1
|
Hucklesby JJW, Angel CE, Graham ES, Dunbar PR, Birch NP, Loef EJ. Plasmin reduces human T cell arrest on endothelial-like cells by cleaving bound CCL21 from the cell surface. Exp Cell Res 2025; 446:114480. [PMID: 40010560 DOI: 10.1016/j.yexcr.2025.114480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 02/16/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
CCL21 is a key homeostatic chemokine best known for its role in lymphocyte homing and compartmentalization in the lymph node. CCL21 also plays a role in trans-endothelial migration and is known to be bound to the surface of endothelial cells in high endothelial venules and inflamed tissues. The effects of CCL21 are highly dependent on its form; full-length CCL21 can bind to the surface of endothelial cells and induce lymphocyte arrest and transendothelial migration, whereas truncated CCL21 cannot. Earlier literature indicates that plasmin can cleave CCL21 from the surface of immune cells, although the mechanism regulating this process on endothelial cells has not been studied. This study demonstrates that the human endothelial-like cell lines ECV304 (LS12) and HMEC-1 can bind the plasmin precursor plasminogen to their cell surface. Furthermore, ECV304 (LS12) cells could endogenously activate plasminogen, yielding plasmin that subsequently released cell surface CCL21. In contrast, cell-surface CCL21 was only released from HMEC-1 after exogenous tPA activated the surface-bound plasminogen. Finally, it was shown that plasmin reduced T cell adhesion to endothelial-like cells with cell surface CCL21 under shear stress conditions. Collectively, for the first time, these data demonstrate that plasmin can cleave endothelial cell surface CCL21, reducing T cell adhesion to endothelial cells under shear stress. Interestingly, this study also indicates that endothelial cells' differential expression of plasminogen activators may regulate plasmin availability and influence T-cell arrest.
Collapse
Affiliation(s)
- James Jack Willis Hucklesby
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand; Department of Molecular Medicine and Pathology, The University of Auckland, New Zealand
| | - Catherine Elizabeth Angel
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Euan Scott Graham
- Department of Molecular Medicine and Pathology, The University of Auckland, New Zealand; Centre for Brain Research and Brain Research New Zealand, Rangahau Roro Aotearoa, University of Auckland, Auckland, New Zealand
| | - Peter Rod Dunbar
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Nigel Peter Birch
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand; Centre for Brain Research and Brain Research New Zealand, Rangahau Roro Aotearoa, University of Auckland, Auckland, New Zealand
| | - Evert Jan Loef
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
2
|
Mansour DT, Court TA, Bishop CR, Vaidya R. Management of Bleeding Diathesis in Elective and Orthopaedic Trauma: A Review. J Am Acad Orthop Surg 2025; 33:168-177. [PMID: 39378371 PMCID: PMC11774194 DOI: 10.5435/jaaos-d-23-01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/21/2024] [Accepted: 08/03/2024] [Indexed: 10/10/2024] Open
Abstract
There is a general need among orthopaedic surgeons for practical advice on managing patients with bleeding disorders. Appropriate diagnosis and management of these disorders is paramount once discovered before, during, or after the patient's surgical course. Bleeding disorders disrupt the body's ability to control bleeding, commonly through platelet function and blood clotting. Normally, the vessel contracts and retracts once disruption of blood vessels occurs, limiting blood loss. Blood platelets adhere to exposed collagen, aggregate at the site, and obstruct blood loss. Because platelet aggregates are temporary, blood clotting is needed to back up the platelet plug and provide a milieu for the healing process that completes the hemostatic events. Disorders that interfere with any of these events can result in hemorrhage, drainage, or rebleeding. Bleeding disorders are a group of conditions, either hereditary or acquired, marked by abnormal or excessive bleeding and/or bruising. The most effective methods for assessing coagulation disorders include a detailed history and a series of blood tests. Clinical examination findings are notable but may be less specific. If a surgical patient has a bleeding disorder discovered preoperatively, postoperatively, or intraoperatively, treatments exist with medications, surgical management, interventional radiology procedures, and replacement therapy.
Collapse
Affiliation(s)
- Devone T. Mansour
- From the Wayne State University, School of Medicine, Detroit, MI (Mansour, Court, Bishop, Vaidya), Department of Orthopedic Surgery (Mansour, Court, Vaidya), and Department of Hematology and Oncology (Bishop), Detroit Medical Center, Detroit, MI
| | - Tannor A. Court
- From the Wayne State University, School of Medicine, Detroit, MI (Mansour, Court, Bishop, Vaidya), Department of Orthopedic Surgery (Mansour, Court, Vaidya), and Department of Hematology and Oncology (Bishop), Detroit Medical Center, Detroit, MI
| | - Carter R. Bishop
- From the Wayne State University, School of Medicine, Detroit, MI (Mansour, Court, Bishop, Vaidya), Department of Orthopedic Surgery (Mansour, Court, Vaidya), and Department of Hematology and Oncology (Bishop), Detroit Medical Center, Detroit, MI
| | - Rahul Vaidya
- From the Wayne State University, School of Medicine, Detroit, MI (Mansour, Court, Bishop, Vaidya), Department of Orthopedic Surgery (Mansour, Court, Vaidya), and Department of Hematology and Oncology (Bishop), Detroit Medical Center, Detroit, MI
| |
Collapse
|
3
|
Kanou S, Nakatani E, Urano T, Sasaki H, Inoue A, Hifumi T, Sakamoto T, Kuroda Y, Tanaka Y. Fibrinogen levels and bleeding risk in adult extracorporeal cardiopulmonary resuscitation: multicenter observational study subanalysis. Res Pract Thromb Haemost 2025; 9:102700. [PMID: 40129565 PMCID: PMC11930119 DOI: 10.1016/j.rpth.2025.102700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/31/2025] [Indexed: 03/26/2025] Open
Abstract
•Hypofibrinogenemia frequently occurs in extracorporeal cardiopulmonary resuscitation (ECPR) and may heighten bleeding risk. This subanalysis of a multicenter observational study (SAVE-J II) included 2,100 adult patients receiving ECPR after out-of-hospital cardiac arrest at 36 facilities in Japan.•Overall, 7.5% of patients experienced non-cannulation hemorrhagic complications, and those with fibrinogen levels below 140 mg/dL at ECPR initiation faced significantly higher bleeding risk. These findings underscore the importance of monitoring and managing fibrinogen levels in ECPR to mitigate hemorrhagic events and improve patient outcomes.
Collapse
Affiliation(s)
- Seiya Kanou
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
- Department of Emergency and Critical Care Center, Fujieda Municipal General Hospital, Fujieda, Japan
| | - Eiji Nakatani
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
- Department of Biostatistics and Data Science, Graduate School of Medical Science Nagoya City University, Nagoya, Japan
| | - Tetsumei Urano
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
| | - Hatoko Sasaki
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
| | - Akihiko Inoue
- Department of Emergency and Critical Care Medicine, Hyogo Emergency Medical Center, Chuo-ku, Kobe-shi, Japan
| | - Toru Hifumi
- Department of Emergency and Critical Care Medicine, St. Luke’s International Hospital, Chuo-ku, Tokyo, Japan
| | - Tetsuya Sakamoto
- Department of Emergency Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yasuhiro Kuroda
- Department of Emergency, Disaster and Critical Care Medicine, Kagawa University Hospital, Kagawa, Japan
| | - Yoshihiro Tanaka
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
| |
Collapse
|
4
|
But VM, Rus V, Ilyés T, Gherman ML, Stănescu IC, Bolboacă SD, Bulboacă AE. Therapeutic Effects of Lavender Oil on Streptozotocin-Induced Diabetes Mellitus and Experimental Thrombosis. Antioxidants (Basel) 2025; 14:166. [PMID: 40002353 PMCID: PMC11851820 DOI: 10.3390/antiox14020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Diabetes mellitus is a metabolic disorder associated with oxidative stress, inflammation, and coagulation disturbances, which contribute to microvascular and macrovascular complications. We evaluated the therapeutic effects of lavender oil (Lavandula angustifolia) in a streptozotocin (STZ)-induced rat model of type 1 diabetes mellitus (T1DM) with experimentally induced thrombosis. Sixty male Wistar rats were divided into control, thrombosis, diabetes, thrombosis-diabetes, and lavender oil pretreatment groups (100 and 200 mg/kg body weight [bw]). Lavender oil exhibited dose-dependent benefits, with the 200 mg/kg bw dose leading to significant reductions in proinflammatory cytokines (e.g., tumor necrosis factor α (TNF-α); regulated upon activation, normal T cell expressed and secreted (RANTES); and monocyte chemoattractant protein-1 (MCP-1)) and oxidative stress, along with improved glycemic control, the partial restoration of C-peptide levels, and the attenuation of matrix metalloproteinase 2 and 9 (MMP-2 and MMP-9) activity (p < 0.0001). Histopathological and coagulation analyses confirmed its organ-protective and antithrombotic effects, including reduced tissue damage, vascular inflammation, and thrombus formation, and prolonged bleeding and clotting times. Our findings suggest that lavender oil exhibits dose-dependent antioxidant, anti-inflammatory, hypoglycemic, and organ-protective effects, indicating its potential as a complementary therapy for managing inflammation in T1DM with or without thrombosis.
Collapse
Affiliation(s)
- Valeriu Mihai But
- Department of Pathophysiology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeş Street, No. 2-4, 400012 Cluj-Napoca, Romania; (V.M.B.); (A.E.B.)
| | - Vasile Rus
- Department of Cell Biology, Histology and Embryology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur, No. 3-5, 400374 Cluj-Napoca, Romania;
| | - Tamás Ilyés
- Department of Medical Biochemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street, No. 6, 400349 Cluj-Napoca, Romania;
| | - Mădălina Luciana Gherman
- Experimental Center, “Iuliu Haţieganu” University of Medicine and Pharmacy, Louis Pasteur Street, No. 6, 400349 Cluj-Napoca, Romania;
| | - Ioana Cristina Stănescu
- Department of Neurology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Street, No. 43, 400012 Cluj-Napoca, Romania;
| | - Sorana D. Bolboacă
- Department of Medical Informatics and Biostatistics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Louis Pasteur Street, No. 6, 400349 Cluj-Napoca, Romania
| | - Adriana Elena Bulboacă
- Department of Pathophysiology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeş Street, No. 2-4, 400012 Cluj-Napoca, Romania; (V.M.B.); (A.E.B.)
| |
Collapse
|
5
|
Suzuki Y, Mathews NS, Sano H, Morooka N, Honkura N, Urano T. Real-Time Imaging of Platelet-Initiated Plasma Clot Formation and Lysis Unveils Distinct Impacts of Anticoagulants. Thromb Haemost 2025. [PMID: 39788528 DOI: 10.1055/a-2497-4213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
BACKGROUND Fibrinolysis is spatiotemporally well-regulated and greatly influenced by activated platelets and coagulation activity. Our previous real-time imaging analyses revealed that clotting commences on activated platelet surfaces, resulting in uneven-density fibrin structures, and that fibrinolysis initiates in dense fibrin regions and extends to the periphery. Despite the widespread clinical use of direct oral anticoagulants (DOACs), their impact on thrombin-dependent activation of thrombin-activatable fibrinolysis inhibitor (TAFI) and fibrinolysis remains unclear. Here, we investigated the effects of different DOACs on the TAFI-mediated inhibition of fibrinolysis. METHODS Using human platelet-containing plasma, we performed turbidimetric assays, thrombin generation assays, and confocal laser scanning microscopy to assess the effects of anticoagulants on fibrinolysis. RESULTS AND CONCLUSION Activated platelets-prolonged plasma clot lysis time, shortened by activated TAFI inhibitor (TAFIaI), positively correlated with the amount of thrombin generated. Rivaroxaban (an activated factor X inhibitor) and dabigatran (a direct thrombin inhibitor) dose-dependently shortened lysis time comparably. The highest concentration of DOACs showed no further shortening of lysis time with TAFIaI. The fibrin network structures initiated by activated platelets and the localization of fluorescently labeled plasminogen were unique for these two drugs. Rivaroxaban maintained an uneven fibrin network but promoted faster plasminogen accumulation and fibrinolysis from outside dense fibrin regions. Conversely, dabigatran resulted in a more even fibrin network, with fibrinolysis starting from the activated platelets and propagating to the periphery. Visualizing and analyzing the patterns of fibrin network formation, plasminogen accumulation, and fibrinolysis provide new insights into the specific impact of anticoagulants on coagulation and fibrinolysis.
Collapse
Affiliation(s)
- Yuko Suzuki
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Nitty S Mathews
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Transfusion Medicine & Immunohematology, Christian Medical College Vellore, India
| | - Hideto Sano
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Physiology, Tokai University School of Medicine, Kanagawa, Japan
| | - Nanami Morooka
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoki Honkura
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tetsumei Urano
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Shizuoka Graduate University of Public Health, Shizuoka, Japan
| |
Collapse
|
6
|
Tang D, Khakzad H, Hjortswang E, Malmström L, Ekström S, Happonen L, Malmström J. Streptolysin O accelerates the conversion of plasminogen to plasmin. Nat Commun 2024; 15:10212. [PMID: 39587097 PMCID: PMC11589678 DOI: 10.1038/s41467-024-54173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024] Open
Abstract
Group A Streptococcus (GAS) is a human-specific bacterial pathogen that can exploit the plasminogen-plasmin fibrinolysis system to dismantle blood clots and facilitate its spread and survival within the human host. In this study, we use affinity-enrichment mass spectrometry to decipher the host-pathogen protein-protein interaction between plasminogen and streptolysin O, a key cytolytic toxin produced by GAS. This interaction accelerates the conversion of plasminogen to plasmin by both the host tissue-type plasminogen activator and streptokinase, a bacterial plasminogen activator secreted by GAS. Integrative structural mass spectrometry analysis shows that the interaction induces local conformational shifts in plasminogen. These changes lead to the formation of a stabilised intermediate plasminogen-streptolysin O complex that becomes significantly more susceptible to proteolytic processing by plasminogen activators. Our findings reveal a conserved and moonlighting pathomechanistic function for streptolysin O that extends beyond its well-characterised cytolytic activity.
