1
|
Mohmand-Borkowski A, Conover DO, Rozmyslowicz T. Fibroblast Activation Protein Compared with Other Markers of Activated Smooth Muscle Cells, Extracellular Matrix Turnover and Inflammation in a Mouse Model of Atherosclerosis. Metabolites 2025; 15:243. [PMID: 40278373 PMCID: PMC12029363 DOI: 10.3390/metabo15040243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Background: Fibroblast activation protein (FAP) is a cell surface glycoprotein expressed by myofibroblastic cells in areas of active tissue remodeling, such as wound healing, fibrosis, and certain chronic inflammatory lesions. As FAP is uniquely present in chronic inflammatory lesions and has an important role in extracellular matrix (ECM) turnover, it appears to have all the characteristics necessary for involvement in atherosclerosis and atherosclerotic plaque rupture and has become a potential target in the treatment of myocardial infarction. Methods: To further understand the role of FAP, its expression in atherosclerotic plaques was examined in a genetically modified mouse model of accelerated atherosclerosis (Apobec1 -/- Ldlr -/- double-knockout mice). The immunohistochemical Fap staining of atherosclerotic plaques in a mouse model of atherosclerosis was correlated with quantification of Fap mRNA obtained from the atherosclerotic plaques of the aortic arch. Fap distribution was characterized in mouse atherosclerotic plaques relative to other markers of activated smooth muscle cells, such as alpha smooth muscle actin and myosin heavy chain (Acta2 and Myh2), ECM turnover (Ki-67, procollagen III and Mmp-9), and inflammation in atherosclerosis (Cd-44, Il-12 and Tgf beta) using immunohistochemistry (IH) and RT-PCR analysis. Results: The mouse model of accelerated atherosclerosis showed an increasing presence of Fap with the progression of atherosclerosis and a high expression level in advanced atherosclerotic lesions compared with other markers of ECM turnover and inflammation in atherosclerosis. Conclusions: FAP exhibits a distinct pattern of expression in a mouse model of atherosclerosis as compared to other markers of activated vascular smooth muscle cells, ECM degeneration, and inflammatory cytokines.
Collapse
Affiliation(s)
| | - Dareus O. Conover
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6304, USA;
| | - Tomasz Rozmyslowicz
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
2
|
Li Y, Xiao J, Li C, Yang M. Memory inflation: Beyond the acute phase of viral infection. Cell Prolif 2024; 57:e13705. [PMID: 38992867 PMCID: PMC11628752 DOI: 10.1111/cpr.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
Memory inflation is confirmed as the most commonly dysregulation of host immunity with antigen-independent manner in mammals after viral infection. By generating large numbers of effector/memory and terminal differentiated effector memory CD8+ T cells with diminished naïve subsets, memory inflation is believed to play critical roles in connecting the viral infection and the onset of multiple diseases. Here, we reviewed the current understanding of memory inflated CD8+ T cells in their distinct phenotypic features that different from exhausted subsets; the intrinsic and extrinsic roles in regulating the formation of memory inflation; and the key proteins in maintaining the expansion and proliferation of inflationary populations. More importantly, based on the evidences from both clinic and animal models, we summarized the potential mechanisms of memory inflation to trigger autoimmune neuropathies, such as Guillain-Barré syndrome and multiple sclerosis; the correlations of memory inflation between tumorigenesis and resistance of tumour immunotherapies; as well as the effects of memory inflation to facilitate vascular disease progression. To sum up, better understanding of memory inflation could provide us an opportunity to beyond the acute phase of viral infection, and shed a light on the long-term influences of CD8+ T cell heterogeneity in dampen host immune homeostasis.
Collapse
Affiliation(s)
- Yanfei Li
- School of Basic Medical SciencesChengdu University of Traditional Chinese MedicineChengduChina
| | - Jie Xiao
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Chen Li
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Mu Yang
- School of Basic Medical SciencesChengdu University of Traditional Chinese MedicineChengduChina
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
3
|
Xia Q, Liu F, Zhou Y, Yang G, Li F, Liang T, Liu J, Li W, Huang Y, Zhu C. CD47-SIRPα signaling-inspired engineered monocytes for preventing the progression of atherosclerotic plaques. Mater Today Bio 2024; 28:101178. [PMID: 39211288 PMCID: PMC11357865 DOI: 10.1016/j.mtbio.2024.101178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
The accumulation of foam cells in the subendothelial space of the vascular wall to form plaques is the real cause of atherosclerotic lesions. Conventional interventions, such as statins and anti-cytokine or anti-inflammatory therapies, suffer problems in terms of their short therapeutic outcomes and potential disruption of the immune system. The development of more efficient therapeutics to restrict the initial progression of plaques appears to be crucial for treating and preventing atherosclerosis. Decreasing foam cell formation by reversing the excessive phagocytosis of modified low-density lipoprotein (LDL) in macrophages is highly desirable. Here, we developed a strategy based on engineered monocytes to dynamically regulate lipid uptake by macrophages inspired by a CD47-SIRPα signaling-induced defect in the phagocytosis of lesional macrophages at the advanced stage of AS. Briefly, a complex called CD47p-GQDs-miR223, which is designed to interact with SIRPα, was synthesized to remodel monocytes by decreasing the uptake of oxidized LDL through the activation of CD47-SIRPα signaling. After injection, these monocytes compete for recruitment to atherosclerotic plaques, release gene drugs and mediate anti-inflammatory phenotypic remodeling of the aboriginal macrophages, effectively inhibiting the development of foam cells. Our strategy provides a new therapeutic for preventing the progression of atherosclerosis.
Collapse
Affiliation(s)
- Qing Xia
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yue Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Guanyuan Yang
- Department of Anatomy, State Key Laboratory of Trauma, Burn and Combined Injury, National and Regional Engineering Laboratory of Tissue Engineering, Third Military Medical University, Chongqing, 400038, China
| | - Fangzhou Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Tingting Liang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Wanling Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yaqing Huang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Chuhong Zhu
- Department of Anatomy, State Key Laboratory of Trauma, Burn and Combined Injury, National and Regional Engineering Laboratory of Tissue Engineering, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
4
|
Pi H, Wang G, Wang Y, Zhang M, He Q, Zheng X, Yin K, Zhao G, Jiang T. Immunological perspectives on atherosclerotic plaque formation and progression. Front Immunol 2024; 15:1437821. [PMID: 39399488 PMCID: PMC11466832 DOI: 10.3389/fimmu.2024.1437821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Atherosclerosis serves as the primary catalyst for numerous cardiovascular diseases. Growing evidence suggests that the immune response is involved in every stage of atherosclerotic plaque evolution. Rapid, but not specific, innate immune arms, including neutrophils, monocytes/macrophages, dendritic cells (DCs) and other innate immune cells, as well as pattern-recognition receptors and various inflammatory mediators, contribute to atherogenesis. The specific adaptive immune response, governed by T cells and B cells, antibodies, and immunomodulatory cytokines potently regulates disease activity and progression. In the inflammatory microenvironment, the heterogeneity of leukocyte subpopulations plays a very important regulatory role in plaque evolution. With advances in experimental techniques, the fine mechanisms of immune system involvement in atherosclerotic plaque evolution are becoming known. In this review, we examine the critical immune responses involved in atherosclerotic plaque evolution, in particular, looking at atherosclerosis from the perspective of evolutionary immunobiology. A comprehensive understanding of the interplay between plaque evolution and plaque immunity provides clues for strategically combating atherosclerosis.
Collapse
Affiliation(s)
- Hui Pi
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
- Department of Microbiology and Immunology, Dali University, Dali, Yunnan, China
| | - Guangliang Wang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Yu Wang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Ming Zhang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Qin He
- Department of Microbiology and Immunology, Dali University, Dali, Yunnan, China
| | - Xilong Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Guojun Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Ting Jiang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| |
Collapse
|
5
|
Yang Q, Li B, Luan T, Wang X, Duan B, Wei C, Chen S. Exploring blood lipids-immunity associations following HBV vaccination: evidence from a large cross-sectional study. Front Cell Infect Microbiol 2024; 14:1369661. [PMID: 38524185 PMCID: PMC10959126 DOI: 10.3389/fcimb.2024.1369661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Serological responses following hepatitis B vaccination are crucial for preventing hepatitis B (HBV). However, the potential relationship between serum lipid levels and immunity from HBV vaccination remains poorly understood. Methods In this study, we conducted an analysis of the National Health and Nutrition Examination Survey (NHANES) data spanning from 2003 to 2016. Multivariable weighted logistic regression models, generalized linear analysis, stratified models, smooth curve fitting, segmentation effect analysis and sensitivity analysis were utilized to assess the relationships. Results After adjusting for relevant covariates, we observed that low levels of high-density lipoprotein cholesterol (HDL) were independently linked to a significantly lower seroprotective rate. Compared to HDL levels of ≥ 60 mg/dL, the odds ratios (ORs) for individuals with borderline levels (40-59 mg/dL for men, 50-59 mg/dL for women) and low levels (< 40 mg/dL for men, < 50 mg/dL for women) were 0.83 (95% CI 0.69-0.99) and 0.65 (95% CI 0.56-0.78), respectively. This association was particularly pronounced in individuals aged 40 or older. Conversely, higher levels of the triglyceride to HDL (TG/HDL) ratio (OR, 0.90; 95% CI, 0.84-0.98), total cholesterol to HDL (Chol/HDL) ratio (OR, 0.77; 95% CI, 0.64-0.92), and low-density lipoprotein to HDL (LDL/HDL) ratio (OR, 0.85; 95% CI, 0.76-0.96) were associated with a decreased likelihood of seroprotection. Conclusion This study suggests that lipid levels may play a role in modulating the immune response following HBV vaccination.
Collapse
Affiliation(s)
- Qian Yang
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Benhua Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tiankuo Luan
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyu Wang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bixia Duan
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chengcheng Wei
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi Chen
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Zagrapan B, Klopf J, Celem ND, Brandau A, Rossi P, Gordeeva Y, Szewczyk AR, Liu L, Ahmadi-Fazel D, Najarnia S, Fuchs L, Hayden H, Loewe C, Eilenberg W, Neumayer C, Brostjan C. Diagnostic Utility of a Combined MPO/D-Dimer Score to Distinguish Abdominal Aortic Aneurysm from Peripheral Artery Disease. J Clin Med 2023; 12:7558. [PMID: 38137627 PMCID: PMC10743483 DOI: 10.3390/jcm12247558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) and peripheral artery disease (PAD) share pathophysiological mechanisms including the activation of the fibrinolytic and innate immune system, which explains the analysis of D-dimer and myeloperoxidase (MPO) in both conditions. This study evaluates the diagnostic marker potential of both variables separately and as a combined MPO/D-dimer score for identifying patients with AAA versus healthy individuals or patients with PAD. Plasma levels of MPO and D-dimer were increased in PAD and AAA compared to healthy controls (median for MPO: 13.63 ng/mL [AAA] vs. 11.74 ng/mL [PAD] vs. 9.16 ng/mL [healthy], D-dimer: 1.27 μg/mL [AAA] vs. 0.58 μg/mL [PAD] vs. 0.38 μg/mL [healthy]). The combined MPO/D-dimer score (median 1.26 [AAA] vs. -0.19 [PAD] vs. -0.93 [healthy]) showed an improved performance in distinguishing AAA from PAD when analysed using the receiver operating characteristic curve (area under the curve) for AAA against the pooled data of healthy controls + PAD: 0.728 [MPO], 0.749 [D-dimer], 0.801 [score]. Diagnostic sensitivity and specificity ranged at 82.9% and 70.2% (for score cut-off = 0). These findings were confirmed for a separate collective of AAA patients with 35% simultaneous PAD. Thus, evaluating MPO together with D-dimer in a simple score may be useful for diagnostic detection and the distinction of AAA from athero-occlusive diseases like PAD.
