1
|
Chaudhary K, Singh L, Rai PD. Innovative nanocarriers in arthritis therapy: the role of herbal cubosomes. Inflammopharmacology 2025; 33:1833-1860. [PMID: 40122993 DOI: 10.1007/s10787-025-01714-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 02/21/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Both osteoarthritis (OA) and rheumatoid arthritis (RA) are long-lasting inflammatory disorders that impact the joints. While conventional treatments like NSAIDs and DMARDs are effective, they often have adverse side effects. OBJECTIVE The aim of this review is to explore the possibilities of using herbal treatments in treating the symptoms of arthritis, their stability and bioavailability. Traditional therapies often lead to adverse side effects, prompting a search for safer alternatives, particularly in herbal medicines. This review explores the innovative use of herbal cubosomes as advanced nanocarriers for arthritis therapy. Cubosomes, a type of self-assembled lipid nanoparticle, exhibit unique structural characteristics that enhance the delivery and bioavailability of encapsulated herbal compounds. METHOD Access was gained to PubMed, Scopus database, Google Scholar and Web of Science for the literature search. The results were later screened according to the titles, abstracts, and availability of full texts. RESULTS The expository evaluation of the literature revealed that Key herbal components, such as Withania somnifera (Ashwagandha), Curcuma longa (Turmeric) and Boswellia serrata (Frankincense) are emphasized for their anti-inflammatory characteristics and possible advantages in managing arthritis. The herbal cubosomes enhance drug absorption, retention, and release kinetics in arthritic conditions. The difficulties in delivering and maintaining herbal substances are also discussed, with a focus on how nanotechnology can help get over these obstacles. CONCLUSION Overall, the integration of herbal cubosomes in arthritis therapy presents a promising approach that could result in safer and more efficient treatment alternatives, warranting further research and clinical exploration.
Collapse
Affiliation(s)
- Kajal Chaudhary
- Research Scholar, Kharvel Subharti College of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, 250005, India.
| | - Lubhan Singh
- Kharvel Subharti College of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, 250005, India
| | - Pallavi Dinanath Rai
- Department of Pharmacy, Ram-Eesh Institute of Vocational and Technical Education, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
2
|
Waghmare PS, Kaushik D, Oz E, Proestos C, Oz F, Kumar M. Unraveling the hormonal approaches for the treatment of rheumatoid arthritis and its complementary interventions. Inflammopharmacology 2025; 33:443-460. [PMID: 39754003 DOI: 10.1007/s10787-024-01633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 02/22/2025]
Abstract
Rheumatoid Arthritis (RA) is an autoimmune, chronic, systemic inflammatory disease that causes redness, swelling, stiffness, and joint pain. It is a long-lasting disease that can have a widespread impact on the body, often affecting the hands, feet, and wrists. The immune cells, such as dendritic cells, T cells, B cells, macrophages, and neutrophils, play a significant role in bone degradation and inflammation. Several cytokines, including TNF-α and IL-17A, play a significant role in causing bone erosion, cartilage deterioration, and joint inflammation. Progesterone and estrogen have a crucial impact on the pathophysiology of RA, influencing the immune system. Research has demonstrated that hormone replacement therapy (HRT) can effectively reduce inflammation, improve disease activity, enhance joint health, alleviate pain, and promote bone strength. Treatments such as tamoxifen and raloxifene, known as selective estrogen receptor modulators (SERMs), are effective against chronic inflammatory illnesses like RA. The treatment with Gonadotropin-releasing hormone (GnRH) has an impact on the hypothalamic-pituitary-gonadal axis, which in turn affects the activity of RA illness. These alternative treatments hold promise in enhancing well-being and alleviating joint pain for individuals with RA.
Collapse
Affiliation(s)
- Priya Sharad Waghmare
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Deepika Kaushik
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, HP, 173229, India.
| | - Emel Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum, 25240, Türkiye
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens Zografou, 157 84, Athens, Greece
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum, 25240, Türkiye
| | - Mukul Kumar
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
3
|
Chaudhary S, Sharma S, Fuloria S. A Panoramic Review on the Management of Rheumatoid Arthritis through Herbalism. Curr Rheumatol Rev 2025; 21:4-24. [PMID: 38591212 DOI: 10.2174/0115733971279100240328063232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 04/10/2024]
Abstract
Arthritis is a chronic inflammatory condition that affects millions of individuals worldwide. The conventional treatment options for arthritis often come with limitations and potential side effects, leading to increased interest in herbal plants as alternative therapies. This article provides a comprehensive overview of the use of herbal plants in arthritis treatment, focusing on their traditional remedies, active components, mechanisms of action, and pharmaceutical approaches for enhancing their delivery. Various herbal plants, including turmeric, ginger, Boswellia, and willow bark, have shown anti-inflammatory and analgesic properties, making them valuable options for managing arthritis symptoms. The active components of these herbal plants, such as curcumin, gingerols, and boswellic acids, contribute to their therapeutic effects. To enhance the delivery of herbal medicines, pharmaceutical approaches like nanoparticle-based drug delivery systems, liposomes, polymeric nanoparticles, nanoemulsions, microneedles, and inhalation systems have been explored. These approaches aim to improve bioavailability, targeted delivery, and controlled release of herbal compounds. Safety considerations, including potential interactions with medications and the risk of allergic reactions, are also discussed. Future perspectives for this field involve conducting well-designed clinical studies, enhancing standardization and quality control measures, exploring novel drug delivery systems, and fostering collaborations between traditional medicine practitioners and healthcare professionals. Continued research and development in these areas will help unlock the full potential of herbal plants in arthritis treatment, offering personalized and effective care for affected individuals.
Collapse
Affiliation(s)
- Shikha Chaudhary
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shaweta Sharma
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Semeling Campus, Bedong, Kedah Aman, Malaysia
| |
Collapse
|
4
|
Nabi T, Riyed TH, Ornob A. Deep learning based predictive modeling to screen natural compounds against TNF-alpha for the potential management of rheumatoid arthritis: Virtual screening to comprehensive in silico investigation. PLoS One 2024; 19:e0303954. [PMID: 39636801 PMCID: PMC11620472 DOI: 10.1371/journal.pone.0303954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/02/2024] [Indexed: 12/07/2024] Open
Abstract
Rheumatoid arthritis (RA) affects an estimated 0.1% to 2.0% of the world's population, leading to a substantial impact on global health. The adverse effects and toxicity associated with conventional RA treatment pathways underscore the critical need to seek potential new therapeutic candidates, particularly those of natural sources that can treat the condition with minimal side effects. To address this challenge, this study employed a deep-learning (DL) based approach to conduct a virtual assessment of natural compounds against the Tumor Necrosis Factor-alpha (TNF-α) protein. TNF-α stands out as the primary pro-inflammatory cytokine, crucial in the development of RA. Our predictive model demonstrated appreciable performance, achieving MSE of 0.6, MAPE of 10%, and MAE of 0.5. The model was then deployed to screen a comprehensive set of 2563 natural compounds obtained from the Selleckchem database. Utilizing their predicted bioactivity (pIC50), the top 128 compounds were identified. Among them, 68 compounds were taken for further analysis based on drug-likeness analysis. Subsequently, selected compounds underwent additional evaluation using molecular docking (< - 8.7 kcal/mol) and ADMET resulting in four compounds posing nominal toxicity, which were finally subjected to MD simulation for 200 ns. Later on, the stability of complexes was assessed via analysis encompassing RMSD, RMSF, Rg, H-Bonds, SASA, and Essential Dynamics. Ultimately, based on the total binding free energy estimated using the MM/GBSA method, Imperialine, Veratramine, and Gelsemine are proven to be potential natural inhibitors of TNF-α.
Collapse
Affiliation(s)
- Tasnia Nabi
- Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka, Bangladesh
| | - Tanver Hasan Riyed
- Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka, Bangladesh
| | - Akid Ornob
- Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka, Bangladesh
| |
Collapse
|
5
|
Alam F, Ahmad A, Rauf K, Alamri AS, Alsanie WF. Anti-arthritic studies of ethnomedicine Gaultheria trichophylla Royle extract and salicylate-rich fraction using complete Freud's adjuvant-induced rats: molecular docking and network pharmacology analysis. Inflammopharmacology 2024; 32:3785-3798. [PMID: 39312098 DOI: 10.1007/s10787-024-01572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/11/2024] [Indexed: 11/10/2024]
Abstract
Gaultheria trichophylla Royle is a traditional treatment for inflammatory conditions including arthritis. The objective was to evaluate the anti-arthritic activity of the extracts and salicylate-rich fractions through adjuvant-induced arthritis, histopathological analysis, radiological imaging, hematological, biochemical parameters along with using bioinformatic tools. In vivo anti-arthritic efficacy of the extract and SRF (at 100, 200, 300, and 150 mg/kg doses) was assessed using healthy albino rats. Molecular docking of identified compounds along with network pharmacology analysis helped to determine the route of action of drug. Both the extract and SRF showed dose-dependent anti-arthritic activity by decreasing the joint diameter, increase in pain threshold and body weight compared with negative control group. Along with SRF (150 mg/kg), EEGT (300 and 200 mg/kg) shows significant (P < 0.01) anti-arthritic activity by lowering levels of WBC, platelets, serum C-reactive protein (CRP), and rheumatoid factor (RF) and raising levels of RBC and Hb. The modified biochemical measures (AST, ALT, ALP, and total protein level) further supported the anti-arthritic action. Histopathology and radiology study showed that EEGT (300 and 200 mg/kg), SRF (150 mg/kg) and diclofenac (10 mg/kg) inhibited joint destruction. GCMS analysis showed the presence of methyl salicylate, sitosterol, calcifediol, and ergosta-5,22-dien-3-ol, acetate as important bioactive constituents. Moreover, as the significant node in the pharmacology network and docking against TNF-α, a classical therapeutic target in RA showed potential of G. trichophylla in treatment of RA. The results showed that G. trichophylla have effectively reduced the inflammation of the joints.
Collapse
Affiliation(s)
- Fiaz Alam
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus-22060. KP, Pakistan.
| | - Abrar Ahmad
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus-22060. KP, Pakistan
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus-22060. KP, Pakistan
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
6
|
Zeb S, Khan Z, Ashraf, Javaid M, Rumman, Swati MAA, Javaid Z, Luqman M. Relationship Between Serum Interleukin-6 Levels, Systemic Immune-Inflammation Index, and Other Biomarkers Across Different Rheumatoid Arthritis Severity Levels. Cureus 2024; 16:e72334. [PMID: 39469275 PMCID: PMC11516189 DOI: 10.7759/cureus.72334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 10/30/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by joint inflammation, pain, and progressive disability. Identifying biomarkers that accurately reflect disease severity is crucial for effective management. Interleukin-6 (IL-6) is a pro-inflammatory cytokine involved in the pathogenesis of RA, and the systemic immune-inflammation index (SII) is emerging as a useful marker of systemic inflammation. This study aims to explore the relationship between serum IL-6 levels, SII, and various biomarkers to better predict disease severity in RA patients. Objective To determine the relationship between serum IL-6 levels and the SII, along with various biomarkers, across different severity levels for predicting the severity of RA in patients. Methods This cross-sectional, observational study was conducted at the Mardan Medical Complex from January 2024 to August 2024, involving 67 RA patients. Clinical assessments included demographic data, disease activity (DAS28), pain (VAS), joint damage (Larsen score), and functional status (HAQ-DI). Serum IL-6 levels, along with other biomarkers such as C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and the SII, were measured through fasting blood samples. Statistical analyses, including density plots, scatter plots, boxplots with ANOVA, and random forest models, were performed to explore associations between IL-6 and all other variables. Significance was set at p < 0.05. Results The study included 67 RA patients (mean age: 41.79 ± 10.51 years, 53.73% male). Elevated IL-6 levels (mean: 80.28 ± 35.27 pg/mL) were strongly associated with disease severity. Patients with DAS28 > 5.5 had IL-6 levels over 100 pg/mL, while those in remission had around 40 pg/mL. IL-6 levels correlated with joint damage (100 pg/mL in severe cases) and pain (over 120 pg/mL for severe pain). Patients with metabolic and cardiovascular comorbidities had the highest IL-6 levels, particularly with diabetes and hypertension (98.6 pg/mL) or cardiovascular disease (119.3 pg/mL). IL-6 correlated strongly with CRP (r = 0.65), ESR (r = 0.51), and SII (r = 0.62). Regression confirmed IL-6 as an independent predictor of severity (p < 0.001), with comorbidities being key predictors. Conclusion Elevated IL-6 and SII levels serve as critical markers for predicting the severity of RA. Addressing these markers may lead to more targeted and effective therapeutic strategies for managing disease progression.
