1
|
Xiao Q, Sun X, Zeng G, Luo X, Jiang Q, Ren R, Tang X, He C, Hu Z, Luo F, Yan J. The diverse sleep structure of mid-day nap in college students. Sleep Biol Rhythms 2025; 23:197-204. [PMID: 40190599 PMCID: PMC11971095 DOI: 10.1007/s41105-025-00569-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/30/2024] [Indexed: 04/09/2025]
Abstract
The aim of this study was to investigate the sleep structure of mid-day naps in students who frequently nap, and to determine whether this structure has any impact on their subjective feelings after nap. A total of 91 college students (male, mean age 20.47 ± 2.02 years) completed one-hour mid-day nap with polysomnographic recording in a sleep laboratory. Upon awakening, self-ratings of sleep quality and sleepiness were assessed using questionnaires. The sleep structure of mid-day naps varied among participants: 47.3% participants experienced stage-1, -2, and -3 non-rapid eye movement (NREM) sleep in sequence in the one-hour nap, while rapid eye movement (REM) sleep occurred between 40 and 60 min after lights off in 27.5% participants, and less than 15 min in 16.5% participants. After nap, participants who achieved stage-3 sleep reported better sleep quality, but the subjective sleepiness was not influenced by the sleep stage contained in nap or the sleep stage at awakening. These findings highlight the diversity in the sleep structure of mid-day naps, suggesting that this variability may need to be considered when studying the effects of napping.
Collapse
Affiliation(s)
- Qin Xiao
- Department of Physiology, Third Military Medical University, Chongqing, 400038 China
| | - Xueqi Sun
- Department of Physiology, Third Military Medical University, Chongqing, 400038 China
| | - Guoxin Zeng
- Department of Physiology, Third Military Medical University, Chongqing, 400038 China
| | - Xin Luo
- Department of Physiology, Third Military Medical University, Chongqing, 400038 China
| | - Qian Jiang
- Department of Sleep and Psychology Center, The People’s Hospital of Bishan District, Chongqing, China
| | - Rong Ren
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chao He
- Department of Physiology, Third Military Medical University, Chongqing, 400038 China
| | - Zhian Hu
- Department of Physiology, Third Military Medical University, Chongqing, 400038 China
| | - Fenlan Luo
- Department of Physiology, Third Military Medical University, Chongqing, 400038 China
| | - Jie Yan
- Department of Physiology, Third Military Medical University, Chongqing, 400038 China
| |
Collapse
|
2
|
Delorme TC, Arcego DM, Penichet D, O'Toole N, Huebener N, Silveira PP, Srivastava LK, Cermakian N. Large-scale effects of prenatal inflammation and early life circadian disruption in mice: Implications for neurodevelopmental disorders. Brain Behav Immun 2025; 127:409-422. [PMID: 40118225 DOI: 10.1016/j.bbi.2025.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/17/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025] Open
Abstract
Around 80 % of individuals with neurodevelopmental disorders such as schizophrenia and autism spectrum disorders experience disruptions in sleep/circadian rhythms. We explored whether environmental circadian disruption interacts with prenatal infection, a risk factor for neurodevelopmental disorders, to induce sex-specific deficits in mice. A maternal immune activation (MIA) protocol was used by injecting pregnant mice with viral mimic poly IC or saline at E9.5. Juvenile/adolescent male and female offspring (3-7 weeks old) were then subjected to a standard light:dark cycle (12:12LD) or to constant light (LL). Significant interactions between treatment (MIA, control) and lighting (12:12LD, LL) were evident in behaviors related to cognition, anxiety, and sociability. This pattern persisted in our RNA sequencing analysis of the dorsal hippocampus, where poly IC exposure resulted in numerous differentially expressed genes (DEGs) in males, while exposure to both poly IC and LL led to a marked reduction in DEGs. Through WGCNA analysis, many significant gene modules were found to be positively associated with poly IC (vs. saline) and LL (vs. LD) in males (fewer in females). Many of the identified hub-bottleneck genes were homologous to human genes associated with sleep/circadian rhythms and neurodevelopmental disorders as revealed by GWA studies. The MIA- and LL-associated modules were enriched in microglia gene signatures, which was paralleled by trends of effects of each of the factors on microglia morphology. In conclusion, in a mouse model of prenatal infection, circadian disruption induced by LL during adolescence acts as a modulator of the effects of MIA at behavioral, cellular, and molecular levels.
Collapse
Affiliation(s)
- Tara C Delorme
- Douglas Mental Health University Institute, Montréal, Québec H4H 1R3, Canada; Integrated Program in Neuroscience, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Danusa M Arcego
- Douglas Mental Health University Institute, Montréal, Québec H4H 1R3, Canada; Department of Psychiatry, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Danae Penichet
- Douglas Mental Health University Institute, Montréal, Québec H4H 1R3, Canada; Integrated Program in Neuroscience, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Nicholas O'Toole
- Douglas Mental Health University Institute, Montréal, Québec H4H 1R3, Canada
| | - Nikki Huebener
- Douglas Mental Health University Institute, Montréal, Québec H4H 1R3, Canada
| | - Patrícia P Silveira
- Douglas Mental Health University Institute, Montréal, Québec H4H 1R3, Canada; Department of Psychiatry, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Lalit K Srivastava
- Douglas Mental Health University Institute, Montréal, Québec H4H 1R3, Canada; Department of Psychiatry, McGill University, Montréal, Québec H3A 1A1, Canada.
| | - Nicolas Cermakian
- Douglas Mental Health University Institute, Montréal, Québec H4H 1R3, Canada; Department of Psychiatry, McGill University, Montréal, Québec H3A 1A1, Canada.
| |
Collapse
|
3
|
Marchesano M, Carboni A, Tassino B, Silva A. Circadian Rhythms, Regular Exercise, and Cognitive Performance in Morning-Trained Dancers. Clocks Sleep 2025; 7:7. [PMID: 39982314 PMCID: PMC11843932 DOI: 10.3390/clockssleep7010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025] Open
Abstract
Time-of-day and individual circadian variability influence cognitive performance, with later chronotypes being most compromised earlier in the day. On the other hand, moderate-intensity exercise has been shown to enhance cognitive function. We sought to evaluate the interplay among circadian rhythms, exercise, and cognitive performance in 22 students from the Uruguayan National Dance School, a population previously characterized as late chronotypes, attending a demanding morning schedule. We assessed sleep habits and physical activity patterns using self-report questionnaires and actigraphy. Before and after morning training, participants completed a psychomotor vigilance task (PVT) and a visual Stroop task (congruent and incongruent). The reaction speeds were lower early in the morning than at noon for all these tasks. We also found (1) a positive correlation between weekend sleep duration and PVT performance before training but not after; (2) a negative correlation between individual circadian phase and Stroop performance for both congruent and incongruent conditions after training but not before; and (3) a better Stroop performance after training for both congruent and incongruent conditions in dancers who engaged longer moderate-intensity exercise during training. Our findings suggest that regular morning training might help mitigate cognitive impairments experienced by dancers with later chronotypes in challenging morning scenarios.
Collapse
Affiliation(s)
- Mariana Marchesano
- Grupo Cronobiología, Comisión Sectorial de Investigación Científica, Universidad de la República, Montevideo 11400, Uruguay; (M.M.); (B.T.)
| | - Alejandra Carboni
- Facultad de Psicología, Universidad de la República, Montevideo 11200, Uruguay;
| | - Bettina Tassino
- Grupo Cronobiología, Comisión Sectorial de Investigación Científica, Universidad de la República, Montevideo 11400, Uruguay; (M.M.); (B.T.)
- Sección Etología, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Ana Silva
- Grupo Cronobiología, Comisión Sectorial de Investigación Científica, Universidad de la República, Montevideo 11400, Uruguay; (M.M.); (B.T.)
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| |
Collapse
|
4
|
Cajochen C, Schmidt C. The Circadian Brain and Cognition. Annu Rev Psychol 2025; 76:115-141. [PMID: 39441908 DOI: 10.1146/annurev-psych-022824-043825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Circadian rhythms are inherent to living organisms from single cells to humans and operate on a genetically determined cycle of approximately 24 hours. These endogenous rhythms are aligned with the external light/dark cycle of the Earth's rotation and offer the advantage of anticipating environmental changes. Circadian rhythms act directly on human cognition and indirectly through their fundamental influence on sleep/wake cycles. The strength of the circadian regulation of performance depends on the accumulated sleep debt and the cognitive domain, and it has been suggested to involve the activation of ascending arousal systems and their interaction with attention and other cognitive processes. In addition, attention-related cortical responses show extensive circadian rhythms, the phases of which vary across brain regions. This review discusses the impact of the circadian system on sleep/wake regulation and cognitive performance. It further addresses the health implications of circadian disruption, particularly in relation to mental and neurological disorders.
Collapse
Affiliation(s)
- Christian Cajochen
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, Basel, Switzerland
- Centre for Chronobiology, Department for Adult Psychiatry, Psychiatric Hospital of the University of Basel, Basel, Switzerland;
| | - Christina Schmidt
- Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology, Speech and Language, University of Liège, Liège, Belgium
- Sleep & Chronobiology Laboratory, GIGA-Research, CRC Human Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
5
|
Nishimura Y, Ohashi M, Eto T, Hayashi S, Motomura Y, Higuchi S, Takahashi M. Association of self-monitoring performance of cognitive performance with personal diurnal preference when sleep-deprived. Chronobiol Int 2025; 42:122-132. [PMID: 39807765 DOI: 10.1080/07420528.2024.2449014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/26/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025]
Abstract
In modern society, many workers struggle with sleep deprivation due to their work schedules and excessive workloads. Accurate self-awareness and self-monitoring abilities are crucial for workers to adopt risk-coping strategies and protective behaviors when fatigued. The current study examined the relationship between chronotypes and self-monitoring performance during 24 h of sleep deprivation. The study involved 26 male adults in a two-night experiment, and participants' diurnal preferences were evaluated using the Morningness-Eveningness Questionnaire (MEQ). Self-monitoring performance was calculated by comparing actual task performance with self-rated predicted or post-estimated performance in the psychomotor vigilance task (PVT) and Digit Symbol Substitution Task (DSST). The study found that task and self-monitoring performances in the PVT and DSST were maintained until around 4:00 h, after which they began to deteriorate. Individuals with a higher MEQ score, indicating a stronger tendency towards a morning type, showed inaccurate self-monitoring, particularly in the final quarter of the sleep deprivation experiment, due to overly optimistic predictions. However, only prediction accuracy and not post-estimation showed this correlation. This study highlights the importance of considering an individual's chronotype in workplace management, particularly in workplaces with irregular work timings, rotating shifts, and long working hours, to ensure better occupational safety.
Collapse
Affiliation(s)
- Yuki Nishimura
- Research Center for Overwork-Related Disorders, National Institute of Occupational Safety and Health, Kawasaki, Japan
- Occupational Stress and Health Management Research Group, National Institute of Occupational Safety and Health, Kawasaki, Japan
| | - Michihiro Ohashi
- Graduate School of Integrated Frontier Sciences, Kyushu University, Fukuoka, Japan
- Japan Society for the Promotion of Science, Fukuoka, Japan
| | - Taisuke Eto
- Japan Society for the Promotion of Science, Fukuoka, Japan
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Human Life Design and Science, Faculty of Design, Kyushu University, Fukuoka, Japan
| | - Sayuri Hayashi
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuki Motomura
- Department of Human Life Design and Science, Faculty of Design, Kyushu University, Fukuoka, Japan
| | - Shigekazu Higuchi
- Department of Human Life Design and Science, Faculty of Design, Kyushu University, Fukuoka, Japan
| | - Masaya Takahashi
- Research Center for Overwork-Related Disorders, National Institute of Occupational Safety and Health, Kawasaki, Japan
| |
Collapse
|
6
|
Chabal S, Moslener E, Markwald RR, Chinoy ED. Personal light treatment devices: a countermeasure to improve sleep, fatigue, and circadian misalignment in an operational setting. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2024; 6:zpae097. [PMID: 39811397 PMCID: PMC11725645 DOI: 10.1093/sleepadvances/zpae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/25/2024] [Indexed: 01/16/2025]
Abstract
Carefully timed light exposure is a promising countermeasure to overcome the negative sleep and circadian implications of shift work. However, many lighting interventions are static and applied at the group level (e.g. light banks, changes to ambient lighting), which is not appropriate for all populations or settings. This study investigates whether individualized lighting exposure, via personal light treatment devices (PLTDs), can improve sleep, sustain projected performance, and entrain circadian rhythms with the work schedules of US Navy submariners. Submarines are a unique testbed for PLTD intervention because they provide a self-contained environment with little influence from outside schedules or lighting. Forty-two submariners were pseudo-randomly assigned to either the PLTD or Control group. PLTD group participants wore blue-light exposure glasses for ~40 minutes upon waking and blue-blocking glasses for ~2 hours before sleep; Control group participants did not use PLTDs. Both groups completed questionnaires assessing subjective sleep and mood before and after the 12-day intervention, and wore wrist actigraphy devices to objectively assess sleep, projected performance, and predicted circadian phase outcomes. Compared with the Control group, several objective and subjective sleep outcomes and projected performance scores were improved in the PLTD group. The PLTD group's predicted circadian phase (modeled from actigraphy-derived accelerometer data) more rapidly shifted to align with scheduled work periods. Compliance with PLTD use was high, with no major disruptions to operational duties reported. These data provide initial support for the use of PLTDs as a flexible and customizable countermeasure for fatigue, sleep loss, and circadian misalignment in an operational environment.
