1
|
Zhao M, Xie L, Huang W, Li M, Gu X, Zhang W, Wei J, Zhang N. Combined Effects of Cadmium and Lead on Growth Performance and Kidney Function in Broiler Chicken. Biol Trace Elem Res 2025; 203:358-373. [PMID: 38589681 DOI: 10.1007/s12011-024-04173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Cadmium (Cd) and lead (Pb) are heavy metals prevalent in the environment and feed, and they reduce production performance of domestic animals, as well as they result in residue in animal tissues. The kidney is the target tissue for Cd and Pb. And the kidney is crucial for the reabsorption of calcium (Ca), which consequently influences bone strength. However, there are relatively few studies related to the effects of Cd and Pb exposure on performance, bone strength and kidney damage in livestock. The purpose of this experiment was to explore the combined effect of Cd and Pb on growth performance and renal impairment and the possible underlying mechanism. For this, 168 1-day-old Ross 308 broilers were randomly divided into four groups of six birds each, with seven replicates in each group: control group, 50 mg Cd/kg body weight group, 200 mg Pb/kg body weight group and 50 mg Cd/kg body weight + 200 mg Pb/kg body weight group. Feed intake was recorded daily and body weight was recorded weekly. The results show that at the end of the 3rd and 6th week, one broiler from each replicate was randomly selected for sampling. Boilers co-exposed to Cd and Pb for 3 weeks and 6 weeks had significantly decreased average daily feed intake (ADFI) and average daily body weight gain (ADG) than the control group, and the ratio of feed-to-weight gain (F/G) significantly increased after 6 weeks of co-exposure to Cd and Pb. Microscopic picture and ultrastructure analyses of the kidneys showed that Cd and Pb caused kidney damage to broiler chickens, and the damage was more serious in the Cd + Pb group, which was manifested by increased renal tubular epithelial degeneration and increased interstitial stasis points. Dietary exposure to Cd and Pb impaired production performance and induced renal oxidative damage in broilers. The combined effects of Cd and Pb on the kidneys are greater than their effects alone. The PERK-ATF4 pathway mediated endoplasmic reticulum stress participates the renal oxidative damage during chronic Cd and Pb exposure.
Collapse
Affiliation(s)
- Man Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Longqiang Xie
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Wenbin Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Meiling Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Xin Gu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Wei Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei Province, China
| | - Jintao Wei
- Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei Province, China
| | - Niya Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| |
Collapse
|
2
|
Zhang Y, Qian L, Chen K, Gu S, Meng Z, Wang J, Li Y, Wang P. Oncolytic adenovirus in treating malignant ascites: A phase II trial and longitudinal single-cell study. Mol Ther 2024; 32:2000-2020. [PMID: 38659226 PMCID: PMC11184408 DOI: 10.1016/j.ymthe.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/24/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024] Open
Abstract
Malignant ascites is a common complication resulting from the peritoneal spread of malignancies, and currently lacks effective treatments. We conducted a phase II trial (NCT04771676) to investigate the efficacy and safety of oncolytic adenovirus H101 and virotherapy-induced immune response in 25 patients with malignant ascites. Oncolytic virotherapy achieved an increased median time to repeat paracentesis of 45 days (95% confidence interval 16.5-73.5 days), compared with the preset control value of 13 days. Therapy was well-tolerated, with pyrexia, fatigue, nausea, and abdominal pain as the most common toxicities. Longitudinal single-cell profiling identified marked oncolysis, early virus replication, and enhanced CD8+ T cells-macrophages immune checkpoint crosstalk, especially in responsive patients. H101 also triggered a proliferative burst of CXCR6+ and GZMK+CD8+ T cells with promoted tumor-specific cytotoxicity. Further establishment of oncolytic virus-induced T cell expansion signature (OiTE) implicated the potential benefits for H101-responsive patients from subsequent anti-PD(L)1 therapy. Patients with upregulated immune-signaling pathways in tumor cells and a higher proportion of CLEC10A+ dendritic cells and GZMK+CD8+ T cells at baseline showed a superior response to H101 treatment. Our study demonstrates promising clinical responses and tolerability of oncolytic adenovirus in treating malignant ascites and provides insights into the relevant cellular processes following oncolytic virotherapy.
Collapse
Affiliation(s)
- Yalei Zhang
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University; Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ling Qian
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University; Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kun Chen
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University; Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sijia Gu
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University; Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jia Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 300032, China.
| | - Ye Li
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University; Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Peng Wang
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University; Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Mahjoub L, Youssef R, Yaakoubi H, Salah HB, Jaballah R, Mejri M, Sekma A, Trabelsi I, Nouira S, Khrouf M, Soltane HB, Mezgar Z, Boukadida L, Zorgati A, Boukef R. Melatonin, vitamins and minerals supplements for the treatment of Covid-19 and Covid-like illness: A prospective, randomized, double-blind multicenter study. Explore (NY) 2024; 20:95-100. [PMID: 37419768 PMCID: PMC10281695 DOI: 10.1016/j.explore.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Melatonin, zinc, and multivitamins are among most recommended supplements in the fight against coronavirus disease 2019 (COVID-19). We aimed to examine the efficacy and safety of this association in the treatment of COVID-19 and COVID-like illnesses. METHODS We conducted a multicenter prospective, randomized, double-blind, controlled trial. Patients with no medical history consulting the emergency department for covid and covid-like illness and who were not hospitalized were included. Patients were assigned in a 1:1 ratio to the treatment or the placebo group. The primary outcome was studying the effectiveness of zinc multivitamin supplement and melatonin in the treatment of COVID and -like illnesses symptoms' according to the time from randomization to clinical improvement. The pre-specified secondary outcomes were date of disappearance of symptoms present on admission, appearance of an adverse effect due to the administration of the treatment, number of patients developing complications, requiring hospitalization, requiring respiratory support. RESULTS One hundred sixty four patients were eligible for the study and were randomized to either the treatment group or the placebo group. Overall, 128 of the 164 patients had a PCR for SARS-CoV-2, yielding a positive PCR result in 49.1% of them. Regarding the disappearance of all initial presenting symptoms: on the 5th day of the follow-up, there was a significant difference between the two groups with a p value 0.04;On the 10th day, there was a significant difference too with p value of 0.038. There were no significant differences between the two groups in recovery during the 15th day of follow-up p>0.5. Finally, 100% of patients fully recovered in the treatment group vs 98.8% in the placebo group. No severe adverse events were reported throughout the trial. CONCLUSIONS Our results showed that daily doses of Melatonin, zinc and vitamins did significantly reduce the duration of symptoms accelerating its disappearance among patients consulting with COVID-19 or COVID-19 like illness.