Collapse
Affiliation(s)
- Shah Zeb
- Internal Medicine, Bacha Khan Medical College, Mardan, PAK
| | - Zahir Khan
- Orthopaedic Surgery, Medical Teaching Institution Mardan Medical Complex, Bacha Khan Medical College, Mardan, PAK
| | - Ashraf
- Research and Development, Pro-Gene Diagnostics and Research Laboratory, Mardan, PAK
| | - Mustafa Javaid
- Internal Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, GBR
| | - Rumman
- Active Drug Safety Monitoring and Management (aDSM), Global Fund, Combined Management Unit (CMU), Mardan, PAK
- Pulmonology, Medical Teaching Institution Mardan Medical Complex, Mardan, PAK
| | | | - Zenab Javaid
- General Medicine, Peshawar General Hospital, Peshawar, PAK
| | - Muhammad Luqman
- Pharmacology and Therapeutics, Peshawar Medical and Dental College, Peshawar, PAK
| |
Collapse
|
7
|
Fordjour E, Manful CF, Khalsamehta TSK, Armah A, Cheema M, Thomas R. Cannabis-infused foods: Phytonutrients, health, and safe product innovations. Compr Rev Food Sci Food Saf 2024; 23:e70021. [PMID: 39267188 DOI: 10.1111/1541-4337.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024]
Abstract
Cannabis-infused foods are currently on the rise in markets all around the world. Meanwhile, there are concerns over the health implications for consumers. Studies have explored the therapeutic potential and nutritional and economic benefits of cannabis usage. Yet, the phytonutrients, processing methods, and health implications of cannabis-infused foods have not been well explored. This review evaluates existing evidence on the nutritional, processing, safety, and phytonutrient composition of cannabis-infused food products and their medicinal and functional prospects. Cannabis seeds contain the highest amount of dietary nutrients, while flowers contain the highest amount of bioactive constituents. Oils, butter, seeds, flowers, and leaf extracts are the plant forms currently incorporated into food products such as beverages, baked products, cooking ingredients, functional foods, nutraceuticals, and nootropics. Cannabis-infused foods have been found to offer therapeutic benefits for pain management, brain function, gut health, and certain cancers. Findings also show significant constraints associated with cannabis-infused foods regarding dosage guidelines, limited research, efficacy, and long-term health effects on consumers. This is further worsened by the lack of policies that regulate the industry. To realize the full potential of cannabis use in the food and health industries and in research, regulatory guidelines are needed to control dosages and improve its efficient use in these industries. This will go a long way to ensure the safety of cannabis users and enhance responsible production, marketing, and distribution.
Collapse
Affiliation(s)
- Eric Fordjour
- Biotron Experimental Climate Change Research Centre/Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Charles F Manful
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, Canada
| | - Tarsaim S K Khalsamehta
- Biotron Experimental Climate Change Research Centre/Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Abraham Armah
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, Canada
| | - Mumtaz Cheema
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, Canada
| | - Raymond Thomas
- Biotron Experimental Climate Change Research Centre/Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
8
|
Iqbal U, Malik A, Sial NT, Uttra AM, Rehman MFU, Mehmood MH. Molecular insights of Eucalyptol (1,8-Cineole) as an anti-arthritic agent: in vivo and in silico analysis of IL-17, IL-10, NF-κB, 5-LOX and COX-2. Inflammopharmacology 2024; 32:1941-1959. [PMID: 38649658 DOI: 10.1007/s10787-024-01465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/17/2024] [Indexed: 04/25/2024]
Abstract
The monoterpene oxide, Eucalyptol (1,8-Cineole), a primary component of eucalyptus oil, has been evaluated pharmacologically for anti-inflammatory and analgesic activity. Current research aimed to evaluate Eucalyptol's anti-arthritic potential in a Complete Freund's adjuvant induced arthritis that resembles human rheumatoid arthritis. Polyarthritis developed after 0.1 mL CFA injection into the left hind footpad in rats. Oral administration of Eucalyptol at various doses (100, 200 and 400 mg/kg) significantly reduced paw edema, body weight loss, 5-LOX, PGE2 and Anti-CCP levels. Real-time PCR investigation showed significant downregulation of COX-2, TNF-α, NF-κB, IL-17, IL-6, IL-1β and upregulation of IL-4 and IL-10 in Eucalyptol treated groups. Hemoglobin and RBCs counts significantly increased post-treatment with Eucalyptol while ESR, CRP, WBCs and platelets count significantly decreased. Eucalyptol significantly increased Superoxide Dismutase, Catalase and Glutathione levels compared to CFA-induced arthritic control however, MDA significantly decreased post-treatment. Further, radiographic and histopathological examination of the ankle joints of rodents administered Eucalyptol revealed an improvement in the structure of the joints. Piroxicam was taken as standard. Furthermore, molecular docking findings supported the anti-arthritic efficacy of Eucalyptol exhibited high binding interaction against IL-17, TNF-α, IL-4, IL-10, iNOS NF-κB, 5-LOX, and COX-2. Eucalyptol has reduced the severity of CFA induced arthritis by promoting anti-inflammatory cytokines for example IL-4, IL-10 and by inhibiting pro-inflammatory cytokines such as 5-LOX, COX-2, IL-17, NF-κB, TNF-α, IL-6 and IL-1β. Therefore, Eucalyptol might be as a potential therapeutic agent because of its pronounced anti-oxidant and anti-arthritic activity.
Collapse
Affiliation(s)
- Urooj Iqbal
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Abdul Malik
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan.
| | - Nabeela Tabassum Sial
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
- Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan
| | - Ambreen Malik Uttra
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | | | - Malik Hassan Mehmood
- Department of Pharmaceutical Sciences, Government College University, Lahore, Pakistan
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| |
Collapse
|
9
|
Hashmi HF, Xuan X, Chen K, Zhang P, Shahab M, Zheng G, Younous YA, Salamatullah AM, Bourhia M. Molecular modeling and simulation approaches to characterize potential molecular targets for burdock inulin to instigate protection against autoimmune diseases. Sci Rep 2024; 14:11291. [PMID: 38760355 PMCID: PMC11101470 DOI: 10.1038/s41598-024-61387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
In the current study, we utilized molecular modeling and simulation approaches to define putative potential molecular targets for Burdock Inulin, including inflammatory proteins such as iNOS, COX-2, TNF-alpha, IL-6, and IL-1β. Molecular docking results revealed potential interactions and good binding affinity for these targets; however, IL-1β, COX-2, and iNOS were identified as the best targets for Inulin. Molecular simulation-based stability assessment demonstrated that inulin could primarily target iNOS and may also supplementarily target COX-2 and IL-1β during DSS-induced colitis to reduce the role of these inflammatory mechanisms. Furthermore, residual flexibility, hydrogen bonding, and structural packing were reported with uniform trajectories, showing no significant perturbation throughout the simulation. The protein motions within the simulation trajectories were clustered using principal component analysis (PCA). The IL-1β-Inulin complex, approximately 70% of the total motion was attributed to the first three eigenvectors, while the remaining motion was contributed by the remaining eigenvectors. In contrast, for the COX2-Inulin complex, 75% of the total motion was attributed to the eigenvectors. Furthermore, in the iNOS-Inulin complex, the first three eigenvectors contributed to 60% of the total motion. Furthermore, the iNOS-Inulin complex contributed 60% to the total motion through the first three eigenvectors. To explore thermodynamically favorable changes upon mutation, motion mode analysis was carried out. The Free Energy Landscape (FEL) results demonstrated that the IL-1β-Inulin achieved a single conformation with the lowest energy, while COX2-Inulin and iNOS-Inulin exhibited two lowest-energy conformations each. IL-1β-Inulin and COX2-Inulin displayed total binding free energies of - 27.76 kcal/mol and - 37.78 kcal/mol, respectively, while iNOS-Inulin demonstrated the best binding free energy results at - 45.89 kcal/mol. This indicates a stronger pharmacological potential of iNOS than the other two complexes. Thus, further experiments are needed to use inulin to target iNOS and reduce DSS-induced colitis and other autoimmune diseases.
Collapse
Affiliation(s)
- Huma Farooque Hashmi
- School of Life Science and National Glycoengineering Research Center, Shandong University, Qingdao, 266237, China
| | - Xu Xuan
- School of Life Science and National Glycoengineering Research Center, Shandong University, Qingdao, 266237, China
| | - Kaoshan Chen
- School of Life Science and National Glycoengineering Research Center, Shandong University, Qingdao, 266237, China
| | - Pengying Zhang
- School of Life Science and National Glycoengineering Research Center, Shandong University, Qingdao, 266237, China.
| | - Muhammad Shahab
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Guojun Zheng
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | | | - Ahmad Mohammad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, 80060, Agadir, Morocco
| |
Collapse
|
10
|
Zafar F, Shaheen G, Asif HM, Farhan M, Muteeb G, Aatif M. Onosma bracteatum Wall Aqueous-Ethanolic Extract Suppresses Complete Freund's Adjuvant-Induced Arthritis in Rats via Regulation of TNF-α, IL-6, and C-Reactive Protein. Molecules 2024; 29:1830. [PMID: 38675650 PMCID: PMC11052358 DOI: 10.3390/molecules29081830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Onosma bracteatum Wall (O. bracteatum) has been used traditionally for the management of arthritis; however, its therapeutic potential warrants further investigation. This study aimed to evaluate the anti-arthritic effects of the aqueous-ethanolic extract of O. bracteatum leaves (AeOB) in a rat model of complete Freund's adjuvant (CFA)-induced arthritis. Rats were treated with AeOB (250, 500, and 750 mg/kg), indomethacin (10 mg/kg), or a vehicle control from days 8 to 28 post-CFA injection. Arthritic score, paw diameter, and body weight were monitored at regular intervals. X-ray radiographs and histopathological analysis were performed to assess arthritic severity. Inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and C-reactive protein (CRP) were quantified by qPCR and icromatography. Phytochemical analysis of AeOB revealed alkaloids, flavonoids, phenols, tannins, Saponins, and glycosides. AeOB also exhibited antioxidant potential with an IC50 of 73.22 µg/mL in a DPPH assay. AeOB and diclofenac exhibited anti-inflammatory and anti-arthritic activities. Rats treated with AeOB at 750 mg/kg and indomethacin showed significantly reduced arthritic symptoms and joint inflammation versus the CFA control. The AeOB treatment downregulated TNF-α and IL-6 and decreased CRP levels compared with arthritic rats. Radiography and histopathology also showed improved prognosis. These findings demonstrate the anti-arthritic potential of AeOB leaves.
Collapse
Affiliation(s)
- Farah Zafar
- Department of Eastern Medicine, University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (G.S.); (H.M.A.)
| | - Ghazala Shaheen
- Department of Eastern Medicine, University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (G.S.); (H.M.A.)
| | - Hafiz Muhammad Asif
- Department of Eastern Medicine, University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (G.S.); (H.M.A.)
| | - Mohd Farhan
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa-31982, Saudi Arabia;
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
11
|
Liu Y, Jiang P, Qu Y, Liu C, Zhang D, Xu B, Zhang Q. Exosomes and exosomal miRNAs: A new avenue for the future treatment of rheumatoid arthritis. Heliyon 2024; 10:e28127. [PMID: 38533025 PMCID: PMC10963384 DOI: 10.1016/j.heliyon.2024.e28127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Rheumatoid arthritis is a chronic systemic autoimmune disease that involves mainly synovitis and joint injury and is one of the main causes of disability. The pathogenesis of rheumatoid arthritis is complicated, and the treatment cycle is long. The traditional methods of inhibiting inflammation and immunosuppression are no longer sufficient for treatment of the disease, so there is an urgent need to seek new treatments. The exocrine microenvironment is a kind of microvesicle with a lipid bilayer membrane structure that can be secreted by most cells in the body. This structure contains cell-specific proteins, lipids and nucleic acids that can transmit this information from one cell to another. To achieve cell-to-cell communication. Exocrine microRNAs can be contained in exocrine cells and can be selectively transferred to target receptor cells via exocrine signaling, thus regulating the physiological function of target cells. This article focuses on the pathological changes that occur during the development of rheumatoid arthritis and the biological regulation of exocrine and exocrine microRNAs in rheumatoid joints. Research on the roles of exocrine and exocrine microRNAs in regulating the inflammatory response, cell proliferation/apoptosis, autophagy, effects on fibroblast-like synoviocytes and immune regulation in rheumatoid arthritis was reviewed. In addition, the challenges faced by this new treatment are discussed.