Collapse
Affiliation(s)
- Sarah Chabal
- Operational Readiness and Health Directorate, Naval Health Research Center, San Diego, CA, USA
- Naval Submarine Medical Research Laboratory, Groton, CT, USA
- Leidos, Inc., San Diego, CA, USA
| | - Emily Moslener
- Operational Readiness and Health Directorate, Naval Health Research Center, San Diego, CA, USA
- Naval Submarine Medical Research Laboratory, Groton, CT, USA
- Leidos, Inc., San Diego, CA, USA
| | - Rachel R Markwald
- Operational Readiness and Health Directorate, Naval Health Research Center, San Diego, CA, USA
| | - Evan D Chinoy
- Operational Readiness and Health Directorate, Naval Health Research Center, San Diego, CA, USA
| |
Collapse
|
7
|
Jones CW, Larson O, Basner M, Dinges DF. The dynamic responses of mood and sleep physiology to chronic sleep restriction and subsequent recovery sleep. Sleep 2024; 47:zsae091. [PMID: 38602131 PMCID: PMC11381564 DOI: 10.1093/sleep/zsae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/09/2024] [Indexed: 04/12/2024] Open
Abstract
Healthy sleep of sufficient duration preserves mood and disturbed sleep is a risk factor for a range of psychiatric disorders. As adults commonly experience chronic sleep restriction (SR), an enhanced understanding of the dynamic relationship between sleep and mood is needed, including whether susceptibility to SR-induced mood disturbance differs between sexes. To address these gaps, data from N = 221 healthy adults who completed one of the two multi-day laboratory studies with identical 9-day SR protocols were analyzed. Participants randomized to the SR (n = 205) condition underwent 5 nights of SR to 4 hours of time-in-bed and were then randomized to one of the seven sleep doses that ranged from 0 to 12 hours in 2 hours increments; participants randomized to the control (n = 16) condition received 10 hours time-in-bed on all study nights. The Profile of Mood States (POMS) was used to assess mood every 2 hours during wakefulness and markers of sleep homeostasis (EEG slow-wave activity (SWA)) were derived via polysomnography. Mood progressively deteriorated across SR with marked disturbances in somatic mood components. Altered sleep physiology contributed to mood disturbance whereby increased EEG SWA was associated with increased POMS Total Mood Disturbance scores, a finding specific to males. The mood was restored in a dose-response fashion where improvements were greater with longer sleep doses. These findings suggest that when lifestyle and environmental factors are inhibited in the laboratory, the affective consequences of chronic sleep loss are primarily somatic mood disturbances. Altered sleep homeostasis may contribute to mood disturbance, yet sleep-dependent mechanisms may be sex-specific.
Collapse
Affiliation(s)
- Christopher W Jones
- Unit for Experimental Psychiatry, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Olivia Larson
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mathias Basner
- Unit for Experimental Psychiatry, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David F Dinges
- Unit for Experimental Psychiatry, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Grant LK, Gonsalvez I, Cohn AY, Nathan MD, Harder JA, Klerman EB, Scheer FAJL, Kaiser UB, Crawford S, Luo T, Wiley A, Rahman SA, Joffe H. The effect of experimentally induced sleep fragmentation and estradiol suppression on neurobehavioral performance and subjective sleepiness in premenopausal women. Sleep 2024; 47:zsae130. [PMID: 38874415 PMCID: PMC11321839 DOI: 10.1093/sleep/zsae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/02/2024] [Indexed: 06/15/2024] Open
Abstract
STUDY OBJECTIVES Menopause is associated with nighttime sleep fragmentation, declining estradiol, and impaired cognition. In a model of pharmacologically induced estradiol suppression mimicking menopause, we examined the impact of menopause-pattern sleep fragmentation on daytime neurobehavioral performance and sleepiness in premenopausal women. METHODS Twenty premenopausal women completed two five-night inpatient studies in the mid-to-late follicular phase (estrogenized) and after pharmacological estradiol suppression (hypo-estrogenized). During each study, participants had an uninterrupted 8-hour sleep opportunity for two nights, followed by three nights where sleep was experimentally fragmented to mimic menopause-pattern sleep disturbance, and during which the sleep opportunity was extended to prevent shortening of the sleep duration. Neurobehavioral performance and subjective sleepiness were measured using the Psychomotor Vigilance Task and Karolinska Sleepiness Scale (KSS). RESULTS Compared to unfragmented sleep, sleep fragmentation increased attentional lapses (+ 0.6 lapses, p < .05), slowed reaction time (+ 9.4 milliseconds, p < .01), and increased daytime sleepiness (+ 0.5 KSS score, p < .001). Estradiol suppression increased attentional lapses (+ 0.8; p < .001) and reaction time (+ 12.3, p < .01) but did not significantly affect daytime sleepiness. The effect of sleep fragmentation on neurobehavioral performance differed by estradiol state, such that the adverse effects of sleep fragmentation on attentional lapses (+ 0.9, trend p = .06) and reaction time (+ 15, p < .05) were observed only when estrogenized. CONCLUSIONS Menopause-pattern sleep fragmentation and estradiol suppression worsened neurobehavioral performance and daytime sleepiness, even while sleep duration was not reduced. The adverse effects of sleep fragmentation in the context of an adequate sleep duration highlight the importance of sleep continuity as a vital aspect of good sleep health.
Collapse
Affiliation(s)
- Leilah K Grant
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Mary Horrigan Connors Center for Women’s Health and Gender Biology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Irene Gonsalvez
- Mary Horrigan Connors Center for Women’s Health and Gender Biology, Brigham and Women’s Hospital, Boston, MA, USA
- Women’s Hormones and Aging Research Program, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Aviva Y Cohn
- Women’s Hormones and Aging Research Program, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Margo D Nathan
- Women’s Hormones and Aging Research Program, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica A Harder
- Women’s Hormones and Aging Research Program, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth B Klerman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Frank A J L Scheer
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Mary Horrigan Connors Center for Women’s Health and Gender Biology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Sybil Crawford
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Tianyu Luo
- Women’s Hormones and Aging Research Program, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Aleta Wiley
- Mary Horrigan Connors Center for Women’s Health and Gender Biology, Brigham and Women’s Hospital, Boston, MA, USA
- Women’s Hormones and Aging Research Program, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Shadab A Rahman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Mary Horrigan Connors Center for Women’s Health and Gender Biology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Hadine Joffe
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Mary Horrigan Connors Center for Women’s Health and Gender Biology, Brigham and Women’s Hospital, Boston, MA, USA
- Women’s Hormones and Aging Research Program, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Wang Z, Jiang T, Xu H, Wang C, Tang R. Circadian rhythm sleep loss impairs motor inhibition more than motor execution in continuous action. Sci Rep 2024; 14:18668. [PMID: 39134656 PMCID: PMC11319480 DOI: 10.1038/s41598-024-69242-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Under total sleep deprivation, both inhibitory and motor control are impaired. However, how circadian rhythm sleep loss caused by irregular sleep pattern affects motor inhibition and execution in continuous actions remains unknown. This study utilized a pointing task to investigate the question over 30 days. During regular trials, participants were instructed to tap on a specified location, while in countermanding trials, they were required to countermand their current action. Additionally, there was a control group performed the same task following a normal 24-h rhythm. The results indicated that the decrease in accuracy and the increase in movement time in countermanding trials were more prominent in the shift work group. In contrast, there was no significant difference in reaction time between the two groups. Notably, the shift work group outperformed the control group in terms of movement time in regular trials and radial displacement in countermanding trials. Overall, these results show that circadian rhythm sleep loss predominantly affects inhibitory control, rather than motor control, underscoring the nuanced impacts of sleep disruption on differential aspects of cognitive and motor functions.
Collapse
Affiliation(s)
- Ziying Wang
- Naval Medical Center of PLA, Naval Medical University, Shanghai, 200433, China
- Key Laboratory of Molecular Neurobiology of Ministry of Education, Naval Medical University, Shanghai, 200433, China
| | - Tingwei Jiang
- School of Social and Behavioral Sciences, Department of Psychology, Nanjing University, Nanjing, 210023, China
| | - Haodan Xu
- Naval Medical Center of PLA, Naval Medical University, Shanghai, 200433, China
- Key Laboratory of Molecular Neurobiology of Ministry of Education, Naval Medical University, Shanghai, 200433, China
| | - Chuan Wang
- Naval Medical Center of PLA, Naval Medical University, Shanghai, 200433, China.
- Key Laboratory of Molecular Neurobiology of Ministry of Education, Naval Medical University, Shanghai, 200433, China.
| | - Rixin Tang
- School of Social and Behavioral Sciences, Department of Psychology, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
10
|
Wang Y, Lin H, Liu X, Zhu B, He M, Chen C. Associations between capacity of cognitive control and sleep quality: a two-wave longitudinal study. Front Psychol 2024; 15:1391761. [PMID: 38952828 PMCID: PMC11216015 DOI: 10.3389/fpsyg.2024.1391761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
This longitudinal study explored the impact of the upper limit of cognitive control on the sleep quality of high school students. We collected data in two waves to examine four main variables: capacity of cognitive control (CCC), trait mindfulness, emotional distress and sleep quality. At the first time point (T1), trait mindfulness and emotional distress were measured by rating scales, and the CCC was evaluated by revised backward masking majority function task. Sleep quality was rated 5 months later (T2). The results indicated that: (1) the CCC was negatively correlated with trait mindfulness, and trait mindfulness was negatively correlated with emotional stress; (2) there was no simple mediation of either trait mindfulness or emotional distress in the relationship between CCC and sleep quality; (3) instead, the CCC was associated with poor sleep quality in a sequential mediation through trait mindfulness and then emotional stress. The research highlights the importance of trait mindfulness and emotional distress for addressing sleep problems in adolescents.
Collapse
Affiliation(s)
- Yongchun Wang
- School of Psychology, South China Normal University, Guangzhou, China
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Huanping Lin
- School of Psychology, South China Normal University, Guangzhou, China
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Xiqin Liu
- School of Foreign Languages, South China University of Technology, Guangzhou, China
| | - Bojia Zhu
- Department of Human Resource, Guangzhou Branch of China Mobile Group Guangdong Company Limited, Guangzhou, China
| | - Meihui He
- School of Psychology, South China Normal University, Guangzhou, China
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Caiqi Chen
- School of Psychology, South China Normal University, Guangzhou, China
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| |
Collapse
|
11
|
Leahy S, Xiao Q, Yeung CHC, Figueiro MG. Associations between circadian alignment and cognitive functioning in a nationally representative sample of older adults. Sci Rep 2024; 14:13509. [PMID: 38866912 PMCID: PMC11169347 DOI: 10.1038/s41598-024-64309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024] Open
Abstract
Proper alignment of activity-rest and light-dark patterns allows for healthy bodily functions to occur at optimal times of the day. Disruptions to this alignment may cause poor sleep as well as physical, mental, and cognitive problems. The purpose of this cross-sectional study was to determine if poorer circadian alignment was associated with decreased cognitive functioning among older (> 60 years) participants in the National Health and Nutrition Examination Survey. We utilized actigraphy-based rest-activity and dark-light measurements to calculate phasor magnitude (strength of circadian alignment coupling) and phasor angle (phase difference between activity-rest and light-dark cycles). Multiple linear regression models were used to determine associations of phasor magnitude and angle with performance in various cognitive tests, including Digit Symbol Substitution Test score (DSSS), CERAD Savings Percentage (CSP), and Animal Fluency Test (AFT) score. The results showed that a lower phasor magnitude (which indicates decreased strength of alignment coupling between rest-activity and dark-light cycles) was significantly associated with decreased DSSS (indicating slower processing speed and poorer working memory) when controlling for many important sociodemographic factors. However, this association became non-significant when accounting for sleep duration and total physical activity. Phasor angle did not have a significant association with any of the cognitive scores. Overall, we provided evidence indicating that circadian alignment may be a predictor of cognitive performance. Future studies should investigate whether improving circadian alignment may improve cognitive function and prevent cognitive decline.