Collapse
Affiliation(s)
- Lobna Mahjoub
- Emergency Department, Sahloul University Hospital, 4011 Sousse, Tunisia
| | - Rym Youssef
- Emergency Department, Sahloul University Hospital, 4011 Sousse, Tunisia
| | - Hajer Yaakoubi
- Emergency Department, Sahloul University Hospital, 4011 Sousse, Tunisia
| | - Houda Ben Salah
- Emergency Department, Sahloul University Hospital, 4011 Sousse, Tunisia
| | - Rahma Jaballah
- Emergency Department, Sahloul University Hospital, 4011 Sousse, Tunisia.
| | - Moez Mejri
- Emergency Department, Sahloul University Hospital, 4011 Sousse, Tunisia
| | - Adel Sekma
- Research Laboratory LR12SP18, Monastir University, 5019 Tunisia
| | - Imen Trabelsi
- Research Laboratory LR12SP18, Monastir University, 5019 Tunisia
| | - Semir Nouira
- Research Laboratory LR12SP18, Monastir University, 5019 Tunisia
| | - Mariem Khrouf
- Emergency department, Farhat Hached University Hospital, 4031 Sousse, Tunisia
| | - Houda Ben Soltane
- Emergency department, Farhat Hached University Hospital, 4031 Sousse, Tunisia
| | - Zied Mezgar
- Emergency department, Farhat Hached University Hospital, 4031 Sousse, Tunisia
| | - Lotfi Boukadida
- Emergency Department, Sahloul University Hospital, 4011 Sousse, Tunisia
| | - Asma Zorgati
- Emergency Department, Sahloul University Hospital, 4011 Sousse, Tunisia
| | - Riadh Boukef
- Emergency Department, Sahloul University Hospital, 4011 Sousse, Tunisia
| |
Collapse
|
4
|
Casorla-Perez LA, Guennoun R, Cubillas C, Peng B, Kornfeld K, Wang D. Orsay Virus Infection of Caenorhabditis elegans Is Modulated by Zinc and Dependent on Lipids. J Virol 2022; 96:e0121122. [PMID: 36342299 PMCID: PMC9682997 DOI: 10.1128/jvi.01211-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/16/2022] [Indexed: 11/09/2022] Open
Abstract
Viruses utilize host lipids to promote the viral life cycle, but much remains unknown as to how this is regulated. Zinc is a critical element for life, and few studies have linked zinc to lipid homeostasis. We demonstrated that Caenorhabditis elegans infection by Orsay virus is dependent upon lipids and that mutation of the master regulator of lipid biosynthesis, sbp-1, reduced Orsay virus RNA levels by ~236-fold. Virus infection could be rescued by dietary supplementation with lipids downstream of fat-6/fat-7. Mutation of a zinc transporter encoded by sur-7, which suppresses the lipid defect of sbp-1, also rescued Orsay virus infection. Furthermore, reducing zinc levels by chemical chelation in the sbp-1 mutant also increased lipids and rescued Orsay virus RNA levels. Finally, increasing zinc levels by dietary supplementation led to an ~1,620-fold reduction in viral RNA. These findings provide insights into the critical interactions between zinc and host lipids necessary for virus infection. IMPORTANCE Orsay virus is the only known natural virus pathogen of Caenorhabditis elegans, which shares many evolutionarily conserved pathways with humans. We leveraged the powerful genetic tractability of C. elegans to characterize a novel interaction between zinc, lipids, and virus infection. Inhibition of the Orsay virus replication in the sbp-1 mutant animals, explained by the lipid depletion, can be rescued by a genetic and pharmacological approach that reduces the zinc accumulation and rescues the lipid levels in this mutant animal. Interestingly, the human ortholog of sbp-1, srebp-1, has been reported to play a role for virus infection, and zinc has been shown to inhibit the virus replication of multiple viruses. However, the mechanism through which zinc is acting is not well understood. These results suggest that the lipid regulation mediated by zinc may play a relevant role during mammalian virus infection.
Collapse
Affiliation(s)
| | - Ranya Guennoun
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ciro Cubillas
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Bo Peng
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kerry Kornfeld
- Developmental Biology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - David Wang
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department Pathology & Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
5
|
The Significance of Zinc in Patients with Chronic Liver Disease. Nutrients 2022; 14:nu14224855. [PMID: 36432541 PMCID: PMC9692841 DOI: 10.3390/nu14224855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
Zinc is an essential trace element for the maintenance of life because it acts as a center of activity or cofactor for hundreds of enzymes. Zinc deficiency causes a variety of symptoms, including anemia, dermatitis, stomatitis, alopecia, bedsores, decreased appetite, impaired growth, gonadal dysfunction, susceptibility to infection, and taste disorders, etc. In March 2017, zinc acetate hydrate, which had been approved for Wilson disease in Japan, received an additional indication for hypozincemia. Hypozincemia is frequently observed in patients with chronic liver disease (CLD), especially cirrhosis, and it has recently been shown that hypozincemia is closely related to the development of liver fibrosis and increased risk of liver carcinogenesis, in addition to the appearance of various subjective symptoms. Moreover, hypozincemia in CLD may be associated with sarcopenia (i.e., decrease in muscle strength and muscle mass) and frailty (i.e., vulnerability), which receive much attention these days. It is assumed that treatment with zinc acetate hydrate will become widespread in patients with CLD. Zinc acetate hydrate may also have potential for improving sarcopenia in patients with CLD. This review primarily outlines the significance of zinc in patients with CLD.
Collapse
|
6
|
Moustafa S, Kassela K, Bampali M, Dovrolis N, Kakkanas A, Beloukas A, Mavromara P, Karakasiliotis I. Hepatitis C Core Protein Induces a Genotype-Specific Susceptibility of Hepatocytes to TNF-Induced Death In Vitro and In Vivo. Viruses 2022; 14:v14112521. [PMID: 36423130 PMCID: PMC9692671 DOI: 10.3390/v14112521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatitis C virus (HCV) core protein is a multifunctional protein that is involved in the proliferation, inflammation, and apoptosis mechanism of hepatocytes. HCV core protein genetic variability has been implicated in various outcomes of HCV pathology and treatment. In the present study, we aimed to analyze the role of the HCV core protein in tumor necrosis factor α (TNFα)-induced death under the viewpoint of HCV genetic variability. Immortalized hepatocytes (IHH), and not the Huh 7.5 hepatoma cell line, stably expressing HCV subtype 4a and HCV subtype 4f core proteins showed that only the HCV 4a core protein could increase sensitivity to TNFα-induced death. Development of two transgenic mice expressing the two different core proteins under the liver-specific promoter of transthyretin (TTR) allowed for the in vivo assessment of the role of the core in TNFα-induced death. Using the TNFα-dependent model of lipopolysaccharide/D-galactosamine (LPS/Dgal), we were able to recapitulate the in vitro results in IHH cells in vivo. Transgenic mice expressing the HCV 4a core protein were more susceptible to the LPS/Dgal model, while mice expressing the HCV 4f core protein had the same susceptibility as their littermate controls. Transcriptome analysis in liver biopsies from these transgenic mice gave insights into HCV core molecular pathogenesis while linking HCV core protein genetic variability to differential pathology in vivo.
