1
|
Jiang D, Wu X, Chen C, Ju T, Du Y, Yang M, Cao K, Chen M, Zhou W, Qi J, Yan C, Cui D, Yan D, Yang S. Follicular cytotoxic T cells is dysfunctional in chronic hepatitis B patients with non-alcoholic fatty liver disease. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167646. [PMID: 39743024 DOI: 10.1016/j.bbadis.2024.167646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND & AIMS Given the impact of nonalcoholic fatty liver disease (NAFLD) on T cell activation and proliferation functions, we aim to explore the heterogeneity of follicular cytotoxic T (Tfc) cells in chronic hepatitis B (CHB) patients with NAFLD. METHODS 32 healthy controls (HCs), 36 treatment-naïve CHB patients, and 19 treatment-naïve CHB + NAFLD patients were recruited. We employed multicolor flow cytometry to assess the exhausted phenotype and functionality of Tfc cells. CD8+ T cells were subjected to single-cell RNA sequencing. Furthermore, we co-cultured peripheral blood mononuclear cells from CHB patients with HepG2.2.15 cells under different treatment to investigate the underlying mechanism. RESULTS We observed an increased expression of inhibitory receptors in Tfc cells compared to their counterparts in CHB patients. In CHB + NAFLD patients the memory identity and functional properties of Tfc cells were impaired. Enhanced lipid oxidation and oxidative stress were found in the Tfc of CHB + NAFLD patients. Tfc cells were predominantly present within the exhausted effector T cells in CHB + NAFLD patients, while in CHB patients, Tfc cells were mainly distributed within the precursors of exhausted T cells and central memory T cells. The effector memory phenotype of Tfc cells was diminished but could be partially restored after antioxidant treatment. CONCLUSION We present the phenotype of Tfc cells in CHB patients, with or without NAFLD. Our findings provide evidence that the long-term memory identity and functionality of Tfc cells are impaired in CHB + NAFLD patients. Enhancing the characteristics of effector memory cells in Tfc through maintaining the redox balance may offer innovative therapeutic strategies for CHB + NAFLD patients.
Collapse
Affiliation(s)
- Daixi Jiang
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Xiaoyue Wu
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Can Chen
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Ju
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuxia Du
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengya Yang
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Kexin Cao
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengsha Chen
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenkai Zhou
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaxing Qi
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Cuilin Yan
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Dong Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Shigui Yang
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Bradić I, Kuentzel KB, Pirchheim A, Rainer S, Schwarz B, Trauner M, Larsen MR, Vujić N, Kratky D. From LAL-D to MASLD: Insights into the role of LAL and Kupffer cells in liver inflammation and lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159575. [PMID: 39486573 DOI: 10.1016/j.bbalip.2024.159575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent liver pathology worldwide, closely associated with obesity and metabolic disorders. Increasing evidence suggests that macrophages play a crucial role in the development of MASLD. Several human studies have shown an inverse correlation between circulating lysosomal acid lipase (LAL) activity and MASLD. LAL is the sole enzyme known to degrade cholesteryl esters (CE) and triacylglycerols in lysosomes. Consequently, these substrates accumulate when their enzymatic degradation is impaired due to LAL deficiency (LALD). This study aimed to investigate the role of hepatic LAL activity and liver-resident macrophages (i.e., Kupffer cells (KC)) in MASLD. To this end, we analyzed lipid metabolism in hepatocyte-specific (hep)Lal-/- mice and depleted KC with clodronate treatment. When fed a high-fat/high-cholesterol diet (HF/HCD), hepLal-/- mice exhibited CE accumulation and an increased number of macrophages in the liver and significant hepatic inflammation. KC were depleted upon clodronate administration, whereas infiltrating/proliferating CD68-expressing macrophages were less affected. This led to exacerbated hepatic CE accumulation and dyslipidemia, as evidenced by increased LDL-cholesterol concentrations. Along with proteomic analysis of liver tissue, these findings indicate that hepatic LAL-D in HF/HCD-fed mice leads to macrophage infiltration into the liver and that KC depletion further exacerbates hepatic CE concentrations and dyslipidemia.