Collapse
Affiliation(s)
- Sophie Leahy
- Department of Population Health Science and Policy, Light and Health Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qian Xiao
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- School of Public Health, Center of Spatial-Temporal Modeling for Applications in Population Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chris Ho Ching Yeung
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mariana G Figueiro
- Department of Population Health Science and Policy, Light and Health Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
12
|
Grant LK, Kent BA, Rahman SA, St. Hilaire MA, Kirkley CL, Gregory KB, Clark T, Hanifin JP, Barger LK, Czeisler CA, Brainard GC, Lockley SW, Flynn-Evans EE. The effect of a dynamic lighting schedule on neurobehavioral performance during a 45-day simulated space mission. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2024; 5:zpae032. [PMID: 38903700 PMCID: PMC11187988 DOI: 10.1093/sleepadvances/zpae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/15/2024] [Indexed: 06/22/2024]
Abstract
Study Objectives We previously reported that during a 45-day simulated space mission, a dynamic lighting schedule (DLS) improved circadian phase alignment and performance assessed once on selected days. This study aimed to evaluate how DLS affected performance on a 5-minute psychomotor vigilance task (PVT) administered multiple times per day on selected days. Methods Sixteen crewmembers (37.4 ± 6.7 years; 5F) underwent six cycles of 2 × 8-hour/night followed by 5 × 5-hour/night sleep opportunities. During the DLS (n = 8), daytime white light exposure was blue-enriched (~6000 K; Level 1: 1079, Level 2: 76 melanopic equivalent daytime illuminance (melEDI) lux) and blue-depleted (~3000-4000 K; L1: 21, L2: 2 melEDI lux) 3 hours before bed. In the standard lighting schedule (SLS; n = 8), lighting remained constant (~4500K; L1: 284, L2 62 melEDI lux). Effects of lighting condition (DLS/SLS), sleep condition (5/8 hours), time into mission, and their interactions, and time awake on PVT performance were analyzed using generalized linear mixed models. Results The DLS was associated with fewer attentional lapses (reaction time [RT] > 500 milliseconds) compared to SLS. Lapses, mean RT, and 10% fastest/slowest RTs were worse following 5 compared to 8 hours of sleep but not between lighting conditions. There was an effect of time into mission on RTs, likely due to sleep loss. Overall performance differed by time of day, with longer RTs at the beginning and end of the day. There were more lapses and slower RTs in the afternoon in the SLS compared to the DLS condition. Conclusions Future missions should incorporate DLS to enhance circadian alignment and performance. This paper is part of the Sleep and Circadian Rhythms: Management of Fatigue in Occupational Settings Collection.
Collapse
Affiliation(s)
- Leilah K Grant
- Division of Sleep and Circadian Disorders, Brigham & Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Brianne A Kent
- Division of Sleep and Circadian Disorders, Brigham & Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Shadab A Rahman
- Division of Sleep and Circadian Disorders, Brigham & Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Melissa A St. Hilaire
- Division of Sleep and Circadian Disorders, Brigham & Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Crystal L Kirkley
- Fatigue Countermeasures Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Kevin B Gregory
- Fatigue Countermeasures Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, USA
| | | | - John P Hanifin
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Laura K Barger
- Division of Sleep and Circadian Disorders, Brigham & Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Charles A Czeisler
- Division of Sleep and Circadian Disorders, Brigham & Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - George C Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Steven W Lockley
- Division of Sleep and Circadian Disorders, Brigham & Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Erin E Flynn-Evans
- Fatigue Countermeasures Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, USA
| |
Collapse
|
13
|
Song Z, Ho CT, Zhang X. Gut Microbiota Mediate the Neuroprotective Effect of Oolong Tea Polyphenols in Cognitive Impairment Induced by Circadian Rhythm Disorder. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12184-12197. [PMID: 38745351 DOI: 10.1021/acs.jafc.4c01922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Oolong tea polyphenols (OTP) have attracted wide attention due to their ability to reduce inflammatory response, regulate gut microbiota, and improve cognitive function. However, exactly how the gut microbiota modulates nervous system activity is still an open question. We previously expounded that supplementing with OTP alleviated neuroinflammation in circadian rhythm disorder (CRD) mice. Here, we showed that OTP can relieve microglia activation by reducing harmful microbial metabolites lipopolysaccharide (LPS) that alleviate CRD-induced cognitive decline. Mechanistically, OTP suppressed the inflammation response by regulating the gut microbiota composition, including upregulating the relative abundance of Muribaculaceae and Clostridia_UCG-014 and downregulating Desulfovibrio, promoting the production of short-chain fatty acids (SCFAs). Moreover, the use of OTP alleviated intestinal barrier damage and decreased the LPS transport to the serum. These results further inhibited the activation of microglia, thus alleviating cognitive impairment by inhibiting neuroinflammation, neuron damage, and neurotoxicity metabolite glutamate elevation. Meanwhile, OTP upregulated the expression of synaptic plasticity-related protein postsynaptic density protein 95 (PSD-95) and synaptophysin (SYN) by elevating the brain-derived neurotrophic factor (BDNF) level. Taken together, our findings suggest that the OTP has the potential to prevent CRD-induced cognition decline by modulating gut microbiota and microbial metabolites.
Collapse
Affiliation(s)
- Zheyi Song
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P. R. China
| |
Collapse
|
14
|
Sundelin T, Landry S, Axelsson J. Is snoozing losing? Why intermittent morning alarms are used and how they affect sleep, cognition, cortisol, and mood. J Sleep Res 2024; 33:e14054. [PMID: 37849039 DOI: 10.1111/jsr.14054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023]
Abstract
Pressing the snooze button is a common way to start the day, but little is known about this behaviour. Through two studies we determined predictors and effects of snoozing. In Study 1 (n = 1732) respondents described their waking habits, confirming that snoozing is widespread, especially in younger individuals and later chronotypes. Morning drowsiness and shorter sleep were also more common for those who snooze. Study 2 was a within-subjects laboratory study (with polysomnography) on habitual snoozers (n = 31), showing that 30 min of snoozing improved or did not affect performance on cognitive tests directly upon rising compared to an abrupt awakening. Bayes factors indicate varying strengths of this evidence. Snoozing resulted in about 6 min of lost sleep, while preventing awakenings from slow-wave sleep (N3). There were no clear effects of snoozing on the cortisol awakening response, morning sleepiness, mood, or overnight sleep architecture. A brief snooze period may thus help alleviate sleep inertia, without substantially disturbing sleep, for late chronotypes and those with morning drowsiness.
Collapse
Affiliation(s)
- Tina Sundelin
- Department of Psychology, Stockholm University, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Shane Landry
- Department of Physiology, Biomedical Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - John Axelsson
- Department of Psychology, Stockholm University, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Wang J, Huang C, Luo G, Xiao Y, Guo G, Quan D, Zheng H. Reduced sleep quality defines a subtype of obsessive-compulsive disorder with lower Glx levels in the resting thalamus and worse response inhibition. J Psychiatr Res 2024; 173:14-24. [PMID: 38461674 DOI: 10.1016/j.jpsychires.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND The aim of this study was to investigate the differences between resting and active thalamic neurometabolite levels and inhibitory function in obsessive compulsive disorder (OCD) patients with poor sleep quality (PSQ was defined as Pittsburgh Sleep Quality Index >5 and sleep efficiency ≤85%) compared to OCD patients with good sleep quality (GSQ) and healthy controls (HCs), as well as the relationship of these indices to obsessive compulsive symptoms. METHODS Functional magnetic resonance spectroscopy (fMRS) was used to measure resting and active thalamic neurometabolite levels in 72 subjects (20 HCs and 38 OCD patients included in study analysis). Response inhibition function was measured by the Go-Nogo task before and during MRS recording. Subjective sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI). The symptoms of OCD, anxiety and depression were evaluated using relevant clinical scales. RESULTS OCD patients exhibited significantly reduced Glx/Cr levels in the resting thalamus. The levels of resting thalamic Glu/Cr and Glx/Cr in OCD patients with PSQ were significantly lowest. OCD patients had significantly lower correct rates on Go tasks, higher error rates on Nogo tasks, and longer error average response times (EART) to the Nogo task. OCD patients with PSQ demonstrated the highest Nogo task error rate and the longest EART to Nogo task. Furthermore, PSQI scores exhibited negative correlations with Glu/Cr and Glx/Cr in the resting thalamus. CONCLUSION OCD patients with PSQ demonstrated reduced levels of thalamic resting Glx and more pronounced response inhibitory function impairment. Aberrant neurometabolite levels in critical brain regions, coupled with heightened response inhibition function deficits, may be a neurobiological basis for the PSQ that OCD patients generally exhibit.
Collapse
Affiliation(s)
- Jian Wang
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510180, China; School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Cigui Huang
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510180, China; The Second Clinical School of Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Guowei Luo
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Yuqing Xiao
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510180, China; The Second Clinical School of Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Guangquan Guo
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510180, China
| | - Dongming Quan
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510180, China
| | - Huirong Zheng
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510180, China; School of Medicine, South China University of Technology, Guangzhou, 510006, China; The Second Clinical School of Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
16
|
Sauvet F, Beauchamps V, Cabon P. Sleep Inertia in Aviation. Aerosp Med Hum Perform 2024; 95:206-213. [PMID: 38486319 DOI: 10.3357/amhp.6343.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
INTRODUCTION: Sleep inertia is the transition state during which alertness and cognitive performance are temporarily impaired after awakening. Magnitude and time course of sleep inertia are characterized by high individual variability with large differences between the cognitive functions affected. This period of impairment is of concern to pilots, who take sleep or nap periods during on-call work hours or in-flight rest, then need to perform safety-critical tasks soon after waking. This review analyzes literature related to sleep inertia and countermeasures applicable for aviation.METHODS: The large part of scientific literature that focuses on sleep inertia is based on studies in patients with chronic sleep inertia. We analyzed 8 narrative reviews and 64 papers related to acute sleep inertia in healthy subjects.DISCUSSION: Sleep inertia is a multifactorial, complex process, and many different protocols have been conducted, with a low number of subjects, in noncontrolled laboratory designs, with questionnaires or cognitive tests that have not been replicated. Evidence suggests that waking after sleep loss, or from deeper stages of sleep, can exacerbate sleep inertia through complex interactions between awakening and sleep-promoting brain structures. Nevertheless, no meta-analyses are possible and extrapolation to pilots' performances is hypothetical. Studies in real life or simulated operational situations must be conducted to improve the description of the impact of sleep inertia and kinetics on pilots' performances. Taking rest or sleep time remains the main method for pilots to fight against fatigue and related decreases in performance. We propose proactive strategies to mitigate sleep inertia and improve alertness.Sauvet F, Beauchamps V, Cabon P. Sleep inertia in aviation. Aerosp Med Hum Perform. 2024; 95(4):206-213.
Collapse
|
17
|
Klerman EB, Wright KP, Duffy JF, Scheer FAJL, Chang AM, Czeisler CA, Rajaratnam SM. A perspective on the Festschrift of Charles A. Czeisler, PhD MD. Sleep Health 2024; 10:S4-S10. [PMID: 38331654 PMCID: PMC11031332 DOI: 10.1016/j.sleh.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Affiliation(s)
- Elizabeth B Klerman
- Department of Neurology, Massachusetts General Hospital, Boston, USA; Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| | - Kenneth P Wright
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology., University of Colorado Boulder, USA
| | - Jeanne F Duffy
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Frank A J L Scheer
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Anne-Marie Chang
- Department of Biobehavioral Health, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Charles A Czeisler
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Shantha Mw Rajaratnam
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA; School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Victoria, Australia
| |
Collapse
|
18
|
Cao Y, Li J, Ou S, Xie T, Jiang T, Guo X, Ma N. Effect of homeostatic pressure and circadian rhythm on the task-switching: Evidence from drift diffusion model and ERP. Int J Psychophysiol 2024; 195:112263. [PMID: 37981032 DOI: 10.1016/j.ijpsycho.2023.112263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/08/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
The effect of diurnal fluctuations on cognitive functions is widely studied, yet rare research has attempted to separate the role of two crucial processes underlying diurnal fluctuations: homeostatic pressure and circadian rhythm. The present study aimed to dissociate their effects by conducting a task-switching task in the morning, napping afternoon, and no-napping afternoon, respectively. Additionally, DDM and ERP were utilized to explore how these two processes differentially affect cognitive processes involved in task-switching. By a within-participant design, 35 healthy adults (20.03 ± 2.01 year-old, 14 males) with an intermediate-type chronotype were recruited in the current study. The results demonstrated that accumulated homeostatic pressure caused reduced accuracy, drift rate, and decision threshold. In the no-napping afternoon, P1 and P2 amplitudes were also decreased due to homeostatic pressure, whereas an afternoon nap could partially restore performance and neural activity. Conversely, the upward circadian rhythm in the afternoon exerted a compensatory effect, resulting in increases in N2 and P3 amplitudes. The findings highlight the disassociated impacts of homeostatic pressure and circadian rhythm on the cognitive processes involved in task-switching and further underscore the importance of considering diurnal variation in both scientific research and accident prevention.
