1
|
Schnaubelt S, Oppenauer J, Kornfehl A, Eibensteiner F, Veigl C, Neymayer M, Brock R, Du N, Wirth S, Greisl N, Gössinger C, Perkmann T, Haslacher H, Müller M, Domanovits H, Koppensteiner R, Schlager O. Short- and long-term risk stratification in acutely ill medical patients by implementing ankle-brachial index and pulse wave velocity in the emergency setting. Eur J Clin Invest 2025; 55:e70015. [PMID: 40028919 PMCID: PMC12066917 DOI: 10.1111/eci.70015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/14/2025] [Indexed: 03/05/2025]
Abstract
OBJECTIVE Ankle-brachial index (ABI) and carotid-femoral pulse-wave velocity (cfPWV) are well-established surrogate markers of overall cardiovascular risk. However, their prognostic value towards short- and long-term mortality in an emergency medicine setting is yet unknown. APPROACH AND RESULTS Acutely ill medical patients systematically underwent cfPWV and ABI measurements at the emergency department of a tertiary care hospital. Patients' survival was analysed in relation to their ABI and cfPWV values at initial presentation. In total, 1080 individuals (43.7% females; 59.6 ± 17.4 years old) were enrolled. Over a median follow-up period of 24.4 months, 112 (10%) deaths were observed. 30-day mortality was 4.9% in patients with a pathological ABI and 1.4% with a normal ABI (p = .003). There was also a significant difference over the entire observational period regarding cumulative mortality (p < .001). Thirty-day mortality was 2.4% in patients with a cfPWV ≥10 m/s and .7% with a cfPWV <10 m/s (p = .025), and cumulative mortality over the whole period differed between a cfPWV ≥10 m/s and <10 m/s as well (p < .001). CONCLUSION In acutely ill medical patients, the noninvasive ABI and cfPWV assessment at triage level facilitates initial risk stratification in the emergency setting for short- and long-term mortality. Patients with pathological ABI and cfPWV values could thus be seen as a proxy of a sicker cohort with an overall worse polyvascular situation.
Collapse
Affiliation(s)
- Sebastian Schnaubelt
- Department of Emergency MedicineMedical University of ViennaViennaAustria
- Emergency Medical Service ViennaViennaAustria
| | - Julia Oppenauer
- Department of Emergency MedicineMedical University of ViennaViennaAustria
| | - Andrea Kornfehl
- Department of Emergency MedicineMedical University of ViennaViennaAustria
| | - Felix Eibensteiner
- Department of Emergency MedicineMedical University of ViennaViennaAustria
| | - Christoph Veigl
- Department of Emergency MedicineMedical University of ViennaViennaAustria
| | - Marco Neymayer
- Department of Emergency MedicineMedical University of ViennaViennaAustria
| | - Roman Brock
- Department of Emergency MedicineMedical University of ViennaViennaAustria
| | - Na Du
- Department of Emergency MedicineMedical University of ViennaViennaAustria
| | - Sophia Wirth
- Department of RadiologyMedical University of ViennaViennaAustria
| | - Nadja Greisl
- Department of Emergency MedicineMedical University of ViennaViennaAustria
| | - Cornelia Gössinger
- Department of Emergency MedicineMedical University of ViennaViennaAustria
| | - Thomas Perkmann
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
| | - Helmuth Haslacher
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
| | - Markus Müller
- Division of Angiology, Department of Internal Medicine IIMedical University of ViennaViennaAustria
| | - Hans Domanovits
- Department of Emergency MedicineMedical University of ViennaViennaAustria
| | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine IIMedical University of ViennaViennaAustria
| | - Oliver Schlager
- Division of Angiology, Department of Internal Medicine IIMedical University of ViennaViennaAustria
| |
Collapse
|
2
|
Brock R, Kornfehl A, Oppenauer J, Eibensteiner F, Neymayer M, Veigl C, Cuhaj C, Erbes O, Wirth S, Perkmann T, Haslacher H, Müller M, Schlager O, Wolf P, Schnaubelt S. Associations of Thyroid and Parathyroid Hormones with Arterial Stiffness in Emergency Department Patients: A Prospective Cross-Sectional Study. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:812. [PMID: 40428770 PMCID: PMC12113468 DOI: 10.3390/medicina61050812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025]
Abstract
Background and Objectives: Cardiovascular diseases are prevalent entities, especially in emergency patients. Arterial stiffness is a known predictor of cardiovascular risk and mortality and is quantified by carotid-femoral pulse wave velocity (cfPWV). It is caused in part by vascular calcification, but exact details of the underlying mechanisms are yet to be elucidated, and current data suggest endocrine influences. This study thus aimed to assess the associations of endocrine parameters, particularly thyroid and parathyroid hormones, calcium, inorganic phosphate, and vitamin D, with cfPWV as a surrogate for arterial stiffness. Materials and Methods: Adults presenting to a single tertiary care emergency department in Vienna between 2018 and 2023 were prospectively enrolled. CfPWV was measured non-invasively, and levels of thyroid and parathyroid hormones and 25-hydroxyvitamin D, calcium, and inorganic phosphate were assessed. Results: In total, data from 827 patients, predominantly male (57%) and around 60 (47-72) years of age, were assessed. We observed a significant worsening of cfPWV with increasing parathyroid hormone levels (p < 0.001) and TSH levels (p = 0.03). No significant influences of calcium, inorganic phosphate, or 25-hydroxyvitamin D were observed. Conclusions: Thyroid and parathyroid hormone levels are associated with arterial stiffness in emergency department patients, suggesting a need for a comprehensive workup in patients at risk because of comorbidities and age. Additional prospective studies are needed to further elucidate the role of endocrinology in arterial stiffness and the subsequent relevance in emergency medicine.
Collapse
Affiliation(s)
- Roman Brock
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Andrea Kornfehl
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Julia Oppenauer
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Felix Eibensteiner
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Marco Neymayer
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Veigl
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Carina Cuhaj
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Oliver Erbes
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Sophia Wirth
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Perkmann
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Müller
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Oliver Schlager
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Wolf
- Division of Endocrinology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Sebastian Schnaubelt
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Emergency Medical Service Vienna, 1030 Vienna, Austria
| |
Collapse
|
3
|
Schnaubelt S, Jakobljevich A, Brock R, Oppenauer J, Kornfehl A, Eibensteiner F, Veigl C, Perkmann T, Haslacher H, Strassl R, Reindl-Schwaighofer R, Schlager O, Sulzgruber P. The Relation of Angiotensin-Converting Enzyme 2, Renin-Angiotensin-Aldosterone System Inhibitors, and Arterial Stiffness in Acute COVID-19 Emergency Department Patients-A Prospective Observational Study. J Clin Med 2025; 14:2233. [PMID: 40217682 PMCID: PMC11989675 DOI: 10.3390/jcm14072233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/13/2025] [Accepted: 03/22/2025] [Indexed: 04/14/2025] Open
Abstract
Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) can damage the endothelium and increase arterial stiffness, potentially leading to adverse cardiovascular events. In parallel, systemic inflammation in COVID-19 also impacts endothelial function. Angiotensin-converting enzyme 2 (ACE2) promotes vasodilation and anti-inflammatory effects, but also facilitates SARS-CoV-2 entry into human cells. Thus, concerns have been raised about the use of RAAS inhibitors (RAASi) in COVID-19 patients due to potential ACE2 upregulation. However, the clinical significance of increased plasma ACE2 (sACE2) in RAASi-treated COVID-19 patients remains unclear. Methods: This prospective, single-centre study evaluated RAASi, sACE2, and vascular function in acutely ill patients with COVID-19 in comparison with acutely ill patients without COVID-19. Adult emergency department patients with confirmed or suspected COVID-19 were enrolled and underwent pulse wave velocity, ankle brachial index, and sACE2 measurements. Results: In the 152 included patients (50% female, median age 62 years, 68% COVID-19 positive), the sACE2 values were slightly higher in the COVID-19 (0.485 [0.364-1.329]) than in the non-COVID-19 subgroup (0.458 [0.356-1.138]; p = 0.70). No significant differences in sACE2 were observed between patients with and without RAASi, regardless of COVID-19 status. Pulse wave velocity values differed significantly between groups (p = 0.015). Conclusions: In emergency department patients, sACE2 was upregulated in COVID-19 patients, probably due to oxidative stress and inflammation. RAASi did not increase sACE2, but may have protective effects against inflammation. Elevated sACE2 appeared to have a beneficial effect on arterial stiffness in all patients. These findings support continued RAASi therapy in COVID-19 patients to protect against chronic inflammation and apoptosis.
Collapse
Affiliation(s)
- Sebastian Schnaubelt
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Emergency Medical Service Vienna, 1030 Vienna, Austria
| | - Anna Jakobljevich
- Division of Pulmonology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | - Roman Brock
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Julia Oppenauer
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Andrea Kornfehl
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Felix Eibensteiner
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Veigl
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Perkmann
- Department Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Helmuth Haslacher
- Department Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Robert Strassl
- Division of Clinical Virology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Roman Reindl-Schwaighofer
- Division of Nephrology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Oliver Schlager
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Patrick Sulzgruber
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
4
|
Loboda D, Golba KS, Gurowiec P, Bredelytė A, Razbadauskas A, Sarecka-Hujar B. Variability in Arterial Stiffness and Vascular Endothelial Function After COVID-19 During 1.5 Years of Follow-Up-Systematic Review and Meta-Analysis. Life (Basel) 2025; 15:520. [PMID: 40283075 PMCID: PMC12028431 DOI: 10.3390/life15040520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
Increasing long-term observations suggest that coronavirus disease 2019 (COVID-19) vasculopathy may persist even 1.5 years after the acute phase, potentially accelerating the development of atherosclerotic cardiovascular diseases. This study systematically reviewed the variability of brachial flow-mediated dilation (FMD) and carotid-femoral pulse wave velocity (cfPWV) from the acute phase of COVID-19 through 16 months of follow-up (F/U). Databases including PubMed, Web of Science, MEDLINE, and Embase were screened for a meta-analysis without language or date restrictions (PROSPERO reference CRD42025642888, last search conducted on 1 February 2025). The quality of the included studies was assessed using the Newcastle-Ottawa Quality Scale. We considered all studies (interventional pre-post studies, prospective observational studies, prospective randomized, and non-randomized trials) that assessed FMD or cfPWV in adults (aged ≥ 18 years) with or after laboratory-confirmed COVID-19 compared with non-COVID-19 controls or that assessed changes in these parameters during the F/U. Twenty-one studies reported differences in FMD, and 18 studies examined cfPWV between COVID-19 patients and control groups during various stages: acute/subacute COVID-19 (≤30 days from disease onset), early (>30-90 days), mid-term (>90-180 days), late (>180-270 days), and very late (>270 days) post-COVID-19 recovery. Six studies assessed variability in FMD, while nine did so for cfPWV during the F/U. Data from 14 FMD studies (627 cases and 694 controls) and 15 cfPWV studies (578 cases and 703 controls) were included in our meta-analysis. FMD showed a significant decrease compared to controls during the acute/subacute phase (standardized mean difference [SMD]= -2.02, p < 0.001), with partial improvements noted from the acute/subacute phase to early recovery (SMD = 0.95, p < 0.001) and from early to mid-term recovery (SMD = 0.92, p = 0.006). Normalization compared to controls was observed in late recovery (SMD = 0.12, p = 0.69). In contrast, cfPWV values, which were higher than controls in the acute/subacute phase (SMD = 1.27, p < 0.001), remained elevated throughout the F/U, with no significant changes except for a decrease from mid-term to very late recovery (SMD= -0.39, p < 0.001). In the very late recovery, cfPWV values remained higher than those of controls (SMD = 0.45, p = 0.010). In the manuscript, we discuss how various factors, including the severity of acute COVID-19, the persistence of long-term COVID-19 syndrome, and the patient's initial vascular age, depending on metrics age and cardiovascular risk factors, influenced the time and degree of FMD and cfPWV improvement.
Collapse
Affiliation(s)
- Danuta Loboda
- Department of Electrocardiology and Heart Failure, Medical University of Silesia in Katowice, 40-635 Katowice, Poland; (K.S.G.); (P.G.)
| | - Krzysztof S. Golba
- Department of Electrocardiology and Heart Failure, Medical University of Silesia in Katowice, 40-635 Katowice, Poland; (K.S.G.); (P.G.)
| | - Piotr Gurowiec
- Department of Electrocardiology and Heart Failure, Medical University of Silesia in Katowice, 40-635 Katowice, Poland; (K.S.G.); (P.G.)
| | - Aelita Bredelytė
- Faculty of Health Sciences, Klaipėda University, LT-92294 Klaipeda, Lithuania; (A.B.); (A.R.)
| | - Artūras Razbadauskas
- Faculty of Health Sciences, Klaipėda University, LT-92294 Klaipeda, Lithuania; (A.B.); (A.R.)
- Chemotherapy Unit, Department of Oncology, Klaipeda University Hospital, LT-92288 Klaipeda, Lithuania
| | - Beata Sarecka-Hujar
- Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland;
| |
Collapse
|
5
|
Abstract
Coronavirus disease 2019 (COVID-19) remains a health problem worldwide. The present study aimed to investigate the effect of blood pressure (BP) on the circadian pattern and prevalence of new-onset non-dipper hypertension in the post-COVID period in patients with known hypertension. This prospective single-center study included 722 patients hospitalized for COVID-19 infection. Ambulatory BP (ABP) data were collected during their initial hospitalization. The ABP data were reassessed 1 month after the patients were discharged. The results were compared with a healthy control group with known hypertension but without COVID-19 infection. After exclusion criteria were applied, the study included 187 patients with COVID-19 and 136 healthy hypertensive controls. Post-COVID ABP showed that patients with COVID-19 had significantly higher mean 24-h systolic and diastolic BP, mean nighttime systolic and diastolic BP, and mean daytime diastolic BP than the control group. In addition, new-onset non-dipper hypertension was significantly higher in patients with COVID-19. This study demonstrated for the first time that the circadian pattern is disturbed and a non-dipper pattern develops in individuals with known hypertension during the post-COVID period.
Collapse
Affiliation(s)
- Fatih Sivri
- Aydin Nazilli State Hospital, Nazilli, Turkey
| | - Ismail Türköz
- Department of Infectious Diseases, Dortyol State Hospital, Hatay, Turkey
| | - Mehtap Şencan
- Department of Infectious Diseases, Dortyol State Hospital, Hatay, Turkey
| | - Yahya Kemal İçen
- Department of Cardiology, Adana Health Practice and Research, Adana, Turkey
| | - Fatih Aksoy
- Department of Cardiology, Süleyman Demirel University, Isparta, Turkey
| | - Banu Öztürk Ceyhan
- Department Of Endocrine Diseases, Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
6
|
Mahmoud EO, Elsabagh YA, Abd El Ghaffar N, Fawzy MW, Hussein MA. Atherosclerosis Associated With COVID-19: Acute, Tends to Severely Involve Peripheral Arteries, and May be Reversible. Angiology 2025; 76:77-84. [PMID: 37611951 DOI: 10.1177/00033197231198253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Arterial stiffness was reported with corona virus disease 2019 (COVID-19). We studied atherosclerosis in COVID-19 directly through duplex ultrasound measurements and their relation to co-morbidities, clinical and laboratory severity markers, and serum interleukin (IL) 6 and 17. Serum IL 6 and 17, average carotid intima-media thickness (cIMT), diameter and peak systolic velocities (PSV) of tibial, ulnar, radial arteries, and ankle brachial index (ABI) were measured in 44 COVID-19 patients and 44 healthy controls. Serum IL6, IL17, PSV, and cIMT were higher while diameter was lower (P ≤ .01) in cases. Clinical severity index correlated positively with age, co-morbidities, ferritin, IL6, IL17, cIMT, and PSV (P ≤ .04) and negatively with diameter and ABI (P = .04). Patients with severe lymphopenia had higher PSV, IL6, and IL17 and lower diameter (P < .00001). Ferritin positively correlated with PSV and negatively with diameter and ABI (P ≤ .01). Those who received an IL6 inhibitor (tocilizumab) showed lower PSV and higher diameter (P ≤ .01). In multiple regression analysis, IL17 and (age, co-morbidities) were related to (PSV, diameter) and cIMT (P ≤ .001, ≤0.02), respectively. COVID-19 may be associated with subclinical acute and may be reversible atherosclerosis severely involving peripheral arteries.
Collapse
Affiliation(s)
- Eman O Mahmoud
- Rheumatology and Clinical Immunology Unit, Internal Medicine Department, Cairo University, Cairo, Egypt
| | - Yumn A Elsabagh
- Rheumatology and Clinical Immunology Unit, Internal Medicine Department, Cairo University, Cairo, Egypt
| | | | - Mary Wadie Fawzy
- Rheumatology and Clinical Immunology Unit, Internal Medicine Department, Cairo University, Cairo, Egypt
| | - Mohamed A Hussein
- Rheumatology and Clinical Immunology Unit, Internal Medicine Department, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Jin L, Chen J, Wu L, Zhang M, Tang X, Shen C, Sun J, Du L, Wang X, Li Z. Central artery pulse pressure, not central arterial stiffness impact on all-cause mortality in patients with viral pneumonia infection. BMC Infect Dis 2024; 24:1183. [PMID: 39434023 PMCID: PMC11492499 DOI: 10.1186/s12879-024-10091-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/16/2024] [Indexed: 10/23/2024] Open
Abstract
OBJECTIVES COVID-19 viral pneumonia can result in increased arterial stiffness, along with cardiac and systemic inflammatory responses. This study aimed to investigate the association between arterial stiffness, inflammation severity, and all-cause mortality in patients with COVID-19. METHODS In this study, anthropometric data, pneumonia infection severity, and blood tests were analyzed. Arterial stiffness was assessed using the non-invasive assessment indices, including arterial velocity pulse index (AVI) and central arterial pulse pressure (CAPP). Infection volumes and percentages for the whole lungs, most lobes, and most segments were extracted from CT images using artificial intelligence-based quantitative analysis software. The relationship between arterial stiffness, central hemodynamics, and all-cause mortality was investigated. RESULTS In multivariable Cox regression analysis, high CAPP was significantly associated with all-cause mortality (hazard ratio: 0.263, 95% CI, 0.073-0.945, p = 0.041). Whole lung infection percentages were independently associated with high CAPP, with an area under the curve (AUC) of 0.662 and a specificity of 89.09%. CONCLUSIONS High CAPP, but not high AVI, demonstrated independent prognostic value for all-cause mortality in patients due to COVID-19 pneumonia infection. Evaluating this parameter could help in risk assessment and improve diagnostic and therapeutic strategies in viral pneumonia infections.
