen, especially in the elderly. Tremor, shaking, movement problems, and difficulty with balance and coordination are among the hallmarks, and dopaminergic neuronal loss in substantia nigra pars compacta of the brain and aggregation of intracellular protein α-synuclein are the pathological characterizations. Neuroinflammation has emerged as an involving mechanism at the initiation and development of PD. It is a complex network of interactions comprising immune and non-immune cells in addition to mediators of the immune response. Microglia, the resident macrophages in the CNS, take on the leading role in regulating neuroinflammation and maintaining homeostasis. Under normal physiological conditions, they exist as “homeostatic” but upon pathological stimuli, they switch to the “reactive state”. Pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes are used to classify microglial activity with each phenotype having its own markers and released mediators. When M1 microglia are persistent, they will contribute to various inflammatory diseases, including neurodegenerative diseases, such as PD. In this review, we focus on the role of microglia mediated neuroinflammation in PD and also signaling pathways, receptors, and mediators involved in the process, presenting the studies that associate microglia-mediated inflammation with PD. A better understanding of this complex network and interactions is important in seeking new therapies for PD and possibly other neurodegenerative diseases.
Collapse
Affiliation(s)
- Sevim Isik
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Uskudar University, Uskudar, Istanbul 34662, Turkey
- Stem Cell Research and Application Center (USKOKMER), Uskudar University, Uskudar, Istanbul 34662, Turkey
- Correspondence: ; Tel.: +90-216-400-2222 (ext. 2462)
| | - Bercem Yeman Kiyak
- Stem Cell Research and Application Center (USKOKMER), Uskudar University, Uskudar, Istanbul 34662, Turkey
- Department of Molecular Medicine, Institute of Hamidiye Health Sciences, University of Health Sciences, Uskudar, Istanbul 34668, Turkey
| | - Rumeysa Akbayir
- Stem Cell Research and Application Center (USKOKMER), Uskudar University, Uskudar, Istanbul 34662, Turkey
- Department of Molecular Biology, Institute of Science, Uskudar University, Uskudar, Istanbul 34662, Turkey
| | - Rama Seyhali
- Stem Cell Research and Application Center (USKOKMER), Uskudar University, Uskudar, Istanbul 34662, Turkey
- Department of Molecular Biology, Institute of Science, Uskudar University, Uskudar, Istanbul 34662, Turkey
| | - Tahire Arpaci
- Stem Cell Research and Application Center (USKOKMER), Uskudar University, Uskudar, Istanbul 34662, Turkey
- Department of Molecular Biology, Institute of Science, Uskudar University, Uskudar, Istanbul 34662, Turkey
| |
Collapse
|
19
|
Balbi M, Bonanno G, Bonifacino T, Milanese M. The Physio-Pathological Role of Group I Metabotropic Glutamate Receptors Expressed by Microglia in Health and Disease with a Focus on Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:5240. [PMID: 36982315 PMCID: PMC10048889 DOI: 10.3390/ijms24065240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Microglia cells are the resident immune cells of the central nervous system. They act as the first-line immune guardians of nervous tissue and central drivers of neuroinflammation. Any homeostatic alteration that can compromise neuron and tissue integrity could activate microglia. Once activated, microglia exhibit highly diverse phenotypes and functions related to either beneficial or harmful consequences. Microglia activation is associated with the release of protective or deleterious cytokines, chemokines, and growth factors that can in turn determine defensive or pathological outcomes. This scenario is complicated by the pathology-related specific phenotypes that microglia can assume, thus leading to the so-called disease-associated microglia phenotypes. Microglia express several receptors that regulate the balance between pro- and anti-inflammatory features, sometimes exerting opposite actions on microglial functions according to specific conditions. In this context, group I metabotropic glutamate receptors (mGluRs) are molecular structures that may contribute to the modulation of the reactive phenotype of microglia cells, and this is worthy of exploration. Here, we summarize the role of group I mGluRs in shaping microglia cells' phenotype in specific physio-pathological conditions, including some neurodegenerative disorders. A significant section of the review is specifically focused on amyotrophic lateral sclerosis (ALS) since it represents an entirely unexplored topic of research in the field.