Collapse
Affiliation(s)
- Di Tang
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden.
| | - Hamed Khakzad
- Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
| | - Elisabeth Hjortswang
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Lars Malmström
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Simon Ekström
- SciLifeLab, Integrated Structural Biology Platform, Structural Proteomics Unit Sweden, Lund University, Lund, Sweden
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden.
- SciLifeLab, Integrated Structural Biology Platform, Structural Proteomics Unit Sweden, Lund University, Lund, Sweden.
| |
Collapse
|
7
|
Sadek S, Jacot TA, Duffy DM, Archer DF. Prostaglandin E 2 regulates the plasminogen activator pathway in human endometrial endothelial cells: a new in vitro model to investigate heavy menstrual bleeding. F&S SCIENCE 2024; 5:379-385. [PMID: 39038609 DOI: 10.1016/j.xfss.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVE To study the role of PGE2 in regulating plasminogen activator inhibitor-1 (PAI-1) and tissue plasminogen activator (tPA) in human primary endometrial endothelial cells (HEECs) from women with normal menstrual bleeding (NMB) and heavy menstrual bleeding (HMB). DESIGN In vitro study using endometrial endothelial cells. SETTING Research laboratory setting. PATIENTS Women with NMB and HMB provided endometrial biopsy samples. INTERVENTIONS Prostaglandin E2 and PGE2 receptor-selective agonists were administered to cultured HEECs. MAIN OUTCOME MEASURES Levels of PAI-1 and tPA in NMB-HEECs and HMB-HEECs after treatment with PGE2 and receptor-selective agonists. RESULTS Prostaglandin E2 increased total PAI-1 levels in NMB-HEECs, but not in HMB-HEECs, which had higher baseline PAI-1 levels. PGE2 receptors (PTGER)1 and PTGER2 agonists increased PAI-1 in NMB-HEECs, whereas PTGER3 and PTGER4 did not. Prostaglandin E2 had no effect on tPA levels in either NMB-HEECs or HMB-HEECs. CONCLUSIONS Prostaglandin E2, through PTGER1 and PTGER2, regulates the plasminogen activator system in NMB-HEECs, suggesting a role in reducing fibrinolytic activity during normal menstrual cycles. The lack of PGE2 effect and elevated baseline PAI-1 in HMB-HEECs support using this in vitro model to further understand prostaglandin pathways in NMB and HMB.
Collapse
Affiliation(s)
- Seifeldin Sadek
- The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk, Virginia.
| | - Terry A Jacot
- Department of Obstetrics and Gynecology, Jones Institute for Reproductive Medicine/Eastern Virginia Medical School, Norfolk, Virginia
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - David F Archer
- The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk, Virginia
| |
Collapse
|
8
|
Gao Y, Fu Y, Guo E, Wang T, Jiang Q, Zhang C, Liu J, Wang G. Novel nomogram for the prediction of sepsis-induced coagulopathy in the PICU: A multicentre retrospective study. Thromb Res 2024; 243:109152. [PMID: 39288599 DOI: 10.1016/j.thromres.2024.109152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/16/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION Sepsis-induced coagulopathy (SIC) is a severe complication of sepsis, characterized by poor prognosis and high mortality. However, the predictors of SIC in pediatric patients have yet to be identified. Our aim was to develop a user-friendly and efficient nomogram for predicting SIC in sepsis patients admitted to the pediatric intensive care unit (PICU). MATERIALS AND METHODS We screened 948 sepsis patients admitted to the PICU in three hospitals located in Shandong, China. Least absolute shrinkage and selector operation (LASSO) regression was used in the training cohort for variable selection and regularization. The selected variables were utilized to construct a nomogram for predicting the risk of SIC among sepsis patients admitted to the PICU. RESULTS Overall, SIC was observed in 324 (40.3 %) patients. The morbidity of SIC in sepsis patients is associated with age, fibrinogen, prothrombin time, C-reactive protein, lactate and the pediatric sequential organ failure assessment score. We developed a nomogram for the early identification of SIC in the training cohort (area under the curve [AUC] 0.869, 95 % confidence interval [CI] 0.830-0.907, sensitivity 75.7 %, specificity 84.8 %) and validation cohorts (validation cohort 1: AUC 0.854, 95 % CI 0.805-0.903, sensitivity 72.0 %, specificity 86.9 %; validation cohort 2: AUC 0.853, 95 % CI 0.796-0.910, sensitivity 70.1 %, specificity 87.8 %). The calibration plots of the nomogram demonstrated a high level of concordance in the SIC probabilities between the observed and predicted values. CONCLUSIONS The novel nomogram showed excellent predictive performance for the morbidity of SIC among sepsis patients admitted to the PICU, potentially assisting healthcare professionals in early identification and intervention for SIC.
Collapse
Affiliation(s)
- Yan Gao
- Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan 250012, Shandong Province, China
| | - Yanan Fu
- Department of Medical Engineering, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan 250012, Shandong Province, China
| | - Enyu Guo
- Department of Pediatrics, Jining First People's Hospital, No.6 JianKang Road, Jining 272000, Shandong Province, China
| | - Teng Wang
- Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan 250012, Shandong Province, China
| | - Qin Jiang
- Department of Pediatrics, Jinan Children's Hospital of Shandong University, No.23976 Jingshi Road, Jinan 250000, Shandong Province, China
| | - Chen Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan 250012, Shandong Province, China
| | - Jing Liu
- Department of Biostatistics, School of Public Health, Cheeloo Cholege of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Guan Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan 250012, Shandong Province, China.
| |
Collapse
|
9
|
Patalakh I, Revka O, Gołaszewska A, Bielicka N, Misztal T. Integration of clotting and fibrinolysis: central role of platelets and factor XIIIa. Biosci Rep 2024; 44:BSR20240332. [PMID: 39212493 PMCID: PMC11427729 DOI: 10.1042/bsr20240332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSE The aim of the present study was to establish the role of platelets and activated factor XIIIa (FXIIIa) in the structuring of the fibrin network as well as to clarify the effect of network compaction on clot lysis. METHODS Turbidimetry was used for the one-stage clotting test where platelet-free plasma (PFP) is regarded as single factor-deficient plasma (platelets as lacking factor) and autologous platelet-rich plasma (PRP) as deficiency corrected plasma. Structural features of the developed and subsequently lysed fibrin network, formed under static and flow conditions, were visualized by confocal microscopy. RESULTS Thrombin-initiated plasma clotting revealed changes in the shape of the absorption curve, more pronounced in the presence of platelets. These changes correlate with the transformation of the fibrin scaffold during clot maturing. With the combined action of platelets, thrombin and Ca2+, plasma clotting passes through two phases: initial formation of a platelet-fibrin network (first peak in the polymerization curve), and then the compaction of fibrin, driven by FXIIIa (the second peak) which can be further modulate by the contractile action of platelets. These structural changes, mediated by platelets and FXIIIa, have been shown to determine subsequent clot lysis. CONCLUSIONS Platelet aggregates serve as organizing centers that determine the distribution of fibrin in clot volume. The openwork structure of the platelet-transformed fibrin provides the necessary prerequisites for its timely lysis. The revealed aspects of the interaction of platelets and FXIIIa, which accompanies the maturation of a fibrin clot, may lead to new approaches in the pharmacological correction of disorders associated with both thrombotic episodes and bleeding tendency.
Collapse
Affiliation(s)
- Irina Patalakh
- Department of Chemistry and Biochemistry of Enzymes, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Ukraine
| | - Olga Revka
- Department of Chemistry and Biochemistry of Enzymes, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Ukraine
| | - Agata Gołaszewska
- Department of General and Experimental Pathology, Medical University of Białystok, 15089 Białystok, Poland
| | - Natalia Bielicka
- Department of Biopharmacy and Radiopharmacy, Medical University of Bialystok, Poland
| | - Tomasz Misztal
- Department of Physical Chemistry, Medical University of Bialystok, Poland
| |
Collapse
|
10
|
Zhang L, Chen Y, Hu R, Chen H, Peng X, Yuan H. A single-center study of reference intervals for TAT, PIC, TM and t-PAIC in healthy older Chinese adults. Thromb J 2024; 22:82. [PMID: 39300541 DOI: 10.1186/s12959-024-00651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024] Open
Abstract
OBJECTIVE To explore the distribution of thrombin-antithrombin complex (TAT), plasmin-α2-antiplasmin inhibitor complex (PIC), thrombomodulin (TM), and tissue plasminogen activator-inhibitor complex (t-PAIC) in healthy older Chinese adults, and establish the reference intervals (RIs). METHODS The Biotech Shine i2900 chemiluminescence immune assay was used to measure the plasma concentrations of TAT, PIC, TM, and t-PAIC in 1628 adults ≥ 60 years. The RIs were established using the 2.5th and 97.5th percentiles of the distribution. RESULTS TAT levels were lower in males than females across all ages. Differences between the ages of 60-79 and ≥ 80 in both sex groups were statistically significant, with an upward trend with age. PIC levels showed no difference between the sexes but increased with age in both groups. TM levels did not differ between the sex groups, with slight fluctuation with age. The level in females aged 60-69 was slightly higher than that in the other groups; the difference was statistically significant. T-PAIC levels were not significantly different between the sex groups, with less fluctuation with sex and age. The level in males ≥ 80 years old was slightly lower than that in the other groups; the difference was statistically significant. The RIs for all markers in healthy older Chinese adults were determined and statistically reported by age and sex. For TAT, the RIs for males aged 60-79 and ≥ 80 are 0.51-2.30 ng/mL and 0.88-3.72 ng/mL, respectively, whereas for females aged 60-79 and ≥ 80, the RIs are 0.68-2.82 ng/mL and 1.02-3.67 ng/mL, respectively. For PIC, the RIs for the age groups 60-69, 70-79, and ≥ 80 are 0.10-0.89 µg/mL, 0.12-1.00 µg/mL, and 0.21-1.04 µg/mL, respectively. The RI of TM for females aged 60-69 is 3.32-13.22 TU/mL, whereas it is 2.96-13.26 TU/mL for the other groups. The RI of t-PAIC for males aged ≥ 80 is 1.63-10.68 ng/mL, whereas it is 2.33-11.34 ng/mL for the other groups. CONCLUSIONS Discrepancies exist in thrombus markers among different sex and age groups. The RIs of TAT, PIC, TM and t-PAIC for healthy older Chinese adults were successfully established.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Beijing, China
| | | | - Rong Hu
- Health Examination Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hua Chen
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Beijing, China
| | - Xu Peng
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Beijing, China
| | - Hui Yuan
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Beijing, China.
| |
Collapse
|
11
|
Ballard-Kordeliski A, Lee RH, O’Shaughnessy EC, Kim PY, Jones SR, Pawlinski R, Flick MJ, Paul DS, Mackman N, Adalsteinsson DA, Bergmeier W. 4D intravital imaging studies identify platelets as the predominant cellular procoagulant surface in a mouse hemostasis model. Blood 2024; 144:1116-1126. [PMID: 38820498 PMCID: PMC11406176 DOI: 10.1182/blood.2023022608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
ABSTRACT Interplay between platelets, coagulation factors, endothelial cells (ECs), and fibrinolytic factors is necessary for effective hemostatic plug formation. This study describes a 4-dimensional (4D) imaging platform to visualize and quantify hemostatic plug components in mice with high spatiotemporal resolution. Fibrin accumulation after laser-induced vascular injury was observed at the platelet plug-EC interface, controlled by the antagonistic balance between fibrin generation and breakdown. We observed less fibrin accumulation in mice expressing low levels of tissue factor or F12-/-mice compared with controls, whereas increased fibrin accumulation, including on the vasculature adjacent to the platelet plug, was observed in plasminogen-deficient mice or wild-type mice treated with tranexamic acid. Phosphatidylserine (PS), a membrane lipid critical for the assembly of coagulation factors, was first detected at the platelet plug-EC interface, followed by exposure across the endothelium. Impaired PS exposure resulted in a significant reduction in fibrin accumulation in cyclophilin D-/-mice. Adoptive transfer studies demonstrated a key role for PS exposure on platelets, and to a lesser degree on ECs, in fibrin accumulation during hemostatic plug formation. Together, these studies suggest that (1) platelets are the functionally dominant procoagulant cellular surface, and (2) plasmin is critical for limiting fibrin accumulation at the site of a forming hemostatic plug.
Collapse
Affiliation(s)
- Abigail Ballard-Kordeliski
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Robert H. Lee
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ellen C. O’Shaughnessy
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Paul Y. Kim
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
| | - Summer R. Jones
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Rafal Pawlinski
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Matthew J. Flick
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - David S. Paul
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Nigel Mackman
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - David A. Adalsteinsson
- Department of Mathematics, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
12
|
Chen K, Wang D, Qian M, Weng M, Lu Z, Zhang K, Jin Y. Endothelial cell dysfunction and targeted therapeutic drugs in sepsis. Heliyon 2024; 10:e33340. [PMID: 39027563 PMCID: PMC11255673 DOI: 10.1016/j.heliyon.2024.e33340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by an abnormal host response to microbial infections. During its pathogenesis, vascular endothelial cells (ECs) play a pivotal role as essential components in maintaining microcirculatory homeostasis. This article aims to comprehensively review the multifaceted physiological functions of vascular ECs, elucidate the alterations in their functionality throughout the course of sepsis, and explore recent advancements in research concerning sepsis-related therapeutic drugs targeting ECs.