Collapse
Affiliation(s)
- Ivan Bradić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Katharina B Kuentzel
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Anita Pirchheim
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Silvia Rainer
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Birgit Schwarz
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Nemanja Vujić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
3
|
Sinha S, Hassan N, Schwartz RE. Organelle stress and alterations in interorganelle crosstalk during liver fibrosis. Hepatology 2024; 79:482-501. [PMID: 36626634 DOI: 10.1097/hep.0000000000000012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/03/2022] [Indexed: 01/12/2023]
Abstract
The synchronous functioning and quality control of organelles ensure cell survival and function and are essential for maintaining homeostasis. Prolonged exposure to stressors (viruses, bacteria, parasitic infections, alcohol, drugs) or genetic mutations often disrupt the functional integrity of organelles which plays a critical role in the initiation and progression of several diseases including chronic liver diseases. One of the most important pathologic consequences of chronic liver diseases is liver fibrosis, characterized by tissue scarring due to the progressive accumulation of extracellular matrix components. Left untreated, fibrosis may advance to life-threatening complications such as cirrhosis, hepatic decompensation, and HCC, which collectively accounts for ∼1 million deaths per year worldwide. Owing to the lack of treatment options that can regress or reverse cirrhosis, liver transplantation is currently the only available treatment for end-stage liver disease. However, the limited supply of usable donor organs, adverse effects of lifelong immunosuppressive regimes, and financial considerations pose major challenges and limit its application. Hence, effective therapeutic strategies are urgently needed. An improved understanding of the organelle-level regulation of fibrosis can help devise effective antifibrotic therapies focused on reducing organelle stress, limiting organelle damage, improving interorganelle crosstalk, and restoring organelle homeostasis; and could be a potential clinical option to avoid transplantation. This review provides a timely update on the recent findings and mechanisms covering organelle-specific dysfunctions in liver fibrosis, highlights how correction of organelle functions opens new treatment avenues and discusses the potential challenges to clinical application.
Collapse
Affiliation(s)
- Saloni Sinha
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | | |
Collapse
|
4
|
Korbelius M, Kuentzel KB, Bradić I, Vujić N, Kratky D. Recent insights into lysosomal acid lipase deficiency. Trends Mol Med 2023; 29:425-438. [PMID: 37028992 DOI: 10.1016/j.molmed.2023.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023]
Abstract
Lysosomal acid lipase (LAL) is the sole enzyme known to degrade neutral lipids in the lysosome. Mutations in the LAL-encoding LIPA gene lead to rare lysosomal lipid storage disorders with complete or partial absence of LAL activity. This review discusses the consequences of defective LAL-mediated lipid hydrolysis on cellular lipid homeostasis, epidemiology, and clinical presentation. Early detection of LAL deficiency (LAL-D) is essential for disease management and survival. LAL-D must be considered in patients with dyslipidemia and elevated aminotransferase concentrations of unknown etiology. Enzyme replacement therapy, sometimes in combination with hematopoietic stem cell transplantation (HSCT), is currently the only therapy for LAL-D. New technologies based on mRNA and viral vector gene transfer are recent efforts to provide other effective therapeutic strategies.
Collapse
Affiliation(s)
- Melanie Korbelius
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Katharina B Kuentzel
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Ivan Bradić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Nemanja Vujić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria.
| |
Collapse
|
5
|
Aghemo A, Alekseeva OP, Angelico F, Bakulin IG, Bakulina NV, Bordin D, Bueverov AO, Drapkina OM, Gillessen A, Kagarmanova EM, Korochanskaya NV, Kucheryavii UA, Lazebnik LB, Livzan MA, Maev IV, Martynov AI, Osipenko MF, Sas EI, Starodubova A, Uspensky YP, Vinnitskaya EV, Yakovenko EP, Yakovlev AA. Role of silymarin as antioxidant in clinical management of chronic liver diseases: a narrative review. Ann Med 2022; 54:1548-1560. [PMID: 35635048 PMCID: PMC9186366 DOI: 10.1080/07853890.2022.2069854] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
Chronic liver disease (CLD), manifested as hepatic injury, is a major cause of global morbidity and mortality. CLD progresses to fibrosis, cirrhosis, and-ultimately-hepatocellular carcinoma (HCC) if left untreated. The different phenotypes of CLD based on their respective clinical features and causative agents include alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), metabolic-associated fatty liver disease (MAFLD), and drug-induced liver injury (DILI). The preferred treatment modality for CLD includes lifestyle modification and diet, along with limited pharmacological agents for symptomatic treatment. Moreover, oxidative stress (OS) is an important pathological mechanism underlying all CLD phenotypes; hence, the use of antioxidants to manage the disease is justified. Based on available clinical evidence, silymarin can be utilized as a hepatoprotective agent, given its potent antioxidant, antifibrotic, and anti-inflammatory properties. The role of silymarin in suppressing OS has been well established, and therefore silymarin is recommended for use in ALD and NAFLD in the guidelines approved by the Russian Medical Scientific Society of Therapists and the Gastroenterology Scientific Society of Russia. However, to discuss the positioning of the original silymarin in clinical guidelines and treatment protocols as a hepatoprotective agent for managing CLD concomitantly with other therapies, an expert panel of international and Russian medical professionals was convened on 11 November 2020. The panel reviewed approaches for the prevention and treatment of OS, existing guidelines for patient management for CLD, and available evidence on the effectiveness of silymarin in reducing OS, fibrosis, and hepatic inflammation and presented in the form of a narrative review. Key messagesAn expert panel of international and Russian medical professionals reviewed existing guidelines for ALD, NAFLD, MAFLD, and DILI to establish consensus recommendations that oxidative stress is the common pathophysiological mechanism underlying these conditions.The panel also discussed the positioning of original silymarin in clinical guidelines and treatment protocols as a hepatoprotective agent for managing CLD concomitantly with other therapies.The panel reviewed the effectiveness of 140 mg original silymarin three times a day in reducing oxidative stress in chronic liver diseases such as ALD, NAFLD, MAFLD, and DILI.