Collapse
Affiliation(s)
- Matilde Balbi
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy (M.M.)
| | - Giambattista Bonanno
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy (M.M.)
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Marco Milanese
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy (M.M.)
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
20
|
Li R, Zhang X, Gu L, Yuan Y, Luo X, Shen W, Xie Z. CDGSH iron sulfur domain 2 over-expression alleviates neuronal ferroptosis and brain injury by inhibiting lipid peroxidation via AKT/mTOR pathway following intracerebral hemorrhage in mice. J Neurochem 2023; 165:426-444. [PMID: 36802066 DOI: 10.1111/jnc.15785] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/20/2023]
Abstract
Ferroptosis has been implicated in the pathogenesis of secondary brain injury following intracerebral hemorrhage (ICH), and regulating this process is considered a potential therapy for alleviating further brain injury. A previous study showed that CDGSH iron sulfur domain 2 (CISD2) can inhibit ferroptosis in cancer. Thus, we investigated the effects of CISD2 on ferroptosis and the mechanisms underlying its neuroprotective role in mice after ICH. CISD2 expression markedly increased after ICH. CISD2 over-expression significantly decreased the number of Fluoro-Jade C-positive neurons and alleviated brain edema and neurobehavioral deficits at 24 h after ICH. In addition, CISD2 over-expression up-regulated the expression of p-AKT, p-mTOR, ferritin heavy chain 1, glutathione peroxidase 4, ferroportin, glutathione, and glutathione peroxidase activity, which are markers of ferroptosis. Additionally, CISD2 over-expression down-regulated the levels of malonaldehyde, iron content, acyl-CoA synthetase long-chain family member 4, transferrin receptor 1, and cyclooxygenase-2 at 24 h after ICH. It also alleviated mitochondrial shrinkage and decreased the density of the mitochondrial membrane. Furthermore, CISD2 over-expression increased the number of GPX4-positive neurons following ICH induction. Conversely, knockdown of CISD2 aggravated neurobehavioral deficits, brain edema, and neuronal ferroptosis. Mechanistically, MK2206, an AKT inhibitor, suppressed p-AKT and p-mTOR and reversed the effects of CISD2 over-expression on markers of neuronal ferroptosis and acute neurological outcome. Taken together, CISD2 over-expression alleviated neuronal ferroptosis and improved neurological performance, which may be mediated through the AKT/mTOR pathway after ICH. Thus, CISD2 may be a potential target to mitigate brain injury via the anti-ferroptosis effect after ICH.
Collapse
Affiliation(s)
- Ruihao Li
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xingyu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lingui Gu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ye Yuan
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xu Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Weiwei Shen
- Department of Endocrinology, The First Affiliated Hospital, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Zongyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
Méresse S, Larrigaldie V, Oummadi A, de Concini V, Morisset-Lopez S, Reverchon F, Menuet A, Montécot-Dubourg C, Mortaud S. β-N-Methyl-Amino-L-Alanine cyanotoxin promotes modification of undifferentiated cells population and disrupts the inflammatory status in primary cultures of neural stem cells. Toxicology 2022; 482:153358. [DOI: 10.1016/j.tox.2022.153358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
|
22
|
Chisari M, Barraco M, Bucolo C, Ciranna L, Sortino MA. Purinergic ionotropic P2X7 and metabotropic glutamate mGlu 5 receptors crosstalk influences pro-inflammatory conditions in microglia. Eur J Pharmacol 2022; 938:175389. [PMID: 36435235 DOI: 10.1016/j.ejphar.2022.175389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/21/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022]
Abstract