Collapse
Affiliation(s)
- Kunwei Chen
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongdong Wang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minyue Qian
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengcao Weng
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongteng Lu
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Jin
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Rabadà Y, Bosch-Sanz O, Biarnés X, Pedreño J, Caveda L, Sánchez-García D, Martorell J, Balcells M. Unravelling the Antifibrinolytic Mechanism of Action of the 1,2,3-Triazole Derivatives. Int J Mol Sci 2024; 25:7002. [PMID: 39000111 PMCID: PMC11241262 DOI: 10.3390/ijms25137002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
A new family of antifibrinolytic drugs has been recently discovered, combining a triazole moiety, an oxadiazolone, and a terminal amine. Two of the molecules of this family have shown activity that is greater than or similar to that of tranexamic acid (TXA), the current antifibrinolytic gold standard, which has been associated with several side effects and whose use is limited in patients with renal impairment. The aim of this work was to thoroughly examine the mechanism of action of the two ideal candidates of the 1,2,3-triazole family and compare them with TXA, to identify an antifibrinolytic alternative active at lower dosages. Specifically, the antifibrinolytic activity of the two compounds (1 and 5) and TXA was assessed in fibrinolytic isolated systems and in whole blood. Results revealed that despite having an activity pathway comparable to that of TXA, both compounds showed greater activity in blood. These differences could be attributed to a more stable ligand-target binding to the pocket of plasminogen for compounds 1 and 5, as suggested by molecular dynamic simulations. This work presents further evidence of the antifibrinolytic activity of the two best candidates of the 1,2,3-triazole family and paves the way for incorporating these molecules as new antifibrinolytic therapies.
Collapse
Affiliation(s)
- Yvette Rabadà
- IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Oriol Bosch-Sanz
- IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Xevi Biarnés
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Javier Pedreño
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
- Alxerion Biotech, 245 First St, Riverview II, 18th Floor, Cambridge, MA 02142, USA
| | - Luis Caveda
- Alxerion Biotech, 245 First St, Riverview II, 18th Floor, Cambridge, MA 02142, USA
| | - David Sánchez-García
- IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
- Grup d'Enginyeria de Materials, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Jordi Martorell
- IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Mercedes Balcells
- IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| |
Collapse
|
14
|
Urano T, Sano Y, Suzuki Y, Okada M, Sano H, Honkura N, Morooka N, Doi M, Suzuki Y. Evaluation of thrombomodulin/thrombin activatable fibrinolysis inhibitor function in plasma using tissue-type plasminogen activator-induced plasma clot lysis time. Res Pract Thromb Haemost 2024; 8:102463. [PMID: 39026660 PMCID: PMC11255936 DOI: 10.1016/j.rpth.2024.102463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 07/20/2024] Open
Abstract
Background Thrombin activatable fibrinolysis inhibitor (TAFI) is one of the most important physiological fibrinolysis inhibitors. Its inhibitory efficacy under physiological conditions remains uncertain. Objectives Elucidate the role of soluble thrombomodulin (sTM)/TAFI axis in the regulation of fibrinlysis. Methods Since thrombin is required to generate activated TAFI (TAFIa) that targets the C-terminal lysine of partially digested fibrin, a clot lysis assay is suitable for evaluating its function. Using tissue-type plasminogen activator-induced plasma clot lysis time (tPA-PCLT) together with TAFIa inhibitor and recombinant sTM (rsTM), we evaluated the specific function of TM/TAFI in the plasma milieu. Results tPA-PCLT values were significantly shortened by the TAFIa inhibitor. rsTM supplementation prolonged tPA-PCLT, which was shortened by the TAFIa inhibitor to a time similar to that obtained without rsTM and with the TAFIa inhibitor. Plasma obtained from patients treated with rsTM showed prolonged tPA-PCLT, which was shortened by the TAFIa inhibitor but not further prolonged by rsTM. However, no significant correlation was observed between tPA-PCLT and parameters of TM/TAFI system in the plasma. Conclusion The role of the TM/TAFI system in regulating fibrinolysis was successfully evaluated using TAFIa inhibitor and rsTM. Trace amounts of soluble TM in normal plasma appeared sufficient to activate TAFI and inhibit fibrinolysis. Further, a therapeutic dose of rsTM appeared sufficient to activate TAFI and regulate fibrinolysis in the plasma milieu.
Collapse
Affiliation(s)
- Tetsumei Urano
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- Shizuoka Graduate University of Public Health, Shizuoka, Japan
| | - Yoshie Sano
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yuji Suzuki
- Department of Anesthesiology and Intensive Care Unit, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Masahiko Okada
- Misakaeno-sono Ayumino-ie for Children and Persons with Severe Motor and Intellectual Disabilities, Omura, Nagasaki, Japan
| | - Hideto Sano
- Department of Physiology, Tokai University School of Medicine, Tokyo, Japan
| | - Naoki Honkura
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Nanami Morooka
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Matsuyuki Doi
- Department of Anesthesiology and Intensive Care Unit, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- Intensive Care Unit, Hamamatsu Medical Center, Hamamatsu, Shizuoka, Japan
| | - Yuko Suzuki
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
15
|
Xie W, Chen S, Luo H, Kong C, Wang D. Critical gene signature and immunological characterization in peripheral vascular atherosclerosis: novel insights from mendelian randomization and transcriptomics. Front Genet 2024; 15:1361445. [PMID: 38660678 PMCID: PMC11039871 DOI: 10.3389/fgene.2024.1361445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Peripheral vascular atherosclerosis (PVA) is a chronic inflammatory disease characterized by lipid accumulation in blood vessel walls, leading to vessel narrowing and inadequate blood supply. However, the molecular mechanisms underlying PVA remain poorly understood. In this study, we employed a combination of Mendelian randomization (MR) analysis and integrated transcriptomics to identify the critical gene signature associated with PVA. Methods This study utilized three public datasets (GSE43292, GSE100927 and GSE28829) related to peripheral vascular atherosclerosis obtained from the Gene Expression Omnibus database. Instrumental variables (IVs) were identified through expression quantitative trait loci (eQTL) analysis, and two-sample MR analysis was performed using publicly available summary statistics. Disease critical genes were identified based on odds ratios and intersected with differentially expressed genes in the disease dataset. GSE28829 dataset was used to validate the screened disease critical genes. Functional enrichment analysis, GSEA analysis, and immune cell infiltration analysis were performed to further characterize the role of these genes in peripheral vascular atherosclerosis. Results A total of 26,152 gene-related SNPs were identified as IVs, and 242 disease-associated genes were identified through MR analysis. Ten disease critical genes (ARHGAP25, HCLS1, HVCN1, RBM47, LILRB1, PLAU, IFI44L, IL1B, IFI6, and CFL2) were significantly associated with peripheral vascular atherosclerosis. Functional enrichment analysis using KEGG pathways revealed enrichment in the NF-kappa B signaling pathway and osteoclast differentiation. Gene set enrichment analysis further demonstrated functional enrichment of these genes in processes related to vascular functions and immune system activation. Additionally, immune cell infiltration analysis showed differential ratios of B cells and mast cells between the disease and control groups. The correlations analysis highlights the intricate interplay between disease critical genes and immune cells associated with PVA. Conclusion In conclusion, this study provides new insights into the molecular mechanisms underlying PVA by identifying ten disease critical genes associated with the disease. These findings, supported by differential expression, functional enrichment, and immune system involvement, emphasize the role of these genes in vascular function and immune cell interactions in the context of PVA. These findings contribute to a better understanding of PVA pathogenesis and offer potential targets for further mechanistic exploration and therapeutic interventions.
Collapse
Affiliation(s)
- Wei Xie
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing, China
| | - Shumin Chen
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hanqing Luo
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing, China
| | - Chuiyu Kong
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing, China
| | - Dongjin Wang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing, China
| |
Collapse
|
16
|
Miyazaki K, Kanno H, Yamada S, Sagehashi Y, Matsumoto S, Takahashi S, Kim Y, Namiki K, Fujii S. Clinical Features and Treatment of Patients Infected With SARS-CoV-2 Omicron Variant While Hospitalized Due to Stroke: A Single Center Study in Japan. Cureus 2024; 16:e54760. [PMID: 38523985 PMCID: PMC10961056 DOI: 10.7759/cureus.54760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND AND OBJECTIVE In December 2019, COVID-19 spread rapidly across the globe. Throughout the pandemic, SARS-CoV-2 repeatedly mutated, transitioning from the alpha variant to the omicron variant. The severity and mortality of COVID-19 have been linked to age, sex, and the presence of underlying diseases (respiratory, cerebrovascular, cardiovascular, metabolic, and immune diseases, as well as cancer). The clinical features of patients infected with COVID-19 following a stroke, however, are fully unknown. Therefore, it is significant to explore the appropriate treatment for these patients based on their clinical features. METHODS Of the 6175 patients who visited Asahi Hospital (Tokyo, Japan) between November 2022 and February 2023, 206 were admitted. Of these 206 patients, the 44 that contracted COVID-19 while hospitalized for strokes were retrospectively analyzed. RESULTS Six (13.6%) of these patients died; four expired due to coagulopathy associated with ischemic heart failure and recurrent ischemic cerebrovascular disease. The mean D-dimer level increased to 3.53 in the deceased patients, while it was 1.64 in all patients. The platelet count was low in three of the deceased patients, while it was high in two patients. The severity of COVID-19 was significantly correlated with a high modified Rankin Scale (mRS) score and a high National Institute of Health Stroke Scale (NIHSS) score. The timing of vaccination is inversely correlated with COVID-19 severity. CONCLUSION Patients with COVID-19 after a stroke have high mortality rates due to coagulopathy. Stroke patients with high mRS scores and high NIHSS scores are more likely to develop severe COVID-19. Anticoagulant therapy should be administered to COVID-19 patients with high mRS scores following a stroke.
Collapse
Affiliation(s)
| | - Hiroshi Kanno
- Department of Neurosurgery, Asahi Hospital, Tokyo, JPN
| | | | | | | | | | - Yongson Kim
- Department of Neurosurgery, Asahi Hospital, Tokyo, JPN
| | - Keiko Namiki
- Department of Pharmacy, Asahi Hospital, Tokyo, JPN
| | - Satoshi Fujii
- Department of Neurosurgery, Asahi Hospital, Tokyo, JPN
| |
Collapse
|
17
|
Khanam A, Alouffi S, Alyahyawi AR, Husain A, Khan S, Alharazi T, Akasha R, Khan H, Shahab U, Ahmad S. Generation of autoantibodies against glycated fibrinogen: Role in diabetic nephropathy and retinopathy. Anal Biochem 2024; 685:115393. [PMID: 37977213 DOI: 10.1016/j.ab.2023.115393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/01/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
The process of glycation, characterized by the non-enzymatic reaction between sugars and free amino groups on biomolecules, is a key contributor to the development and progression of both microvascular and macrovascular complications associated with diabetes, particularly due to persistent hyperglycemia. This glycation process gives rise to advanced glycation end products (AGEs), which play a central role in the pathophysiology of diabetes complications, including nephropathy. The d-ribose-mediated glycation of fibrinogen plays a central role in the pathogenesis of diabetes nephropathy (DN) and retinopathy (DR) by the generation and accumulation of advanced glycation end products (AGEs). Glycated fibrinogen with d-ribose (Rb-gly-Fb) induces structural changes that trigger an autoimmune response by generating and exposing neoepitopes on fibrinogen molecules. The present research is designed to investigate the prevalence of autoantibodies against Rb-gly-Fb in individuals with type 2 diabetes mellitus (T2DM), DN & DR. Direct binding ELISA was used to test the binding affinity of autoantibodies from patients' sera against Rb-gly-Fb and competitive ELISA was used to confirm the direct binding findings by checking the bindings of isolated IgG against Rb-gly-Fb and its native conformer. In comparison to healthy subjects, 32% of T2DM, 67% of DN and 57.85% of DR patients' samples demonstrated a strong binding affinity towards Rb-gly-Fb. Both native and Rb-gly-Fb binding by healthy subjects (HS) sera were non-significant (p > 0.05). Furthermore, the early, intermediate, and end products of glycation have been assessed through biochemical and physicochemical analysis. The biochemical markers in the patient groups were also significant (p < 0.05) in comparison to the HS group. This study not only establishes the prevalence of autoantibodies against d-ribose glycated fibrinogen in DN but also highlights the potential of glycated fibrinogen as a biomarker for the detection of DN and/or DR. These insights may open new avenues for research into novel therapeutic strategies and the prevention of diabetes-related nephropathy and retinopathy.