Collapse
Affiliation(s)
- Savvina Moustafa
- Molecular Virology Laboratory, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Katerina Kassela
- Molecular Virology Laboratory, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Maria Bampali
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Nikolas Dovrolis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Athanassios Kakkanas
- Molecular Virology Laboratory, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Apostolos Beloukas
- National AIDS Reference Center of Southern Greece, Department of Public Health Policy, University of West Attica, 12243 Athens, Greece
- Molecular Microbiology & Immunology Lab, Department of Biomedical Sciences, University of West Attica, 11521 Athens, Greece
| | - Penelope Mavromara
- Molecular Virology Laboratory, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Ioannis Karakasiliotis
- Molecular Virology Laboratory, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Correspondence:
| |
Collapse
|
7
|
Transcriptomic Analysis of MDBK Cells Infected with Cytopathic and Non-Cytopathic Strains of Bovine Viral Diarrhea Virus (BVDV). Viruses 2022; 14:v14061276. [PMID: 35746747 PMCID: PMC9228727 DOI: 10.3390/v14061276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV) belongs to the Flaviviridae family and the Pestivirus genus. Infection with BVDV causes a disease with a wide spectrum of clinical symptoms, most often mild, although infections with this virus constitute a serious economic problem all over the world. The virus is characterized by a high genetic variability, while the accumulation of single mutations leads to the formation of its new variants. The aim of this study was to better understand the complicated pathogenesis of this disease at the molecular level via the analysis of the transcriptome of cells infected with this virus. The bovine kidney cell line (MDBK), the cytopathic (cp) reference strain, and two non-cytopathic (ncp) BVD virus field strains were used in transcriptomic studies. The cell transcriptome was tested 24 and 72 h after infection. The results of the microarray analysis revealed changes in the expression levels of numerous genes. Genes with changed expression as a result of infection with the cp strain caused changes in the expression levels of a large number of genes and enriched a number of pathways. Genes with increased expression levels were enriched among other pathways involved in the cell cycle, while genes with reduced expression levels enriched pathways mostly related to metabolism. Genes with increased expression levels as a result of infection with ncp strains enriched a much smaller number of pathways, among them, pathways related to signaling activity 24 h post-infection and serine biosynthetic pathways both 24 and 72 h post-infection. Pathways enriched by genes with reduced expression levels were related to the innate immune response (72 h post-infection) or metabolism (24 and 72 h post-infection). The results of microarray studies can help us to better understand the host’s response to BVDV infection.
Collapse
|
8
|
de Jesus JR, Galazzi RM, Lopes Júnior CA, Arruda MAZ. Trace element homeostasis in the neurological system after SARS-CoV-2 infection: Insight into potential biochemical mechanisms. J Trace Elem Med Biol 2022; 71:126964. [PMID: 35240553 PMCID: PMC8881805 DOI: 10.1016/j.jtemb.2022.126964] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Several studies have suggested that COVID-19 is a systemic disease that can affect several organs, including the brain. In the brain, specifically, viral infection can cause dyshomeostasis of some trace elements that promote complex biochemical reactions in specialized neurological functions. OBJECTIVE Understand the neurovirulence of SARS-CoV-2 and the relationship between trace elements and neurological disorders after infection, and provide new insights on the drug development for the treatment of SARS-CoV-2 infections. METHODS The main databases were used to search studies published up September 2021, focusing on the role of trace elements during viral infection and on the correct functioning of the brain. RESULTS The imbalance of important trace elements can accelerate SARS-CoV-2 neurovirulence and increase the neurotoxicity since many neurological processes can be associated with the homeostasis of metal and metalloproteins. Some studies involving animals and humans have suggested the synapse as a vulnerable region of the brain to neurological disorders after viral infection. Considering the combined evidence, some mechanisms have been suggested to understand the relationship between neurological disorders and imbalance of trace elements in the brain after viral infection. CONCLUSION Trace elements play important roles in viral infections, such as helping to activate immune cells, produce antibodies, and inhibit virus replication. However, the relationship between trace elements and virus infections is complex since the specific functions of several elements remain largely undefined. Therefore, there is still a lot to be explored to understand the biochemical mechanisms involved between trace elements and viral infections, especially in the brain.
Collapse
Affiliation(s)
- Jemmyson Romário de Jesus
- Research Laboratory in Bionanomaterials, LPbio, Brazil; Chemistry Department, Federal University of Viçosa, UFV, Viçosa, Minas Gerais, Brazil.
| | - Rodrigo Moretto Galazzi
- Analytical Instrumentation Division, Analytik Jena GmbH, an Endress & Hauser Company, São Paulo, SP 04029-901, Brazil.
| | - Cícero Alves Lopes Júnior
- Grupo de Estudos em Bioanalítica - GEBIO, Department of Chemistry, Federal University of Piauí, 64049-550 Teresina, PI, Brazil.
| | - Marco Aurélio Zezzi Arruda
- Spectrometry, Sample Preparation and Mechanization Group, GEPAM, Institute of Chemistry, University of Campinas, UNICAMP, Campinas, Brazil; National Institute of Science and Technology for Bioanalytics, Brazil.
| |
Collapse
|
9
|
Chatterjee P, Nirgude A, Chatterjee PK. Healthy eating - a modifiable contributor to optimize healthy living in the COVID-19 pandemic: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1751-1758. [PMID: 34775607 PMCID: PMC8646809 DOI: 10.1002/jsfa.11650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/16/2021] [Accepted: 11/14/2021] [Indexed: 05/02/2023]
Abstract
The outbreak of the novel severe acute respiratory syndrome coronavirus 2 infection in 2019 has posed major risks to global health and the economy. This coronavirus disease (COVID-19) pandemic has changed many of our everyday habits, including how we function and socialize, how we eat, and food preferences and selection. The average intake and status of certain vitamins and minerals can result in reduced immunity, which makes people more susceptible to illnesses and exacerbates malnutrition. The most critical factors in this scenario are individual risk evaluation and management techniques. Until general therapies are administered, the nutritional status of each infected patient should be assessed. The differing clinical severity of COVID-19 - from asymptomatic, to mild, to severe, to death - depends on the different metabolic status of the hosts who have contracted the virus, which is determined by their diet, age, gender, health, lifestyle, and environmental factors. A broad systematic exploration on studies of this disease was steered by means of electronic databases and was limited to articles published in English (or with an English abstract) in publications using words like 'health', 'diet', 'food', 'nutritional status', 'COVID-19', 'pandemic', 'modifiable contributor', 'immune system', 'micronutrients', 'vitamin', and so on. Careful individual consideration of the potential dietary, nutritional, medical, lifestyle, and environmental hazards, along with any supplementation with micronutrients wherever required to help to boost the body's natural defence system, with the intention to improve all levels of immunity and the use of effective risk management techniques are appropriate ways to handle the COVID-19 pandemic. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Poulomi Chatterjee
- Department of Community MedicineYenepoya Medical College, Yenepoya (Deemed to be University)DeralakatteIndia
| | - Abhay Nirgude
- Department of Community MedicineYenepoya Medical College, Yenepoya (Deemed to be University)DeralakatteIndia
| | - Pratik Kumar Chatterjee
- Department of PhysiologyKasturba Medical College, Mangalore, Manipal Academy of Higher EducationManipalIndia
| |
Collapse
|
10
|
|
11
|
Jang KK, Kaczmarek ME, Dallari S, Chen YH, Tada T, Axelrad J, Landau NR, Stapleford KA, Cadwell K. Variable susceptibility of intestinal organoid-derived monolayers to SARS-CoV-2 infection. PLoS Biol 2022; 20:e3001592. [PMID: 35358182 PMCID: PMC9004766 DOI: 10.1371/journal.pbio.3001592] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 04/12/2022] [Accepted: 03/04/2022] [Indexed: 01/08/2023] Open
Abstract
Gastrointestinal effects associated with Coronavirus Disease 2019 (COVID-19) are highly variable for reasons that are not understood. In this study, we used intestinal organoid-derived cultures differentiated from primary human specimens as a model to examine interindividual variability. Infection of intestinal organoids derived from different donors with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) resulted in orders of magnitude differences in virus replication in small intestinal and colonic organoid-derived monolayers. Susceptibility to infection correlated with angiotensin I converting enzyme 2 (ACE2) expression level and was independent of donor demographic or clinical features. ACE2 transcript levels in cell culture matched the amount of ACE2 in primary tissue, indicating that this feature of the intestinal epithelium is retained in the organoids. Longitudinal transcriptomics of organoid-derived monolayers identified a delayed yet robust interferon signature, the magnitude of which corresponded to the degree of SARS-CoV-2 infection. Interestingly, virus with the Omicron variant spike (S) protein infected the organoids with the highest infectivity, suggesting increased tropism of the virus for intestinal tissue. These results suggest that heterogeneity in SARS-CoV-2 replication in intestinal tissues results from differences in ACE2 levels, which may underlie variable patient outcomes.
