1
|
Le-Vinh B, Le NMN, Phan TNQ, Lam HT, Bernkop-Schnürch A. Effects of excipients on the interactions of self-emulsifying drug delivery systems with human blood plasma and plasma membranes. Drug Deliv Transl Res 2024; 14:3200-3211. [PMID: 38411893 PMCID: PMC11445307 DOI: 10.1007/s13346-024-01541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
Due to its versatility in formulation and manufacturing, self-emulsifying drug delivery systems (SEDDS) can be used to design parenteral formulations. Therefore, it is necessary to understand the effects of excipients on the behavior of SEDDS formulations upon parenteral administration, particularly their interactions with blood plasma and cell membranes. In this study, we prepared three neutrally charged SEDDS formulations composed of medium-chain triglycerides as the oil phase, polyoxyl-35 castor oil (EL35) and polyethylene glycol (15)-hydroxystearate (HS15) as the nonionic surfactants, medium-chain mono- and diglycerides as the co-surfactant, and propylene glycol as the co-solvent. The cationic surfactant, didodecyldimethylammonium bromide (DDA), and the anionic surfactant, sodium deoxycholate (DEO), were added to the neutral SEDDS preconcentrates to obtain cationic and anionic SEDDS, respectively. SEDDS were incubated with human blood plasma and recovered by size exclusion chromatography. Data showed that SEDDS emulsion droplets can bind plasma protein to different extents depending on their surface charge and surfactant used. At pH 7.4, the least protein binding was observed with anionic SEDDS. Positive charges increased protein binding. SEDDS stabilized by HS15 can adsorb more plasma protein and induce more plasma membrane disruption activity than SEDDS stabilized by EL35. These effects were more pronounced with the HS15 + DDA combination. The addition of DDA and DEO to SEDDS increased plasma membrane disruption (PMD) activities, and DDA (1% w/w) was more active than DEO (2% w/w). PMD activities of SEDDS were concentration-dependent and vanished at appropriate dilution ratios.
Collapse
Affiliation(s)
- Bao Le-Vinh
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
- Department of Industrial Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy, Ho Chi Minh, 700000, Viet Nam
| | - Nguyet-Minh Nguyen Le
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
- Department of Industrial Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy, Ho Chi Minh, 700000, Viet Nam
| | - Thi Nhu Quynh Phan
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Hung Thanh Lam
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho, Viet Nam
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria.
| |
Collapse
|
2
|
Xie B, Liu Y, Li X, Yang P, He W. Solubilization techniques used for poorly water-soluble drugs. Acta Pharm Sin B 2024; 14:4683-4716. [PMID: 39664427 PMCID: PMC11628819 DOI: 10.1016/j.apsb.2024.08.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 12/13/2024] Open
Abstract
About 40% of approved drugs and nearly 90% of drug candidates are poorly water-soluble drugs. Low solubility reduces the drugability. Effectively improving the solubility and bioavailability of poorly water-soluble drugs is a critical issue that needs to be urgently addressed in drug development and application. This review briefly introduces the conventional solubilization techniques such as solubilizers, hydrotropes, cosolvents, prodrugs, salt modification, micronization, cyclodextrin inclusion, solid dispersions, and details the crystallization strategies, ionic liquids, and polymer-based, lipid-based, and inorganic-based carriers in improving solubility and bioavailability. Some of the most commonly used approved carrier materials for solubilization techniques are presented. Several approved poorly water-soluble drugs using solubilization techniques are summarized. Furthermore, this review summarizes the solubilization mechanism of each solubilization technique, reviews the latest research advances and challenges, and evaluates the potential for clinical translation. This review could guide the selection of a solubilization approach, dosage form, and administration route for poorly water-soluble drugs. Moreover, we discuss several promising solubilization techniques attracting increasing attention worldwide.
Collapse
Affiliation(s)
- Bing Xie
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Yaping Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
3
|
Muñoz-Correa MOF, Bravo-Alfaro DA, Mendoza-Sánchez LG, Luna-Barcenas G, Garcia HS, Garcia-Varela R. Evaluation of a mucoadhesive auto-nanoemulsifying drug delivery system (SNEDDS) for oral insulin administration. Eur J Pharm Biopharm 2024:114567. [PMID: 39461570 DOI: 10.1016/j.ejpb.2024.114567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/03/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
This study investigated the potential of self-nanoemulsifying drug delivery systems (SNEDDS) to optimize the oral bioavailability of insulin. Insulin complexes with phospholipids and enzymatically-modified phospholipids were developed and incorporated into the SNEDDS using Lauroglycol FCC as the oily phase and Cremophor EL and Labrafil M1944CS as the surfactant and co-surfactant, respectively. Additionally, mucoadhesive polysaccharides (sodium alginate and guar gum) were added further to enhance the bioavailability of insulin in these systems. The objective was to increase the bioavailability and bioactivity of an insulin-modified phosphatidylcholine complex by incorporating mucoadhesives into the SNEDDS. After polymer inclusion, the resulting nanoemulsions exhibited droplet diameters ranging from 57 to 83 nm. Cytotoxicity and apparent permeability tests were conducted on Caco-2 and NIH 3 T3 cell lines, revealing that toxicity was related to the concentrations of insulin and surfactant in the nanosystems-formulations containing guar gum as a mucoadhesive showed better tolerance to cell death in the Caco-2 line. In a murine diabetes model, the SNEDDS were observed to reduce glucose levels by up to 61.63 %, with a relative bioavailability of 2.25 % compared to subcutaneously administered insulin. These results suggest that SNEDDS incorporating mucoadhesives could represent a promising strategy for improving oral insulin delivery.
Collapse
Affiliation(s)
- M O F Muñoz-Correa
- UNIDA, Tecnológico Nacional de México Campus Veracruz. Miguel Ángel de Quevedo 2779, Veracruz, Ver. 91897, México
| | - Diego A Bravo-Alfaro
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Epigmenio González 500 Fracc. San Pablo, Querétaro, Qro. 76130, México
| | - L G Mendoza-Sánchez
- UNIDA, Tecnológico Nacional de México Campus Veracruz. Miguel Ángel de Quevedo 2779, Veracruz, Ver. 91897, México
| | - Gabriel Luna-Barcenas
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Epigmenio González 500 Fracc. San Pablo, Querétaro, Qro. 76130, México
| | - Hugo S Garcia
- UNIDA, Tecnológico Nacional de México Campus Veracruz. Miguel Ángel de Quevedo 2779, Veracruz, Ver. 91897, México.
| | - Rebeca Garcia-Varela
- Department of Medicine, Hematology/Oncology, UW Carbone Cancer Center, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
4
|
Arshad A, Arshad S, Alamgeer, Mahmood A, Hussain Asim M, Ijaz M, Muhammad Irfan H, Rubab M, Ali S, Raza Hashmi A. Zeta potential changing self-nanoemulsifying drug delivery systems: A newfangled approach for enhancing oral bioavailability of poorly soluble drugs. Int J Pharm 2024; 655:123998. [PMID: 38490401 DOI: 10.1016/j.ijpharm.2024.123998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
The mucus is a defensive barrier for different drug-loaded systems. To overcome this obstacle, the crucial factor is the surface charge. Due to mucus negative charge behavior; it was revealed that negatively charged formulations can move across mucus, whereas positively charged nanoformulations could not diffuse via mucus due to interactions. However, cellular intake of negatively charged nanoformulations to the epithelium by endocytosis is less prominent as compared to positively charged carriers. Self-emulsifying drug delivery systems (SEDDS) improve the drug permeability of drugs, especially which have poor oral drug solubility. Moreover, SEDDS have the ability to reduce the degradation of drugs in the GI tract. Currently, drug carrier systems that can shift zeta potential from negative to positive were developed. The benefits of inducing zeta potential changing approach are that negatively charged nanoformulations permeate quickly across the mucus and surface charges reversed to positive at epithelium surface to increase cellular uptake. Among various systems of drug delivery, zeta potential changing SEDDS seem to signify a promising approach as they can promptly diffuse over mucus due to their smaller size and shape distortion ability. Due to such findings, mucus permeation and drug diffusion may improve by the mixture of the zeta potential changing approach and SEDDS.
Collapse
Affiliation(s)
- Amina Arshad
- College of Pharmacy, University of Sargodha, 40100, Sargodha, Pakistan
| | - Shumaila Arshad
- Doctor's Institute of Health Sciences, 3-Km Sargodha Bypass Road 40100, Sargodha, Pakistan
| | - Alamgeer
- University College of Pharmacy, University of the Punjab, 54000, Lahore, Pakistan
| | - Arshad Mahmood
- College of Pharmacy, Al Ain University, Abu Dhabi Campus, 64141, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 51133, United Arab Emirates
| | | | - Muhammad Ijaz
- School of Veterinary Medicine, College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin 4, Ireland; Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, 54000-Lahore, Pakistan
| | | | - Mavra Rubab
- College of Pharmacy, University of Sargodha, 40100, Sargodha, Pakistan
| | - Shujaat Ali
- Department of Pharmacy, Forman Christian College (A Chartered University), 54000, Lahore, Pakistan
| | - Ahmed Raza Hashmi
- College of Pharmacy, University of Sargodha, 40100, Sargodha, Pakistan
| |
Collapse
|
5
|
Gul S, Sridhar SB, Jalil A, Akhlaq M, Arshad MS, Sarwar HS, Usman F, Shareef J, Thomas S. Solid Self-Nanoemulsifying Drug Delivery Systems of Furosemide: In Vivo Proof of Concept for Enhanced Predictable Therapeutic Response. Pharmaceuticals (Basel) 2024; 17:500. [PMID: 38675460 PMCID: PMC11053802 DOI: 10.3390/ph17040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Liquid self-nano emulsifying drug delivery systems (SNEDDS) of furosemide (FSM) have been explored as a potential solution for enhancing solubility and permeability but are associated with rapid emulsification, spontaneous drug release, and poor in vivo correlation. To overcome the shortcoming, this study aimed to develop liquid and solid self-emulsifying drug delivery systems for FSM, compare formulation dynamics, continue in vivo therapeutic efficacy, and investigate the advantages of solidification. For this purpose, liquid SNEDDS (L-SEDDS-FSM) were formed using oleic acid as an oil, chremophore EL, Tween 80, Tween 20 as a surfactant, and PEG 400 as a co-surfactant containing 53 mg/mL FSM. At the same time, solid SNEDDS (S-SEDDS-FSM) was developed by adsorbing liquid SNEDDS onto microcrystalline cellulose in a 1:1 ratio. Both formulations were evaluated for size, zeta potential, lipase degradation, and drug release. Moreover, in vivo diuretic studies regarding urine volume were carried out in mice to investigate the therapeutic responses of liquid and solid SNEDDS formulations. After dilution, L-SEDDS-FSM showed a mean droplet size of 115 ± 4.5 nm, while S-SEDDS-FSM depicted 116 ± 2.6 nm and zeta potentials of -5.4 ± 0.55 and -6.22 ± 1.2, respectively. S-SEDDS-FSM showed 1.8-fold reduced degradation by lipase enzymes in comparison to L-SEDDS-FSM. S-SEDDS-FSM demonstrated a sustained drug release pattern, releasing 63% of the drug over 180 min, in contrast to L-SEDDS-FSM, exhibiting 90% spontaneous drug release within 30 min. L-SEDDS-FSM exhibited a rapid upsurge in urine output (1550 ± 56 μL) compared to S-SEDDS-FSM, showing gradual urine output (969 ± 29 μL) till the 4th h of the study, providing sustained urine output yet a predictable therapeutic response. The solidification of SNEDDS effectively addresses challenges associated with spontaneous drug release and precipitation observed in liquid SNEDDS, highlighting the potential benefits of solid SNEDDS in improving the therapeutic response of furosemide.