Collapse
Affiliation(s)
- Branislav Zagrapan
- Department of General Surgery, Division of Vascular Surgery, University Hospital Vienna, Medical University of Vienna, 1090 Vienna, Austria; (B.Z.); (J.K.); (N.D.C.); (A.B.); (P.R.); (Y.G.); (A.R.S.); (L.L.); (D.A.-F.); (S.N.); (L.F.); (H.H.); (W.E.); (C.N.)
| | - Johannes Klopf
- Department of General Surgery, Division of Vascular Surgery, University Hospital Vienna, Medical University of Vienna, 1090 Vienna, Austria; (B.Z.); (J.K.); (N.D.C.); (A.B.); (P.R.); (Y.G.); (A.R.S.); (L.L.); (D.A.-F.); (S.N.); (L.F.); (H.H.); (W.E.); (C.N.)
| | - Nihan Dide Celem
- Department of General Surgery, Division of Vascular Surgery, University Hospital Vienna, Medical University of Vienna, 1090 Vienna, Austria; (B.Z.); (J.K.); (N.D.C.); (A.B.); (P.R.); (Y.G.); (A.R.S.); (L.L.); (D.A.-F.); (S.N.); (L.F.); (H.H.); (W.E.); (C.N.)
| | - Annika Brandau
- Department of General Surgery, Division of Vascular Surgery, University Hospital Vienna, Medical University of Vienna, 1090 Vienna, Austria; (B.Z.); (J.K.); (N.D.C.); (A.B.); (P.R.); (Y.G.); (A.R.S.); (L.L.); (D.A.-F.); (S.N.); (L.F.); (H.H.); (W.E.); (C.N.)
| | - Patrick Rossi
- Department of General Surgery, Division of Vascular Surgery, University Hospital Vienna, Medical University of Vienna, 1090 Vienna, Austria; (B.Z.); (J.K.); (N.D.C.); (A.B.); (P.R.); (Y.G.); (A.R.S.); (L.L.); (D.A.-F.); (S.N.); (L.F.); (H.H.); (W.E.); (C.N.)
| | - Yulia Gordeeva
- Department of General Surgery, Division of Vascular Surgery, University Hospital Vienna, Medical University of Vienna, 1090 Vienna, Austria; (B.Z.); (J.K.); (N.D.C.); (A.B.); (P.R.); (Y.G.); (A.R.S.); (L.L.); (D.A.-F.); (S.N.); (L.F.); (H.H.); (W.E.); (C.N.)
| | - Alexandra Regina Szewczyk
- Department of General Surgery, Division of Vascular Surgery, University Hospital Vienna, Medical University of Vienna, 1090 Vienna, Austria; (B.Z.); (J.K.); (N.D.C.); (A.B.); (P.R.); (Y.G.); (A.R.S.); (L.L.); (D.A.-F.); (S.N.); (L.F.); (H.H.); (W.E.); (C.N.)
| | - Linda Liu
- Department of General Surgery, Division of Vascular Surgery, University Hospital Vienna, Medical University of Vienna, 1090 Vienna, Austria; (B.Z.); (J.K.); (N.D.C.); (A.B.); (P.R.); (Y.G.); (A.R.S.); (L.L.); (D.A.-F.); (S.N.); (L.F.); (H.H.); (W.E.); (C.N.)
| | - Diana Ahmadi-Fazel
- Department of General Surgery, Division of Vascular Surgery, University Hospital Vienna, Medical University of Vienna, 1090 Vienna, Austria; (B.Z.); (J.K.); (N.D.C.); (A.B.); (P.R.); (Y.G.); (A.R.S.); (L.L.); (D.A.-F.); (S.N.); (L.F.); (H.H.); (W.E.); (C.N.)
| | - Sina Najarnia
- Department of General Surgery, Division of Vascular Surgery, University Hospital Vienna, Medical University of Vienna, 1090 Vienna, Austria; (B.Z.); (J.K.); (N.D.C.); (A.B.); (P.R.); (Y.G.); (A.R.S.); (L.L.); (D.A.-F.); (S.N.); (L.F.); (H.H.); (W.E.); (C.N.)
| | - Lukas Fuchs
- Department of General Surgery, Division of Vascular Surgery, University Hospital Vienna, Medical University of Vienna, 1090 Vienna, Austria; (B.Z.); (J.K.); (N.D.C.); (A.B.); (P.R.); (Y.G.); (A.R.S.); (L.L.); (D.A.-F.); (S.N.); (L.F.); (H.H.); (W.E.); (C.N.)
| | - Hubert Hayden
- Department of General Surgery, Division of Vascular Surgery, University Hospital Vienna, Medical University of Vienna, 1090 Vienna, Austria; (B.Z.); (J.K.); (N.D.C.); (A.B.); (P.R.); (Y.G.); (A.R.S.); (L.L.); (D.A.-F.); (S.N.); (L.F.); (H.H.); (W.E.); (C.N.)
| | - Christian Loewe
- Department for Bioimaging and Image-Guided Therapy, Division of Cardiovascular and Interventional Radiology, University Hospital Vienna, Medical University of Vienna, 1090 Vienna, Austria;
| | - Wolf Eilenberg
- Department of General Surgery, Division of Vascular Surgery, University Hospital Vienna, Medical University of Vienna, 1090 Vienna, Austria; (B.Z.); (J.K.); (N.D.C.); (A.B.); (P.R.); (Y.G.); (A.R.S.); (L.L.); (D.A.-F.); (S.N.); (L.F.); (H.H.); (W.E.); (C.N.)
| | - Christoph Neumayer
- Department of General Surgery, Division of Vascular Surgery, University Hospital Vienna, Medical University of Vienna, 1090 Vienna, Austria; (B.Z.); (J.K.); (N.D.C.); (A.B.); (P.R.); (Y.G.); (A.R.S.); (L.L.); (D.A.-F.); (S.N.); (L.F.); (H.H.); (W.E.); (C.N.)
| | - Christine Brostjan
- Department of General Surgery, Division of Vascular Surgery, University Hospital Vienna, Medical University of Vienna, 1090 Vienna, Austria; (B.Z.); (J.K.); (N.D.C.); (A.B.); (P.R.); (Y.G.); (A.R.S.); (L.L.); (D.A.-F.); (S.N.); (L.F.); (H.H.); (W.E.); (C.N.)
| |
Collapse
|
7
|
Huangfu N, Ma H, Tian M, Zhang J, Wang Y, Li Z, Chen X, Cui H. DHX9 Strengthens Atherosclerosis Progression By Promoting Inflammation in Macrophages. Inflammation 2023; 46:1725-1738. [PMID: 37326773 PMCID: PMC10567826 DOI: 10.1007/s10753-023-01836-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/26/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023]
Abstract
Atherosclerosis (AS) is the main cause of cerebrovascular diseases, and macrophages play important roles in atherosclerosis. DExH-Box helicase 9 (DHX9), as a member of DExD/H-box RNA helicase superfamily II, is identified as an autoantigen in the sera of systemic lupus erythematosus patients to trigger inflammation. The aim of this study was to investigate whether DHX9 is involved in AS development, especially in macrophages-mediated-inflammatory responses. We find that DHX9 expression is significantly increased in oxLDL or interferon-γ-treated macrophages and peripheral blood mononuclear cells (PBMCs) from patients with coronary artery disease (CAD). Knockdown of DHX9 inhibits lipid uptake and pro-inflammatory factors expression in macrophages, and ameliorates TNF-α-mediated monocyte adhesion capacity. Furthermore, we find that oxLDL stimulation promotes DHX9 interaction with p65 in macrophages, and further enhances the transcriptional activity of DHX9-p65-RNA Polymerase II complex to produce inflammatory factors. Moreover, using ApoE -/- mice fed with western diet to establish AS model, we find that knockdown of DHX9 mediated by adeno-associated virus-Sh-DHX9 through tail vein injection evidently alleviates AS progression in vivo. Finally, we also find that knockdown of DHX9 inhibits p65 activation, inflammatory factors expression, and the transcriptional activity of p65-RNA Polymerase II complex in PBMCs from patients with CAD. Overall, these results indicate that DHX9 promotes AS progression by enhancing inflammation in macrophages, and suggest DHX9 as a potential target for developing therapeutic drug.
Collapse
Affiliation(s)
- Ning Huangfu
- Department of Cardiology, Ningbo First Hospital, Ningbo, 315000, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315000, China
- Clinical Medicine Research Centre for Cardiovascular Disease of Ningbo, Ningbo, 315000, China
| | - Hongchuang Ma
- Department of Cardiology, Ningbo First Hospital, Ningbo, 315000, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315000, China
- Clinical Medicine Research Centre for Cardiovascular Disease of Ningbo, Ningbo, 315000, China
| | - Mengyun Tian
- School of Medicine, Ningbo University, Ningbo, 315000, China
| | - Jie Zhang
- Department of Cardiology, Ningbo First Hospital, Ningbo, 315000, China
- School of Medicine, Ningbo University, Ningbo, 315000, China
| | - Yong Wang
- Department of Cardiology, Ningbo First Hospital, Ningbo, 315000, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315000, China
- Clinical Medicine Research Centre for Cardiovascular Disease of Ningbo, Ningbo, 315000, China
| | - Zhenwei Li
- Department of Cardiology, Ningbo First Hospital, Ningbo, 315000, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315000, China
- Clinical Medicine Research Centre for Cardiovascular Disease of Ningbo, Ningbo, 315000, China
| | - Xiaomin Chen
- Department of Cardiology, Ningbo First Hospital, Ningbo, 315000, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315000, China.
- Clinical Medicine Research Centre for Cardiovascular Disease of Ningbo, Ningbo, 315000, China.
| | - Hanbin Cui
- Department of Cardiology, Ningbo First Hospital, Ningbo, 315000, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315000, China.
- Clinical Medicine Research Centre for Cardiovascular Disease of Ningbo, Ningbo, 315000, China.
| |
Collapse
|
8
|
Zhang X, Han T, Xu T, Wang H, Ma H. Uncovering Candidate mRNAs, Signaling Pathways and Immune Cells in Atherosclerotic Plaque and Ischemic Stroke. Int J Gen Med 2023; 16:2999-3012. [PMID: 37465552 PMCID: PMC10350412 DOI: 10.2147/ijgm.s418913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023] Open
Abstract
Background The specific molecular mechanistic link between atherosclerotic plaques and ischemic stroke (IS) is not clear. The aim of this study is to explore the potential molecular relationship between atherosclerotic plaques and IS. Methods All data were downloaded from the Gene Expression Omnibus (GEO) database. Key hub differentially expressed mRNAs (DEmRNAs) related to atherosclerotic plaques and IS were identified by differential expression analysis and least absolute shrinkage and selection operator (LASSO) analysis. Subsequently, a diagnostic model was established based on the expression of key hub DEmRNAs and logistic regression. In order to understand the molecular mechanism of key hub DEmRNAs, the transcription factor (TF) regulatory network and mRNA-miRNA-lncRNA regulatory network were also constructed. In addition, functional enrichment analysis and single-sample Gene Set Enrichment Analysis (ssGSEA) analysis were also performed. Results Four key hub DEmRNAs (ADCY3, CLDN7, PPM1B and RRAS2) were identified by differential expression analysis and LASSO analysis. Moreover, the diagnostic model based on four key hub DEmRNAs has excellent diagnostic accuracy. We also found that Type 1 T helper cell may be associated with IS caused by atherosclerosis based on ssGSEA analysis. In the mRNA-miRNA-lncRNA regulatory network, we found that multiple signaling axes such as RRAS2-hsa-miR-3150b-3p-ILF3-AS1, PPM1B-hsa-miR-541-5p-LINC00294, CLDN7-hsa-miR-184-LINC00467 and ADCY3-hsa-miR-488-3p-URB1-AS1 may play an important role in the progression of IS. In addition, some signaling pathways, including chemokine signaling pathway, MAPK signaling pathway and cAMP signaling pathway, may be involved in regulating IS. Conclusion The identified key molecules, signaling pathways and immune cells may help to provide a theoretical basis for exploring the relationship between atherosclerotic plaque and the progression of IS.
Collapse
Affiliation(s)
- Xianjing Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, People’s Republic of China
| | - Tingting Han
- Department of Emergency Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, People’s Republic of China
| | - Tengxiao Xu
- Department of Emergency Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, People’s Republic of China
| | - Huimin Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, People’s Republic of China
| | - Haijun Ma
- Department of Radiology, Taian Maternity and Child Health Care Hospital, Taian, 271000, People’s Republic of China
| |
Collapse
|
9
|
Dri E, Lampas E, Lazaros G, Lazarou E, Theofilis P, Tsioufis C, Tousoulis D. Inflammatory Mediators of Endothelial Dysfunction. Life (Basel) 2023; 13:1420. [PMID: 37374202 PMCID: PMC10305352 DOI: 10.3390/life13061420] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Endothelial dysfunction (ED) is characterized by imbalanced vasodilation and vasoconstriction, elevated reactive oxygen species (ROS), and inflammatory factors, as well as deficiency of nitric oxide (NO) bioavailability. It has been reported that the maintenance of endothelial cell integrity serves a significant role in human health and disease due to the involvement of the endothelium in several processes, such as regulation of vascular tone, regulation of hemostasis and thrombosis, cell adhesion, smooth muscle cell proliferation, and vascular inflammation. Inflammatory modulators/biomarkers, such as IL-1α, IL-1β, IL-6, IL-12, IL-15, IL-18, and tumor necrosis factor α, or alternative anti-inflammatory cytokine IL-10, and adhesion molecules (ICAM-1, VCAM-1), involved in atherosclerosis progression have been shown to predict cardiovascular diseases. Furthermore, several signaling pathways, such as NLRP3 inflammasome, that are associated with the inflammatory response and the disrupted H2S bioavailability are postulated to be new indicators for endothelial cell inflammation and its associated endothelial dysfunction. In this review, we summarize the knowledge of a plethora of reviews, research articles, and clinical trials concerning the key inflammatory modulators and signaling pathways in atherosclerosis due to endothelial dysfunction.