Collapse
Affiliation(s)
- Alessio Aghemo
- Department of Biomedical Sciences, Humanitas Research Hospital IRCCS, Rozzano, Italy
| | - Olga P. Alekseeva
- Gastroenterological Center, Semashko National Research University, Moscow, Russia
| | | | - Igor G. Bakulin
- Department of Propaedeutics of Internal Diseases, Federal State Medical University of Ministry of Health of Russia, Chief Specialist-Therapist of the North-Western Federal district, Moscow, Russia
| | - Natalia V. Bakulina
- Department of Therapy and Clinical Pharmacology, North-Western State Medical University, Moscow, Russia
| | - Dmitry Bordin
- Department of Pancreatic, Biliary, and Upper Digestive Tract Disorders, A.S. Loginov Moscow Clinical Scientific Center, Moscow, Russia
| | - Alexey O. Bueverov
- Department of Gastroenterology and Hepatology, Moscow Medical Academy, Moscow, Russia
| | - Oxana M. Drapkina
- Ministry of Health of the Russian Federation, Chief Specialist of Therapy and General Practice Ministry of Health of Russia, Grozny, Russia
| | - Anton Gillessen
- Department of Internal Medicine, Herz-Jesu-Hospital, Muenster, Germany
| | | | | | - U. A. Kucheryavii
- Department of Propaedeutics of Internal Diseases and Gastroenterology, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Leonid B. Lazebnik
- Department of Polyclinic Therapy, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Maria A. Livzan
- Department of Faculty Therapy, Omsk State Medical University, Omsk, Russia
| | - Igor V. Maev
- Department of Propedeutics of Internal Diseases and Gastroenterology, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Anatolii I. Martynov
- Department of Internal Diseases, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Marina F. Osipenko
- Department for Science, Innovations and Informatization, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Evgenii I. Sas
- 2nd Department of Therapy, Ministry of Defense of the Russian Federation, Moscow, Russia
| | - Antonina Starodubova
- Department of Scientific and Clinical Work, INSTITUTE "Federal Research Center of Nutrition and Biotechnologies", Moscow, Russia
| | - Yurii P. Uspensky
- Department of faculty therapy, Saint Petersburg State Pediatric Medical University (Spbpgmu) of the RF MOH, St. Petersburg, Russia
| | - Elena V. Vinnitskaya
- Department of Hepatology, Moscow Clinical Research and Practice Center, Moscow, Russia
| | - Emilia P. Yakovenko
- Department of Gastroenterology, Faculty of Advanced Medical Education of the Russian National Research Medical University, Moscow, Russia
| | - Alexey A. Yakovlev
- Department of gastroenterology and endoscopy, Rostov State Medical, Rostov, Russia
| |
Collapse
|
6
|
Bashir A, Duseja A, Verma A, De A, Tiwari P. Lysosomal Acid Lipase Activity in Non-alcoholic Fatty Liver Disease as a Novel Diagnostic and Therapeutic Target: A Systematic Literature Review of Current Evidence and Future Directions. J Clin Exp Hepatol 2022; 12:1535-1546. [PMID: 36340307 PMCID: PMC9630019 DOI: 10.1016/j.jceh.2022.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/10/2022] [Indexed: 12/12/2022] Open
Abstract
Background and aim Non-alcoholic fatty liver disease (NAFLD) presents with the accumulation of excessive intra-hepatic fat without significant alcohol intake. Multifactorial pathogenesis is reported to be involved. Reduced lysosomal acid lipase (LAL) activity is suggested as one of the novel-involved pathogenic mechanisms. This review summarizes the available evidence on the role of LAL activity in NAFLD pathogenesis. Methods Four databases namely, PubMed/Medline, Science direct, Cochrane Library, and Google scholar were searched to identify relevant observational records evaluating the role of LAL activity in the pathogenesis of NAFLD. All studies were assessed for their quality by using Newcastle-Ottawa Scale or The Joanna Briggs Institute Critical Appraisal tools for cohort and cross-sectional studies, respectively. The estimates of LAL activity and other clinical outcomes were expressed as mean (SD) and number (%) as