Collapse
Affiliation(s)
- Lin Jin
- Department of Ultrasound, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 800 Huangjiahuayuan Road, Jiading District, Shanghai, 201803, China
- Department of Ultrasound, Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, China
| | - Jianxiong Chen
- Department of Ultrasound, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 800 Huangjiahuayuan Road, Jiading District, Shanghai, 201803, China
- Department of Ultrasound, Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080, China
| | - Lingheng Wu
- Department of Ultrasound, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 800 Huangjiahuayuan Road, Jiading District, Shanghai, 201803, China
- Department of Ultrasound, Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080, China
| | - Mengjiao Zhang
- Department of Ultrasound, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 800 Huangjiahuayuan Road, Jiading District, Shanghai, 201803, China
| | - Xiaobo Tang
- Department of Radiology, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201803, China
| | - Cuiqin Shen
- Department of Ultrasound, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 800 Huangjiahuayuan Road, Jiading District, Shanghai, 201803, China
| | - Jiali Sun
- Department of Ultrasound, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 800 Huangjiahuayuan Road, Jiading District, Shanghai, 201803, China
| | - Lianfang Du
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Xifu Wang
- Department of Radiology, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201803, China
| | - Zhaojun Li
- Department of Ultrasound, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 800 Huangjiahuayuan Road, Jiading District, Shanghai, 201803, China.
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
8
|
Graham EL, D’Isabel S, Lofrano-Porto A, Smith DL. Musculoskeletal, Pulmonary, and Cardiovascular COVID-19 Sequelae in the Context of Firefighter Occupational Health: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1383. [PMID: 39457356 PMCID: PMC11508007 DOI: 10.3390/ijerph21101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
For most individuals infected with SARS-CoV-2, the acute illness resolves completely. However, for millions of people, symptoms or sequelae from COVID-19 recur or persist for months to years after infection. Post-COVID-19 sequelae are wide-ranging, often affecting the musculoskeletal, pulmonary, and cardiovascular systems. All who experience post-COVID-19 sequelae face significant challenges navigating home and work life. Occupations such as firefighting, however, are of particular concern given the strenuous nature of a job that relies on a healthy musculoskeletal, pulmonary, and cardiovascular system. Research has documented significant musculoskeletal impairment (including muscle weakness, pain, and fatigue), respiratory dysfunction (including reduced lung function, interstitial disease, and diffusion abnormalities), cardiovascular conditions (including cardiac events, ischemic disease, dysrhythmias, and infectious diseases), and diminished cardiorespiratory fitness that continues for months to years in some individuals. These persistent post-COVID-19 conditions may affect a firefighter's ability to return to work, function at full capacity while at work, and potentially compromise firefighter health and public safety. This review, therefore, explores musculoskeletal, pulmonary, and cardiovascular sequelae post-COVID-19 and the impact of these sequelae on firefighter health and occupational readiness.
Collapse
Affiliation(s)
- Elliot L. Graham
- Integrative Cardiovascular Physiology Laboratory, Colorado State University, Fort Collins, CO 80526, USA
- Intestinal Health Laboratory, Colorado State University, Fort Collins, CO 80526, USA
| | - Susanne D’Isabel
- First Responder Health and Safety Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY 12866, USA;
| | - Adriana Lofrano-Porto
- Molecular Pharmacology Laboratory, Health Sciences School, University of Brasilia, Brasilia 70910-900, DF, Brazil
- Endocrine Diseases Clinics, University Hospital of Brasilia, Brasilia 70840-901, DF, Brazil
| | - Denise L. Smith
- First Responder Health and Safety Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY 12866, USA;
| |
Collapse
|
9
|
Ammar MM, Ben Said NM, Ben Said YN, Abdelsalam AM, Levushkin SP, Laptev A, Inoubli M, Chlif M. Comparative Analysis of Heart Rate Variability and Arterial Stiffness in Elite Male Athletes after COVID-19. J Clin Med 2024; 13:5990. [PMID: 39408050 PMCID: PMC11477989 DOI: 10.3390/jcm13195990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
This study investigated the long-term cardiovascular effects of coronavirus disease (COVID-19) in elite male athletes by comparing the heart rate variability (HRV), arterial stiffness, and other cardiovascular parameters between those with and without prior COVID-19 infection. Methods: This cross-sectional study evaluated 120 elite male athletes (60 post COVID-19, 60 controls) using anthropometric measurements, body composition analysis, pulmonary function tests, HRV analysis, arterial stiffness assessments, hemodynamic monitoring, and microcirculatory function tests. Results: Athletes post COVID-19 showed significantly higher lean mass (p = 0.007), forced vital capacity (p = 0.001), and forced expiratory volume in 1 s (p = 0.007) than controls. HRV parameters did not significantly differ between the groups. Post-COVID-19 athletes exhibited peripheral vascular resistance (p = 0.048) and reflection index (p = 0.038). No significant differences were observed in the blood pressure, cardiac output, oxygen saturation, or microcirculatory oxygen absorption. Conclusions: Elite male athletes showed notable cardiovascular resilience after COVID-19, with only minor differences in vascular function. The maintained cardiac autonomic function and improved lung parameters in post-COVID-19 athletes suggests an adaptive response. These findings support the cardiovascular health of elite athletes following COVID-19 but emphasize the importance of continued monitoring.
Collapse
Affiliation(s)
- Mohamed M. Ammar
- Exercise Physiology Department, College of Sport Science and Physical Activities, King Saud University, Riyadh 11362, Saudi Arabia
| | - Noureddine M. Ben Said
- Biomechanics and Motor Behavior Department, College of Sport Science and Physical Activities, King Saud University, Riyadh 12371, Saudi Arabia; (N.M.B.S.); (A.M.A.)
| | | | - Ahmed M. Abdelsalam
- Biomechanics and Motor Behavior Department, College of Sport Science and Physical Activities, King Saud University, Riyadh 12371, Saudi Arabia; (N.M.B.S.); (A.M.A.)
| | - Sergey P. Levushkin
- Research Institute of Sports and Sports Medicine, Russian University of Sports «GTSOLIFK», Moscow 105122, Russia;
| | - Aleksey Laptev
- Laboratory of Scientific and Methodological Support for Athletes of National Teams, Institute of Sports and Sports Medicine, Moscow 105122, Russia;
| | - Mokhtar Inoubli
- Research Laboratory of Exercise Performance, Health, and Society, Institute of Sport and Physical Education, Manouba University, La Manouba 2010, Tunisia;
| | - Mehdi Chlif
- EA 3300, Exercise Physiology and Rehabilitation Laboratory, Sport Sciences Department, Picardie Jules Verne University, F-80025 Amiens, France
- National Center of Medicine and Science in Sports (NCMSS), Tunisian Research Laboratory Sports Performance Optimization, El Menzah, Tunis 263, Tunisia
| |
Collapse
|
10
|
Gounaridi MI, Souvaliotis N, Vontetsianos A, Chynkiamis N, Lampsas S, Theofilis P, Anastasiou A, Goliopoulou A, Tzima I, Katsarou O, Bakakos P, Vavouranakis M, Koulouris N, Siasos G, Oikonomou E. The Impact of Cardiopulmonary Rehabilitation on Ventriculoarterial Coupling in Post-Coronavirus Disease-2019 Patients. J Cardiopulm Rehabil Prev 2024; 44:361-368. [PMID: 39185908 DOI: 10.1097/hcr.0000000000000885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
PURPOSE Coronavirus disease-2019 (COVID-19) affects the cardiovascular system even after the acute phase of the disease. Cardiopulmonary rehabilitation may improve post-COVID-19 symptoms. This study aims to evaluate the impact of a cardiopulmonary rehabilitation program after acute COVID-19 on arterial stiffness, left ventricular function, and ventriculoarterial coupling (VAC). METHODS Forty-eight adults were examined 1 (T0) and 3-mo (T1) following recovery from COVID-19 and randomized 1:1 to participate or not in a 3-mo rehabilitation program. Matched subjects were enrolled as a non-COVID-19 group. Arterial stiffness was evaluated by carotid-femoral pulse wave velocity (PWV). Left ventricular (LV) systolic performance was evaluated with global longitudinal strain (GLS). The PWV/LV-GLS ratio was calculated as an index of VAC. High-sensitivity C reactive protein (hs-CRP) was measured. RESULTS At T0, convalescent patients with COVID-19 had impaired PWV ( P = .001) and reduced VAC ( P = .001) compared to non-COVID-19 subjects. PWV (8.15 ± 1.37 to 6.55 ± 0.98 m/sec, P < .001) and LV-GLS (-19.67 ± 1.98 to -21.3 ± 1.93%, P < .001) improved only in convalescent patients with COVID-19 undergoing rehabilitation. Similarly, VAC was only improved in the rehabilitation group (-0.42 ± 0.11 to -0.31 ± 0.06 m · sec -1 ·% -1 , P < .001). A significant improvement in VO 2max was noted after rehabilitation (15.70 [13.05, 21.45] to 18.30 [13.95, 23.75] ml · kg -1 · min -1 , P = .01). Finally, hs-CRP was improved in both groups with a significantly greater improvement in the rehabilitation group. CONCLUSION A 3-mo rehabilitation program in convalesced patients with COVID-19 enhances the recovery of arterial stiffness, left ventricular function, and VAC, highlighting the beneficial mechanisms of rehabilitation in this patient population.
Collapse
Affiliation(s)
- Maria-Ioanna Gounaridi
- Author Affiliations: Department of Cardiology, "Sotiria" Chest Disease Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece (Drs Gounaridi, Souvaliotis, Lampsas, Anastasiou, Goliopoulou, Tzima, Katsarou, Vavouranakis, Siasos, and Oikonomou); Rehabilitation Unit-1st Respiratory Medicine Department, "Sotiria" Chest Disease Hospital, National and Kapodistrian University of Athens, Greece (Dr Vontetsianos, Chynkiamis, Bakakos, and Koulouris); 1st Department of Cardiology, "Hippokration" General Hospital of Athens, National and Kapodistrian University of Athens, Medical School, Athens, Greece (Dr Theofilis)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Peng J, Guo W, Li P, Leng L, Gao D, Yu Z, Huang J, Guo J, Wang S, Hu M, Huang J. Long-term effects of COVID-19 on endothelial function, arterial stiffness, and blood pressure in college students: a pre-post-controlled study. BMC Infect Dis 2024; 24:742. [PMID: 39068389 PMCID: PMC11282677 DOI: 10.1186/s12879-024-09646-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND The COVID-19 has been shown to have negative effects on the cardiovascular system, but it is unclear how long these effects last in college students. This study aimed to assess the long-term impact of COVID-19 on arterial stiffness, endothelial function, and blood pressure in college students. METHODS We enrolled 37 college students who had been infected with COVID-19 for more than 2 months. Brachial artery flow-mediated dilation (FMD) was used to assess endothelial function, while arterial stiffness was evaluated using the ABI Systems 100, including variables such as ankle-brachial index (ABI), brachial-ankle pulse wave velocity (baPWV), carotid-femoral pulse wave velocity (cfPWV), heart rate (HR), and blood pressure (BP). RESULTS Our results showed that FMD was significantly impaired after COVID-19 infection (p < 0.001), while cfPWV and systolic blood pressure (SBP) were significantly increased (p < 0.05). Simple linear regression models revealed a significant negative correlation between post-COVID-19 measurement time and baPWV change (p < 0.01), indicating an improvement in arterial stiffness over time. However, there was a significant positive correlation between post-COVID-19 measurement time and diastolic blood pressure (DBP) change (p < 0.05), suggesting an increase in BP over time. There were no significant differences in ABI and HR between pre- and post-COVID-19 measurements, and no significant correlations were observed with other variables (p > 0.05). CONCLUSION Our study demonstrated that COVID-19 has long-term detrimental effects on vascular function in college students. However, arterial stiffness tends to improve over time, while BP may exhibit the opposite trend.
Collapse
Affiliation(s)
- Jianwei Peng
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, 1268 Middle Guangzhou Avenue, Guangzhou, 510500, Guangdong, China
| | - Wenhuang Guo
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, 1268 Middle Guangzhou Avenue, Guangzhou, 510500, Guangdong, China
| | - Peilun Li
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, 1268 Middle Guangzhou Avenue, Guangzhou, 510500, Guangdong, China
| | - Lu Leng
- College of Foreign Languages, Jinan University, Guangzhou, Guangdong, China
| | - Dongdong Gao
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, 1268 Middle Guangzhou Avenue, Guangzhou, 510500, Guangdong, China
| | - Zhendong Yu
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, 1268 Middle Guangzhou Avenue, Guangzhou, 510500, Guangdong, China
| | - Jinglin Huang
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, 1268 Middle Guangzhou Avenue, Guangzhou, 510500, Guangdong, China
| | - Jinghui Guo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Shen Wang
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, 1268 Middle Guangzhou Avenue, Guangzhou, 510500, Guangdong, China.
| | - Min Hu
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, 1268 Middle Guangzhou Avenue, Guangzhou, 510500, Guangdong, China.
| | - Junhao Huang
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, 1268 Middle Guangzhou Avenue, Guangzhou, 510500, Guangdong, China.
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
12
|
Durieux JC, Zisis SN, Mouchati C, Labbato D, Abboud M, McComsey GA. Sex Modifies the Effect of COVID-19 on Arterial Elasticity. Viruses 2024; 16:1089. [PMID: 39066250 PMCID: PMC11281515 DOI: 10.3390/v16071089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
There is limited long-term evidence on the effects of COVID-19 on vascular injury between male and female sex. An adult cohort of COVID-19 survivors (COVID+) and confirmed SARS-CoV-2 antibody-negative participants (COVID-) were prospectively enrolled. COVID+ participants who have documented the presence of persistent symptoms four weeks following infection were considered to have post-acute sequelae of COVID-19 (PASC). Non-invasive, FDA-approved EndoPAT (Endo-PAT2000) was used for endothelial assessment. COVID-(n = 94) were 1:1 propensity score matched to COVID+ (n = 151) on baseline covariates including sex. Among COVID+, 66.2% (n = 100) had PASC. Higher levels of coagulation marker, D-dimer (p = 0.001), and gut permeability marker, zonulin (p = 0.001), were associated with female sex. Estimated differences in augmentation index (AI) between COVID- (0.9 ± 17.2) and COVID+ (8.4 ± 15.7; p = 0.001) and between female and male sex (12.9 ± 1.9; p < .0001) were observed. Among COVID+ with PASC, the average AI (10.5 ± 1.6) was 9.7 units higher than COVID- (p < .0001) and 6.2 units higher compared to COVID+ with no PASC (p = 0.03). COVID+ PASC+ female sex had the highest AI (14.3 ± 1.9). The effects of SARS-CoV-2 infection on vascular function varies across strata of sex and female sex in the post-acute phase of COVID-19 have the worse arterial elasticity (highest AI).
Collapse
Affiliation(s)
- Jared C. Durieux
- University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (J.C.D.); (D.L.)
| | - Sokratis N. Zisis
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.N.Z.); (C.M.)
| | - Christian Mouchati
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.N.Z.); (C.M.)
| | - Danielle Labbato
- University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (J.C.D.); (D.L.)
| | - Marc Abboud
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut 1104 2020, Lebanon;
| | - Grace A. McComsey
- University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (J.C.D.); (D.L.)
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.N.Z.); (C.M.)
| |
Collapse
|
13
|
Darvish S, Mahoney SA, Venkatasubramanian R, Rossman MJ, Clayton ZS, Murray KO. Socioeconomic status as a potential mediator of arterial aging in marginalized ethnic and racial groups: current understandings and future directions. J Appl Physiol (1985) 2024; 137:194-222. [PMID: 38813611 PMCID: PMC11389897 DOI: 10.1152/japplphysiol.00188.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death in the United States. However, disparities in CVD-related morbidity and mortality exist as marginalized racial and ethnic groups are generally at higher risk for CVDs (Black Americans, Indigenous People, South and Southeast Asians, Native Hawaiians, and Pacific Islanders) and/or development of traditional CVD risk factors (groups above plus Hispanics/Latinos) relative to non-Hispanic Whites (NHW). In this comprehensive review, we outline emerging evidence suggesting these groups experience accelerated arterial dysfunction, including vascular endothelial dysfunction and large elastic artery stiffening, a nontraditional CVD risk factor that may predict risk of CVDs in these groups with advancing age. Adverse exposures to social determinants of health (SDOH), specifically lower socioeconomic status (SES), are exacerbated in most of these groups (except South Asians-higher SES) and may be a potential mediator of accelerated arterial aging. SES negatively influences the ability of marginalized racial and ethnic groups to meet aerobic exercise guidelines, the first-line strategy to improve arterial function, due to increased barriers, such as time and financial constraints, lack of motivation, facility access, and health education, to performing conventional aerobic exercise. Thus, identifying alternative interventions to conventional aerobic exercise that 1) overcome these common barriers and 2) target the biological mechanisms of aging to improve arterial function may be an effective, alternative method to aerobic exercise to ameliorate accelerated arterial aging and reduce CVD risk. Importantly, dedicated efforts are needed to assess these strategies in randomized-controlled clinical trials in these marginalized racial and ethnic groups.