Collapse
Affiliation(s)
- Afreen Khanam
- Department of Biosciences, Faculty of Sciences, Integral University, Lucknow, 226026, India; Department of Biotechnology & Life Sciences, Institute of Biomedical Education & Research, Mangalayatan University, Aligarh, 202146, India
| | - Sultan Alouffi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail- 2440, Saudi Arabia
| | - Amjad R Alyahyawi
- Department of Diagnostic Radiology, College of Applied Medical Science, University of Hail, Ha'il, 2440, Saudi Arabia; Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Arbab Husain
- Department of Biosciences, Faculty of Sciences, Integral University, Lucknow, 226026, India; Department of Biotechnology & Life Sciences, Institute of Biomedical Education & Research, Mangalayatan University, Aligarh, 202146, India
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, University of Hail, Saudi Arabia
| | - Talal Alharazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail- 2440, Saudi Arabia
| | - Rihab Akasha
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail- 2440, Saudi Arabia
| | - Hamda Khan
- Department of Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, 202002, India
| | - Uzma Shahab
- Department of Biochemistry, King George Medical University, Lucknow, 226003, India
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail- 2440, Saudi Arabia.
| |
Collapse
|
18
|
Cramer DAT, Yin V, Caval T, Franc V, Yu D, Wu G, Lloyd G, Langendorf C, Whisstock JC, Law RHP, Heck AJR. Proteoform-Resolved Profiling of Plasminogen Activation Reveals Novel Abundant Phosphorylation Site and Primary N-Terminal Cleavage Site. Mol Cell Proteomics 2024; 23:100696. [PMID: 38101751 PMCID: PMC10825491 DOI: 10.1016/j.mcpro.2023.100696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
Plasminogen (Plg), the zymogen of plasmin (Plm), is a glycoprotein involved in fibrinolysis and a wide variety of other physiological processes. Plg dysregulation has been implicated in a range of diseases. Classically, human Plg is categorized into two types, supposedly having different functional features, based on the presence (type I) or absence (type II) of a single N-linked glycan. Using high-resolution native mass spectrometry, we uncovered that the proteoform profiles of human Plg (and Plm) are substantially more extensive than this simple binary classification. In samples derived from human plasma, we identified up to 14 distinct proteoforms of Plg, including a novel highly stoichiometric phosphorylation site at Ser339. To elucidate the potential functional effects of these post-translational modifications, we performed proteoform-resolved kinetic analyses of the Plg-to-Plm conversion using several canonical activators. This conversion is thought to involve at least two independent cleavage events: one to remove the N-terminal peptide and another to release the active catalytic site. Our analyses reveal that these processes are not independent but are instead tightly regulated and occur in a step-wise manner. Notably, N-terminal cleavage at the canonical site (Lys77) does not occur directly from intact Plg. Instead, an activation intermediate corresponding to cleavage at Arg68 is initially produced, which only then is further processed to the canonical Lys77 product. Based on our results, we propose a refined categorization for human Plg proteoforms. In addition, we reveal that the proteoform profile of human Plg is more extensive than that of rat Plg, which lacks, for instance, the here-described phosphorylation at Ser339.
Collapse
Affiliation(s)
- Dario A T Cramer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Centre, University of Utrecht, Utrecht, The Netherlands
| | - Victor Yin
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Centre, University of Utrecht, Utrecht, The Netherlands
| | - Tomislav Caval
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Centre, University of Utrecht, Utrecht, The Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Centre, University of Utrecht, Utrecht, The Netherlands
| | - Dingyi Yu
- Mass Spectrometry Facility, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Guojie Wu
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Gordon Lloyd
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Christopher Langendorf
- Mass Spectrometry Facility, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Ruby H P Law
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria, Australia.
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Centre, University of Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
19
|
Henke PK, Nicklas JM, Obi A. Immune cell-mediated venous thrombus resolution. Res Pract Thromb Haemost 2023; 7:102268. [PMID: 38193054 PMCID: PMC10772895 DOI: 10.1016/j.rpth.2023.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 01/10/2024] Open
Abstract
Herein, we review the current processes that govern experimental deep vein thrombus (DVT) resolution. How the human DVT resolves at the molecular and cellular level is not well known due to limited specimen availability. Experimentally, the thrombus resolution resembles wound healing, with early neutrophil-mediated actions followed by monocyte/macrophage-mediated events, including neovascularization, fibrinolysis, and eventually collagen replacement. Potential therapeutic targets are described, and coupling with site-directed approaches to mitigate off-target effects is the long-term goal. Similarly, timing of adjunctive agents to accelerate DVT resolution is an area that is only starting to be considered. There is much critical research that is needed in this area.
Collapse
Affiliation(s)
- Peter K. Henke
- Department of Surgery, University of Michigan Health System, Frankel Cardiovascular Center, Ann Arbor, Michigan, USA
| | - John M. Nicklas
- Department of Medicine, Brown University Medical School, Providence, Rhode Island, USA
| | - Andrea Obi
- Department of Surgery, University of Michigan Health System, Frankel Cardiovascular Center, Ann Arbor, Michigan, USA
| |
Collapse
|
20
|
Terada R, Johnson PM, Butt AL, Mishima Y, Stewart KE, Levy JH, Tanaka KA. In vitro effects of Gla-domainless factor Xa analog on procoagulant and fibrinolytic pathways in apixaban-treated plasma and whole blood. Thromb Res 2023; 230:119-125. [PMID: 37713998 DOI: 10.1016/j.thromres.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Andexanet alfa is a Gla-domainless FXa (GDXa) analog used as an antidote to FXa inhibitors. Despite its clinical use, laboratory monitoring for anti-Xa reversal and the effect of andexanet on fibrinolysis has not been explored. We used a GDXa with a serine-to-alanine mutation at position 195 (chymotrypsin numbering) to model the interaction between andexanet and apixaban. METHODS Six batches of pooled plasma, and whole blood from healthy volunteers were treated with increasing concentrations of apixaban with/without GDXa. Thrombin generation and plasmin generation (TG and PG) were tested in plasma, and whole blood thrombus formation was tested using thromboelastometry or a flow-chamber system. FXa was also tested in isolation for its ability to support plasmin activation with/without apixaban and GDXa. RESULTS Apixaban (250-800 nM) concentration-dependently decreased the velocity and peak of TG in plasma. Apixaban prolonged the onset of thrombus formation in thromboelastometry and flow-chamber tests. GDXa normalized apixaban-induced delays in TG and whole blood thrombus formation. However, GDXa minimally affected the low PG velocity and peak caused by apixaban at higher concentrations (500-800 nM). FXa promoted plasmin generation independent of fibrin that was inhibited by apixaban at supratherapeutic concentrations. CONCLUSIONS This study demonstrated the feasibility of assessing coagulation lag time recovery in plasma and whole blood following in vitro apixaban reversal using GDXa, a biosimilar to andexanet. In contrast, GDXa-induced changes in plasmin generation and fibrinolysis were limited in PG and tPA-added ROTEM assays, supporting the endogenous profibrinolytic activity of FXa and its inhibition at elevated apixaban concentrations.
Collapse
Affiliation(s)
- Rui Terada
- Department of Anesthesiology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States of America
| | - Penny M Johnson
- Department of Anesthesiology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States of America
| | - Amir L Butt
- Department of Anesthesiology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States of America
| | - Yuko Mishima
- Department of Anesthesiology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States of America
| | - Kenneth E Stewart
- Department of Anesthesiology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States of America; Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK, United States of America
| | - Jerold H Levy
- Department of Anesthesiology, Critical Care, and Surgery (Cardiothoracic), Duke University Medical Center, Durham, NC, United States of America
| | - Kenichi A Tanaka
- Department of Anesthesiology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States of America.
| |
Collapse
|
21
|
Goto S, Goto S. Is there a potential role of inhibition of thrombin-activatable fibrinolysis inhibitor in regulation of local fibrinolytic activities on fibrin thrombi in patients with pulmonary embolism? J Thromb Haemost 2023; 21:2708-2710. [PMID: 37739589 DOI: 10.1016/j.jtha.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 09/24/2023]
Affiliation(s)
- Shinya Goto
- Department of Medicine (Cardiology), Tokai University School of Medicine, Isehara, Japan.
| | - Shinichi Goto
- Department of Medicine (Cardiology), Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
22
|
Dai W, Castleberry M, Zheng Z. Tale of two systems: the intertwining duality of fibrinolysis and lipoprotein metabolism. J Thromb Haemost 2023; 21:2679-2696. [PMID: 37579878 PMCID: PMC10599797 DOI: 10.1016/j.jtha.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023]
Abstract
Fibrinolysis is an enzymatic process that breaks down fibrin clots, while dyslipidemia refers to abnormal levels of lipids and lipoproteins in the blood. Both fibrinolysis and lipoprotein metabolism are critical mechanisms that regulate a myriad of functions in the body, and the imbalance of these mechanisms is linked to the development of pathologic conditions, such as thrombotic complications in atherosclerotic cardiovascular diseases. Accumulated evidence indicates the close relationship between the 2 seemingly distinct and complicated systems-fibrinolysis and lipoprotein metabolism. Observational studies in humans found that dyslipidemia, characterized by increased blood apoB-lipoprotein and decreased high-density lipoprotein, is associated with lower fibrinolytic potential. Genetic variants of some fibrinolytic regulators are associated with blood lipid levels, supporting a causal relationship between these regulators and lipoprotein metabolism. Mechanistic studies have elucidated many pathways that link the fibrinolytic system and lipoprotein metabolism. Moreover, profibrinolytic therapies improve lipid panels toward an overall cardiometabolic healthier phenotype, while some lipid-lowering treatments increase fibrinolytic potential. The complex relationship between lipoprotein and fibrinolysis warrants further research to improve our understanding of the bidirectional regulation between the mediators of fibrinolysis and lipoprotein metabolism.
Collapse
Affiliation(s)
- Wen Dai
- Versiti Blood Research Institute, Milwaukee, USA.
| | | | - Ze Zheng
- Versiti Blood Research Institute, Milwaukee, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, USA.
| |
Collapse
|
23
|
Tao Y, Ma J, Feng Y, Gao C, Wu T, Xia Y, Cheng Z, Zhang Y, Liu T, Hu Y, Tang LV. Tissue-type plasminogen activator (tPA) homozygous Tyr471His mutation associates with thromboembolic disease. MedComm (Beijing) 2023; 4:e392. [PMID: 37808270 PMCID: PMC10556205 DOI: 10.1002/mco2.392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Tissue-type plasminogen activator (tPA) encoded by PLAT is a major mediator that promotes fibrinolysis and prevents thrombosis. Pathogenetic mutations in PLAT associated with venous thromboembolism have rarely been reported. Here, we report the first case of a homozygous point mutation c.1411T>C (p.Y471H) in PLAT leading to thromboembolic events and conduct related functional studies. The corresponding tPA mutant protein (tPA-Y471H) and wild-type tPA (tPA-WT) were synthesized in vitro, and mutant mice (PLATH/H mice) were constructed. The molecular docking and surface plasmon resonance results indicated that the mutation impeded the hydrogen-bonding interactions between the protease domain of tPA and the kringle 4 domain of plasminogen, and the binding affinity of tPA and plasminogen was significantly reduced with a difference of one order of magnitude. mRNA half-life assay showed that the half-life of tPA-Y471H was shortened. The inferior vena cava thrombosis model showed that the rate of venous thrombosis in PLATH/H mice was 80% compared with 53% in wild-type mice. Our data suggested a novel role for the protease domain of tPA in efficient plasminogen activation, and demonstrated that this tPA mutation could reduce the fibrinolysis function of the body and lead to an increased propensity for thrombosis.
Collapse
Affiliation(s)
- Yanyi Tao
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jiewen Ma
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuanzheng Feng
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chenggang Gao
- Department of Critical Care MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tingting Wu
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yunqing Xia
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhipeng Cheng
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yi Zhang
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tingting Liu
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yu Hu
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Liang V. Tang
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
24
|
Ballard-Kordeliski A, Lee RH, O'Shaughnessy EC, Kim PY, Jones S, Mackman N, Flick MJ, Paul DS, Adalsteinsson D, Bergmeier W. 4D intravital imaging studies identify platelets as the predominant cellular procoagulant surface in a mouse model of hemostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554449. [PMID: 37662350 PMCID: PMC10473702 DOI: 10.1101/2023.08.25.554449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Interplay between platelets, coagulation/fibrinolytic factors, and endothelial cells (ECs) is necessary for effective hemostatic plug formation. This study describes a novel four-dimensional (4D) imaging platform to visualize and quantify hemostatic plug components with high spatiotemporal resolution. Fibrin accumulation following laser-induced endothelial ablation was observed at the EC-platelet plug interface, controlled by the antagonistic balance between fibrin generation and breakdown. Phosphatidylserine (PS) was first detected in close physical proximity to the fibrin ring, followed by exposure across the endothelium. Impaired PS exposure in cyclophilinD -/- mice resulted in a significant reduction in fibrin accumulation. Adoptive transfer and inhibitor studies demonstrated a key role for platelets, but not ECs, in fibrin generation during hemostatic plug formation. Inhibition of fibrinolysis with tranexamic acid (TXA) led to increased fibrin accumulation in WT mice, but not in cyclophilinD -/- mice or WT mice treated with antiplatelet drugs. These studies implicate platelets as the functionally dominant procoagulant surface during hemostatic plug formation. In addition, they suggest that impaired fibrin formation due to reduced platelet procoagulant activity is not reversed by TXA treatment.