Collapse
Affiliation(s)
- Kyung Ku Jang
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Maria E. Kaczmarek
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Simone Dallari
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Ying-Han Chen
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Takuya Tada
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Jordan Axelrad
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Nathaniel R. Landau
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, United States of America
| |
Collapse
|
12
|
Elevated metallothionein expression in long-lived species. Aging (Albany NY) 2022; 14:1-3. [PMID: 35027505 PMCID: PMC8791206 DOI: 10.18632/aging.203831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 11/25/2022]
|
13
|
Sitkar AD, Derbak MA, Rostoka LM, Hanych OT. ASSOCIATION BETWEEN SERUM ZINC, COPPER AND SELENIUM LEVELS AND THE DEGREE OF LIVER DAMAGE IN PATIENTS WITH CHRONIC HEPATITIS C. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:2434-2438. [PMID: 36472275 DOI: 10.36740/wlek202210122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
OBJECTIVE The aim: To evaluate the content of trace elements Zn, Cu and Se in blood serum and their relationship with viral load and the degree of liver fibrosis according to the results of the FibroMax test in patients with CHC. PATIENTS AND METHODS Materials and methods: 62 outpatients with a verified diagnosis of CHC were under observation, in which serum Zn, Cu and Se levels, viral load and degree of liver fibrosis were determined according to the FibroMax test. RESULTS Results: HCV 1b genotype was detected in all patients. The proportion of patients with a high viral load was 32%, with a low viral load - 68%. In 19% of patients, the level of Zn was below normal, and the levels of Cu and Se were within the reference values. The proportion of patients without fibrosis was 32%, 16% had minimal fibrosis, 40% had moderate fibrosis, 8% had progressive fibrosis, and 3% had severe fibrosis. 68% of patients had active inflammation of various degrees, liver steatosis - 65%, non-alcoholic steatohepatitis - 48%, inflammation caused by alcohol consumption was absent. No statistically significant difference was found in serum trace element levels and viral load (p>0.05). A weak negative correlation between the level of Zn and the degree of fibrosis (ρ=-0.340, p=0.007) and a negligible negative correlation between the level of Zn and inflammation activity (ρ=-0.286, p=0.024) were revealed. Patients with fibrosis grade ≥F2 had lower Zn levels compared to patients with fibrosis ≤F1 (0.607 (0.540, 0.691) mg/l vs. 0.716 (0.593, 0.875) mg/l, p=0.01), and when comparing there was no difference in Cu and Se levels (р>0.05). CONCLUSION Conclusions: Thus, there is a relationship between the level of Zn in blood serum and the degree of liver damage in patients with CHC, which indicates the prospects for further research.
Collapse
|
14
|
Derbak MA, Sitkar AD. CYTOKINE IMBALANCE AND COLLAGEN IV LEVEL IN CHRONIC HEPATITIS C PATIENTS WITH DIFFERENT ZINC CONTENTS. BULLETIN OF PROBLEMS BIOLOGY AND MEDICINE 2022. [DOI: 10.29254/2077-4214-2022-4-167-131-137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Planeta Kepp K. Bioinorganic Chemistry of Zinc in Relation to the Immune System. Chembiochem 2021; 23:e202100554. [PMID: 34889510 DOI: 10.1002/cbic.202100554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/09/2021] [Indexed: 01/18/2023]
Abstract
Zinc is well-known to have a central role in human inflammation and immunity and is itself an anti-inflammatory and antiviral agent. Despite its massively documented role in such processes, the underlying chemistry of zinc in relation to specific proteins and pathways of the immune system has not received much focus. This short review provides an overview of this topic, with emphasis on the structures of key proteins, zinc coordination chemistry, and probable mechanisms involved in zinc-based immunity, with some focus points for future chemical and biological research.
Collapse
Affiliation(s)
- Kasper Planeta Kepp
- DTU Chemistry, Technical University of Denmark, Building 206, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
16
|
Song D, Pan L, Zhang M, Wang S. Clinical use of zinc in viral warts: a systematic review of the clinical trials. J DERMATOL TREAT 2021; 33:1878-1887. [PMID: 34132162 DOI: 10.1080/09546634.2021.1942420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Zinc has shown promise in the treatment of patients with viral warts in a number of clinical trials, but there is no consensus on its effectiveness. OBJECTIVE To investigate the efficacy of various formulations of zinc on cutaneous warts. DATA SOURCES We searched the Cochrane Central Register of Controlled Trials, EMBASE, PUBMED and Web of Science without publishing-time restriction. Trials examining zinc in the treatment of warts were collected. RESULTS Out of 265 articles, a total of 16 met inclusion criteria. 6 clinical trials investigated clinical effectiveness of oral zinc supplementation alone in treating viral warts, 2 trials evaluated the efficacy of oral zinc in combination with other therapy, 5 trials investigated the efficacy of intralesional zinc sulphate, and 3 trials investigated topical zinc treatment efficacy. Zinc therapy was found to be beneficial in 13 of 16 studies evaluating its effects on warts. CONCLUSIONS The use of zinc is a simple, safe and cost-effective treatment in viral warts based on some preliminary evidence. However, more well-designed studies need to be performed to further evaluate the effect of zinc for warts.