Collapse
Affiliation(s)
- Yixuan Cao
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Jiahui Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Simei Ou
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Tian Xie
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Tianxiang Jiang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Xi Guo
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Ning Ma
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
19
|
Keihani A, Mayeli A, Ferrarelli F. Circadian Rhythm Changes in Healthy Aging and Mild Cognitive Impairment. Adv Biol (Weinh) 2023; 7:e2200237. [PMID: 36403250 PMCID: PMC10199146 DOI: 10.1002/adbi.202200237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/01/2022] [Indexed: 11/21/2022]
Abstract
Disruptions in circadian rhythms can occur in healthy aging; however, these changes are more severe and pervasive in individuals with age-related and neurodegenerative diseases, such as dementia. Circadian rhythm alterations are also present in preclinical stages of dementia, for example, in patients with mild cognitive impairments (MCI); thus, providing a unique window of opportunity for early intervention in neurodegenerative disorders. Nonetheless, there is a lack of studies examining the association between relevant changes in circadian rhythms and their relationship with cognitive dysfunctions in MCI individuals. In this review, circadian system alterations occurring in MCI patients are examined compared to healthy aging individuals while also considering their association with MCI neurocognitive alterations. The main findings are that abnormal circadian changes in rest-activity, core body temperature, melatonin, and cortisol rhythms appear in the MCI stage and that these circadian rhythm disruptions are associated with some of the neurocognitive deficits observed in MCI patients. In addition, preliminary evidence indicates that interventions aimed at restoring regular circadian rhythms may prevent or halt the progress of neurodegenerative diseases and mitigate their related cognitive impairments. Future longitudinal studies with repeated follow-up assessments are needed to establish the translational potential of these findings in clinical practice.
Collapse
Affiliation(s)
- Ahmadreza Keihani
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Ave, Pittsburgh, PA, 15213, USA
| | - Ahmad Mayeli
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Ave, Pittsburgh, PA, 15213, USA
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Ave, Pittsburgh, PA, 15213, USA
| |
Collapse
|
20
|
May CP, Hasher L, Healey K. For Whom (and When) the Time Bell Tolls: Chronotypes and the Synchrony Effect. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2023; 18:1520-1536. [PMID: 37369064 DOI: 10.1177/17456916231178553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Circadian rhythms are powerful timekeepers that drive physiological and intellectual functioning throughout the day. These rhythms vary across individuals, with morning chronotypes rising and peaking early in the day and evening chronotypes showing a later rise in arousal, with peaks in the afternoon or evening. Chronotype also varies with age from childhood to adolescence to old age. As a result of these differences, the time of day at which people are best at attending, learning, solving analytical problems, making complex decisions, and even behaving ethically varies. Across studies of attention and memory and a range of allied areas, including academic achievement, judgment and decision-making, and neuropsychological assessment, optimal outcomes are found when performance times align with peaks in circadian arousal, a finding known as the synchrony effect. The benefits of performing in synchrony with one's chronotype (and the costs of not doing so) are most robust for individuals with strong morning or evening chronotypes and for tasks that require effortful, analytical processing or the suppression of distracting information. Failure to take the synchrony effect into consideration may be a factor in issues ranging from replication difficulties to school timing to assessing intellectual disabilities and apparent cognitive decline in aging.
Collapse
Affiliation(s)
| | - Lynn Hasher
- Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto
| | - Karl Healey
- Department of Psychology, Michigan State University
| |
Collapse
|
21
|
Festa F, Medori S, Macrì M. Move Your Body, Boost Your Brain: The Positive Impact of Physical Activity on Cognition across All Age Groups. Biomedicines 2023; 11:1765. [PMID: 37371860 DOI: 10.3390/biomedicines11061765] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
While the physical improvements from exercise have been well documented over the years, the impact of physical activity on mental health has recently become an object of interest. Physical exercise improves cognition, particularly attention, memory, and executive functions. However, the mechanisms underlying these effects have yet to be fully understood. Consequently, we conducted a narrative literature review concerning the association between acute and chronic physical activity and cognition to provide an overview of exercise-induced benefits during the lifetime of a person. Most previous papers mainly reported exercise-related greater expression of neurotransmitter and neurotrophic factors. Recently, structural and functional magnetic resonance imaging techniques allowed for the detection of increased grey matter volumes for specific brain regions and substantial modifications in the default mode, frontoparietal, and dorsal attention networks following exercise. Here, we highlighted that physical activity induced significant changes in functional brain activation and cognitive performance in every age group and could counteract psychological disorders and neural decline. No particular age group gained better benefits from exercise, and a specific exercise type could generate better cognitive improvements for a selected target subject. Further research should develop appropriate intervention programs concerning age and comorbidity to achieve the most significant cognitive outcomes.
Collapse
Affiliation(s)
- Felice Festa
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Silvia Medori
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Monica Macrì
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
22
|
Song T, Xu L, Peng Z, Wang L, Dai C, Xu M, Shao Y, Wang Y, Li S. Total sleep deprivation impairs visual selective attention and triggers a compensatory effect: evidence from event-related potentials. Cogn Neurodyn 2023; 17:621-631. [PMID: 37265652 PMCID: PMC10229502 DOI: 10.1007/s11571-022-09861-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/10/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Many studies have demonstrated the impairment of sustained attention due to total sleep deprivation (TSD). However, it remains unclear whether and how TSD affects the processing of visual selective attention. In the current study, 24 volunteers performed a visual search task before and after TSD over a period of 36 h while undergoing spontaneous electroencephalography. Paired-sample t-tests of behavioral performance revealed that, compared with baseline values, the participants showed lower accuracy and higher variance in response time in visual search tasks performed after TSD. Analysis of the event-related potentials (ERPs) showed that the mean amplitude of the N2-posterior-contralateral (N2pc) difference wave after TSD was less negative than that at baseline and the mean amplitude of P3 after TSD was more positive than that at baseline. Our findings suggest that TSD significantly attenuates attentional direction/orientation processing and triggers a compensatory effect in the parietal brain to partially offset the impairments. These findings provide new evidence and improve our understanding of the effects of sleep loss.
Collapse
Affiliation(s)
- Tao Song
- School of Psychology, Beijing Sport University, Beijing, China
| | - Lin Xu
- School of Psychology, Beijing Sport University, Beijing, China
| | - Ziyi Peng
- School of Psychology, Beijing Sport University, Beijing, China
| | - Letong Wang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Cimin Dai
- School of Psychology, Beijing Sport University, Beijing, China
| | - Mengmeng Xu
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yi Wang
- Department of Physical Education, Renmin University of China, Beijing, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Shijun Li
- Department of Radiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
23
|
Hsu AL, Li MK, Kung YC, Wang ZJ, Lee HC, Li CW, Huang CWC, Wu CW. Temporal consistency of neurovascular components on awakening: preliminary evidence from electroencephalography, cerebrovascular reactivity, and functional magnetic resonance imaging. Front Psychiatry 2023; 14:1058721. [PMID: 37215667 PMCID: PMC10196490 DOI: 10.3389/fpsyt.2023.1058721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Sleep inertia (SI) is a time period during the transition from sleep to wakefulness wherein individuals perceive low vigilance with cognitive impairments; SI is generally identified by longer reaction times (RTs) in attention tasks immediately after awakening followed by a gradual RT reduction along with waking time. The sluggish recovery of vigilance in SI involves a dynamic process of brain functions, as evidenced in recent functional magnetic resonance imaging (fMRI) studies in within-network and between-network connectivity. However, these fMRI findings were generally based on the presumption of unchanged neurovascular coupling (NVC) before and after sleep, which remains an uncertain factor to be investigated. Therefore, we recruited 12 young participants to perform a psychomotor vigilance task (PVT) and a breath-hold task of cerebrovascular reactivity (CVR) before sleep and thrice after awakening (A1, A2, and A3, with 20 min intervals in between) using simultaneous electroencephalography (EEG)-fMRI recordings. If the NVC were to hold in SI, we hypothesized that time-varying consistencies could be found between the fMRI response and EEG beta power, but not in neuron-irrelevant CVR. Results showed that the reduced accuracy and increased RT in the PVT upon awakening was consistent with the temporal patterns of the PVT-induced fMRI responses (thalamus, insula, and primary motor cortex) and the EEG beta power (Pz and CP1). The neuron-irrelevant CVR did not show the same time-varying pattern among the brain regions associated with PVT. Our findings imply that the temporal dynamics of fMRI indices upon awakening are dominated by neural activities. This is the first study to explore the temporal consistencies of neurovascular components on awakening, and the discovery provides a neurophysiological basis for further neuroimaging studies regarding SI.
Collapse
Affiliation(s)
- Ai-Ling Hsu
- Bachelor Program in Artificial Intelligence, Chang Gung University, Taoyuan, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ming-Kang Li
- Bachelor Program in Artificial Intelligence, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Chia Kung
- Department of Radiology, Tri-Service General Hospital, Taipei, Taiwan
| | - Zhitong John Wang
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Chien Lee
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Research Center of Sleep Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chia-Wei Li
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | | | - Changwei W. Wu
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
- Brain and Consciousness Research Center, Taipei Medical University-Shuang Ho Hospital, New Taipei, Taiwan
| |
Collapse
|
24
|
Wang W, Yuan RK, Mitchell JF, Zitting KM, St Hilaire MA, Wyatt JK, Scheer FAJL, Wright KP, Brown EN, Ronda JM, Klerman EB, Duffy JF, Dijk DJ, Czeisler CA. Desynchronizing the sleep---wake cycle from circadian timing to assess their separate contributions to physiology and behaviour and to estimate intrinsic circadian period. Nat Protoc 2023; 18:579-603. [PMID: 36376588 DOI: 10.1038/s41596-022-00746-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
Circadian clocks drive cyclic variations in many aspects of physiology, but some daily variations are evoked by periodic changes in the environment or sleep-wake state and associated behaviors, such as changes in posture, light levels, fasting or eating, rest or activity and social interactions; thus, it is often important to quantify the relative contributions of these factors. Yet, circadian rhythms and these evoked effects cannot be separated under typical 24-h day conditions, because circadian phase and the length of time awake or asleep co-vary. Nathaniel Kleitman's forced desynchrony (FD) protocol was designed to assess endogenous circadian rhythmicity and to separate circadian from evoked components of daily rhythms in multiple parameters. Under FD protocol conditions, light intensity is kept low to minimize its impact on the circadian pacemaker, and participants have sleep-wake state and associated behaviors scheduled to an imposed non-24-h cycle. The period of this imposed cycle, Τ, is chosen so that the circadian pacemaker cannot entrain to it and therefore continues to oscillate at its intrinsic period (τ, ~24.15 h), ensuring circadian components are separated from evoked components of daily rhythms. Here we provide detailed instructions and troubleshooting techniques on how to design, implement and analyze the data from an FD protocol. We provide two procedures: one with general guidance for designing an FD study and another with more precise instructions for replicating one of our previous FD studies. We discuss estimating circadian parameters and quantifying the separate contributions of circadian rhythmicity and the sleep-wake cycle, including statistical analysis procedures and an R package for conducting the non-orthogonal spectral analysis method that enables an accurate estimation of period, amplitude and phase.
Collapse
Affiliation(s)
- Wei Wang
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Robin K Yuan
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jude F Mitchell
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| | - Kirsi-Marja Zitting
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Melissa A St Hilaire
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - James K Wyatt
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Frank A J L Scheer
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Kenneth P Wright
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Emery N Brown
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Data Systems and Society, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joseph M Ronda
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Elizabeth B Klerman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Jeanne F Duffy
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, UK
| | - Charles A Czeisler
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Hilditch CJ, Bansal K, Chachad R, Wong LR, Bathurst NG, Feick NH, Santamaria A, Shattuck NL, Garcia JO, Flynn-Evans EE. Reconfigurations in brain networks upon awakening from slow wave sleep: Interventions and implications in neural communication. Netw Neurosci 2023; 7:102-121. [PMID: 37334002 PMCID: PMC10270716 DOI: 10.1162/netn_a_00272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/05/2022] [Indexed: 04/04/2024] Open
Abstract
Sleep inertia is the brief period of impaired alertness and performance experienced immediately after waking. Little is known about the neural mechanisms underlying this phenomenon. A better understanding of the neural processes during sleep inertia may offer insight into the awakening process. We observed brain activity every 15 min for 1 hr following abrupt awakening from slow wave sleep during the biological night. Using 32-channel electroencephalography, a network science approach, and a within-subject design, we evaluated power, clustering coefficient, and path length across frequency bands under both a control and a polychromatic short-wavelength-enriched light intervention condition. We found that under control conditions, the awakening brain is typified by an immediate reduction in global theta, alpha, and beta power. Simultaneously, we observed a decrease in the clustering coefficient and an increase in path length within the delta band. Exposure to light immediately after awakening ameliorated changes in clustering. Our results suggest that long-range network communication within the brain is crucial to the awakening process and that the brain may prioritize these long-range connections during this transitional state. Our study highlights a novel neurophysiological signature of the awakening brain and provides a potential mechanism by which light improves performance after waking.