Collapse
|
25
|
Feng J, Wang J, Wang H, Cao X, Ma X, Rao Y, Pang H, Zhang S, Zhang Y, Wang L, Liu X, Chen H. Multistage Anticoagulant Surfaces: A Synergistic Combination of Protein Resistance, Fibrinolysis, and Endothelialization. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37466472 DOI: 10.1021/acsami.3c05145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Anticoagulant surface modification of blood-contacting materials has been shown to be effective in preventing thrombosis and reducing the dose of anticoagulant drugs that patients take. However, commercially available anticoagulant coatings, that is, both bioinert and bioactive coatings, are typically based on a single anticoagulation strategy. This puts the anticoagulation function of the coating at risk of failure during long-term use. Considering the several pathways of the human coagulation system, the synergy of multiple anticoagulation theories may provide separate, targeted effects at different stages of thrombosis. Based on this presumption, in this work, negatively charged poly(sodium p-styrenesulfonate-co-oligo(ethylene glycol) methyl ether methacrylate) and positively charged poly(lysine-co-1-adamantan-1-ylmethyl methacrylate) were synthesized to construct matrix layers on the substrate by electrostatic layer-by-layer self-assembly (LBL). Amino-functionalized β-cyclodextrin (β-CD-PEI) was subsequently immobilized on the surface by host-guest interactions, and heparin was grafted. By adjusting the content of poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA), the interactions between modified surfaces and plasma proteins/cells were regulated. This multistage anticoagulant surface exhibits inertness at the initial stage of implantation, resisting nonspecific protein adsorption (POEGMA). When coagulation reactions occur, heparin exerts its active anticoagulant function in a timely manner, blocking the pathway of thrombosis. If thrombus formation is inevitable, lysine can play a fibrinolytic role in dissolving fibrin clots. Finally, during implantation, endothelial cells continue to adhere and proliferate on the surface, forming an endothelial layer, which meets the blood compatibility requirements. This method provides a new approach to construct a multistage anticoagulant surface for blood-contacting materials.
Collapse
Affiliation(s)
- Jian Feng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Jinghong Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
- The SIP Biointerface Engineering Research Institute, Suzhou 215123, P.R. China
- Jiangsu Biosurf Biotech Co, Ltd., Suzhou 215123, P.R. China
| | - Huanhuan Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Xinyin Cao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Xiaoliang Ma
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Yu Rao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Huimin Pang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Sulei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Yuheng Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Lei Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
- The SIP Biointerface Engineering Research Institute, Suzhou 215123, P.R. China
| |
Collapse
|
26
|
Whyte CS. All tangled up: interactions of the fibrinolytic and innate immune systems. Front Med (Lausanne) 2023; 10:1212201. [PMID: 37332750 PMCID: PMC10272372 DOI: 10.3389/fmed.2023.1212201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
The hemostatic and innate immune system are intertwined processes. Inflammation within the vasculature promotes thrombus development, whilst fibrin forms part of the innate immune response to trap invading pathogens. The awareness of these interlinked process has resulted in the coining of the terms "thromboinflammation" and "immunothrombosis." Once a thrombus is formed it is up to the fibrinolytic system to resolve these clots and remove them from the vasculature. Immune cells contain an arsenal of fibrinolytic regulators and plasmin, the central fibrinolytic enzyme. The fibrinolytic proteins in turn have diverse roles in immunoregulation. Here, the intricate relationship between the fibrinolytic and innate immune system will be discussed.
Collapse
|
27
|
Shamanaev A, Dickeson SK, Ivanov I, Litvak M, Sun MF, Kumar S, Cheng Q, Srivastava P, He TZ, Gailani D. Mechanisms involved in hereditary angioedema with normal C1-inhibitor activity. Front Physiol 2023; 14:1146834. [PMID: 37288434 PMCID: PMC10242079 DOI: 10.3389/fphys.2023.1146834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/12/2023] [Indexed: 06/09/2023] Open
Abstract
Patients with the inherited disorder hereditary angioedema (HAE) suffer from episodes of soft tissue swelling due to excessive bradykinin production. In most cases, dysregulation of the plasma kallikrein-kinin system due to deficiency of plasma C1 inhibitor is the underlying cause. However, at least 10% of HAE patients have normal plasma C1 inhibitor activity levels, indicating their syndrome is the result of other causes. Two mutations in plasma protease zymogens that appear causative for HAE with normal C1 inhibitor activity have been identified in multiple families. Both appear to alter protease activity in a gain-of-function manner. Lysine or arginine substitutions for threonine 309 in factor XII introduces a new protease cleavage site that results in formation of a truncated factor XII protein (Δ-factor XII) that accelerates kallikrein-kinin system activity. A glutamic acid substitution for lysine 311 in the fibrinolytic protein plasminogen creates a consensus binding site for lysine/arginine side chains. The plasmin form of the variant plasminogen cleaves plasma kininogens to release bradykinin directly, bypassing the kallikrein-kinin system. Here we review work on the mechanisms of action of the FXII-Lys/Arg309 and Plasminogen-Glu311 variants, and discuss the clinical implications of these mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
28
|
Seliverstov E, Lobastov K, Ilyukhin E, Apkhanova T, Akhmetzyanov R, Akhtyamov I, Barinov V, Bakhmetiev A, Belov M, Bobrov S, Bozhkova S, Bredikhin R, Bulatov V, Vavilova T, Vardanyan A, Vorobiev N, Gavrilov E, Gavrilov S, Golovina V, Gorin A, Dzhenina O, Dianov S, Efremova O, Zhukovets V, Zamyatin M, Ignatiev I, Kalinin R, Kamaev A, Kaplunov O, Karimova G, Karpenko A, Kasimova A, Katelnitskaya O, Katelnitsky I, Katorkin S, Knyazev R, Konchugova T, Kopenkin S, Koshevoy A, Kravtsov P, Krylov A, Kulchitskaya D, Laberko L, Lebedev I, Malanin D, Matyushkin A, Mzhavanadze N, Moiseev S, Mushtin N, Nikolaeva M, Pelevin A, Petrikov A, Piradov M, Pikhanova Z, Poddubnaya I, Porembskaya O, Potapov M, Pyregov A, Rachin A, Rogachevsky O, Ryabinkina Y, Sapelkin S, Sonkin I, Soroka V, Sushkov S, Schastlivtsev I, Tikhilov R, Tryakin A, Fokin A, Khoronenko V, Khruslov M, Tsaturyan A, Tsed A, Cherkashin M, Chechulova A, Chuiko S, Shimanko A, Shmakov R, Yavelov I, Yashkin M, Kirienko A, Zolotukhin I, Stoyko Y, Suchkov I. Prevention, Diagnostics and Treatment of Deep Vein Thrombosis. Russian Experts Consensus. JOURNAL OF VENOUS DISORDERS 2023; 17:152. [DOI: 10.17116/flebo202317031152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The guidelines are developed in accordance with the requirements of the Ministry of Health of the Russian Federation by the all-Russian public organization «Association of Phlebologists of Russia» with participation of the Association of Cardiovascular Surgeons of Russia, the Russian Society of Surgeons, the Russian Society of Angiologists and Vascular Surgeons, the Association of Traumatologists and Orthopedists of Russia, the Association of Oncologists of Russia, the Russian Society of Clinical Oncology, Russian Society of Oncohematologists, Russian Society of Cardiology, Russian Society of Obstetricians and Gynecologists.
Collapse
|
29
|
Puccini M, Jakobs K, Reinshagen L, Friebel J, Schencke PA, Ghanbari E, Landmesser U, Haghikia A, Kränkel N, Rauch U. Galectin-3 as a Marker for Increased Thrombogenicity in COVID-19. Int J Mol Sci 2023; 24:ijms24097683. [PMID: 37175392 PMCID: PMC10178107 DOI: 10.3390/ijms24097683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Galectin-3 is a beta-galactoside-binding lectin involved in inflammation and lung fibrosis and postulated to enhance thrombosis. In COVID-19, it is considered to be a prognostic marker of severity. The aim of this study was to evaluate whether galectin-3 is associated with thrombogenicity in COVID-19. Patients with moderate-to-severe COVID-19 (COVpos; n = 55) and patients with acute respiratory diseases, but without COVID-19 (COVneg; n = 35), were included in the study. We measured the amount of galectin-3, as well as other platelet and coagulation markers, and correlated galectin-3 levels with these markers of thrombogenicity and with the SOFA Score values. We found that galectin-3 levels, as well as von Willebrand Factor (vWF), antithrombin and tissue plasminogen activator levels, were higher in the COVpos than they were in the COVneg cohort. Galectin-3 correlated positively with vWF, antithrombin and D-dimer in the COVpos cohort, but not in the COVneg cohort. Moreover, galactin-3 correlated also with clinical disease severity, as measured by the SOFA Score. In patients with acute respiratory diseases, galectin-3 can be considered as a marker not only for disease severity, but also for increased hypercoagulability. Whether galectin-3 might be a useful therapeutic target in COVID-19 needs to be assessed in future studies.
Collapse
Affiliation(s)
- Marianna Puccini
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
| | - Kai Jakobs
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
| | - Leander Reinshagen
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
| | - Julian Friebel
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
| | - Philipp-Alexander Schencke
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
| | - Emily Ghanbari
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
| | - Ulf Landmesser
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
| | - Arash Haghikia
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
| | - Nicolle Kränkel
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
| | - Ursula Rauch
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
| |
Collapse
|
30
|
Ayinuola YA, Castellino FJ. Inactivation of the lysine binding sites of human plasminogen (hPg) reveals novel structural requirements for the tight hPg conformation, M-protein binding, and rapid activation. Front Mol Biosci 2023; 10:1166155. [PMID: 37081852 PMCID: PMC10110952 DOI: 10.3389/fmolb.2023.1166155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Accelerated activation of the human plasminogen zymogen (hPg) to two-chain active plasmin (hPm) is achieved following conformational changes induced by ligand-binding at the lysine-binding sites (LBSs) in four of the five hPg kringle domains. In this manner, pattern D skin-trophic strains of Group A streptococci (GAS), through the expression of surface plasminogen-binding M-protein (PAM), immobilize surface hPg, thereby enabling rapid hPg activation by GAS-secreted streptokinase (SK). Consequently, GAS enhances virulence by digesting extracellular and tight cellular junctional barriers using hPm activity. Many studies have demonstrated the singular importance of the kringle-2 domain of hPg (K2hPg) to PAM-binding using hPg fragments. Recently, we showed, using full-length hPg, that K2hPg is critical for PAM binding. However, these studies did not eliminate any modulatory effects of the non-K2hPg LBS on this interaction. Moreover, we sought to establish the significance of the intramolecular interaction between Asp219 of the LBS of K2hPg and its serine protease domain binding partner, Lys708, to conformational changes in hPg. In the current study, selective inactivation of the LBS of K1hPg, K4hPg, and K5hPg revealed that the LBS of these kringle domains are dispensable for hPg binding to PAM. However, the attendant conformational change upon inactivation of K4hPg LBS increased the affinity of hPg for PAM by an order of magnitude. This finding suggests that the native hPg conformation encloses PAM-binding exosites or sterically hinders access to K2hPg. While simultaneous inactivation of the LBS of K1hPg, K4hPg, and K5hPg inhibited hPg/SK association alongside hPg activation, the replacement of Lys708 generated a slight conformational change that optimally accelerated hPg activation. Thus, we accentuate disparate functions of hPg LBS and conclude, using intact proteins, that K2hPg plays a central role in regulating hPg activation.
Collapse
Affiliation(s)
| | - Francis J. Castellino
- W. M. Keck Center for Transgene Research, Notre Dame, IN, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- *Correspondence: Francis J. Castellino,
| |
Collapse
|
31
|
Zheng Z, Mukhametova L, Boffa MB, Moore EE, Wolberg AS, Urano T, Kim PY. Assays to quantify fibrinolysis: strengths and limitations. Communication from the International Society on Thrombosis and Haemostasis Scientific and Standardization Committee on fibrinolysis. J Thromb Haemost 2023; 21:1043-1054. [PMID: 36759279 PMCID: PMC10109242 DOI: 10.1016/j.jtha.2023.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
Fibrinolysis is a series of enzymatic reactions that degrade insoluble fibrin. Plasminogen activators convert the zymogen plasminogen to the active serine protease plasmin, which cleaves and solubilizes crosslinked fibrin clots into fibrin degradation products. The quantity and quality of fibrinolytic enzymes, their respective inhibitors, and clot structure determine overall fibrinolysis. The quantity of protein can be measured by antigen-based assays, and both quantity and quality can be assessed using functional assays. Furthermore, variations of commonly used assays have been reported, which are tailored to address the role(s) of specific fibrinolytic factors and cellular elements (eg, platelets, neutrophils, and red blood cells). Although the concentration and/or activity of a protein can be quantified, how these individual components contribute to the overall fibrinolysis outcome can be challenging to determine. This difficulty is due to temporal changes within and around the thrombi during the clot breakdown, particularly the fibrin matrix structure, and composition. Furthermore, terms such as "fibrinolytic activity/potential," "plasminogen activation," and "plasmin activity" are often used interchangeably despite having different definitions. The purpose of this review is to 1) summarize the assays measuring fibrinolysis activity and potential, 2) facilitate the interpretation of data generated by these assays, and 3) summarize the strengths and limitations of these assays.
Collapse
Affiliation(s)
- Ze Zheng
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
| | - Liliya Mukhametova
- Chemical Enzymology Department, Chemistry Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Michael B Boffa
- Department of Biochemistry and Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Ernest E Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, University of Colorado, Denver, Colorado, USA
| | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tetsumei Urano
- Department of Medical Physiology, Hamamatsu University School of Medicine and Shizuoka Graduate University of Public Health, Hamamatsu, Japan
| | - Paul Y Kim
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada.
| |
Collapse
|
32
|
Francis D, Bhairaddy A, Joy A, Hari GV, Francis A. Secretory proteins in the orchestration of microbial virulence: The curious case of Staphylococcus aureus. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:271-350. [PMID: 36707204 DOI: 10.1016/bs.apcsb.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microbial virulence showcases an excellent model for adaptive changes that enable an organism to survive and proliferate in a hostile environment and exploit host resources to its own benefit. In Staphylococcus aureus, an opportunistic pathogen of the human host, known for the diversity of the disease conditions it inflicts and the rapid evolution of antibiotic resistance, virulence is a consequence of having a highly plastic genome that is amenable to quick reprogramming and the ability to express a diverse arsenal of virulence factors. Virulence factors that are secreted to the host milieu effectively manipulate the host conditions to favor bacterial survival and growth. They assist in colonization, nutrient acquisition, immune evasion, and systemic spread. The structural and functional characteristics of the secreted virulence proteins have been shaped to assist S. aureus in thriving and disseminating effectively within the host environment and exploiting the host resources to its best benefit. With the aim of highlighting the importance of secreted virulence proteins in bacterial virulence, the present chapter provides a comprehensive account of the role of the major secreted proteins of S. aureus in orchestrating its virulence in the human host.