Collapse
Affiliation(s)
- Deyu Song
- Department of dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Linxin Pan
- Department of dermatology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Ming Zhang
- Department of dermatology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Sheng Wang
- Department of dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Yazdani M, Khezri J, Hadizadeh N, Amir Zakaria JZ, Naderi M, Mahmoodian S, Karkhanei AA, Razi F, Sanati MH, Hashemi E. Depinar, a drug that potentially inhibits the binding and entry of COVID-19 into host cells based on computer-aided studies. Res Pharm Sci 2021; 16:315-325. [PMID: 34221065 PMCID: PMC8216164 DOI: 10.4103/1735-5362.314830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 02/09/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE The new coronavirus (Covid-19) has resulted in great global concerns. Due to the mortality of this virus, scientists from all over the world have been trying to employ different strategies to tackle down this concern. This virus enters cells via phagocytosis through binding to the angiotensin-converting enzyme II receptor. After invading the body, it can stay hidden in there for a period of up to 24 days (incubation period). EXPERIMENTAL APPROACH In this report, by the use of in silico studies we selected several FDA-approved compounds that possess antiviral properties. We chose the viral Spike protein as the target of drug compounds and carried out the screening process for the FDA databank in order to find the most effective ligand. FINDINGS/RESULTS The results from dock and MD revealed 10 compounds with high affinity to the receptor-binding domain motif of S protein. The best inhibitors were the ingredients of Depinar, which managed to effectively block the interactions between cells and virus. CONCLUSION AND IMPLICATION The results of this study were approved by in silico studies and due to the lack of time; we did not test the efficiency of these compounds through in vitro and in vivo studies. However, the selected compounds are all FDA approved and some are supplements like vitamin B12 and don't cause any side effects for patients.
Collapse
Affiliation(s)
- Meysam Yazdani
- Department of Systems Biotechnology, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, I.R. Iran
| | - Jafar Khezri
- Department of Systems Biotechnology, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, I.R. Iran
| | - Nastaran Hadizadeh
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Javad Zamani Amir Zakaria
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, I.R. Iran
| | - Mousa Naderi
- Department of Systems Biotechnology, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, I.R. Iran
| | - Sahar Mahmoodian
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, I.R. Iran
| | - Ali Asghar Karkhanei
- Department of Systems Biotechnology, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, I.R. Iran
| | - Farideh Razi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Mohammad Hossein Sanati
- Medical Genetics Department, National Institute of Genetic Engineering and Biotechnology, Tehran, I.R. Iran
| | - Ehsan Hashemi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, I.R. Iran
- National Research Centre for Transgenic Mouse, National Institute of Genetic Engineering and Biotechnology, Tehran, I.R. Iran
| |
Collapse
|
18
|
Metallothioneins in Inflammatory Bowel Diseases: Importance in Pathogenesis and Potential Therapy Target. Can J Gastroenterol Hepatol 2021; 2021:6665697. [PMID: 33987146 PMCID: PMC8093040 DOI: 10.1155/2021/6665697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Immunological disorders, increased oxidative stress, and damage to the epithelial barrier play an important role in the pathogenesis of inflammatory bowel diseases (IBDs). In the treatment of patients with Crohn's disease (CD) and ulcerative colitis (UC), it is increasingly common to use biological drugs that selectively affect individual components of the inflammatory cascade. However, administering the medicines currently available does not always result in obtaining and maintaining remission, and it may also lead to the development of resistance to a given agent over time. Metallothioneins (MTs) belong to the group of low molecular weight proteins, which, among others, regulate the inflammation and homeostasis of heavy metals as well as participating in the regulation of the intensity of oxidative stress. The results of the studies conducted so far do not clearly indicate the role of MTs in the process of inflammation in patients with IBD. However, there are reports that suggest the possibility of using MTs as a potential target in the treatment of this group of patients.
Collapse
|
19
|
de Jesus JR, de Araújo Andrade T. Understanding the relationship between viral infections and trace elements from a metallomics perspective: implications for COVID-19. Metallomics 2020; 12:1912-1930. [PMID: 33295922 PMCID: PMC7928718 DOI: 10.1039/d0mt00220h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
Recently, the World Health Organization (WHO) declared a pandemic situation due to a new viral infection (COVID-19) caused by a novel virus (Sars-CoV-2). COVID-19 is today the leading cause of death from viral infections in the world. It is known that many elements play important roles in viral infections, both in virus survival, and in the activation of the host's immune system, which depends on the presence of micronutrients to maintain the integrity of its functions. In this sense, the metallome can be an important object of study for understanding viral infections. Therefore, this work presents an overview of the role of trace elements in the immune system and the state of the art in metallomics, highlighting the challenges found in studies focusing on viral infections.
Collapse
Affiliation(s)
- Jemmyson Romário de Jesus
- University of Campinas, Institute of Chemistry, Dept of Analytical Chemistry, Campinas, São Paulo, Brazil.
| | | |
Collapse
|
20
|
Monette A, Mouland AJ. Zinc and Copper Ions Differentially Regulate Prion-Like Phase Separation Dynamics of Pan-Virus Nucleocapsid Biomolecular Condensates. Viruses 2020; 12:E1179. [PMID: 33081049 PMCID: PMC7589941 DOI: 10.3390/v12101179] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is a rapidly growing research focus due to numerous demonstrations that many cellular proteins phase-separate to form biomolecular condensates (BMCs) that nucleate membraneless organelles (MLOs). A growing repertoire of mechanisms supporting BMC formation, composition, dynamics, and functions are becoming elucidated. BMCs are now appreciated as required for several steps of gene regulation, while their deregulation promotes pathological aggregates, such as stress granules (SGs) and insoluble irreversible plaques that are hallmarks of neurodegenerative diseases. Treatment of BMC-related diseases will greatly benefit from identification of therapeutics preventing pathological aggregates while sparing BMCs required for cellular functions. Numerous viruses that block SG assembly also utilize or engineer BMCs for their replication. While BMC formation first depends on prion-like disordered protein domains (PrLDs), metal ion-controlled RNA-binding domains (RBDs) also orchestrate their formation. Virus replication and viral genomic RNA (vRNA) packaging dynamics involving nucleocapsid (NC) proteins and their orthologs rely on Zinc (Zn) availability, while virus morphology and infectivity are negatively influenced by excess Copper (Cu). While virus infections modify physiological metal homeostasis towards an increased copper to zinc ratio (Cu/Zn), how and why they do this remains elusive. Following our recent finding that pan-retroviruses employ Zn for NC-mediated LLPS for virus assembly, we present a pan-virus bioinformatics and literature meta-analysis study identifying metal-based mechanisms linking virus-induced BMCs to neurodegenerative disease processes. We discover that conserved degree and placement of PrLDs juxtaposing metal-regulated RBDs are associated with disease-causing prion-like proteins and are common features of viral proteins responsible for virus capsid assembly and structure. Virus infections both modulate gene expression of metalloproteins and interfere with metal homeostasis, representing an additional virus strategy impeding physiological and cellular antiviral responses. Our analyses reveal that metal-coordinated virus NC protein PrLDs initiate LLPS that nucleate pan-virus assembly and contribute to their persistence as cell-free infectious aerosol droplets. Virus aerosol droplets and insoluble neurological disease aggregates should be eliminated by physiological or environmental metals that outcompete PrLD-bound metals. While environmental metals can control virus spreading via aerosol droplets, therapeutic interference with metals or metalloproteins represent additional attractive avenues against pan-virus infection and virus-exacerbated neurological diseases.