Collapse
Affiliation(s)
- Cassie J. Hilditch
- Fatigue Countermeasures Laboratory, Department of Psychology, San José State University, San José, CA, USA
| | - Kanika Bansal
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- US DEVCOM Army Research Laboratory, Humans in Complex Systems Division, Aberdeen Proving Ground, MD, USA
| | - Ravi Chachad
- Fatigue Countermeasures Laboratory, Department of Psychology, San José State University, San José, CA, USA
| | - Lily R. Wong
- Fatigue Countermeasures Laboratory, Department of Psychology, San José State University, San José, CA, USA
| | - Nicholas G. Bathurst
- Fatigue Countermeasures Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Nathan H. Feick
- Fatigue Countermeasures Laboratory, Department of Psychology, San José State University, San José, CA, USA
| | - Amanda Santamaria
- Cognitive and Systems Neuroscience Research Hub, University of South Australia, Adelaide, SA, Australia
| | - Nita L. Shattuck
- Operations Research Department, Naval Postgraduate School, Monterey, CA, USA
| | - Javier O. Garcia
- US DEVCOM Army Research Laboratory, Humans in Complex Systems Division, Aberdeen Proving Ground, MD, USA
| | - Erin E. Flynn-Evans
- Fatigue Countermeasures Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, USA
| |
Collapse
|
26
|
Santos IM, Silva A, Bem-Haja P, Rosa C, Cerri L, Queiroz DF, Barroso T, Alves MF, Silva CF. The Impact of Sleep on Face Recognition Memory: A Scoping Review. Brain Sci 2022; 12:1385. [PMID: 36291319 PMCID: PMC9599639 DOI: 10.3390/brainsci12101385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
Sleep has a major impact on a variety of human biological and cognitive functions. In particular, its impact on memory has attracted extensive research and has been amply demonstrated. However, it is still unclear whether sleep, or lack thereof, affects the ability to recognize faces. To clarify this, we conducted a scoping review on studies that included a face recognition memory task and any kind of sleep manipulation in adults without any sleep pathology. A systematic search and synthesis of peer-reviewed journal articles identified through the electronic databases Scopus, Web of Science, EBSCO, and PubMed was performed. A final sample of 18 articles, corresponding to 19 studies, met the eligibility criteria. The results of 13 articles suggested that sleep benefited face recognition ability, whereas two articles indicated a detrimental effect of sleep on performance, and four articles found no significant effects. This review highlights the high methodological variability between studies, in terms of sleep manipulation, retention interval, tasks used to probe face recognition, and other variables. In sum, although around one third of the studies show a beneficial effect of sleep on memory for faces, we suggest that future research should invest in replicating these findings with a stricter control of potentially confounding variables to allow stronger conclusions to be drawn.
Collapse
Affiliation(s)
- Isabel M. Santos
- William James Center for Research, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Education and Psychology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - André Silva
- Department of Education and Psychology, University of Aveiro, 3810-193 Aveiro, Portugal
- ISEIT, Piaget Institute, 2805-059 Almada, Portugal
| | - Pedro Bem-Haja
- Department of Education and Psychology, University of Aveiro, 3810-193 Aveiro, Portugal
- CINTESIS@RISE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Catarina Rosa
- Department of Education and Psychology, University of Aveiro, 3810-193 Aveiro, Portugal
- CINTESIS@RISE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luíza Cerri
- Department of Education and Psychology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diâner F. Queiroz
- Department of Education and Psychology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Talles Barroso
- Department of Education and Psychology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Miguel F. Alves
- Department of Education and Psychology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos F. Silva
- William James Center for Research, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Education and Psychology, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
27
|
Hilditch CJ, Wong LR, Bathurst NG, Feick NH, Pradhan S, Santamaria A, Shattuck NL, Flynn‐Evans EE. Rise and shine: The use of polychromatic short-wavelength-enriched light to mitigate sleep inertia at night following awakening from slow-wave sleep. J Sleep Res 2022; 31:e13558. [PMID: 35102669 PMCID: PMC9787581 DOI: 10.1111/jsr.13558] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/01/2021] [Accepted: 01/14/2022] [Indexed: 12/30/2022]
Abstract
Sleep inertia is the brief period of performance impairment and reduced alertness experienced after waking, especially from slow-wave sleep. We assessed the efficacy of polychromatic short-wavelength-enriched light to improve vigilant attention, alertness and mood immediately after waking from slow-wave sleep at night. Twelve participants (six female, 23.3 ± 4.2 years) maintained an actigraphy-confirmed sleep schedule of 8.5 hr for 5 nights, and 5 hr for 1 night prior to an overnight laboratory visit. In the laboratory, participants were awakened from slow-wave sleep, and immediately exposed to either dim, red ambient light (control) or polychromatic short-wavelength-enriched light (light) for 1 hr in a randomized crossover design. They completed a 5-min Psychomotor Vigilance Task, the Karolinska Sleepiness Scale, and Visual Analogue Scales of mood at 2, 17, 32 and 47 min after waking. Following this testing period, lights were turned off and participants returned to sleep. They were awakened from their subsequent slow-wave sleep period and received the opposite condition. Compared with the control condition, participants exposed to light had fewer Psychomotor Vigilance Task lapses (χ2 [1] = 5.285, p = 0.022), reported feeling more alert (Karolinska Sleepiness Scale: F1,77 = 4.955, p = 0.029; Visual Analogue Scalealert : F1,77 = 8.226, p = 0.005), and reported improved mood (Visual Analogue Scalecheerful : F1,77 = 8.615, p = 0.004). There was no significant difference in sleep-onset latency between conditions following the testing period (t10 = 1.024, p = 0.330). Our results suggest that exposure to polychromatic short-wavelength-enriched light immediately after waking from slow-wave sleep at night may help improve vigilant attention, subjective alertness, and mood. Future studies should explore the potential mechanisms of this countermeasure and its efficacy in real-world environments.
Collapse
Affiliation(s)
- Cassie J. Hilditch
- Fatigue Countermeasures LaboratorySan José State UniversitySan JoséCaliforniaUSA
| | - Lily R. Wong
- Fatigue Countermeasures LaboratorySan José State UniversitySan JoséCaliforniaUSA
| | - Nicholas G. Bathurst
- Fatigue Countermeasures LaboratoryNASA Ames Research CenterMoffett FieldCaliforniaUSA
| | - Nathan H. Feick
- Fatigue Countermeasures LaboratorySan José State UniversitySan JoséCaliforniaUSA
| | - Sean Pradhan
- Fatigue Countermeasures LaboratorySan José State UniversitySan JoséCaliforniaUSA,School of BusinessMenlo CollegeAthertonCaliforniaUSA
| | - Amanda Santamaria
- Cognitive and Systems Neuroscience Research HubUniversity of South AustraliaMagillSouth AustraliaAustralia
| | - Nita L. Shattuck
- Operations Research DepartmentHuman Systems Integration ProgramNaval Postgraduate SchoolMontereyCaliforniaUSA
| | - Erin E. Flynn‐Evans
- Fatigue Countermeasures LaboratoryNASA Ames Research CenterMoffett FieldCaliforniaUSA
| |
Collapse
|
28
|
Time Course of Motor Activity Wake Inertia Dissipation According to Age. Clocks Sleep 2022; 4:381-386. [PMID: 36134944 PMCID: PMC9497613 DOI: 10.3390/clockssleep4030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022] Open
Abstract
The time course of motor activity sleep inertia (maSI) dissipation was recently investigated through actigraphy in an everyday life condition from middle childhood to late adulthood. Motor activity sleep inertia was dissipated in 70 min, and the sleep inertia phenomenon was more evident in younger participants than in older participants. The aim of the current secondary analysis of previously published data was to examine, within the same sample, the time course of motor activity wake inertia (maWI) dissipation, i.e., the motor pattern in the transition phase from wakefulness to sleep, according to age. To this end, an overall sample of 374 participants (215 females), ranging in age between 9 and 70 years old, was examined. Each participant was asked to wear an actigraph around their non-dominant wrist for one week. The variation in the motor activity pattern of the wake–sleep transition according to age was examined through functional linear modeling (FLM). FLM showed that motor activity wake inertia dissipated around 20 min after bedtime. Moreover, a lower age was significantly associated with greater motor activity within the last two hours of wakefulness and the first twenty minutes after bedtime. Overall, this pattern of results seems to suggest that maWI dissipation is comparable to that of maSI.
Collapse
|
29
|
Cortical waste clearance in normal and restricted sleep with potential runaway tau buildup in Alzheimer's disease. Sci Rep 2022; 12:13740. [PMID: 35961995 PMCID: PMC9374764 DOI: 10.1038/s41598-022-15109-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 06/17/2022] [Indexed: 01/10/2023] Open
Abstract
Accumulation of waste in cortical tissue and glymphatic waste clearance via extracellular voids partly drives the sleep-wake cycle and modeling has reproduced much of its dynamics. Here, new modeling incorporates higher void volume and clearance in sleep, multiple waste compounds, and clearance obstruction by waste. This model reproduces normal sleep-wake cycles, sleep deprivation effects, and performance decreases under chronic sleep restriction (CSR). Once fitted to calibration data, it successfully predicts dynamics in further experiments on sleep deprivation, intermittent CSR, and recovery after restricted sleep. The results imply a central role for waste products with lifetimes similar to tau protein. Strong tau buildup is predicted if pathologically enhanced production or impaired clearance occur, with runaway buildup above a critical threshold. Predicted tau accumulation has timescales consistent with the development of Alzheimer’s disease. The model unifies a wide sweep of phenomena, clarifying the role of glymphatic clearance and targets for interventions against waste buildup.
Collapse
|
30
|
Rahman SA, St. Hilaire MA, Grant LK, Barger LK, Brainard GC, Czeisler CA, Klerman EB, Lockley SW. Dynamic lighting schedules to facilitate circadian adaptation to shifted timing of sleep and wake. J Pineal Res 2022; 73:e12805. [PMID: 35501292 PMCID: PMC11316502 DOI: 10.1111/jpi.12805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/21/2022] [Accepted: 05/01/2022] [Indexed: 11/28/2022]
Abstract
Circadian adaptation to shifted sleep/wake schedules may be facilitated by optimizing the timing, intensity and spectral characteristics of light exposure, which is the principal time cue for mammalian circadian pacemaker, and possibly by strategically timing nonphotic time cues such as exercise. Therefore, circadian phase resetting by light and exercise was assessed in 44 healthy participants (22 females, mean age [±SD] 36.2 ± 9.2 years), who completed 8-day inpatient experiments simulating night shiftwork, which included either an 8 h advance or 8 h delay in sleep/wake schedules. In the advance protocol (n = 18), schedules were shifted either gradually (1.6 h/day across 5 days) or abruptly (slam shift, 8 h in 1 day and maintained across 5 days). Both advance protocols included a dynamic lighting schedule (DLS) with 6.5 h exposure of blue-enriched white light (704 melanopic equivalent daylight illuminance [melEDI] lux) during the day and dimmer blue-depleted light (26 melEDI lux) for 2 h immediately before sleep on the shifted schedule. In the delay protocol (n = 26), schedules were only abruptly delayed but included four different lighting conditions: (1) 8 h continuous room-light control; (2) 8 h continuous blue-enriched light; (3) intermittent (7 × 15 min pulses/8 h) blue-enriched light; (4) 8 h continuous blue-enriched light plus moderate intensity exercise. In the room-light control, participants received dimmer white light for 30 min before bedtime, whereas in the other three delay protocols participants received dimmer blue-depleted light for 30 min before bedtime. Both the slam and gradual advance protocols induced similar shifts in circadian phase (3.28 h ± 0.37 vs. 2.88 h ± 0.31, respectively, p = .43) estimated by the change in the timing of timing of dim light melatonin onset. In the delay protocol, the continuous 8 h blue-enriched exposure induced significantly larger shifts than the room light control (-6.59 h ± 0.43 vs. -4.74 h ± 0.62, respectively, p = .02). The intermittent exposure induced ~60% of the shift (-3.90 h ± 0.62) compared with 8 h blue-enriched continuous light with only 25% of the exposure duration. The addition of exercise to the 8 h continuous blue-enriched light did not result in significantly larger phase shifts (-6.59 h ± 0.43 vs. -6.41 h ± 0.69, p = .80). Collectively, our results demonstrate that, when attempting to adapt to an 8 h overnight work shift, delay shifts are more successful, particularly when accompanied by a DLS with high-melanopic irradiance light stimulus during wake.