Collapse
Affiliation(s)
- Yuan Liu
- The First Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
| | - Ping Jiang
- The First Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Qu
- The First Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Zhang
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Xu
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Zhang
- Science and Technology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
12
|
Aqsa, Ali S, Summer M, Yousaf S, Nazakat L, Noor S. Pharmacological and immunomodulatory modes of action of medically important phytochemicals against arthritis: A molecular insight. Mol Biol Rep 2024; 51:448. [PMID: 38536526 DOI: 10.1007/s11033-024-09386-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 08/04/2024]
Abstract
Arthritis is a common illness that affects joints and it may result in inflammation and pain. Even though arthritis usually affects older people, it can also affect children, adults, and both genders. Numerous arthritic mouse models have been developed but the CIA model of rheumatoid arthritis (RA) has received the most attention. With the use of steroids, DMARDs, and NSAIDs, therapy objectives such as reduced disease incidence and better pain management are achieved. Long-term usage of these therapeutic approaches may have negative side effects. Herbal medications are the source of several medicinal substances. Studies have explored the potential benefits of medicinal plants in treating RA. These benefits include up-regulating antioxidant potential, inhibiting cartilage degradation, down-regulating inflammatory cytokines such as NF-kB, IL-6, and TNF-α, and suppressing oxidative stress. In this review, we systematically discuss the role of traditional medicinal plants in rheumatoid arthritis (RA) disease treatment. The role of different medicinal plants such as Curcuma longa, Syzygium aromaticum, Zingiber officinale and Withania somnifera, against arthritis is discussed in this review.
Collapse
Affiliation(s)
- Aqsa
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Saima Yousaf
- Department of Zoology, Division of Science and Technology, University of Education, Lahore, 54470, Pakistan
| | - Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
13
|
Cai N, Gao X, Yang L, Li W, Sun W, Zhang S, Zhao J, Qu J, Zhou Y. Discovery of novel NSAID hybrids as cPLA 2/COX-2 dual inhibitors alleviating rheumatoid arthritis via inhibiting p38 MAPK pathway. Eur J Med Chem 2024; 267:116176. [PMID: 38286094 DOI: 10.1016/j.ejmech.2024.116176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
A series of NSAIDs hybrid molecules were synthesized and characterized, and their ability to inhibit NO release in LPS-induced RAW264.7 macrophages was evaluated. Most of the compounds showed significant anti-inflammatory activity in vitro, of which (2E,6Z,9Z,12Z,15Z)-1,1,1-trifluorohenicosa-2,6,9,12,15-pentaen-2-yl 2-(4-benzoylphenyl) propanoate (VI-60) was the most optimal (IC50 = 3.85 ± 0.25 μΜ) and had no cytotoxicity. In addition, VI-60 notably reduced the production of PGE2 in LPS-stimulated RAW264.7 cells compared to ketoprofen. Futhur more, VI-60 significantly inhibited the expression of iNOS, cPLA2, and COX-2 and the phosphorylation of p38 MAPK in LPS-stimulated RAW264.7 cells. The binding of VI-60 to cPLA2 and COX-2 was directly verified by the CETSA technique. In vivo studies illustrated that VI-60 exerted an excellent therapeutic effect on adjuvant-induced arthritis in rats by regulating the balance between Th17 and Treg through inhibiting the p38 MAPK/cPLA2/COX-2/PGE2 pathway. Encouragingly, VI-60 showed a lower ulcerative potential in rats at a dose of 50 mg/kg compared to ketoprofen. In conclusion, the hybrid molecules of NSAIDs and trifluoromethyl enols are promising candidates worthy of further investigation for the treatment of inflammation, pain, and other symptoms in which cPLA2 and COX-2 play a role in their etiology.
Collapse
Affiliation(s)
- Nan Cai
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Xiang Gao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Li Yang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Wenjing Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Wuding Sun
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Shuaibo Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Jinfeng Zhao
- Instrumental Analysis Center, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| |
Collapse
|
14
|
Rehman IU, Saleem M, Raza SA, Bashir S, Muhammad T, Asghar S, Qamar MU, Shah TA, Bin Jardan YA, Mekonnen AB, Bourhia M. Anti-ulcerative colitis effects of chemically characterized extracts from C alliandra haematocephala in acetic acid-induced ulcerative colitis. Front Chem 2024; 12:1291230. [PMID: 38476652 PMCID: PMC10927971 DOI: 10.3389/fchem.2024.1291230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Background: Ulcerative colitis is a chronic immune-mediated inflammatory bowel disease that involves inflammation and ulcers of the colon and rectum. To date, no definite cure for this disease is available. Objective: The objective of the current study was to assess the effect of Calliandra haematocephala on inflammatory mediators and oxidative stress markers for the exploration of its anti-ulcerative colitis activity in rat models of acetic acid-induced ulcerative colitis. Methods: Methanolic and n-hexane extracts of areal parts of the plant were prepared by cold extraction method. Phytochemical analysis of both extracts was performed by qualitative analysis, quantitative methods, and high-performance liquid chromatography (HPLC). Prednisone at 2 mg/kg dose and plant extracts at 250, 500, and 750 mg/kg doses were given to Wistar rats for 11 days, which were given acetic acid on 8th day through the trans-rectal route for the induction of ulcerative colitis. A comparison of treatment groups was done with a normal control group and a colitis control group. To evaluate the anti-ulcerative colitis activity of Calliandra haematocephala, different parameters such as colon macroscopic damage, ulcer index, oxidative stress markers, histopathological examination, and mRNA expression of pro and anti-inflammatory mediators were evaluated. mRNA expression analysis was carried out by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). Results: The phytochemical evaluation revealed polyphenols, flavonoids, tannins, alkaloids, and sterols in both extracts of the plant. Results of the present study exhibited that both extracts attenuated the large bowel inflammation and prevented colon ulceration at all tested doses. Macroscopic damage and ulcer scoreswere significantly decreased by both extracts. Malondialdehyde (MDA) levels and nitrite/nitrate concentrations in colon tissues were returned to normal levels while superoxide dismutase (SOD) activity was significantly improved by all doses. Histopathological examination exhibited that both extracts prevented the inflammatory changes, cellular infiltration, and colon thickening. Gene expression analysis by RT-qPCR revealed the downregulation of pro-inflammatory markers such as tumor necrosis factor-alpha (TNF-α) and cyclooxygenase-2 (COX-2) whereas the anti-inflammatory cytokines including Interleukin-4 (IL-4) and Interleukin-10 (IL-10) were found to be upregulated in treated rats. Conclusion: It was concluded based on study outcomes that methanolic and n-hexane extracts of Calliandra haematocephala exhibited anti-ulcerative colitis activity through modulation of antioxidant defense mechanisms and the immune system. In this context, C. haematocephala can be considered as a potential therapeutic approach for cure of ulcerative colitis after bioassay-directed isolation of bioactive phytochemicals and clinical evaluation.
Collapse
Affiliation(s)
- Inaam Ur Rehman
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Mohammad Saleem
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Syed Atif Raza
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Saher Bashir
- Department of Chemistry, Faculty of Sciences, University of the Punjab, Lahore, Pakistan
| | - Taha Muhammad
- Shalamar Medical and Dental College, Lahore, Pakistan
| | - Shahzad Asghar
- Department of Pharmacy, University of South Asia, Lahore, Pakistan
| | - Muhammad Usman Qamar
- Institute of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
- Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Tawaf Ali Shah
- College of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences of Agadir, Ibnou Zohr University, Agadir, Morocco
| |
Collapse
|
15
|
Nazir S, Ahmad I, Mobashar A, Sharif A, Shabbir A, Chaudhary WA. Mechanistic evaluation of antiarthritic and anti-inflammatory effect of campesterol ester derivatives in complete Freund's adjuvant-induced arthritic rats. Front Pharmacol 2024; 14:1346054. [PMID: 38322703 PMCID: PMC10844886 DOI: 10.3389/fphar.2023.1346054] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/27/2023] [Indexed: 02/08/2024] Open
Abstract
Background: Current therapies for RA have limitations and side effects, leading to a growing need for safer treatment options. Natural compounds from plants are gaining attention for their therapeutic benefits and fewer side effects. One such compound is the campesterol derivative, a steroid derivative occurring in plants. Studies have shown that this derivative has anti-inflammatory properties and can impact the expression of pro-inflammatory factors. The primary objective of this study was to explore and assess the potential therapeutic effects of Campesterol Ester Derivatives (CED) utilizing a rat model of arthritis induced by Complete Freund's Adjuvant (CFA). Method: The rats were divided into specific experimental groups and treated with either CED or piroxicam (as a positive control) for a duration of 28 days. We determined the effects of CED on various parameters including paw edema, thermal hyperalgesia, and mechanical allodynia at different time points. Furthermore, serum levels of inflammatory cytokines, oxidative stress markers and histological analyses were performed. Additionally, mRNA expression levels of inflammatory markers, both pro-inflammatory (such as TNF-α, NF-κB, IL-6, COX-1, COX-2, and IL-4) and anti-inflammatory were analyzed. Results: In the arthritic rat model, CED exhibited significant anti-inflammatory effects and resulted in a notable reduction in paw edema levels compared to the control group. Histopathological examination of the treated rats' paws confirmed a decrease in inflammation and tissue damage, including reduced pannus formation and bone erosion. Importantly, there were no observable signs of damage to the liver and kidneys following CED treatment, indicating its safety profile and potential for organ protection. At the molecular level, CED treatment downregulated mRNA expression levels of pro-inflammatory markers, indicating its ability to suppress inflammation. Conversely, certain anti-inflammatory markers were upregulated following CED treatment, suggesting a positive influence on the immune response. The positive effects of CED were not limited to joint inflammation; it also showed systemic benefits by positively influencing hematological and biochemical parameters. Conclusion: CED demonstrated promising therapeutic potential as an anti-inflammatory intervention for arthritis in the experimental rat model. Its ability to reduce inflammation, protect tissues, and improve organ function indicates its multifaceted benefits.
Collapse
Affiliation(s)
- Sarwat Nazir
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Ishtiaq Ahmad
- Department of Global Health Research, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Aisha Mobashar
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Ali Sharif
- Department of Pharmacology, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Jail road, Lahore, Pakistan
| | - Arham Shabbir
- Department of Pharmacology, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Jail road, Lahore, Pakistan
| | - Waqas Ashraf Chaudhary
- Department of Pain Management, School of Biological Sciences, University of Leicester, Leicester, England
| |
Collapse
|
16
|
Rana N, Gupta P, Singh H, Nagarajan K. Role of Bioactive Compounds, Novel Drug Delivery Systems, and Polyherbal Formulations in the Management of Rheumatoid Arthritis. Comb Chem High Throughput Screen 2024; 27:353-385. [PMID: 37711009 DOI: 10.2174/1386207326666230914103714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/04/2023] [Accepted: 07/24/2023] [Indexed: 09/16/2023]
Abstract
Rheumatoid Arthritis (RA) is an autoimmune disorder that generally causes joint synovial inflammation as well as gradual cartilage and degenerative changes, resulting in progressive immobility. Cartilage destruction induces synovial inflammation, including synovial cell hyperplasia, increased synovial fluid, and synovial pane development. This phenomenon causes articular cartilage damage and joint alkalosis. Traditional medicinal system exerts their effect through several cellular mechanisms, including inhibition of inflammatory mediators, oxidative stress suppression, cartilage degradation inhibition, increasing antioxidants and decreasing rheumatic biomarkers. The medicinal plants have yielded a variety of active constituents from various chemical categories, including alkaloids, triterpenoids, steroids, glycosides, volatile oils, flavonoids, lignans, coumarins, terpenes, sesquiterpene lactones, anthocyanins, and anthraquinones. This review sheds light on the utilization of medicinal plants in the treatment of RA. It explains various phytoconstituents present in medicinal plants and their mechanism of action against RA. It also briefs about the uses of polyherbal formulations (PHF), which are currently in the market and the toxicity associated with the use of medicinal plants and PHF, along with the limitations and research gaps in the field of PHF. This review paper is an attempt to understand various mechanistic approaches employed by several medicinal plants, their possible drug delivery systems and synergistic effects for curing RA with minimum side effects.