Collapse
Affiliation(s)
- Sania Gul
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan (M.S.A.); (F.U.)
| | - Sathvik Belagodu Sridhar
- RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras al Khaimah 11172, United Arab Emirates; (S.B.S.); (J.S.)
| | - Aamir Jalil
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan (M.S.A.); (F.U.)
| | - Muhammad Akhlaq
- Department of Pharmacy, Hazara University, Mansehra 21300, Pakistan;
| | - Muhammad Sohail Arshad
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan (M.S.A.); (F.U.)
| | - Hafiz Shoaib Sarwar
- Department of Pharmaceutical Sciences, University of Central Punjab, Lahore 54590, Pakistan;
| | - Faisal Usman
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan (M.S.A.); (F.U.)
| | - Javedh Shareef
- RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras al Khaimah 11172, United Arab Emirates; (S.B.S.); (J.S.)
| | - Sabin Thomas
- College of Health Sciences, University of Nizwa, Birkat Al Mouz, Nizwa 616, Oman;
| |
Collapse
|
6
|
Summonte S, Sanchez Armengol E, Ricci F, Sandmeier M, Hock N, Güclü-Tuncyüz A, Bernkop-Schnürch A. Phosphatase-degradable nanoparticles providing sustained drug release. Int J Pharm 2024; 654:123983. [PMID: 38460768 DOI: 10.1016/j.ijpharm.2024.123983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
AIM The study aimed to develop enzyme-degradable nanoparticles comprising polyphosphates and metal cations providing sustained release of the antibacterial drug ethacridine (ETH). METHODS Calcium polyphosphate (Ca-PP), zinc polyphosphate (Zn-PP) and iron polyphosphate nanoparticles (Fe-PP NPs) were prepared by co-precipitation of sodium polyphosphate with cations and ETH. Developed nanocarriers were characterized regarding particle size, PDI, zeta potential, encapsulation efficiency and drug loading. Toxicological profile of nanocarriers was assessed via hemolysis assay and cell viability on human blood erythrocytes and HEK-293 cells, respectively. The enzymatic degradation of NPs was evaluated in presence of alkaline phosphatase (ALP) monitoring the release of monophosphate, shift in zeta potential and particle size as well as drug release. The antibacterial efficacy against Escherichia coli was determined via microdilution assay. RESULTS NPs were obtained in a size range between 300 - 480 nm displaying negative zeta potential values. Encapsulation efficiency was in the range of 83.73 %- 95.99 %. Hemolysis assay underlined sufficient compatibility of NPs with blood cells, whereas drug and NPs showed a concentration dependent effect on HEK-293 cells viability. Ca- and Zn-PP NPs exhibited remarkable changes in zeta potential, particle size, monophosphate and drug release upon incubation with ALP, compared to Fe-PP NPs showing only minor differences. The released ETH from Ca- and Zn-PP nanocarriers retained the antibacterial activity against E. coli, whereas no antibacterial effect was observed with Fe-PP NPs. CONCLUSION Polyphosphate nanoparticles cross-linked with divalent cations and ETH hold promise for sustained drug delivery triggered by ALP for parental administration.
Collapse
Affiliation(s)
- Simona Summonte
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Eva Sanchez Armengol
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Fabrizio Ricci
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Matthias Sandmeier
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Nathalie Hock
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Ayse Güclü-Tuncyüz
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.
| |
Collapse
|
7
|
Arduino I, Di Fonte R, Tiboni M, Porcelli L, Serratì S, Fondaj D, Rafaschieri T, Cutrignelli A, Guida G, Casettari L, Azzariti A, Lopedota AA, Denora N, Iacobazzi RM. Microfluidic development and biological evaluation of targeted therapy-loaded biomimetic nano system to improve the metastatic melanoma treatment. Int J Pharm 2024; 650:123697. [PMID: 38081557 DOI: 10.1016/j.ijpharm.2023.123697] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Optimizing current therapies is among next steps in metastatic melanoma (MM) treatment landscape. The innovation of this study is the design of production process by microfluidics of cell membrane (CM)-modified nanoparticles (NPs), as an emerging biomimetic platform that allows for reduced immune clearance, long blood circulation time and improved specific tumor targeting. To achieve melanoma selectivity, direct membrane fusion between synthetic liposomes and CMs extracted from MM cell line was performed by microfluidic sonication approach, then the hybrid liposomes were loaded with cobimetinib (Cob) or lenvatinib (Lenva) targeting agents and challenged against MM cell lines and liver cancer cell line to evaluate homotypic targeting and antitumor efficacy. Characterization studies demonstrated the effective fusion of CM with liposome and the high encapsulation efficiency of both drugs, showing the proficiency of microfluidic-based production. By studying the targeting of melanoma cells by hybrid liposomes versus liposomes, we found that both NPs entered cells through endocytosis, whereas the former showed higher selectivity for MM cells from which CM was extracted, with 8-fold higher cellular uptake than liposomes. Hybrid liposome formulation of Cob and Lenva reduced melanoma cells viability to a greater extent than liposomes and free drug and, notably, showed negligible toxicity as demonstrated by bona fide haemolysis test. The CM-modified NPs presented here have the potential to broaden the choice of therapeutic options in MM treatment.
Collapse
Affiliation(s)
- Ilaria Arduino
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy
| | | | - Mattia Tiboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, Italy
| | | | - Simona Serratì
- IRCCS Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy
| | - Dafina Fondaj
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy
| | | | - Annalisa Cutrignelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy
| | - Gabriella Guida
- Department of Traslational Biomedicine and Neuroscience (DiBraiN), School of Medicine, University of Bari "A. Moro", 70124 Bari, Italy
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, Italy
| | - Amalia Azzariti
- IRCCS Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy.
| | | | - Nunzio Denora
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy
| | - Rosa Maria Iacobazzi
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy.
| |
Collapse
|
8
|
Subramaniam S, Elz A, Wignall A, Kamath S, Ariaee A, Hunter A, Newblack T, Wardill HR, Prestidge CA, Joyce P. Self-emulsifying drug delivery systems (SEDDS) disrupt the gut microbiota and trigger an intestinal inflammatory response in rats. Int J Pharm 2023; 648:123614. [PMID: 37979632 DOI: 10.1016/j.ijpharm.2023.123614] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
Self-emulsifying drug delivery systems (i.e. SEDDS, SMEDDS and SNEDDS) are widely employed as solubility and bioavailability enhancing formulation strategies for poorly water-soluble drugs. Despite the capacity for SEDDS to effectively facilitate oral drug absorption, tolerability concerns exist due to the capacity for high concentrations of surfactants (typically present within SEDDS) to induce gastrointestinal toxicity and mucosal irritation. With new knowledge surrounding the role of the gut microbiota in modulating intestinal inflammation and mucosal injury, there is a clear need to determine the impact of SEDDS on the gut microbiota. The current study is the first of its kind to demonstrate the detrimental impact of SEDDS on the gut microbiota of Sprague-Dawley rats, following daily oral administration (100 mg/kg) for 21 days. SEDDS comprising a lipid phase (i.e. Type I, II and III formulations according to the Lipid Formulation Classification Scheme) induced significant changes to the composition and diversity of the gut microbiota, evidenced through a reduction in operational taxonomic units (OTUs) and alpha diversity (Shannon's index), along with statistically significant shifts in beta diversity (according to PERMANOVA of multi-dimensional Bray-Curtis plots). Key signatures of gut microbiota dysbiosis correlated with the increased expression of pro-inflammatory cytokines within the jejunum, while mucosal injury was characterised by significant reductions in plasma citrulline levels, a validated biomarker of enterocyte mass and mucosal barrier integrity. These findings have potential clinical ramifications for chronically administered drugs that are formulated with SEDDS and stresses the need for further studies that investigate dose-dependent effects of SEDDS on the gastrointestinal microenvironment in a clinical setting.
Collapse
Affiliation(s)
- Santhni Subramaniam
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia, Australia
| | - Aurelia Elz
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia, Australia
| | - Anthony Wignall
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia, Australia
| | - Srinivas Kamath
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia, Australia
| | - Amin Ariaee
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia, Australia
| | - Alexander Hunter
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia, Australia
| | - Tahlia Newblack
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia, Australia
| | - Hannah R Wardill
- Supportive Oncology Research Group, Precision Cancer Medicine (Theme), South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, South Australia, Australia
| | - Clive A Prestidge
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia, Australia
| | - Paul Joyce
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, South Australia, Australia.
| |
Collapse
|
9
|
Jörgensen AM, Steinbring C, Stengel D, To D, Schmid P, Bernkop‐Schnürch A. Self-Emulsifying Drug Delivery Systems (SEDDS) Containing Reverse Micelles: Advanced Oral Formulations for Therapeutic Peptides. Adv Healthc Mater 2023; 12:e2302034. [PMID: 37696266 PMCID: PMC11468804 DOI: 10.1002/adhm.202302034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/05/2023] [Indexed: 09/13/2023]
Abstract
Alternative methods to hydrophobic ion pairing for the formation of lipophilic complexes of peptide drugs to incorporate them in lipid-based nanocarriers such as self-emulsifying drug delivery systems (SEDDS) for oral administration are highly on demand. Such an alternative might be reverse micelles. Within this study, SEDDS containing dry reverse micelles (dRMsPMB ) formed with an anionic (sodium docusate; AOT), cationic (dimethyl-dioctadecyl-ammonium bromide; DODAB), amphoteric (soy lecithin; SL), or non-ionic (polysorbate 85; P85) surfactant loaded with the model peptide drug polymyxin B (PMB) are developed. They are characterized regarding size, payload, release kinetics, cellular uptake, and peptide activity. SEDDS exhibit sizes from 22.2 ± 1.7 (AOT-SEDDS-dRMsPMB ) to 61.7 ± 3.2 nm (P85-SEDDS-dRMsPMB ) with payloads up to 2% that are approximately sevenfold higher than those obtained via hydrophobic ion pairing. Within 6 h P85-SEDDS-dRMsPMB and AOT-SEDDS-dRMsPMB show no release of PMB in aqueous medium, whereas DODAB-SEDDS-dRMsPMB and SL-SEDDS-dRMsPMB show a sustained release. DODAB-SEDDS-dRMsPMB improves uptake by Caco-2 cells most efficiently reaching even ≈100% within 4 h followed by AOT-SEDDS-dRMsPMB with ≈20% and P85-/SL-SEDDS-dRMsPMB with ≈5%. The peptide drug maintains its antimicrobial activity in all SEDDS-dRMsPMB . According to these results, SEDDS containing dRMs might be a game changing strategy for oral peptide drug delivery.