Collapse
Affiliation(s)
- Anne Monette
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Andrew J. Mouland
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
21
|
Fiches GN, Zhou D, Kong W, Biswas A, Ahmed EH, Baiocchi RA, Zhu J, Santoso N. Profiling of immune related genes silenced in EBV-positive gastric carcinoma identified novel restriction factors of human gammaherpesviruses. PLoS Pathog 2020; 16:e1008778. [PMID: 32841292 PMCID: PMC7473590 DOI: 10.1371/journal.ppat.1008778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 09/04/2020] [Accepted: 07/05/2020] [Indexed: 12/24/2022] Open
Abstract
EBV-associated gastric cancer (EBVaGC) is characterized by high frequency of DNA methylation. In this study, we investigated how epigenetic alteration of host genome contributes to pathogenesis of EBVaGC through the analysis of transcriptomic and epigenomic datasets from NIH TCGA (The Cancer Genome Atlas) consortium. We identified that immune related genes (IRGs) is a group of host genes preferentially silenced in EBV-positive gastric cancers through DNA hypermethylation. Further functional characterizations of selected IRGs reveal their novel antiviral activity against not only EBV but also KSHV. In particular, we showed that metallothionein-1 (MT1) and homeobox A (HOXA) gene clusters are down-regulated via EBV-driven DNA hypermethylation. Several MT1 isoforms suppress EBV lytic replication and release of progeny virions as well as KSHV lytic reactivation, suggesting functional redundancy of these genes. In addition, single HOXA10 isoform exerts antiviral activity against both EBV and KSHV. We also confirmed the antiviral effect of other dysregulated IRGs, such as IRAK2 and MAL, in scenario of EBV and KSHV lytic reactivation. Collectively, our results demonstrated that epigenetic silencing of IRGs is a viral strategy to escape immune surveillance and promote viral propagation, which is overall beneficial to viral oncogenesis of human gamma-herpesviruses (EBV and KSHV), considering that these IRGs possess antiviral activities against these oncoviruses.
Collapse
Affiliation(s)
- Guillaume N. Fiches
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Dawei Zhou
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Weili Kong
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California, United States of America
| | - Ayan Biswas
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Elshafa H. Ahmed
- Division of Hematology, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Robert A. Baiocchi
- Division of Hematology, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Jian Zhu
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Netty Santoso
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
22
|
Jarach N, Dodiuk H, Kenig S. Polymers in the Medical Antiviral Front-Line. Polymers (Basel) 2020; 12:E1727. [PMID: 32752109 PMCID: PMC7464166 DOI: 10.3390/polym12081727] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Antiviral polymers are part of a major campaign led by the scientific community in recent years. Facing this most demanding of campaigns, two main approaches have been undertaken by scientists. First, the classic approach involves the development of relatively small molecules having antiviral properties to serve as drugs. The other approach involves searching for polymers with antiviral properties to be used as prescription medications or viral spread prevention measures. This second approach took two distinct directions. The first, using polymers as antiviral drug-delivery systems, taking advantage of their biodegradable properties. The second, using polymers with antiviral properties for on-contact virus elimination, which will be the focus of this review. Anti-viral polymers are obtained by either the addition of small antiviral molecules (such as metal ions) to obtain ion-containing polymers with antiviral properties or the use of polymers composed of an organic backbone and electrically charged moieties like polyanions, such as carboxylate containing polymers, or polycations such as quaternary ammonium containing polymers. Other approaches include moieties hybridized by sulphates, carboxylic acids, or amines and/or combining repeating units with a similar chemical structure to common antiviral drugs. Furthermore, elevated temperatures appear to increase the anti-viral effect of ions and other functional moieties.
Collapse
Affiliation(s)
| | | | - Samuel Kenig
- The Department of Polymer Materials Engineering, Pernick Faculty of Engineering, Shenkar College of Engineering and Design, Raman-Gan 52562, Israel; (N.J.); (H.D.)
| |
Collapse
|
23
|
Himoto T, Masaki T. Current Trends of Essential Trace Elements in Patients with Chronic Liver Diseases. Nutrients 2020; 12:nu12072084. [PMID: 32674425 PMCID: PMC7400835 DOI: 10.3390/nu12072084] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/16/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Essential trace elements play crucial roles in the maintenance of health, since they are involved in many metabolic pathways. A deficiency or an excess of some trace elements, including zinc, selenium, iron, and copper, frequently causes these metabolic disorders such as impaired glucose tolerance and dyslipidemia. The liver largely regulates most of the metabolism of trace elements, and accordingly, an impairment of liver functions can result in numerous metabolic disorders. The administration or depletion of these trace elements can improve such metabolic disorders and liver dysfunction. Recent advances in molecular biological techniques have helped to elucidate the putative mechanisms by which liver disorders evoke metabolic abnormalities that are due to deficiencies or excesses of these trace elements. A genome-wide association study revealed that a genetic polymorphism affected the metabolism of a specific trace element. Gut dysbiosis was also responsible for impairment of the metabolism of a trace element. This review focuses on the current trends of four trace elements in chronic liver diseases, including chronic hepatitis, liver cirrhosis, nonalcoholic fatty liver disease, and autoimmune liver diseases. The novel mechanisms by which the trace elements participated in the pathogenesis of the chronic liver diseases are also mentioned.
Collapse
Affiliation(s)
- Takashi Himoto
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1, Hara, Mure-Cho, Takamatsu, Kagawa 761-0123, Japan
- Correspondence: ; Tel.: +81-87-870-1240; Fax: +81-87-870-1202
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0123, Japan;
| |
Collapse
|
24
|
Gasmi A, Noor S, Tippairote T, Dadar M, Menzel A, Bjørklund G. Individual risk management strategy and potential therapeutic options for the COVID-19 pandemic. Clin Immunol 2020; 215:108409. [PMID: 32276137 PMCID: PMC7139252 DOI: 10.1016/j.clim.2020.108409] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023]
Abstract
It is an ugly fact that a significant amount of the world's population will contract SARS-CoV-II infection with the current spreading. While a specific treatment is not yet coming soon, individual risk assessment and management strategies are crucial. The individual preventive and protective measures drive the personal risk of getting the disease. Among the virus-contracted hosts, their different metabolic status, as determined by their diet, nutrition, age, sex, medical conditions, lifestyle, and environmental factors, govern the personal fate toward different clinical severity of COVID-19, from asymptomatic, mild, moderate, to death. The careful individual assessment for the possible dietary, nutritional, medical, lifestyle, and environmental risks, together with the proper relevant risk management strategies, is the sensible way to deal with the pandemic of SARS-CoV-II.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Sadaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University Multan, Pakistan
| | - Torsak Tippairote
- Nutritional and Environmental Medicine Department, BBH Hospital, Bangkok, Thailand; Faculty of Medicine, Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway.