Collapse
Affiliation(s)
- Eirini Dri
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| | - Evangelos Lampas
- Department of Cardiology, Konstantopouleio General Hospital, 14233 Athens, Greece
| | - George Lazaros
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| | - Emilia Lazarou
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| | - Panagiotis Theofilis
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| | - Costas Tsioufis
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| |
Collapse
|
10
|
Wang L, Bao Y, Yu F, Zhu W, Wang JL, Yang J, Xie H, Huang D. Development of gene model combined with machine learning technology to predict for advanced atherosclerotic plaques. Clin Neurol Neurosurg 2023; 231:107819. [PMID: 37315377 DOI: 10.1016/j.clineuro.2023.107819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/03/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Atherosclerosis, as a major cause of stroke, is responsible for a quarter of deaths worldwide. In particular, rupture of late-stage plaques in large vessels such as the carotid artery can lead to serious cardiovascular disease. The aim of our study was to establish a genetic model combined with machining leaning techniques to screen out gene signatures and predict for advanced atherosclerosis plaques. METHODS The microarray dataset GSE28829 and GSE43292 which were publicly obtained from the Gene Expression Omnibus database were utilized to screen for potential predictive genes. Differentially expressed genes (DEGs) were identified by using the "limma" R package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes Genomes (KEGG) analyses of these DEGs were performed by Metascape. Later, Random Forest (RF) algorithm was applied to further screen out top-30 genes which contribute the most. The expression data of top 30-DEGs were converted into a "Gene Score". Finally, we developed a model based on artificial neural network (ANN) to predict advanced atherosclerotic plaques. The model later was validated in an independent test dataset GSE104140. RESULTS A total of 176 DEGs were identified in the training datasets. GO and KEGG enrichment analysis revealed that these genes were enriched in leukocyte-mediated immune response, cytokine- cytokine interactions, and immunoinflammatory signaling. Further, top-30 genes (including 25 upregulated and 5 downregulated DEGs) were screened as predictors by RF algorithm. The predictive model was developed with a significantly predictive value (AUC = 0.913) in the training datasets, and was validated with an independent dataset GSE104140 (AUC = 0.827). CONCLUSION In present study, our prediction model was established and showed satisfactory predictive power in both training and test datasets. In addition, this is the first study adopted bioinformatics methods combined with machine learning techniques (RF and ANN) to explore and predict for the advanced atherosclerotic plaques. However, further investigations were needed to verify the screened DEGs and predictive effectiveness of this model.
Collapse
Affiliation(s)
- Lufeng Wang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yiwen Bao
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Yu
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenxia Zhu
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Lang Wang
- Department of Imaging, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Yang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongrong Xie
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Dongya Huang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Egea V, Megens RTA, Santovito D, Wantha S, Brandl R, Siess W, Khani S, Soehnlein O, Bartelt A, Weber C, Ries C. Properties and fate of human mesenchymal stem cells upon miRNA let-7f-promoted recruitment to atherosclerotic plaques. Cardiovasc Res 2023; 119:155-166. [PMID: 35238350 PMCID: PMC10022860 DOI: 10.1093/cvr/cvac022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/28/2022] [Indexed: 11/12/2022] Open
Abstract
AIMS Atherosclerosis is a chronic inflammatory disease of the arteries leading to the formation of atheromatous plaques. Human mesenchymal stem cells (hMSCs) are recruited from the circulation into plaques where in response to their environment they adopt a phenotype with immunomodulatory properties. However, the mechanisms underlying hMSC function in these processes are unclear. Recently, we described that miRNA let-7f controls hMSC invasion guided by inflammatory cytokines and chemokines. Here, we investigated the role of let-7f in hMSC tropism to human atheromas and the effects of the plaque microenvironment on cell fate and release of soluble factors. METHODS AND RESULTS Incubation of hMSCs with LL-37, an antimicrobial peptide abundantly found in plaques, increased biosynthesis of let-7f and N-formyl peptide receptor 2 (FPR2), enabling chemotactic invasion of the cells towards LL-37, as determined by qRT-PCR, flow cytometry, and cell invasion assay analysis. In an Apoe-/- mouse model of atherosclerosis, circulating hMSCs preferentially adhered to athero-prone endothelium. This property was facilitated by elevated levels of let-7f in the hMSCs, as assayed by ex vivo artery perfusion and two-photon laser scanning microscopy. Exposure of hMSCs to homogenized human atheromatous plaque material considerably induced the production of various cytokines, chemokines, matrix metalloproteinases, and tissue inhibitors of metalloproteinases, as studied by PCR array and western blot analysis. Moreover, exposure to human plaque extracts elicited differentiation of hMSCs into cells of the myogenic lineage, suggesting a potentially plaque-stabilizing effect. CONCLUSIONS Our findings indicate that let-7f promotes hMSC tropism towards atheromas through the LL-37/FPR2 axis and demonstrate that hMSCs upon contact with human plaque environment develop a potentially athero-protective signature impacting the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- Virginia Egea
- Corresponding authors. Tel: +49-89-4400-55310, E-mail: (C.R.); Tel: +49-89-4400-43902, E-mail: (V.E.)
| | - Remco Theodorus Adrianus Megens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands
| | - Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Genetic and Biomedical Research (IRGB), UoS of Milan, National Research Council (CNR), Milan, Italy
| | - Sarawuth Wantha
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Richard Brandl
- St. Mary’s Square Institute for Vascular Surgery and Phlebology, Munich, Germany
| | - Wolfgang Siess
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Sajjad Khani
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University of Munich, Munich, Germany
- Department of Physiology and Pharmacology (FyFa), Karolinska Institutet, Stockholm, Sweden
- Institute for Experimental Pathology (ExPat), Center for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University of Muenster, Muenster, Germany
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany
- Department of Molecular Metabolism, Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University of Munich, Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christian Ries
- Corresponding authors. Tel: +49-89-4400-55310, E-mail: (C.R.); Tel: +49-89-4400-43902, E-mail: (V.E.)
| |
Collapse
|
12
|
Landete P, Fernández-García CE, Muñoz JM, Friera A, Ancochea J, González-Rodríguez Á, García-Monzón C. Sleep apnea-COPD overlap syndrome is associated with larger left carotid atherosclerotic plaques. Front Cardiovasc Med 2023; 10:1104377. [PMID: 37025690 PMCID: PMC10070750 DOI: 10.3389/fcvm.2023.1104377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
Background Little is known about whether the overlap syndrome (OS) combining features of chronic obstructive pulmonary disease (COPD) and sleep apnea-hypopnea syndrome increases the risk of stroke associated with COPD itself. Methods We prospectively studied 74 COPD patients and 32 subjects without lung disease. Spirometry and cardiorespiratory polygraphy were used to assess the pulmonary function of the study population and ultrasound measurements of intima media thickness (IMT) as well as the volume of plaques in both carotid arteries were also evaluated. Results Polygraphic criteria of OS were met in 51% of COPD patients. We found that 79% of patients with OS and 50% of COPD patients without OS had atherosclerotic plaques in the left carotid artery (p = 0.0509). Interestingly, the mean volume of atherosclerotic plaques was significantly higher in the left carotid artery of COPD patients with OS (0.07 ± 0.02 ml) than in those without OS (0.04 ± 0.02 ml, p = 0.0305). However, regardless of the presence of OS, no significant differences were observed in both presence and volume of atherosclerotic plaques in the right carotid artery of COPD patients. Adjusted-multivariate linear regression revealed age, current smoking and the apnea/hypopnea index (OR = 4.54, p = 0.012) as independent predictors of left carotid atherosclerotic plaques in COPD patients. Conclusions This study suggests that the presence of OS in COPD patients is associated with larger left carotid atherosclerotic plaques, indicating that OS might be screened in all COPD patients to identify those with higher risk of stroke.
Collapse
Affiliation(s)
- Pedro Landete
- Servicio de Neumología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
- Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Correspondence: Pedro Landete Carlos Ernesto Fernández-García
| | - Carlos Ernesto Fernández-García
- Liver Research Unit, Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
- Correspondence: Pedro Landete Carlos Ernesto Fernández-García
| | - José M. Muñoz
- Servicio de Radiodiagnóstico Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Alfonsi Friera
- Servicio de Radiodiagnóstico Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Julio Ancochea
- Servicio de Neumología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
- Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Águeda González-Rodríguez
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Carmelo García-Monzón
- Liver Research Unit, Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| |
Collapse
|
13
|
Rangarajan S, Orujyan D, Rangchaikul P, Radwan MM. Critical Role of Inflammation and Specialized Pro-Resolving Mediators in the Pathogenesis of Atherosclerosis. Biomedicines 2022; 10:2829. [PMID: 36359349 PMCID: PMC9687471 DOI: 10.3390/biomedicines10112829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2023] Open
Abstract
Recent research on how the body resolves this inflammation is gaining traction and has shed light on new avenues for future management of cardiovascular diseases. In this narrative review, we discuss the pathophysiological mechanisms of atherosclerosis, the recent development in the understanding of a new class of molecules called Specialized Pro-resolving Mediators (SPMs), and the impact of such findings in the realm of cardiovascular treatment options. We searched the MEDLINE database restricting ourselves to original research articles as much as possible on the complex pathophysiology of atherosclerosis and the role of SPMs. We expect to see further research in translating these findings to bedside clinical trials in treating conditions with a pathophysiological basis of inflammation, such as coronary artery disease, asthma, and periodontal disease.
Collapse
Affiliation(s)
- Subhapradha Rangarajan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Davit Orujyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Patrida Rangchaikul
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Mohamed M. Radwan
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
14
|
Henein MY, Vancheri S, Longo G, Vancheri F. The Role of Inflammation in Cardiovascular Disease. Int J Mol Sci 2022; 23:12906. [PMID: 36361701 PMCID: PMC9658900 DOI: 10.3390/ijms232112906] [Citation(s) in RCA: 250] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 07/21/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease, in which the immune system has a prominent role in its development and progression. Inflammation-induced endothelial dysfunction results in an increased permeability to lipoproteins and their subendothelial accumulation, leukocyte recruitment, and platelets activation. Recruited monocytes differentiate into macrophages which develop pro- or anti-inflammatory properties according to their microenvironment. Atheroma progression or healing is determined by the balance between these functional phenotypes. Macrophages and smooth muscle cells secrete inflammatory cytokines including interleukins IL-1β, IL-12, and IL-6. Within the arterial wall, low-density lipoprotein cholesterol undergoes an oxidation. Additionally, triglyceride-rich lipoproteins and remnant lipoproteins exert pro-inflammatory effects. Macrophages catabolize the oxidized lipoproteins and coalesce into a lipid-rich necrotic core, encapsulated by a collagen fibrous cap, leading to the formation of fibro-atheroma. In the conditions of chronic inflammation, macrophages exert a catabolic effect on the fibrous cap, resulting in a thin-cap fibro-atheroma which makes the plaque vulnerable. However, their morphology may change over time, shifting from high-risk lesions to more stable calcified plaques. In addition to conventional cardiovascular risk factors, an exposure to acute and chronic psychological stress may increase the risk of cardiovascular disease through inflammation mediated by an increased sympathetic output which results in the release of inflammatory cytokines. Inflammation is also the link between ageing and cardiovascular disease through increased clones of leukocytes in peripheral blood. Anti-inflammatory interventions specifically blocking the cytokine pathways reduce the risk of myocardial infarction and stroke, although they increase the risk of infections.
Collapse
Affiliation(s)
- Michael Y. Henein
- Institute of Public Health and Clinical Medicine, Umea University, 90187 Umea, Sweden
- Institute of Environment & Health and Societies, Brunel University, Middlesex SW17 0RE, UK
- Molecular and Clinical Sciences Research Institute, St. George’s University, London UB8 3PH, UK
| | - Sergio Vancheri
- Interventional Neuroradiology Department, Besançon University Hospital, 25000 Besançon, France
| | - Giovanni Longo
- Cardiovascular and Interventional Department, S.Elia Hospital, 93100 Caltanissetta, Italy
| | - Federico Vancheri
- Department of Internal Medicine, S.Elia Hospital, 93100 Caltanissetta, Italy
| |
Collapse
|
15
|
Duval V, Alayrac P, Silvestre JS, Levoye A. Emerging Roles of the Atypical Chemokine Receptor 3 (ACKR3) in Cardiovascular Diseases. Front Endocrinol (Lausanne) 2022; 13:906586. [PMID: 35846294 PMCID: PMC9276939 DOI: 10.3389/fendo.2022.906586] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/27/2022] [Indexed: 11/14/2022] Open
Abstract
Chemokines, and their receptors play a crucial role in the pathophysiology of cardiovascular diseases (CVD). Chemokines classically mediate their effects by binding to G-protein-coupled receptors. The discovery that chemokines can also bind to atypical chemokine receptors (ACKRs) and initiate alternative signaling pathways has changed the paradigm regarding chemokine-related functions. Among these ACKRs, several studies have highlighted the exclusive role of ACKR3, previously known as C-X-C chemokine receptor type 7 (CXCR7), in CVD. Indeed, ACKR3 exert atheroprotective, cardioprotective and anti-thrombotic effects through a wide range of cells including endothelial cells, platelets, inflammatory cells, fibroblasts, vascular smooth muscle cells and cardiomyocytes. ACKR3 functions as a scavenger receptor notably for the pleiotropic chemokine CXCL12, but also as a activator of different pathways such as β-arrestin-mediated signaling or modulator of CXCR4 signaling through the formation of ACKR3-CXCR4 heterodimers. Hence, a better understanding of the precise roles of ACKR3 may pave the way towards the development of novel and improved therapeutic strategies for CVD. Here, we summarize the structural determinant characteristic of ACKR3, the molecules targeting this receptor and signaling pathways modulated by ACKR3. Finally, we present and discuss recent findings regarding the role of ACKR3 in CVD.