Collapse
Affiliation(s)
- Arne Matteo Jörgensen
- Department of Pharmaceutical TechnologyUniversity of InnsbruckInstitute of PharmacyCenter for Chemistry and BiomedicineInnrain 80–82Innsbruck6020Austria
| | - Christian Steinbring
- Department of Pharmaceutical TechnologyUniversity of InnsbruckInstitute of PharmacyCenter for Chemistry and BiomedicineInnrain 80–82Innsbruck6020Austria
| | - Daniel Stengel
- Department of Pharmaceutical TechnologyUniversity of InnsbruckInstitute of PharmacyCenter for Chemistry and BiomedicineInnrain 80–82Innsbruck6020Austria
| | - Dennis To
- Department of Pharmaceutical TechnologyUniversity of InnsbruckInstitute of PharmacyCenter for Chemistry and BiomedicineInnrain 80–82Innsbruck6020Austria
| | - Pascal Schmid
- Department of Pharmaceutical TechnologyUniversity of InnsbruckInstitute of PharmacyCenter for Chemistry and BiomedicineInnrain 80–82Innsbruck6020Austria
| | - Andreas Bernkop‐Schnürch
- Department of Pharmaceutical TechnologyUniversity of InnsbruckInstitute of PharmacyCenter for Chemistry and BiomedicineInnrain 80–82Innsbruck6020Austria
| |
Collapse
|
10
|
Maher S, Geoghegan C, Brayden DJ. Safety of surfactant excipients in oral drug formulations. Adv Drug Deliv Rev 2023; 202:115086. [PMID: 37739041 DOI: 10.1016/j.addr.2023.115086] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Surfactants are a diverse group of compounds that share the capacity to adsorb at the boundary between distinct phases of matter. They are used as pharmaceutical excipients, food additives, emulsifiers in cosmetics, and as household/industrial detergents. This review outlines the interaction of surfactant-type excipients present in oral pharmaceutical dosage forms with the intestinal epithelium of the gastrointestinal (GI) tract. Many surfactants permitted for human consumption in oral products reduce intestinal epithelial cell viability in vitro and alter barrier integrity in epithelial cell monolayers, isolated GI tissue mucosae, and in animal models. This suggests a degree of mis-match for predicting safety issues in humans from such models. Recent controversial preclinical research also infers that some widely used emulsifiers used in oral products may be linked to ulcerative colitis, some metabolic disorders, and cancers. We review a wide range of surfactant excipients in oral dosage forms regarding their interactions with the GI tract. Safety data is reviewed across in vitro, ex vivo, pre-clinical animal, and human studies. The factors that may mitigate against some of the potentially abrasive effects of surfactants on GI epithelia observed in pre-clinical studies are summarised. We conclude with a perspective on the overall safety of surfactants in oral pharmaceutical dosage forms, which has relevance for delivery system development.
Collapse
Affiliation(s)
- Sam Maher
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland.
| | - Caroline Geoghegan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland
| | - David J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
11
|
Stengel D, Demirel BH, Knoll P, Truszkowska M, Laffleur F, Bernkop-Schnürch A. PEG vs. zwitterions: How these surface decorations determine cellular uptake of lipid-based nanocarriers. J Colloid Interface Sci 2023; 647:52-64. [PMID: 37244176 DOI: 10.1016/j.jcis.2023.05.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/24/2023] [Accepted: 05/13/2023] [Indexed: 05/29/2023]
Abstract
AIM To evaluate the impact of polyethylene glycol (PEG) and zwitterionic surface decoration of lipid-based nanocarriers (NC) on cellular uptake. METHODS Anionic, neutral and cationic zwitterionic lipid-based NCs based on lecithin were compared with conventional PEGylated lipid-based NCs regarding stability in biorelevant fluids, interaction with endosome mimicking membranes, cytocompatibility, cellular uptake and permeation across intestinal mucosa. RESULTS PEGylated and zwitterionic lipid-based NCs exhibited a droplet size between 100 and 125 nm with a narrow size distribution. For the PEGylated and zwitterionic lipid-based NCs only minor alterations in size and PDI in fasted state intestinal fluid and mucus containing buffer were observed, demonstrating similar bioinert properties. Erythrocytes interaction studies revealed enhanced endosomal escape properties for zwitterionic lipid-based NCs compared to PEGylated lipid-based NCs. For the zwitterionic lipid-based NCs negligible cytotoxicity on Caco-2 and HEK cells, even in the highest tested concentration of 1 % (v/v) was recorded. The PEGylated lipid-based NCs showed a cell survival of ≥75 % for concentrations ≤0.05 % on Caco-2 and HEK cells, which was considered as non-toxic. For the zwitterionic lipid-based NCs up to 60-fold higher cellular uptake on Caco-2 cells was determined compared to PEGylated lipid-based NCs. For the cationic zwitterionic lipid-based NCs the highest cellular uptake with 58.5 % and 40.0 % in Caco-2 and HEK cells, respectively, was determined. The results were confirmed visually by life cell imaging. Ex-vivo permeation experiments using rat intestinal mucosa demonstrated up to 8.6-fold enhanced permeation of the lipophilic marker coumarin-6 in zwitterionic lipid-based NCs compared to the control. Up to 6.9-fold enhanced permeation of coumarin-6 in neutral zwitterionic lipid-based NCs compared to the PEGylated counterpart was recorded. CONCLUSION The replacement of PEG surfactants with zwitterionic surfactants is a promising approach to overcome the drawbacks of conventional PEGylated lipid-based NCs regarding intracellular drug delivery.
Collapse
Affiliation(s)
- Daniel Stengel
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Betül Hilal Demirel
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Patrick Knoll
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Martyna Truszkowska
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria.
| |
Collapse
|
12
|
Fürst A, Shahzadi I, Akkuş-Dağdeviren ZB, Schöpf AM, Gust R, Bernkop-Schnürch A. Zeta potential shifting nanoemulsions comprising single and gemini tyrosine-based surfactants. Eur J Pharm Sci 2023; 189:106538. [PMID: 37495057 DOI: 10.1016/j.ejps.2023.106538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/16/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
AIM This study aims to design and evaluate zeta potential shifting nanoemulsions comprising single and gemini type tyrosine-based surfactants for specific cleavage by tyrosine phosphatase. METHODS Tyrosine-based surfactants, either single 4-(2-amino-3-(dodecylamino)-3-oxopropyl)phenyl dihydrogen phosphate (AF1) or gemini 4-(2-amino-3-((1-(dodecylamino)-3-(4-hydroxyphenyl)-1-oxopropan-2-yl)amino)-3-oxopropyl)phenyl dihydrogen phosphate (AF2) type were synthesized via amide bond formation of tyrosine with dodecylamine followed by phosphorylation. These surfactants were incorporated into nanoemulsions. Nanoemulsions were monitored by incubation with isolated tyrosine phosphatase as well as secreted tyrosine phosphatase of Escherichia coli in terms of phosphate release and zeta potential change. RESULTS Via isolated tyrosine phosphatase, and mediated by E. coli, phosphate groups of either single or gemini tyrosine-based surfactants could be cleaved by secreted tyrosine phosphatase. Nanoemulsions comprising a single tyrosine-based surfactant resulted in a charge shift from - 13.46 mV to - 4.41 mV employing isolated tyrosine phosphatase whilst nanoemulsions consisting of a gemini tyrosine-based surfactant showed a shift in zeta potential from - 15.92 mV to - 5.86 mV, respectively. CONCLUSION Nanoemulsions containing tyrosine-based surfactants represent promising zeta potential shifting nanocarrier systems targeting tyrosine phosphatase secreting bacteria.
Collapse
Affiliation(s)
- Andrea Fürst
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Iram Shahzadi
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Zeynep Burcu Akkuş-Dağdeviren
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Anna Maria Schöpf
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Ronald Gust
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
13
|
Agarwal P, Rupenthal ID. Non-aqueous formulations in topical ocular drug delivery - a paradigm shift? Adv Drug Deliv Rev 2023; 198:114867. [PMID: 37178927 DOI: 10.1016/j.addr.2023.114867] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/03/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Topical eyedrop application is the preferred route for drug delivery to anterior segment tissues; however, the challenge of overcoming the eye's anatomical and physiological barriers while minimising tissue toxicity has restricted developments in this field. Aqueous vehicles have traditionally been used, which typically require several additives and preservatives to achieve physiologically compatible and sterile eyedrops, elevating their toxicity potential. Non-aqueous vehicles have been suggested as efficient alternatives for topical drug delivery as they can address many of the limitations associated with conventional aqueous eyedrops. However, despite their obvious advantages, non-aqueous eyedrops remain poorly researched and few non-aqueous formulations are currently available in the market. This review challenges the conventional hypothesis that aqueous solubility is a prerequisite to ocular drug absorption and establishes a rationale for using non-aqueous vehicles for ocular drug delivery. Recent advances in the field have been detailed and future research prospects have been explored, pointing towards a paradigm shift in eyedrop formulation in the near future.
Collapse
Affiliation(s)
- Priyanka Agarwal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland 1142, New Zealand.
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
14
|
Claus V, Spleis H, Federer C, Zöller K, Wibel R, Laffleur F, Dumont C, Caisse P, Bernkop-Schnürch A. Self-emulsifying drug delivery systems (SEDDS): In vivo-proof of concept for oral delivery of insulin glargine. Int J Pharm 2023; 639:122964. [PMID: 37100259 DOI: 10.1016/j.ijpharm.2023.122964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023]
Abstract
In spite of recent progress made in the field of peptide and protein delivery, oral administration of insulin and similar drugs remains a challenge. In this study, lipophilicity of insulin glargine (IG) was successfully increased via hydrophobic ion pairing (HIP) with sodium octadecyl sulfate to enable incorporation into self-emulsifying drug delivery systems (SEDDS). Two SEDDS formulations (F1: 20% Labrasol®ALF, 30% polysorbate 80, 10% Croduret 50, 20% oleyl alcohol, 20% Maisine® CC; F2: 30% Labrasol®ALF, 20% polysorbate 80, 30% Kolliphor® HS 15, 20% Plurol® oleique CC 497) were developed and loaded with the IG-HIP complex. Further experiments confirmed increased lipophilicity of the complex, achieving Log DSEDDS/release medium values of 2.5 (F1) and 2.4 (F2) and ensuring sufficient amounts of IG within the droplets after dilution. Toxicological assays indicated minor toxicity and no toxicity inherent to the incorporated IG-HIP complex. SEDDS formulations F1 and F2 were administered to rats via oral gavage and resulted in a bioavailability of 0.55% and 0.44%, corresponding to a 7.7-fold and 6.2-fold increased bioavailability, respectively. Thus, incorporation of complexed insulin glargine into SEDDS formulations provides a promising approach to facilitate its oral absorption.
Collapse
Affiliation(s)
- Victor Claus
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Helen Spleis
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Christoph Federer
- Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Katrin Zöller
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Richard Wibel
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Camille Dumont
- Gattefossé SAS, 36 Chemin de Genas, 69804 Saint-Priest Cedex, France
| | - Philippe Caisse
- Gattefossé SAS, 36 Chemin de Genas, 69804 Saint-Priest Cedex, France
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria.
| |
Collapse
|
15
|
Co-interaction of nitrofurantoin and saponins surfactants with biomembrane leads to an increase in antibiotic’s antibacterial activity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Development and In Vitro Characterization of Transferrin-Decorated Nanoemulsion Utilizing Hydrophobic Ion Pairing for Targeted Cellular Uptake. J Pharm Innov 2022. [DOI: 10.1007/s12247-021-09549-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
Purpose
The aim of this study was to develop transferrin-conjugated nanoemulsions utilizing hydrophobic ion pairing for a targeted cellular uptake.
Methods
In the lipophilic phase of nanoemulsion composed of 60% oleic acid, 30% Capmul MCM EP and 10% Span 85, 1% cetyltrimethylammonium bromide (CTAB) and 3% phosphatidic acid (PA) were incorporated. After emulsification, the resulting droplets were decorated with human protein transferrin via hydrophobic ion pairing with PA and characterized regarding droplet size and zeta potential. Subsequently, cellular uptake of transferrin-conjugated nanoemulsion was investigated on Caco-2 and HeLa cell lines and determined by flow cytometry, cell lysis method and live cell imaging using confocal laser scanning microscopy.
Results
The nanoemulsion showed a droplet size of 123.03 ± 2.1 nm and zeta potential of − 54.5 mV that changed because of the surface decoration with transferrin to 182.7 ± 0.2 and + 30.2 mV, respectively. Within the uptake studies utilizing flow cytometry, transferrin-conjugated nanoemulsion showed a 5.2-fold higher uptake in Caco-2 cells and twofold improvement in case of HeLa cells compared with unmodified formulation. The outcome was confirmed visually via live cell imaging.