Microglia represent the resident immune system in the brain. They mediate neuroinflammatory processes and have been described as important regulators of homeostasis in the central nervous system (CNS). Among several players and mechanisms contributing to microglial function in inflammation, ATP and glutamate have been shown to be involved in microgliosis. In this study, we focused on receptor subtypes that respond to these neurotransmitters, purinergic ionotropic P2X7 receptor and metabotropic glutamate mGlu5 receptor. We found that both receptors are functionally expressed in a murine microglia cell line, BV2 cells, and we performed patch-clamp experiments to measure purinergic ionotropic P2X7 receptor ion flux in control condition and after metabotropic glutamate mGlu5 receptor activation. The selective purinergic ionotropic P2X7 receptor agonist, 2'(3')-O-(4-benzoylbenzoyl)adenosine-5'-triphosphate (BzATP, 100 μM), elicited a robust current that was prevented by the selective purinergic ionotropic P2X7 receptor antagonist A438079 (10 μM). When BV2 cells were acutely stimulated with the selective metabotropic glutamate mGlu5 agonist, (RS)-2-chloro-5-hydroxyphenylglycine (CHPG, 200 μM), purinergic ionotropic P2X7 receptor current was increased. This positive modulation was prevented by the selective metabotropic glutamate mGlu5 receptor antagonist 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine (MTEP, 1 μM). Moreover, nitric oxide synthesis elicited by purinergic ionotropic P2X7 receptor activation was enhanced by metabotropic glutamate mGlu5 receptor co-stimulation. Taken together, our results suggest an important crosstalk between ATP and glutamate in inflammation. Pro-inflammatory effects mediated by purinergic ionotropic P2X7 receptor might be exacerbated by simultaneous exposure of microglia to ATP and glutamate, suggesting new pharmacological targets to modulate neuroinflammation.
Collapse
Affiliation(s)
- Mariangela Chisari
- Dept. of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Italy.
| | - Michele Barraco
- Dept. of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Italy; PhD Program in Neuroscience, University of Catania, Italy
| | - Claudio Bucolo
- Dept. of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Italy
| | - Lucia Ciranna
- Dept. of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy
| | - Maria Angela Sortino
- Dept. of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Italy
| |
Collapse
|
23
|
The Anti-Inflammatory Effect of Preventive Intervention with Ketogenic Diet Mediated by the Histone Acetylation of mGluR5 Promotor Region in Rat Parkinson’s Disease Model: A Dual-Tracer PET Study. PARKINSON'S DISEASE 2022; 2022:3506213. [PMID: 36105302 PMCID: PMC9467749 DOI: 10.1155/2022/3506213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Materials and Methods The neuroprotective effect of ketosis state prior to the onset of PD (preventive KD, KDp) was compared with that receiving KD after the onset (therapeutic KD, KDt) in the lipopolysaccharide- (LPS-) induced rat PD model. A total of 100 rats were randomly assigned to the following 4 groups: sham, LPS, LPS + KDp, and LPS + KDt groups. Results Significant dopamine deficient behaviors (rotational behavior and contralateral forelimb akinesia), upregulation of proinflammatory mediators (TNF-α, IL-1β, and IL-6), loss of dopaminergic neurons, reduction of mGluR5+ microglia cells, increase of TSPO+ microglia cells, reduction of H3K9 acetylation in the mGluR5 promoter region and mGluR5 mRNA expression, and decline in the phosphorylation levels of Akt/GSK-3β/CREB pathway were observed after the intervention of LPS (P < 0.01). TSPO and DAT PET imaging revealed the increased uptake of 18F-DPA-714 in substantia nigra and decreased uptake of 18F-FP-CIT in substantia nigra and striatum in LPS-treated rats (P < 0.001). These impairments were alleviated by the dietary intervention of KD, especially with the strategy of KDp (P < 0.05). Conclusions The anti-inflammatory effect of KD on PD was supposed to be related to the modulation of Akt/GSK-3β/CREB signaling pathway mediated by the histone acetylation of mGluR5 promotor region. The KD intervention should be initiated prior to the PD onset in high-risk population to achieve a more favorable outcome.