Collapse
Affiliation(s)
- Shadab A. Rahman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Melissa A. St. Hilaire
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Leilah K. Grant
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Laura K. Barger
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - George C. Brainard
- Light Research Program, Department of Neurology, Thomas Jefferson University, Philadelphia, PA
| | - Charles A. Czeisler
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Elizabeth B. Klerman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Steven W. Lockley
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
31
|
Lok R, Woelders T, van Koningsveld MJ, Oberman K, Fuhler SG, Beersma DGM, Hut RA. Bright Light Increases Alertness and Not Cortisol in Healthy Men: A Forced Desynchrony Study Under Dim and Bright Light (I). J Biol Rhythms 2022; 37:403-416. [PMID: 35686534 PMCID: PMC9326799 DOI: 10.1177/07487304221096945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Light-induced improvements in alertness are more prominent during nighttime than during the day, suggesting that alerting effects of light may depend on internal clock time or wake duration. Relative contributions of both factors can be quantified using a forced desynchrony (FD) designs. FD designs have only been conducted under dim light conditions (<10 lux) since light above this amount can induce non-uniform phase progression of the circadian pacemaker (also called relative coordination). This complicates the mathematical separation of circadian clock phase from homeostatic sleep pressure effects. Here we investigate alerting effects of light in a novel 4 × 18 h FD protocol (5 h sleep, 13 h wake) under dim (6 lux) and bright light (1300 lux) conditions. Hourly saliva samples (melatonin and cortisol assessment) and 2-hourly test sessions were used to assess effects of bright light on subjective and objective alertness (electroencephalography and performance). Results reveal (1) stable free-running cortisol rhythms with uniform phase progression under both light conditions, suggesting that FD designs can be conducted under bright light conditions (1300 lux), (2) subjective alerting effects of light depend on elapsed time awake but not circadian clock phase, while (3) light consistently improves objective alertness independent of time awake or circadian clock phase. Reconstructing the daily time course by combining circadian clock phase and wake duration effects indicates that performance is improved during daytime, while subjective alertness remains unchanged. This suggests that high-intensity indoor lighting during the regular day might be beneficial for mental performance, even though this may not be perceived as such.
Collapse
Affiliation(s)
- R. Lok
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
- Current address: Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA
- University of Groningen, Leeuwarden, the Netherlands
| | - T. Woelders
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - M. J. van Koningsveld
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - K. Oberman
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - S. G. Fuhler
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - D. G. M. Beersma
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - R. A. Hut
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
32
|
Frech ML, Häusser JA, Siems MC, Loschelder DD. Anchoring and Sleep Inertia. Exp Psychol 2022; 69:146-154. [DOI: 10.1027/1618-3169/a000552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. Many occupational settings require individuals to make important decisions immediately after awakening. Although a plethora of psychological research has separately examined both sleep and anchoring effects on decision-making, little is known about their interaction. In the present study, we seek to shed light on the link between sleep inertia, the performance impairment immediately after awakening, and individuals’ susceptibility to the anchoring bias. We proposed that sleep inertia would moderate participants’ adjustment from anchors because sleep inertia leads to less cognitive effort invested, resulting in a stronger anchoring effect. One hundred four subjects were randomly assigned to an experimental group that answered anchoring tasks immediately after being awakened at nighttime or a control group that answered anchoring tasks at daytime. Our findings replicated the well-established anchoring effect in that higher anchors led participants to higher estimates than lower anchors. We did not find significant effects of sleep inertia. While the sleep inertia group reported greater sleepiness and having invested less cognitive effort compared to the control group, no systematic anchoring differences emerged, and cognitive effort did not qualify as a mediator of the anchoring effect. Bayesian analyses provide empirical evidence for these null findings. Implications for the anchoring literature and future research are discussed.
Collapse
Affiliation(s)
- Marie-Lena Frech
- School of Management and Technology, Leuphana University Lüneburg, Germany
| | | | | | | |
Collapse
|
33
|
Trotti LM, Saini P, Bremer E, Mariano C, Moron D, Rye DB, Bliwise DL. The Psychomotor Vigilance Test as a measure of alertness and sleep inertia in people with central disorders of hypersomnolence. J Clin Sleep Med 2022; 18:1395-1403. [PMID: 35040431 PMCID: PMC9059588 DOI: 10.5664/jcsm.9884] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/12/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES The central disorders of hypersomnolence (CDH) manifest with daytime sleepiness, often accompanied by cognitive symptoms. Objective tests characterizing cognitive dysfunction may have diagnostic utility. Further, because some people with CDH report worsening cognition upon awakening, cognitive testing before and after napping may provide additional diagnostic information. METHODS Patients with CDH with idiopathic hypersomnia (n = 76), narcolepsy type 1 (n = 19), narcolepsy type 2 (n = 22), and self-reported excessive daytime sleepiness not meeting current diagnostic criteria (n = 76) and nonsleepy controls (n = 33) underwent testing with the Psychomotor Vigilance Test (PVT), a 10-minute reaction-time test. A subset of participants underwent repeat testing during a Multiple Sleep Latency Test, before and immediately after naps 2 and 4. RESULTS Most PVT metrics were significantly better in controls than in patients with CDH. Minimal group differences in PVT performance were observed by CDH diagnosis. PVT performance was weakly correlated to Epworth Sleepiness Scale and Multiple Sleep Latency Test mean sleep latency in the CDH group. Before and after naps, PVT metrics were minimally different for controls, while PVT performance generally worsened following naps in the CDH group, with significant worsening compared with controls for nap 2 mean, median, lapses, and fastest 10% of responses and nap 4 lapses and slowest 10% of responses. Change in performance did not differ based on CDH diagnostic group for any metric on either nap. CONCLUSIONS The PVT, at baseline and following a short nap, may provide adjunctive diagnostic utility in separating individuals with CDH from controls. CITATION Trotti LM, Saini P, Bremer E, et al. The Psychomotor Vigilance Test as a measure of alertness and sleep inertia in people with central disorders of hypersomnolence. J Clin Sleep Med. 2022;18(5):1395-1403.
Collapse
Affiliation(s)
- Lynn Marie Trotti
- Emory Sleep Center, Emory University School of Medicine, Atlanta, Georgia
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| | - Prabhjyot Saini
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| | - Erin Bremer
- Nell Hobson Woodruff School of Nursing, Emory University, Atlanta, Georgia
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Christianna Mariano
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| | - Danielle Moron
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| | - David B. Rye
- Emory Sleep Center, Emory University School of Medicine, Atlanta, Georgia
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| | - Donald L. Bliwise
- Emory Sleep Center, Emory University School of Medicine, Atlanta, Georgia
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
34
|
Hruska B, Anderson L, Barduhn MS. Multilevel analysis of sleep quality and anger in emergency medical service workers. Sleep Health 2022; 8:303-310. [PMID: 35450834 DOI: 10.1016/j.sleh.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Poor sleep quality characterizes the emergency medical service (EMS) profession. Anger is particularly affected by sleep disturbance and may be related to sleep quality at both between- and within-person levels, yet this has never been examined. The current study performed a multilevel analysis of the relationship between sleep quality and anger among EMS workers. DESIGN Ecological momentary assessment PARTICIPANTS: Seventy-nine EMS workers employed at an emergency medical service provider in Central New York. MEASUREMENTS Participants completed 8 daily assessments that inquired about sleep quality and anger. RESULTS EMS workers who typically experienced poorer sleep quality reported greater anger levels; for instance, workers who routinely experienced poor sleep quality reported anger levels that were 18%-35% higher compared to workers receiving fair sleep quality. Regardless of their typical sleep quality, days when workers experienced poorer sleep than usual was characterized by higher levels of anger: on a day when a worker experienced poorer sleep quality than usual for them, their anger levels were 5% higher on that day regardless of their typical sleep quality. CONCLUSIONS EMS workers regularly experiencing poor sleep quality experience more anger. However, even workers who typically have better sleep quality experience anger elevations following poor sleep. These findings suggest that interventions targeting both between- and within-person factors impacting sleep may be important for addressing sleep quality's influence on anger in the EMS profession.
Collapse
Affiliation(s)
- Bryce Hruska
- Department of Public Health, Syracuse University, Syracuse, NY, USA.
| | - Lauren Anderson
- Department of Public Health, Syracuse University, Syracuse, NY, USA
| | | |
Collapse
|
35
|
C Gupta C, Dominiak M, Kovac K, C Reynolds A, A Ferguson S, J Hilditch C, Sprajcer M, E Vincent G. On-call work and sleep: the importance of switching on during a callout and switching off after a call. INDUSTRIAL HEALTH 2022; 60:91-96. [PMID: 34690251 PMCID: PMC8980688 DOI: 10.2486/indhealth.2021-0124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Due to the unpredictable nature of working time arrangements, on-call workers experience regular disruption to sleep, particularly if woken by calls. Sleep disruption can impact long term physical and mental health, next day performance, and importantly, performance immediately after waking. To reduce the impact of performance impairments upon waking (i.e., reducing sleep inertia), research has investigated strategies to promote alertness (e.g., bright light, caffeine, and exercise). This review puts forth on-call workers who are likely to return to sleep after a call, it is also important to consider the impact of these sleep inertia countermeasures on subsequent sleep. Future research should build on the preliminary evidence base for sleep inertia countermeasures by examining the impact on subsequent sleep. This research is key for both supporting alertness and performance during a call ("switching on") and for allowing the on-call worker to return to sleep after a call ("switching off").
Collapse
Affiliation(s)
- Charlotte C Gupta
- Central Queensland University, Appleton Institute for Behavioural Science, Australia
| | - Michelle Dominiak
- Central Queensland University, Appleton Institute for Behavioural Science, Australia
| | - Katya Kovac
- Central Queensland University, Appleton Institute for Behavioural Science, Australia
| | - Amy C Reynolds
- Flinders Health and Medical Research Institute (Sleep Health), Flinders University, Australia
| | - Sally A Ferguson
- Central Queensland University, Appleton Institute for Behavioural Science, Australia
| | - Cassie J Hilditch
- San José State University, Fatigue Countermeasures Laboratory, Department of Psychology, USA
| | - Madeline Sprajcer
- Central Queensland University, Appleton Institute for Behavioural Science, Australia
| | - Grace E Vincent
- Central Queensland University, Appleton Institute for Behavioural Science, Australia
| |
Collapse
|
36
|
McCarthy MJ. Circadian rhythm disruption in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Implications for the post-acute sequelae of COVID-19. Brain Behav Immun Health 2022; 20:100412. [PMID: 35465246 PMCID: PMC9019698 DOI: 10.1016/j.bbih.2022.100412] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a common and disabling disorder primarily characterized by persistent fatigue and exercise intolerance, with associated sleep disturbances, autonomic dysfunction, and cognitive problems. The causes of ME/CFS are not well understood but may coincide with immune and inflammatory responses following viral infections. During the current SARS-CoV2 coronavirus pandemic, ME/CFS has been increasingly reported to overlap with persistent “long COVID” symptoms, also called the post-acute sequelae of COVID-19 (PASC). Given the prominence of activity and sleep problems in ME/CFS, circadian rhythm disruption has been examined as a contributing factor in ME/CFS. While these studies of circadian rhythms have been pursued for decades, evidence linking circadian rhythms to ME/CFS remains inconclusive. A major limitation of older chronobiology studies of ME/CFS was the unavailability of modern molecular methods to study circadian rhythms and incomplete understanding of circadian rhythms outside the brain in peripheral organ systems. Major methodological and conceptual advancements in chronobiology have since been made. Over the same time, biomarker research in ME/CFS has progressed. Together, these new developments may justify renewed interest in circadian rhythm research in ME/CFS. Presently, we review ME/CFS from the perspective of circadian rhythms, covering both older and newer studies that make use of modern molecular methods. We focus on transforming growth factor beta (TGFB), a cytokine that has been previously associated with ME/CFS and has an important role in circadian rhythms, especially in peripheral cells. We propose that disrupted TGFB signaling in ME/CFS may play a role in disrupting physiological rhythms in sleep, activity, and cognition, leading to the insomnia, energy disturbances, cognition problems, depression, and autonomic dysfunction associated with ME/CFS. Since SARS-like coronavirus infections cause persistent changes in TGFB and previous coronavirus outbreaks have caused ME/CFS-like syndromes, chronobiological considerations may have immediate implications for understanding ME/CFS in the context of the COVID-19 pandemic and possibly suggest new avenues for therapeutic interventions. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is characterized by disrupted sleep and activity implicating circadian clocks. The incidence of ME/CFS is expected to increase as a result of the post-acute sequelae of COVID-19. Biomarker studies in ME/CFS patients implicate Transforming Growth Factor B (TGFB). TGFB has roles in synchronizing circadian rhythms in peripheral cells. Identification of biomarkers and new methodologies may facilitate progress in the chronobiological basis of ME/CFS.