Collapse
Affiliation(s)
- Neha Rana
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, Uttar Pradesh, India
| | - Piyush Gupta
- Department of Chemistry, SRM Institute of Science and Technology, Faculty of Engineering and Technology, NCR Campus, Delhi-NCR Campus, Delhi-Meerut Road, Modinagar, 201204, Ghaziabad, Uttar Pradesh, India
| | - Hridayanand Singh
- Dr. K. N. Modi Institute of Pharmaceutical Education and Research, Modinagar, 201204, Uttar Pradesh, India
| | - Kandasamy Nagarajan
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, Uttar Pradesh, India
| |
Collapse
|
17
|
Prabha J, Kumar M, Kumar D, Chopra S, Bhatia A. Nano-platform Strategies of Herbal Components for the Management of Rheumatoid Arthritis: A Review on the Battle for Next-Generation Formulations. Curr Drug Deliv 2024; 21:1082-1105. [PMID: 37622715 DOI: 10.2174/1567201821666230825102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/01/2023] [Accepted: 07/06/2023] [Indexed: 08/26/2023]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that initially affects small joints and then spreads to the bigger joints. It also affects other organs of the body such as lungs, eyes, kidneys, heart, and skin. In RA, there is destruction of cartilage and joints, and ligaments and tendons become brittle. Damage to the joints leads to abnormalities and bone degradation, which may be quite painful for the patient. METHOD The nano-carriers such as liposomes, phytosomes, nanoparticles, microcapsules, and niosomes are developed to deliver the encapsulated phytoconstituents to targeted sites for the better management of RA. RESULTS The phytoconstituents loaded nano-carriers have been used in order to increase bioavailability, stability and reduce the dose of an active compound. In one study, the curcumin-loaded phytosomes increase the bioavailability of curcumin and also provides relief from RA symptoms. The drug-loaded nano-carriers are the better option for the management of RA. CONCLUSION In conclusion, there are many anti-arthritic herbal and synthetic medicine available in the market that are currently used in the treatment of RA. However, chronic use of these medications may result in a variety of side effects. Because therapy for RA is frequently necessary for the rest of ones life. The use of natural products may be a better option for RA management. These phytoconstituents, however, have several disadvantages, including limited bioavailability, low stability, and the need for a greater dosage. These problems can be rectified by using nano-technology.
Collapse
Affiliation(s)
- Jyoti Prabha
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Shruti Chopra
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh - 201313, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| |
Collapse
|
18
|
Maarouf RE, Abdel-Rafei MK, Thabet NM, Azab KS, Rashed L, El Bakary NM. Ondansetron or beta-sitosterol antagonizes inflammatory responses in liver, kidney, lung and heart tissues of irradiated arthritic rats model. Int J Immunopathol Pharmacol 2024; 38:3946320241260635. [PMID: 38831558 PMCID: PMC11149447 DOI: 10.1177/03946320241260635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disorder mainly affecting joints, yet the systemic inflammation can influence other organs and tissues. The objective of this study was to unravel the ameliorative capability of Ondansetron (O) or β-sitosterol (BS) against inflammatory reactions and oxidative stress that complicates Extra-articular manifestations (EAM) in liver, kidney, lung, and heart of arthritic and arthritic irradiated rats. METHODS This was accomplished by exposing adjuvant-induced arthritis (AIA) rats to successive weekly fractions of total body γ-irradiation (2 Gray (Gy)/fraction once per week for four weeks, up to a total dose of 8 Gy). Arthritic and/or arthritic irradiated rats were either treated with BS (40 mg/kg b.wt. /day, orally) or O (2 mg/kg) was given ip) or were kept untreated as model groups. RESULTS Body weight changes, paw circumference, oxidative stress indices, inflammatory response biomarkers, expression of Janus kinase-2 (JAK-2), Signal transducer and activator of transcription 3 (STAT3), high mobility group box1 (HMGB1), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), as well as pro- and anti-inflammatory mediators in the target organs, besides histopathological examination of ankle joints and extra-articular tissues. Treatment of arthritic and/or arthritic irradiated rats with BS or O powerfully alleviated changes in body weight gain, paw swelling, oxidative stress, inflammatory reactions, and histopathological degenerative alterations in articular and non-articular tissues. CONCLUSION The obtained data imply that BS or O improved the articular and EAM by regulating oxidative and inflammatory indices in arthritic and arthritic irradiated rats.
Collapse
Affiliation(s)
- Rokaya E Maarouf
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Mohamed K Abdel-Rafei
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Noura M Thabet
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Khaled S Azab
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Laila Rashed
- Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nermeen M El Bakary
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
19
|
Rangra S, Chakraborty R, Hasija Y, Aggarwal KK. A cystatin C similar protein from Musa acuminata that inhibits cathepsin B involved in rheumatoid arthritis using in silico approach and in vitro cathepsin B inhibition by protein extract. J Biomol Struct Dyn 2023; 41:10985-10998. [PMID: 37097972 DOI: 10.1080/07391102.2023.2203234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/10/2022] [Indexed: 04/26/2023]
Abstract
Rheumatoid arthritis (RA) is an auto-immune disease that affects the synovial lining of the joints, causes synovitis and culminates to joint destruction. Cathepsin B is responsible for digesting unwanted proteins in extracellular matrix but its hyper expression could implicate in pathological diseases like RA. Available treatments for RA are classified into non-steroidal anti-inflammatory drugs (NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs), and steroids, but the severe side effects associated with these drugs is one of concerns and cannot be ignored. Thus, any alternative therapy with minimum or no side effects would be a cornerstone. In our in silico studies a cystatin C similar protein (CCSP) has been identified from Musa acuminata that could effectively inhibit the cathepsin B activity. In silico and molecular dynamics studies showed that the identified CCSP and cathepsin B complex has binding energy -66.89 kcal/mol as compared to cystatin C - cathepsin B complex with binding energy of -23.38 kcal/mol. These results indicate that CCSP from Musa acuminata has better affinity towards cathepsin B as compared to its natural inhibitor cystatin C. Hence, CCSP may be suggested as an alternative therapeutic in combating RA by inhibiting its one of the key proteases cathepsin B. Further, in vitro experiments with fractionated protein extracts from Musa sp. peel inhibited cathepsin B to 98.30% at 300 µg protein concentration and its IC50 was found to be 45.92 µg indicating the presence of cathepsin B inhibitor(s) in protein extract of peel which was further confirmed by reverse zymography.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sabita Rangra
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | | | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Kamal Krishan Aggarwal
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
20
|
Gul B, Anwar R, Saleem M, Ahmad M, Ullah MI, Kamran S. Attenuation of CFA-induced arthritis through regulation of inflammatory cytokines and antioxidant mechanisms by Solanum nigrum L. leaves extracts. Inflammopharmacology 2023; 31:3281-3301. [PMID: 37864683 DOI: 10.1007/s10787-023-01357-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/25/2023] [Indexed: 10/23/2023]
Abstract
Solanum nigrum L. is a popular traditional medicine for various inflammatory conditions including rheumatism and joint pain. The current study aimed to evaluate the anti-arthritic mechanism of Solanum nigrum L. Four extracts were prepared using n-hexane, methanol, chloroform, and water. The anti-nociceptive and anti-inflammatory activity was carried out with 100, 200, and 300 mg/kg body wt. PO of each extract by the hot plate and carrageenan-induced paw oedema methods, respectively. The anti-arthritic study was performed with chloroform and aqueous extracts (300 mg/kg) in complete Freund's adjuvant (CFA)-induced arthritis. Paw size (mm), ankle joint diameter (mm), and latency time (sec) were recorded on day 0 and every 4th day till 28 days. The hematological, inflammatory, and oxidative biomarkers were estimated. Results showed that significant analgesia (p < 0.05) and reduction in paw inflammation were achieved with all extracts. The highest percent inhibition in Carrageenan-induced inflammation was achieved with 300 mg/kg of chloroform (72.19%) and aqueous (71.30%) extracts, respectively. In the CFA model, both extracts showed a significant reduction in paw size and ankle joint diameter (p < 0.05). The RT-qPCR analysis revealed the upregulation of interleukin-4 and interleukin-10, and down-expression of interleukin-1β, interleukin-6, tumor necrosis factor-α, cycloxygenase-2, nuclear factor-κB, prostaglandin E synthase 2, and interferon-γ. A significant increase in superoxide dismutase, catalase, and glutathione levels was observed. Hence, it is concluded that Solanum nigrum L. leaf extracts regulate the expression of inflammatory markers and improve oxidative stress resulting in the attenuation of CFA-induced arthritis.
Collapse
Affiliation(s)
- Bazgha Gul
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
- Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan
| | - Rukhsana Anwar
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan.
| | - Mohammad Saleem
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Mobasher Ahmad
- Gulab Devi Institute of Pharmacy, Gulab Devi Hospital, Lahore, Pakistan
| | - Muhammad Ihsan Ullah
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Shahzad Kamran
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
21
|
Alexander C, Parsaee A, Vasefi M. Polyherbal and Multimodal Treatments: Kaempferol- and Quercetin-Rich Herbs Alleviate Symptoms of Alzheimer's Disease. BIOLOGY 2023; 12:1453. [PMID: 37998052 PMCID: PMC10669725 DOI: 10.3390/biology12111453] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder impairing cognition and memory in the elderly. This disorder has a complex etiology, including senile plaque and neurofibrillary tangle formation, neuroinflammation, oxidative stress, and damaged neuroplasticity. Current treatment options are limited, so alternative treatments such as herbal medicine could suppress symptoms while slowing cognitive decline. We followed PRISMA guidelines to identify potential herbal treatments, their associated medicinal phytochemicals, and the potential mechanisms of these treatments. Common herbs, including Ginkgo biloba, Camellia sinensis, Glycyrrhiza uralensis, Cyperus rotundus, and Buplerum falcatum, produced promising pre-clinical results. These herbs are rich in kaempferol and quercetin, flavonoids with a polyphenolic structure that facilitate multiple mechanisms of action. These mechanisms include the inhibition of Aβ plaque formation, a reduction in tau hyperphosphorylation, the suppression of oxidative stress, and the modulation of BDNF and PI3K/AKT pathways. Using pre-clinical findings from quercetin research and the comparatively limited data on kaempferol, we proposed that kaempferol ameliorates the neuroinflammatory state, maintains proper cellular function, and restores pro-neuroplastic signaling. In this review, we discuss the anti-AD mechanisms of quercetin and kaempferol and their limitations, and we suggest a potential alternative treatment for AD. Our findings lead us to conclude that a polyherbal kaempferol- and quercetin-rich cocktail could treat AD-related brain damage.
Collapse
Affiliation(s)
- Claire Alexander
- Department of Biology, Lamar University, Beaumont, TX 77705, USA
| | - Ali Parsaee
- Biological Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Maryam Vasefi
- Department of Biology, Lamar University, Beaumont, TX 77705, USA
| |
Collapse
|
22
|
Guo Y, Zhou M, Mu Z, Guo J, Hou Y, Xu Y, Geng L. Recent advances in shikonin for the treatment of immune-related diseases: Anti-inflammatory and immunomodulatory mechanisms. Biomed Pharmacother 2023; 165:115138. [PMID: 37454591 DOI: 10.1016/j.biopha.2023.115138] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Shikonin, the primary active compound found in the rhizome of the traditional Chinese medicinal herb known as "ZiCao", exhibits a diverse range of pharmacological effects. This drug has a wide range of uses, including as an anti-inflammatory, antioxidant, and anti-cancer agent. It is also effective in promoting wound healing and treating autoimmune diseases such as multiple sclerosis, diabetes, asthma, systemic lupus erythematosus, inflammatory bowel disease, psoriasis, and rheumatoid arthritis. Although shikonin has a wide range of applications, its mechanisms are still not fully understood. This review article provides a comprehensive overview of the recent advancements in the use of shikonin for the treatment of immune-related diseases. The article also delves into the anti-inflammatory and immunoregulatory mechanisms of shikonin and offers insights into the inflammation and immunopathogenesis of related diseases. Overall, this article serves as a valuable resource for researchers and clinicians working in this field. These findings not only provide significant new information on the effects and mechanisms of shikonin but also establish a foundation for the development of clinical applications in treating autoimmune diseases.