Collapse
|
24
|
Xu P, Huang X, Niu W, Yu D, Zhou M, Wang H. Metabotropic glutamate receptor 5 upregulation of γ-aminobutyric acid transporter 3 expression ameliorates cognitive impairment after traumatic brain injury in mice. Brain Res Bull 2022; 183:104-115. [DOI: 10.1016/j.brainresbull.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/16/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022]
|
25
|
Chang B, Liu Y, Hu J, Tang Z, Qiu Z, Song Z, Jia A, Zhang Y. Bupleurum chinense DC improves CUMS-induced depressive symptoms in rats through upregulation of the cAMP/PKA/CREB signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115034. [PMID: 35092825 DOI: 10.1016/j.jep.2022.115034] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bupleurum chinense DC. (B. chinense) is the dried root of B. chinense, belonging to the Umbelliferae family. B. chinense has been reported since ancient times for its effect of soothing the liver and relieving depression. Additionally, its important role in treating depression, depressed mood disorders and anti-inflammation has been proven in previous studies. However, its specific mechanism of action remains unknown. AIM OF THE STUDY The key targets and metabolites of the antidepressant effect of B. chinense were investigated based on the cAMP signalling pathway. The study examined the mechanism for the antidepressant effect of B. chinense by target prediction, analysis of related metabolites and potential metabolic pathways. MATERIALS AND METHODS A network pharmacology approach was used to predict the antidepressant targets and pathways of B. chinense. A depression rat model was established through the CUMS (chronic unpredictable mild stress) procedure. The depression model was assessed by body weight, sugar-water preference, water maze and enzyme-linked immunosorbent assay (ELISA) indicators (5hydroxytryptamine, etc.). The key metabolic pathways were screened by correlations between metabolites and key targets. Finally, a quantitative analysis of key targets and metabolites was experimentally validated. RESULTS B. chinense significantly ameliorated the reduction in body weight, sugar-water preference rate and cognitive performance in the water maze experiment in rats with depression induced by CUMS. ELISA, Western blotting (WB) and reverse transcription-polymerase chain reaction (RT-PCR) assays showed that B. chinense significantly improves the expression of protein kinase cyclic adenylic acid (cAMP)-activated catalytic subunit alpha (PRKACA), cAMP-response element-binding protein (CREB) and cAMP activation in the rat brain induced by CUMS. According to metabolic pathway analysis, B. chinense shows an antidepressant effect primarily by regulating the cAMP metabolic pathway. CONCLUSION B. chinense upregulated PRKACA and CREB expression and the level of the key metabolite cAMP in the cAMP/PKA/CREB pathway while reducing the inflammatory response to depression treatment. These new findings support future research on the antidepressant effects of B. chinense.
Collapse
Affiliation(s)
- Baijin Chang
- Changchun University of Chinese Medicine, 130117, Chang Chun, PR China; Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, PR China
| | - Yanru Liu
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, PR China.
| | - Jingting Hu
- The Third Clinical Affiliated Hospital of Changchun University of Chinese Medicine, 130117, Chang chun, PR China
| | - Zhishu Tang
- Changchun University of Chinese Medicine, 130117, Chang Chun, PR China; Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, PR China; China Academy of Chinese Medical Sciences, 100700, Beijing, PR China.