Collapse
Affiliation(s)
- Michael J McCarthy
- UC San Diego Department of Psychiatry and Center for Circadian Biology, 9500 Gilman Dr, La Jolla CA 92093, USA.,VA San Diego Medical Center, San Diego CA, 3350 La Jolla Village Dr MC 116A, San Diego CA, 92161, USA
| |
Collapse
|
37
|
Ma Z, Tao Y, Chen H, Zhang Y, Pan Y, Meng D, Fan F. An Exploration of Self-Reported Sleep Inertia Symptoms Using Network Analysis. Nat Sci Sleep 2022; 14:661-674. [PMID: 35450224 PMCID: PMC9018210 DOI: 10.2147/nss.s347419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/30/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Sleep inertia (SI) is the transitional state accompanied by compromised cognitive and physical performance and sleepiness. Network analysis offers a potential new framework to conceptualize a complex network of symptom-symptom interactions, and the network structure is analyzed to reveal the core characteristics. However, no previous study examined the network structure of SI symptoms. Thus, this study aimed to elucidate characteristics and compare sex differences of SI symptom networks in the general population. MATERIALS AND METHODS A total of 1491 participants from China were recruited from 30 May to 17 June, 2021. SI symptoms were assessed by using the Sleep Inertia Questionnaire (SIQ). The network structures were estimated and compared using network analytic methods in the R version 4.1.1. RESULTS Centrality properties analysis of the expected influence suggested that symptoms of "Feel sleepy", "Groggy, fuzzy or hazy mind", and "Dread starting your day" exerted greatest influences. The weighted adjacency matrix revealed that the "Dread starting your day" and "Anxious about the upcoming day" edge showed the strongest connection (edge weight value = 0.70). The network comparison test found no significant difference in network global strength (p=0.928), distribution of edge weights (p=0.194) and individual edge weights (all p values >0.05 after Holm-Bonferroni corrections) between males and females. CONCLUSION Symptoms of "Feel sleepy", "Groggy, fuzzy or hazy mind", and "Dread starting your day" were central in the SI symptom network. Intervention, such as the artificial dawn and change in body temperature, for symptoms of "Feel sleepy", "Groggy, fuzzy or hazy mind", and "Dread starting your day" might be crucial to hasten the dissipation of SI in the general population who may need to perform tasks upon waking.
Collapse
Affiliation(s)
- Zijuan Ma
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, People's Republic of China.,Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, People's Republic of China
| | - Yanqiang Tao
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, People's Republic of China
| | - Huilin Chen
- Department of Psychology, University of Bath, Bath, UK
| | - Yifan Zhang
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, People's Republic of China.,Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, People's Republic of China
| | - Ye Pan
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, People's Republic of China.,Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, People's Republic of China
| | - Dongjing Meng
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, People's Republic of China.,Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, People's Republic of China
| | - Fang Fan
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, People's Republic of China.,Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, People's Republic of China
| |
Collapse
|
38
|
Kovac K, Vincent GE, Paterson JL, Reynolds A, Aisbett B, Hilditch CJ, Ferguson SA. The impact of a short burst of exercise on sleep inertia. Physiol Behav 2021; 242:113617. [PMID: 34606883 DOI: 10.1016/j.physbeh.2021.113617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 11/18/2022]
Abstract
STUDY OBJECTIVES Determine whether 30 s (s) of exercise performed upon waking can reduce sleep inertia and accelerate an increase in the cortisol awakening response (CAR) and core body temperature (CBT), compared to when sedentary. METHODS Fifteen participants (mean age ± SD, 25.9 ± 5.9 years; six females) completed a counterbalanced, repeated measures, in-laboratory study involving three single experimental nights, each separated by a four-night recovery period. Participants were woken following a 2-h nap (2400-0200) and completed a cycling bout of high-intensity (30-s sprint), low-intensity (30 s at 60% maximum heart rate), or no exercise (sedentary). Sleep inertia testing (eight batteries, 15-min intervals) began immediately following and included measures of subjective sleepiness (Karolinska Sleepiness Scale) and cognitive performance tasks (psychomotor vigilance, serial addition and subtraction, and spatial configuration). CBT was measured continuously via an ingestible telemetric capsule. The CAR was determined using salivary cortisol samples collected at 0, 30 and 45 min post-waking. Data were analysed using mixed effects analysis of variance. RESULTS There was no difference in cognitive performance or CBT between conditions. Participants felt less sleepy in the high-intensity condition, followed by the low-intensity and sedentary conditions (p = .003). The CAR was greatest in the high-intensity condition, followed by the sedentary condition, and low-intensity condition (p < 0.001), with no differences between the low-intensity and sedentary conditions. CONCLUSIONS Those who exercise upon waking should be aware that while they may feel more alert, they may not be performing better than if they had not exercised. Future research should investigate whether exercise of different duration or timing may impact sleep inertia.
Collapse
Affiliation(s)
- Katya Kovac
- Central Queensland University, Appleton Institute, School of Health, Medical and Applied Sciences, Wayville, Adelaide, Australia.
| | - Grace E Vincent
- Central Queensland University, Appleton Institute, School of Health, Medical and Applied Sciences, Wayville, Adelaide, Australia
| | - Jessica L Paterson
- Central Queensland University, Appleton Institute, School of Health, Medical and Applied Sciences, Wayville, Adelaide, Australia
| | - Amy Reynolds
- Central Queensland University, Appleton Institute, School of Health, Medical and Applied Sciences, Wayville, Adelaide, Australia
| | - Brad Aisbett
- Deakin University, Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Geelong, Victoria, Australia
| | - Cassie J Hilditch
- Fatigue Countermeasures Laboratory, San José State University, San José, CA, USA
| | - Sally A Ferguson
- Central Queensland University, Appleton Institute, School of Health, Medical and Applied Sciences, Wayville, Adelaide, Australia
| |
Collapse
|
39
|
Casale CE, Yamazaki EM, Brieva TE, Antler CA, Goel N. Raw scores on subjective sleepiness, fatigue, and vigor metrics consistently define resilience and vulnerability to sleep loss. Sleep 2021; 45:6367754. [PMID: 34499166 DOI: 10.1093/sleep/zsab228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/01/2021] [Indexed: 01/14/2023] Open
Abstract
STUDY OBJECTIVES Although trait-like individual differences in subjective responses to sleep restriction (SR) and total sleep deprivation (TSD) exist, reliable characterizations remain elusive. We comprehensively compared multiple methods for defining resilience and vulnerability by subjective metrics. METHODS 41 adults participated in a 13-day experiment:2 baseline, 5 SR, 4 recovery, and one 36h TSD night. The Karolinska Sleepiness Scale (KSS) and the Profile of Mood States Fatigue (POMS-F) and Vigor (POMS-V) were administered every 2h. Three approaches (Raw Score [average SR score], Change from Baseline [average SR minus average baseline score], and Variance [intraindividual SR score variance]), and six thresholds (±1 standard deviation, and the highest/lowest scoring 12.5%, 20%, 25%, 33%, 50%) categorized Resilient/Vulnerable groups. Kendall's tau-b correlations compared the group categorization's concordance within and between KSS, POMS-F, and POMS-V scores. Bias-corrected and accelerated bootstrapped t-tests compared group scores. RESULTS There were significant correlations between all approaches at all thresholds for POMS-F, between Raw Score and Change from Baseline approaches for KSS, and between Raw Score and Variance approaches for POMS-V. All Resilient groups defined by the Raw Score approach had significantly better scores throughout the study, notably including during baseline and recovery, whereas the two other approaches differed by measure, threshold, or day. Between-measure correlations varied in strength by measure, approach, or threshold. CONCLUSION Only the Raw Score approach consistently distinguished Resilient/Vulnerable groups at baseline, during sleep loss, and during recovery‒‒we recommend this approach as an effective method for subjective resilience/vulnerability categorization. All approaches created comparable categorizations for fatigue, some were comparable for sleepiness, and none were comparable for vigor. Fatigue and vigor captured resilience/vulnerability similarly to sleepiness but not each other.
Collapse
Affiliation(s)
- Courtney E Casale
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Erika M Yamazaki
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Tess E Brieva
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Caroline A Antler
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Namni Goel
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
40
|
Xu S, Akioma M, Yuan Z. Relationship between circadian rhythm and brain cognitive functions. FRONTIERS OF OPTOELECTRONICS 2021; 14:278-287. [PMID: 36637731 PMCID: PMC9743892 DOI: 10.1007/s12200-021-1090-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/02/2021] [Indexed: 05/31/2023]
Abstract
Circadian rhythms are considered a masterstroke of natural selection, which gradually increase the adaptability of species to the Earth's rotation. Importantly, the nervous system plays a key role in allowing organisms to maintain circadian rhythmicity. Circadian rhythms affect multiple aspects of cognitive functions (mainly via arousal), particularly those needed for effort-intensive cognitive tasks, which require considerable top-down executive control. These include inhibitory control, working memory, task switching, and psychomotor vigilance. This mini review highlights the recent advances in cognitive functioning in the optical and multimodal neuroimaging fields; it discusses the processing of brain cognitive functions during the circadian rhythm phase and the effects of the circadian rhythm on the cognitive component of the brain and the brain circuit supporting cognition.
Collapse
Affiliation(s)
- Shiyang Xu
- Faculty of Health Sciences, Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| | - Miriam Akioma
- Faculty of Health Sciences, Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| | - Zhen Yuan
- Faculty of Health Sciences, Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
41
|
Delayed Sleep Timing in Obsessive-Compulsive Disorder Is Associated With Diminished Response to Exposure and Ritual Prevention. Behav Ther 2021; 52:1277-1285. [PMID: 34452679 DOI: 10.1016/j.beth.2021.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
Exposure and ritual prevention (ERP) and pharmacotherapy are typically associated with significant symptom reductions for individuals with obsessive-compulsive disorder (OCD). However, many patients are left with residual symptoms and other patients do not respond. There is increasing evidence that delays in sleep timing/circadian rhythms are associated with OCD but the potential effects of delays in sleep timing on ERP warrant attention. This paper presents data from 31 outpatients with OCD who participated in ERP. Results showed that delayed sleep timing was common and that individuals with delayed bedtimes benefited significantly less from treatment and were significantly more likely to be nonresponders compared to individuals with earlier bedtimes. Further, the effects of sleep timing remained statistically significant even after controlling for global sleep quality, negative affect, and several other variables. These findings add to a growing literature suggesting the utility of better understanding the role of disruptions in the timing of sleep in OCD.
Collapse
|
42
|
Herold F, Törpel A, Hamacher D, Budde H, Zou L, Strobach T, Müller NG, Gronwald T. Causes and Consequences of Interindividual Response Variability: A Call to Apply a More Rigorous Research Design in Acute Exercise-Cognition Studies. Front Physiol 2021; 12:682891. [PMID: 34366881 PMCID: PMC8339555 DOI: 10.3389/fphys.2021.682891] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
The different responses of humans to an apparently equivalent stimulus are called interindividual response variability. This phenomenon has gained more and more attention in research in recent years. The research field of exercise-cognition has also taken up this topic, as shown by a growing number of studies published in the past decade. In this perspective article, we aim to prompt the progress of this research field by (i) discussing the causes and consequences of interindividual variability, (ii) critically examining published studies that have investigated interindividual variability of neurocognitive outcome parameters in response to acute physical exercises, and (iii) providing recommendations for future studies, based on our critical examination. The provided recommendations, which advocate for a more rigorous study design, are intended to help researchers in the field to design studies allowing them to draw robust conclusions. This, in turn, is very likely to foster the development of this research field and the practical application of the findings.
Collapse
Affiliation(s)
- Fabian Herold
- Department of Neurology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany.,Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | | | - Dennis Hamacher
- Department of Sport Science, German University for Health and Sports (DHGS), Berlin, Germany
| | - Henning Budde
- Faculty of Human Sciences, MSH Medical School Hamburg, Hamburg, Germany
| | - Liye Zou
- Exercise and Mental Health Laboratory, Institute of KEEP Collaborative Innovation, School of Psychology, Shenzhen University, Shenzhen, China
| | - Tilo Strobach
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany
| | - Notger G Müller
- Department of Neurology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany.,Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Thomas Gronwald
- Department of Performance, Neuroscience, Therapy and Health, Faculty of Health Sciences, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
43
|
Lundholm KR, Honn KA, Skeiky L, Muck RA, Van Dongen HPA. Trait Interindividual Differences in the Magnitude of Subjective Sleepiness from Sleep Inertia. Clocks Sleep 2021; 3:298-311. [PMID: 34204864 PMCID: PMC8293243 DOI: 10.3390/clockssleep3020019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 01/06/2023] Open
Abstract
In shift work settings and on-call operations, workers may be at risk of sleep inertia when called to action immediately after awakening from sleep. However, individuals may differ substantially in their susceptibility to sleep inertia. We investigated this using data from a laboratory study in which 20 healthy young adults were each exposed to 36 h of total sleep deprivation, preceded by a baseline sleep period and followed by a recovery sleep period, on three separate occasions. In the week prior to each laboratory session and on the corresponding baseline night in the laboratory, participants either extended their sleep period to 12 h/day or restricted it to 6 h/day. During periods of wakefulness in the laboratory, starting right after scheduled awakening, participants completed neurobehavioral tests every 2 h. Testing included the Karolinska Sleepiness Scale to measure subjective sleepiness, for which the data were analyzed with nonlinear mixed-effects regression to quantify sleep inertia. This revealed considerable interindividual differences in the magnitude of sleep inertia, which were highly stable within individuals after both baseline and recovery sleep periods, regardless of study condition. Our results demonstrate that interindividual differences in subjective sleepiness due to sleep inertia are substantial and constitute a trait.