Collapse
Affiliation(s)
- Vincent Duval
- Université Paris Cité, Institut National de la Santé Et Recherche Médicale (INSERM), Paris Cardiovascular Research Center PARCC, Paris, France
| | - Paul Alayrac
- Université Paris Cité, Institut National de la Santé Et Recherche Médicale (INSERM), Paris Cardiovascular Research Center PARCC, Paris, France
| | - Jean-Sébastien Silvestre
- Université Paris Cité, Institut National de la Santé Et Recherche Médicale (INSERM), Paris Cardiovascular Research Center PARCC, Paris, France
| | - Angélique Levoye
- Université Paris Cité, Institut National de la Santé Et Recherche Médicale (INSERM), Paris Cardiovascular Research Center PARCC, Paris, France
- UFR Santé Médecine Biologie Humaine, Université Sorbonne Paris Nord, Bobigny, France
- *Correspondence: Angélique Levoye,
| |
Collapse
|
16
|
Aghamajidi A, Gorgani M, Shahba F, Shafaghat Z, Mojtabavi N. The potential targets in immunotherapy of atherosclerosis. Int Rev Immunol 2021; 42:199-216. [PMID: 34779341 DOI: 10.1080/08830185.2021.1988591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Cardiovascular disease is the most common cause of death, which has the highest mortality rate worldwide. Although a diverse range of inflammatory diseases can affect the cardiovascular system, however, heart failure and stroke occur due to atherosclerosis. Atherosclerosis is a chronic autoinflammatory disease of small to large vessels in which different immune mediators are involved in lipid plaque formation and inflammatory vascular remodeling process. A better understanding of the pathophysiology of atherosclerosis may lead to uncovering immunomodulatory therapies. Despite present diagnostic and therapeutic methods, the lack of immunotherapy in the prevention and treatment of atherosclerosis is perceptible. In this review, we will discuss the promising immunological-based therapeutics and novel preventive approaches for atherosclerosis. This study could provide new insights into a better perception of targeted therapeutic pathways and biological therapies.
Collapse
Affiliation(s)
- Azin Aghamajidi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Melika Gorgani
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Faezeh Shahba
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shafaghat
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Martin P, Gurevich DB. Macrophage regulation of angiogenesis in health and disease. Semin Cell Dev Biol 2021; 119:101-110. [PMID: 34330619 DOI: 10.1016/j.semcdb.2021.06.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/24/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022]
Abstract
Macrophages are primarily known as phagocytic innate immune cells, but are, in fact, highly dynamic multi-taskers that interact with many different tissue types and have regulatory roles in development, homeostasis, tissue repair, and disease. In all of these scenarios angiogenesis is pivotal and macrophages appear to play a key role in guiding both blood vessel sprouting and remodelling wherever that occurs. Recent studies have explored these processes in a diverse range of models utilising the complementary strengths of rodent, fish and tissue culture studies to unravel the mechanisms underlying these interactions and regulatory functions. Here we discuss how macrophages regulate angiogenesis and its resolution as embryonic tissues grow, as well as their parallel and different functions in repairing wounds and in pathologies, with a focus on chronic wounds and cancer.
Collapse
Affiliation(s)
- Paul Martin
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK; School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - David Baruch Gurevich
- Department of Biology & Biochemistry, Faculty of Science, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
18
|
Cholesterol metabolism: a new molecular switch to control inflammation. Clin Sci (Lond) 2021; 135:1389-1408. [PMID: 34086048 PMCID: PMC8187928 DOI: 10.1042/cs20201394] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/30/2022]
Abstract
The immune system protects the body against harm by inducing inflammation. During the immune response, cells of the immune system get activated, divided and differentiated in order to eliminate the danger signal. This process relies on the metabolic reprogramming of both catabolic and anabolic pathways not only to produce energy in the form of ATP but also to generate metabolites that exert key functions in controlling the response. Equally important to mounting an appropriate effector response is the process of immune resolution, as uncontrolled inflammation is implicated in the pathogenesis of many human diseases, including allergy, chronic inflammation and cancer. In this review, we aim to introduce the reader to the field of cholesterol immunometabolism and discuss how both metabolites arising from the pathway and cholesterol homeostasis are able to impact innate and adaptive immune cells, staging cholesterol homeostasis at the centre of an adequate immune response. We also review evidence that demonstrates the clear impact that cholesterol metabolism has in both the induction and the resolution of the inflammatory response. Finally, we propose that emerging data in this field not only increase our understanding of immunometabolism but also provide new tools for monitoring and intervening in human diseases, where controlling and/or modifying inflammation is desirable.
Collapse
|
19
|
Roy-Chowdhury E, Brauns N, Helmke A, Nordlohne J, Bräsen JH, Schmitz J, Volkmann J, Fleig SV, Kusche-Vihrog K, Haller H, von Vietinghoff S. Human CD16+ monocytes promote a pro-atherosclerotic endothelial cell phenotype via CX3CR1-CX3CL1 interaction. Cardiovasc Res 2021; 117:1510-1522. [PMID: 32717023 DOI: 10.1093/cvr/cvaa234] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/17/2020] [Accepted: 07/22/2020] [Indexed: 12/31/2022] Open
Abstract
AIMS Monocytes are central for atherosclerotic vascular inflammation. The human non-classical, patrolling subtype, which expresses high levels of CD16 and fractalkine receptor CX3CR1, strongly associates with cardiovascular events. This is most marked in renal failure, a condition with excess atherosclerosis morbidity. The underlying mechanism is not understood. This study investigated how human CD16+ monocytes modulate endothelial cell function. METHODS AND RESULTS In patients with kidney failure, CD16+ monocyte counts were elevated and dynamically decreased within a year after transplantation, chiefly due to a drop in CD14+CD16+ cells. The CX3CR1 ligand CX3CL1 was similarly elevated in the circulation of humans and mice with renal impairment. CX3CL1 up-regulation was also observed close to macrophage rich human coronary artery plaques. To investigate a mechanistic basis of this association, CD16+CX3CR1HIGH monocytes were co-incubated with primary human endothelium in vitro. Compared to classical CD14+ monocytes or transwell cocultures, CD16+ monocytes enhanced endothelial STAT1 and NF-κB p65 phosphorylation, up-regulated expression of CX3CL1 and interleukin-1β, numerous CCL and CXCL chemokines and molecules promoting leucocyte patrolling and adhesion such as ICAM1 and VCAM1. Genes required for vasodilatation including endothelial nitric oxide synthase decreased while endothelial collagen production increased. Uraemic patients' monocytes enhanced endothelial CX3CL1 even more markedly. Their receptor CX3CR1 was required for enhanced aortic endothelial stiffness in murine atherosclerosis with renal impairment. CX3CR1 dose-dependently modulated monocyte-contact-dependent gene expression in human endothelium. CONCLUSION By demonstrating endothelial proatherosclerotic gene regulation in direct contact with CD16+ monocytes, in part via cellular CX3CR1-CX3CL1 interaction, our data delineate a mechanism how this celltype can increase cardiovascular risk.
Collapse
Affiliation(s)
- Eva Roy-Chowdhury
- Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Nicolas Brauns
- Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Alexandra Helmke
- Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Johannes Nordlohne
- Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | | | - Jessica Schmitz
- Department of Pathology, Hannover Medical School, Hannover, Germany
| | - Julia Volkmann
- Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Susanne V Fleig
- Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | | | - Hermann Haller
- Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Sibylle von Vietinghoff
- Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| |
Collapse
|
20
|
Shami A, Atzler D, Bosmans LA, Winkels H, Meiler S, Lacy M, van Tiel C, Ta Megens R, Nitz K, Baardman J, Kusters P, Seijkens T, Buerger C, Janjic A, Riccardi C, Edsfeldt A, Monaco C, Daemen M, de Winther MPJ, Nilsson J, Weber C, Gerdes N, Gonçalves I, Lutgens E. Glucocorticoid-induced tumour necrosis factor receptor family-related protein (GITR) drives atherosclerosis in mice and is associated with an unstable plaque phenotype and cerebrovascular events in humans. Eur Heart J 2021; 41:2938-2948. [PMID: 32728688 DOI: 10.1093/eurheartj/ehaa484] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/21/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
AIMS GITR-a co-stimulatory immune checkpoint protein-is known for both its activating and regulating effects on T-cells. As atherosclerosis bears features of chronic inflammation and autoimmunity, we investigated the relevance of GITR in cardiovascular disease (CVD). METHODS AND RESULTS GITR expression was elevated in carotid endarterectomy specimens obtained from patients with cerebrovascular events (n = 100) compared to asymptomatic patients (n = 93) and correlated with parameters of plaque vulnerability, including plaque macrophage, lipid and glycophorin A content, and levels of interleukin (IL)-6, IL-12, and C-C-chemokine ligand 2. Soluble GITR levels were elevated in plasma from subjects with CVD compared to healthy controls. Plaque area in 28-week-old Gitr-/-Apoe-/- mice was reduced, and plaques had a favourable phenotype with less macrophages, a smaller necrotic core and a thicker fibrous cap. GITR deficiency did not affect the lymphoid population. RNA sequencing of Gitr-/-Apoe-/- and Apoe-/- monocytes and macrophages revealed altered pathways of cell migration, activation, and mitochondrial function. Indeed, Gitr-/-Apoe-/- monocytes displayed decreased integrin levels, reduced recruitment to endothelium, and produced less reactive oxygen species. Likewise, GITR-deficient macrophages produced less cytokines and had a reduced migratory capacity. CONCLUSION Our data reveal a novel role for the immune checkpoint GITR in driving myeloid cell recruitment and activation in atherosclerosis, thereby inducing plaque growth and vulnerability. In humans, elevated GITR expression in carotid plaques is associated with a vulnerable plaque phenotype and adverse cerebrovascular events. GITR has the potential to become a novel therapeutic target in atherosclerosis as it reduces myeloid cell recruitment to the arterial wall and impedes atherosclerosis progression.
Collapse
Affiliation(s)
- Annelie Shami
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians Universität, München, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Laura A Bosmans
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Holger Winkels
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,Department of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Svenja Meiler
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany
| | - Michael Lacy
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Claudia van Tiel
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Remco Ta Megens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | - Katrin Nitz
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany
| | - Jeroen Baardman
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Pascal Kusters
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Tom Seijkens
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Christina Buerger
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany
| | - Aleksandar Janjic
- Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-Universität, München, Martinsried, Germany
| | - Carlo Riccardi
- Department of Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Andreas Edsfeldt
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö, Sweden.,Department of Cardiology, Skåne University Hospital, Lund University, Sweden
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK
| | - Mat Daemen
- Department of Pathology, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Menno P J de Winther
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany
| | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö, Sweden
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Isabel Gonçalves
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö, Sweden.,Department of Cardiology, Skåne University Hospital, Lund University, Sweden
| | - Esther Lutgens
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
21
|
Caso VM, Manzo V, Pecchillo Cimmino T, Conti V, Caso P, Esposito G, Russo V, Filippelli A, Ammendola R, Cattaneo F. Regulation of Inflammation and Oxidative Stress by Formyl Peptide Receptors in Cardiovascular Disease Progression. Life (Basel) 2021; 11:243. [PMID: 33804219 PMCID: PMC7998928 DOI: 10.3390/life11030243] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 12/23/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are the most important regulators of cardiac function and are commonly targeted for medical therapeutics. Formyl-Peptide Receptors (FPRs) are members of the GPCR superfamily and play an emerging role in cardiovascular pathologies. FPRs can modulate oxidative stress through nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent reactive oxygen species (ROS) production whose dysregulation has been observed in different cardiovascular diseases. Therefore, many studies are focused on identifying molecular mechanisms of the regulation of ROS production. FPR1, FPR2 and FPR3 belong to the FPRs family and their stimulation triggers phosphorylation of intracellular signaling molecules and nonsignaling proteins that are required for NADPH oxidase activation. Some FPR agonists trigger inflammatory processes, while other ligands activate proresolving or anti-inflammatory pathways, depending on the nature of the ligands. In general, bacterial and mitochondrial formylated peptides activate a proinflammatory cell response through FPR1, while Annexin A1 and Lipoxin A4 are anti-inflammatory FPR2 ligands. FPR2 can also trigger a proinflammatory pathway and the switch between FPR2-mediated pro- and anti-inflammatory cell responses depends on conformational changes of the receptor upon ligand binding. Here we describe the detrimental or beneficial effects of the main FPR agonists and their potential role as new therapeutic and diagnostic targets in the progression of cardiovascular diseases.
Collapse
Affiliation(s)
- Valentina Maria Caso
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (V.M.C.); (V.M.); (V.C.); (A.F.)
| | - Valentina Manzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (V.M.C.); (V.M.); (V.C.); (A.F.)
| | - Tiziana Pecchillo Cimmino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (G.E.); (R.A.)
| | - Valeria Conti
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (V.M.C.); (V.M.); (V.C.); (A.F.)
| | - Pio Caso
- Department of Cardiology, AORN Ospedali dei Colli-Monaldi, 80131 Naples, Italy;
| | - Gabriella Esposito
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (G.E.); (R.A.)
| | - Vincenzo Russo
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy;
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (V.M.C.); (V.M.); (V.C.); (A.F.)
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (G.E.); (R.A.)
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (G.E.); (R.A.)
| |
Collapse
|
22
|
Li R, Zhou Y, Liu W, Li Y, Qin Y, Yu L, Chen Y, Xu Y. Rare earth element lanthanum protects against atherosclerosis induced by high-fat diet via down-regulating MAPK and NF-κB pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111195. [PMID: 32891972 DOI: 10.1016/j.ecoenv.2020.111195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/03/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Rare earth elements, which are extensively used in environmental protection, medicine, food, aerospace and other fields, have attracted widespread attention in recent years. However, the effect on atherosclerosis and its biological mechanism remains unclear. To elucidate these problems, here we performed a study that Apolipoprotein E-deficient mice were fed with high-fat diet to promote the development of atherosclerosis, meanwhile, mice were received 0.1, 0.2, 1.0, 2.0 mg/kg lanthanum nitrate (La(NO3)3) for 12 weeks. The results showed that La(NO3)3 prominently inhibited aorta morphological alternations by histopathological examination. Meanwhile, La(NO3)3 regulated serum lipids, including reducing total cholesterol and increasing high-density lipoprotein. Moreover, the oxidative stress was alleviated by La(NO3)3 intervention through enhancing superoxide dismutase and glutathione, and decreasing malondialdehyde levels. In addition, enzyme-linked immunosorbent assay analysis showed La(NO3)3 could ameliorate the dysfunction of vascular endothelium with declined endothelin-1 and increased prostacyclin. Furthermore, Western blot analysis indicated that La(NO3)3 significantly down-regulated inflammation-mediated proteins including phosphorylated p38 mitogen-activated protein kinases (p-p38 MAPK), monocyte chemo-attractant protein, intercellular adhesion molecule-1, nuclear factor-kappa B p65 (NF-κB p65), tumor necrosis factor-α, interleukin-6 and interleukin-1β, whereas up-regulated the inhibitor of NF-κB protein. In conclusion, La(NO3)3 ameliorates atherosclerosis by regulating lipid metabolism, oxidative stress, endothelial dysfunction and inflammatory response in mice. The potential mechanism associates with the inhibition of MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Ruijun Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, 100083, China.
| | - Yalin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, 100083, China.
| | - Wei Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, 100083, China.