| | - Zhidong Qiu
- Changchun University of Chinese Medicine, 130117, Chang Chun, PR China
| | - Zhongxing Song
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, PR China
| | - Ailing Jia
- Changchun University of Chinese Medicine, 130117, Chang Chun, PR China
| | - Yuru Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, PR China
| |
Collapse
|
26
|
Sun Y, Zhu X, Zhu K, Yu J, Cheng L, Hei M. High-mobility Group Box 1 Contributes to Hypoxic-Ischemic Brain Damage by Facilitating Imbalance of Microglial Polarization through RAGE-PI3K/Akt Pathway in Neonatal Rats. Int J Med Sci 2022; 19:2093-2103. [PMID: 36483598 PMCID: PMC9724240 DOI: 10.7150/ijms.78641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a damage-associated molecular pattern integral for hypoxic-ischemic brain damage (HIBD) in neonatal rats since it regulates the phenotypic polarization of microglia, as depicted in our previous studies. Since this mechanism is not clear, this study establishes an oxygen-glucose deprivation (OGD) model of highly aggressively proliferating immortalized microglia while modulating the expression of HMGB1 by plasmid transfection. The M1/M2 microglial phenotype and receptor for advanced glycation end products-phosphoinositide 3-kinase/Akt (RAGE-PI3K/Akt) activation were evaluated, showing that HMGB1 promoted the polarization of microglia to the M1 phenotype under OGD conditions. Meanwhile, RAGE, which is the main receptor of HMGB1, was activated, and phosphorylation of PI3K/Akt was upregulated. However, knockdown or inhibition of HMGB1 can weaken the activation of RAGE and phosphorylation of PI3K/Akt. The inhibition of HMGB1 or RAGE-PI3K/Akt attenuated microglial polarization to the M1 phenotype and promoted M2 microglial polarization instead, reducing the release of pro-inflammatory factors. In the neonatal HIBD rat model, the RAGE-PI3K/Akt pathway was activated seven days after hypoxic-ischemic (HI) exposure, and the activation was partly inhibited after pretreatment with the HMGB1 inhibitor. Concurrently, inhibition of the HMGB1-RAGE-PI3K/Akt pathway alleviated neuronal damage in the hippocampus. These findings verified that HMGB1 could lead to an imbalance in M1/M2 microglial polarization through activation of the RAGE-PI3K/Akt signaling pathway under OGD conditions. Obstructing this pathway may attenuate the imbalanced polarization of microglia, enabling its utilization as a therapeutic strategy against brain injury in HIBD.
Collapse
Affiliation(s)
- Yanyan Sun
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450000, China.,Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Xing Zhu
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China.,National Center for Child Health, Beijing, 100045, China
| | - Kaiyi Zhu
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China.,National Center for Child Health, Beijing, 100045, China
| | - Jie Yu
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China.,National Center for Child Health, Beijing, 100045, China
| | - Lin Cheng
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China.,National Center for Child Health, Beijing, 100045, China
| | - Mingyan Hei
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China.,National Center for Child Health, Beijing, 100045, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, 100045, China
| |
Collapse
|
27
|
Krishnendu P R, Koyiparambath VP, Bhaskar V, Arjun B, Zachariah SM. Formulating The Structural Aspects Of Various Benzimidazole Cognates. Curr Top Med Chem 2021; 22:473-492. [PMID: 34852738 DOI: 10.2174/1568026621666211201122752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Benzimidazole derivatives are widely used in clinical practice as potential beneficial specialists. Recently, the neuroprotective effect of derivatives of benzimidazole moiety has also shown positive outcomes. OBJECTIVE To develop favourable molecules for various neurodegenerative disorders using the versatile chemical behaviour of the benzimidazole scaffold. METHODS About 25 articles were collected that discussed various benzimidazole derivatives and categorized them under various subheadings based on the targets such as BACE 1, JNK, MAO, choline esterase enzyme, oxidative stress, mitochondrial dysfunction in which they act. The structural aspects of various benzimidazole derivatives were also studied. CONCLUSION To manage various neurodegenerative disorders, a multitargeted approach will be the most hopeful stratagem. Some benzimidazole derivatives can be considered for future studies, which are mentioned in the discussed articles.