Collapse
Affiliation(s)
- Yimeng Guo
- Department of Dermatology, The First Hospital of China Medical University, 155N Nanjing Street, Heping District, Shenyang, Liaoning 110000, China; National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China; Key Laboratory of Immunodermatology, Ministry of Education and NHC, Shenyang, China
| | - Mingming Zhou
- Department of Dermatology, The First Hospital of China Medical University, 155N Nanjing Street, Heping District, Shenyang, Liaoning 110000, China; National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China; Key Laboratory of Immunodermatology, Ministry of Education and NHC, Shenyang, China
| | - Zhenzhen Mu
- Department of Dermatology, Shengjing Hospital of China Medical University, 155N Nanjing Street, Heping District, Shenyang, Liaoning 110000, China
| | - Jinrong Guo
- Department of Dermatology, Jincheng People's Hospital, 456N Wenchang East Street, Jincheng, Shanxi 048000, China
| | - Yuzhu Hou
- Department of Dermatology, The First Hospital of China Medical University, 155N Nanjing Street, Heping District, Shenyang, Liaoning 110000, China; National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China; Key Laboratory of Immunodermatology, Ministry of Education and NHC, Shenyang, China
| | - Yuanyuan Xu
- Department of Dermatology, The First Hospital of China Medical University, 155N Nanjing Street, Heping District, Shenyang, Liaoning 110000, China; National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China; Key Laboratory of Immunodermatology, Ministry of Education and NHC, Shenyang, China
| | - Long Geng
- Department of Dermatology, The First Hospital of China Medical University, 155N Nanjing Street, Heping District, Shenyang, Liaoning 110000, China; National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China; Key Laboratory of Immunodermatology, Ministry of Education and NHC, Shenyang, China.
| |
Collapse
|
23
|
Aghelan Z, Pashaee S, Abtahi SH, Karima S, Khazaie H, Ezati M, Khodarahmi R. Natural Immunosuppressants as a Treatment for Chronic Insomnia Targeting the Inflammatory Response Induced by NLRP3/caspase-1/IL-1β Axis Activation: A Scooping Review. J Neuroimmune Pharmacol 2023; 18:294-309. [PMID: 37552452 DOI: 10.1007/s11481-023-10078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
Chronic insomnia is an inflammatory-related disease with an important pathological basis for various diseases which is a serious threat to a person's physical and mental health. So far, many hypotheses have been proposed to explain the pathogenesis of insomnia, among which inflammatory mechanisms have become the focus of scientific attention. In this regard, the aim of the present scooping review is to evaluate the potential benefits of natural compounds in treatment of chronic insomnia targeting nucleotide-binding oligomerization domain (NOD)-like receptor-pyrin-containing protein 3 (NLRP3)/caspase-1/IL-1β axis as one of the most important activators of inflammatory cascades. The data show that compounds that have the potential to cause inflammation induce sleep disorders, and that inflammatory mediators are key molecules in regulating the sleep-related activity of neurons. In the inflammatory process of insomnia, the role of NLRP3 in the pathogenesis of insomnia has been gradually considered by researchers. NLRP3 is an intracellular sensor that recognizes the widest range of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs). After identification and binding to damage factors, NLRP3 inflammasome is assembled to activate the caspase-1 and IL-1β. Increased production and secretion of IL-1β may be involved in central nervous system dysregulation of physiological sleep. The current scooping review reports the potential benefits of natural compounds that target NLRP3 inflammasome pathway activity and highlights the hypothesis which NLRP3 /caspase-1/IL-1β may serve as a potential therapeutic target for managing inflammation and improving symptoms in chronic insomnia.
Collapse
Affiliation(s)
- Zahra Aghelan
- Department of Clinical Biochemistry, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Somayeh Pashaee
- Department of Clinical Biochemistry, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Hosein Abtahi
- Department of Laboratory Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Behehshti University of Medical Sciences, Tehran, Iran
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Ezati
- Medical Biology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Nurse Street, Kermanshah, 6714415185, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Nurse Street, Kermanshah, 6714415185, Iran.
| |
Collapse
|
24
|
Grazul M, Kwiatkowski P, Hartman K, Kilanowicz A, Sienkiewicz M. How to Naturally Support the Immune System in Inflammation-Essential Oils as Immune Boosters. Biomedicines 2023; 11:2381. [PMID: 37760822 PMCID: PMC10525302 DOI: 10.3390/biomedicines11092381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Efficient functionality of the immune system is needed to fight against the development of infectious diseases, including, among others, serious recurrent chronic infections. Research has shown that many modern common diseases, such as inflammatory bowel diseases and cardiovascular diseases, e.g., thromboembolism, cancer, obesity, or depression, are connected with inflammatory processes. Therefore, new, good stimulators of the immune system's response are sought. They include synthetic compounds as well as biological preparations such as lipopolysaccharides, enzymes, bacterial metabolites, and secondary metabolites of plants, demonstrating a multidirectional effect. Essential oils are characterized by many invaluable activities, including antimicrobial, antioxidant, anti-inflammatory, and immunostimulating. Essential oils may stimulate the immune system via the utilization of their constituents, such as antibodies, cytokines, and dendritic cells. Some essential oils may stimulate the proliferation of immune-competent cells, including polymorphonuclear leukocytes, macrophages, dendritic cells, natural killer cells, and B and T lymphocytes. This review is focused on the ability of essential oils to affect the immune system. It is also possible that essential oil components positively interact with recommended anti-inflammatory and antimicrobial drugs. Thus, there is a need to explore possible synergies between essential oils and their active ingredients for medical use.
Collapse
Affiliation(s)
- Magdalena Grazul
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Paweł Kwiatkowski
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Kacper Hartman
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Anna Kilanowicz
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
25
|
Gul B, Anwar R, Saleem M, Noor A, Ullah MI. Cassia absus-mediated upregulation of IL-4, IL-10 and downregulation of IL-1β, IL-6, TNF- α, NF-κB, IFN-γ in CFA-induced arthritis model. Inflammopharmacology 2023; 31:1241-1256. [PMID: 37005957 DOI: 10.1007/s10787-023-01185-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/01/2023] [Indexed: 04/04/2023]
Abstract
Traditional use of Cassia absus as an anti-inflammatory in conjunctivitis and bronchitis is well reported. Owing to its anti-inflammatory potential, the current study appraised in vivo anti-arthritic activity of n-hexane and aqueous extracts of Cassia absus seeds (200 mg/kg) using Complete Freund's Adjuvant (CFA) rat model of arthritis. Changes in paw size (mm), joint diameter (mm), and pain response (sec) were recorded at the baseline and then after CFA induction at the interval of 4 days till the 28th day. Blood samples of anesthetized rats were collected for the estimation of hematological, oxidative, and inflammatory biomarkers. Results showed percent inhibition in paw edema (45.09% and 60.79%) with both n-hexane and aqueous extracts, respectively. Significant reduction in paw size and ankle joint diameter (P < 0.01) was seen in extracts treated rats. Erythrocyte Sedimentation rate, C-Reactive Protein, White Blood Cell levels significantly lowered, and Hemoglobin, Platelets and Red Blood Cell count significantly increased post-treatments. Superoxide Dismutase, Catalase, and Glutathione were significantly improved (P < 0.0001) in treated groups as compared to CFA induced arthritic control. Real-time polymerase chain reaction investigation showed significant downregulation (P < 0.05) of Interleukin-1β, Tumor Necrosis Factor-α, Interleukin-6, Cycloxygenase-2, Nuclear Factor-κB, Prostaglandin E Synthase 2, Interferon Gamma and upregulation of Interleukin-4, Interleukin-10 in both n-hexane and aqueous extract-treated groups. It is thereby concluded that Cassia absus can significantly attenuate CFA-induced arthritis by modulation of oxidative and inflammatory biomarkers.
Collapse
Affiliation(s)
- Bazgha Gul
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
- Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan
| | - Rukhsana Anwar
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan.
| | - Mohammad Saleem
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Afifa Noor
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Ihsan Ullah
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
26
|
Bansal N, Pasricha C, Kumari P, Jangra S, Kuar R, Singh R. A comprehensive overview of juvenile idiopathic arthritis: From pathophysiology to management. Autoimmun Rev 2023; 22:103337. [PMID: 37068698 DOI: 10.1016/j.autrev.2023.103337] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/13/2023] [Indexed: 04/19/2023]
Abstract
Rheumatoid Arthritis (RA) is a progressive autoimmune disease. It is among the most widespread chronic illnesses in children, with an annual incidence of 1.6 to 23 new instances per 100,000 adolescents. About 1 child in every 1000 develops Juvenile Idiopathic Arthritis (JIA) type of chronic arthritis. The cause of JIA is not well known but what known is that it involves inflammation of the synovium and destruction of tissues in joints which can cause early-onset of oligo articular JIA. It is challenging to diagnose the condition in some children who initially complain of pain and joint swelling as there is no blood test discovered that can confirm the diagnoses of JIA. As JIA patients are immunosuppressed due to the use of drugs, making them vulnerable to catch infections like COVID 19 which can lead to cardiovascular diseases having high rate of morbidity and mortality. The comorbidity like Diabetes has higher incidence in these patients resulting in synergistic effect on inflammation. Currently, the connection of genetics in JIA provides evidence that HLA Class I and II alleles have a role in the pathophysiology of various subtypes of JIA which includes inflammation in the axial skeletal. The primary objective of therapy in juvenile idiopathic arthritis is the suppression of clinical symptoms. The pharmacological approach includes use of medications like DMARDs, NSAIDs etc. and non-pharmacological approach includes physiotherapy, which helps in restoring normal joint function and herbs as adjuvants which has the benefit of no side effects.
Collapse
Affiliation(s)
- Nancy Bansal
- Chitkara College of Pharmacy, Chitakara University, Punjab, India
| | - Chirag Pasricha
- Chitkara College of Pharmacy, Chitakara University, Punjab, India
| | - Pratima Kumari
- Chitkara College of Pharmacy, Chitakara University, Punjab, India
| | - Sarita Jangra
- Chitkara College of Pharmacy, Chitakara University, Punjab, India
| | - Rupinder Kuar
- Chitkara College of Pharmacy, Chitakara University, Punjab, India
| | - Ravinder Singh
- Chitkara College of Pharmacy, Chitakara University, Punjab, India.
| |
Collapse
|
27
|
Sharma A, Goel A. Pathogenesis of rheumatoid arthritis and its treatment with anti-inflammatory natural products. Mol Biol Rep 2023; 50:4687-4706. [PMID: 37022525 DOI: 10.1007/s11033-023-08406-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/24/2023] [Indexed: 04/07/2023]
Abstract
Introduction Rheumatoid arthritis (RA) is a common autoimmune disease across the globe that is chronic and systemic as well. The disease is linked with autoantibodies and is inflammatory, eventually targeting several molecules along with certain modified self-epitopes. The disease majorly affects the joints of an individual. Rheumatoid arthritis is manifested clinically by polyarthritis linked with the dysfunction of the joints. This chiefly affects the synovial joint lining and is linked with progressive dysfunction, premature death, along with socioeconomic implications. The macrophage activation, along with the activation of certain defense cells, results in a response to self-epitopes that helps in providing a better understanding of the disease pathogenesis. Material and methodology For this review article, papers have been retrieved and reviewed from database including PubMed, Scopus and Web of science. Relevant papers were taken fulfilling the criteria for writing this review article. Results This has resulted in the establishment of several new therapeutic techniques that serve as potential inhibitors of such cells. Researchers have gained an interest in understanding this disease to provide strategies for treatment in the last two decades. This also includes recognition followed by the treatment of the disease at its early stages. Various allopathic treatment approaches often have chronic and toxic teratogenic effects. However, to avoid this issue of toxicity followed by side effects, certain medicinal plants have been used in treating RA. Conclusion Medicinal plants possess active phytoconstituents that entail antioxidants as well as anti-inflammatory properties, making them a helpful alternative to allopathic drugs that are often linked with highly toxic effects. This review paper entails a thorough discussion of the epidemiology, pathophysiology, diagnosis, and management of RA. The paper will also focus on the use of herbal plants in the treatment of the disease to avoid the side effects that generally occur in allopathic treatment.