Collapse
Affiliation(s)
- Sanna Darvish
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Sophia A Mahoney
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | | | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Kevin O Murray
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| |
Collapse
|
14
|
Uygun H, Varan C, Erdem N, Yavuz S, Turgut M. The relationship between Brucella infection and aortic stiffness in children. North Clin Istanb 2024; 11:234-240. [PMID: 39005752 PMCID: PMC11237829 DOI: 10.14744/nci.2023.56198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/02/2023] [Accepted: 12/12/2023] [Indexed: 07/16/2024] Open
Abstract
OBJECTIVE In this study, it was aimed to show whether Brucella infection, which causes various cardiovascular complications in children, can lead to an increase in aortic stiffness with a noninvasive method, echocardiography. METHODS Children who were diagnosed with Brucella infection and who had tachycardia, chest pain and murmur that were not related to body temperature increase during the treatment were evaluated cardiologically and had echocardiographic examination, were included in the study. Aortic strain, aortic distensibility measurement results and aortic stiffness index of the patients in the patient and control groups were calculated. RESULTS Our study included 53 cases with a mean age of 11.43±4.13 years in the patient group and 68 cases with a mean age of 10.16±3.61 years in the control group. We found that systolic blood pressure was lower in the patient group than in the control group (p=0.014). In the analysis of laboratory parameters, blood glucose level was found to be significantly higher in the patient group (p=0.001). In the statistical evaluation of aortic strain, aortic stiffness index and aortic distensibility measurement results between the patient and control groups, no statistically significant difference was found between the groups (p=0.287, p=0.784, p=0.208). CONCLUSION In our study, where we tried to show a new parameter that could contribute to the increase in aortic stiffness, the results showed that Brucella infection was not a factor that increased aortic stiffness in the pediatric age group.
Collapse
Affiliation(s)
- Hatice Uygun
- Department of Pediatric Infectious Disease, Adiyaman University Training and Research Hospital, Adiyaman, Turkiye
| | - Celal Varan
- Department of Pediatric Cardiology, Adiyaman University Faculty of Medicine, Adiyaman, Turkiye
| | - Nurettin Erdem
- Department of Pediatric Infectious Disease, Adiyaman University Faculty of Medicine, Adiyaman, Turkiye
| | - Sibel Yavuz
- Department of Pediatric Gastroenterology, Adiyaman University Training and Research Hospital, Adiyaman, Turkiye
| | - Mehmet Turgut
- Department of Pediatric Infectious Disease, Adiyaman University Faculty of Medicine, Adiyaman, Turkiye
| |
Collapse
|
15
|
Chen J, Smith K, Xu Q, Ali T, Cavallazzi R, Ghafghazi S, Clifford SP, Arnold FW, Kong M, Huang J, Center of Excellence for Research in Infectious Diseases (CERID) Post-COVID-19 Research Clinic Study Group. Long-term Effects of COVID-19 on Vascular Parameters-A Prospective Longitudinal Ultrasound Clinical Study. JOURNAL FOR VASCULAR ULTRASOUND : JVU 2024; 48:95-102. [PMID: 39641110 PMCID: PMC11619815 DOI: 10.1177/15443167231210357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Objective To investigate the longitudinal effects of COVID-19 on major vascular structures and parameters and clinical outcomes. Design Observational prospective trial. Setting Post-COVID-19 research clinic established by University of Louisville Division of Infectious Diseases. Participants The study population consisted of 72 post-COVID-19 individuals and 11 non-COVID-19 infected participants in the control group. The participants were recruited from adult hospitals and from the community. The enrollment started in October 2020 and follow-up periods were at 3, 6, and 12 months from their initial COVID-19 diagnosis. Interventions The participants were interviewed for medical and COVID-19 infection history. Samples of white blood cell (WBC), C-reactive protein (CRP), and D-dimer were taken at each visit. Certified sonographers performed vascular ultrasound on the study participants. Measurements and Main Results Median intima-media thickness (IMT) was increased in mild/asymptomatic (0.80 mm) and severe/critical (0.90 mm) groups when compared with controls (0.60 mm; P < .001 for both groups). In the asymptomatic/mild group, 6-month median IMT (0.88 mm) was increased, compared with the 3-month group (0.75 mm), with P = .026. Increased age was associated with decreased mean arterial blood velocities (cm/s): common carotid (r = -0.236, P = .032), internal carotid (r = -0.208, P = .048), and subclavian artery mean velocity (r = -0.357, P = .003). We did not find any instance of deep vein thrombosis. Median D-dimer, CRP, and WBC in the control group differed from asymptomatic/mild COVID-19 group (P = .026, .011, and .003, respectively). Moreover, WBC in the asymptomatic/mild group and moderate COVID-19 group differed from severe/critical group (P = .025 and P = .027, respectively); CRP also differed between asymptomatic/mild group and severe/critical group (P = .014). Conclusions There were differences in intima-media lumen thickness (IMT), arterial velocities, and inflammatory markers in post-COVID-19 patients. There was no instance of deep vein thrombosis in this post-COVID-19 study cohort. The increased IMT might infer atherosclerosis, which has shown to increase cardiovascular risks. It is not yet known whether the increase in IMT due to COVID should be treated in the same way as non-COVID-19 atherosclerosis-through statins, for example-or whether regular cardiovascular risk reduction would be useful. Clinical trial and mechanistic studies should be performed to further our understanding of COVID-19-related vascular pathologies.
Collapse
Affiliation(s)
- James Chen
- University of Louisville, KY, USA
- Mayo Clinic, Rochester, MN, USA
| | | | - Qian Xu
- University of Louisville, KY, USA
| | | | | | | | | | | | | | - Jiapeng Huang
- University of Louisville, KY, USA
- UofL Health—Jewish Hospital Trager Transplant Center, Louisville, KY, USA
| | | |
Collapse
|
16
|
Castañeyra-Perdomo A, Gonzalez-Mora JL, Carmona-Calero EM, Makris N, Carrasco-Juan JL. A Narrative Review on the Clinical Relevance of Imaging the Circumventricular Brain Organs and Performing Their Anatomical and Histopathological Examination in Acute and Postacute COVID-19. Am J Forensic Med Pathol 2024; 45:151-156. [PMID: 38739896 PMCID: PMC11479582 DOI: 10.1097/paf.0000000000000939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
ABSTRACT Autopsy followed by histopathological examination is foundational in clinical and forensic medicine for discovering and understanding pathological changes in disease, their underlying processes, and cause of death. Imaging technology has become increasingly important for advancing clinical research and practice, given its noninvasive, in vivo and ex vivo applicability. Medical and forensic autopsy can benefit greatly from advances in imaging technology that lead toward minimally invasive, whole-brain virtual autopsy. Brain autopsy followed by histopathological examination is still the hallmark for understanding disease and a fundamental modus operandi in forensic pathology and forensic medicine, despite the fact that its practice has become progressively less frequent in medical settings. This situation is especially relevant with respect to new diseases such as COVID-19 caused by the SARS-CoV-2 virus, for which our neuroanatomical knowledge is sparse. In this narrative review, we show that ad hoc clinical autopsies and histopathological analyses combined with neuroimaging of the principal circumventricular organs are critical to gaining insight into the reconstruction of the pathophysiological mechanisms and the explanation of cause of death (ie, atrium mortis) related to the cardiovascular effects of SARS-CoV-2 infection in forensic and clinical medicine.
Collapse
Affiliation(s)
- Agustin Castañeyra-Perdomo
- From the Universidad de La Laguna, Área de Anatomía y Fisiología, Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Santa Cruz de Tenerife, Spain
| | - Jose Luis Gonzalez-Mora
- From the Universidad de La Laguna, Área de Anatomía y Fisiología, Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Santa Cruz de Tenerife, Spain
| | - Emilia Maria Carmona-Calero
- From the Universidad de La Laguna, Área de Anatomía y Fisiología, Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Santa Cruz de Tenerife, Spain
| | - Nikos Makris
- Center for Morphometric Analysis, Departments of Psychiatry and Neurology, A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jose Luis Carrasco-Juan
- Universidad de La Laguna, Área de Histología, Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
17
|
Karakasis P, Nasoufidou A, Sagris M, Fragakis N, Tsioufis K. Vascular Alterations Following COVID-19 Infection: A Comprehensive Literature Review. Life (Basel) 2024; 14:545. [PMID: 38792566 PMCID: PMC11122535 DOI: 10.3390/life14050545] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
SARS-CoV-2, the causative agent of the ongoing COVID-19 pandemic, has revealed a broader impact beyond the respiratory system, predominantly affecting the vascular system with various adverse manifestations. The infection induces endothelial dysfunction and immune system dysregulation, creating an inflammatory and hypercoagulable state. It affects both microvasculature and macrovasculature, leading to thromboembolic events, cardiovascular manifestations, impaired arterial stiffness, cerebrovascular complications, and nephropathy, as well as retinopathy-frequently observed in cases of severe illness. Evidence suggests that SARS-CoV-2 infection may result in persistent effects on the vascular system, identified as long-term COVID-19. This is characterized by prolonged inflammation, endotheliopathy, and an increased risk of vascular complications. Various imaging modalities, histopathological studies, and diagnostic tools such as video capillaroscopy and magnetic resonance imaging have been employed to visualize vascular alterations. This review aims to comprehensively summarize the evidence concerning short and long-term vascular alterations following COVID-19 infection, investigating their impact on patients' prognosis, and providing an overview of preventive strategies to mitigate associated vascular complications.
Collapse
Affiliation(s)
- Paschalis Karakasis
- Second Department of Cardiology, Aristotle University of Thessaloniki, Hippokration General Hospital, 54642 Thessaloniki, Greece; (P.K.); (A.N.); (N.F.)
| | - Athina Nasoufidou
- Second Department of Cardiology, Aristotle University of Thessaloniki, Hippokration General Hospital, 54642 Thessaloniki, Greece; (P.K.); (A.N.); (N.F.)
| | - Marios Sagris
- First Department of Cardiology, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece;
| | - Nikolaos Fragakis
- Second Department of Cardiology, Aristotle University of Thessaloniki, Hippokration General Hospital, 54642 Thessaloniki, Greece; (P.K.); (A.N.); (N.F.)
| | - Konstantinos Tsioufis
- First Department of Cardiology, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece;
| |
Collapse
|
18
|
Kikinis Z, Castañeyra-Perdomo A, González-Mora JL, Rushmore RJ, Toppa PH, Haggerty K, Papadimitriou G, Rathi Y, Kubicki M, Kikinis R, Heller C, Yeterian E, Besteher B, Pallanti S, Makris N. Investigating the structural network underlying brain-immune interactions using combined histopathology and neuroimaging: a critical review for its relevance in acute and long COVID-19. Front Psychiatry 2024; 15:1337888. [PMID: 38590789 PMCID: PMC11000670 DOI: 10.3389/fpsyt.2024.1337888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/23/2024] [Indexed: 04/10/2024] Open
Abstract
Current views on immunity support the idea that immunity extends beyond defense functions and is tightly intertwined with several other fields of biology such as virology, microbiology, physiology and ecology. It is also critical for our understanding of autoimmunity and cancer, two topics of great biological relevance and for critical public health considerations such as disease prevention and treatment. Central to this review, the immune system is known to interact intimately with the nervous system and has been recently hypothesized to be involved not only in autonomic and limbic bio-behaviors but also in cognitive function. Herein we review the structural architecture of the brain network involved in immune response. Furthermore, we elaborate upon the implications of inflammatory processes affecting brain-immune interactions as reported recently in pathological conditions due to SARS-Cov-2 virus infection, namely in acute and post-acute COVID-19. Moreover, we discuss how current neuroimaging techniques combined with ad hoc clinical autopsies and histopathological analyses could critically affect the validity of clinical translation in studies of human brain-immune interactions using neuroimaging. Advances in our understanding of brain-immune interactions are expected to translate into novel therapeutic avenues in a vast array of domains including cancer, autoimmune diseases or viral infections such as in acute and post-acute or Long COVID-19.
Collapse
Affiliation(s)
- Zora Kikinis
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Agustin Castañeyra-Perdomo
- Universidad de La Laguna, Área de Anatomía y Fisiología. Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Spain
| | - José Luis González-Mora
- Universidad de La Laguna, Área de Anatomía y Fisiología. Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Spain
- Universidad de La Laguna, Instituto Universitario de Neurosciencias, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Spain
| | - Richard Jarrett Rushmore
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, San Cristobal de la Laguna, Spain
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Poliana Hartung Toppa
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kayley Haggerty
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - George Papadimitriou
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Yogesh Rathi
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Marek Kubicki
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Ron Kikinis
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Carina Heller
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Edward Yeterian
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Psychology, Colby College, Waterville, ME, United States
| | - Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Stefano Pallanti
- Department of Psychiatry and Behavioural Science, Albert Einstein College of Medicine, Bronx, NY, United States
- Istituto di Neuroscienze, Florence, Italy
| | - Nikos Makris
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Universidad de La Laguna, Área de Anatomía y Fisiología. Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Spain
- Universidad de La Laguna, Instituto Universitario de Neurosciencias, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Spain
- Department of Anatomy and Neurobiology, Boston University School of Medicine, San Cristobal de la Laguna, Spain
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Faghy MA, Dalton C, Duncan R, Arena R, Ashton REM. Using cardiorespiratory fitness assessment to identify pathophysiology in long COVID - Best practice approaches. Prog Cardiovasc Dis 2024; 83:55-61. [PMID: 38417769 DOI: 10.1016/j.pcad.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Cardio-respiratory fitness (CRF) is well-established in the clinical domains as an integrative measure of the body's physiological capability and capacity to transport and utilise oxygen during controlled bouts of physical exertion. Long COVID is associated with >200 different symptoms and is estimated to affect ∼150 million people worldwide. The most widely reported impact is reduced quality of life and functional status due to highly sensitive and cyclical symptoms that manifest and are augmented following exposure to physical, emotional, orthostatic, and cognitive stimuli, more commonly known as post-exertional symptom exacerbation (PESE) which prevents millions from engaging in routine daily activities. The use of cardiopulmonary exercise testing (CPET) is commonplace in the assessment of integrated physiology; CPET will undoubtedly play an integral role in furthering the pathophysiology and mechanistic knowledge that will inform bespoke Long COVID treatment and management strategies. An inherent risk of previous attempts to utilise CPET protocols in patients with chronic disease is that these are compounded by PESE and have induced a worsening of symptoms for patients that can last for days or weeks. To do this effectively and to meet the global need, the complex multi-system pathophysiology of Long COVID must be considered to ensure the design and implementation of research that is both safe for participants and capable of advancing mechanistic understanding.
Collapse
Affiliation(s)
- Mark A Faghy
- Biomedical and Clinical Exercise Science Research Theme, University of Derby, Derby, UK; Department of Physical Therapy, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL, USA; Healthy Living for Pandemic Event Protection Network, Chicago, IL, USA.
| | - Caroline Dalton
- Advanced Wellbeing Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Rae Duncan
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Ross Arena
- Biomedical and Clinical Exercise Science Research Theme, University of Derby, Derby, UK; Department of Physical Therapy, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL, USA; Healthy Living for Pandemic Event Protection Network, Chicago, IL, USA
| | - Ruth E M Ashton
- Biomedical and Clinical Exercise Science Research Theme, University of Derby, Derby, UK; Healthy Living for Pandemic Event Protection Network, Chicago, IL, USA
| |
Collapse
|
20
|
Podzolkov V, Bragina A, Tarzimanova A, Vasilyeva L, Shvedov I, Druzhinina N, Rodionova Y, Ishina T, Akyol I, Maximova V, Cherepanov A. Association of COVID-19 and Arterial Stiffness Assessed using Cardiovascular Index (CAVI). Curr Hypertens Rev 2024; 20:44-51. [PMID: 38258773 PMCID: PMC11092554 DOI: 10.2174/0115734021279173240110095037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/23/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND COVID-19 is characterized by an acute inflammatory response with the formation of endothelial dysfunction and may affect arterial stiffness. Studies of cardio-ankle vascular index in COVID-19 patients with considered cardiovascular risk factors have not been conducted. OBJECTIVE The purpose of our study was to assess the association between cardio-ankle vascular index and COVID-19 in hospitalized patients adjusted for known cardiovascular risk factors. METHODS A cross-sectional study included 174 people hospitalized with a diagnosis of moderate COVID-19 and 94 people without COVID-19. Significant differences in the cardio-ankle vascular index values measured by VaSera VS - 1500N between the two groups were analyzed using parametric (Student's t-criterion) and nonparametric (Mann-Whitney) criteria. Independent association between COVID-19 and an increased cardio-ankle vascular index ≥ 9.0 adjusted for known cardiovascular risk factors was assessed by multivariate logistic regression. RESULTS There were significantly higher values of the right cardio-ankle vascular index 8.10 [7.00;9.40] and the left cardio-ankle vascular index 8.10 [6.95;9.65] in patients undergoing inpatient treatment for COVID-19 than in the control group - 7.55 [6.60;8.60] and 7.60 [6.60;8.70], respectively. A multivariate logistic regression model adjusted for age, hypertension, plasma glucose level, glomerular filtration rate and diabetes mellitus showed a significant association between increased cardio-ankle vascular index and COVID-19 (OR 2.41 [CI 1.09;5.30]). CONCLUSION Hospitalized patients with COVID-19 had significantly higher cardio-ankle vascular index values compared to the control group. An association between an increased cardio-ankle vascular index and COVID-19 was revealed, independent of age, hypertension, plasma glucose level, glomerular filtration rate and diabetes mellitus.