Conclusion
According to the results, transferrin-conjugated nanoemulsion might be considered as a promising drug delivery system for a selective receptor-mediated drug delivery.
Collapse
|
17
|
Saleh A, Akkuş-Dağdeviren ZB, Friedl JD, Knoll P, Bernkop-Schnürch A. Chitosan - Polyphosphate nanoparticles for a targeted drug release at the absorption membrane. Heliyon 2022; 8:e10577. [PMID: 36177244 PMCID: PMC9513768 DOI: 10.1016/j.heliyon.2022.e10577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/26/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to develop nanoparticles (NPs) providing a targeted drug release directly on the epithelium of the intestinal mucosa. NPs were prepared via ionic gelation between cationic chitosan (Cs) and anionic polyphosphate (PP). The resulting NPs were characterized by their size, polydispersity index (PDI) and zeta potential. Isolated and cell-associated intestinal alkaline phosphatase (IAP) was employed to trigger polyphosphate cleavage in Cs-PP NPs which was quantified via malachite green assay. In parallel, the shift in zeta potential was determined. In-vitro drug release studies were performed in Franz diffusion cells with Cs-PP NPs containing rhodamine 123 as model active ingredient. Furthermore, cytotoxicity of Cs-PP NPs was assessed via resazurin assay on Caco-2 cells as well as via hemolysis assay on red blood cells. Cs-PP NPs exhibited an average size of 144.17 ± 10.95 nm and zeta potential of -12.6 ± 0.50 mV. The encapsulation efficiency of rhodamine 123 by Cs-PP NPs was 86.8%. After incubation with isolated IAP for 3 h the polyphosphate of Cs-PP NPs was cleaved to monophosphate and zeta potential raised up to -2.3 ± 0.30 mV. Cs-PP NPs showed a non-toxic profile. Within 3 h, 62.0 ± 10.8% and 14.1 ± 2.2% of total rhodamine 123 was released from Cs-PP NPs upon incubation with isolated as well as porcine intestine derived intestinal alkaline phosphatase (IAP), respectively. According to these results, Cs-PP NPs are promising drug delivery systems to enable a drug targeted release at the absorption membrane.
Collapse
Affiliation(s)
- Ahmad Saleh
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
- Department of Pharmacy, Universitas Mandala Waluya, A.H.Nasution, Kendari 93231, Southeast Sulawesi, Indonesia
| | - Zeynep Burcu Akkuş-Dağdeviren
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Julian David Friedl
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Patrick Knoll
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
18
|
Malkawi A, Alrabadi N, Haddad R, Malkawi A, Khaled K, Ovenseri AC. Development of Self-Emulsifying Drug Delivery Systems (SEDDSs) Displaying Enhanced Permeation of the Intestinal Mucus Following Sustained Release of Prototype Thiol-Based Mucolytic Agent Load. Molecules 2022; 27:4611. [PMID: 35889482 PMCID: PMC9315686 DOI: 10.3390/molecules27144611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, mucoactive self-emulsifying drug delivery systems (SEDDSs) based on sustained release of N-acetylcysteine (NAC) were developed for providing effective intestinal mucopermeation. Polymeric ionic complexes of NAC were formed with polyethyleneimine (PEI), Eudragit E 100, and Eudragit RS 100 and loaded into a novel SEDDS. The SEDDSs exhibited a stable average size of 75 ± 12 nm (polydispersity index (PDI) < 0.3) and showed a rise in the zeta potential from −17.31 mV to −7.72 mV. On Caco-2 cells, SEDDSs at 1−3% were non-cytotoxic. An average of 91.8 ± 5.4% NAC was released from SEDDSs containing Eudragit E 100 (p ≤ 0.05) and Eudragit RS 100 (p ≤ 0.001) complexes at a significantly slower rate within 80 min, whereas the SEDDS containing PEI released NAC in a matter of seconds. Similarly, the SEDDS complexes revealed a time-dependent reduction in mucus dynamic viscosity of 52.6 ± 19.9%. Consequently, as compared with a blank SEDDS, mucodiffusion revealed about 2- and 1.8-fold significantly greater mucopermeation of SEDDSs anchoring Eudragit E 100−NAC and RS 100−NAC complexes (p ≤ 0.05), respectively. The mucoactive SEDDSs, which steadily released NAC while permeating the mucus, were linked to a significantly increased mucopermeation in vitro as a result of optimal mucolytic targeting.
Collapse
Affiliation(s)
- Ahmad Malkawi
- Faculty of Pharmacy, Cyprus International University, Nicosia 99258, Cyprus; (K.K.); (A.C.O.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Isra University, Queen Alya Airport Street, Amman 11622, Jordan
| | - Nasr Alrabadi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Razan Haddad
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan; (R.H.); (A.M.)
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, AL-Ahliyya Amman University, Amman 19328, Jordan
| | - Azhar Malkawi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan; (R.H.); (A.M.)
| | - Khaled Khaled
- Faculty of Pharmacy, Cyprus International University, Nicosia 99258, Cyprus; (K.K.); (A.C.O.)
| | | |
Collapse
|
19
|
Wibel R, Knoll P, Le-Vinh B, Kali G, Bernkop-Schnürch A. Synthesis and evaluation of sulfosuccinate-based surfactants as counterions for hydrophobic ion pairing. Acta Biomater 2022; 144:54-66. [PMID: 35292415 DOI: 10.1016/j.actbio.2022.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022]
Abstract
Hydrophobic ion pairing is a promising strategy to raise the lipophilic character of therapeutic peptides and proteins. In past studies, docusate, an all-purpose surfactant with a dialkyl sulfosuccinate structure, showed highest potential as hydrophobic counterion. Being originally not purposed for hydrophobic ion pairing, it is likely still far away from the perfect counterion. Thus, within this study, docusate analogues with various linear and branched alkyl residues were synthesized to derive systematic insights into which hydrophobic tail is most advantageous for hydrophobic ion pairing, as well as to identify lead counterions that form complexes with superior hydrophobicity. The successful synthesis of the target compounds was confirmed by FT-IR, 1H-NMR, and 13C-NMR. In a screening with the model protein hemoglobin, monostearyl sulfosuccinate, dioleyl sulfosuccinate, and bis(isotridecyl) sulfosuccinate were identified as lead counterions. Their potential was further evaluated with the peptides and proteins vancomycin, insulin, and horseradish peroxidase. Dioleyl sulfosuccinate and bis(isotridecyl) sulfosuccinate significantly increased the hydrophobicity of the tested peptides and proteins determined as logP or lipophilicity determined as solubility in 1-octanol, respectively, in comparison to the gold standard docusate. Dioleyl sulfosuccinate provided an up to 8.3-fold higher partition coefficient and up to 26.5-fold higher solubility in 1-octanol than docusate, whereas bis(isotridecyl) sulfosuccinate resulted in an up to 6.7-fold improvement in the partition coefficient and up to 44.0-fold higher solubility in 1-octanol. The conjugation of highly lipophilic alkyl tails to the polar sulfosuccinate head group allows the design of promising counterions for hydrophobic ion pairing. STATEMENT OF SIGNIFICANCE: Hydrophobic ion pairing enables efficient incorporation of hydrophilic molecules into lipid-based formulations by forming complexes with hydrophobic counterions. Docusate, a sulfosuccinate with two branched alkyl tails, has shown highest potential as anionic hydrophobic counterion. As it was originally not purposed for hydrophobic ion pairing, its structure is likely still far away from the perfect counterion. To improve its properties, analogues of docusate with various alkyl tails were synthesized in the present study. The investigation of different alkyl residues allowed to derive systematic insights into which tail structures are most favorable for hydrophobic ion pairing. Moreover, the lead counterions dioleyl sulfosuccinate and bis(isotridecyl) sulfosuccinate bearing highly lipophilic alkyl tails provided a significant improvement in the hydrophobicity of the resulting complexes.
Collapse
|
20
|
Poudwal S, Shende P. Multi-strategic approaches for enhancing active transportation using self-emulsifying drug delivery system. J Drug Target 2022; 30:726-736. [PMID: 35451898 DOI: 10.1080/1061186x.2022.2069783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Oral delivery is the most desired route of drug administration and it can be more beneficial for patients suffering from chronic diseases wherein frequent parenteral administration of proteins such as insulin and calcitonin is required. The BCS class II drugs show low aqueous solubility and high permeability whereas BCS class IV drugs suffer from low aqueous solubility and low permeability. Additionally, biologic drugs are highly sensitive to presence of bioenzymes and bile salts when administered orally. Self-emulsifying drug delivery system (SEDDS) is a thermodynamically stable lipid formulation that enhances oral absorption of active ingredients via the opening of tight junctions, increasing the membrane fluidity, and thus overcomes the physiological barriers like viscous mucus layer, strong acid conditions and enzymatic degradation. An understanding of different theories that govern SEDDS formation and drug release can help in formulating a highly stable and effective drug delivery system. Poorly permeable drugs such as chlorpromazine require modification using methods like hydrophobic ion pairing, complexation with phospholipids, etc. to enable high entrapment efficiency which is discussed in the article. Additionally, the article gives an overview of the influence of polymers, length of fatty acids chain and zeta potential in enhancing permeation across the intestinal membrane.
Collapse
Affiliation(s)
- Swapna Poudwal
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
21
|
Mirgorodskaya AB, Koroleva MY, Kushnazarova RA, Mishchenko EV, Petrov KA, Lenina OA, Vyshtakalyuk AB, Voloshina AD, Zakharova LY. Microemulsions and nanoemulsions modified with cationic surfactants for improving the solubility and therapeutic efficacy of loaded drug indomethacin. NANOTECHNOLOGY 2022; 33:155103. [PMID: 34959230 DOI: 10.1088/1361-6528/ac467d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
In this work, a noncovalent strategy was successfully used to modify colloidal stability andin vitroandin vivoefficacy of two amphiphilic formulations of the anti-inflammatory drug indomethacin. Namely, nanoemulsions and microemulsions based on oleic acid and nonionic surfactants have been produced and compared. The influence of cationic surfactants cetyltrimethylammonium bromide and its carbamate bearing analogue on the size characteristics, stability and ability to provide prolonged action of loaded drug indomethacin has been evaluated. Adding the positively charged molecules in the surface layer of nanoemulsions and microemulsions has shown the stability increase along with maintaining the size characteristics and homogeneity in time. Moreover, the carbamate modified analogue demonstrated beneficial behavior. Indomethacin loaded in microemulsions and nanoemulsions showed prolonged-release (10%-15% release for 5 h) compared to a free drug (complete release for 5 h). The rate of release of indomethacin from nanoemulsions was slightly higher than from microemulsions and insignificantly decreased with an increase in the concentration of the cationic surfactant. For carbamate surfactant nanocarrier loaded with fluorescence probe Nile Red, the ability to penetrate into the cell was supported by flow cytometry study and visualized by fluorescence microscopy.In vitrotests on anti-inflammatory activity of the systems demonstrated that the blood cell membrane stabilization increased in the case of modified microemulsion. The anti-inflammatory activity of the encapsulated drug was tested in rats using a carrageenan-induced edema model. Nanoemulsions without cationic surfactants appeared more efficient compared to microemulsions. Indomethacin emulsion formulations with carbamate surfactant added showed slower carrageenan-induced edema progression compared to unmodified compositions. Meanwhile, the edema completely disappeared upon treatment with emulsion loaded indomethacin after 4 h in the case of microemulsions versus 5 h in the case of nanoemulsions.