Collapse
Affiliation(s)
- Krishnendu P R
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, AIMS, Kochi- 682041, Kerala. India
| | - Vishal Payyalot Koyiparambath
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, AIMS, Kochi- 682041, Kerala. India
| | - Vaishnav Bhaskar
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, AIMS, Kochi- 682041, Kerala. India
| | - B Arjun
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, AIMS, Kochi- 682041, Kerala. India
| | - Subin Mary Zachariah
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, AIMS, Kochi- 682041, Kerala. India
| |
Collapse
|
28
|
Chu E, Mychasiuk R, Hibbs ML, Semple BD. Dysregulated phosphoinositide 3-kinase signaling in microglia: shaping chronic neuroinflammation. J Neuroinflammation 2021; 18:276. [PMID: 34838047 PMCID: PMC8627624 DOI: 10.1186/s12974-021-02325-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022] Open
Abstract
Microglia are integral mediators of innate immunity within the mammalian central nervous system. Typical microglial responses are transient, intending to restore homeostasis by orchestrating the removal of pathogens and debris and the regeneration of damaged neurons. However, prolonged and persistent microglial activation can drive chronic neuroinflammation and is associated with neurodegenerative disease. Recent evidence has revealed that abnormalities in microglial signaling pathways involving phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) may contribute to altered microglial activity and exacerbated neuroimmune responses. In this scoping review, the known and suspected roles of PI3K-AKT signaling in microglia, both during health and pathological states, will be examined, and the key microglial receptors that induce PI3K-AKT signaling in microglia will be described. Since aberrant signaling is correlated with neurodegenerative disease onset, the relationship between maladapted PI3K-AKT signaling and the development of neurodegenerative disease will also be explored. Finally, studies in which microglial PI3K-AKT signaling has been modulated will be highlighted, as this may prove to be a promising therapeutic approach for the future treatment of a range of neuroinflammatory conditions.
Collapse
Affiliation(s)
- Erskine Chu
- Department of Immunology and Pathology, Central Clinical School, Monash University, Level 6, 89 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Neurology, Alfred Health, Prahran, VIC, 3181, Australia
| | - Margaret L Hibbs
- Department of Immunology and Pathology, Central Clinical School, Monash University, Level 6, 89 Commercial Road, Melbourne, VIC, 3004, Australia.
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
- Department of Neurology, Alfred Health, Prahran, VIC, 3181, Australia.
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, 3050, Australia.
| |
Collapse
|
29
|
Namba MD, Leyrer-Jackson JM, Nagy EK, Olive MF, Neisewander JL. Neuroimmune Mechanisms as Novel Treatment Targets for Substance Use Disorders and Associated Comorbidities. Front Neurosci 2021; 15:650785. [PMID: 33935636 PMCID: PMC8082184 DOI: 10.3389/fnins.2021.650785] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies examining the neurobiology of substance abuse have revealed a significant role of neuroimmune signaling as a mechanism through which drugs of abuse induce aberrant changes in synaptic plasticity and contribute to substance abuse-related behaviors. Immune signaling within the brain and the periphery critically regulates homeostasis of the nervous system. Perturbations in immune signaling can induce neuroinflammation or immunosuppression, which dysregulate nervous system function including neural processes associated with substance use disorders (SUDs). In this review, we discuss the literature that demonstrates a role of neuroimmune signaling in regulating learning, memory, and synaptic plasticity, emphasizing specific cytokine signaling within the central nervous system. We then highlight recent preclinical studies, within the last 5 years when possible, that have identified immune mechanisms within the brain and the periphery associated with addiction-related behaviors. Findings thus far underscore the need for future investigations into the clinical potential of immunopharmacology as a novel approach toward treating SUDs. Considering the high prevalence rate of comorbidities among those with SUDs, we also discuss neuroimmune mechanisms of common comorbidities associated with SUDs and highlight potentially novel treatment targets for these comorbid conditions. We argue that immunopharmacology represents a novel frontier in the development of new pharmacotherapies that promote long-term abstinence from drug use and minimize the detrimental impact of SUD comorbidities on patient health and treatment outcomes.