Collapse
Affiliation(s)
- Dileep Francis
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India.
| | - Anusha Bhairaddy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | - Atheene Joy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | | | - Ashik Francis
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| |
Collapse
|
33
|
Risman RA, Kirby NC, Bannish BE, Hudson NE, Tutwiler V. Fibrinolysis: an illustrated review. Res Pract Thromb Haemost 2023; 7:100081. [PMID: 36942151 PMCID: PMC10024051 DOI: 10.1016/j.rpth.2023.100081] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 02/18/2023] Open
Abstract
In response to vessel injury (or other pathological conditions), the hemostatic process is activated, resulting in a fibrous, cellular-rich structure commonly referred to as a blood clot. Succeeding the clot's function in wound healing, it must be resolved. This illustrated review focuses on fibrinolysis-the degradation of blood clots or thrombi. Fibrin is the main mechanical and structural component of a blood clot, which encases the cellular components of the clot, including platelets and red blood cells. Fibrinolysis is the proteolytic degradation of the fibrin network that results in the release of the cellular components into the bloodstream. In the case of thrombosis, fibrinolysis is required for restoration of blood flow, which is accomplished clinically through exogenously delivered lytic factors in a process called external lysis. Fibrinolysis is regulated by plasminogen activators (tissue-type and urokinase-type) that convert plasminogen into plasmin to initiate fiber lysis and lytic inhibitors that impede this lysis (plasminogen activator inhibitors, alpha 2-antiplasmin, and thrombin activatable fibrinolysis inhibitor). Furthermore, the network structure has been shown to regulate lysis: thinner fibers and coarser clots lyse faster than thicker fibers and finer clots. Clot contraction, a result of platelets pulling on fibers, results in densely packed red blood cells (polyhedrocytes), reduced permeability to fibrinolytic factors, and increased fiber tension. Extensive research in the field has allowed for critical advancements leading to improved thrombolytic agents. In this review, we summarize the state of the field, highlight gaps in knowledge, and propose future research questions.
Collapse
Affiliation(s)
| | - Nicholas C Kirby
- Department of Chemistry, East Carolina University, Greenville, North Carolina, USA
| | | | - Nathan E Hudson
- Department of Physics, East Carolina University Greenville, North Carolina, USA
| | | |
Collapse
|
34
|
Yatsenko T, Skrypnyk M, Troyanovska O, Tobita M, Osada T, Takahashi S, Hattori K, Heissig B. The Role of the Plasminogen/Plasmin System in Inflammation of the Oral Cavity. Cells 2023; 12:cells12030445. [PMID: 36766787 PMCID: PMC9913802 DOI: 10.3390/cells12030445] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
The oral cavity is a unique environment that consists of teeth surrounded by periodontal tissues, oral mucosae with minor salivary glands, and terminal parts of major salivary glands that open into the oral cavity. The cavity is constantly exposed to viral and microbial pathogens. Recent studies indicate that components of the plasminogen (Plg)/plasmin (Pm) system are expressed in tissues of the oral cavity, such as the salivary gland, and contribute to microbial infection and inflammation, such as periodontitis. The Plg/Pm system fulfills two major functions: (a) the destruction of fibrin deposits in the bloodstream or damaged tissues, a process called fibrinolysis, and (b) non-fibrinolytic actions that include the proteolytic modulation of proteins. One can observe both functions during inflammation. The virus that causes the coronavirus disease 2019 (COVID-19) exploits the fibrinolytic and non-fibrinolytic functions of the Plg/Pm system in the oral cavity. During COVID-19, well-established coagulopathy with the development of microthrombi requires constant activation of the fibrinolytic function. Furthermore, viral entry is modulated by receptors such as TMPRSS2, which is necessary in the oral cavity, leading to a derailed immune response that peaks in cytokine storm syndrome. This paper outlines the significance of the Plg/Pm system for infectious and inflammatory diseases that start in the oral cavity.
Collapse
Affiliation(s)
- Tetiana Yatsenko
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Maksym Skrypnyk
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Olga Troyanovska
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Morikuni Tobita
- Department of Oral and Maxillofacial Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Taro Osada
- Department of Gastroenterology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu-Shi 279-0021, Japan
| | - Satoshi Takahashi
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo 108-8639, Japan
| | - Koichi Hattori
- Center for Genome and Regenerative Medicine, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
- Correspondence: (K.H.); (B.H.); Tel.: +81-3-3813-3111 (switchboard 2115) (B.H.)
| | - Beate Heissig
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
- Correspondence: (K.H.); (B.H.); Tel.: +81-3-3813-3111 (switchboard 2115) (B.H.)
| |
Collapse
|
35
|
Moran TE, Hammers DE, Lee SW. The Role of Host-Cellular Responses in COVID-19 Endothelial Dysfunction. Curr Drug Targets 2022; 23:1555-1566. [PMID: 35748550 DOI: 10.2174/1389450123666220624094940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/11/2022] [Accepted: 05/11/2022] [Indexed: 01/25/2023]
Abstract
SARS-CoV2, Severe acute respiratory syndrome coronavirus 2, is a novel member of the human coronavirus family that has recently emerged worldwide to cause COVID-19 disease. COVID-19 disease has been declared a worldwide pandemic with over 270 million total cases, and >5 million deaths as of this writing. Although co-morbidities and preexisting conditions have played a significant role in the severity of COVID-19, the hallmark feature of severe disease associated with SARS-CoV2 is respiratory failure. Recent findings have demonstrated a key role for endothelial dysfunction caused by SARS-CoV2 in these clinical outcomes, characterized by endothelial inflammation, the persistence of a pro-coagulative state, and major recruitment of leukocytes and other immune cells to localized areas of endothelial dysfunction. Though it is generally recognized that endothelial impairment is a major contributor to COVID-19 disease, studies to examine the initial cellular events involved in triggering endothelial dysfunction are needed. In this article, we review the general strategy of pathogens to exploit endothelial cells and the endothelium to cause disease. We discuss the role of the endothelium in COVID-19 disease and highlight very recent findings that identify key signaling and cellular events that are associated with the initiation of SARS-CoV2 infection. These studies may reveal specific molecular pathways that can serve as potential means of therapeutic development against COVID-19 disease.
Collapse
Affiliation(s)
- Thomas E Moran
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Daniel E Hammers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.,W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, USA.,Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
36
|
Jalilvand A, Yari K, Heydarpour F. Role of Polymorphisms on the Recurrent Pregnancy Loss: A Systematic Review, Meta-analysis and Bioinformatic Analysis. Gene 2022; 844:146804. [PMID: 35998845 DOI: 10.1016/j.gene.2022.146804] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/16/2022] [Accepted: 08/06/2022] [Indexed: 02/08/2023]
Abstract
Recurrent miscarriage (RM) is a major reproductive health issue. RM is a multi-factorial disease, and is affected by environmental, genetic, and epigenetic factors. Genetics has a common role in recurrent miscarriage occurrence. It seems that molecular genetics has a great role in RSA incidence. So, in these years, RM has become for a major subject of genetics research. There are many genes that are involved in each phase for successful reproduction. This research aimed to evaluate the effect of all studied polymorphisms in studies on RSA that have not been included in any meta-analysis. PubMed, Scopus, and Web of Science databases were recruited to investigate the related articles. The systematic review results identified 143 studies worldwide. Thirteen genes have been included in assessing the case-control studies. Sixty-four SNPs were recruited to assess the association between genetic factors and RSA susceptibility. Ninety-two studies containing twenty-two SNPs (from 10 genes) were included in the quantitative analysis. Bioinformatic analysis indicated that rs12722482 showed "Damaging Status" by double servers, and rs315952 and rs854560 had "Possibly damaging" status in the PolyPhen-2 server. MethPrimer server indicated that there is "CpG Island" in the rs10895068, rs1130355, and rs41557518 variants, and rs10895068-G allele makes a CpG dinucleotide which can change the gene methylation and result in altering the gene expression. So, further studies on rs12722482 and rs10895068 can demonstrate valuable results. To the best of our knowledge, this systematic review has covered the all studied polymorphisms of HLA-C, HLA-G, PON1, AGTR1, TAFI, FAS, FAS-L, ESR1, PGR, CTLA-4, MMP-2, MMP-3, MMP-9, and IL1RN for the first time. Also, we did a novel meta-analysis for AGTR1 rs5186, TAFI rs1926447, rs3742264, HLA-G rs1063320, rs1233334, rs1736936, rs2249863, PON1 rs662, rs854560, FAS rs2234767, rs1800682, FAS-L rs763110, ESR1, rs9340799, rs3798759, PGR rs1042838, CTLA4 rs4553808, rs5742909, rs231775, rs3087243, and MMP-2 rs243865 and updated statistical finding for rs2234693 and rs371194629. Rs2234693, rs9340799, rs231775, and rs371194629 demonstrated a significant association with RSA risk. Some variations showed significant association, while further studies are suggested to confirm the results. Finally, Rs4553808 and rs5742909 revealed no significant deviation in the results. It is suggested that these SNPs may be excluded from subsequent case-control studies or other analyses.
Collapse
Affiliation(s)
- Amin Jalilvand
- Researcher in Molecular Genetics, Kermanshah ACECR Institute of Higher Education, Kermanshah, Iran
| | - Kheirollah Yari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Fatemeh Heydarpour
- Social Development and Health Promotion Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
37
|
Mochizuki L, Sano H, Honkura N, Masumoto K, Urano T, Suzuki Y. Visualization of Domain- and Concentration-Dependent Impact of Thrombomodulin on Differential Regulation of Coagulation and Fibrinolysis. Thromb Haemost 2022; 123:16-26. [PMID: 36307100 PMCID: PMC9831690 DOI: 10.1055/s-0042-1757407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Thrombomodulin (TM) functions as a dual modulator-anticoagulant and antifibrinolytic potential-by the thrombin-dependent activation of protein C and thrombin-activatable fibrinolysis inhibitor (TAFI). Activated TAFI cleaves the C-terminal lysine of partially degraded fibrin and inhibits both plasminogen binding and its activation on the fibrin surface. We have reported previously that activated platelets initiate fibrin network formation and trigger fibrinolysis after the accumulation of tissue-type plasminogen activator and plasminogen. OBJECTIVE To analyze the effects of domain-deletion variants of TM on coagulation and fibrinolysis at different concentrations. METHODS Domain-deletion variants of TM, such as D123 (all extracellular regions), E3456 (minimum domains for thrombin-dependent activation of protein C and TAFI), and E456 (minimum domains for that of protein C but not TAFI), were used at 0.25 to 125 nM for turbidimetric assay to determine the clotting time and clot lysis time and to visualize fibrin network formation and lysis in platelet-containing plasma. RESULTS AND CONCLUSIONS A low concentration of either D123 or E3456, but not of E456, prolonged clot lysis time, and delayed the accumulation of fluorescence-labeled plasminogen at the activated platelets/dense fibrin area due to effective TAFI activation. Conversely, only the highest concentrations of all three TM variants delayed the clotting time, though fibrin network formation in the vicinity of activated platelets was almost intact. TAFI activation might be affected by attenuation in thrombin activity after the clot formation phase. These findings suggest that the spatiotemporal balance between the anticoagulant and antifibrinolytic potential of TM is controlled in domain- and concentration-dependent manners.
Collapse
Affiliation(s)
- Liina Mochizuki
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan,Department of Dentistry and Oral and Maxillofacial Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideto Sano
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoki Honkura
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuma Masumoto
- Department of Dentistry and Oral and Maxillofacial Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tetsumei Urano
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan,Shizuoka Graduate University of Public Health, Shizuoka, Japan
| | - Yuko Suzuki
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan,Address for correspondence Yuko Suzuki, MD, PhD Department of Medical Physiology, Hamamatsu University School of Medicine1-20-1, Handa-yama, Higashi-ku, Hamamatsu, 431-3192Japan
| |
Collapse
|
38
|
Risman RA, Abdelhamid A, Weisel JW, Bannish BE, Tutwiler V. Effects of clot contraction on clot degradation: A mathematical and experimental approach. Biophys J 2022; 121:3271-3285. [PMID: 35927957 PMCID: PMC9463642 DOI: 10.1016/j.bpj.2022.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022] Open
Abstract
Thrombosis, resulting in occlusive blood clots, blocks blood flow to downstream organs and causes life-threatening conditions such as heart attacks and strokes. The administration of tissue plasminogen activator (t-PA), which drives the enzymatic degradation (fibrinolysis) of these blood clots, is a treatment for thrombotic conditions, but the use of these therapeutics is often limited due to the time-dependent nature of treatment and their limited success. We have shown that clot contraction, which is altered in prothrombotic conditions, influences the efficacy of fibrinolysis. Clot contraction results in the volume shrinkage of blood clots, with the redistribution and densification of fibrin and platelets on the exterior of the clot and red blood cells in the interior. Understanding how these key structural changes influence fibrinolysis can lead to improved diagnostics and patient care. We used a combination of mathematical modeling and experimental methodologies to characterize the process of exogenous delivery of t-PA (external fibrinolysis). A three-dimensional (3D) stochastic, multiscale model of external fibrinolysis was used to determine how the structural changes that occur during the process of clot contraction influence the mechanism(s) of fibrinolysis. Experiments were performed based on modeling predictions using pooled human plasma and the external delivery of t-PA to initiate lysis. Analysis of fibrinolysis simulations and experiments indicate that fibrin densification makes the most significant contribution to the rate of fibrinolysis compared with the distribution of components and degree of compaction (p < 0.0001). This result suggests the possibility of a certain fibrin density threshold above which t-PA effective diffusion is limited. From a clinical perspective, this information can be used to improve on current therapeutics by optimizing timing and delivery of lysis agents.