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, 100083, China.
| | - Yong Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, 100083, China.
| | - Lanlan Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, 100083, China.
| | - Yuhan Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, 100083, China.
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, 100083, China; Toxicological Research and Risk Assessment for Food Safety, Beijing, 100083, China.
| |
Collapse
|
23
|
Prescott E, Pernow J, Saraste A, Åkerblom A, Angerås O, Erlinge D, Grove EL, Hedman M, Jensen LO, Svedlund S, Kjaer M, Lagerström-Fermér M, Gan LM. Design and rationale of FLAVOUR: A phase IIa efficacy study of the 5-lipoxygenase activating protein antagonist AZD5718 in patients with recent myocardial infarction. Contemp Clin Trials Commun 2020; 19:100629. [PMID: 32875138 PMCID: PMC7451793 DOI: 10.1016/j.conctc.2020.100629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/14/2020] [Accepted: 07/26/2020] [Indexed: 11/07/2022] Open
Abstract
Patients with coronary artery disease remain at increased risk of recurrent life-threatening cardiovascular events even after adequate guideline-based treatment of conventional risk factors, including blood lipid levels. Inflammation is a critical pathway in the pathogenesis of atherosclerosis and is independently associated with risk of recurrent cardiovascular events. Leukotrienes are potent pro-inflammatory and vasoactive mediators synthesized by leukocytes in atherosclerotic lesions. AZD5718 is a novel antagonist of 5-lipoxygenase activating protein that suppresses leukotriene biosynthesis. FLAVOUR is a phase IIa efficacy and safety study of AZD5718 in patients with myocardial infarction 1-4 weeks before randomization. Stenosis of the left anterior descending coronary artery after percutaneous intervention must be <50%, and Thrombolysis In Myocardial Infarction flow grade must be ≥ 2. Enrolled participants receive standard care plus oral AZD5718 200 mg, 50 mg, or placebo once daily for up to 12 weeks (extended from 4 weeks by protocol amendment). The planned sample size is 100 participants randomized to 12 weeks' treatment. Change in urine leukotriene E4 levels is the primary efficacy outcome. FLAVOUR also aims to evaluate whether AZD5718 can improve coronary microvascular function, as measured by transthoracic colour Doppler-assisted coronary flow velocity reserve. Centrally pretrained study sonographers use standardized protocols and equipment. Additional outcomes include assessment of comprehensive echocardiographic parameters (including coronary flow, global strain, early diastolic strain rate and left ventricular ejection fraction), arterial stiffness, biomarkers, health-related quality of life, and safety. Specific anti-inflammatory therapies may represent novel promising treatments to reduce residual risk in patients with coronary artery disease. By combining primary pharmacodynamic and secondary cardiovascular surrogate efficacy outcomes, FLAVOUR aims to investigate the mechanistic basis and potential benefits of AZD5718 treatment in patients with coronary artery disease.
Collapse
Affiliation(s)
- Eva Prescott
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - John Pernow
- Division of Cardiology, Department of Medicine, Karolinska Institute, Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Antti Saraste
- University of Turku and Heart Centre, Turku University Hospital, Turku, Finland
| | - Axel Åkerblom
- Department of Medical Sciences – Cardiology, and Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Oskar Angerås
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, and Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - David Erlinge
- Cardiology, Department of Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
| | - Erik L. Grove
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Marja Hedman
- Department of Cardiothoracic Surgery, Heart Center, Kuopio University Hospital, Kuopio, Finland
| | - Lisette O. Jensen
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Sara Svedlund
- Department of Clinical Physiology, Sahlgrenska University Hospital, and Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Kjaer
- Early Biometrics and Statistical Innovation, Data Science & AI, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maria Lagerström-Fermér
- Research and Early Development, Cardiovascular, Renal and Metabolic, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Li-Ming Gan
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, and Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Research and Early Development, Cardiovascular, Renal and Metabolic, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
24
|
Mussbacher M, Salzmann M, Haigl B, Basílio J, Hochreiter B, Gleitsmann V, Moser B, Hoesel B, Suur BE, Puhm F, Ungerböck C, Kuttke M, Forteza MJ, Binder CJ, Ketelhuth DF, Assinger A, Schmid JA. Ikk2-mediated inflammatory activation of arterial endothelial cells promotes the development and progression of atherosclerosis. Atherosclerosis 2020; 307:21-31. [DOI: 10.1016/j.atherosclerosis.2020.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 05/14/2020] [Accepted: 06/05/2020] [Indexed: 10/23/2022]
|
25
|
Wasserman AH, Venkatesan M, Aguirre A. Bioactive Lipid Signaling in Cardiovascular Disease, Development, and Regeneration. Cells 2020; 9:E1391. [PMID: 32503253 PMCID: PMC7349721 DOI: 10.3390/cells9061391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/23/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) remains a leading cause of death globally. Understanding and characterizing the biochemical context of the cardiovascular system in health and disease is a necessary preliminary step for developing novel therapeutic strategies aimed at restoring cardiovascular function. Bioactive lipids are a class of dietary-dependent, chemically heterogeneous lipids with potent biological signaling functions. They have been intensively studied for their roles in immunity, inflammation, and reproduction, among others. Recent advances in liquid chromatography-mass spectrometry techniques have revealed a staggering number of novel bioactive lipids, most of them unknown or very poorly characterized in a biological context. Some of these new bioactive lipids play important roles in cardiovascular biology, including development, inflammation, regeneration, stem cell differentiation, and regulation of cell proliferation. Identifying the lipid signaling pathways underlying these effects and uncovering their novel biological functions could pave the way for new therapeutic strategies aimed at CVD and cardiovascular regeneration.
Collapse
Affiliation(s)
- Aaron H. Wasserman
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Manigandan Venkatesan
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Aitor Aguirre
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
26
|
Lioudaki S, Verikokos C, Kouraklis G, Ioannou C, Chatziioannou E, Perrea D, Klonaris C. Paraoxonase-1: Characteristics and Role in Atherosclerosis and Carotid Artery Disease. Curr Vasc Pharmacol 2020; 17:141-146. [PMID: 29189170 DOI: 10.2174/1570161115666171129212359] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/16/2017] [Accepted: 11/01/2017] [Indexed: 11/22/2022]
Abstract
Paraoxonase-1 (PON-1) is a calcium-dependent enzyme that is synthesized in the liver and then secreted in blood where it is bound to high density lipoprotein (HDL). PON-1 is a hydrolase with a wide range of substrates, including lipid peroxides. It is considered responsible for many of the antiatherogenic properties of HDL. PON-1 prevents low density lipoprotein (LDL) oxidation, a process that is considered to contribute to the initiation and development of atherosclerosis. PON-1 activity and levels are influenced by gene polymorphisms; of the 2 common variants, one is in position 192 (Q192R) and one in position 55 (M55L). Also, many drugs affect PON-1 activity. The role of PON-1 in carotid atherosclerosis is inconsistent. Some studies show an association of PON-1 polymorphisms with carotid plaque formation, whereas others do not. The aim of this review is to summarize the characteristics of PON-1, its interactions with drugs and its role in atherosclerosis and especially its relationship with carotid artery disease.
Collapse
Affiliation(s)
- S Lioudaki
- Vascular Department, University Hospital of Heraklion, Medical School of Crete, University of Crete, Heraklion, Greece
| | - C Verikokos
- 2nd Department of Surgery, "Laiko Hospital", Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - G Kouraklis
- 2nd Department of Surgery, "Laiko Hospital", Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - C Ioannou
- Vascular Department, University Hospital of Heraklion, Medical School of Crete, University of Crete, Heraklion, Greece
| | - E Chatziioannou
- Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - D Perrea
- Laboratory for Experimental Surgery and Surgical Research "N.S. Christeas", Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - C Klonaris
- 1st Department of Surgery, "Laiko Hospital", Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
27
|
Ran N, Pang Z, Guan X, Wang G, Liu J, Li P, Zheng J, Wang F. Therapeutic Effect and Mechanism Study of Rhodiola wallichiana var. cholaensis Injection to Acute Blood Stasis Using Metabolomics Based on UPLC-Q/TOF-MS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:1514845. [PMID: 31781258 PMCID: PMC6874959 DOI: 10.1155/2019/1514845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/15/2019] [Accepted: 10/08/2019] [Indexed: 01/13/2023]
Abstract
In traditional Chinese medicine theory, blood stasis syndrome (BSS), characterized by blood flow retardation and blood stagnation, is one of the main pathologic mechanisms and clinical syndromes of cardiovascular diseases (CVDs). Rhodiola wallichiana var. cholaensis injection (RWCI) is made from dry roots and stems of RWC via the processes of decoction, alcohol precipitation, filtration, and dilution. Studies indicated the extracts of RWC could alleviate CVDs; however, the mechanism had not been illustrated. In the present study, the acute blood stasis rat model was established to investigate the pathogenesis of BSS and the therapeutic mechanism of RWCI against BSS. Hemorheological parameters (whole blood viscosity and plasma viscosity) and inflammatory factors (TNF-α and IL-6) were used to evaluate the success of the BSS rat model and RWCI efficacy. 14 and 33 differential metabolites were identified from plasma and urine samples using the metabolomics approach based on ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. The results of multivariate analysis displayed that there were significant separations among model, control, and treatment groups, but the high-dose RWCI treatment group was closer to the control group. 9 perturbed metabolic pathways were related to BSS's development and RWCI intervention. 5 metabolic pathways (arachidonic acid metabolism, linoleic acid metabolism, alpha-linolenic acid metabolism, retinol metabolism, and steroid hormone biosynthesis) showed apparent correlations. These differential metabolites and perturbed metabolic pathways might provide a novel view to understand the pathogenesis of BSS and the pharmacological mechanism of RWCI.
Collapse
Affiliation(s)
- Nan Ran
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Zhiqiang Pang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xuewa Guan
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Guoqiang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jinping Liu
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Pingya Li
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Jingtong Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
28
|
Mazzaferro S, Cianciolo G, De Pascalis A, Guglielmo C, Urena Torres PA, Bover J, Tartaglione L, Pasquali M, La Manna G. Bone, inflammation and the bone marrow niche in chronic kidney disease: what do we know? Nephrol Dial Transplant 2019; 33:2092-2100. [PMID: 29733407 DOI: 10.1093/ndt/gfy115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/02/2018] [Indexed: 02/06/2023] Open
Abstract
Recent improvements in our understanding of physiology have altered the way in which bone is perceived: no longer is it considered as simply the repository of divalent ions, but rather as a sophisticated endocrine organ with potential extraskeletal effects. Indeed, a number of pathologic conditions involving bone in different ways can now be reconsidered from a bone-centred perspective. For example, in metabolic bone diseases like osteoporosis (OP) and renal osteodystrophy (ROD), the association with a worse cardiovascular outcome can be tentatively explained by the possible derangements of three recently discovered bone hormones (osteocalcin, fibroblast growth factor 23 and sclerostin) and a bone-specific enzyme (alkaline phosphatase). Further, in recent years the close link between bone and inflammation has been better appreciated and a wide range of chronic inflammatory states (from rheumatoid arthritis to ageing) are being explored to discover the biochemical changes that ultimately lead to bone loss and OP. Also, it has been acknowledged that the concept of the bone-vascular axis may explain, for example, the relationship between bone metabolism and vessel wall diseases like atherosclerosis and arteriosclerosis, with potential involvement of a number of cytokines and metabolic pathways. A very important discovery in bone physiology is the bone marrow (BM) niche, the functional unit where stem cells interact, exchanging signals that impact on their fate as bone-forming cells or immune-competent haematopoietic elements. This new element of bone physiology has been recognized to be dysfunctional in diabetes (so-called diabetic mobilopathy), with possible clinical implications. In our opinion, ROD, the metabolic bone disease of renal patients, will in the future probably be identified as a cause of BM niche dysfunction. An integrated view of bone, which includes the BM niche, now seems necessary in order to understand the complex clinical entity of chronic kidney disease-mineral and bone disorders and its cardiovascular burden. Bone is thus becoming a recurrently considered paradigm for different inter-organ communications that needs to be considered in patients with complex diseases.