Collapse
Affiliation(s)
- Valery Podzolkov
- Department of Faculty Therapy No. 2, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Anna Bragina
- Department of Faculty Therapy No. 2, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Aida Tarzimanova
- Department of Faculty Therapy No. 2, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Lyubov Vasilyeva
- Department of Faculty Therapy No. 2, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Ilya Shvedov
- Department of Faculty Therapy No. 2, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Natalya Druzhinina
- Department of Faculty Therapy No. 2, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Yulia Rodionova
- Department of Faculty Therapy No. 2, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Tatiana Ishina
- Department of Faculty Therapy No. 2, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Iuliia Akyol
- Department of Faculty Therapy No. 2, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Valentina Maximova
- Department of Faculty Therapy No. 2, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexandr Cherepanov
- Department of Faculty Therapy No. 2, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
21
|
Saloň A, Neshev R, Teraž K, Šimunič B, Peskar M, Marušič U, Pišot S, Šlosar L, Gasparini M, Pišot R, De Boever P, Schmid-Zalaudek K, Steuber B, Fredriksen PM, Nkeh-Chungag BN, Sourij H, Šerý O, Goswami N. A pilot study: Exploring the influence of COVID-19 on cardiovascular physiology and retinal microcirculation. Microvasc Res 2023; 150:104588. [PMID: 37468091 DOI: 10.1016/j.mvr.2023.104588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affects the cardiovascular system. The current study investigated changes in heart rate (HR), blood pressure (BP), pulse wave velocity (PWV), and microcirculation in patients recovering from Coronavirus disease 2019 (COVID-19) infection. METHODOLOGY Out of 43 initially contacted COVID-19 patients, 35 (30 males, 5 females; age: 60 ± 10 years; and body mass index (BMI): 31.8 ± 4.9) participated in this study. Participants were seen on two occasions after hospital discharge; the baseline measurements were collected, either on the day of hospital discharge if a negative PCR test was obtained, or on the 10th day after hospitalization if the PCR test was positive. The second measurements were done 60 days after hospitalization. The vascular measurements were performed using the VICORDER® device and a retinal blood vessel image analysis. RESULTS A significant increase in systolic BP (SBP) (from 142 mmHg, SD: 15, to 150 mmHg, SD: 19, p = 0.041), reduction in HR (from 76 bpm, SD: 15, to 69 bpm, SD: 11, p = 0.001), and narrower central retinal vein equivalent (CRVE) (from 240.94 μm, SD: 16.05, to 198.05 μm, SD: 17.36, p = 0.013) were found. Furthermore, the trends of increasing PWV (from 11 m/s, SD: 3, to 12 m/s, SD: 3, p = 0.095) and decreasing CRAE (from 138.87 μm, SD: 12.19, to 136.77 μm, SD: 13.19, p = 0.068) were recorded. CONCLUSION The present study investigated cardiovascular changes following COVID-19 infection at two-time points after hospital discharge (baseline measurements and 60 days post-hospitalization). Significant changes were found in systolic blood pressure, heart rate, and microvasculature indicating that vascular adaptations may be ongoing even weeks after hospitalization from COVID-19 infection. Future studies could involve conducting additional interim assessments during the active infection and post-infection periods.
Collapse
Affiliation(s)
- Adam Saloň
- Division of Physiology & Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology, and Inflammation, Medical University of Graz, Austria; Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Ruslan Neshev
- Division of Physiology & Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology, and Inflammation, Medical University of Graz, Austria
| | - Kaja Teraž
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia; Faculty of Sport, University of Ljubljana, Slovenia
| | - Boštjan Šimunič
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
| | - Manca Peskar
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia; Biological Psychology and Neuroergonomics, Department of Psychology and Ergonomics, Faculty V: Mechanical Engineering and Transport Systems, Technische Universität Berlin, Berlin, Germany
| | - Uroš Marušič
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia; Department of Health Sciences, Alma Mater Europaea - ECM, Maribor, Slovenia
| | - Saša Pišot
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
| | - Luka Šlosar
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia; Department of Health Sciences, Alma Mater Europaea - ECM, Maribor, Slovenia
| | - Mladen Gasparini
- Department of General Surgery, General Hospital Izola, Izola, Slovenia
| | - Rado Pišot
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
| | | | - Karin Schmid-Zalaudek
- Division of Physiology & Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology, and Inflammation, Medical University of Graz, Austria
| | - Bianca Steuber
- Division of Physiology & Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology, and Inflammation, Medical University of Graz, Austria
| | - Per Morten Fredriksen
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Benedicta Ngwenchi Nkeh-Chungag
- Department of Biological and Environmental Sciences, Faculty of Health Sciences, Walter Sisulu University PBX1, 5117 Mthatha, South Africa
| | - Harald Sourij
- Internal Medicine, Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Omar Šerý
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
| | - Nandu Goswami
- Division of Physiology & Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology, and Inflammation, Medical University of Graz, Austria; College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| |
Collapse
|
22
|
Jin L, Wu L, Chen J, Zhang M, Sun J, Shen C, Du L, She X, Li Z. Uncoupling of the center-to-periphery arterial stiffness gradient and pulse pressure amplification in viral pneumonia infection. BMC Infect Dis 2023; 23:657. [PMID: 37798630 PMCID: PMC10552441 DOI: 10.1186/s12879-023-08650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023] Open
Abstract
OBJECTIVES Arterial stiffness is a common manifestation of viral pneumonia infections, including COVID-19. Nevertheless, the relationship between the center-to-periphery arterial stiffness gradient and pulse pressure amplification (PPA) in infectious diseases remains unclear. This study aimed to investigate this relationship utilizing arterial pressure volume index (API) and arterial velocity pulse index (AVI) ratio. METHODS API/AVI and PPA were measured in 219 participants with COVID-19 and 374 normal participants. Multiple linear regression was used to assess the association of API/AVI and PPA, and restricted cubic spline was used to investigate the non-linear relationship between API/AVI and PPA. Receiver operating characteristic curve (ROC) analysis was used to evaluate the effects of API/AVI in identifying COVID-19 infection and severe stage. RESULTS There was a significant J-shaped relationship between API/AVI and PPA in COVID-19 group, while a M-shaped relationship was observed in normal group. API/AVI decreased rapidly as PPA decreased until API/AVI decreased slowly at PPA of 1.07, and then API/AVI decreased slowly again at PPA of 0.78. ROC results showed that API/AVI demonstrated excellent accuracy in identifying COVID-19 infection (AUC = 0.781) and a high specificity (84.88%) in identifying severe stage. CONCLUSIONS There was a J-shaped association between the API/AVI and PPA in viral infected patients, while a M-shaped relationship in the normal participants. API/AVI is better for identifying infected and uninfected patients, with a high specificity in identifying those in severe stages of the disease. The attenuation or reversal of API/AVI may be associated with the loss of PPA coupling.
Collapse
Affiliation(s)
- Lin Jin
- Department of Ultrasound, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, China
- Department of Ultrasound, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201812, China
| | - Lingheng Wu
- Department of Ultrasound, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201812, China
- Department of Ultrasound, Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080, China
| | - Jianxiong Chen
- Department of Ultrasound, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201812, China
- Department of Ultrasound, Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080, China
| | - Mengjiao Zhang
- Department of Ultrasound, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201812, China
| | - Jiali Sun
- Department of Ultrasound, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201812, China
| | - Cuiqin Shen
- Department of Ultrasound, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201812, China
| | - Lianfang Du
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Xiaoyin She
- Department of Emergency and Critical Care, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201812, China
| | - Zhaojun Li
- Department of Ultrasound, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201812, China.
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
23
|
Xuereb RA, Magri CJ, Xuereb RG. Arterial Stiffness and its Impact on Cardiovascular Health. Curr Cardiol Rep 2023; 25:1337-1349. [PMID: 37676581 DOI: 10.1007/s11886-023-01951-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
PURPOSE OF REVIEW Cardiovascular diseases are the leading cause of mortality globally. Identifying patients at risk is important to initiate preventive strategies. Over the last few decades, the role of the endothelium and its impact on arterial stiffness have been recognised as playing a pivotal role in cardiovascular disease. This review will focus on the effect of arterial stiffness in different patient cohorts with regard to cardiovascular morbidity and mortality, as well as its use in clinical practice. RECENT FINDINGS Arterial stiffness is associated with a range of cardiovascular risk factors and is an independent predictor of cardiovascular mortality. The gold standard for evaluating arterial stiffness is pulse wave velocity. Recently, cardio-ankle vascular index has been implemented as an easy and highly reproducible measure of arterial stiffness. Moreover, certain pharmacologic agents may modify arterial stiffness and alter progression of cardiovascular disease. The endothelium plays an important role in cardiovascular disease. Implementing assessment of arterial stiffness in clinical practice will improve stratification of patients at risk of cardiovascular disease and help modify disease progression.
Collapse
Affiliation(s)
| | - Caroline J Magri
- Department of Cardiology, Mater Dei Hospital, Msida, Malta
- University of Malta, Msida, Malta
| | | |
Collapse
|
24
|
Greistorfer T, Jud P. Pathophysiological Aspects of COVID-19-Associated Vasculopathic Diseases. Thromb Haemost 2023; 123:931-944. [PMID: 37172941 DOI: 10.1055/s-0043-1768969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Since the beginning of coronavirus disease 2019 (COVID-19) pandemic, numerous data reported potential effects on the cardiovascular system due to infection by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), which may lead to COVID-19-associated vasculopathies during the acute phase and measurable vascular changes in the convalescent phase. Infection by SARS-CoV-2 seems to have specific direct and indirect effects on the endothelium, immune and coagulation systems thus promoting endothelial dysfunction, immunothrombosis, and formation of neutrophil extracellular traps although the exact mechanisms still need to be elucidated. This review represents a recent update of pathophysiological pathways of the respective three major mechanisms contributing to COVID-19 vasculopathies and vascular changes and includes clinical implications and significance of outcome data.
Collapse
Affiliation(s)
- Thiemo Greistorfer
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Philipp Jud
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
25
|
Podzolkov VI, Bragina AE, Tarzimanova AI, Ogibenina ES, Shvedov II, Ivannikov AA, Megeneishvili NК, Sutulova AV. [Association between cardio-ankle vascular index and markers of thrombosis in hospitalized patients COVID-19]. TERAPEVT ARKH 2023; 95:548-553. [PMID: 38159004 DOI: 10.26442/00403660.2023.07.202292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 01/03/2024]
Abstract
AIM To evaluate the relationship between the cardio-ankle vascular index (CAVI) and the marker of procoagulant state - D-dimer in hospitalized patients with coronavirus disease 2019 (COVID-19). MATERIALS AND METHODS This cross-sectional study involved adult patients admitted to the University hospital with clinically diagnosed or laboratory-confirmed COVID-19. We compared groups of patients with normal and elevated CAVI. Univariate and multivariate logistic regression analyses were performed to assess the association between risk factors and elevated D-dimer levels; odds ratios (ORs) with 95% confidence intervals (95% CI) were calculated to determine the strength of association. A p<0.05 was considered statistically significant. RESULTS The study included 152 patients [64 (42.1%) men and 88 (57.9%) women], mean age 59.10±12.74 years. 45 (29.6%) had elevated CAVI. Patients with elevated CAVI were older, had more comorbid diseases, a higher Charlson comorbidity index and D-dimer levels. Age, the comorbidity index, and CAVI above 9.5 were associated with elevated D-dimer levels in patients with COVID-19. In a multivariate logistic regression, CAVI above 9.5 was an independent predictor of increased D-dimer in patients with COVID-19 (OR 2.513, 95% CI 1.050-6.012; p=0.038). CONCLUSION In this study, for the first time, the association between a vascular stiffness marker, elevated CAVI, and increased D-dimer levels in COVID-19 patients was shown. This relationship may be a consequence of endothelial dysfunction and can be used as an additional marker of coagulopathy developing as part of COVID-19.
Collapse
Affiliation(s)
- V I Podzolkov
- Sechenov First Moscow State Medical University (Sechenov University)
| | - A E Bragina
- Sechenov First Moscow State Medical University (Sechenov University)
| | - A I Tarzimanova
- Sechenov First Moscow State Medical University (Sechenov University)
| | - E S Ogibenina
- Sechenov First Moscow State Medical University (Sechenov University)
| | - I I Shvedov
- Sechenov First Moscow State Medical University (Sechenov University)
| | - A A Ivannikov
- Sechenov First Moscow State Medical University (Sechenov University)
| | - N К Megeneishvili
- Sechenov First Moscow State Medical University (Sechenov University)
| | - A V Sutulova
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
26
|
Gómez-Sánchez L, Tamayo-Morales O, Suárez-Moreno N, Bermejo-Martín JF, Domínguez-Martín A, Martín-Oterino JA, Martín-González JI, González-Calle D, García-García Á, Lugones-Sánchez C, González-Sánchez S, Jiménez-Gómez R, García-Ortiz L, Gómez-Marcos MA, Navarro-Matías E, ICOPER investigators group. Relationship between the structure, function and endothelial damage, and vascular ageing and the biopsychological situation in adults diagnosed with persistent COVID (BioICOPER study). A research protocol of a cross-sectional study. Front Physiol 2023; 14:1236430. [PMID: 37772064 PMCID: PMC10523018 DOI: 10.3389/fphys.2023.1236430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/17/2023] [Indexed: 09/30/2023] Open
Abstract
Background: SARS-CoV-2 infection affects the vascular endothelium, which mediates the inflammatory and thrombotic cascade. Moreover, alterations in the endothelium are related to arterial stiffness, which has been established as a marker of cardiovascular disease. The objective of this study is to analyse how the structure, vascular function, vascular ageing and endothelial damage are related to the biopsychological situation in adults diagnosed with persistent COVID and the differences by gender. Methods: This cross-sectional, descriptive, observational study will be carried out in the Primary Care Research Unit of Salamanca (APISAL) and in the BioSepsis laboratory of the University of Salamanca. The sample will be selected from the persistent COVID monographic office at the Internal Medicine Service of the University Hospital of Salamanca, and from the population of subjects diagnosed with persistent COVID in the clinical history of Primary Care. Through consecutive sampling, the study will include 300 individuals diagnosed with persistent COVID who meet the diagnosis criteria established by the WHO, after they sign the informed consent. Endothelial damage biomarkers will be measured using ELLA-SimplePlexTM technology (Biotechne). Their vascular structure and function will be analysed by measuring the carotid intima-media thickness (Sonosite Micromax); the pulse wave and carotid-femoral pulse wave velocity (cfPWV) will be recorded with Sphygmocor System®. Cardio Ankle Vascular Index (CAVI), brachial-ankle pulse wave velocity (baPWV) and ankle-brachial index will be analysed with Vasera VS-2000®. The integral assessment of the subjects with persistent COVID will be conducted with different scales that evaluate fatigue, sleep, dyspnea, quality of life, attention, nutrition state, and fragility. We will also evaluate their lifestyles (diet, physical activity, smoking habits and alcohol consumption), psychological factors, and cognitive deterioration, which will be gathered through validated questionnaires; moreover, physical activity will be objectively measured using a pedometer for 7 days. Body composition will be measured through impedance using an Inbody 230. Vascular ageing will be calculated with 10 and 90 percentiles of cfPWV and baPWV. Furthermore, we will analyse the presence of vascular injury in the retina, heart, kidneys and brain, as well as cardiovascular risk. Demographic and analytical variables will also be gathered. Discussion: Arterial stiffness reflects the mechanic and functional properties of the arterial wall, showing the changes in arterial pressure, blood flow, and vascular diameter that occur with each heartbeat. SARS-CoV-2 affects the endothelial cells that are infected with this virus, increasing the production of pro-inflammatory cytokines and pro-thrombotic factors, which can cause early vascular ageing and an increase of arterial stiffness. Persistent COVID is a complex heterogeneous disorder that affects the lives of millions of people worldwide. The identifications of potential risk factors to better understand who is at risk of developing persistent COVID is important, since this would enable early and appropriate clinical support. It is unknown whether vascular alterations caused by COVID-19 resolve after acute infection or remain over time, favouring the increase of arterial stiffness and early vascular ageing. Therefore, it is necessary to propose studies that analyse the evolution of persistent COVID in this group of patients, as well as the possible variables that influence it. Clinical Trial registration: ClinicalTrials.gov, identifier NCT05819840.