Collapse
Affiliation(s)
- Ayushi Sharma
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Uttar Pradesh, 281406, Mathura, India
| | - Anjana Goel
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Uttar Pradesh, 281406, Mathura, India.
| |
Collapse
|
28
|
He Q, Ding H. Bioinformatics analysis of rheumatoid arthritis tissues identifies genes and potential drugs that are expressed specifically. Sci Rep 2023; 13:4508. [PMID: 36934132 PMCID: PMC10024744 DOI: 10.1038/s41598-023-31438-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/11/2023] [Indexed: 03/20/2023] Open
Abstract
Studies have implicated necroptosis mechanisms in orthopaedic-related diseases, since necroptosis is a unique regulatory cell death pattern. However, the role of Necroptosis-related genes in rheumatoid arthritis (RA) has not been well described. We downloaded RA-related data information and Necroptosis-related genes from the Gene Expression Omnibus (GEO), Kyoto Gene and Genome Encyclopedia (KEGG) database, and Genome Enrichment Analysis (GSEA), respectively. We identified 113 genes associated with RA-related necroptosis, which was closely associated with the cytokine-mediated signaling pathway, necroptosis and programmed necrosis. Subsequently, FAS, MAPK8 and TNFSF10 were identified as key genes among 48 Necroptosis-associated differential genes by three machine learning algorithms (LASSO, RF and SVM-RFE), and the key genes had good diagnostic power in distinguishing RA patients from healthy controls. According to functional enrichment analysis, these genes may regulate multiple pathways, such as B-cell receptor signaling, T-cell receptor signaling pathways, chemokine signaling pathways and cytokine-cytokine receptor interactions, and play corresponding roles in RA. Furthermore, we predicted 48 targeted drugs against key genes and 31 chemical structural formulae based on targeted drug prediction. Moreover, key genes were associated with complex regulatory relationships in the ceRNA network. According to CIBERSORT analysis, FAS, MAPK8 and TNFSF10 may be associated with changes in the immune microenvironment of RA patients. Our study developed a diagnostic validity and provided insight to the mechanisms of RA. Further studies will be required to test its diagnostic value for RA before it can be implemented in clinical practice.
Collapse
Affiliation(s)
- Qingshan He
- Nanyang Medical College, Henan, 473000, China
| | | |
Collapse
|
29
|
Gong N, Wang L, An L, Xu Y. Exploring the active ingredients and potential mechanisms of action of sinomenium acutum in the treatment of rheumatoid arthritis based on systems biology and network pharmacology. Front Mol Biosci 2023; 10:1065171. [PMID: 36923645 PMCID: PMC10009275 DOI: 10.3389/fmolb.2023.1065171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
Objective: To investigate and predict the targets and signaling pathways of sinomenium acutum (SA) in the treatment of rheumatoid arthritis (RA) through systems biology and network pharmacology, and to elucidate its possible mechanisms of action. Methods: We screened the active ingredients and corresponding target proteins of SA in Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Traditional Chinese Medicines Integrated Database (TCMID) and Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine (BATMAN); and obtained the targets of rheumatoid arthritis diseases in a database of gene-disease associations (DisGeNET), Online Mendelian Inheritance in Man (OMIM) database. The two targets were mapped by Venn diagram and the intersection was taken. The intersecting targets were used to construct protein-protein interaction (PPI) network maps in the String database, and Metascape was used for Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Finally, the molecular docking technique was applied to validate and further clarify the core target of SA for the treatment of rheumatoid arthritis. Results: A total of six active ingredients and 217 potential targets were obtained after screening; 2,752 rheumatoid arthritis-related targets and 66 targets common to RA and SA. GO function and KEGG pathway enrichment analysis yielded 751 GO function entries (652 GO biological processes, 59 GO molecular functions and 40 GO cellular components) and 77 KEGG signaling pathways. It mainly involves pathways related to neural activity ligand-receptor interaction pathways, cancer pathways, calcium signaling channels, Th17 cell differentiation and others, which are mainly classified into four categories, including regulation of immunity, anti-inflammation, regulation of cell growth and apoptosis, and signaling. The molecular docking results showed that the binding energy of PTGS2, CASP3, JUN and PPARG to the key components beta-sitosterol, 16-epi-Isositsirikine, Sinomenine and Stepholidine were ≤ -6.5 kcal/mol, suggesting the existence of molecular binding sites. Conclusion: SA acts on key targets such as PTGS2, CASP3, JUN, and PPARG to modulate signaling pathways such as neural activity ligand-receptor interaction, cancer, calcium ion, NF-κB, and Th17 cell differentiation to regulate immunity, anti-inflammation, modulation of cell cycle, bone metabolism, and signaling for the treatment of RA. It was also confirmed that the treatment of RA with SA has multi-component, multi-target, multi-pathway and multi-mechanism characteristics.
Collapse
Affiliation(s)
- Nan Gong
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Orthopedic Surgery, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lin Wang
- Nephrology Department, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lili An
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - YuanKun Xu
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Orthopedic Surgery, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
30
|
Park J, Ryu JH, Kim BY, Chun HS, Kim MS, Shin YI. Fermented Lettuce Extract Containing Nitric Oxide Metabolites Attenuates Inflammatory Parameters in Model Mice and in Human Fibroblast-Like Synoviocytes. Nutrients 2023; 15:1106. [PMID: 36904105 PMCID: PMC10005524 DOI: 10.3390/nu15051106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Lettuce (Lactuca sativa L.) contains various bioactive compounds that can reduce the severity of inflammatory diseases. This study aimed to identify therapeutic effects and underlying mechanisms of fermented lettuce extract (FLE) containing stable nitric oxide (NO) on collagen-induced arthritis (CIA) in mice and fibroblast-like synoviocytes (MH7A line) from patients with rheumatoid arthritis (RA). DBA/1 mice were immunized with bovine type II collagen and orally administered FLE for 14 days. On day 36, mouse sera and ankle joints were collected for serological and histological analysis, respectively. Consuming FLE inhibited RA development, suppressing pro-inflammatory cytokine productions, synovial inflammation, and cartilage degradation. The therapeutic effects of FLE in CIA mice were similar to those of methotrexate (MTX), which is typically used to treat RA. In vitro, FLE suppressed the transforming growth factor-β (TGF-β)/Smad signaling pathway in MH7A cells. We also demonstrated that FLE inhibited TGF-β-induced cell migration, suppressed MMP-2/9 expression, inhibited MH7A cell proliferation, and increased the expression of autophagy markers LC3B and p62 in a dose-dependent manner. Our data suggest that FLE could induce autophagosome formations in the early of stages of autophagy while inhibiting their degradation in the later stages. In conclusion, FLE is a potential therapeutic agent for RA.
Collapse
Affiliation(s)
- Jisu Park
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Ji Hyeon Ryu
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Bo-Young Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | | | - Min Sun Kim
- Center for Nitric Oxide Metabolite, Wonkwang University, Iksan 54538, Republic of Korea
| | - Yong-Il Shin
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
- Department of Rehabilitation Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
31
|
Manoharan AL, Jagadeesan G, Nataraj G, Muniyandi K, Guruswami G, Arunachalam K, Thangaraj P. Efficacy of Trevesia palmata (Roxb. ex Lindl.) Vis. Extract on MG 63 cell lines and arthritis-induced animal models. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115742. [PMID: 36152784 DOI: 10.1016/j.jep.2022.115742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Despite widespread use of herbal remedies for treating arthritis and osteosarcoma, many plants are still not pharmacologically evaluated for their efficacy. Contrary to many non-steroidal, immunosuppressants, antibiotics, and antineoplastic drugs that have adverse effects, phytotherapeutic compounds have promising benefits with fewer complications. In this study the unexplored Northeastern India indigenous plant Trevesia palmata (Roxb. ex Lindl.) Vis. used in traditional medicine to cure bone fractures is chosen for studying anti-proliferative and anti-rheumatic properties. AIM OF THE STUDY This study designed to explore the polyphenolic composition, antioxidant, anti-inflammatory and anti-arthritic potential of T. palmata leaf extracts. Further, the cellular activity was studied using MG 63 osteoblast cell lines and pharmacologically evaluated using Complete Freund's Adjuvant (CFA) induced arthritic rat model. MATERIALS AND METHODS In vitro free radical scavenging activity, anti-inflammatory and anti-arthritic activities of extracts were analyzed using standardized methods. The polyphenolic profiling and apoptosis inducing ability of T. palmata ethyl acetate (TPEA) extract on MG 63 osteoblast cell lines were analyzed. The in vivo pharmacological studies were carried out with low dose 250 mg/kg and high dose of 500 mg/kg of T. palmata. The biochemical and haematological parameters and in vivo antioxidant activity were evaluated for the control and treated groups. Radiological and histological study were done to understand the impact and penetration of inflammatory arthritis from tissues to joint bones. RESULTS TPEA showed highest free radical scavenging activity (DPPH - 4.72 IC50, ABTS - 242.33 ± 6.81 mM TE/g extract), anti-inflammatory (40.04% inhibition of RBC lysis) and anti-arthritic activity (32.4% inhibition of protein denaturation) with the presence of gallic acid, catechin, caffeic acid, rutin, quercetin and naringenin. The TPEA extract inhibited cell proliferation of MG 63 osteoblast cells and induced apoptosis by arresting cell cycle at different phases. After acute toxicity studies the doses 250 mg/kg and 500 mg/kg were fixed and showed better results in CFA-induced arthritic animals. Thus, the extract phytoconstituents may have immense potential against chronic inflammation, joint ailments, bone cancer and arthritis which serves as a phytomedicine contrary to synthetic medications. CONCLUSIONS The potential treatment of polyphenolic compounds in the T. palmata extract on osteosarcoma and arthritis was demonstrated from this study. Thus, cellular inflammatory infiltrates are significantly reduced in bone and joint tissues as well.
Collapse
Affiliation(s)
- Ashwini Lydia Manoharan
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | - Gayathri Jagadeesan
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | - Gayathri Nataraj
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | - Kasipandi Muniyandi
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | | | - Karuppusamy Arunachalam
- Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica (CeTroGen), Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil; Programa de Pós-graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina Dr. Hélio Mandetta (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil.
| | - Parimelazhagan Thangaraj
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
32
|
Chaudhary P, Singh D, Swapnil P, Meena M, Janmeda P. Euphorbia neriifolia (Indian Spurge Tree): A Plant of Multiple Biological and Pharmacological Activities. SUSTAINABILITY 2023; 15:1225. [DOI: 10.3390/su15021225] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Although India has a well-established and growing economy surrounding synthetic drug chemistry with an antibiotic base, a large part of the population, especially in forested villages and tribal belts, is relying solely on plant-derived drugs. This is due to a lower number of side effects, low chances of resistance development against pathogenic microorganisms, as well as the diversity and affordability of such drugs. In the Indian subcontinents, Euphorbia neriifolia Linn. (EN) is one of the valuable plants from the big family of Euphorbiaceae, which is usually found in rocky and hilly areas. E. neriifolia was found to be useful in curing tumors, abdominal swelling, bronchial infection, hydrophobia, earache, cough and cold, asthma, leprosy, gonorrhea, spleen enlargement, leucoderma, snake bites, scorpion stings, and causing appetite improvement, etc. Different in vitro and in vivo experimental studies were performed to determine the antioxidant, anti-diabetic, immunomodulatory, anti-inflammatory, anti-arthritic, wound healing, anti-atherosclerosis, radioprotective, anti-anxiety, anti-convulsant, anti-psychotic, anti-thrombotic, dermal irritation, hemolytic, analgesic, anti-fertility, diuretic, anti-microbial, anti-diarrheal, and anti-carcinogenic activities of the various parts of EN. Several bioactive compounds, such as euphol, nerifoliol, taraxerol, euphonerins A–G, lectin, etc., were isolated from E. neriifolia and need to be investigated further for various biological activities (cardiovascular and neuronal diseases). In the pharmaceutical sector, E. neriifolia was selected for the development of new drugs due to its broad pharmacological activities. Therefore, in the present review, distribution, classification, morphological and microscopical description, phytochemical investigation, pharmacological activities, medicinal uses, harmful effects, and their treatment were evaluated, especially against different lifestyle-related diseases.