Collapse
Affiliation(s)
- Alla B Mirgorodskaya
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8, Arbuzov str., 420088 Kazan, Russia
| | - Marina Yu Koroleva
- Mendeleev University of Chemical Technology, 9, Miusskaya sq., 125047 Moscow, Russia
| | - Rushana A Kushnazarova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8, Arbuzov str., 420088 Kazan, Russia
| | | | - Konstantin A Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8, Arbuzov str., 420088 Kazan, Russia
- Kazan Federal University, 18, Kremlyovskaya str, 420008 Kazan, Russia
| | - Oxana A Lenina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8, Arbuzov str., 420088 Kazan, Russia
| | - Alexandra B Vyshtakalyuk
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8, Arbuzov str., 420088 Kazan, Russia
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8, Arbuzov str., 420088 Kazan, Russia
| | - Lucia Ya Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8, Arbuzov str., 420088 Kazan, Russia
| |
Collapse
|
22
|
Pantelić I, Ilić T, Nikolić I, Savić S. Lipid nanoparticles employed in mRNA-based COVID-19 vaccines: An overview of materials and processes used for development and production. ARHIV ZA FARMACIJU 2022. [DOI: 10.5937/arhfarm72-33660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
In the light of the recommended application of the third dose, both public and professional community would benefit from a detailed report on the technological advances behind the developed messenger ribonucleic acid (mRNA) based COVID-19 vaccines. Although many vaccine developers are yet to reveal their precise formulations, it is apparent they are founded on nanotechnology platforms similar to the one successfully used for registered drug OnpattroTM (INN: patisiran). Optimal encapsulation of mRNA requires the presence of four lipids: an ionizable cationic lipid, a polyethylene-glycol (PEG)-lipid, a neutral phospholipid and cholesterol. Together with other excipients (mainly buffers, osmolytes and cryoprotectives), they enable the formation of lipid nanoparticles (LNPs) using rapid-mixing microfluidic or T-junction systems. However, some limitations of thermostability testing protocols, coupled with the companies' more or less cautious approach to predicting vaccine stability, led to rigorous storage conditions: -15° to -25°C or even -60° to -80°C. Nevertheless, some inventors recently announced their mRNA-LNP based vaccine candidates to be stable at both 25° and 37°C for a week. Within the formulation design space, further optimization of the ionizable lipids should be expected, especially in the direction of increasing their branching and optimizing pKa values, ultimately leading to the second generation of mRNA-LNP COVID-19 vaccines.
Collapse
|
23
|
Gaynanova G, Vasileva L, Kashapov R, Kuznetsova D, Kushnazarova R, Tyryshkina A, Vasilieva E, Petrov K, Zakharova L, Sinyashin O. Self-Assembling Drug Formulations with Tunable Permeability and Biodegradability. Molecules 2021; 26:6786. [PMID: 34833877 PMCID: PMC8624506 DOI: 10.3390/molecules26226786] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
This review focuses on key topics in the field of drug delivery related to the design of nanocarriers answering the biomedicine criteria, including biocompatibility, biodegradability, low toxicity, and the ability to overcome biological barriers. For these reasons, much attention is paid to the amphiphile-based carriers composed of natural building blocks, lipids, and their structural analogues and synthetic surfactants that are capable of self-assembly with the formation of a variety of supramolecular aggregates. The latter are dynamic structures that can be used as nanocontainers for hydrophobic drugs to increase their solubility and bioavailability. In this section, biodegradable cationic surfactants bearing cleavable fragments are discussed, with ester- and carbamate-containing analogs, as well as amino acid derivatives received special attention. Drug delivery through the biological barriers is a challenging task, which is highlighted by the example of transdermal method of drug administration. In this paper, nonionic surfactants are primarily discussed, including their application for the fabrication of nanocarriers, their surfactant-skin interactions, the mechanisms of modulating their permeability, and the factors controlling drug encapsulation, release, and targeted delivery. Different types of nanocarriers are covered, including niosomes, transfersomes, invasomes and chitosomes, with their morphological specificity, beneficial characteristics and limitations discussed.
Collapse
Affiliation(s)
- Gulnara Gaynanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russia; (L.V.); (R.K.); (D.K.); (R.K.); (A.T.); (E.V.); (K.P.); (L.Z.); (O.S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Qu Y, Mu S, Song C, Zheng G. Preparation and in vitro/ in vivo evaluation of a self-microemulsifying drug delivery system containing chrysin. Drug Dev Ind Pharm 2021; 47:1127-1139. [PMID: 34590933 DOI: 10.1080/03639045.2021.1988092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To prepare a self-microemulsifying drug delivery system (SMEDDS) to increase the solubility and oral bioavailability of chrysin. METHODS The preparation conditions were determined using factor analysis method. Preliminarily screening was conducted using compatibility tests and pseudo-ternary phase diagram studies. The central composite design-response surface methodology was used to determine the maximum drug loading and optimize SMEDDS formation, as characterized by surface morphology, pH, diameter, polydispersity index (PDI), zeta potential, and phase type. In vitro release of chrysin-suspension and chrysin-SMEDDS was investigated using the bulk-equilibrium reverse dialysis bag technique. Short-term stability of chrysin-SMEDDS at high and low temperatures was assessed. Pharmacokinetic behaviors were evaluated after intragastric and intravenous administration to rats. RESULTS The final optimal formulation was medium chain triglyceride:oleic acid:Cremophor RH40: Transcutol HP (w/w) (12%:12%:32%:44%), with a drug loading capacity of 5 mg/g. Diluted chrysin-SMEDDS was characterized as an oil-in-water type and spherical, with a diameter, pH, PDI, and zeta potential of 28.26 ± 0.83 nm, 5.60 ± 0.84, 0.18 ± 0.01, and -23.13 ± 0.95 mV, respectively. The release speed of chrysin-SMEDDS was significantly higher than that of chrysin-suspension, and the release process was not affected by the media pH. In vivo pharmacokinetic data revealed that the oral bioavailability of chrysin-SMEDDS was 2.7-fold higher than that of chrysin suspension, compared with the chrysin microemulsion. CONCLUSION The optimal SMEDDS formulation increased the dissolution and oral bioavailability of chrysin and may be useful for investigating chrysin efficacy in animal disease models and toxicokinetic studies.
Collapse
Affiliation(s)
- Yong Qu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Shunda Mu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Chengwu Song
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Guohua Zheng
- Key Laboratory of Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| |
Collapse
|
25
|
Seyfoori A, Shokrollahi Barough M, Mokarram P, Ahmadi M, Mehrbod P, Sheidary A, Madrakian T, Kiumarsi M, Walsh T, McAlinden KD, Ghosh CC, Sharma P, Zeki AA, Ghavami S, Akbari M. Emerging Advances of Nanotechnology in Drug and Vaccine Delivery against Viral Associated Respiratory Infectious Diseases (VARID). Int J Mol Sci 2021; 22:6937. [PMID: 34203268 PMCID: PMC8269337 DOI: 10.3390/ijms22136937] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/19/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022] Open
Abstract
Viral-associated respiratory infectious diseases are one of the most prominent subsets of respiratory failures, known as viral respiratory infections (VRI). VRIs are proceeded by an infection caused by viruses infecting the respiratory system. For the past 100 years, viral associated respiratory epidemics have been the most common cause of infectious disease worldwide. Due to several drawbacks of the current anti-viral treatments, such as drug resistance generation and non-targeting of viral proteins, the development of novel nanotherapeutic or nano-vaccine strategies can be considered essential. Due to their specific physical and biological properties, nanoparticles hold promising opportunities for both anti-viral treatments and vaccines against viral infections. Besides the specific physiological properties of the respiratory system, there is a significant demand for utilizing nano-designs in the production of vaccines or antiviral agents for airway-localized administration. SARS-CoV-2, as an immediate example of respiratory viruses, is an enveloped, positive-sense, single-stranded RNA virus belonging to the coronaviridae family. COVID-19 can lead to acute respiratory distress syndrome, similarly to other members of the coronaviridae. Hence, reviewing the current and past emerging nanotechnology-based medications on similar respiratory viral diseases can identify pathways towards generating novel SARS-CoV-2 nanotherapeutics and/or nano-vaccines.
Collapse
Affiliation(s)
- Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (T.W.)
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Mahdieh Shokrollahi Barough
- Department of Immunology, Iran University of Medical Sciences, Tehran 1449614535, Iran;
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Pooneh Mokarram
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran;
- Autophagy Research Center, Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (M.A.); (T.M.)
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of IRAN, Tehran 1316943551, Iran;
| | - Alireza Sheidary
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran;
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (M.A.); (T.M.)
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran;
| | - Mohammad Kiumarsi
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Tavia Walsh
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (T.W.)
| | - Kielan D. McAlinden
- Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
| | - Chandra C. Ghosh
- Roger Williams Medical Center, Immuno-Oncology Institute (Ix2), Providence, RI 02908, USA;
| | - Pawan Sharma
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Amir A. Zeki
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, U.C. Davis Lung Center, Davis School of Medicine, University of California, Davis, CA 95817, USA;
- Veterans Affairs Medical Center, Mather, CA 95817, USA
| | - Saeid Ghavami
- Autophagy Research Center, Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (T.W.)
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
26
|
Akkuş-Dağdeviren ZB, Wolf JD, Kurpiers M, Shahzadi I, Steinbring C, Bernkop-Schnürch A. Charge reversal self-emulsifying drug delivery systems: A comparative study among various phosphorylated surfactants. J Colloid Interface Sci 2021; 589:532-544. [PMID: 33493863 DOI: 10.1016/j.jcis.2021.01.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/22/2020] [Accepted: 01/10/2021] [Indexed: 01/04/2023]
Abstract
HYPOTHESIS Phosphorylated surfactants having ethoxylate spacer arms are promising excipients for charge reversal self-emulsifying drug delivery systems (SEDDS). EXPERIMENTS 1,2-Dipalmitoyl-sn-glycero-3-phosphatidic acid disodium salt (PA), 2-((2,3-bis(oleoyloxy)propyl)dimethylammonio)ethyl hydrogen phosphate (DOCP), nonylphenol monophosphate ester (PNPP), C12-15 alcohol 3 ethoxylate phosphate ester (PME) and polyoxyethylene (9) dioctanoyl glycerol pyrophosphate (DGPP) loaded SEDDS were developed and characterized. Zeta potential of SEDDS was measured before and after incubation with intestinal alkaline phosphatase (IAP). Phosphate release was monitored by incubation of SEDDS with isolated as well as cell-associated IAP. Primary amine content on the surface of SEDDS was determined in parallel. Cytotoxicity was evaluated on Caco-2 cells and in vitro hemolysis test was performed. Cellular uptake studies were performed by confocal scanning microscopy. FINDINGS SEDDS formulations exhibited a size in the range of 17 and 193 nm and a polydispersity index (PDI) ≤ 0.5. Charge reversal from negative to positive values could be achieved in case of PNPP and PME loaded SEDDS with a zeta potential changing from -13 mV to +9 mV and from -7 to +2 mV, respectively, within 6 h. Significant amounts of phosphate were released from PNPP and PME loaded SEDDS incubated with isolated IAP and from all formulations incubated with cell-associated IAP in accordance with an increase in primary amines on the surface of oily droplets. SEDDS exhibited a concentration and time-dependent cytotoxicity. PNPP and PME SEDDS displayed an increased cellular uptake.