Collapse
Affiliation(s)
- Sandro Mazzaferro
- Department of Cardiovascular Respiratory Nephrologic Geriatric and Anesthetic Sciences, Sapienza University of Rome, Rome, Italy.,Nephrology Unit, Azienda Ospedaliero-Universitaria Policlinico Umberto I, Rome, Italy
| | - Giuseppe Cianciolo
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, St Orsola Hospital, University of Bologna, Bologna, Italy
| | - Antonio De Pascalis
- Nephrology, Dialysis and Renal Transplant Unit, Vito Fazzi Hospital, Lecce, Italy
| | - Chiara Guglielmo
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, St Orsola Hospital, University of Bologna, Bologna, Italy
| | - Pablo A Urena Torres
- Ramsay-Générale de Santé, Clinique du Landy, Department of Nephrology and Dialysis and Department of Renal Physiology, Necker Hospital, University of Paris Descartes, Paris, France
| | - Jordi Bover
- Fundació Puigvert, Department of Nephrology IIB Sant Pau, RedinRen, Barcelona, Catalonia, Spain
| | - Lida Tartaglione
- Department of Cardiovascular Respiratory Nephrologic Geriatric and Anesthetic Sciences, Sapienza University of Rome, Rome, Italy
| | - Marzia Pasquali
- Nephrology Unit, Azienda Ospedaliero-Universitaria Policlinico Umberto I, Rome, Italy
| | - Gaetano La Manna
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, St Orsola Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
29
|
Jiang Y, Du H, Liu X, Fu X, Li X, Cao Q. Artemisinin alleviates atherosclerotic lesion by reducing macrophage inflammation via regulation of AMPK/NF-κB/NLRP3 inflammasomes pathway. J Drug Target 2019; 28:70-79. [PMID: 31094238 DOI: 10.1080/1061186x.2019.1616296] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is increasing evidence that atherosclerosis is the significant risk factor for cardiovascular diseases, which are the leading causes of morbidity and mortality worldwide. Artemisinin is a natural endoperoxides quiterpene lactone compound in Artemisia annua L with vasculoprotective effects. The primary aim of this study was to investigate whether artemisinin could be conferred an anti-atherosclerotic effect in high-fat diet (HFD)-fed ApoE-/- mice and explore the possible mechanism. We found that treatment with artemisinin (50 and 100 mg/kg) effectively ameliorated atherosclerotic lesions, such as foam cell formation, hyperplasia and fibrosis in the aortic intima. Atherosclerotic mice treated with artemisinin showed reduced inflammation by up-regulating adenosine 5'-monophosphate (AMP) activated protein kinase (AMPK) activation and by down-regulating nuclear factor-κB (NF-κB) phosphorylation and nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome expression in the aortas. In addition, artemisinin was found to promote AMPK activity in macrophages and its anti-inflammatory effect was neutralised by AMPK silence using specific siRNA. In conclusion, we demonstrate that artemisinin may protect the aortas from atherosclerotic lesions by suppression of inflammatory reaction via AMPK/NF-κB/NLRP3 inflammasomes signalling in macrophages.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Hongjiao Du
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xue Liu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xi Fu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xiaodong Li
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Qian Cao
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
30
|
Hu D, Yin C, Luo S, Habenicht AJR, Mohanta SK. Vascular Smooth Muscle Cells Contribute to Atherosclerosis Immunity. Front Immunol 2019; 10:1101. [PMID: 31164888 PMCID: PMC6534067 DOI: 10.3389/fimmu.2019.01101] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/30/2019] [Indexed: 11/13/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) constitute the major cells in the media layer of arteries, and are critical to maintain the integrity of the arterial wall. They participate in arterial wall remodeling, and play important roles in atherosclerosis throughout all stages of the disease. Studies demonstrate that VSMCs can adopt numerous phenotypes depending on inputs from endothelial cells (ECs) of the intima, resident cells of the adventitia, circulating immune cells, hormones, and plasma lipoproteins. This plasticity allows them to perform multiple tasks in physiology and disease. In this minireview, we focus on a previously underappreciated activity of VSMCs, i.e., their impact on atherosclerosis immunity via formation of artery tertiary lymphoid organs (ATLOs).
Collapse
Affiliation(s)
- Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changjun Yin
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Andreas J R Habenicht
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sarajo K Mohanta
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
31
|
Meng LB, Shan MJ, Yu ZM, Lv J, Qi RM, Guo P, Zhang YM, Gong T. Chronic stress: a crucial promoter of cell apoptosis in atherosclerosis. J Int Med Res 2019; 48:300060518814606. [PMID: 30700193 PMCID: PMC7140195 DOI: 10.1177/0300060518814606] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective Chronic stress may lead to augmented incidence rates of coronary and
cerebrovascular diseases associated with atherosclerosis. However, few
studies have focused on the effect of chronic stress on atherosclerosis
plaque formation. Therefore, this study was designed to directly evaluate
how chronic stress affects atherosclerosis. Methods Thirty rabbits were divided into three groups: the control group,
balloon-injury operation + high-fat diet model group, and chronic
stress + balloon-injury operation + high-fat diet model group. Physical and
social stress were induced, and proteomic methods were applied to identify
specific markers. Results After protein determination, the chronic stress + balloon-injury
operation + high-fat diet model group exhibited significant upregulation of
the following apoptosis-related proteins: UBE2K, caspase 3, caspase 9, BAX,
P53, and FAS. In particular, real-time polymerase chain reaction showed that
the protein expression of caspase 9 was significantly downregulated in the
stress group compared with the non-stress groups. However, the other
proteins showed significantly increased expression in the stress group. Conclusion Chronic stress may promote cell apoptosis in the physiopathologic process of
atherosclerosis.
Collapse
Affiliation(s)
- Ling-Bing Meng
- Neurology Department, Beijing Hospital, National Center of Gerontology, Dong Dan, Beijing, China
| | - Meng-Jie Shan
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ze-Mou Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jian Lv
- Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Ruo-Mei Qi
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Dong Dan, Beijing, China
| | - Peng Guo
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Yuan-Meng Zhang
- Internal Medicine Department, Jinzhou Medical University, Liaoning, China
| | - Tao Gong
- Neurology Department, Beijing Hospital, National Center of Gerontology, Dong Dan, Beijing, China
| |
Collapse
|
32
|
Upchurch C, Leitinger N. Biologically Active Lipids in Vascular Biology. FUNDAMENTALS OF VASCULAR BIOLOGY 2019. [DOI: 10.1007/978-3-030-12270-6_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Cervadoro A, Palomba R, Vergaro G, Cecchi R, Menichetti L, Decuzzi P, Emdin M, Luin S. Targeting Inflammation With Nanosized Drug Delivery Platforms in Cardiovascular Diseases: Immune Cell Modulation in Atherosclerosis. Front Bioeng Biotechnol 2018; 6:177. [PMID: 30542650 PMCID: PMC6277804 DOI: 10.3389/fbioe.2018.00177] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 11/06/2018] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis (AS) is a disorder of large and medium-sized arteries; it consists in the formation of lipid-rich plaques in the intima and inner media, whose pathophysiology is mostly driven by inflammation. Currently available interventions and therapies for treating atherosclerosis are not always completely effective; side effects associated with treatments, mainly caused by immunodepression for anti-inflammatory molecules, limit the systemic administration of these and other drugs. Given the high degree of freedom in the design of nanoconstructs, in the last decades researchers have put high effort in the development of nanoparticles (NPs) formulations specifically designed for either drug delivery, visualization of atherosclerotic plaques, or possibly the combination of both these and other functionalities. Here we will present the state of the art of these subjects, the knowledge of which is necessary to rationally address the use of NPs for prevention, diagnosis, and/or treatment of AS. We will analyse the work that has been done on: (a) understanding the role of the immune system and inflammation in cardiovascular diseases, (b) the pathological and biochemical principles in atherosclerotic plaque formation, (c) the latest advances in the use of NPs for the recognition and treatment of cardiovascular diseases, (d) the cellular and animal models useful to study the interactions of NPs with the immune system cells.
Collapse
Affiliation(s)
| | - Roberto Palomba
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Giuseppe Vergaro
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Pisa, Italy.,Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Roberta Cecchi
- NEST Laboratory, Scuola Normale Superiore, Pisa, Italy.,Center for Nanotechnology Innovation (CNI@NEST), Istituto Italiano di Tecnologia, Pisa, Italy
| | | | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Michele Emdin
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Pisa, Italy.,Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Stefano Luin
- NEST Laboratory, Scuola Normale Superiore, Pisa, Italy.,NEST Laboratory, Istituto Nanoscienze, CNR, Pisa, Italy
| |
Collapse
|
34
|
Pirault J, Bäck M. Lipoxin and Resolvin Receptors Transducing the Resolution of Inflammation in Cardiovascular Disease. Front Pharmacol 2018; 9:1273. [PMID: 30487747 PMCID: PMC6247824 DOI: 10.3389/fphar.2018.01273] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022] Open
Abstract
A non-resolving inflammation results in a chronic inflammatory response, characteristic of atherosclerosis, abdominal aortic aneurysms and several other cardiovascular diseases. Restoring the levels of specialized proresolving mediators to drive the chronic cardiovascular inflammation toward resolution is emerging as a novel therapeutic principle. The lipid mediators lipoxins and resolvins exert their proresolving actions through specific G-protein coupled receptors (GPCR). So far, four GPCR have been identified as the receptors for lipoxin A4 and the D- and E-series of resolvins, namely ALX/FPR2, DRV1/GPR32, DRV2/GPR18, and ERV1/ChemR23. At the same time, other pro-inflammatory ligands also activate some of these receptors. Recent studies of genetic targeting of these receptors in atherosclerotic mouse strains have revealed a major role for proresolving receptors in atherosclerosis. The present review addresses the complex pharmacology of these four proresolving GPCRs with focus on their therapeutic implications and opportunities for inducing the resolution of inflammation in cardiovascular disease.
Collapse
Affiliation(s)
- John Pirault
- AGing Innovation & Research (AGIR) Program at INSERM U1116, Nancy University Hospital and The University of Lorraine, Nancy, France
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Bäck
- AGing Innovation & Research (AGIR) Program at INSERM U1116, Nancy University Hospital and The University of Lorraine, Nancy, France
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Valvular and Coronary Disease, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
35
|
Murashov IS, Volkov AM, Kazanskaya GM, Kliver EE, Chernyavsky AM, Nikityuk DB, Lushnikova EL. Immunohistochemical Features of Different Types of Unstable Atherosclerotic Plaques of Coronary Arteries. Bull Exp Biol Med 2018; 166:102-106. [PMID: 30417299 DOI: 10.1007/s10517-018-4297-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/30/2022]
Abstract
We performed a complex morphological study of samples of different types of unstable atherosclerotic plaques obtained from 33 men with occlusive coronary atherosclerosis, who underwent coronary artery endarterectomy during coronary artery bypass surgery. In the samples, expression of MMP-2 and MMP-9, collagen IV, CD31, CD34, factor VIII, and actin of smooth muscle cells was evaluated by morphometric and immunohistochemical methods. The maximum expression of MMP-9 was found in unstable plaques of the lipid type, where it 1.4- and 1.24-fold surpassed the corresponding levels in plaques of the inflammatory-erosive and degenerative-necrotic types. Unstable plaques of the degenerative-necrotic type are characterized by the most intensive expression of collagen IV in comparison with plaques of the inflammatory-erosive and lipid types (by 2.8 and 2.2 times, respectively). The maximum neovascularization was detected in inflammatory-erosive plaques, which was confirmed by enhanced expression of CD31 and CD34 markers in comparison with plaques of the lipid (by 7.6 and 18.95 times, respectively) and degenerative-necrotic (by 31.1 and 39.8 times) types.
Collapse
Affiliation(s)
- I S Murashov
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia. .,E. N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia.
| | - A M Volkov
- E. N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - G M Kazanskaya
- E. N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - E E Kliver
- E. N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - A M Chernyavsky
- E. N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - D B Nikityuk
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - E L Lushnikova
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| |
Collapse
|
36
|
Pellegrin M, Bouzourène K, Aubert JF, Nahimana A, Duchosal MA, Mazzolai L. Activation of Bone Marrow-Derived Cells Angiotensin (Ang) II Type 1 Receptor by Ang II Promotes Atherosclerotic Plaque Vulnerability. Int J Mol Sci 2018; 19:ijms19092621. [PMID: 30181481 PMCID: PMC6163751 DOI: 10.3390/ijms19092621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/24/2018] [Accepted: 08/31/2018] [Indexed: 02/08/2023] Open
Abstract
Angiotensin (Ang) II triggers vulnerable atherosclerotic plaque development. Bone marrow (BM)-derived cells are key players in atherogenesis but whether Ang II induces plaque vulnerability directly through Ang II type 1 receptor (AT1R) activation on these cells remains to be clarified. In the present study, we investigated whether a lack of AT1R on BM-derived cells might affect Ang II-mediated vulnerable plaque development. The 2-kidney, 1-clip (2K1C) model (Ang II-dependent mouse model of advanced atherosclerosis and vulnerable plaques) was generated in ApoE−/− mice transplanted with AT1aR−/− or AT1aR+/+ BM. Plasma cholesterol as well as hepatic mRNA expression levels of genes involved in cholesterol metabolism were significantly lower in 2K1C mice transplanted with AT1aR−/− BM than in controls. Atherosclerotic lesions were significantly smaller in AT1aR−/− BM 2K1C mice (−79% in the aortic sinus and −71% in whole aorta compared to controls). Plaques from AT1aR−/− BM 2K1C mice exhibited reduced lipid core/fibrous cap and macrophage/smooth muscle cells ratios (−82% and −88%, respectively), and increased collagen content (+70%), indicating a more stable phenotype. Moreover, aortic mRNA levels of pro-inflammatory cytokines IL-12p35, IL-1β, and TNF-α were significantly reduced in AT1aR−/− BM 2K1C mice. No significant differences in either the number of circulating Ly6Chigh inflammatory monocytes and Ly6Clow resident anti-inflammatory monocyte subsets, or in mRNA levels of aortic M1 or M2 macrophage markers were observed between the two groups. No significant differences were observed in splenic mRNA levels of T cell subsets (Th1, Th2, Th17 and Treg) markers between the two groups. In conclusion, direct AT1R activation by Ang II on BM-derived cells promotes hepatic mRNA expression of cholesterol-metabolism-related genes and vascular mRNA expression of pro-inflammatory cytokines that may lead to plaque instability.