Collapse
Affiliation(s)
- Priya Chaudhary
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali 304022, Rajasthan, India
| | - Devendra Singh
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Prashant Swapnil
- School of Basic Sciences, Department of Botany, Central University of Punjab, Bhatinda 151401, Punjab, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali 304022, Rajasthan, India
| |
Collapse
|
33
|
Zhang L, Qin Z, Sun H, Chen X, Dong J, Shen S, Zheng L, Gu N, Jiang Q. Nanoenzyme engineered neutrophil-derived exosomes attenuate joint injury in advanced rheumatoid arthritis via regulating inflammatory environment. Bioact Mater 2022; 18:1-14. [PMID: 35387158 PMCID: PMC8961303 DOI: 10.1016/j.bioactmat.2022.02.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by synovitis and destruction of cartilage, promoted by sustained inflammation. However, current treatments remain unsatisfactory due to lacking of selective and effective strategies for alleviating inflammatory environments in RA joint. Inspired by neutrophil chemotaxis for inflammatory region, we therefore developed neutrophil-derived exosomes functionalized with sub-5 nm ultrasmall Prussian blue nanoparticles (uPB-Exo) via click chemistry, inheriting neutrophil-targeted biological molecules and owning excellent anti-inflammatory properties. uPB-Exo can selectively accumulate in activated fibroblast-like synoviocytes, subsequently neutralizing pro-inflammatory factors, scavenging reactive oxygen species, and alleviating inflammatory stress. In addition, uPB-Exo effectively targeted to inflammatory synovitis, penetrated deeply into the cartilage and real-time visualized inflamed joint through MRI system, leading to precise diagnosis of RA in vivo with high sensitivity and specificity. Particularly, uPB-Exo induced a cascade of anti-inflammatory events via Th17/Treg cell balance regulation, thereby significantly ameliorating joint damage. Therefore, nanoenzyme functionalized exosomes hold the great potential for enhanced treatment of RA in clinic. uPB-Exo were firstly developed by combining NE-Exo with sub-5 nm ultrasmall PB nanoparticles via click chemistry. uPB-Exo selectively targeted inflamed joints via neutrophil-targeted biological molecules inherited from neutrophils. uPB-Exo accumulated in active FLS, and eventually scavenged reactive oxygen species and alleviated inflammatory stress. uPB-Exo induced a cascade of anti-inflammatory events via Th17/Treg cell balance regulation, thereby significantly ameliorating joint damage. uPB-Exo, as a drug free therapeutical agent, holds the great potential for enhanced treatment of RA in clinic.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Ziguo Qin
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Han Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Xiang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Jian Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Siyu Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Liming Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
- Corresponding author.
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
- Corresponding author. State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
| |
Collapse
|
34
|
de Carvalho Lima EN, Barros Martins GL, Diaz RS, Schechter M, Piqueira JRC, Justo JF. Effects of Carbon Nanomaterials and Aloe vera on Melanomas-Where Are We? Recent Updates. Pharmaceutics 2022; 14:2004. [PMID: 36297440 PMCID: PMC9607275 DOI: 10.3390/pharmaceutics14102004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is an aggressive skin cancer that affects approximately 140,000 people worldwide each year, with a high fatality rate. Available treatment modalities show limited efficacy in more severe cases. Hence, the search for new treatment modalities, including immunotherapies, for curing, mitigating, and/or preventing cancer is important and urgently needed. Carbon nanoparticles associated with some plant materials, such as Aloe vera, have shown appealing antineoplastic activity, derived mainly from the compounds aloin, aloe-emodin, barbaloin acemannan, and octapeptide, thus representing new possibilities as antitumor agents. This systematic review aims to arouse interest and present the possibilities of using Aloe vera combined with carbon-based nanomaterials as an antineoplastic agent in the treatment and prevention of melanoma. Limitations and advances in melanoma treatment using functionalized carbon nanomaterials are discussed here. Moreover, this review provides the basis for further studies designed to fully explore the potential of carbon nanomaterials associated with Aloe vera in the treatment of various cancers, with a focus on melanoma.
Collapse
Affiliation(s)
- Elidamar Nunes de Carvalho Lima
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, Avenida Prof. Luciano Gualberto, Travessa 3, 158, São Paulo 05508-010, Brazil
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo 05508-010, Brazil
| | - Guilherme Leão Barros Martins
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, Avenida Prof. Luciano Gualberto, Travessa 3, 158, São Paulo 05508-010, Brazil
| | - Ricardo Sobhie Diaz
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - Mauro Schechter
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - José Roberto Castilho Piqueira
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, Avenida Prof. Luciano Gualberto, Travessa 3, 158, São Paulo 05508-010, Brazil
| | - João Francisco Justo
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo 05508-010, Brazil
| |
Collapse
|
35
|
Plant Bioactives in the Treatment of Inflammation of Skeletal Muscles: A Molecular Perspective. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4295802. [PMID: 35911155 PMCID: PMC9328972 DOI: 10.1155/2022/4295802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/28/2022] [Accepted: 06/24/2022] [Indexed: 12/20/2022]
Abstract
Skeletal muscle mass responds rapidly to growth stimuli, precipitating hypertrophies (increased protein synthesis) and hyperplasia (activation of the myogenic program). For ages, muscle degeneration has been attributed to changes in the intracellular myofiber pathways. These pathways are tightly regulated by hormones and lymphokines that ultimately pave the way to decreased anabolism and accelerated protein breakdown. Despite the lacunae in our understanding of specific pathways, growing bodies of evidence suggest that the changes in the myogenic/regenerative program are the major contributing factor in the development and progression of muscle wasting. In addition, inflammation plays a key role in the pathophysiology of diseases linked to the failure of skeletal muscles. Chronic inflammation with elevated levels of inflammatory mediators has been observed in a spectrum of diseases, such as inflammatory myopathies and chronic obstructive pulmonary disease (COPD). Although the pathophysiology of these diseases varies greatly, they all demonstrate sarcopenia and dysregulated skeletal muscle physiology as common symptoms. Medicinal plants harbor potential novel chemical moieties for a plenitude of illnesses, and inflammation is no exception. However, despite the vast number of potential antiinflammatory compounds found in plant extracts and isolated components, the research on medicinal plants is highly daunting. This review aims to explore the various phytoconstituents employed in the treatment of inflammatory responses in skeletal muscles, while providing an in-depth molecular insight into the latter.
Collapse
|
36
|
Determination of Therapeutic and Safety Effects of Zygophyllum coccineum Extract in Induced Inflammation in Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7513155. [PMID: 35898689 PMCID: PMC9314163 DOI: 10.1155/2022/7513155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/28/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
Abstract
Background Z. coccineum is a facultative plant with many medicinal applications. This study examined the anti-inflammatory activity of Zygophyllum coccineum (Z. coccineum) in an arthritis animal model. Materials and Methods Seventy-Six Wistar Albino rats of either sex randomly divided into six groups (12/each). The inflammation model was done using Complete Freund's Adjuvant in albino rats. The anti-inflammatory activities of the extract were estimated at different dose levels (15.6, 31, and 60 mg/kg) as well as upon using methotrexate (MTX) as a standard drug (0.3 mg/kg). Paw volume and arthritis index scores have been tested in all examined animals' treatments. Histological examination of joints was also performed. Flow cytometric studies were done to isolated osteoclasts. Cytokines assay as well as biochemical testing was done in the examined samples. Results. In vitro studies reported an IC50 of 15.6 μg/ml for Z. coccineum extract in lipoxygenase inhibition assay (L.O.X.). Moreover, it could be noticed that isorhamnetin-3-O-glucoside, tribuloside, and 7-acetoxy-4-methyl coumarin were the most common compounds in Z. coccineum extract separated using L.C.–ESI-TOF–M.S. (liquid chromatography-electrospray ionization ion-trap time-of-flight mass spectrometry). Microscopic examinations of synovial tissue and hind limb muscles revealed the effect of different doses of Z. coccineum extract on restoring chondrocytes and muscles structures. Osteoclast size and apoptotic rate examinations revealed the protective effect of Z. coccineum extract on osteoclast. The results upon induction of animals and upon treatment using of MTX significantly increased apoptotic rate of osteoclast compared to control, while using of 15.6 μg/ml. for Z. coccineum extract lead to recover regular apoptotic rate demonstrating the protective effect of the extract. Z. coccineum extract regulated the secretion of proinflammatory and anti-inflammatory cytokines. Biochemical tests indicated the safety of Z. coccineum extract on kidney and liver functions. Conclusion. Z. coccineum extract has efficient and safe anti-inflammatory potential in an induced rat model.
Collapse
|
37
|
Protection of Oxidative Stress-induced DNA Damage and Apoptosis by Rosmarinic Acid in Murine Myoblast C2C12 Cells. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0248-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Sharma T, Sharma P, Chandel P, Singh S, Sharma N, Naved T, Bhatia S, Al-Harrasi A, Bungau S, Behl T. Circumstantial Insights into the Potential of Traditional Chinese Medicinal Plants as a Therapeutic Approach in Rheumatoid Arthritis. Curr Pharm Des 2022; 28:2140-2149. [PMID: 35331092 DOI: 10.2174/1381612828666220324124720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
The advanced era has invited a plethora of chronic and autoimmune infirmities unmistakably dominated by rheumatoid arthritis, occurring because of the equivocal causes, including ecological factors, genetic variations, etc. Unfortunately, it is winning pretty much in every stratum of the society in undefined age group of the population. Engineered drugs are accessible for the treatment; however, they do experience adverse effects as the treatment requires a prolonged duration worsened by noncompliance. To overwhelm it, certain pharmacological and molecular pathways are explored in the wake of Chinese herbs that prompted the prevention of this deteriorating autoimmune disease. The alcoholic extracts and decoctions are procured from Chinese herbs, such as Paeonia lactiflora, Glycyrrhiza uralensis, Tripterygium wilfordii, etc., which have been proved to manifest constructive pharmacological actions. The activities that were exhibited by extracts are significantly innocuous, non- toxic and potent to fix the affliction in contrast with the chemosynthetic drugs. Therefore, these Chinese herbs bring forth the potent anti-inflammatory, immune suppressing, anti-nociceptive, anti-neovascularizing, free radical scavenging activities and various other benefits to withstand several pathological events that usually endure the infirmity. It can be abridged that Chinese herbs possess assorted and selective therapeutic properties with profound safety and viability to treat this rheumatic disorder. Thus, this review aims to shed a light naturally originated treatment that is pertinent to provide invulnerable therapy exonerating from adverse effects, by restraining the occurrences of joint deformities, production of auto-antibodies, and inflammation.
Collapse
Affiliation(s)
- Twinkle Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Parth Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Parteek Chandel
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tanveer Naved
- Amity Institute of Pharmacy, Amity University, Noida, India
| | - Saurabh Bhatia
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
39
|
Ho KL, Yong PH, Wang CW, Kuppusamy UR, Ngo CT, Massawe F, Ng ZX. Peperomia pellucida (L.) Kunth and eye diseases: A review on phytochemistry, pharmacology and toxicology. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:292-304. [PMID: 35153134 DOI: 10.1016/j.joim.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 01/19/2022] [Indexed: 12/13/2022]
Abstract
Peperomia pellucida (L.) Kunth is a medicinal plant used to manage inflammatory illnesses such as conjunctivitis, and gastrointestinal and respiratory tract disorders in tropical and subtropical regions. However, little is known about its pharmacological mechanism of action against eye diseases. This review aims to critically discuss the phytochemistry, pharmacology and toxicology of P. pellucida as well as its roles in the treatment of cataract, glaucoma and diabetic retinopathy. Recent developments in the uses of P. pellucida for healthcare and nutraceutical products by the pharmaceutical industry are also covered in this review. For this review, a literature search was performed with PubMed, ScienceDirect, SciFinder Scholar and Scopus databases, using relevant keywords. Among the various phytochemicals identified from P. pellucida, β-caryophyllene, carotol, dillapiole, ellagic acid, pellucidin A, phytol and vitexin exhibit strong pharmacological activities within the mitogen-activated protein kinase and nuclear factor-κB signalling pathways in inflammatory eye diseases. The antihypertensive, anti-inflammatory, antioxidant, antihyperglycemic and anti-angiogenic activities displayed by P. pellucida extracts in many in vitro, in vivo and clinical studies suggest its potential role in the management of inflammatory eye diseases. P. pellucida extract was non-toxic against normal cell lines but displayed mild toxicity in animal models. The growing public interest in P. pellucida has inspired the nutraceutical and pharmaceutical industries to process the plant into health products. Although the potential pharmacological mechanisms against eye diseases have been summarized, further studies of the interactions among constituent phytochemicals from P. pellucida within various signalling pathways shall support the use of the plant as an alternative therapeutic source.