Collapse
Affiliation(s)
- Zeynep Burcu Akkuş-Dağdeviren
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Julian Dominik Wolf
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Markus Kurpiers
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Iram Shahzadi
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christian Steinbring
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.
| |
Collapse
|
27
|
Ismail R, Baaity Z, Csóka I. Regulatory status quo and prospects for biosurfactants in pharmaceutical applications. Drug Discov Today 2021; 26:1929-1935. [PMID: 33831583 DOI: 10.1016/j.drudis.2021.03.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/09/2021] [Accepted: 03/25/2021] [Indexed: 01/24/2023]
Abstract
The concept of going 'green' and 'cold' has led to utilizing renewable resources for the synthesis of microbial biosurfactants that are both patient and eco-friendly. In this review, we shed light on the potential and regulatory aspects of biosurfactants in pharmaceutical applications and how they can significantly contribute to novel concepts for the Coronavirus 2019 (COVID-19) vaccine and future treatment. We emphasize that more specific guidelines should be formulated to regulate the approval of biosurfactants for human use. It is also crucial to implement a risk-based approach from the early research and development (R&D) phase in addition to establishing more robust standardized techniques and assays to evaluate the characteristics of biosurfactants.
Collapse
Affiliation(s)
- Ruba Ismail
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary; Department of Applied and Environmental Chemistry, Institute of Chemistry, Faculty of Science and Informatics, University of Szeged, Rerrich Bela Sq.1., H-6720 Szeged, Hungary.
| | - Zain Baaity
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, 10 Dóm Square, H-6720 Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary
| |
Collapse
|
28
|
Sharifi F, Jahangiri M, Nazir I, Asim MH, Ebrahimnejad P, Hupfauf A, Gust R, Bernkop-Schnürch A. Zeta potential changing nanoemulsions based on a simple zwitterion. J Colloid Interface Sci 2021; 585:126-137. [PMID: 33279695 DOI: 10.1016/j.jcis.2020.11.054] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022]
Abstract
HYPOTHESIS Simple zwitterions used as auxiliary agents might have the potential to change the zeta potential of oil-in-water (o/w) nanoemulsions on the mucosa. EXPERIMENTS The zwitterion phosphorylated tyramine (p-Tyr) was synthesized by phosphorylation of Boc-tyramine (Boc-Tyr) using phosphoryl chloride (POCl3). It was incorporated with 2% (m/v) in a self-emulsifying lipophilic phase comprising Captex 35, Cremophor EL, Capmul MCM and glycerol 85 at a ratio of 30:30:30:10 v/v. Phosphate release and resulting change in zeta potential were evaluated by incubating p-Tyr containing nanoemulsion with isolated intestinal alkaline phosphatase (AP). Mucus permeating behavior was evaluated across mucus obtained from porcine small intestinal mucosa. Subsequently, cellular uptake studies were accomplished on Caco-2 cells. FINDINGS The p-Tyr loaded nanoemulsion exhibited a mean droplet size of 43 ± 1.7 nm and zeta potential of -8.40 mV. Phosphate moieties were rapidly cleaved from p-Tyr loaded nanoemulsions after incubation with isolated AP resulting in a shift in zeta potential from -8.40 mV to +1.2 mV. p-Tyr loaded nanoemulsion revealed a significantly (p ≤ 0.001) improved mucus permeation compared to the same nanoemulsion having been pre-treated with AP. Cellular uptake of the zeta potential changing oily droplets was 2.4-fold improved. Phosphorylated zwitterions seem to be an alternative to cationic surfactants and considered as promising auxiliary agents for zeta potential changing nanoemulsions.
Collapse
Affiliation(s)
- Faezeh Sharifi
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mansour Jahangiri
- Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran
| | - Imran Nazir
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan
| | - Mulazim Hussain Asim
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Department of Pharmaceutics, Faculty of Pharmacy, University of Sargodha, 40100 Sargodha, Pakistan
| | - Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Andrea Hupfauf
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Ronald Gust
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
29
|
Wibowo D, Jorritsma SHT, Gonzaga ZJ, Evert B, Chen S, Rehm BHA. Polymeric nanoparticle vaccines to combat emerging and pandemic threats. Biomaterials 2020; 268:120597. [PMID: 33360074 PMCID: PMC7834201 DOI: 10.1016/j.biomaterials.2020.120597] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023]
Abstract
Subunit vaccines are more advantageous than live attenuated vaccines in terms of safety and scale-up manufacture. However, this often comes as a trade-off to their efficacy. Over the years, polymeric nanoparticles have been developed to improve vaccine potency, by engineering their physicochemical properties to incorporate multiple immunological cues to mimic pathogenic microbes and viruses. This review covers recent advances in polymeric nanostructures developed toward particulate vaccines. It focuses on the impact of microbe mimicry (e.g. size, charge, hydrophobicity, and surface chemistry) on modulation of the nanoparticles’ delivery, trafficking, and targeting antigen-presenting cells to elicit potent humoral and cellular immune responses. This review also provides up-to-date progresses on rational designs of a wide variety of polymeric nanostructures that are loaded with antigens and immunostimulatory molecules, ranging from particles, micelles, nanogels, and polymersomes to advanced core-shell structures where polymeric particles are coated with lipids, cell membranes, or proteins.
Collapse
Affiliation(s)
- David Wibowo
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia.
| | - Sytze H T Jorritsma
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia
| | - Zennia Jean Gonzaga
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia
| | - Benjamin Evert
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia
| | - Shuxiong Chen
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia.
| |
Collapse
|
30
|
Mucolytic self-emulsifying drug delivery systems (SEDDS) containing a hydrophobic ion-pair of proteinase. Eur J Pharm Sci 2020; 162:105658. [PMID: 33271277 DOI: 10.1016/j.ejps.2020.105658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/22/2020] [Accepted: 11/25/2020] [Indexed: 01/25/2023]
Abstract
AIM The aim of this study was to form hydrophobic ion-pairs of proteinase with cationic surfactants and to incorporate them into self-emulsifying drug delivery systems (SEDDS) to improve their mucus permeating properties. METHODS Proteinase was ion-paired with benzalkonium chloride (BAK), hexadecylpyridinium chloride (HDP), alkyltrimethylammonium bromide (ATA) and hexadecyltrimethylammonium bromide (HDT) at pH 8.5-9.0, and subsequently incorporated into SEDDS consisting of Cremophor EL, propylene glycol, and Capmul 808-G (40/20/40). Mucus permeation of SEDDS containing proteinase complexes was evaluated via rotating tube technique and cell-free Transwell® insert system. Additionally, enzymatic activity of proteinase complexes as well as their potential cytotoxicity was evaluated. RESULTS Among all tested hydrophobic ion-pairs, proteinase/BAK showed highest potential. Mucus diffusion of SEDDS containing proteinase/BAK complex yielded in 2.3-fold and 2.5-fold higher mucus permeability with respect to blank SEDDS at Transwell® insert system and rotating tube technique, respectively. Furthermore, proteinase/BAK complex maintained the highest enzymatic activity of 50.5 ± 5.6% compared to free proteinase. At a SEDDS concentration as low as 0.006% cell viability was just 80%. The addition of proteinase complexes to SEDDS increased cytotoxicity on Caco-2 cells in a concentration-dependent manner. CONCLUSION SEDDS loaded with proteinase/BAK complexes are promising nanocarriers because of enhanced mucus permeating properties.
Collapse
|
31
|
Kupnik K, Primožič M, Kokol V, Leitgeb M. Nanocellulose in Drug Delivery and Antimicrobially Active Materials. Polymers (Basel) 2020; 12:E2825. [PMID: 33261198 PMCID: PMC7760654 DOI: 10.3390/polym12122825] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/22/2022] Open
Abstract
In recent years, nanocellulose (NC) has also attracted a great deal of attention in drug delivery systems due to its unique physical properties, specific surface area, low risk of cytotoxicity, and excellent biological properties. This review is focused on nanocellulose based systems acting as carriers to be used in drug or antimicrobial delivery by providing different but controlled and sustained release of drugs or antimicrobial agents, respectively, thus showing potential for different routes of applications and administration. Microorganisms are increasingly resistant to antibiotics, and because, generally, the used metal or metal oxide nanoparticles at some concentration have toxic effects, more research has focused on finding biocompatible antimicrobial agents that have been obtained from natural sources. Our review contains the latest research from the last five years that tested nanocellulose-based materials in the field of drug delivery and antimicrobial activity.
Collapse
Affiliation(s)
- Kaja Kupnik
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (K.K.); (M.P.)
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Mateja Primožič
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (K.K.); (M.P.)
| | - Vanja Kokol
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (K.K.); (M.P.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia
| |
Collapse
|
32
|
Malkawi A, Jalil A, Nazir I, Matuszczak B, Kennedy R, Bernkop-Schnürch A. Self-Emulsifying Drug Delivery Systems: Hydrophobic Drug Polymer Complexes Provide a Sustained Release in Vitro. Mol Pharm 2020; 17:3709-3719. [PMID: 32841038 PMCID: PMC7539300 DOI: 10.1021/acs.molpharmaceut.0c00389] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
The aim of this study was to develop hydrophobic ionic drug polymer complexes in order to provide sustained drug release from self-emulsifying drug delivery systems (SEDDS). Captopril (CTL) was used as an anionic model drug to form ionic complexes with the cationic polymers Eudragit RS, RL, and E. Complexes of polymer to CTL charge ratio 1:1, 2:1, and 4:1 were incorporated in two SEDDS, namely FA which was 40% Kolliphor RH 40, 20% Kolliphor EL, and 40% castor oil and FB, which was 40% Kolliphor RH 40, 30% glycerol, 15% Kolliphor EL, and 15% castor oil. Blank and complex loaded SEDDS were characterized regarding their droplet size, polydispersity index (PDI), and zeta potential. Resazurin assay was performed on Caco-2 cells to evaluate the biocompatibility of SEDDS. Release of CTL from SEDDS was determined in release medium containing 0.2 mg/mL of 5,5'-dithiobis(2-nitrobenzoic acid) (DNTB) allowing quantification of free drug released into solution via a thiol/disulfide exchange reaction between CTL and DNTB forming a yellow dye. The droplet size of SEDDS FA and SEDDS FB were in the range of 100 ± 20 nm and 40 ± 10 nm, respectively, with a PDI < 0.5. The zeta potential of SEDDS FA and SEDDS FB increased after the incorporation of complexes. Cell viability remained above 80% after incubation with SEDDS FA and SEDDS FB in a concentration of 1% and 3% for 4 h. Without any polymer, CTL was entirely released from both SEDDS within seconds. In contrast, the higher the cationic lipophilic polymer to CTL ratio in SEDDS, the more sustained was the release of CTL. Among the polymers which were evaluated, Eudragit RL provided the most sustained release. SEDDS FA containing Eudragit RL and CTL in a ratio of 1:1 released 64.78 ± 8.28% of CTL, whereas SEDDS FB containing the same complex showed a release of 91.85 ± 1.17% within 1 h. Due to the formation of lipophilic ionic polymer complexes a sustained drug release from oily droplets formed by SEDDS can be achieved. Taking into account that drugs are otherwise instantly released from SEDDS, results of this study might open the door for numerous additional applications of SEDDS for which a sustained drug release is essential.