Collapse
Affiliation(s)
- Maxime Pellegrin
- Division of Angiology, Heart and Vessel Department, Lausanne University Hospital, 1011 Lausanne, Switzerland.
| | - Karima Bouzourène
- Division of Angiology, Heart and Vessel Department, Lausanne University Hospital, 1011 Lausanne, Switzerland.
| | - Jean-François Aubert
- Division of Angiology, Heart and Vessel Department, Lausanne University Hospital, 1011 Lausanne, Switzerland.
| | - Aimable Nahimana
- Service and Central Laboratory of Hematology, LABORATORY and Oncology DepartmentS, Lausanne University Hospital, 1011 Lausanne, Switzerland.
| | - Michel A Duchosal
- Service and Central Laboratory of Hematology, LABORATORY and Oncology DepartmentS, Lausanne University Hospital, 1011 Lausanne, Switzerland.
| | - Lucia Mazzolai
- Division of Angiology, Heart and Vessel Department, Lausanne University Hospital, 1011 Lausanne, Switzerland.
| |
Collapse
|
37
|
Baek SE, Park SY, Bae SS, Kim K, Lee WS, Kim CD. BLTR1 in Monocytes Emerges as a Therapeutic Target For Vascular Inflammation With a Subsequent Intimal Hyperplasia in a Murine Wire-Injured Femoral Artery. Front Immunol 2018; 9:1938. [PMID: 30210495 PMCID: PMC6121004 DOI: 10.3389/fimmu.2018.01938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/06/2018] [Indexed: 01/20/2023] Open
Abstract
Given the importance of high-mobility group box 1 (HMGB1) and 5-lipoxygenase (5-LO) signaling in vascular inflammation, we investigated the role of leukotriene signaling in monocytes on monocyte-to-macrophage differentiation (MMD) induced by HMGB1, and on vascular inflammation and subsequent intimal hyperplasia in a mouse model of wire-injured femoral artery. In cultured primary bone marrow-derived cells (BMDCs) stimulated with HMGB1, the number of cells with macrophage-like morphology was markedly increased in association with an increased expression of CD11b/Mac-1, which were attenuated in cells pre-treated with Zileuton, a 5-LO inhibitor as well as in 5-LO-deficient BMDCs. Of various leukotriene receptor inhibitors examined, which included leukotriene B4 receptors (BLTRs) and cysteinyl leukotriene receptors (cysLTRs), the BLTR1 inhibitor (U75302) exclusively suppressed MMD induction by HMGB1. The importance of BLTR1 in HMGB1-induced MMD was also observed in BMDCs isolated from BLTR1-deficient mice and BMDCs transfected with BLTR1 siRNA. Although leukotriene B4 (LTB4) had minimal direct effects on MMD in control and 5-LO-deficient BMDCs, MMD attenuation by HMGB1 in 5-LO-deficient BMDCs was significantly reversed by exogenous LTB4, but not in BLTR1-deficient BMDCs, suggesting that LTB4/BLTR1-mediated priming of monocytes is a prerequisite of HMGB1-induced MMD. In vivo, both macrophage infiltration and intimal hyperplasia in our wire-injured femoral artery were markedly attenuated in BLTR1-deficient mice as compared with wild-type controls, but these effects were reversed in BLTR1-deficient mice transplanted with monocytes from control mice. These results suggest that BLTR1 in monocytes is a pivotal player in MMD with subsequent macrophage infiltration into neointima, leading to vascular remodeling after vascular injury.
Collapse
Affiliation(s)
- Seung E Baek
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, South Korea.,Gene and Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan, South Korea
| | - So Y Park
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, South Korea.,Gene and Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan, South Korea
| | - Sun S Bae
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, South Korea.,Gene and Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan, South Korea
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Won S Lee
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Chi D Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, South Korea.,Gene and Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan, South Korea
| |
Collapse
|
38
|
Abstract
Innate and adaptive immune effector mechanisms, in conjunction with hyperlipidemia, are important drivers of atherosclerosis. The interaction between the different immune cells and the secretion of cytokines and chemokines determine the progression of atherosclerosis. The activation or dampening of the immune response is tightly controlled by immune checkpoints. Costimulatory and coinhibitory immune checkpoints represent potential targets for immune modulatory therapies for atherosclerosis. This review will discuss the current knowledge on immune checkpoints in atherosclerosis and the clinical potential of immune checkpoint targeted therapy for atherosclerosis.
Collapse
Affiliation(s)
- Ellen Rouwet
- From the Department of Surgery and Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands (E.R.)
| | - Esther Lutgens
- Department of Medical Biochemistry, Experimental Vascular Biology Laboratory, Academic Medical Center, Amsterdam, The Netherlands (E.L.)
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian's University (LMU), Munich, Germany (E.L.)
| |
Collapse
|
39
|
Xue M, Qiqige C, Zhang Q, Zhao H, Su L, Sun P, Zhao P. Effects of Tumor Necrosis Factor α (TNF-α) and Interleukina 10 (IL-10) on Intercellular Cell Adhesion Molecule-1 (ICAM-1) and Cluster of Differentiation 31 (CD31) in Human Coronary Artery Endothelial Cells. Med Sci Monit 2018; 24:4433-4439. [PMID: 29949812 PMCID: PMC6052827 DOI: 10.12659/msm.906838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the effects of TNF-α and IL-10 on the expression of ICAM-1 and CD31 in human coronary artery endothelial cells (HCAEC). MATERIAL AND METHODS HCAEC was treated with 0, 2.5 μg/l, 5 μg/l, and 10 μg/l of TNF-α for 2 h, 6 h, and 10 h, and with 0 μg/l, 10 μg/l, 100 μg/l, and 200 μg/l of IL-10 for 5 h, 10 h and 15 h, respectively. RNA inference of TNF-αR was performed with siRNA. Real-time PCR, Western blot analysis, and ELSA were used to detect the mRNA level and protein level of ICAM-1 and CD31. RESULTS TNF-α significantly increased the mRNA and protein expression of ICAM-1 (P<0.05), and 2.5 μg/l TNF-α had the most obvious effect. RNAi of TNF-aR reduced the induction of TNF-α on the mRNA and protein expression of ICAM-1 (P<0.05). TNF-α significantly decreased the CD31 in the supernatant (P<0.05), and 2.5 μg/l TNF-a had the most obvious effect. IL-10 significantly decreased the ICAM-1 protein level. IL-10 decreased the mRNA expression and the protein expression of CD31. The effect on mRNA was not significant (P>0.05), while the effect on the protein expression was significant (P<0.05). CONCLUSIONS TNF-α and IL-10 treatment can affect the expression of ICAM-1 and CD31 in HCAEC.
Collapse
Affiliation(s)
- Mingming Xue
- Department of Physiology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Chaolumen Qiqige
- The First Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Qi Zhang
- Department of Physiology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Haixia Zhao
- Department of Physiology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Liping Su
- Department of Physiology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Peng Sun
- Laboratory of Pathogenic Microbiology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Pengwei Zhao
- Laboratory of Pathogenic Microbiology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| |
Collapse
|
40
|
Hung CT, Li SF, Chung WS. Increased risk of acute coronary syndrome in patients with bronchiectasis: A population-based cohort study. Respirology 2018; 23:828-834. [PMID: 29641845 DOI: 10.1111/resp.13298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/16/2018] [Accepted: 02/26/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVE There are few studies on the relationship between bronchiectasis and acute coronary syndrome (ACS). We conducted a population-based cohort study to assess whether bronchiectasis was associated with an increased risk of ACS. METHODS We identified 3521 patients diagnosed with bronchiectasis between 2000 and 2010 (bronchiectasis cohort) and frequency matched them with 14 084 randomly selected people without bronchiectasis from the general population (comparison cohort) according to sex, age and index year using the Longitudinal Health Insurance Database. Both cohorts were followed until the end of 2010 to determine the ACS incidence. Hazard ratios of ACS were measured. RESULTS Based on 17 340 person-years for bronchiectasis patients and 73 639 person-years for individuals without bronchiectasis, the overall ACS risk was 40% higher in the bronchiectasis cohort (adjusted hazard ratio (HR) = 1.40; 95% CI: 1.20-1.62). Compared with those in the comparison cohort with one respiratory infection-related emergency room (ER) visit per year, the ACS risk was 5.46-fold greater in bronchiectasis patients with three or more ER visits per year (adjusted HR = 5.46, 95% CI: 4.29-6.96). Patients with bronchiectasis and three or more respiratory infection-related hospitalizations per year had an 8.15-fold higher ACS risk (adjusted HR = 8.15, 95% CI: 6.27-10.61). CONCLUSION Bronchiectasis patients, particularly those experiencing frequent exacerbations with three or more ER visits and consequent hospitalization per year, are at an increased ACS risk.
Collapse
Affiliation(s)
- Chin-Tun Hung
- Department of Healthcare Administration, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Shu-Fen Li
- Department of Healthcare Administration, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Wei-Sheng Chung
- Department of Healthcare Administration, Central Taiwan University of Science and Technology, Taichung, Taiwan
- Department of Internal Medicine, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| |
Collapse
|
41
|
Han Y, Ma J, Wang J, Wang L. Silencing of H19 inhibits the adipogenesis and inflammation response in ox-LDL-treated Raw264.7 cells by up-regulating miR-130b. Mol Immunol 2018; 93:107-114. [DOI: 10.1016/j.molimm.2017.11.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/27/2017] [Accepted: 11/18/2017] [Indexed: 02/08/2023]
|
42
|
Pan L, Hong Z, Yu L, Gao Y, Zhang R, Feng H, Su L, Wang G. Shear stress induces human aortic endothelial cell apoptosis via interleukin‑1 receptor‑associated kinase 2‑induced endoplasmic reticulum stress. Mol Med Rep 2017; 16:7205-7212. [PMID: 28944871 PMCID: PMC5865847 DOI: 10.3892/mmr.2017.7524] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 05/12/2017] [Indexed: 02/05/2023] Open
Abstract
Atherosclerosis is characterized by localized lesions distributed in the arterial tree due to the shear stress produced by blood flow. Endothelial cells are directly affected by alterations in blood flow. Dysfunction and injury to endothelial cells has been hypothesized to initiate the pathological processes of atherosclerosis. The present study aimed to investigate the mechanism of shear stress‑induced endothelial cellular apoptosis. Shear stress was generated using an artificial device to mimic the impact of disturbed blood flow on cultured human aortic endothelial cells (HAECs). Cellular apoptosis was assessed using a terminal deoxynucleotidyl transferase dUTP nick end labeling assay; an ELISA assay was used to detect the produced interleukin (IL)‑1β; specific small interfering (si)RNA was used to knockdown the expression of interleukin‑1 receptor‑associated kinase 2 (IRAK2) in HAECs and the expression levels of 78 kDa glucose‑regulated protein, DNA damage‑inducible transcript 3 protein (CHOP), IRAK2 and IL‑1β were evaluated using western blotting. The results of the present study demonstrated that artificial shear stress induced endoplasmic reticulum (ER) stress, IL‑1β production and apoptosis in HAECs in a time‑dependent manner. The inhibition of ER stress, and treatment with interleukin‑1 receptor antagonist protein and siRNA against IRAK2 attenuated shear stress‑induced CHOP signaling‑mediated cellular apoptosis. Therefore, overproduction of IL‑1β exacerbated shear stress‑induced ER stress‑mediated apoptosis via the IRAK2/CHOP signaling pathway in endothelial cells.
Collapse
Affiliation(s)
- Longfei Pan
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zhou Hong
- Department of Emergency Medicine, The Fifth Hospital of Xi'an, Xi'an, Shaanxi 710082, P.R. China
| | - Lei Yu
- Department of Basic Medicine, Xi'an Medical College, Xi'an, Shaanxi 710068, P.R. China
| | - Yanxia Gao
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Rui Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hui Feng
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Lijuan Su
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Gang Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
43
|
Kusters P, Seijkens T, Bürger C, Legein B, Winkels H, Gijbels M, Barthels C, Bennett R, Beckers L, Atzler D, Biessen E, Brocker T, Weber C, Gerdes N, Lutgens E. Constitutive CD40 Signaling in Dendritic Cells Limits Atherosclerosis by Provoking Inflammatory Bowel Disease and Ensuing Cholesterol Malabsorption. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2912-2919. [PMID: 28935569 DOI: 10.1016/j.ajpath.2017.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/03/2017] [Accepted: 08/22/2017] [Indexed: 12/21/2022]
Abstract
The costimulatory molecule CD40 is a major driver of atherosclerosis. It is expressed on a wide variety of cell types, including mature dendritic cells (DCs), and is required for optimal T-cell activation and expansion. It remains undetermined whether and how CD40 on DCs impacts the pathogenesis of atherosclerosis. Here, the effects of constitutively active CD40 in DCs on atherosclerosis were examined using low-density lipoprotein-deficient (Ldlr-/-) bone marrow chimeras that express a transgene containing an engineered latent membrane protein 1 (LMP)/CD40 fusion protein conferring constitutive CD40 signaling under control of the DC-specific CD11c promoter (DC-LMP1/CD40). As expected, DC-LMP1/CD40/Ldlr-/- chimeras (DC-LMP1/CD40) showed increased antigen-presenting capacity of DCs and increased T-cell numbers. However, the mice developed extensive neutrophilia compared to CD40wt/Ldlr-/- (CD40wt) chimeras. Despite overt T-cell expansion and neutrophilia, a reduction in conventional DC frequency and a dramatic (approximately 80%) reduction in atherosclerosis was observed. Further analyses revealed that cholesterol and triglyceride levels had decreased by 37% and 60%, respectively, in DC-LMP1/CD40 chimeras. Moreover, DC-LMP1/CD40 chimeras developed inflammatory bowel disease characterized by massive transmural influx of leukocytes and lymphocytes, resulting in villous degeneration and lipid malabsorption. Constitutive activation of CD40 in DCs results in inflammation of the gastrointestinal tract, thereby impairing lipid uptake, which consequently results in attenuated atherosclerosis.