Collapse
Affiliation(s)
| | | | - John W Weisel
- University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
39
|
Chen Y, Xu X, Wang L, Li K, Sun Y, Xiao L, Dai J, Huang M, Wang Y, Wang DW. Genetic insights into therapeutic targets for aortic aneurysms: A Mendelian randomization study. EBioMedicine 2022; 83:104199. [PMID: 35952493 PMCID: PMC9385553 DOI: 10.1016/j.ebiom.2022.104199] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND As aortic aneurysms (AAs) enlarge, they can become life-threatening if left undiagnosed or neglected. At present, there is a lack of radical treatments for preventing disease progression. Therefore, we aimed to identify effective drug targets that slow the progression of AAs. METHODS A Mendelian randomization (MR) analysis was conducted to identify therapeutic targets which are associated with AAs. Summary statistics for AAs were obtained from two datasets: the UK Biobank (2228 cases and 408,565 controls) and the FinnGen study (3658 cases and 244,907 controls). Cis-expression quantitative trait loci (cis-eQTL) for druggable genes were retrieved from the eQTLGen Consortium and used as genetic instrumental variables. Colocalization analysis was performed to determine the probability that single nucleotide polymorphisms (SNPs) associated with AAs and eQTL shared causal genetic variants. FINDINGS Four drug targets (BTN3A1, FASN, PLAU, and PSMA4) showed significant MR results in two independent datasets. Proteasome 20S subunit alpha 4 (PSMA4) and plasminogen activator, urokinase (PLAU) in particular, were found to have strong evidence for colocalization with AAs, and abdominal aortic aneurysm in particular. Additionally, except for the association between PSMA4 and intracranial aneurysms, no association between genetically proxied inhibition of PLAU and PSMA4 was detected in increasing the risk of other cardiometabolic risks and diseases. INTERPRETATION This study supports that drug-targeting PLAU and PSMA4 inhibition may reduce the risk of AAs. FUNDING This work was supported by National Key R&D Program of China (NO. 2017YFC0909400), Nature Science Foundation of China (No. 91839302, 81790624), Project supported by Shanghai Municipal Science and Technology Major Project (Grant No. 2017SHZDZX01), and Tongji Hospital Clinical Research Flagship Program (no. 2019CR207).
Collapse
Affiliation(s)
- Yanghui Chen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Xin Xu
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Linlin Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Ke Li
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Yang Sun
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Lei Xiao
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Jiaqi Dai
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Man Huang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China; Department of Internal Medicine, Tongji Shanxi Hospital, Taiyuan 030032, Shanxi Province, China.
| |
Collapse
|
40
|
Abstract
SignificanceFibrin plays a vital role in biology as the fibrous network that stabilizes blood clots and also through interaction with numerous blood components. While much is known about fibrin mechanics, comparatively little is known about how fibrin's mechanics influence its biochemistry. We show that structural changes in fibrin under mechanical tension reduces binding of tissue plasminogen activator, an enzyme that initiates lysis. Furthermore, these structural transitions also led to decreased platelet activation through suppressed binding between platelet integrins and fibrin. Our work shows that fibrin possesses an intrinsic mechano-chemical feedback loop that regulates its bioactivity via molecular structural rearrangements.
Collapse
|
41
|
Dickeson SK, Kumar S, Sun MF, Mohammed BM, Phillips DR, Whisstock JC, Quek AJ, Feener EP, Law RHP, Gailani D. A mechanism for hereditary angioedema caused by a lysine 311-to-glutamic acid substitution in plasminogen. Blood 2022; 139:2816-2829. [PMID: 35100351 PMCID: PMC9074402 DOI: 10.1182/blood.2021012945] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022] Open
Abstract
Patients with hereditary angioedema (HAE) experience episodes of bradykinin (BK)-induced swelling of skin and mucosal membranes. The most common cause is reduced plasma activity of C1 inhibitor, the main regulator of the proteases plasma kallikrein (PKa) and factor XIIa (FXIIa). Recently, patients with HAE were described with a Lys311 to glutamic acid substitution in plasminogen (Plg), the zymogen of the protease plasmin (Plm). Adding tissue plasminogen activator to plasma containing Plg-Glu311 vs plasma containing wild-type Plg (Plg-Lys311) results in greater BK generation. Similar results were obtained in plasma lacking prekallikrein or FXII (the zymogens of PKa and FXIIa) and in normal plasma treated with a PKa inhibitor, indicating Plg-Glu311 induces BK generation independently of PKa and FXIIa. Plm-Glu311 cleaves high and low molecular weight kininogens (HK and LK, respectively), releasing BK more efficiently than Plm-Lys311. Based on the plasma concentrations of HK and LK, the latter may be the source of most of the BK generated by Plm-Glu311. The lysine analog ε-aminocaproic acid blocks Plm-catalyzed BK generation. The Glu311 substitution introduces a lysine-binding site into the Plg kringle 3 domain, perhaps altering binding to kininogens. Plg residue 311 is glutamic acid in most mammals. Glu311 in patients with HAE, therefore, represents reversion to the ancestral condition. Substantial BK generation occurs during Plm-Glu311 cleavage of human HK, but not mouse HK. Furthermore, mouse Plm, which has Glu311, did not liberate BK from human kininogens more rapidly than human Plg-Lys311. This indicates Glu311 is pathogenic in the context of human Plm when human kininogens are the substrates.
Collapse
Affiliation(s)
- S Kent Dickeson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | - Sunil Kumar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | - Mao-Fu Sun
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | - Bassem M Mohammed
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | | | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; and
| | - Adam J Quek
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; and
| | | | - Ruby H P Law
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; and
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| |
Collapse
|
42
|
Soliman M, Osman N, Hefnawy S, El Hawy MA. Assessment of plasminogen activator inhibitor-1(PAI1) and thrombin activitable fibrinolysis inhibitor (TAFI) in Egyptian children with hemophilia A. Pediatr Hematol Oncol 2022; 39:318-328. [PMID: 34668834 DOI: 10.1080/08880018.2021.1993394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Patients with hemophilia A display varied bleeding phenotypes not correlated with degree of deficiency of factor VIII level. We investigated Plasminogen Activator Inhibitor 1(PAI1) level and Thrombin Activatable Fibrinolysis Inhibitor (TAFI) also known as Carboxypeptidase B2 (CPB2) level in Patients with hemophilia A and their possible correlation with bleeding tendency. Twenty-six patients attending in hematology unit of pediatric department were included in this study. In addition, fourteen apparently healthy subjects matched ages and genders were included as control group. The International Society of Thrombosis Bleeding Assessment Tool (ISTH/BAT) was used to assess bleeding score in patients. Plasma levels of Plasminogen Activator Fibrinolysis Inhibitor (PAI1) and Thrombin Activatable Fibrinolysis Inhibitor (TAFI) zymogen were measured by enzyme-linked immunosorbent assay (ELIZA). As compared to controls, hemophilic patients had significantly high bleeding score, low PAI 1 level and high TAFI level. There was no significant correlation between bleeding score by ISTH/BAT and patient severity. PAI 1 and TAFI level have no significant correlation with patient severity. PAI 1 level was statistically significant different between intense and non-intense hemorrhagic groups, while TAFI level has no significant correlation with bleeding phenotype. PAI 1 and TAFI levels had significantly correlation between patients and controls. PAI-1 level had statistically significant correlation with bleeding phenotype, while TAFI level failed to show any correlation between intense and non-intense hemorrhagic groups. So, PAI-1 levels may have predictive value of bleeding tendency in hemophiliacs.
Collapse
Affiliation(s)
- Mohamed Soliman
- Clinical Pathology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Nahla Osman
- Clinical Pathology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Somyya Hefnawy
- Clinical Pathology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Mahmoud Ahmed El Hawy
- Pediatrics Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
43
|
Yang Y, Hu Y, Wu M, Xiang Z. Changes of new coagulation markers in healthy pregnant women and establishment of reference intervals in Changsha. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:469-478. [PMID: 35545342 PMCID: PMC10930166 DOI: 10.11817/j.issn.1672-7347.2022.210536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVES There is a high coagulation state in pregnant women, which is prone to coagulation and fibrinolysis system dysfunction. This study aims to explore the latest coagulation markers-thrombomodulin (TM), thrombin-antithrombin complex (TAT), plasmin-α2 plasmin inhibitor complex (PIC), and tissue plasminogen activator/plasminogen activator inhibitor compound (tPAI-C) in different stages of pregnancy, establish reference intervals (RIs) for healthy pregnant women of Chinese population, and to provide an effective and reliable reference for clinicians. METHODS A total of 492 healthy pregnant women, who underwent pregnancy examination and delivery in the Department of Obstetrics, Second Xiangya Hospital of Central South University from October 2019 to October 2020, were enrolled for this study. They were assigned into the first trimester group, the second trimester group, the third trimester group, and the puerperium group according to the pregnancy period, and 123 healthy non-pregnant women were selected as the controls. Plasma levels of TM, TAT, PIC and tPAI-C were analyzed by automatic chemiluminescence immunoassay analyzer. The RIs for TM, TAT, PIC, and tPAI-C were defined using non-parametric 95% intervals, determined following Clinical and Laboratory Standards Institute Document C28-A3c (CLSI C28-A3c), and Formulation of Reference Intervals for the Clinical Laboratory Test Items (WS/T402-2012). RESULTS TM and TAT levels increased gradually in the first, second, and third trimester women and decreased in the puerperium women (P<0.05 or P<0.01). PIC level of healthy non-pregnant women was lower than that of pregnant women (P<0.05 or P<0.01), but PIC level of pregnant and puerperium women did not differ significantly (P>0.05). tPAI-C level in healthy non-pregnant women was lower than that of pregnant women (P<0.05 or P<0.01), and tPAI-C level was significantly decreases in the puerperium women (P<0.01). The RIs for TM were as follows: Healthy non-pregnant women at 3.20-4.60 TU/mL, the first and second trimester at 3.12-7.90 TU/mL, the third trimester at 3.42-8.29 TU/mL, puerperium at 2.70-6.40 TU/mL. The RIs for TAT were as follows: Healthy non-pregnant women at 0.50-1.64 ng/mL, the first and second trimester at 0.52-6.91 ng/mL, the third trimester at 0.96-12.92 ng/mL, puerperium at 0.82-3.75 ng/mL. The RIs for PIC were as follows: Healthy non-pregnant women at 0.160-0.519 ng/mL, pregnant women at 0.162-0.770 μg/mL. The RIs for tPAI-C were as follows: Healthy non-pregnant women at 1.90-4.80 ng/mL, the first and second trimester at 2.03-9.33 ng/mL, the third trimester at 2.80-14.20 ng/mL, puerperium at 1.10-8.40 ng/mL. CONCLUSIONS The levels of 4 new coagulation markers TM, TAT, PIC, and tPAI-C in pregnant women are increased significantly during pregnancy and gradually return to normal after delivery. The RIs for TM, TAT, PIC, and tPAI-C in pregnant women by trimester are established according to CLSI C28-A3c, thus providing a clinical reference for clinician in judgement of thrombotic risk.
Collapse
Affiliation(s)
- Yanyi Yang
- Heath Management Center, Second Xiangya Hospital, Central South University, Changsha 410011.
| | - Yun Hu
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Mingyang Wu
- Xiangya School of Medicine, Central South University, Changsha 410013
| | - Zhongyuan Xiang
- Department of Laboratory Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
44
|
Iwaki T, Tomonari Y, Umemura K. Successful lactation in Plgrkt-deficient female mice caused by a 1-bp deletion of exon4. J DAIRY RES 2022; 89:1-4. [PMID: 35383548 DOI: 10.1017/s0022029922000292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Plasminogen (Pg) activation on the cell surface is important for various (patho)physiologic conditions, and Plg-RKT is a cell membrane protein that binds to Pg and promotes its activation. To evaluate the role of Plg-RKT in atherosclerosis, Plgrkt gene in Ldlr-/-/Apobec1-/- was modified using in vivo CRISPR/Cas9. Synthetic RNA for Plgrkt and Cas9 complex was electroporated into the fertilized eggs in the oviducts. Plgrkt deficient mice were established through a 1-bp deletion, and in this research communication we report their lactational ability. In contrast to Plgrkt-/- mice developed by a conventional method, these newly developed mice did not suffer lactation failure and could maintain their pups until weaning. The major obvious difference between these lines is the area of gene modification. The conventionally developed mouse possesses about 10 kb deletion of Plgrkt, which might relate to the lactation failure. Lactation failure is a lethal phenotype in mammals, and analyses of causative genes are especially important for dairy industries. Further genome-wide analyses with both Plgrkt-/- mice may help to establish causative genes for lactation failure.