Collapse
Affiliation(s)
- Ahmad Malkawi
- Center
for Chemistry and Biomedicine, Department of Pharmaceutical Technology,
Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Aamir Jalil
- Center
for Chemistry and Biomedicine, Department of Pharmaceutical Technology,
Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Imran Nazir
- Center
for Chemistry and Biomedicine, Department of Pharmaceutical Technology,
Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
- Department
of Pharmacy, COMSATS University Islamabad, Abbottabad campus, 22060 Abbottabad, Pakistan
| | - Barbara Matuszczak
- Center
for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry,
Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Ross Kennedy
- School
of Biomedical Science, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Andreas Bernkop-Schnürch
- Center
for Chemistry and Biomedicine, Department of Pharmaceutical Technology,
Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
33
|
Zeta potential changing nanoemulsions based on phosphate moiety cleavage of a PEGylated surfactant. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113868] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Friedl JD, Steinbring C, Zaichik S, Le NMN, Bernkop-Schnürch A. Cellular uptake of self-emulsifying drug-delivery systems: polyethylene glycol versus polyglycerol surface. Nanomedicine (Lond) 2020; 15:1829-1841. [PMID: 32781886 DOI: 10.2217/nnm-2020-0127] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: Comparison of the impact of polyethylene glycol (PEG) and polyglycerol (PG) surface decoration on self-emulsifying drug delivery system (SEDDS)-membrane interaction and cellular uptake. Materials & methods: PEG-, PEG/PG- and PG-SEDDS were assessed regarding their self-emulsifying properties, surface charge, bile salt fusibility, cellular uptake and interaction with endosome-mimicking membranes. Results: SEDDS exhibited droplet sizes between 150 and 175 nm, a narrow size distribution and self-emulsified within 7 min. Higher PEG-surfactant amounts in SEDDS resulted in charge-shielding and thus in a decrease of ζ potential up to Δ11 mV. The inert PEG-surface hampered bile salt fusion and interfered SEDDS-cell interaction. By reducing the PEG-surfactant amount to 10%, cellular uptake increased twofold compared with PEG-SEDDS containing 40% PEG-surfactant. PG-SEDDS containing no PEG-surfactants showed a threefold increased cellular uptake. Furthermore, complete replacement of PEG-surfactants by PG-surfactants led to enhanced cellular interaction and improved disruption endosome-like membranes. Conclusion: PG-surfactants demonstrated high potential to address PEG-surface associated drawbacks in SEDDS.
Collapse
Affiliation(s)
- Julian David Friedl
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry & Biomedicine, Innsbruck, 6020, Austria
| | - Christian Steinbring
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry & Biomedicine, Innsbruck, 6020, Austria
| | - Sergey Zaichik
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry & Biomedicine, Innsbruck, 6020, Austria
| | - Nguyet-Minh Nguyen Le
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry & Biomedicine, Innsbruck, 6020, Austria.,Department of Industrial Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000 Ho Chi Minh City, Vietnam
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry & Biomedicine, Innsbruck, 6020, Austria
| |
Collapse
|
35
|
Phan TNQ, Ismail R, Le-Vinh B, Zaichik S, Laffleur F, Bernkop-Schnürch A. The Effect of Counterions in Hydrophobic Ion Pairs on Oral Bioavailability of Exenatide. ACS Biomater Sci Eng 2020; 6:5032-5039. [DOI: 10.1021/acsbiomaterials.0c00637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thi Nhu Quynh Phan
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020 Innsbruck, Austria
- Faculty of Pharmacy, University of Medicine and Pharmacy, Hue University, 530000 Hue, Thua Thien Hue, Viet Nam
| | - Ruba Ismail
- Institute of Pharmaceutical Technology and Regulatory Affairs, Institute of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- Institute of Pharmaceutical Technology and Regulatory Affairs, Interdisciplinary Centre of Excellence, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Bao Le-Vinh
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020 Innsbruck, Austria
- Department of Industrial Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000 Ho Chi Minh City, Viet Nam
| | - Sergey Zaichik
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020 Innsbruck, Austria
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
36
|
Kurpiers M, Wolf JD, Spleis H, Steinbring C, Jörgensen AM, Matuszczak B, Bernkop-Schnürch A. Lysine-Based Biodegradable Surfactants: Increasing the Lipophilicity of Insulin by Hydrophobic Ion Paring. J Pharm Sci 2020; 110:124-134. [PMID: 32758547 DOI: 10.1016/j.xphs.2020.07.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/08/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022]
Abstract
AIM The aim of this study was to evaluate biodegradable cationic surfactants based on lysine. METHODS Lysine was esterified with cholesterol, oleyl alcohol and 1-decanol resulting in cholesteryl lysinate (CL), oleyl lysinate (OL) and decyl lysinate (DL). Esters were investigated regarding their log Dn-octanol/water, critical micelle concentration (CMC) and biodegradability. Hemolytic potential of CL, OL, DL and the already established hexadecyl lysinate (HL) was determined and complexes with insulin (INS) were formed by hydrophobic ion pairing (HIP). Lipophilic characteristics of ion-pairs were examined by analyzing their log Pn-butanol/water. RESULTS Successful synthesis of CL, OL and DL was confirmed by IR, NMR and MS. Log D analysis revealed amphiphilic properties for the esters and a CMC of 0.01 mM, 2.0 mM and 6.0 mM was found for CL, OL and DL, respectively. Biodegradability was proven, as over 99% of OL and DL were degraded by isolated enzymes within 30 min and after 3 h 97% of CL was cleaved by membrane bound enzymes. OL as well as DL displayed no hemolytic effect and for CL cytotoxicity was significantly reduced in comparison to HL. INS/CL complex exhibited highest lipophilicity. CONCLUSION Cholesterol-amino acid based surfactants seem to be promising agents for HIP.
Collapse
Affiliation(s)
- Markus Kurpiers
- Thiomatrix Forschungs- und Beratungs GmbH, Research Center Innsbruck, Trientlgasse 65, A-6020 Innsbruck, Austria; Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Julian Dominik Wolf
- Thiomatrix Forschungs- und Beratungs GmbH, Research Center Innsbruck, Trientlgasse 65, A-6020 Innsbruck, Austria; Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Helen Spleis
- Thiomatrix Forschungs- und Beratungs GmbH, Research Center Innsbruck, Trientlgasse 65, A-6020 Innsbruck, Austria; Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Christian Steinbring
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Arne Matteo Jörgensen
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Barbara Matuszczak
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Thiomatrix Forschungs- und Beratungs GmbH, Research Center Innsbruck, Trientlgasse 65, A-6020 Innsbruck, Austria; Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| |
Collapse
|
37
|
Nazir I, Ghezzi M, Asim MH, Phan TNQ, Bernkop-Schnürch A. Self-emulsifying drug delivery systems: About the fate of hydrophobic ion pairs on a phospholipid bilayer. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Ismail R, Phan TNQ, Laffleur F, Csóka I, Bernkop-Schnürch A. Hydrophobic ion pairing of a GLP-1 analogue for incorporating into lipid nanocarriers designed for oral delivery. Eur J Pharm Biopharm 2020; 152:10-17. [PMID: 32371152 DOI: 10.1016/j.ejpb.2020.04.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023]
Abstract
The lipophilic character of peptides can be tremendously improved by hydrophobic ion pairing (HIP) with counterions to be efficiently incorporated into lipid-based nanocarriers (NCs). Herein, HIPs of exenatide with the cationic surfactant tetraheptylammonium bromide (THA) and the anionic surfactant sodium docusate (DOC) were formed to increase its lipophilicity. These HIPs were incorporated into lipid based NCs comprising 41% Capmul MCM, 15% Captex 355, 40% Cremophor RH and 4% propylene glycol. Exenatide-THA NCs showed a log Dlipophilic phase (LPh)/release medium (RM) of 2.29 and 1.92, whereas the log DLPh/RM of exenatide-DOC was 1.2 and -0.9 in simulated intestinal fluid and Hanks' balanced salts buffer (HBSS), respectively. No significant hemolytic activity was induced at a concentration of 0.25% (m/v) of both blank and loaded NCs. Exenatide-THA NCs and exenatide-DOC NCs showed a 10-fold and 3-fold enhancement in intestinal apparent membrane permeability compared to free exenatide, respectively. Furthermore, orally administered exenatide-THA and exenatide-DOC NCs in healthy rats resulted in a relative bioavailability of 27.96 ± 5.24% and 16.29 ± 6.63%, respectively, confirming the comparatively higher potential of the cationic surfactant over the anionic surfactant. Findings of this work highlight the potential of the type of counterion used for HIP as key to successful design of lipid-based NCs for oral exenatide delivery.
Collapse
Affiliation(s)
- Ruba Ismail
- Institute of Pharmaceutical Technology and Regulatory Affairs, Institute of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; Institute of Pharmaceutical Technology and Regulatory Affairs, Interdisciplinary Centre of Excellence, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Thi Nhu Quynh Phan
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Faculty of Pharmacy, University of Medicine and Pharmacy, Hue University, Thua Thien Hue, Viet Nam
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Institute of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; Institute of Pharmaceutical Technology and Regulatory Affairs, Interdisciplinary Centre of Excellence, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
39
|
Wolf JD, Kurpiers M, Götz RX, Zaichik S, Hupfauf A, Baecker D, Gust R, Bernkop-Schnürch A. Phosphorylated PEG-emulsifier: Powerful tool for development of zeta potential changing self-emulsifying drug delivery systems (SEDDS). Eur J Pharm Biopharm 2020; 150:77-86. [PMID: 32151729 DOI: 10.1016/j.ejpb.2020.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/24/2020] [Accepted: 03/04/2020] [Indexed: 02/08/2023]
Abstract
AIM It was the aim of this study to synthesize a phosphorylated emulsifier possessing a PEG-linker for establishment of a potent zeta potential changing system in self-emulsifying drug delivery systems (SEDDS). METHODS N,N'-Bis(polyoxyethylene)oleylamine (POA) was phosphorylated utilizing pyrophosphoric acid. Successful synthesis of POA bisphosphate (POAP) was confirmed by NMR and HR CS MAS. After incorporation of 1% POAP into SEDDS (Kolliphor RH 40, Capmul PG-8, Labrafac Lipophile WL 1349, Labrafac PG; 30/20/20/30, v/v), according emulsions were incubated with intestinal alkaline phosphatase (IAP) and the zeta potential was measured. Additionally, the amount of released phosphate upon incubation with IAP or on Caco-2 cells was quantified by malachite green assay. Finally, cell viability studies on Caco-2 cells were performed and mucus permeation properties with and without IAP preincubation were assessed. RESULTS POAP was synthesized as brown viscous liquid with a yield of 36% and could be incorporated into SEDDS. By incubation with IAP a zeta potential shift from -15.1 to 6.5 mV was observed. A corresponding phosphate release in presence of isolated IAP as well as on Caco-2 cells was found. Assessment of the cytotoxic potential revealed no significant alteration in the safety profile of SEDDS by incorporation of POAP. Mucus permeation studies exposed a 2-fold higher permeation of fluorescein diacetate (FDA) having been embedded in SEDDS loaded with POAP in comparison to blank formulation and 3-fold higher permeability than for emulsions having been preincubated with phosphatase. CONCLUSION The novel phosphorylated surfactant exhibiting a PEG-linker facilitated a potent zeta potential change of SEDDS.