| |
Collapse
|
25
|
Monette A, Niu M, Chen L, Rao S, Gorelick RJ, Mouland AJ. Pan-retroviral Nucleocapsid-Mediated Phase Separation Regulates Genomic RNA Positioning and Trafficking. Cell Rep 2020; 31:107520. [PMID: 32320662 PMCID: PMC8965748 DOI: 10.1016/j.celrep.2020.03.084] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/12/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
The duality of liquid-liquid phase separation (LLPS) of cellular components into membraneless organelles defines the nucleation of both normal and disease processes including stress granule (SG) assembly. From mounting evidence of LLPS utility by viruses, we discover that HIV-1 nucleocapsid (NC) protein condenses into zinc-finger (ZnF)-dependent LLPSs that are dynamically influenced by cytosolic factors. ZnF-dependent and Zinc (Zn2+)-chelation-sensitive NC-LLPS are formed in live cells. NC-Zn2+ ejection reverses the HIV-1 blockade on SG assembly, inhibits NC-SG assembly, disrupts NC/Gag-genomic RNA (vRNA) ribonucleoprotein complexes, and causes nuclear sequestration of NC and the vRNA, inhibiting Gag expression and virus release. NC ZnF mutagenesis eliminates the HIV-1 blockade of SG assembly and repositions vRNA to SGs. We find that NC-mediated, Zn2+-coordinated phase separation is conserved among diverse retrovirus subfamilies, illustrating that this exquisitely evolved Zn2+-dependent feature of virus replication represents a critical target for pan-antiretroviral therapies.
Collapse
Affiliation(s)
- Anne Monette
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada.
| | - Meijuan Niu
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Lois Chen
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Shringar Rao
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Department of Biochemistry, Erasmus University Medical Center, Ee634, PO Box 2040, 3000CA Rotterdam, the Netherlands
| | - Robert James Gorelick
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Andrew John Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada; Department of Medicine, McGill University, Montréal, QC H3G 2M1, Canada.
| |
Collapse
|
26
|
Kar M, Khan NA, Panwar A, Bais SS, Basak S, Goel R, Sopory S, Medigeshi GR. Zinc Chelation Specifically Inhibits Early Stages of Dengue Virus Replication by Activation of NF-κB and Induction of Antiviral Response in Epithelial Cells. Front Immunol 2019; 10:2347. [PMID: 31632411 PMCID: PMC6779808 DOI: 10.3389/fimmu.2019.02347] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
Zinc is an essential micronutrient which regulates diverse physiological functions and has been shown to play a crucial role in viral infections. Zinc has a necessary role in the replication of many viruses, however, antiviral action of zinc has also been demonstrated in in vitro infection models most likely through induction of host antiviral responses. Therefore, depending on the host machinery that the virus employs at different stages of infection, zinc may either facilitate, or inhibit virus infection. In this study, we show that zinc plays divergent roles in rotavirus and dengue virus infections in epithelial cells. Dengue virus infection did not perturb the epithelial barrier functions despite the release of virus from the basolateral surface whereas rotavirus infection led to disruption of epithelial junctions. In rotavirus infection, zinc supplementation post-infection did not block barrier disruption suggesting that zinc does not affect rotavirus life-cycle or protects epithelial barriers post-infection suggesting the involvement of cellular pathways in the beneficial effect of zinc supplementation in enteric infections. Zinc depletion by N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN) inhibited dengue virus and Japanese encephalitis virus (JEV) infection but had no effect on rotavirus. Time-of-addition experiments suggested that zinc chelation affected both early and late stages of dengue virus infectious cycle and zinc chelation abrogated dengue virus RNA replication. We show that transient zinc chelation induces ER stress and antiviral response by activating NF-kappaB leading to induction of interferon signaling. These results suggest that modulation of zinc homeostasis during virus infection could be a component of host antiviral response and altering zinc homeostasis may act as a potent antiviral strategy against flaviviruses.
Collapse
Affiliation(s)
- Meenakshi Kar
- Clinical and Cellular Virology Lab, Translational Health Science and Technology Institute, Faridabad, India
| | - Naseem Ahmed Khan
- Clinical and Cellular Virology Lab, Translational Health Science and Technology Institute, Faridabad, India
| | - Aleksha Panwar
- Clinical and Cellular Virology Lab, Translational Health Science and Technology Institute, Faridabad, India
| | - Sachendra S Bais
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Renu Goel
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Shailaja Sopory
- Pediatric Biology Centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Guruprasad R Medigeshi
- Clinical and Cellular Virology Lab, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
27
|
Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G. The Role of Zinc in Antiviral Immunity. Adv Nutr 2019; 10:696-710. [PMID: 31305906 PMCID: PMC6628855 DOI: 10.1093/advances/nmz013] [Citation(s) in RCA: 415] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/16/2022] Open
Abstract
Zinc is an essential trace element that is crucial for growth, development, and the maintenance of immune function. Its influence reaches all organs and cell types, representing an integral component of approximately 10% of the human proteome, and encompassing hundreds of key enzymes and transcription factors. Zinc deficiency is strikingly common, affecting up to a quarter of the population in developing countries, but also affecting distinct populations in the developed world as a result of lifestyle, age, and disease-mediated factors. Consequently, zinc status is a critical factor that can influence antiviral immunity, particularly as zinc-deficient populations are often most at risk of acquiring viral infections such as HIV or hepatitis C virus. This review summarizes current basic science and clinical evidence examining zinc as a direct antiviral, as well as a stimulant of antiviral immunity. An abundance of evidence has accumulated over the past 50 y to demonstrate the antiviral activity of zinc against a variety of viruses, and via numerous mechanisms. The therapeutic use of zinc for viral infections such as herpes simplex virus and the common cold has stemmed from these findings; however, there remains much to be learned regarding the antiviral mechanisms and clinical benefit of zinc supplementation as a preventative and therapeutic treatment for viral infections.