Collapse
Affiliation(s)
- Leticia Gómez-Sánchez
- Primary Care Research Unit of Salamanca (APISAL), Salamanca Primary Care Management, Salamanca, Spain
- Hospital de la Paz de Madrid, Servicio de Urgencias, Madrid, Spain
| | - Olaya Tamayo-Morales
- Primary Care Research Unit of Salamanca (APISAL), Salamanca Primary Care Management, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Research Network on Chronicity, Primary Care and Health Promotion (RICAPPS), Salamanca, Spain
| | - Nuria Suárez-Moreno
- Primary Care Research Unit of Salamanca (APISAL), Salamanca Primary Care Management, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Castilla and León Health Service–SACYL, Gerencia Regional de Salud, Valladolid, Spain
| | - Jesus F. Bermejo-Martín
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Andrea Domínguez-Martín
- Primary Care Research Unit of Salamanca (APISAL), Salamanca Primary Care Management, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Castilla and León Health Service–SACYL, Gerencia Regional de Salud, Valladolid, Spain
| | - José A. Martín-Oterino
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Castilla and León Health Service–SACYL, Gerencia Regional de Salud, Valladolid, Spain
- Hospital Universitario de Salamanca, Internal Medicine Department, Salamanca, Spain
- Department of Biomedical and Diagnostic Sciences, University of Salamanca, Salamanca, Spain
| | - José I. Martín-González
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Castilla and León Health Service–SACYL, Gerencia Regional de Salud, Valladolid, Spain
- Hospital Universitario de Salamanca, Internal Medicine Department, Salamanca, Spain
- Department of Biomedical and Diagnostic Sciences, University of Salamanca, Salamanca, Spain
| | - David González-Calle
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Castilla and León Health Service–SACYL, Gerencia Regional de Salud, Valladolid, Spain
- Department of Biomedical and Diagnostic Sciences, University of Salamanca, Salamanca, Spain
- Hospital Universitario de Salamanca, Cardiology Department, Salamanca, Spain
| | - Ángel García-García
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Castilla and León Health Service–SACYL, Gerencia Regional de Salud, Valladolid, Spain
- Department of Biomedical and Diagnostic Sciences, University of Salamanca, Salamanca, Spain
- Hospital Universitario de Salamanca, Emergency Department, Salamanca, Spain
| | - Cristina Lugones-Sánchez
- Primary Care Research Unit of Salamanca (APISAL), Salamanca Primary Care Management, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Research Network on Chronicity, Primary Care and Health Promotion (RICAPPS), Salamanca, Spain
| | - Susana González-Sánchez
- Primary Care Research Unit of Salamanca (APISAL), Salamanca Primary Care Management, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Research Network on Chronicity, Primary Care and Health Promotion (RICAPPS), Salamanca, Spain
| | - Raquel Jiménez-Gómez
- Primary Care Research Unit of Salamanca (APISAL), Salamanca Primary Care Management, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Castilla and León Health Service–SACYL, Gerencia Regional de Salud, Valladolid, Spain
| | - Luis García-Ortiz
- Primary Care Research Unit of Salamanca (APISAL), Salamanca Primary Care Management, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Research Network on Chronicity, Primary Care and Health Promotion (RICAPPS), Salamanca, Spain
- Castilla and León Health Service–SACYL, Gerencia Regional de Salud, Valladolid, Spain
- Department of Biomedical and Diagnostic Sciences, University of Salamanca, Salamanca, Spain
| | - Manuel A. Gómez-Marcos
- Primary Care Research Unit of Salamanca (APISAL), Salamanca Primary Care Management, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Research Network on Chronicity, Primary Care and Health Promotion (RICAPPS), Salamanca, Spain
- Castilla and León Health Service–SACYL, Gerencia Regional de Salud, Valladolid, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Elena Navarro-Matías
- Primary Care Research Unit of Salamanca (APISAL), Salamanca Primary Care Management, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Castilla and León Health Service–SACYL, Gerencia Regional de Salud, Valladolid, Spain
| | | |
Collapse
|
27
|
Jannasz I, Pruc M, Rahnama-Hezavah M, Targowski T, Olszewski R, Feduniw S, Petryka K, Szarpak L. The Impact of COVID-19 on Carotid-Femoral Pulse Wave Velocity: A Systematic Review and Meta-Analysis. J Clin Med 2023; 12:5747. [PMID: 37685813 PMCID: PMC10488425 DOI: 10.3390/jcm12175747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
COVID-19 is a complex multisystemic disease that can result in long-term complications and, in severe cases, death. This study investigated the effect of COVID-19 on carotid-femoral pulse wave velocity (cfPWV) as a measurement to evaluate its impact on arterial stiffness and might help predict COVID-19-related cardiovascular (CV) complications. PubMed, Web of Science, Embase, and the Cochrane Library were searched for relevant studies, and meta-analysis was performed. The study protocol was registered in PROSPERO (nr. CRD42023434326). The Newcastle-Ottawa Quality Scale was used to evaluate the quality of the included studies. Nine studies reported cfPWV among COVID-19 patients and control groups. The pooled analysis showed that cfPWV in COVID-19 patients was 9.5 ± 3.7, compared to 8.2 ± 2.2 in control groups (MD = 1.32; 95% CI: 0.38-2.26; p = 0.006). A strong association between COVID-19 infection and increased cfPWV suggests a potential link between the virus and increased arterial stiffness. A marked increase in arterial stiffness, a known indicator of CV risk, clearly illustrates the cardiovascular implications of COVID-19 infection. However, further research is required to provide a clearer understanding of the connection between COVID-19 infection, arterial compliance, and subsequent CV events.
Collapse
Affiliation(s)
- Iwona Jannasz
- Department of Geriatrics, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| | - Michal Pruc
- Research Unit, Polish Society of Disaster Medicine, 05-806 Warsaw, Poland
- Department of Public Health, International Academy of Ecology and Medicine, 02-091 Kyiv, Ukraine
| | - Mansur Rahnama-Hezavah
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland
| | - Tomasz Targowski
- Department of Geriatrics, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| | - Robert Olszewski
- Department of Gerontology, Public Health and Education, National Institute of Geriatrics Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| | - Stepan Feduniw
- Department of Gynecology, University Hospital Zurich, 8091 Zurich, Switzerland
- Department of Obstetrics, University Hospital Zurich, 8091 Zurich, Switzerland
| | | | - Lukasz Szarpak
- Henry JN Taub Department of Emergency Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy in Warsaw, 00-136 Warsaw, Poland
- Research Unit, Maria Sklodowska-Curie Bialystok Oncology Center, 15-027 Bialystok, Poland
| |
Collapse
|
28
|
Vidya G, Sowganthikashri A, Madhuri T, Anil KB, Nitin AJ. Arterial Stiffness and COVID-19: Potential Association with Diabetes, Hypertension and Obesity: a Cross Sectional Study. MAEDICA 2023; 18:447-454. [PMID: 38023742 PMCID: PMC10674119 DOI: 10.26574/maedica.2023.18.3.447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Background: Cardiovascular diseases account for one-third of deaths worldwide. Arterial stiffness is considered as useful predictor of cardiovascular events as measured by pulse wave velocity. Hypertension promotes collagen production causing increase in vascular thickness and arterial stiffness. Diabetes is a potential risk factor for arterial stiffness causing imbalance between production and degradation of collagen and elastic fibres. Oxidative stress in obesity leads to endothelial dysfunction and increases arterial stiffness. Hyperinflammation in COVID-19 is proposed to stimulate inflammatory cells that produce collagenases and elastases, which disrupt physiology causing increased arterial stiffness. Hence, in this study we attempt to investigate to which extent COVID-19 increases arterial stiffness especially in individuals with conditions including hypertension, diabetes and obesity. Objectives: This study aimed to measure pulse wave velocity (PWV) in post-COVID 19 patients with diabetes, hypertension and obesity and compare it with individuals with comorbidities without COVID. Mthods:The study population included 184 individuals in the age group of 30-50 years who were divided into four groups as follows: group I comprised subjects with diabetes (n= 64), group II patients with hypertension (n=40), group III subjects with obesity (n=50) and group IV controls (n=30). Groups I, II and III were further divided into two subgroups each, depending on the presence or absence of COVID-19. Arterial stiffness was assessed in all study participants. Results: The results of the present study show a strong correlation between COVID-19 and increased arterial stiffness, particularly in individuals with comorbidities such as diabetes, obesity and hypertension. The mean brachial ankle PWV (baPWV), carotid-femoral PWV (CFPWV) and ankle arterial stiffness index (ASI) was significantly higher among subjects with a history of COVID-19 with hypertension, (p <0.001), followed by high values in obese subjects with COVID-19 and diabetes subjects with COVID-19 when compared to controls. Conclusion:As COVID-19 is associated with increased arterial stiffness, particularly in individuals with comorbidities, undoubtedly it has long-term effects on vascular ageing and physiology. Hypertension was found to be the riskiest factor for increased vascular stiffness in COVID-19 patients.
Collapse
Affiliation(s)
- Ganji Vidya
- All India Institute of Medical Sciences (AIIMS), Bibinagar, Physiology, Hyderabad-508126, Telangana State, India
| | - A Sowganthikashri
- All India Institute of Medical Sciences (AIIMS), Bibinagar, Hyderabad, Telangana State, India
| | - Taranikanti Madhuri
- All India Institute of Medical Sciences (AIIMS), Bibinagar, Physiology, Hyderabad-508126, Telangana State, India
| | - Kumar Bura Anil
- Centre for Sight, Head of the Department, Anaesthesiology, Banjara Hills, Hyderabad-500034, Telangana State, India
| | - Ashok John Nitin
- All India Institute of Medical Sciences (AIIMS), Bibinagar, Physiology, Hyderabad-508126, Telangana State, India
| |
Collapse
|
29
|
Yang Y, Li D, Liu R, Hu Y, Chen S, Wu S, Tian Y. Brachial-ankle pulse wave velocity is a stronger predictor than blood pressure for atherosclerotic cardiovascular diseases and all-cause mortality: a cohort study. Hypertens Res 2023; 46:2100-2112. [PMID: 37237106 DOI: 10.1038/s41440-023-01313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Whether brachial-ankle pulse wave velocity (baPWV) is a better predictive indicator than blood pressure (BP) for atherosclerotic cardiovascular diseases (ASCVD) events and all-cause mortality in the general population has not yet been established. The current study included 47,659 participants from the Kailuan cohort in China, who underwent the baPWV test and were free of ASCVD, atrial fibrillation, and cancer at baseline. The hazard ratios (HRs) of ASCVD and all-cause mortality were evaluated using the Cox proportional hazards model. The predictive ability of baPWV, systolic BP (SBP), and diastolic BP (DBP) for ASCVD and all-cause mortality was evaluated using the area under the curve (AUC) and concordance index (C-index). Within the median follow-up period of 3.27 and 3.32 person-years, 885 ASCVD events and 259 deaths occurred, respectively. The HRs of ASCVD and all-cause mortality increased with the increase of baPWV, SBP, and DBP. When baPWV, SBP, and DBP were analyzed as continuous variables, the adjusted HRs were 1.29 (95% CI, 1.22-1.37), 1.28 (95% CI, 1.20-1.37), and 1.26 (95% CI, 1.17-1.34) for each standard deviation increase, respectively. The AUC and C-index for baPWV in predicting ASCVD and all-cause mortality were 0.744 and 0.750, respectively, while those for SBP were 0.697 and 0.620, those for DBP were 0.666 and 0.585. The AUC and C-index of baPWV were higher than those of SBP and DBP (P < 0.001). Therefore, baPWV is an independent predictor of ASCVD and all-cause mortality in the general Chinese population, and its predictive ability is superior to that of BP. baPWV is a more ideal screening method for ASCVD in large-scale population.
Collapse
Affiliation(s)
- Yingping Yang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Dankang Li
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Run Liu
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No.38 Xueyuan Road, Beijing, 100191, China
| | - Shuohua Chen
- Department of Cardiology, Kailuan Hospital, North China University of Science and Technology, No.57 Xinhua East Road, Tangshan City, 063001, China
| | - Shouling Wu
- Department of Cardiology, Kailuan Hospital, North China University of Science and Technology, No.57 Xinhua East Road, Tangshan City, 063001, China.
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China.
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
30
|
Ceasovschih A, Sorodoc V, Shor A, Haliga RE, Roth L, Lionte C, Onofrei Aursulesei V, Sirbu O, Culis N, Shapieva A, Tahir Khokhar MAR, Statescu C, Sascau RA, Coman AE, Stoica A, Grigorescu ED, Banach M, Thomopoulos C, Sorodoc L. Distinct Features of Vascular Diseases in COVID-19. J Inflamm Res 2023; 16:2783-2800. [PMID: 37435114 PMCID: PMC10332421 DOI: 10.2147/jir.s417691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic was declared in early 2020 after several unexplained pneumonia cases were first reported in Wuhan, China, and subsequently in other parts of the world. Commonly, the disease comprises several clinical features, including high temperature, dry cough, shortness of breath, and hypoxia, associated with findings of interstitial pneumonia on chest X-ray and computer tomography. Nevertheless, severe forms of acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) are not limited to the respiratory tract but also may be extended to other systems, including the cardiovascular system. The bi-directional relationship between atherosclerosis and COVID-19 is accompanied by poor prognosis. The immune response hyperactivation due to SARS-CoV-2 infection causes an increased secretion of cytokines, endothelial dysfunction, and arterial stiffness, which promotes the development of atherosclerosis. Also, due to the COVID-19 pandemic, access to healthcare amenities was reduced, resulting in increased morbidity and mortality in patients at risk. Furthermore, as lockdown measures were largely adopted worldwide, the sedentary lifestyle and the increased consumption of processed nutrients or unhealthy food increased, and in the consequence, we might observe even 70% of overweight and obese population. Altogether, with the relatively low ratio of vaccinated people in many countries, and important health debt appeared, which is now and will be for next decade a large healthcare challenge. However, the experience gained in the COVID-19 pandemic and the new methods of patients' approaching have helped the medical system to overcome this crisis and will hopefully help in the case of new possible epidemics.
Collapse
Affiliation(s)
- Alexandr Ceasovschih
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
- 2nd Internal Medicine Department, Sf. Spiridon Clinical Emergency Hospital, Iasi, 700111, Romania
| | - Victorita Sorodoc
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
- 2nd Internal Medicine Department, Sf. Spiridon Clinical Emergency Hospital, Iasi, 700111, Romania
| | - Annabelle Shor
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
| | - Raluca Ecaterina Haliga
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
- 2nd Internal Medicine Department, Sf. Spiridon Clinical Emergency Hospital, Iasi, 700111, Romania
| | - Lynn Roth
- Laboratory of Physiopharmacology, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, 2610, Belgium
| | - Catalina Lionte
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
- 2nd Internal Medicine Department, Sf. Spiridon Clinical Emergency Hospital, Iasi, 700111, Romania
| | | | - Oana Sirbu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
- 2nd Internal Medicine Department, Sf. Spiridon Clinical Emergency Hospital, Iasi, 700111, Romania
| | - Nicolae Culis
- Nottingham University Hospitals NHS Trust, Queen’s Medical Center, Nottingham, NG72UH, UK
| | - Albina Shapieva
- Cardiac Electrophysiology Department, Petrovsky National Research Center of Surgery, Moscow, 119991, Russia
| | | | - Cristian Statescu
- Department of Cardiology, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Iasi, 700503, Romania
| | - Radu A Sascau
- Department of Cardiology, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Iasi, 700503, Romania
| | - Adorata Elena Coman
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
| | - Alexandra Stoica
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
- 2nd Internal Medicine Department, Sf. Spiridon Clinical Emergency Hospital, Iasi, 700111, Romania
| | - Elena-Daniela Grigorescu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, 93338, Poland
| | - Costas Thomopoulos
- Department of Cardiology, Elena Venizelou General Hospital, Athens, GR-11522, Greece
| | - Laurentiu Sorodoc
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
- 2nd Internal Medicine Department, Sf. Spiridon Clinical Emergency Hospital, Iasi, 700111, Romania
| |
Collapse
|
31
|
Xu SW, Ilyas I, Weng JP. Endothelial dysfunction in COVID-19: an overview of evidence, biomarkers, mechanisms and potential therapies. Acta Pharmacol Sin 2023; 44:695-709. [PMID: 36253560 PMCID: PMC9574180 DOI: 10.1038/s41401-022-00998-0] [Citation(s) in RCA: 187] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/11/2022] [Indexed: 12/15/2022]
Abstract
The fight against coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection is still raging. However, the pathophysiology of acute and post-acute manifestations of COVID-19 (long COVID-19) is understudied. Endothelial cells are sentinels lining the innermost layer of blood vessel that gatekeep micro- and macro-vascular health by sensing pathogen/danger signals and secreting vasoactive molecules. SARS-CoV-2 infection primarily affects the pulmonary system, but accumulating evidence suggests that it also affects the pan-vasculature in the extrapulmonary systems by directly (via virus infection) or indirectly (via cytokine storm), causing endothelial dysfunction (endotheliitis, endothelialitis and endotheliopathy) and multi-organ injury. Mounting evidence suggests that SARS-CoV-2 infection leads to multiple instances of endothelial dysfunction, including reduced nitric oxide (NO) bioavailability, oxidative stress, endothelial injury, glycocalyx/barrier disruption, hyperpermeability, inflammation/leukocyte adhesion, senescence, endothelial-to-mesenchymal transition (EndoMT), hypercoagulability, thrombosis and many others. Thus, COVID-19 is deemed as a (micro)vascular and endothelial disease. Of translational relevance, several candidate drugs which are endothelial protective have been shown to improve clinical manifestations of COVID-19 patients. The purpose of this review is to provide a latest summary of biomarkers associated with endothelial cell activation in COVID-19 and offer mechanistic insights into the molecular basis of endothelial activation/dysfunction in macro- and micro-vasculature of COVID-19 patients. We envisage further development of cellular models and suitable animal models mimicking endothelial dysfunction aspect of COVID-19 being able to accelerate the discovery of new drugs targeting endothelial dysfunction in pan-vasculature from COVID-19 patients.