Collapse
Affiliation(s)
- Julian Dominik Wolf
- Thiomatrix Forschungs- und Beratungs GmbH, Research Center Innsbruck, Trientlgasse 65, A-6020 Innsbruck, Austria; Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck Innrain, 80-82, A-6020 Innsbruck, Austria
| | - Markus Kurpiers
- Thiomatrix Forschungs- und Beratungs GmbH, Research Center Innsbruck, Trientlgasse 65, A-6020 Innsbruck, Austria; Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck Innrain, 80-82, A-6020 Innsbruck, Austria
| | - Roman Xaver Götz
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck Innrain, 80-82, A-6020 Innsbruck, Austria
| | - Sergey Zaichik
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck Innrain, 80-82, A-6020 Innsbruck, Austria
| | - Andrea Hupfauf
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck Innrain, 80-82, A-6020 Innsbruck, Austria
| | - Daniel Baecker
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck Innrain, 80-82, A-6020 Innsbruck, Austria
| | - Ronald Gust
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck Innrain, 80-82, A-6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Thiomatrix Forschungs- und Beratungs GmbH, Research Center Innsbruck, Trientlgasse 65, A-6020 Innsbruck, Austria; Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck Innrain, 80-82, A-6020 Innsbruck, Austria.
| |
Collapse
|
40
|
Nazir I, Shahzadi I, Jalil A, Bernkop-Schnürch A. Hydrophobic H-bond pairing: A novel approach to improve membrane permeability. Int J Pharm 2020; 573:118863. [PMID: 31765777 DOI: 10.1016/j.ijpharm.2019.118863] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/05/2019] [Accepted: 11/09/2019] [Indexed: 12/18/2022]
Abstract
The aim of the present study was to develop hydrophobic H-bond pairs (HHPs) of leuprolide (LEU) with non-ionic surfactants to improve its membrane permeability. LEU was lipidized via hydrophobic H-bond pairing (HHP) with the sucrose esters (SEs) sucrose laurate HLB 15 (SLA-15), sucrose palmitate HLB 16 (SPA-16), sucrose stearate HLB 11 (SST-11) and sucrose stearate HLB 15 (SST-15). HHPs were evaluated regarding precipitation efficiency in water, zeta potential, log Pn-octanol/water and dissociation behavior at various pH over time. Cytotoxic potential of HHPs of LEU with SST-11 was investigated on Caco-2 cells. Subsequently, ex vivo permeation studies were carried out across freshly excised Sprague-Dawley rat intestinal mucosa. At a molar ratio of LEU to SEs of 1:≥1 a precipitation efficiency of above 50% was achieved. Zeta potential of complexes was neither influenced by the type nor the amount of added surfactants. Log Pn-octanol/water of LEU was up to 250-fold increased due to HHP utilizing SST-11. Dissociation studies showed that HHPs of LEU with SST-11 dissociate up to 20% in gastrointestinal (GI) pH conditions within 4 h. Moreover, HHPs of LEU with SST-11 exhibited no cytotoxicity. Ex vivo permeation studies revealed 2-fold improved membrane permeation of HHPs of LEU with SST-11 compared to free LEU. Findings of this study show that HHP can be considered as a promising strategy to improve membrane permeation.
Collapse
Affiliation(s)
- Imran Nazir
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan
| | - Iram Shahzadi
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Aamir Jalil
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
41
|
Kuznetsova DA, Gabdrakhmanov DR, Ahtamyanova LR, Lukashenko SS, Kusova AM, Zuev YF, Voloshina AD, Sapunova AS, Kulik NV, Kuznetsov DM, Nizameev IR, Kadirov MK, Zakharova LY. Novel self-assembling systems based on imidazolium amphiphiles with cleavable urethane fragment for construction of soft nanocontainers for biomedicine application. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111961] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
42
|
Zeta potential changing self-emulsifying drug delivery systems utilizing a novel Janus-headed surfactant: A promising strategy for enhanced mucus permeation. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111285] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Nazir I, Fürst A, Lupo N, Hupfauf A, Gust R, Bernkop-Schnürch A. Zeta potential changing self-emulsifying drug delivery systems: A promising strategy to sequentially overcome mucus and epithelial barrier. Eur J Pharm Biopharm 2019; 144:40-49. [PMID: 31505225 DOI: 10.1016/j.ejpb.2019.09.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022]
Abstract
AIM The aim of the present study was to develop zeta potential changing self-emulsifying drug delivery systems (SEDDS) via a flip-flop mechanism in order to improve their mucus permeating and cellular uptake properties. METHODS Phosphorylated serine-oleylamine (p-Ser-OA) conjugates were synthesized and incorporated into SEDDS at a concentration of 1% (v/v). Cytotoxic potential of p-Ser-OA and p-Ser-OA loaded SEDDS was investigated on Caco-2 cells. Phosphate release was evaluated using isolated as well as cell-associated intestinal alkaline phosphatase (AP). In parallel, change in zeta potential and amino group concentration on the surface of SEDDS was determined. Furthermore, mucus permeation and cellular uptake studies were performed. RESULTS p-Ser-OA was synthesized by covalent attachment of serine (Ser) to oleylamine (OA) via a carbodiimide-mediated reaction followed by phosphorylation using phosphorous pentoxide (P2O5) and phosphoric acid (H3PO4). The chemical structure of p-Ser-OA was confirmed via FT-IR, 1H NMR, 13C NMR, 31P NMR and mass spectroscopic analysis. p-Ser-OA loaded SEDDS exhibited a droplet size and zeta potential of 46.42 ± 0.35 nm and -11.53 mV, respectively. A significant amount of phosphate was released after incubation with isolated as well as cell-associated AP within 6 h and zeta potential raised up to -2.04 mV. p-Ser-OA loaded SEDDS showed improved mucus permeation in comparison to p-Ser-OA loaded SEDDS treated with AP. Moreover, cellular uptake increased almost 2-fold after phosphate cleavage using AP. CONCLUSION Findings of this study show that SEDDS changing their zeta potential via a flip-flop mechanism exhibit both high mucus permeating and high cellular uptake properties.
Collapse
Affiliation(s)
- Imran Nazir
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria; Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan
| | - Andrea Fürst
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Noemi Lupo
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Andrea Hupfauf
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Ronald Gust
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| |
Collapse
|
44
|
Liao H, Gao Y, Lian C, Zhang Y, Wang B, Yang Y, Ye J, Feng Y, Liu Y. Oral absorption and lymphatic transport of baicalein following drug-phospholipid complex incorporation in self-microemulsifying drug delivery systems. Int J Nanomedicine 2019; 14:7291-7306. [PMID: 31564878 PMCID: PMC6735633 DOI: 10.2147/ijn.s214883] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/04/2019] [Indexed: 01/14/2023] Open
Abstract
PURPOSE The aims of this study were to prepare a baicalein self-microemulsion with baicalein-phospholipid complex as the intermediate (BAPC-SMEDDS) and to compare its effects with those of conventional baicalein self-microemulsion (CBA-SMEDDS) on baicalein oral absorption and lymphatic transport. METHODS Two SMEDDS were characterized by emulsifying efficiency, droplet size, zeta potential, cloud point, dilution stability, physical stability, and in vitro release and lipolysis. Different formulations of 40 mg/kg baicalein were orally administered to Sprague-Dawley rats to investigate their respective bioavailabilities. The chylomicron flow blocking rat model was used to evaluate their lymphatic transport. RESULTS The droplet sizes of BAPC-SMEDDS and CBA-SMEDDS after 100x dilution were 9.6±0.2 nm and 11.3±0.4 nm, respectively. In vivo experiments indicated that the relative bioavailability of CBA-SMEDDS and BAPC-SMEDDS was 342.5% and 448.7% compared to that of free baicalein (BA). The AUC0-t and Cmax of BAPC-SMEDDS were 1.31 and 1.87 times higher than those of CBA-SMEDDS, respectively. The lymphatic transport study revealed that 81.2% of orally absorbed BA entered the circulation directly through the portal vein, whereas approximately 18.8% was transported into the blood via lymphatic transport. CBA-SMEDDS and BAPC-SMEDDS increased the lymphatic transport ratio of BA from 18.8% to 56.2% and 70.2%, respectively. Therefore, self-microemulsion not only significantly improves oral bioavailability of baicalein, but also increases the proportion lymphatically transported. This is beneficial to the direct interaction of baicalein with relevant immune cells in the lymphatic system and for proper display of its effects. CONCLUSION This study demonstrates the oral absorption and lymphatic transport characteristics of free baicalein and baicalein SMEDDS with different compositions. This is of great significance to studies on lymphatic targeted delivery of natural immunomodulatory compounds.
Collapse
Affiliation(s)
- Hengfeng Liao
- State Key Laboratory of Bioactive substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People’s Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100050, People’s Republic of China
| | - Yue Gao
- State Key Laboratory of Bioactive substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People’s Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100050, People’s Republic of China
| | - Chunfang Lian
- State Key Laboratory of Bioactive substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People’s Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100050, People’s Republic of China
| | - Yun Zhang
- State Key Laboratory of Bioactive substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People’s Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100050, People’s Republic of China
| | - Bangyuan Wang
- State Key Laboratory of Bioactive substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People’s Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100050, People’s Republic of China
| | - Yanfang Yang
- State Key Laboratory of Bioactive substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People’s Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100050, People’s Republic of China
| | - Jun Ye
- State Key Laboratory of Bioactive substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People’s Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100050, People’s Republic of China
| | - Yu Feng
- State Key Laboratory of Bioactive substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People’s Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100050, People’s Republic of China
| | - Yuling Liu
- State Key Laboratory of Bioactive substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People’s Republic of China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100050, People’s Republic of China
| |
Collapse
|
45
|
Bhattacharjee S, Chen J, Landers J, Baker JR. Zwitterionic Surfactant as a Promising Non‐Cytotoxic Carrier for Nanoemulsion‐Based Vaccine Development. ChemistrySelect 2019. [DOI: 10.1002/slct.201902737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Somnath Bhattacharjee
- Department of Internal medicineUniversity of Michigan, Ann Arbor, Michigan 48109 USA
- Michigan Nanotechnology Institution for Medicine and Biological ScienceUniversity of Michigan, Ann Arbor, Michigan 48109 USA
| | - Jesse Chen
- Michigan Nanotechnology Institution for Medicine and Biological ScienceUniversity of Michigan, Ann Arbor, Michigan 48109 USA
| | - Jeffrey Landers
- Michigan Nanotechnology Institution for Medicine and Biological ScienceUniversity of Michigan, Ann Arbor, Michigan 48109 USA
| | - James R. Baker
- Department of Internal medicineUniversity of Michigan, Ann Arbor, Michigan 48109 USA
- Michigan Nanotechnology Institution for Medicine and Biological ScienceUniversity of Michigan, Ann Arbor, Michigan 48109 USA
| |
Collapse
|
46
|
Bussio JI, Molina-Perea C, González-Aramundiz JV. Hyaluronic Acid Nanocapsules as a Platform for Needle-Free Vaccination. Pharmaceutics 2019; 11:E246. [PMID: 31130688 PMCID: PMC6571624 DOI: 10.3390/pharmaceutics11050246] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
Vaccination faces many challenges nowadays, and among them the use of adjuvant molecules and needle-free administration are some of the most demanding. The combination of transcutaneous vaccination and nanomedicine through a rationally designed new-formulation could be the solution to this problem. This study focuses on this rational design. For this purpose, new hyaluronic acid nanocapsules (HA-NCs) have been developed. This new formulation has an oily nucleus with immunoadjuvant properties (due to α tocopherol) and a shell made of hyaluronic acid (HA) and decorated with ovalbumin (OVA) as the model antigen. The resulting nanocapsules are smaller than 100 nm, have a negative superficial charge and have a population that is homogeneously distributed. The systems show high colloidal stability in storage and physiological conditions and high OVA association without losing their integrity. The elevated interaction of the novel formulation with the immune system was demonstrated through complement activation and macrophage viability studies. Ex vivo studies using a pig skin model show the ability of these novel nanocapsules to penetrate and retain OVA in higher quantities in skin when compared to this antigen in the control solution. Due to these findings, HA-NCs are an interesting platform for needle-free vaccination.
Collapse
Affiliation(s)
- Juan I Bussio
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.
| | - Carla Molina-Perea
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.
| | - José Vicente González-Aramundiz
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.
- Centro de Investigación en Nanotecnología y Materiales Avanzados "CIEN-UC", Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, 340E McCourtney Hall, Notre Dame, IN 46556, USA.
| |
Collapse
|