Collapse
Affiliation(s)
- Scott A Read
- Blacktown Medical School, Western Sydney University, Blacktown, New South Wales, Australia
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia
| | - Stephanie Obeid
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Chantelle Ahlenstiel
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Golo Ahlenstiel
- Blacktown Medical School, Western Sydney University, Blacktown, New South Wales, Australia
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
28
|
Gupta S, Read SA, Shackel NA, Hebbard L, George J, Ahlenstiel G. The Role of Micronutrients in the Infection and Subsequent Response to Hepatitis C Virus. Cells 2019; 8:E603. [PMID: 31212984 PMCID: PMC6627053 DOI: 10.3390/cells8060603] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Micronutrient deficiencies develop for a variety of reasons, whether geographic, socioeconomic, nutritional, or as a result of disease pathologies such as chronic viral infection. As micronutrients are essential for a strong immune response, deficiencies can significantly dampen both the innate and the adaptive arms of antiviral immunity. The innate immune response in particular is crucial to protect against hepatitis C virus (HCV), a hepatotropic virus that maintains chronic infection in up to 80% of individuals if left untreated. While many micronutrients are required for HCV replication, an overlapping group of micronutrients are also necessary to enact a potent immune response. As the liver is responsible for the storage and metabolism of many micronutrients, HCV persistence can influence the micronutrients' steady state to benefit viral persistence both directly and by weakening the antiviral response. This review will focus on common micronutrients such as zinc, iron, copper, selenium, vitamin A, vitamin B12, vitamin D and vitamin E. We will explore their role in the pathogenesis of HCV infection and in the response to antiviral therapy. While chronic hepatitis C virus infection drives deficiencies in micronutrients such as zinc, selenium, vitamin A and B12, it also stimulates copper and iron excess; these micronutrients influence antioxidant, inflammatory and immune responses to HCV.
Collapse
Affiliation(s)
- Sunil Gupta
- Blacktown Clinical School, Western Sydney University, Blacktown, NSW 2148, Australia.
| | - Scott A Read
- Blacktown Clinical School, Western Sydney University, Blacktown, NSW 2148, Australia.
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead 2145, Australia.
| | - Nicholas A Shackel
- Department of Medicine, University of New South Wales, Kensington, NSW 2052, Australia.
| | - Lionel Hebbard
- Department of Molecular and Cell Biology, Centre for Molecular Therapeutics, James Cook University, Australian Institute of Tropical Health and Medicine, Townsville, QLD 4814, Australia.
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead 2145, Australia.
| | - Golo Ahlenstiel
- Blacktown Clinical School, Western Sydney University, Blacktown, NSW 2148, Australia.
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead 2145, Australia.
- Department of Medicine, Blacktown Hospital, Blacktown, NSW 2148, Australia.
| |
Collapse
|
29
|
Ogawa M, Kanda T, Suganami A, Nakamoto S, Win NN, Tamura Y, Nakamura M, Matsuoka S, Yokosuka O, Kato N, Ohara O, Okamoto H, Moriyama M, Shirasawa H. Antiviral activity of zinc sulfate against hepatitis A virus replication. Future Virol 2019. [DOI: 10.2217/fvl-2019-0031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Masahiro Ogawa
- Division of Gastroenterology & Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Kanto, 173-8610, Japan
| | - Tatsuo Kanda
- Division of Gastroenterology & Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Kanto, 173-8610, Japan
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Kanto, 260-8677, Japan
| | - Akiko Suganami
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Kanto, 260-8677, Japan
| | - Shingo Nakamoto
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Kanto, 260-8677, Japan
- Department of Molecular Virology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Kanto, 260-8677, Japan
| | - Nan Nwe Win
- Department of Molecular Virology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Kanto, 260-8677, Japan
| | - Yutaka Tamura
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Kanto, 260-8677, Japan
| | - Masato Nakamura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Kanto, 260-8677, Japan
| | - Shunichi Matsuoka
- Division of Gastroenterology & Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Kanto, 173-8610, Japan
| | - Osamu Yokosuka
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Kanto, 260-8677, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Kanto, 260-8677, Japan
| | - Osamu Ohara
- Kazusa DNA Research Institute, Kisarazu, Kanto, 292-0818, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection & Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Kanto, 329-0498, Japan
| | - Mitsuhiko Moriyama
- Division of Gastroenterology & Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Kanto, 173-8610, Japan
| | - Hiroshi Shirasawa
- Department of Molecular Virology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Kanto, 260-8677, Japan
| |
Collapse
|
30
|
Ko YL, Morihara D, Shibata K, Yamauchi R, Fukuda H, Kunimoto H, Takata K, Tanaka T, Inomata S, Yokoyama K, Takeyama Y, Shakado S, Sakisaka S. Factors Attenuating Zinc Deficiency Improvement in Direct-Acting Antiviral Agent-Treated Chronic Hepatitis C Virus Infection. Nutrients 2018; 10:E1620. [PMID: 30400133 PMCID: PMC6266757 DOI: 10.3390/nu10111620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/20/2018] [Accepted: 10/24/2018] [Indexed: 12/17/2022] Open
Abstract
Zinc deficiency is frequently observed in chronic liver diseases. However, no studies have focused on the zinc status in chronic hepatitis C (HCV)-infected patients receiving direct-acting antiviral agents (DAAs). In this retrospective study, we assessed the serum zinc status in DAA-treated HCV patients with sustained virologic response for over two years (Zn-2y). Ninety-five patients were enrolled, whose baseline characteristics and blood parameters at DAA therapy initiation were collected. Baseline Zn < 65 µg/dL (odds ratio (OR) = 10.56, p < 0.001) and baseline uric acid (UA) > 5.5 mg/dL (OR = 9.99, p = 0.001) were independent risk factors for Zn-2y deficiency. A decision-tree algorithm classified low-baseline Zn and high-baseline UA as the first two variables, suggesting that baseline hypozincemia and hyperuricemia are prognosticators for long-term zinc deficiency. Baseline Zn was negatively correlated with the Fibrosis-4 (FIB-4) index, while baseline UA was significantly higher in habitual alcohol drinkers. In conclusion, serum zinc levels should be closely monitored, considering that zinc status improvement is related to liver fibrosis regression. Hyperuricemia indicates risks of developing metabolic disorders and subsequent zinc deficiency, for which an adjustment of personal lifestyle or dietary habits should be recommended clinically.
Collapse
Affiliation(s)
- Yi-Ling Ko
- Department of Gastroenterology, Fukuoka University Faculty of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Daisuke Morihara
- Department of Gastroenterology, Fukuoka University Faculty of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Kumiko Shibata
- Department of Gastroenterology, Fukuoka University Faculty of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Ryo Yamauchi
- Department of Gastroenterology, Fukuoka University Faculty of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Hiromi Fukuda
- Department of Gastroenterology, Fukuoka University Faculty of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Hideo Kunimoto
- Department of Gastroenterology, Fukuoka University Faculty of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Kazuhide Takata
- Department of Gastroenterology, Fukuoka University Faculty of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Takashi Tanaka
- Department of Gastroenterology, Fukuoka University Faculty of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Shinjiro Inomata
- Department of Gastroenterology, Fukuoka University Faculty of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Keiji Yokoyama
- Department of Gastroenterology, Fukuoka University Faculty of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Yasuaki Takeyama
- Department of Gastroenterology, Fukuoka University Faculty of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Satoshi Shakado
- Department of Gastroenterology, Fukuoka University Faculty of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Shotaro Sakisaka
- Department of Gastroenterology, Fukuoka University Faculty of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| |
Collapse
|