Collapse
Affiliation(s)
- Pascal Kusters
- Department of Medical Biochemistry, Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Tom Seijkens
- Department of Medical Biochemistry, Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Christina Bürger
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilian University of Munich, Munich, Germany
| | - Bart Legein
- Department of Pathology, Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, the Netherlands
| | - Holger Winkels
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilian University of Munich, Munich, Germany
| | - Marion Gijbels
- Department of Medical Biochemistry, Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Pathology, Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, the Netherlands
| | - Christian Barthels
- Institute for Immunology, Ludwig-Maximilian University of Munich, Munich, Germany
| | - Remy Bennett
- Department of Medical Biochemistry, Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Linda Beckers
- Department of Medical Biochemistry, Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilian University of Munich, Munich, Germany; Walther-Straub-Institut for Pharmacology and Toxicology, Ludwig Maximilians University, Munich, Germany
| | - Erik Biessen
- Department of Pathology, Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, the Netherlands; Institute for Molecular Cardiovascular Research (IMCAR), Klinikum RWTH Aachen, Aachen, Germany
| | - Thomas Brocker
- Institute for Immunology, Ludwig-Maximilian University of Munich, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilian University of Munich, Munich, Germany
| | - Norbert Gerdes
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilian University of Munich, Munich, Germany; Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Esther Lutgens
- Department of Medical Biochemistry, Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilian University of Munich, Munich, Germany.
| |
Collapse
|
44
|
Tapia-Vieyra JV, Delgado-Coello B, Mas-Oliva J. Atherosclerosis and Cancer; A Resemblance with Far-reaching Implications. Arch Med Res 2017; 48:12-26. [PMID: 28577865 DOI: 10.1016/j.arcmed.2017.03.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/02/2017] [Indexed: 02/07/2023]
Abstract
Atherosclerosis and cancer are chronic diseases considered two of the main causes of death all over the world. Taking into account that both diseases are multifactorial, they share not only several important molecular pathways but also many ethiological and mechanistical processes from the very early stages of development up to the advanced forms in both pathologies. Factors involved in their progression comprise genetic alterations, inflammatory processes, uncontrolled cell proliferation and oxidative stress, as the most important ones. The fact that external effectors such as an infective process or a chemical insult have been proposed to initiate the transformation of cells in the artery wall and the process of atherogenesis, emphasizes many similarities with the progression of the neoplastic process in cancer. Deregulation of cell proliferation and therefore cell cycle progression, changes in the synthesis of important transcription factors as well as adhesion molecules, an alteration in the control of angiogenesis and the molecular similarities that follow chronic inflammation, are just a few of the processes that become part of the phenomena that closely correlates atherosclerosis and cancer. The aim of the present study is therefore, to provide new evidence as well as to discuss new approaches that might promote the identification of closer molecular ties between these two pathologies that would permit the recognition of atherosclerosis as a pathological process with a very close resemblance to the way a neoplastic process develops, that might eventually lead to novel ways of treatment.
Collapse
Affiliation(s)
| | - Blanca Delgado-Coello
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jaime Mas-Oliva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
45
|
Molica F, Stierlin FB, Fontana P, Kwak BR. Pannexin- and Connexin-Mediated Intercellular Communication in Platelet Function. Int J Mol Sci 2017; 18:E850. [PMID: 28420171 PMCID: PMC5412434 DOI: 10.3390/ijms18040850] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/06/2017] [Accepted: 04/12/2017] [Indexed: 12/11/2022] Open
Abstract
The three major blood cell types, i.e., platelets, erythrocytes and leukocytes, are all produced in the bone marrow. While red blood cells are the most numerous and white cells are the largest, platelets are small fragments and account for a minor part of blood volume. However, platelets display a crucial function by preventing bleeding. Upon vessel wall injury, platelets adhere to exposed extracellular matrix, become activated, and form a platelet plug preventing hemorrhagic events. However, when platelet activation is exacerbated, as in rupture of an atherosclerotic plaque, the same mechanism may lead to acute thrombosis causing major ischemic events such as myocardial infarction or stroke. In the past few years, major progress has been made in understanding of platelet function modulation. In this respect, membrane channels formed by connexins and/or pannexins are of particular interest. While it is still not completely understood whether connexins function as hemichannels or gap junction channels to inhibit platelet aggregation, there is clear-cut evidence for a specific implication of pannexin1 channels in collagen-induced aggregation. The focus of this review is to summarize current knowledge of the role of connexins and pannexins in platelet aggregation and to discuss possible pharmacological approaches along with their limitations and future perspectives for new potential therapies.
Collapse
Affiliation(s)
- Filippo Molica
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.
- Department of Medical Specializations, Cardiology, University of Geneva, 1211 Geneva, Switzerland.
| | - Florian B Stierlin
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.
- Department of Medical Specializations, Cardiology, University of Geneva, 1211 Geneva, Switzerland.
- Geneva Platelet Group, University of Geneva, 1211 Geneva, Switzerland.
| | - Pierre Fontana
- Geneva Platelet Group, University of Geneva, 1211 Geneva, Switzerland.
- Division of Angiology and Haemostasis, Geneva University Hospitals, 1211 Geneva, Switzerland.
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.
- Department of Medical Specializations, Cardiology, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
46
|
Affiliation(s)
- Mona Ståhle
- Unit of Dermatology and Venereology; Department of Medicine; Karolinska Institutet Solna and Karolinska University Hospital; Stockholm Sweden
| | - Michael P. Schön
- Department of Dermatology Venereology and Allergology; University Medical Center; Göttingen, Germany 4Lower Saxony Institute of Occupational Dermatology; University Medical Center; Göttingen Germany
| |
Collapse
|
47
|
Weiss-Sadan T, Gotsman I, Blum G. Cysteine proteases in atherosclerosis. FEBS J 2017; 284:1455-1472. [PMID: 28207191 DOI: 10.1111/febs.14043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/04/2017] [Accepted: 02/13/2017] [Indexed: 12/22/2022]
Abstract
Atherosclerosis predisposes patients to cardiovascular diseases, such as myocardial infarction and stroke. Instigation of vascular injury is triggered by retention of lipids and inflammatory cells in the vascular endothelium. Whereas these vascular lesions develop in young adults and are mostly considered harmless, over time persistent inflammatory and remodeling processes will ultimately damage the arterial wall and cause a thrombotic event due to exposure of tissue factors into the lumen. Evidence from human tissues and preclinical animal models has clearly established the role of cathepsin cysteine proteases in the development and progression of vascular lesions. Hence, understanding the function of cathepsins in atherosclerosis is important for developing novel therapeutic strategies and advanced point of care diagnostics. In this review we will describe the roles of cysteine cathepsins in different cellular process that become dysfunctional in atherosclerosis, such as lipid metabolism, inflammation and apoptosis, and how they contribute to arterial remodeling and atherogenesis. Finally, we will explore new horizons in protease molecular imaging, which may potentially become a surrogate marker to identify future cardiovascular events.
Collapse
Affiliation(s)
- Tommy Weiss-Sadan
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Israel Gotsman
- Heart Institute, Hadassah University Hospital, Jerusalem, Israel
| | - Galia Blum
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
48
|
Rowinska Z, Koeppel TA, Sanati M, Schelzig H, Jankowski J, Weber C, Zernecke A, Liehn EA. Role of the CX3C chemokine receptor CX3CR1 in the pathogenesis of atherosclerosis after aortic transplantation. PLoS One 2017; 12:e0170644. [PMID: 28234900 PMCID: PMC5325192 DOI: 10.1371/journal.pone.0170644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 12/15/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The CX3C chemokine receptor CX3CR1 is expressed on monocytes as well as tissue resident cells, such as smooth muscle cells (SMCs). Its role in atherosclerotic tissue remodeling of the aorta after transplantation has not been investigated. METHODS We here have orthotopically transplanted infrarenal Cx3cr1-/-Apoe-/- and Cx3cr1+/+Apoe-/- aortic segments into Apoe-/-mice, as well as Apoe-/- aortic segments into Cx3cr1-/-Apoe-/- mice. The intimal plaque size and cellular plaque composition of the transplanted aortic segment were analyzed after four weeks of atherogenic diet. RESULTS Transplantation of Cx3cr-/-Apoe-/- aortic segments into Apoe-/- mice resulted in reduced atherosclerotic plaque formation compared to plaque size in Apoe-/- or Cx3cr1-/-Apoe-/- mice after transplantation of Apoe-/- aortas. This reduction in lesion formation was associated with reduced numbers of lesional SMCs but not macrophages within the transplanted Cx3cr-/- Apoe-/- aortic segment. No differences in frequencies of proliferating and apoptotic cells could be observed. CONCLUSION These results indicate that CX3CR1 on resident vessel wall cells plays a key role in atherosclerotic plaque formation in transplanted aortic grafts. Targeting of vascular CX3CL1/CX3CR1 may therefore be explored as a therapeutic option in vascular transplantation procedures.
Collapse
Affiliation(s)
- Zuzanna Rowinska
- Department of Vascular Surgery and Interdisciplinary Vein Center, St. Josef-Hospital, Ruhr- University Bochum, Bochum, Germany
- Institute of Molecular Cardiovascular Research, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Thomas A. Koeppel
- Division of Vascular Surgery, Hospital Asklepios St. Georg Hamburg, Hamburg, Germany
| | - Maryam Sanati
- Institute of Molecular Cardiovascular Research, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Hubert Schelzig
- Department of Vascular and Endovascular Surgery, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Joachim Jankowski
- Institute of Molecular Cardiovascular Research, University Hospital, RWTH Aachen University, Aachen, Germany
- School for Cardiovascular Diseases (CARIM), University of Maastricht, Maastricht, The Netherlands
| | - Christian Weber
- Institut for Prevention and Epidemiology of Cardiovascular Disease, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Elisa A. Liehn
- Institute of Molecular Cardiovascular Research, University Hospital, RWTH Aachen University, Aachen, Germany
- Human Genetic Laboratory, University for Medicine and Pharmacy, Craiova, Romania
| |
Collapse
|
49
|
Kalucka J, Bierhansl L, Wielockx B, Carmeliet P, Eelen G. Interaction of endothelial cells with macrophages-linking molecular and metabolic signaling. Pflugers Arch 2017; 469:473-483. [PMID: 28236120 DOI: 10.1007/s00424-017-1946-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 01/29/2017] [Indexed: 12/20/2022]
Abstract
Angiogenesis and inflammation go hand in hand in various (patho-)physiological conditions. Several studies have highlighted the interconnection between endothelial cells (ECs) and macrophages in these conditions at the level of growth factor and cytokine signaling, yet the importance of metabolism and metabolic signaling has been largely overlooked. Modulating macrophage and/or endothelial functions by interfering with metabolic pathways offers new perspectives for therapeutic strategies. In this review, we highlight the complexity of the interrelationship between the inflammatory response and angiogenesis. More in particular, the interaction between macrophages and ECs will be discussed with a special focus on how their metabolism can contribute to (patho-)physiological conditions.
Collapse
Affiliation(s)
- Joanna Kalucka
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Centre, VIB, Campus Gasthuisberg O&N4, Herestraat 49-912, Leuven, 3000, Belgium. .,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Campus Gasthuisberg O&N4, Leuven, 3000, Belgium.
| | - Laura Bierhansl
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Centre, VIB, Campus Gasthuisberg O&N4, Herestraat 49-912, Leuven, 3000, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Campus Gasthuisberg O&N4, Leuven, 3000, Belgium
| | - Ben Wielockx
- Department of Clinical Pathobiochemistry, Faculty of medicine, Institute of Clinical Chemistry and Laboratory Medicine, Dresden, Germany
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Centre, VIB, Campus Gasthuisberg O&N4, Herestraat 49-912, Leuven, 3000, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Campus Gasthuisberg O&N4, Leuven, 3000, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Centre, VIB, Campus Gasthuisberg O&N4, Herestraat 49-912, Leuven, 3000, Belgium. .,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Campus Gasthuisberg O&N4, Leuven, 3000, Belgium.
| |
Collapse
|
50
|
Visioli F, Artaria C. Astaxanthin in cardiovascular health and disease: mechanisms of action, therapeutic merits, and knowledge gaps. Food Funct 2017; 8:39-63. [DOI: 10.1039/c6fo01721e] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease is the main contributor to morbidity and mortality worldwide.
Collapse
Affiliation(s)
- Francesco Visioli
- Laboratory of Functional Foods
- Madrid Institute for Advanced Studies (IMDEA) – 6 Food
- CEI UAM+CSIC
- Madrid
- Spain
| | | |
Collapse
|