Collapse
Affiliation(s)
- Suo-Wen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| | - Iqra Ilyas
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China
| | - Jian-Ping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
32
|
Gounaridi MI, Vontetsianos A, Oikonomou E, Theofilis P, Chynkiamis N, Lampsas S, Anastasiou A, Papamikroulis GA, Katsianos E, Kalogeras K, Pesiridis T, Tsatsaragkou A, Vavuranakis M, Koulouris N, Siasos G. The Role of Rehabilitation in Arterial Function Properties of Convalescent COVID-19 Patients. J Clin Med 2023; 12:2233. [PMID: 36983234 PMCID: PMC10056228 DOI: 10.3390/jcm12062233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/25/2023] [Accepted: 03/12/2023] [Indexed: 03/15/2023] Open
Abstract
Coronavirus disease (COVID-19) is a respiratory disease, although arterial function involvement has been documented. We assess the impact of a post-acute COVID-19 rehabilitation program on endothelium-dependent vasodilation and arterial wall properties. We enrolled 60 convalescent patients from COVID-19 and one-month post-acute disease, who were randomized at a 1:1 ratio in a 3-month cardiopulmonary rehabilitation program (study group) or not (control group). Endothelium-dependent vasodilation was evaluated by flow-mediated dilation (FMD), and arterial wall properties were evaluated by carotid-femoral pulse wave velocity (cf-PWV) and augmentation index (AIx) at 1 month and at 4 months post-acute disease. FMD was significantly improved in both the study (6.2 ± 1.8% vs. 8.6 ± 2.4%, p < 0.001) and control groups (5.9 ± 2.2% vs. 6.6 ± 1.8%, p = 0.009), but the improvement was significantly higher in the study group (rehabilitation) (p < 0.001). PWV was improved in the study group (8.2 ± 1.3 m/s vs. 6.6 ± 1.0 m/s, p < 0.001) but not in the control group (8.9 ± 1.8 m/s vs. 8.8 ± 1.9 m/s, p = 0.74). Similarly, AIx was improved in the study group (25.9 ± 9.8% vs. 21.1 ± 9.3%, p < 0.001) but not in the control group (27.6 ± 9.2% vs. 26.2 ± 9.8 m/s, p = 0.15). Convalescent COVID-19 subjects of the study group (rehabilitation) with increased serum levels of circulating IL-6 had a greater reduction in FMD. Conclusively, a 3-month cardiopulmonary post-acute COVID-19 rehabilitation program improves recovery of endothelium-dependent vasodilation and arteriosclerosis.
Collapse
Affiliation(s)
- Maria Ioanna Gounaridi
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Angelos Vontetsianos
- Rehabilitation Unit, 1st Respiratory Medicine Department, Sotiria Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Panagiotis Theofilis
- 1st Department of Cardiology, Hippokration General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Chynkiamis
- Rehabilitation Unit, 1st Respiratory Medicine Department, Sotiria Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Stamatios Lampsas
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Artemis Anastasiou
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgios Angelos Papamikroulis
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efstratios Katsianos
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Theodoros Pesiridis
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Aikaterini Tsatsaragkou
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Manolis Vavuranakis
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Koulouris
- Rehabilitation Unit, 1st Respiratory Medicine Department, Sotiria Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
33
|
Podrug M, Koren P, Dražić Maras E, Podrug J, Čulić V, Perissiou M, Bruno RM, Mudnić I, Boban M, Jerončić A. Long-Term Adverse Effects of Mild COVID-19 Disease on Arterial Stiffness, and Systemic and Central Hemodynamics: A Pre-Post Study. J Clin Med 2023; 12:2123. [PMID: 36983124 PMCID: PMC10055477 DOI: 10.3390/jcm12062123] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
COVID-19-associated vascular disease complications are primarily associated with endothelial dysfunction; however, the consequences of disease on vascular structure and function, particularly in the long term (>7 weeks post-infection), remain unexplored. Individual pre- and post-infection changes in arterial stiffness as well as central and systemic hemodynamic parameters were measured in patients diagnosed with mild COVID-19. As part of in-laboratory observational studies, baseline measurements were taken up to two years before, whereas the post-infection measurements were made 2-3 months after the onset of COVID-19. We used the same measurement protocol throughout the study as well as linear and mixed-effects regression models to analyze the data. Patients (N = 32) were predominantly healthy and young (mean age ± SD: 36.6 ± 12.6). We found that various parameters of arterial stiffness and central hemodynamics-cfPWV, AIx@HR75, and cDBP as well as DBP and MAP-responded to a mild COVID-19 disease. The magnitude of these responses was dependent on the time since the onset of COVID-19 as well as age (pregression_models ≤ 0.013). In fact, mixed-effects models predicted a clinically significant progression of vascular impairment within the period of 2-3 months following infection (change in cfPWV by +1.4 m/s, +15% in AIx@HR75, approximately +8 mmHg in DBP, cDBP, and MAP). The results point toward the existence of a widespread and long-lasting pathological process in the vasculature following mild COVID-19 disease, with heterogeneous individual responses, some of which may be triggered by an autoimmune response to COVID-19.
Collapse
Affiliation(s)
- Mario Podrug
- Laboratory of Vascular Aging, University of Split School of Medicine, 21000 Split, Croatia
- University Department of Health Studies, University of Split, 21000 Split, Croatia
| | - Pjero Koren
- Laboratory of Vascular Aging, University of Split School of Medicine, 21000 Split, Croatia
- University of Split School of Medicine, 21000 Split, Croatia
| | - Edita Dražić Maras
- Infectious Diseases Department, University Hospital of Split, 21000 Split, Croatia
| | - Josip Podrug
- Otorhinolaryngology Department, University Hospital of Split, 21000 Split, Croatia
| | - Viktor Čulić
- University of Split School of Medicine, 21000 Split, Croatia
- Department of Cardiology and Angiology, University Hospital Centre Split, 21000 Split, Croatia
| | - Maria Perissiou
- Physical Activity, Health and Rehabilitation Research Group, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2UP, UK
| | - Rosa Maria Bruno
- Université Paris Cité, INSERM, PARCC, 75015 Paris, France
- Clinical Pharmacology Unit, AP-HP, Hôpital européen Georges Pompidou, 75015 Paris, France
| | - Ivana Mudnić
- Department of Basic and Clinical Pharmacology, University of Split School of Medicine, 21000 Split, Croatia
| | - Mladen Boban
- Department of Basic and Clinical Pharmacology, University of Split School of Medicine, 21000 Split, Croatia
| | - Ana Jerončić
- Laboratory of Vascular Aging, University of Split School of Medicine, 21000 Split, Croatia
- Department of Research in Biomedicine and Health, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
34
|
Maruhashi T, Higashi Y. Current topic of vascular function in hypertension. Hypertens Res 2023; 46:630-637. [PMID: 36604472 PMCID: PMC9813887 DOI: 10.1038/s41440-022-01147-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023]
Abstract
Vascular function assessment is useful for the evaluation of atherosclerosis severity, which may provide additional information for cardiovascular risk stratification. In addition, vascular function assessment is helpful for a better understanding of pathophysiological associations between vascular dysfunction and cardiometabolic disorders. In 2020 and 2021, although coronavirus disease 2019 (COVID-19) was still a worldwide challenge for health care systems, many excellent articles regarding vascular function were published in Hypertension Research and other major cardiovascular and hypertension journals. In this review, we summarize new findings on vascular function and discuss the association between vascular function and COVID-19, the importance of lifestyle modifications for the maintenance of vascular function, and the usefulness of vascular function tests for cardiovascular risk assessment. We hope this review will be helpful for the management of cardiovascular risk factors, including hypertension and cardiovascular diseases, in clinical practice.
Collapse
Affiliation(s)
- Tatsuya Maruhashi
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
| | - Yukihito Higashi
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.,Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
35
|
Oikonomou E, Lampsas S, Theofilis P, Souvaliotis N, Papamikroulis GA, Katsarou O, Kalogeras K, Pantelidis P, Papaioannou TG, Tsatsaragkou A, Marinos G, Siasos G, Tousoulis D, Vavuranakis M. Impaired left ventricular deformation and ventricular-arterial coupling in post-COVID-19: association with autonomic dysregulation. Heart Vessels 2023; 38:381-393. [PMID: 36169708 PMCID: PMC9516516 DOI: 10.1007/s00380-022-02180-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/22/2022] [Indexed: 02/07/2023]
Abstract
Coronavirus disease-19 (COVID-19) has extended implications namely the long COVID-19 syndrome. We assessed over-time changes in left ventricular (LV) function, aortic stiffness, autonomic function, and ventricular-arterial coupling (VAC) in post-COVID-19 patients. We followed 34 post-COVID-19 subjects, up to 6 months post-hospital discharge. Subjects without COVID-19 served as control. We evaluated LV global longitudinal strain (LV-GLS), arterial stiffness [carotid-femoral pulse wave velocity (cf-PWV)], and heart rate variability -standard deviation of normal RR intervals (SDNN). VAC was estimated as the ratio of cf-PWV to LV-GLS. Post-COVID-19 individuals (1-month post-hospital discharge) presented with impaired LV-GLS [-18.4%(3.1) vs. -22.0%(2.7), P < 0.001], cf-PWV [12.1 m/s (3.2) vs. 9.6 m/s (1.9), P < 0.001], SDNN [111.3 ms (22.6) vs. 147.2 ms (14.0), P < 0.001], and VAC [-0.68 (0.22) vs. -0.44 (0.10), P < 0.001] compared to control. LV-GLS, SDNN, and VAC improved at the 6-month follow-up however they did not reach control levels. In post-COVID-19 subjects, SDNN and VAC were correlated at the 1-month (R = 0.499, P = 0.003) and 6-month (R = 0.372, P = 0.04) follow-up. Long COVID-19 syndrome was associated with impaired LV-GLS, SDNN, and VAC. Post-COVID-19 subjects presented with autonomic dysregulation associated with aortic stiffness, ventricular-arterial impairment, and LV dysfunction, even 6-months post-hospital discharge. These abnormalities may be related to the presence of long COVID-19 syndrome.
Collapse
Affiliation(s)
- Evangelos Oikonomou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Mesogeion 152, 11527, Athens, Greece.
- 1st Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration General Hospital, Athens, Greece.
| | - Stamatios Lampsas
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Mesogeion 152, 11527, Athens, Greece
| | - Panagiotis Theofilis
- 1st Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration General Hospital, Athens, Greece
| | - Nektarios Souvaliotis
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Mesogeion 152, 11527, Athens, Greece
| | - George Aggelos Papamikroulis
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Mesogeion 152, 11527, Athens, Greece
| | - Ourania Katsarou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Mesogeion 152, 11527, Athens, Greece
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Mesogeion 152, 11527, Athens, Greece
- 1st Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration General Hospital, Athens, Greece
| | - Panteleimon Pantelidis
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Mesogeion 152, 11527, Athens, Greece
| | - Theodore G Papaioannou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Mesogeion 152, 11527, Athens, Greece
| | - Aikaterini Tsatsaragkou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Mesogeion 152, 11527, Athens, Greece
| | - Georgios Marinos
- 1st Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration General Hospital, Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Mesogeion 152, 11527, Athens, Greece
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dimitris Tousoulis
- 1st Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration General Hospital, Athens, Greece
| | - Manolis Vavuranakis
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Mesogeion 152, 11527, Athens, Greece
- 1st Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration General Hospital, Athens, Greece
| |
Collapse
|
36
|
Araújo CRDS, Fernandes J, Caetano DS, Barros AEVDR, de Souza JAF, Machado MDGR, de Aguiar MIR, Brandão SCS, Campos SL, de Andrade ADFD, Brandão DC. Endothelial function, arterial stiffness and heart rate variability of patients with cardiovascular diseases hospitalized due to COVID-19. Heart Lung 2023; 58:210-216. [PMID: 36621104 PMCID: PMC9805900 DOI: 10.1016/j.hrtlng.2022.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND The novel coronavirus disease (COVID-19) may cause vascular (e.g., endothelial dysfunction, and arterial stiffness), cardiac, autonomic (e.g., heart rate variability [HRV]), and systemic inflammatory response via direct viral attack, hypoxia-induced injury, or immunological dysregulation, especially in those patients with pre-existing cardiovascular diseases (CVD). However, to date, no study has shown prevalence of endothelial dysfunction, arterial stiffness and heart rate variability assessed by bedside peripheral arterial tonometry in patients with previous CVD hospitalized in the acute phase of COVID-19. OBJECTIVE This study aimed to assess the prevalence of endothelial dysfunction, arterial stiffness, and altered HRV in patients with CVD hospitalized due to COVID-19. METHODS This cross-sectional study was conducted from July 2020 to February 2021. Included male and female adult patients aged 40 to 60 years with previous CVD and diagnosed with COVID-19. Anthropometric data, comorbidities, and blood tests were analyzed. Endothelial function, arterial stiffness, and HRV were assessed using peripheral arterial tonometry (PAT), and the statistical significance was set at 5%. RESULTS Fourteen (51.8%) patients presented endothelial dysfunction (reactive hyperemia index = 1.2 ± 0.3) and enhancement in the high-frequency component of HRV (p < 0.05). There was a high prevalence of endothelial dysfunction, especially in patients with chronic heart failure (10 (71.4%)). Patients with preserved endothelial function showed a high augmentation index normalized to a heart rate of 75 bpm (p < 0.01), suggesting arterial stiffness. CONCLUSION Patients with CVD hospitalized due to COVID-19 presented endothelial dysfunction assessed using PAT, which could be used as a biomarker for arterial stiffness and altered HRV. The possibility of detecting vascular and autonomic changes during phase II of COVID-19 may help to prevent possible long-term complications.
Collapse
Affiliation(s)
| | - Juliana Fernandes
- Department of Physiotherapy. Federal University of Pernambuco, Recife, Brazil
| | | | | | | | | | | | | | - Shirley Lima Campos
- Department of Physiotherapy. Federal University of Pernambuco, Recife, Brazil
| | | | | |
Collapse
|
37
|
Tudoran C, Bende F, Bende R, Giurgi-Oncu C, Dumache R, Tudoran M. Correspondence between Aortic and Arterial Stiffness, and Diastolic Dysfunction in Apparently Healthy Female Patients with Post-Acute COVID-19 Syndrome. Biomedicines 2023; 11:492. [PMID: 36831027 PMCID: PMC9953636 DOI: 10.3390/biomedicines11020492] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
(1) Background: Abnormally increased arterial and aortic stiffness (AS and AoS), which are often associated with diastolic dysfunction (DD), represent common alterations in COVID-19. In this study, we aimed to assess, by transthoracic echocardiography (TTE) and pulse-wave velocity (PWV), the frequency of these dysfunctions in patients with post-acute COVID-19 syndrome and to highlight potential correlations between their severity and multiple clinical and laboratory parameters. (2) Methods: In total, 121 women were included in our study, all of whom were younger than 55 and had been diagnosed with post-COVID-19 syndrome. Of those women, 67 also had metabolic syndrome (MS) (group A), whereas the other 54 did not (group B); 40 age-matched healthy subjects were used as controls (group C). (3) Results: Patients in group A had worse values of indexes characterizing AS and AoS and had more frequent DD compared to those from group B and group C (p < 0.0001). The statistical analysis evidenced significant associations between these indexes and the time that had elapsed since COVID-19 diagnosis, the factors that characterize the severity of the acute disease and those that specify MS. Multivariate regression analysis identified the following as the main independent predictors for DD: values of the AoS index, the C-reactive protein, and the triglyceride-glucose index. (4) Conclusions: Altered AS, AoS, and DD are common in patients with post-COVID-19 syndrome, especially with concurrent MS, and these parameters are apparently associated not only with the severity and time elapsed since COVID-19 diagnosis but also with MS.
Collapse
Affiliation(s)
- Cristina Tudoran
- Department VII, Internal Medicine II, Discipline of Cardiology, University of Medicine and Pharmacy “Victor Babes” Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, University of Medicine and Pharmacy “Victor Babes” Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- County Emergency Hospital “Pius Brinzeu”, L. Rebreanu, Nr. 156, 300723 Timisoara, Romania
- Academy of Romanian Scientists, Ilfov Str. Nr. 3, 50085 Bucuresti, Romania
| | - Felix Bende
- County Emergency Hospital “Pius Brinzeu”, L. Rebreanu, Nr. 156, 300723 Timisoara, Romania
- Department VII, Internal Medicine II, Discipline of Gastroenterology, University of Medicine and Pharmacy “Victor Babes” Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Center of Advanced Research in Gastroenterology and Hepatology, Faculty of Medicine, University of Medicine and Pharmacy “Victor Babes” Timisoara, 300041 Timisoara, Romania
| | - Renata Bende
- County Emergency Hospital “Pius Brinzeu”, L. Rebreanu, Nr. 156, 300723 Timisoara, Romania
- Center of Advanced Research in Gastroenterology and Hepatology, Faculty of Medicine, University of Medicine and Pharmacy “Victor Babes” Timisoara, 300041 Timisoara, Romania
| | - Catalina Giurgi-Oncu
- County Emergency Hospital “Pius Brinzeu”, L. Rebreanu, Nr. 156, 300723 Timisoara, Romania
- Department VIII, Neuroscience, Discipline of Psychiatry, University of Medicine and Pharmacy “Victor Babes” Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Raluca Dumache
- Department VIII, Discipline of Forensic Medicine, University of Medicine and Pharmacy “Victor Babes” Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Center for Ethics in Human Genetic Identification, University of Medicine and Pharmacy “Victor Babes” Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Mariana Tudoran
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, University of Medicine and Pharmacy “Victor Babes” Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- County Emergency Hospital “Pius Brinzeu”, L. Rebreanu, Nr. 156, 300723 Timisoara, Romania
| |
Collapse
|
38
|
Schnaubelt S, Oppenauer J, Bader M, DU N, Eibensteiner F, Kienbacher CL, Baldi E, Mueller M, Perkmann T, Haslacher H, Schreiber W, Niessner A, Schlager O, Domanovits H, Sulzgruber P. Arterial stiffness in acute coronary syndrome as a potential triage tool: a prospective observational study. Minerva Med 2023; 114:1-14. [PMID: 35266659 DOI: 10.23736/s0026-4806.22.07909-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Diagnosis and percutaneous coronary intervention (PCI) in acute coronary syndrome (ACS) are time-sensitive. Triage and algorithms identify patients at high-risk. However, additional prediction tools are warranted for prioritized care based on predicted coronary pathologies and PCI complexity. Pulse-wave velocity (PWV) is a non-invasive measurement related to cardiovascular morbidity, and their exact value in ACS evaluation is unclear. METHODS In patients undergoing coronary angiography (CA) and - if warranted - PCI for ACS evaluation at a tertiary university hospital in Vienna, Austria, brachial-ankle (ba)PWV and carotid-femoral (cf)PWV were prospectively measured from January 2020 to January 2021. RESULTS PWV was measured in 58 patients (60.3% male; 65 [61-69] years). Risk prediction scores (GRACE, CRUSADE, TIMI), cardiac enzymes, and fraction of patients with a three-vessel disease were significantly higher in the pathological PWV ranges. Adjusted for age and comorbidities, baPWV independently predicted the LAD being relevantly stenotic (crude OR=1.416 [1.143-1.755], P=0.001; adjusted OR=1.340 [1.039-1.727], P=0.024; cut-off 15.5 m/s in CART-analysis), being the culprit lesion (crude OR=1.320 [1.094-1.594], P=0.004; adjusted OR=1.311 [1.037-1.657], P=0.024; cut-off 15.5 m/s), and being totally occluded (crude OR=1.422 [1.113-1.818], P=0.005; adjusted OR=1.677 [1.189-2.366], P=0.003; cut-off 19.6 m/s). Moreover, CA or PCI complexity were associated with higher PWV. CONCLUSIONS Pathological PWV as a surrogate for arterial stiffness, polyvascular disease and a larger atherosclerotic burden was associated with GRACE, CRUSADE, and TIMI scores, and PCI duration and complexity. BaPWV independently predicted relevant LAD pathologies, and is suggested as a potential novel triage and prioritization tool for suspected NSTE-ACS in emergency departments.