Collapse
Affiliation(s)
| | | | | | | | - Hans P. A. Van Dongen
- Sleep and Performance Research Center & Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (K.R.L.); (K.A.H.); (L.S.); (R.A.M.)
| |
Collapse
|
44
|
Mattingly SM, Grover T, Martinez GJ, Aledavood T, Robles-Granda P, Nies K, Striegel A, Mark G. The effects of seasons and weather on sleep patterns measured through longitudinal multimodal sensing. NPJ Digit Med 2021; 4:76. [PMID: 33911176 PMCID: PMC8080821 DOI: 10.1038/s41746-021-00435-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
Previous studies of seasonal effects on sleep have yielded unclear results, likely due to methodological differences and limitations in data size and/or quality. We measured the sleep habits of 216 individuals across the U.S. over four seasons for slightly over a year using objective, continuous, and unobtrusive measures of sleep and local weather. In addition, we controlled for demographics and trait-like constructs previously identified to correlate with sleep behavior. We investigated seasonal and weather effects of sleep duration, bedtime, and wake time. We found several small but statistically significant effects of seasonal and weather effects on sleep patterns. We observe the strongest seasonal effects for wake time and sleep duration, especially during the spring season: wake times are earlier, and sleep duration decreases (compared to the reference season winter). Sleep duration also modestly decreases when day lengths get longer (between the winter and summer solstice). Bedtimes and wake times tend to be slightly later as outdoor temperature increases.
Collapse
Affiliation(s)
- Stephen M Mattingly
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, IN, USA.
| | - Ted Grover
- Department of Informatics, University of California, Irvine, CA, USA
| | - Gonzalo J Martinez
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, IN, USA
| | | | - Pablo Robles-Granda
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Kari Nies
- Department of Informatics, University of California, Irvine, CA, USA
| | - Aaron Striegel
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Gloria Mark
- Department of Informatics, University of California, Irvine, CA, USA
| |
Collapse
|
45
|
Monteiro F, Rodrigues P, Nascimento CS, Simões F, Miguel M. The daily rhythms of working memory and their methodological constraints: a critical overview. BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2021.1907511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Fábio Monteiro
- Department of Psychology and Education, University of Beira Interior, Covilhã, Portugal
| | - Paulo Rodrigues
- Department of Psychology and Education, University of Beira Interior, Covilhã, Portugal
| | | | - Fátima Simões
- Department of Psychology and Education, University of Beira Interior, Covilhã, Portugal
- Research Center in Education and Psychology of the University of Évora, University of Évora, Évora, Portugal
| | - Mário Miguel
- Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
46
|
Abstract
Sleep inertia (SI) refers to a complex psychophysiological phenomenon, observed after awakening, that can be described as the gradual recovery of waking-like status. The time course of cognitive performance dissipation in an everyday life condition is still unclear, especially in terms of the sleep stage at awakening (REM or NREM-stage 2) and the relative effects on performance. The present study aimed to investigate the SI dissipation in different memory performances upon spontaneous morning awakening after uninterrupted nighttime sleep. Eighteen young adults (7 females; mean age 24.9 ± 3.14 years) spent seven non-consecutive nights (one baseline, three REM awakenings and three St2 awakenings) in the laboratory under standard polysomnographic (PSG) control. Participants were tested after three REM awakenings and three St2 awakenings, and three times at 11:00 a.m. as a control condition. In each testing session, participants filled in the Global Vigor and Affect Scale and carried out one memory task (episodic, semantic, or procedural task). For each condition, participants were tested every 10 min within a time window of 80 min. In accordance with previous studies, SI affected subjective alertness throughout the entire time window assessed. Moreover, SI significantly affected performance speed but not accuracy in the semantic task. With reference to this task, the SI effect dissipated within 30 min of awakening from REM, and within 20 min of awakening from St2. No significant SI effect was observed on episodic or procedural memory tasks.
Collapse
|
47
|
McMahon WR, Ftouni S, Diep C, Collet J, Lockley SW, Rajaratnam SMW, Maruff P, Drummond SPA, Anderson C. The impact of the wake maintenance zone on attentional capacity, physiological drowsiness, and subjective task demands during sleep deprivation. J Sleep Res 2021; 30:e13312. [PMID: 33734527 DOI: 10.1111/jsr.13312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 11/30/2022]
Abstract
We aimed to investigate the impact of the Wake Maintenance Zone (WMZ) on measures of drowsiness, attention, and subjective performance under rested and sleep deprived conditions. We studied 23 healthy young adults (18 males; mean age = 25.41 ± 5.73 years) during 40 hr of total sleep deprivation under constant routine conditions. Participants completed assessments of physiological drowsiness (EEG-scored slow eye movements and microsleeps), sustained attention (PVT), and subjective task demands every two hours, and four-hourly ocular motor assessment of inhibitory control (inhibition of reflexive saccades on an anti-saccade task). Tests were analyzed relative to dim light melatonin onset (DLMO); the WMZ was defined as the 3 hr prior to DLMO, and the preceding 3 hr window was deemed the pre-WMZ. The WMZ did not mitigate the adverse impact of ~37 hr sleep deprivation on drowsiness, sustained attention, response inhibition, and self-rated concentration and difficulty, relative to rested WMZ performance (~13 hr of wakefulness). Compared to the pre-WMZ, though, the WMZ improved measures of sustained attention, and subjective concentration and task difficulty, during sleep deprivation. Cumulatively, these results expand on previous work by characterizing the beneficial effects of the WMZ on operationally-relevant indices of drowsiness, inhibitory attention control, and self-rated concentration and task difficulty relative to the pre-WMZ during sleep deprivation. These results may inform scheduling safety-critical tasks at more optimal circadian times to improve workplace performance and safety.
Collapse
Affiliation(s)
- William Ryan McMahon
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia.,Cooperative Research Centre for Alertness, Safety and Productivity, Melbourne, Victoria, Australia
| | - Suzanne Ftouni
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia.,Cooperative Research Centre for Alertness, Safety and Productivity, Melbourne, Victoria, Australia
| | - Charmaine Diep
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia.,Cooperative Research Centre for Alertness, Safety and Productivity, Melbourne, Victoria, Australia
| | - Jinny Collet
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia.,Cooperative Research Centre for Alertness, Safety and Productivity, Melbourne, Victoria, Australia
| | - Steven W Lockley
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia.,Cooperative Research Centre for Alertness, Safety and Productivity, Melbourne, Victoria, Australia
| | - Shantha M W Rajaratnam
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia.,Cooperative Research Centre for Alertness, Safety and Productivity, Melbourne, Victoria, Australia
| | - Paul Maruff
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia.,Cooperative Research Centre for Alertness, Safety and Productivity, Melbourne, Victoria, Australia.,Cogstate Ltd., Melbourne, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sean P A Drummond
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia
| | - Clare Anderson
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia.,Cooperative Research Centre for Alertness, Safety and Productivity, Melbourne, Victoria, Australia
| |
Collapse
|
48
|
Huber R, Ghosh A. Large cognitive fluctuations surrounding sleep in daily living. iScience 2021; 24:102159. [PMID: 33681725 PMCID: PMC7918275 DOI: 10.1016/j.isci.2021.102159] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/07/2020] [Accepted: 02/02/2021] [Indexed: 01/06/2023] Open
Abstract
Cognitive output and physical activity levels fluctuate surrounding sleep. The ubiquitous digitization of behavior via smartphones is a promising avenue for addressing how these fluctuations occur in daily living. Here, we logged smartphone touchscreen interactions to proxy cognitive fluctuations and contrasted these to physical activity patterns logged on wrist-worn actigraphy. We found that both cognitive and physical activities were dominated by diurnal (∼24 h) and infra-radian (∼7 days) rhythms. The proxy measures of cognitive performance—tapping speed, unlocking speed, and app locating speed—contained lower-powered diurnal rhythm than physical activity. The difference between cognitive and physical activity was vivid during bedtime as people continued to interact with their smartphones at physical rest. The cognitive performance measures in this period were worse than those in the hour before or after bedtime. We suggest that the rhythms underlying cognitive activity in the real world are distinct from those underlying physical activity, and this discord may be a hallmark of modern human behavior. Daily and weekly rhythms shape our day-to-day behavior The speed of smartphone interactions fluctuates according to the time of the day These fluctuations do not strictly follow the physical activity cycles The worst performing time on the smartphone is around bedtime
Collapse
Affiliation(s)
- Reto Huber
- Child Development Center, University Children's Hospital Zurich, Switzerland & Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital University of Zurich, Switzerland
| | - Arko Ghosh
- Institute of Psychology, Cognitive Psychology Unit, Leiden University, Wassenaarseweg 52, Leiden 2333 AK, the Netherlands
- Corresponding author
| |
Collapse
|
49
|
Taillard J, Sagaspe P, Philip P, Bioulac S. Sleep timing, chronotype and social jetlag: Impact on cognitive abilities and psychiatric disorders. Biochem Pharmacol 2021; 191:114438. [DOI: 10.1016/j.bcp.2021.114438] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
|
50
|
Alshabibi AS, Suleiman ME, Tapia KA, Heard R, Brennan PC. Impact of Hours Awake and Hours Slept at Night on Radiologists' Mammogram Interpretations. J Am Coll Radiol 2021; 18:730-738. [PMID: 33482116 DOI: 10.1016/j.jacr.2020.12.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To examine whether radiologists' mammogram reading performance varies according to how long they have been awake ("hours awake") and the number of hours they slept ("hours slept") the night before a reading session. METHODS Retrospective data were retrieved from the BreastScreen Reader Assessment Strategy database. Malignancy-enriched mammographic readings were performed by 133 radiologists. Information on their hours awake and hours slept was collected. Analysis of covariance was performed to determine whether these two variables influenced radiologists' sensitivity, specificity, lesion sensitivity, receiver operating characteristic (ROC) curve, and jackknife alternative free-response ROC. Radiologists were divided into a more experienced and a less experienced groups (based on reading ≥2,000 and <2,000 mammogram readings per year, respectively). RESULTS The hours awake significantly influenced less experienced radiologists' lesion sensitivity (F6,63 = 2.51; P = .03). Those awake for <2 hours had significantly lower lesion sensitivity than those awake for 8 to 10 hours (P = .01), and those awake for 4 to 6 hours had significantly lower lesion sensitivity than those awake for 8 to 10 hours (P = .002) and 10 to 12 hours (P = .02). The hours slept also influenced the ROC values of less experienced radiologists (F1,68 = 4.96; P = .02). Radiologists with up to 6 hours of sleep had a significantly lower value (0.72) than those who had slept more than 6 hours (0.77). No statistically significant findings were noted for more experienced radiologists. CONCLUSION Inexperienced radiologists' performance may be influenced by the hours awake and hours slept before reading sessions.
Collapse
Affiliation(s)
- Abdulaziz S Alshabibi
- Medical Image Optimisation and Perception Group (MIOPeG), Faculty of Health Sciences, University of Sydney, Cumberland Campus, Lidcombe, Australia; Department of Radiology and Medical Imaging, College of Applied Medical Sciences of King Saud University, Riyadh, Saudi Arabia.
| | - Mo'ayyad E Suleiman
- Medical Image Optimisation and Perception Group (MIOPeG), Faculty of Health Sciences, University of Sydney, Cumberland Campus, Lidcombe, Australia
| | - Kriscia A Tapia
- Australian Council on Healthcare Standards, Ultimo, Australia
| | - Robert Heard
- Medical Image Optimisation and Perception Group (MIOPeG), Faculty of Health Sciences, University of Sydney, Cumberland Campus, Lidcombe, Australia
| | - Patrick C Brennan
- Medical Image Optimisation and Perception Group (MIOPeG), Faculty of Health Sciences, University of Sydney, Cumberland Campus, Lidcombe, Australia
| |
Collapse
|