Collapse
Affiliation(s)
- Mark D. Namba
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | | | - Erin K. Nagy
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - M. Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | | |
Collapse
|
30
|
Li L, Yerra L, Chang B, Mathur V, Nguyen A, Luo J. Acute and late administration of colony stimulating factor 1 attenuates chronic cognitive impairment following mild traumatic brain injury in mice. Brain Behav Immun 2021; 94:274-288. [PMID: 33540074 PMCID: PMC8058270 DOI: 10.1016/j.bbi.2021.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 01/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of long-term neurological disability. Currently there is no effective pharmacological treatment for patients suffering from the long-lasting symptoms of TBI. We recently discovered that colony stimulating factor 1 (CSF1), an essential regulator of macrophage homeostasis, is neuroprotective and reduces neuroinflammation in two models of neurological disease in mice. Here we used a mouse model of repetitive mild TBI (mTBI) to examine whether CSF1 would attenuate cognitive deficits and improve pathological outcomes in two paradigms. In the acute paradigm, a single bolus treatment of CSF1 administered 24 h after injury significantly reduces memory impairment and astrocyte reactivity assessed 3 months later. In the chronic paradigm, the mice were tested 3 months after mTBI when they showed cognitive deficits. The mice were then randomly assigned to receive CSF1 or PBS (as control) treatment. After one month of treatment, the PBS-treated mice remained cognitively impaired, but the CSF1-treated showed significant improvements in cognitive function. RNA-seq and Ingenuity Pathway Analysis reveals CSF1 treatment alters cognition- and memory-related transcriptomic changes and pathways. The results of this study show that acute as well as delayed CSF1 treatment attenuate chronically impaired cognitive functions and improve pathological outcomes long after mTBI. The wide therapeutic time window of CSF1, together with the fact that CSF1 is approved for human use in clinical trials, strongly supports the potential clinical usefulness of this treatment in patients with mTBI.
Collapse
Affiliation(s)
| | | | | | | | | | - Jian Luo
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
31
|
Abulwerdi G, Stoica BA, Loane DJ, Faden AI. Putative mGluR4 positive allosteric modulators activate G i-independent anti-inflammatory mechanisms in microglia. Neurochem Int 2020; 138:104770. [PMID: 32454165 DOI: 10.1016/j.neuint.2020.104770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 01/23/2023]
Abstract
Chronic dysregulated microglial activation may lead to persistent inflammation and progressive neurodegeneration. A previous study reported that ADX88178, a putative metabotropic glutamate receptor 4 (mGluR4) positive allosteric modulator (PAM), exerts anti-inflammatory effects in microglia by activating mGluR4. We employed in vitro models of immortalized microglia cell lines and primary microglia to elucidate the molecular mechanisms responsible for the regulation of inflammatory pathways by ADX88178 and other mGluR4 PAMs. ADX88178 downregulated lipopolysaccharide (LPS)-induced expression of pro-inflammatory mediators, including TNF-α, IL-1β, CCL-2, IL-6, NOS2, and miR-155, as well as NO levels, in BV2 cells and primary microglia. Other mGluR4 modulators had divergent activities; VU0361737 (PAM) showed anti-inflammatory effects, whereas the orthosteric group III agonist, L-AP4, and VU0155041 (PAM) displayed no anti-inflammatory actions. In contrast to the earlier report, ADX88178 anti-inflammatory effects appeared to be mGluR4-independent as mGluR4 expression in our in vitro models was very low and its actions were not altered by pharmacological or molecular inhibition of mGluR4. Moreover, we showed that ADX88178 activated Gi-independent, alternative signaling pathways as indicated by the absence of pertussis toxin-mediated inhibition and by increased phosphorylation of cAMP-response element binding protein (CREB), an inhibitor of the NFkB pro-inflammatory pathway. ADX88178 also attenuated NFkB activation by reducing the degradation of IkB and the associated translocation of NFkB-p65 to the nucleus. ADX88178 did not exert its anti-inflammatory effects through adenosine receptors, reported as mGluR4 heteromerization partners. Thus, our results indicate that in microglia, putative mGluR4 PAMs activate mGluR4/Gi-independent mechanisms to attenuate pro-inflammatory pathways.
Collapse
Affiliation(s)
- Gelareh Abulwerdi
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Bogdan A Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|