Collapse
Affiliation(s)
- Takayuki Iwaki
- Department of Pharmacology, Hamamatsu University School of Medicine, Hamamatsu431-3192,Japan
| | - Yuki Tomonari
- Department of Pharmacology, Hamamatsu University School of Medicine, Hamamatsu431-3192,Japan
| | - Kazuo Umemura
- Department of Pharmacology, Hamamatsu University School of Medicine, Hamamatsu431-3192,Japan
| |
Collapse
|
45
|
Abstract
Thrombin is a multifunctional serine protease generated in injured cells. The generation of thrombin in coagulation plays a central role in the functioning of haemostasis. The last enzyme in the coagulation cascade is thrombin, with the function of cleaving fibrinogen to fibrin, which forms the fibrin clot of a haemostatic plug. Although thrombin primarily converts fibrinogen to fibrin, it also has many other positive regulatory effects on coagulation. Thrombin has procoagulant, inflammatory, cellular proliferation and anticoagulant effects. In coagulation system, thrombin has two very distinct roles. Firstly, it acts as a procoagulant when it converts fibrinogen into an insoluble fibrin clot, activates factor (F) XIII, activates thrombin activatable fibrinolysis inhibitor (TAFI) and activates FV, FVIII and FXI. Thrombin also enhances platelet adhesion by inactivating a disintegrin and metalloprotease with thrombospondin type1 motif (ADAMTS13). However, when thrombin activates protein C, it acts as an anticoagulant. A natural anticoagulant pathway that supplies regulation of the blood coagulation system contains protein C, which is the key component. This is accomplished by the specific proteolytic inactivation of FV and FVIII. In this review, the multiple roles of thrombin in the haemostatic response to injury are studied in addition to the cofactors that determine thrombin activity and how thrombin activity is thought to be coordinated.
Collapse
|
46
|
Dólleman SC, Agten SM, Spronk HMH, Hackeng TM, Bos MHA, Versteeg HH, van Zonneveld AJ, de Boer HC. Thrombin in complex with dabigatran can still interact with PAR-1 via exosite-I and instigate loss of vascular integrity. J Thromb Haemost 2022; 20:996-1007. [PMID: 35037739 PMCID: PMC9306515 DOI: 10.1111/jth.15642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/23/2021] [Accepted: 01/10/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) can lead to the loss of microvascular integrity thereby enhancing AF progression. Mechanistically, the pro-coagulant state that drives the risk of stroke in patients with AF may also play a causal role in microvascular loss. Direct oral anticoagulants (DOACs), the preferred anticoagulants for AF, can target factors upstream (factor Xa [FXa]) or downstream (thrombin) in the coagulation cascade and mediate differential vascular effects through interaction with protease-activated receptors (PARs). OBJECTIVE To investigate the potential effect of different DOACs on vascular integrity. METHODS To model the impact of DOACs on vascular integrity, we utilized platelet-free plasma in thrombin generation assays and endothelial barrier assays under identical experimental conditions. These multifactorial systems provide all coagulation factors and their respective natural inhibitors in physiological ratios in combination with the pro-coagulant endothelial surface on which coagulation is initiated. Furthermore, the system provides pro- and anti-barrier factors and monitoring both assays simultaneously permits coupling of thrombin kinetics to endothelial barrier dynamics. RESULTS We provide evidence that the anti-FXa DOAC rivaroxaban and the anti-thrombin DOAC dabigatran are efficient in blocking their target proteases. However, while rivaroxaban could preserve endothelial barrier function, dabigatran failed to protect endothelial integrity over time, which could be prevented in the presence of a custom-made peptide that blocks thrombin's exosite-I. CONCLUSIONS Proteolytically inactive thrombin in complex with dabigatran evokes loss of barrier function that can be prevented by a protease-activated receptor-1 mimicking peptide blocking thrombin's exosite-I.
Collapse
Affiliation(s)
- Sophie C. Dólleman
- Department of Internal Medicine (Nephrology)Einthoven Laboratory for Vascular and Regenerative MedicineLeidenthe Netherlands
| | - Stijn M. Agten
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtthe Netherlands
| | - Henri M. H. Spronk
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtthe Netherlands
| | - Tilman M. Hackeng
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtthe Netherlands
| | - Mettine H. A. Bos
- Division of Thrombosis and HemostasisLeiden University Medical CenterLeidenthe Netherlands
| | - Henri H. Versteeg
- Division of Thrombosis and HemostasisLeiden University Medical CenterLeidenthe Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology)Einthoven Laboratory for Vascular and Regenerative MedicineLeidenthe Netherlands
| | - Hetty C. de Boer
- Department of Internal Medicine (Nephrology)Einthoven Laboratory for Vascular and Regenerative MedicineLeidenthe Netherlands
| |
Collapse
|
47
|
Samad F, Bai H, Baik N, Haider P, Zhang Y, Rega-Kaun G, Kaun C, Prager M, Wojta J, Bui Q, Chakrabarty S, Wang J, Parmer RJ, Miles LA. The plasminogen receptor Plg-R KT regulates adipose function and metabolic homeostasis. J Thromb Haemost 2022; 20:742-754. [PMID: 34897983 PMCID: PMC8885904 DOI: 10.1111/jth.15622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Plg-RKT , a unique transmembrane plasminogen receptor, enhances the activation of plasminogen to plasmin, and localizes the proteolytic activity of plasmin on the cell surface. OBJECTIVES We investigated the role of Plg-RKT in adipose function, metabolic homeostasis, and obesity. METHODS We used adipose tissue (AT) sections from bariatric surgery patients and from high fat diet (HFD)-induced obese mice together with immunofluorescence and real-time polymerase chain reaction to study adipose expression of Plg-RKT . Mice genetically deficient in Plg-RKT and littermate controls fed a HFD or control low fat diet (LFD) were used to determine the role of Plg-RKT in insulin resistance, glucose tolerance, type 2 diabetes, and associated mechanisms including adipose inflammation, fibrosis, and ectopic lipid storage. The role of Plg-RKT in adipogenesis was determined using 3T3-L1 preadipocytes and primary cultures established from Plg-RKT -deficient and littermate control mice. RESULTS Plg-RKT was highly expressed in both human and mouse AT, and its levels dramatically increased during adipogenesis. Plg-RKT -deficient mice, when fed a HFD, gained more weight, developed more hepatic steatosis, and were more insulin resistant/glucose intolerant than HFD-fed wild-type littermates. Mechanistically, these metabolic defects were linked with increased AT inflammation, AT macrophage and T-cell accumulation, adipose and hepatic fibrosis, and decreased insulin signaling in the AT and liver. Moreover, Plg-RKT regulated the expression of PPARγ and other adipogenic molecules, suggesting a novel role for Plg-RKT in the adipogenic program. CONCLUSIONS Plg-RKT coordinately regulates multiple aspects of adipose function that are important to maintain efficient metabolic homeostasis.
Collapse
Affiliation(s)
- Fahumiya Samad
- Department of Cell Biology, San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Hongdong Bai
- Department of Medicine, Veterans Administration San Diego Healthcare System, San Diego
| | - Nagyung Baik
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Patrick Haider
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Yuqing Zhang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Gersina Rega-Kaun
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- 5th Department of Internal Medicine for Diabetes and Rheumatology, Wilhelminen Hospital, Vienna, Austria
| | - Christoph Kaun
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Manfred Prager
- Department of Surgery, Hospital Oberwart, Oberwart, Austria
| | - Johann Wojta
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna
| | - Quyen Bui
- Department of Cell Biology, San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Sagarika Chakrabarty
- Department of Cell Biology, San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Jing Wang
- Department of Cell Biology, San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Robert J. Parmer
- Department of Medicine, Veterans Administration San Diego Healthcare System, San Diego
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Lindsey A. Miles
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
48
|
A Model for Surface-Dependent Factor XII Activation: The Roles of Factor XII Heavy Chain Domains. Blood Adv 2022; 6:3142-3154. [PMID: 35086137 PMCID: PMC9131904 DOI: 10.1182/bloodadvances.2021005976] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/16/2022] [Indexed: 11/20/2022] Open
Abstract
The FXII EGF1 domain promotes surface binding, FXII activation on surfaces, and FXIIa activation of prekallikrein on surfaces. The FXII FN2 and KNG domains are part of a mechanism that restricts FXII activation in the absence of a surface.
Factor XII (FXII) is the zymogen of a plasma protease (FXIIa) that contributes to bradykinin generation by converting prekallikrein to the protease plasma kallikrein (PKa). FXII conversion to FXIIa by autocatalysis or PKa-mediated cleavage is enhanced when the protein binds to negatively charged surfaces such as polymeric orthophosphate. FXII is composed of noncatalytic (heavy chain) and catalytic (light chain) regions. The heavy chain promotes FXII surface-binding and surface-dependent activation but restricts activation when FXII is not surface bound. From the N terminus, the heavy chain contains fibronectin type 2 (FN2), epidermal growth factor-1 (EGF1), fibronectin type 1 (FN1), EGF2, and kringle (KNG) domains and a proline-rich region. It shares this organization with its homolog, pro–hepatocyte growth factor activator (Pro-HGFA). To study the importance of heavy chain domains in FXII function, we prepared FXII with replacements of each domain with corresponding Pro-HGFA domains and tested them in activation and activity assays. EGF1 is required for surface-dependent FXII autoactivation and surface-dependent prekallikrein activation by FXIIa. KNG and FN2 are important for limiting FXII activation in the absence of a surface by a process that may require interactions between a lysine/arginine binding site on KNG and basic residues elsewhere on FXII. This interaction is disrupted by the lysine analog ε-aminocaproic acid. A model is proposed in which an ε-aminocaproic acid–sensitive interaction between the KNG and FN2 domains maintains FXII in a conformation that restricts activation. Upon binding to a surface through EGF1, the KNG/FN2-dependent mechanism is inactivated, exposing the FXII activation cleavage site.
Collapse
|
49
|
Mathews NS, Suzuki Y, Honkura N, Sano H, Iwashita T, Urano T. Pre-administration of a carboxypeptidase inhibitor enhances tPA-induced thrombolysis in mouse microthrombi: Evidence from intravital imaging analysis. Thromb Res 2022; 210:78-86. [PMID: 35030422 DOI: 10.1016/j.thromres.2021.12.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Thrombolysis using recombinant tissue-type plasminogen activator (rt-PA) is the pharmacological treatment of choice in acute thrombotic events. However, a narrow therapeutic window and bleeding complications limit its use. We describe the role of carboxypeptidase inhibitor from potato tuber (PTCI), an inhibitor of activated thrombin-activatable fibrinolysis inhibitor (TAFIa), on Glu-plasminogen accumulation and microthrombus dynamics in vivo and demonstrate its influence on rt-PA-mediated thrombolysis. MATERIALS AND METHODS In conjunction with real-time intravital two-photon excitation fluorescence microscopy, we produced and imaged laser-induced microthrombi in the mesenteric venules of Green Fluorescent Protein (GFP)-expressing mice. We examined microthrombus dynamics and thrombolysis patterns in vivo by measuring the changes in the fluorescence intensity of labeled Glu-plasminogen following administration of epsilon aminocaproic acid (EACA), PTCI, and rt-PA. RESULTS PTCI enhanced Glu-plasminogen accumulation at the core of the thrombus by inhibiting TAFIa, while EACA inhibited this process. Exogenous rt-PA effectively triggered Glu-plasminogen activation within the thrombus and promoted thrombolysis. Administration of PTCI and rt-PA together showed no significant benefit on thrombolysis compared to rt-PA administration alone. However, early-phase systemic administration of PTCI before thrombolytic therapy by rt-PA expedited clot lysis as evidenced by significantly faster time to reach peak Glu-plasminogen fluorescence intensity and shorter time to achieve near-complete clot lysis (P = 0.014 and P = 0.003, respectively). CONCLUSIONS PTCI potentiates rt-PA-mediated thrombolysis when administered early in acute thrombotic events. Further studies are warranted to explore the potential of TAFI inhibitors as adjunct agents in thrombolysis or thromboprophylaxis.
Collapse
Affiliation(s)
- Nitty Skariah Mathews
- Department of Medical Physiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu city, Shizuoka 431-3192, Japan.
| | - Yuko Suzuki
- Department of Medical Physiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu city, Shizuoka 431-3192, Japan.
| | - Naoki Honkura
- Department of Medical Physiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu city, Shizuoka 431-3192, Japan.
| | - Hideto Sano
- Department of Medical Physiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu city, Shizuoka 431-3192, Japan.
| | - Toshihide Iwashita
- Department of Regenerative & Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu city, Shizuoka 431-3192, Japan.
| | - Tetsumei Urano
- Department of Medical Physiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu city, Shizuoka 431-3192, Japan; Shizuoka Graduate University of Public Health, 4-17-2, Kita-Ando, Aoi-ku Shizuoka 420-0882, Japan.
| |
Collapse
|
50
|
Salomon O, Gailani D. A proposal for managing bleeding in patients on therapeutic factor XI(a) inhibitors. J Thromb Haemost 2022; 20:32-38. [PMID: 34735741 PMCID: PMC9540351 DOI: 10.1111/jth.15579] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022]
Abstract
Several drugs that reduce functional levels of the plasma protease zymogen factor XI (FXI), or that inhibit its activated form (FXIa), are being evaluated as treatments to prevent thrombosis. Based on the observation that individuals with inherited FXI deficiency have a relatively mild bleeding disorder, it is anticipated that therapeutic FXI(a) inhibitors will have a smaller impact on hemostasis than anticoagulants targeting thrombin or factor Xa. However, even if FXI(a) inhibitors are determined to be safer than currently used anticoagulants, some patients on these drugs will experience abnormal bleeding or require emergent surgery. Strategies for dealing with such situations are required. Treatment with antifibrinolytic agents and low doses of recombinant factor VIIa effectively prevent abnormal bleeding in FXI-deficient patients with alloantibody inhibitors to FXI who undergo surgery. We propose that a similar strategy can be used for patients on therapeutic FXI(a) inhibitors who are bleeding or require invasive procedures.
Collapse
Affiliation(s)
- Ophira Salomon
- Thrombosis Unit Sheba Medical Center, Tel Hashomer, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|