Collapse
Affiliation(s)
- Sebastian Schnaubelt
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria -
| | - Julia Oppenauer
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Mathias Bader
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Na DU
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Felix Eibensteiner
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Calvin L Kienbacher
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Enrico Baldi
- Section of Cardiology, Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Unit of Cardiac Intensive Care, Arrhythmia, Electrophysiology and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Markus Mueller
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Thomas Perkmann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Schreiber
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Alexander Niessner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Oliver Schlager
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Hans Domanovits
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Patrick Sulzgruber
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
39
|
Photoplethysmographic Measurement of Arterial Stiffness in Polish Patients with Long-COVID-19 Syndrome-The Results of a Cross-Sectional Study. Diagnostics (Basel) 2022; 12:diagnostics12123189. [PMID: 36553195 PMCID: PMC9777579 DOI: 10.3390/diagnostics12123189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) is associated with an increase in the incidence of cardiovascular diseases (CVD) that persists even several months after the onset of infection. COVID-19 may also have an impact on arterial stiffness, which is a risk factor for CVD. We aimed to analyze if and to what extent arterial stiffness measured by photoplethysmography differed among COVID-19 convalescents depending on the acute phase severity and time elapsed since disease onset. A total of 225 patients (mean age 58.98 ± 8.57 years, 54.7% women) were analyzed after COVID-19 hospitalization at the Cardiac Rehabilitation Department of the Ustron Health Resort (Poland). In the entire study population, no differences were found in the mean values of stiffness index (SI) and reflection index (RI) depending on the severity of the acute COVID-19 and the time since the onset of the disease. There were no differences in the heart rate (HR) according to the severity of acute COVID-19; the mean HR was higher in patients who had COVID-19 less than 12 weeks before the study than in convalescents more than 24 weeks after the acute disease (p = 0.002). The mean values of SI and RI were higher in men than in women (p < 0.001), while the heart rate (HR) was similar in both sexes (p = 0.286). However, multiple linear regression analyses after adjusting for factors influencing arterial stiffness, i.e., sex, age, body mass index, smoking status, hypertension, diabetes, the severity of the acute COVID-19, and the time from the disease onset, confirmed that age, sex, time from disease onset, and diabetes are the most important determinants that could influence arterial stiffness.
Collapse
|
40
|
Tsvetanov KA, Spindler LRB, Stamatakis EA, Newcombe VFJ, Lupson VC, Chatfield DA, Manktelow AE, Outtrim JG, Elmer A, Kingston N, Bradley JR, Bullmore ET, Rowe JB, Menon DK. Hospitalisation for COVID-19 predicts long lasting cerebrovascular impairment: A prospective observational cohort study. Neuroimage Clin 2022; 36:103253. [PMID: 36451358 PMCID: PMC9639388 DOI: 10.1016/j.nicl.2022.103253] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
Human coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has multiple neurological consequences, but its long-term effect on brain health is still uncertain. The cerebrovascular consequences of COVID-19 may also affect brain health. We studied the chronic effect of COVID-19 on cerebrovascular health, in relation to acute severity, adverse clinical outcomes and in contrast to control group data. Here we assess cerebrovascular health in 45 patients six months after hospitalisation for acute COVID-19 using the resting state fluctuation amplitudes (RSFA) from functional magnetic resonance imaging, in relation to disease severity and in contrast with 42 controls. Acute COVID-19 severity was indexed by COVID-19 WHO Progression Scale, inflammatory and coagulatory biomarkers. Chronic widespread changes in frontoparietal RSFA were related to the severity of the acute COVID-19 episode. This relationship was not explained by chronic cardiorespiratory dysfunction, age, or sex. The level of cerebrovascular dysfunction was associated with cognitive, mental, and physical health at follow-up. The principal findings were consistent across univariate and multivariate approaches. The results indicate chronic cerebrovascular impairment following severe acute COVID-19, with the potential for long-term consequences on cognitive function and mental wellbeing.
Collapse
Affiliation(s)
- Kamen A Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Department of Psychology, University of Cambridge, Cambridge, United Kingdom.
| | - Lennart R B Spindler
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Division of Anaesthesia, Department of Medicine, University Cambridge, Cambridge, United Kingdom
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Division of Anaesthesia, Department of Medicine, University Cambridge, Cambridge, United Kingdom
| | - Virginia F J Newcombe
- Division of Anaesthesia, Department of Medicine, University Cambridge, Cambridge, United Kingdom; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Victoria C Lupson
- Division of Anaesthesia, Department of Medicine, University Cambridge, Cambridge, United Kingdom; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Doris A Chatfield
- Division of Anaesthesia, Department of Medicine, University Cambridge, Cambridge, United Kingdom
| | - Anne E Manktelow
- Division of Anaesthesia, Department of Medicine, University Cambridge, Cambridge, United Kingdom
| | - Joanne G Outtrim
- Division of Anaesthesia, Department of Medicine, University Cambridge, Cambridge, United Kingdom
| | - Anne Elmer
- Cambridge Clinical Research Centre, NIHR Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Nathalie Kingston
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, United Kingdom; Department of Haematology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - John R Bradley
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, United Kingdom; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Edward T Bullmore
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom; Department of Psychiatry, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Medical Research Council Cognition and Brain Sciences Unit, Department of Psychiatry, Cambridge, United Kingdom
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University Cambridge, Cambridge, United Kingdom; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom; Cambridge Clinical Research Centre, NIHR Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
41
|
Mavraganis G, Dimopoulou MA, Delialis D, Bampatsias D, Patras R, Sianis A, Maneta E, Stamatelopoulos K, Georgiopoulos G. Clinical implications of vascular dysfunction in acute and convalescent COVID-19: A systematic review. Eur J Clin Invest 2022; 52:e13859. [PMID: 35986716 PMCID: PMC9539033 DOI: 10.1111/eci.13859] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/10/2022] [Accepted: 08/14/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Accumulating evidence suggests that endothelial dysfunction is implicated in the pathogenesis and severity of coronavirus disease 2019 (COVID-19). In this context, vascular impairment in COVID-19 might be associated with clinical manifestations and could refine risk stratification in these patients. METHODS This systematic review aims to synthesize current evidence on the frequency and the prognostic value of vascular dysfunction during acute and post-recovery COVID-19. After systematically searching the MEDLINE, clinicaltrials.gov and the Cochrane Library from 1 December 2019 until 05 March 2022, we identified 24 eligible studies with laboratory confirmed COVID-19 and a thorough examination of vascular function. Flow-mediated dilation (FMD) was assessed in 5 and 12 studies in acute and post-recovery phase respectively; pulse wave velocity (PWV) was the marker of interest in three studies in the acute and four studies in the post-recovery phase. RESULTS All studies except for one in the acute and in the post-recovery phase showed positive association between vascular dysfunction and COVID-19 infection. Endothelial dysfunction in two studies and increased arterial stiffness in three studies were related to inferior survival in COVID-19. DISCUSSION Overall, a detrimental effect of COVID-19 on markers of endothelial function and arterial stiffness that could persist even for months after the resolution of the infection and provide prognostic value was congruent across published studies. Further research is warranted to elucidate clinical implications of this association.
Collapse
Affiliation(s)
- Georgios Mavraganis
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Maria-Angeliki Dimopoulou
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Dimitrios Delialis
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Dimitrios Bampatsias
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Raphael Patras
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Alexandros Sianis
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Eleni Maneta
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
42
|
Heckel AR, Arcidiacono DM, Coonan KA, Glasgow AC, DeBlois JP, Gump BB, Kim JY, Heffernan KS. Twenty-Four-Hour Central Hemodynamic Load in Adults With and Without a History of COVID-19. Am J Hypertens 2022; 35:948-954. [PMID: 36006055 PMCID: PMC9452129 DOI: 10.1093/ajh/hpac100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Although hypertension is a risk factor for severe Coronavirus Disease 2019 (COVID-19) illness, little is known about the effects of COVID-19 on blood pressure (BP). Central BP measures taken over a 24-hour period using ambulatory blood pressure monitoring (ABPM) adds prognostic value in assessing cardiovascular disease (CVD) risk compared with brachial BP measures from a single time point. We assessed CVD risk between adults with and without a history of COVID-19 via appraisal of 24-hour brachial and central hemodynamic load from ABPM. METHODS Cross-sectional analysis was performed on 32 adults who tested positive for COVID-19 (29 ± 13 years, 22 females) and 43 controls (28 ± 12 years, 26 females). Measures of 24-hour hemodynamic load included brachial and central systolic and diastolic BP, pulse pressure, augmentation index (AIx), pulse wave velocity (PWV), nocturnal BP dipping, the ambulatory arterial stiffness index (AASI), and the blood pressure variability ratio (BPVR). RESULTS Participants who tested positive for COVID-19 experienced 6 ± 4 COVID-19 symptoms, were studied 122 ± 123 days after testing positive, and had mild-to-moderate COVID-19 illness. The results from independent samples t-tests showed no significant differences in 24-hour, daytime, or nighttime measures of central or peripheral hemodynamic load across those with and without a history of COVID-19 (P > 0.05 for all). CONCLUSIONS No differences in 24-hour brachial or central ABPM measures were detected between adults recovering from mild-to-moderate COVID-19 and controls without a history of COVID-19. Adults recovering from mild-to-moderate COVID-19 do not have increased 24-hour central hemodynamic load.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kevin S Heffernan
- Corresponding Author: Kevin S. Heffernan, Ph.D, Dean’s Associate Professor of Exercise Science, Director of The Human Performance Laboratory, Syracuse University, 820 Comstock Ave, Syracuse NY, 13244, Phone: 315-443-9801; Fax: 315-443-9375;
| |
Collapse
|
43
|
Rodríguez-Vargas GS, Santos-Moreno P, Rubio-Rubio JA, Bautista-Niño PK, Echeverri D, Gutiérrez-Castañeda LD, Sierra-Matamoros F, Navarrete S, Aparicio A, Saenz L, Rojas-Villarraga A. Vascular Age, Metabolic Panel, Cardiovascular Risk and Inflammaging in Patients With Rheumatoid Arthritis Compared With Patients With Osteoarthritis. Front Cardiovasc Med 2022; 9:894577. [PMID: 35865390 PMCID: PMC9295407 DOI: 10.3389/fcvm.2022.894577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022] Open
Abstract
IntroductionThe risk of cardiovascular disease (CVD) in patients with rheumatoid arthritis (RA) is 1.5–2 times higher than the general population. The fundamental risk factor for CVD is age, related to alterations at the arterial level. The aim of the study was to compare vascular age (VA) in RA patients under a strict treat-to-target (T2T) strategy with Osteoarthritis (OA) patients without strict follow up and to assess the influence of inflammaging (chronic, sterile, low-grade inflammation related to aging) and metabolic markers on VA.Materials and MethodsThis was an analytical cross-sectional study. Patients with RA (under a strict a T2T strategy) and OA patients without strict clinical follow-up were included. Patients with a history of uncontrolled hypertension, CVD, and/or current smoking were excluded. Sociodemographic, physical activity, and toxic exposure data were obtained. Waist-hip ratio and body mass index (BMI) were measured. DAS-28 (RA) and inflammatory markers, lipid profile, and glycaemia were analyzed. Pulse wave velocity (PWV) was measured (oscillometric method, Arteriograph-TensioMed®). VA was calculated based on PWV. Eleven components of inflammaging [six interleukins, three metalloproteinases (MMP), and two tissue inhibitors of metalloproteinases (TIMP)] were evaluated (Luminex® system). Univariate and bivariate analyzes (Mann Whitney U and chi-square) and correlations (Spearmans Rho) were done to compare the two groups.ResultsA total of 106 patients (74% women) were included, 52/RA and 54/OA. The mean age was 57 (Interquartile range - IQR 9 years). The BMI, waist circumference, and weight were higher in patients with OA (p < 0.001). RA patients had low disease activity (DAS-28-CRP). There were no differences in VA, inflammaging nor in PWV between the two groups. VA had a positive, but weak correlation, with age and LDL. In group of RA, VA was higher in those who did not receive methotrexate (p = 0.013). LDL levels correlated with MMP1, TIMP1, and TIMP2.ConclusionsWhen comparing RA patients with low levels of disease activity with OA patients with poor metabolic control, there are no differences in VA. Furthermore, methotrexate also influences VA in RA patients. This shows that implemented therapies may have an impact on not only the inflammatory state of the joint but also CVD risk.
Collapse
Affiliation(s)
- Gabriel-Santiago Rodríguez-Vargas
- Research Institute, Fundación Universitaria de Ciencias de la Salud-FUCS, Bogotá, Colombia
- Rheumatology, Biomab - Center for Rheumatoid Arthritis, Bogotá, Colombia
- *Correspondence: Gabriel-Santiago Rodríguez-Vargas
| | | | | | | | - Darío Echeverri
- Cardiovascular Prevention Program, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá, Colombia
| | - Luz-Dary Gutiérrez-Castañeda
- Research Institute, Fundación Universitaria de Ciencias de la Salud-FUCS, Bogotá, Colombia
- Basic Sciences Laboratory, Fundación Universitaria de Ciencias de la Salud-FUCS, Bogotá, Colombia
| | | | - Stephania Navarrete
- Basic Sciences Laboratory, Fundación Universitaria de Ciencias de la Salud-FUCS, Bogotá, Colombia
| | - Anggie Aparicio
- Basic Sciences Laboratory, Fundación Universitaria de Ciencias de la Salud-FUCS, Bogotá, Colombia
| | - Luis Saenz
- Cardiovascular Prevention Program, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá, Colombia
| | | |
Collapse
|
44
|
Zota IM, Stătescu C, Sascău RA, Roca M, Anghel L, Maștaleru A, Leon-Constantin MM, Ghiciuc CM, Cozma SR, Dima-Cozma LC, Esanu IM, Mitu F. Acute and Long-Term Consequences of COVID-19 on Arterial Stiffness-A Narrative Review. Life (Basel) 2022; 12:781. [PMID: 35743812 PMCID: PMC9224691 DOI: 10.3390/life12060781] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 02/07/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the ongoing global coronavirus (COVID-19) pandemic. Although initially viewed as an acute respiratory illness, COVID-19 is clearly a complex multisystemic disease with extensive cardiovascular involvement. Emerging evidence shows that the endothelium plays multiple roles in COVID-19 physiopathology, as both a target organ that can be directly infected by SARS-CoV-2 and a mediator in the subsequent inflammatory and thrombotic cascades. Arterial stiffness is an established marker of cardiovascular disease. The scope of this review is to summarize available data on the acute and long-term consequences of COVID-19 on vascular function. COVID-19 causes early vascular aging and arterial stiffness. Fast, noninvasive bedside assessment of arterial stiffness could optimize risk stratification in acute COVID-19, allowing for early escalation of treatment. Vascular physiology remains impaired at least 12 months after infection with SARS-CoV-2, even in otherwise healthy adults. This raises concerns regarding the extent of arterial remodeling in patients with preexisting vascular disease and the potential development of a persistent, chronic COVID-19 vasculopathy. Long-term follow up on larger cohorts is required to investigate the reversibility of COVID-19-induced vascular changes and their associated prognostic implications.