Collapse
Affiliation(s)
- Keat Lam Ho
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Selangor, Malaysia
| | - Phaik Har Yong
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, 42610 Selangor, Malaysia
| | - Chee Woon Wang
- Department of Biochemistry, Faculty of Medicine, Bioscience and Nursing, MAHSA University, 42610 Selangor, Malaysia
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chek Tung Ngo
- Optimax Sunway Eye Specialist Centre, Bandar Sunway, 46150 Selangor, Malaysia
| | - Festo Massawe
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Selangor, Malaysia
| | - Zhi Xiang Ng
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Selangor, Malaysia.
| |
Collapse
|
40
|
Park C, Ji SY, Lee H, Choi SH, Kwon CY, Kim SY, Lee ET, Choo ST, Kim GY, Choi YH, Kim MR. Mori Ramulus Suppresses Hydrogen Peroxide-Induced Oxidative Damage in Murine Myoblast C2C12 Cells through Activation of AMPK. Int J Mol Sci 2021; 22:ijms222111729. [PMID: 34769159 PMCID: PMC8583786 DOI: 10.3390/ijms222111729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/25/2023] Open
Abstract
Mori Ramulus, the dried twigs of Morus alba L., has been attracting attention for its potent antioxidant activity, but its role in muscle cells has not yet been elucidated. The purpose of this study was to evaluate the protective effect of aqueous extracts of Mori Ramulus (AEMR) against oxidative stress caused by hydrogen peroxide (H2O2) in C2C12 mouse myoblasts, and in dexamethasone (DEX)-induced muscle atrophied models. Our results showed that AEMR rescued H2O2-induced cell viability loss and the collapse of the mitochondria membrane potential. AEMR was also able to activate AMP-activated protein kinase (AMPK) in H2O2-treated C2C12 cells, whereas compound C, a pharmacological inhibitor of AMPK, blocked the protective effects of AEMR. In addition, H2O2-triggered DNA damage was markedly attenuated in the presence of AEMR, which was associated with the inhibition of reactive oxygen species (ROS) generation. Further studies showed that AEMR inhibited cytochrome c release from mitochondria into the cytoplasm, and Bcl-2 suppression and Bax activation induced by H2O2. Furthermore, AEMR diminished H2O2-induced activation of caspase-3, which was associated with the ability of AEMR to block the degradation of poly (ADP-ribose) polymerase, thereby attenuating H2O2-induced apoptosis. However, compound C greatly abolished the protective effect of AEMR against H2O2-induced C2C12 cell apoptosis, including the restoration of mitochondrial dysfunction. Taken together, these results demonstrate that AEMR could protect C2C12 myoblasts from oxidative damage by maintaining mitochondrial function while eliminating ROS, at least with activation of the AMPK signaling pathway. In addition, oral administration of AEMR alleviated gastrocnemius and soleus muscle loss in DEX-induced muscle atrophied rats. Our findings support that AEMR might be a promising therapeutic candidate for treating oxidative stress-mediated myoblast injury and muscle atrophy.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-Eui University, Busan 47340, Korea;
| | - Seon Yeong Ji
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Korea; (S.Y.J.); (H.L.)
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea
| | - Hyesook Lee
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Korea; (S.Y.J.); (H.L.)
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea
| | - Sung Hyun Choi
- Department of System Management, Korea Lift College, Geochang 50141, Korea;
| | - Chan-Young Kwon
- Department of Oriental Neuropsychiatry, College of Korean Medicine, Dong-Eui University, Busan 47340, Korea;
| | - So Young Kim
- Department of Pharmacology, College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea;
| | - Eun Tag Lee
- Agricultural Corporation, Ebiche Co., Ltd., Yeongcheon 38819, Korea; (E.T.L.); (S.T.C.)
| | - Sung Tae Choo
- Agricultural Corporation, Ebiche Co., Ltd., Yeongcheon 38819, Korea; (E.T.L.); (S.T.C.)
| | - Gi-Young Kim
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea;
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Korea; (S.Y.J.); (H.L.)
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea
- Correspondence: (Y.H.C.); (M.R.K.); Tel.: +82-51-890-3319 (Y.H.C.); +82-53-770-2241 (M.R.K.)
| | - Mi Ryeo Kim
- Department of Pharmacology, College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea;
- Correspondence: (Y.H.C.); (M.R.K.); Tel.: +82-51-890-3319 (Y.H.C.); +82-53-770-2241 (M.R.K.)
| |
Collapse
|
41
|
Del Prado-Audelo ML, Cortés H, Caballero-Florán IH, González-Torres M, Escutia-Guadarrama L, Bernal-Chávez SA, Giraldo-Gomez DM, Magaña JJ, Leyva-Gómez G. Therapeutic Applications of Terpenes on Inflammatory Diseases. Front Pharmacol 2021; 12:704197. [PMID: 34483907 PMCID: PMC8414653 DOI: 10.3389/fphar.2021.704197] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/03/2021] [Indexed: 01/15/2023] Open
Abstract
In the last decades, the search for natural products with biological applications as alternative treatments for several inflammatory diseases has increased. In this respect, terpenes are a family of organic compounds obtained mainly from plants and trees, such as tea, cannabis, thyme, and citrus fruits like lemon or mandarin. These molecules present attractive biological properties such as analgesic and anticonvulsant activities. Furthermore, several studies have demonstrated that certain terpenes could reduce inflammation symptoms by decreasing the release of pro-inflammatory cytokines for example, the nuclear transcription factor-kappa B, interleukin 1, and the tumor necrosis factor-alpha. Thus, due to various anti-inflammatory drugs provoking side effects, the search and analysis of novel therapeutics treatments are attractive. In this review, the analysis of terpenes' chemical structure and their mechanisms in anti-inflammatory functions are addressed. Additionally, we present a general analysis of recent investigations about their applications as an alternative treatment for inflammatory diseases. Furthermore, we focus on terpenes-based nanoformulations and employed dosages to offer a global perspective of the state-of-the-art.
Collapse
Affiliation(s)
- María Luisa Del Prado-Audelo
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Instituto Tecnologico de Monterrey, Ciudad de México, México
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, México
| | - Isaac H. Caballero-Florán
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Maykel González-Torres
- CONACyT-Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, México
| | - Lidia Escutia-Guadarrama
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Sergio A. Bernal-Chávez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - David M. Giraldo-Gomez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
- Unidad de Microscopía, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Jonathan J. Magaña
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Instituto Tecnologico de Monterrey, Ciudad de México, México
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, México
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
42
|
Grewal AK, Singh TG, Sharma D, Sharma V, Singh M, Rahman MH, Najda A, Walasek-Janusz M, Kamel M, Albadrani GM, Akhtar MF, Saleem A, Abdel-Daim MM. Mechanistic insights and perspectives involved in neuroprotective action of quercetin. Biomed Pharmacother 2021; 140:111729. [PMID: 34044274 DOI: 10.1016/j.biopha.2021.111729] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are the primary cause of disabilities in the elderly people. Growing evidence indicates that oxidative stress, mitochondrial dysfunction, neuroinflammation and apoptosis are associated with aging and the basis of most neurodegenerative disorders. Quercetin is a flavonoid with significant pharmacological effects and promising therapeutic potential. It is widely distributed among plants and typically found in daily diets mainly in fruits and vegetables. It shows a number of biological properties connected to its antioxidant activity. Neuroprotection by quercetin has been reported in many in vitro as well as in in vivo studies. However, the exact mechanism of action is still mystery and similarly there are a number of hypothesis exploring the mechanism of neuroprotection. Quercetin enhances neuronal longevity and neurogenesis by modulating and inhibiting wide number of pathways. This review assesses the food sources of quercetin, its pharmacokinetic profile, structure activity relationship and its pathophysiological role in various NDDs and it also provides a synopsis of the literature exploring the relationship between quercetin and various downstream signalling pathways modulated by quercetin for neuroprotection for eg. nuclear factor erythroid 2-related factor 2 (Nrf2), Paraoxonase-2 (PON2), c-Jun N-terminal kinase (JNK), Tumour Necrosis Factor alpha (TNF-α), Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha (PGC-1α), Sirtuins, Mitogen-activated protein kinases (MAPKs) signalling cascades, CREB (Cyclic AMP response element binding protein) and Phosphoinositide 3- kinase(PI3K/Akt). Therefore, the aim of the present review was to elaborate on the cellular and molecular mechanisms of the quercetin involved in the protection against NDDs.
Collapse
Affiliation(s)
| | | | - Deepak Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh.
| | - Agnieszka Najda
- Laboratory of Quality of Vegetables and Medicinal Plants, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland.
| | - Magdalena Walasek-Janusz
- Laboratory of Quality of Vegetables and Medicinal Plants, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland.
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt.
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia.
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Pakistan.
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
43
|
Yang L, Liu R, Ouyang S, Zou M, Duan Y, Li L, Guan T, Zhang T, He J. Compounds DRG and DAG, Two Phenol Glycosides, Inhibit TNF-α-stimulated Inflammatory Response through Blocking NF-kB/AKT/JNK Signaling Pathways in MH7A Cells. Inflammation 2021; 44:1762-1770. [PMID: 33768402 DOI: 10.1007/s10753-021-01452-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Fourteen constituents were recently isolated from the roots of Dendropanax dentiger with cyclooxygenase-2 (COX-2) inhibitory effects. However, the effect of 14 constituents on rheumatoid arthritis (RA) and their action mechanism remain unclear. The study aimed to explore the anti-RA effect and potential mechanism of these constituents in tumor necrosis factor α (TNF-α)-stimulated human RA fibroblast-like synoviocytes (MH7A cells). The cell viability, nitric oxide (NO) production, inflammatory cytokine levels, and protein expressions were measured by cell counting kit-8 (CCK-8), Griess reagent, ELISA, and Western blot assays, respectively. Results showed that 14 constituents (40 μM) have no cytotoxicity for MH7A cells. Among them, two phenols including 3,4-dimethoxyphenyl-1-O-α-L-rhamnopyranosyl-(1→6)-O-β-D-glucopyranoside (DRG) and 3,4-dimethoxyphenol-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside (DAG) were shown to significantly inhibit the NO production with IC50 values of 5.25±0.34 and 5.35±0.31 μM, respectively. They also remarkably decreased the release of interleukin (IL)-2, 6, 8, and interferon (IFN)-γ, as well as prominently reduced the phosphorylation protein levels of p65, IkBα, AKT, and JNK at a concentration of 10 μM. Taken together, DRG and DAG could inhibit TNF-α-induced inflammatory response through blocking NF-kB/AKT/JNK signaling pathways in MH7A cells, thus could be promising against RA and other inflammation-related agents.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Ronghua Liu
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Sheng Ouyang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Meng Zou
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Yelin Duan
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Longmei Li
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Tao Guan
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Ting Zhang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Junwei He
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, People's Republic of China.
| |
Collapse
|
44
|
Flavonoids: Nutraceuticals for Rheumatic Diseases via Targeting of Inflammasome Activation. Int J Mol Sci 2021; 22:ijms22020488. [PMID: 33418975 PMCID: PMC7825303 DOI: 10.3390/ijms22020488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammation, an innate immune response that prevents cellular damage caused by pathogens, consists of two successive mechanisms, namely priming and triggering. While priming is an inflammation-preparation step, triggering is an inflammation-activation step, and the central feature of triggering is the activation of inflammasomes and intracellular inflammatory protein complexes. Flavonoids are natural phenolic compounds predominantly present in plants, fruits, and vegetables and are known to possess strong anti-inflammatory activities. The anti-inflammatory activity of flavonoids has long been demonstrated, with the main focus on the priming mechanisms, while increasing numbers of recent studies have redirected the research focus on the triggering step, and studies have reported that flavonoids inhibit inflammatory responses and diseases by targeting inflammasome activation. Rheumatic diseases are systemic inflammatory and autoimmune diseases that primarily affect joints and connective tissues, and they are associated with numerous deleterious effects. Here, we discuss the emerging literature on the ameliorative role of flavonoids targeting inflammasome activation in inflammatory rheumatic diseases.
Collapse
|