Collapse
Affiliation(s)
- Ioana Mădălina Zota
- Department of Medical Specialties I, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700111 Iași, Romania; (I.M.Z.); (C.S.); (R.A.S.); (M.R.); (L.A.); (A.M.); (M.M.L.-C.); (L.C.D.-C.); (F.M.)
| | - Cristian Stătescu
- Department of Medical Specialties I, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700111 Iași, Romania; (I.M.Z.); (C.S.); (R.A.S.); (M.R.); (L.A.); (A.M.); (M.M.L.-C.); (L.C.D.-C.); (F.M.)
| | - Radu Andy Sascău
- Department of Medical Specialties I, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700111 Iași, Romania; (I.M.Z.); (C.S.); (R.A.S.); (M.R.); (L.A.); (A.M.); (M.M.L.-C.); (L.C.D.-C.); (F.M.)
| | - Mihai Roca
- Department of Medical Specialties I, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700111 Iași, Romania; (I.M.Z.); (C.S.); (R.A.S.); (M.R.); (L.A.); (A.M.); (M.M.L.-C.); (L.C.D.-C.); (F.M.)
| | - Larisa Anghel
- Department of Medical Specialties I, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700111 Iași, Romania; (I.M.Z.); (C.S.); (R.A.S.); (M.R.); (L.A.); (A.M.); (M.M.L.-C.); (L.C.D.-C.); (F.M.)
| | - Alexandra Maștaleru
- Department of Medical Specialties I, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700111 Iași, Romania; (I.M.Z.); (C.S.); (R.A.S.); (M.R.); (L.A.); (A.M.); (M.M.L.-C.); (L.C.D.-C.); (F.M.)
| | - Maria Magdalena Leon-Constantin
- Department of Medical Specialties I, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700111 Iași, Romania; (I.M.Z.); (C.S.); (R.A.S.); (M.R.); (L.A.); (A.M.); (M.M.L.-C.); (L.C.D.-C.); (F.M.)
| | - Cristina Mihaela Ghiciuc
- Pharmacology, Clinical Pharmacology and Algeziology, Department of Morpho-Functional Sciences II, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700111 Iași, Romania
| | - Sebastian Romica Cozma
- Department of Surgery (II), Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700111 Iași, Romania;
| | - Lucia Corina Dima-Cozma
- Department of Medical Specialties I, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700111 Iași, Romania; (I.M.Z.); (C.S.); (R.A.S.); (M.R.); (L.A.); (A.M.); (M.M.L.-C.); (L.C.D.-C.); (F.M.)
| | - Irina Mihaela Esanu
- Department of Medical Specialties I, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700111 Iași, Romania; (I.M.Z.); (C.S.); (R.A.S.); (M.R.); (L.A.); (A.M.); (M.M.L.-C.); (L.C.D.-C.); (F.M.)
| | - Florin Mitu
- Department of Medical Specialties I, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700111 Iași, Romania; (I.M.Z.); (C.S.); (R.A.S.); (M.R.); (L.A.); (A.M.); (M.M.L.-C.); (L.C.D.-C.); (F.M.)
| |
Collapse
|
45
|
Long-term cardio-vascular risk assessment in chronic kidney disease and kidney transplanted patients following SARS-COV-2 disease: protocol for multi-center observational match controlled trial. BMC Nephrol 2022; 23:176. [PMID: 35524223 PMCID: PMC9077937 DOI: 10.1186/s12882-022-02809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The coronavirus disease (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) produced a pandemic since March 2020 by affecting more than 243 million people with more than 5 million deaths globally. SARS-CoV-2 infection is produced by binding to angiotensin-converting enzyme, which among other sites is highly expressed in the endothelial cells of the blood vessels, pericytes and the heart, as well as in renal podocytes and proximal tubular epithelial cells. SARS-CoV-2 and cardiovascular disease (CVD) are interconnected by risk factors association with an increased incidence of the disease and by determining de novo cardiac complications. At the same time, COVID-19 disease can lead to acute kidney injury directly, or due to sepsis, multi-organ failure and shock. Therefore, the pre-existence of both CVD and chronic kidney disease (CKD) is linked with a higher risk of severe disease and worse prognosis. METHODS The main aim of this study is to assess the CV risk in a CKD (stage 3 to 5), dialysis and kidney transplanted population, following SARS-CoV-2 infection, with focus on the endothelial dysfunction as compared to a control group of matched patients. By using clinical evaluation, flow-mediated dilatation, carotid-femoral pulse wave velocity, intima-media thickness, echocardiographic parameters, lung ultrasound, bioimpedance spectroscopy and a series of novel biomarkers, the investigators will determine the long-term impact of this disease on CV and renal outcomes. DISCUSSION This study will address the challenges and implications in long-term CV sequeale of COVID-19 and focus on a better understanding of the underlying mechanisms and possible therapeutic options. TRIAL REGISTRATION Patient enrolment in the trial started in January 2021 and is expected to finish at the end of 2022. The study can be found on ClinicalTrials.gov database with NCT05125913 identifier. Registered on 18 November 2021 - Retrospectively registered.
Collapse
|
46
|
Terentes-Printzios D, Gardikioti V, Solomou E, Emmanouil E, Gourgouli I, Xydis P, Christopoulou G, Georgakopoulos C, Dima I, Miliou A, Lazaros G, Pirounaki M, Tsioufis K, Vlachopoulos C. The effect of an mRNA vaccine against COVID-19 on endothelial function and arterial stiffness. Hypertens Res 2022; 45:846-855. [PMID: 35273351 PMCID: PMC8907903 DOI: 10.1038/s41440-022-00876-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022]
Abstract
To fight the COVID-19 pandemic, messenger RNA (mRNA) vaccines were the first to be adopted by vaccination programs worldwide. We sought to investigate the short-term effect of mRNA vaccine administration on endothelial function and arterial stiffness. Thirty-two participants (mean age 37 ± 8 years, 20 men) who received the BNT162b2 mRNA COVID-19 vaccine were studied in three sessions in a sequence-randomized, sham-controlled, assessor-blinded, crossover design. The primary outcome was endothelial function (assessed by brachial artery flow-mediated dilatation (FMD)), and the secondary outcomes were aortic stiffness (evaluated with carotid-femoral pulse wave velocity (PWV)) and inflammation (measured by high-sensitivity C-reactive protein (hsCRP) in blood samples). The outcomes were assessed prior to and at 8 h and 24 h after the 1st dose of vaccine and at 8 h, 24 h, and 48 h after the 2nd dose. There was an increase in hsCRP that was apparent at 24 h after both the 1st dose (-0.60 [95% confidence intervals [CI]: -1.60 to -0.20], p = 0.013) and the 2nd dose (maximum median difference at 48 h -6.60 [95% CI: -9.80 to -3.40], p < 0.001) compared to placebo. The vaccine did not change PWV. FMD remained unchanged during the 1st dose but decreased significantly by 1.5% (95% CI: 0.1% to 2.9%, p = 0.037) at 24 h after the 2nd dose. FMD values returned to baseline at 48 h. Our study shows that the mRNA vaccine causes a prominent increase in inflammatory markers, especially after the 2nd dose, and a transient deterioration of endothelial function at 24 h that returns to baseline at 48 h. These results confirm the short-term cardiovascular safety of the vaccine.
Collapse
Affiliation(s)
- Dimitrios Terentes-Printzios
- First Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration Hospital, Athens, Greece
| | - Vasiliki Gardikioti
- First Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration Hospital, Athens, Greece
| | - Eirini Solomou
- First Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration Hospital, Athens, Greece
| | - Eleni Emmanouil
- First Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration Hospital, Athens, Greece
| | - Ioanna Gourgouli
- First Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration Hospital, Athens, Greece
| | - Panagiotis Xydis
- First Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration Hospital, Athens, Greece
| | - Georgia Christopoulou
- First Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration Hospital, Athens, Greece
| | - Christos Georgakopoulos
- First Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration Hospital, Athens, Greece
| | - Ioanna Dima
- First Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration Hospital, Athens, Greece
| | - Antigoni Miliou
- First Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration Hospital, Athens, Greece
| | - George Lazaros
- First Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration Hospital, Athens, Greece
| | - Maria Pirounaki
- Second Department of Medicine, University of Athens, Medical School, Hippokration General Hospital, Athens, Greece
| | - Konstantinos Tsioufis
- First Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration Hospital, Athens, Greece
| | - Charalambos Vlachopoulos
- First Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration Hospital, Athens, Greece.
| |
Collapse
|
47
|
Szeghy RE, Stute NL, Province VM, Augenreich MA, Stickford JL, Stickford ASL, Ratchford SM. Six-month longitudinal tracking of arterial stiffness and blood pressure in young adults following SARS-CoV-2 infection. J Appl Physiol (1985) 2022; 132:1297-1309. [PMID: 35439042 PMCID: PMC9126215 DOI: 10.1152/japplphysiol.00793.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can increase arterial stiffness 3–4 wk following infection, even among young, healthy adults. However, the long-term impacts of SARS-CoV-2 infection on cardiovascular health and the duration of recovery remain unknown. The purpose of this study was to elucidate potential long-lasting effects of SARS-CoV-2 infection on markers of arterial stiffness among young adults during the 6 mo following infection. Assessments were performed at months 1, 2, 3, 4, and ∼6 following SARS-CoV-2 infection. Doppler ultrasound was used to measure carotid-femoral pulse wave velocity (cfPWV) and carotid stiffness, and arterial tonometry was used to measure central blood pressures and aortic augmentation index at a heart rate of 75 beats·min−1 (AIx@HR75). Vascular (VCAM-1) and intracellular (ICAM-1) adhesion molecules were analyzed as circulating markers of arterial stiffness. From months 1–6, a significant reduction in cfPWV was observed (month 1: 5.70 ± 0.73 m·s−1; month 6: 4.88 ± 0.65 m·s−1; P < 0.05) without any change in carotid stiffness measures. Reductions in systolic blood pressure (month 1: 123 ± 8 mmHg; month 6: 112 ± 11 mmHg) and mean arterial pressure (MAP; month 1: 97 ± 6 mmHg; month 6: 86 ± 7 mmHg) were observed (P < 0.05), although AIx@HR75 did not change over time. The month 1–6 change in cfPWV and MAP were correlated (r = 0.894; P < 0.001). A reduction in VCAM-1 was observed at month 3 compared with month 1 (month 1: 5,575 ± 2,242 pg·mL−1; month 3: 4,636 ± 1,621 pg·mL−1; P < 0.05) without a change in ICAM-1. A reduction in cfPWV was related with MAP, and some indicators of arterial stiffness remain elevated for several months following SARS-CoV-2 infection, possibly contributing to prolonged recovery and increased cardiovascular health risks. NEW & NOTEWORTHY We sought to investigate potential long-lasting effects of SARS-CoV-2 infection on markers of arterial stiffness among young adults for 6 mo following infection. Carotid femoral pulse wave velocity was significantly reduced while carotid stiffness measures remained unaltered over the 6-mo period. These findings suggest several months of recovery from infection may be necessary for young adults to improve various markers of arterial stiffness, possibly contributing to cardiovascular health and recovery among those infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Rachel E Szeghy
- Department of Health & Exercise Science, Appalachian State University, Boone, North Carolina
| | - Nina L Stute
- Department of Health & Exercise Science, Appalachian State University, Boone, North Carolina
| | - Valesha M Province
- Department of Health & Exercise Science, Appalachian State University, Boone, North Carolina
| | - Marc A Augenreich
- Department of Health & Exercise Science, Appalachian State University, Boone, North Carolina
| | - Jonathon L Stickford
- Department of Health & Exercise Science, Appalachian State University, Boone, North Carolina
| | - Abigail S L Stickford
- Department of Health & Exercise Science, Appalachian State University, Boone, North Carolina
| | - Stephen M Ratchford
- Department of Health & Exercise Science, Appalachian State University, Boone, North Carolina
| |
Collapse
|
48
|
Behrooz L, Ho JE, Hamburg NM. Vascular Aging After COVID-19: A Story of Lasting Injury or Prolonged Healing? Circ Res 2022; 130:1286-1288. [PMID: 35482837 DOI: 10.1161/circresaha.122.321028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Leili Behrooz
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (L.B., N.M.H.)
| | - Jennifer E Ho
- CardioVascular Institute and Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA (J.E.H.)
| | - Naomi M Hamburg
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (L.B., N.M.H.)
| |
Collapse
|
49
|
Zanoli L, Gaudio A, Mikhailidis DP, Katsiki N, Castellino N, Lo Cicero L, Geraci G, Sessa C, Fiorito L, Marino F, Antonietta Di Rosolini M, Colaci M, Longo A, Montineri A, Malatino L, Castellino P, Aparo P, Arena A, Barchitta M, Castelletti F, Noto MD, Pino AD, Giarrusso O, Isaia I, Lentini P, Magnano San Lio P, Manuele R, Marino E, Morale W, Sciuto A, Scuto SS, Xourafa A, Zocco S. Vascular Dysfunction of COVID-19 Is Partially Reverted in the Long-Term. Circ Res 2022; 130:1276-1285. [DOI: 10.1161/circresaha.121.320460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
COVID-19 is characterized by severe inflammation during the acute phase and increased aortic stiffness in the early postacute phase. In other models, aortic stiffness is improved after the reduction of inflammation. We aimed to evaluate the mid- and long-term effects of COVID-19 on vascular and cardiac autonomic function. The primary outcome was aortic pulse wave velocity (aPWV).
Methods:
The cross-sectional Study-1 included 90 individuals with a history of COVID-19 and 180 matched controls. The longitudinal Study-2 included 41 patients with COVID-19 randomly selected from Study-1 who were followed-up for 27 weeks.
Results:
Study-1: Compared with controls, patients with COVID-19 had higher aPWV and brachial PWV 12 to 24 (but not 25–48) weeks after COVID-19 onset, and they had higher carotid Young’s elastic modulus and lower distensibility 12 to 48 weeks after COVID-19 onset. In partial least squares structural equation modeling, the higher the hs-CRP (high-sensitivity C-reactive protein) at hospitalization was, the higher the aPWV 12 to 48 weeks from COVID-19 onset (path coefficient: 0.184;
P
=0.04). Moreover, aPWV (path coefficient: −0.186;
P
=0.003) decreased with time. Study-2: mean blood pressure and carotid intima-media thickness were comparable at the end of follow-up, whereas aPWV (−9%;
P
=0.01), incremental Young’s elastic modulus (−17%;
P
=0.03), baroreflex sensitivity (+28%;
P
=0.049), heart rate variability triangular index (+15%;
P
=0.01), and subendocardial viability ratio (+12%;
P
=0.01×10
−4
) were significantly improved. There was a trend toward improvement in brachial PWV (−6%;
P
=0.14) and carotid distensibility (+18%;
P
=0.05). Finally, at the end of follow-up (48 weeks after the onset of COVID-19) aPWV (+6%;
P
=0.04) remained significantly higher in patients with COVID-19 than in control subjects.
Conclusions:
COVID-19-related arterial stiffening involves several arterial tree portions and is partially resolved in the long-term.
Collapse
Affiliation(s)
- Luca Zanoli
- Department of Clinical and Experimental Medicine, University of Catania, Italy. (L.Z., A.G., L.LC., L.F., M.C., L.M., P.C.)
| | - Agostino Gaudio
- Department of Clinical and Experimental Medicine, University of Catania, Italy. (L.Z., A.G., L.LC., L.F., M.C., L.M., P.C.)
| | - Dimitri P. Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital campus, University College London, United Kingdom (D.P.M.)
| | - Niki Katsiki
- Diabetes Center, Division of Endocrinology and Metabolism, First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece (N.K.)
| | | | - Lorenzo Lo Cicero
- Department of Clinical and Experimental Medicine, University of Catania, Italy. (L.Z., A.G., L.LC., L.F., M.C., L.M., P.C.)
| | - Giulio Geraci
- Internal Medicine, St Elia Hospital, Caltanissetta, Italy (G.G.)
| | - Concetto Sessa
- Nephrology and Dialysis Unit, Giovanni Paolo II Hospital, Ragusa, Italy (C.S.)
| | - Letizia Fiorito
- Department of Clinical and Experimental Medicine, University of Catania, Italy. (L.Z., A.G., L.LC., L.F., M.C., L.M., P.C.)
| | - Francesca Marino
- Infectious Diseases, Giovanni Paolo II Hospital, Ragusa, Italy (F.M., M.A.D.R.)
| | | | - Michele Colaci
- Department of Clinical and Experimental Medicine, University of Catania, Italy. (L.Z., A.G., L.LC., L.F., M.C., L.M., P.C.)
| | - Antonio Longo
- Eye Clinic, University of Catania, Italy. (N.C., A.L.)
| | | | - Lorenzo Malatino
- Department of Clinical and Experimental Medicine, University of Catania, Italy. (L.Z., A.G., L.LC., L.F., M.C., L.M., P.C.)
| | - Pietro Castellino
- Department of Clinical and Experimental Medicine, University of Catania, Italy. (L.Z., A.G., L.LC., L.F., M.C., L.M., P.C.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kar M. Vascular Dysfunction and Its Cardiovascular Consequences During and After COVID-19 Infection: A Narrative Review. Vasc Health Risk Manag 2022; 18:105-112. [PMID: 35283631 PMCID: PMC8906855 DOI: 10.2147/vhrm.s355410] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/18/2022] [Indexed: 12/11/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory coronavirus 2 (SARS-CoV2) has brought out changes in our daily life and has caused severe morbidity and mortality across the globe. Especially, post covid complications may remain a threat to the patient's life. It may also increase the burden on existing health infrastructure and the country's economy. This disease affects the respiratory system and other organ systems of the body, such as the cardiovascular system. The aim of the present narrative review is to understand how COVID-19 infection deranges vascular homeostasis, leading to endothelial dysfunction and arterial stiffness in the acute phase and following infection. To this effect, definite keywords were employed to obtain relevant information using PubMed database and Google Scholar search engines. It was documented that preexisting cardiovascular disease enhances morbidity in COVID-19 patients. Moreover, an elevated risk of development of new onset cardiovascular events has also been reported. Even a small amount of myocardial injury was significantly associated with death. The presence of virus in myocardial cells has also been documented. Furthermore, endothelial dysfunction and arterial stiffness were documented in the acute phase and 3-4 weeks to 4 months after COVID infection. The virus enters endothelial cells by binding with ACE2 "receptor" on its surface and deranges cellular machinery. It results in reduced conversion of Ang II to Ang (1-7). Accumulated Ang II then activates PI3K-Akt signaling pathway and regulates endothelial activation and production of IL-6 and reactive oxygen species (ROS). An imbalance between renin angiotensin aldosterone system (RAAS) and kallikrein kinin system (KKS) also occurs, which may cause endothelial dysfunction. It is understandable that the underlying pathophysiology of this altered arterial stiffness is multifactorial, involving various cellular and immunological biomolecules.
Collapse
Affiliation(s)
- Manisha Kar
- Department of Physiology, AIIMS Bhubaneswar, Odisha, 751019, India
| |
Collapse
|