presented in the primary studies. Results A total of nine good quality studies with 1711 patients with NAFLD and 877 controls from different groups (healthy volunteers, alcoholics, cryptogenic cirrhosis, and HCV-positive) were included. From the NAFLD group, 59.55% were males and the overall mean age ranged between the studies from 12.6 ± 8.5 months in pediatrics to 58.90 ± 13.82 years in adults. In the NAFLD group, the LAL activity varied from 0.53 ± 0.08 to 1.3 ± 0.70 (nmol/spot/hr) between the studies which was less than all control groups except cryptogenic cirrhosis patients (0.5 ± 0.15 nmol/spot/hr). Of the other outcomes of interest, ALT, AST, total cholesterol, triglyceride, and LDL cholesterol were found elevated in NAFLD patients than in controls. Conclusion The current evidence suggests a potential correlation of reduced LAL activity with NAFLD pathogenesis according to its severity. Large-scale studies are recommended, more importantly in patients with NAFLD having no metabolic or genetic involvement. Further LAL can act as a new non-invasive diagnostic biomarker to identify that specific NAFLD subgroup.
Collapse
Key Words
- ALT, Alanine aminotransferase
- AST, Aspartate aminotransferase
- CESD, Cholesterol ester storage disease
- HCC, Hepatocellular carcinoma
- JBI, Joanna Briggs Institute
- LAL
- LAL, Lysosomal acid lipase
- MAFLD, Metabolic (dysfunction)-associated fatty liver disease
- NAFLD
- NAFLD, Non-alcoholic fatty liver disease
- NASH
- NASH, Non-alcoholic steatohepatitis
- NOS, Newcastle–Ottawa Scale
- PNPLA3, Patatin-like phospholipase domain containing 3 protein
- WD, Wolman disease
- pathogenesis
- systematic review
Collapse
Affiliation(s)
- Aamir Bashir
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar Mohali, Punjab, 160062, India
| | - Ajay Duseja
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ashish Verma
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar Mohali, Punjab, 160062, India
| | - Arka De
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Pramil Tiwari
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar Mohali, Punjab, 160062, India
| |
Collapse
|
7
|
Pu J. Targeting the lysosome: Mechanisms and treatments for nonalcoholic fatty liver disease. J Cell Biochem 2022; 123:1624-1633. [PMID: 35605052 PMCID: PMC9617749 DOI: 10.1002/jcb.30274] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 11/11/2022]
Abstract
The multiple functions of the lysosome, including degradation, nutrient sensing, signaling, and gene regulation, enable the lysosome to regulate lipid metabolism at different levels. In this review, I summarize the recent studies on lysosomal regulation of lipid metabolism and the alterations of the lysosome functions in the livers affected by nonalcoholic fatty liver disease (NAFLD). NAFLD is a highly prevalent lipid metabolic disorder. The progression of NAFLD leads to nonalcoholic steatohepatitis (NASH) and other severe liver diseases, and thus the prevention and treatments of NAFLD progression are critically needed. Targeting the lysosome is a promising strategy. I also discuss the current manipulations of the lysosome functions in the preclinical studies of NAFLD and propose my perspectives on potential future directions.
Collapse
Affiliation(s)
- Jing Pu
- Department of Molecular Genetics and Microbiology, Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
8
|
Besler KJ, Blanchard V, Francis GA. Lysosomal acid lipase deficiency: A rare inherited dyslipidemia but potential ubiquitous factor in the development of atherosclerosis and fatty liver disease. Front Genet 2022; 13:1013266. [PMID: 36204319 PMCID: PMC9530988 DOI: 10.3389/fgene.2022.1013266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Lysosomal acid lipase (LAL), encoded by the gene LIPA, is the sole neutral lipid hydrolase in lysosomes, responsible for cleavage of cholesteryl esters and triglycerides into their component parts. Inherited forms of complete (Wolman Disease, WD) or partial LAL deficiency (cholesteryl ester storage disease, CESD) are fortunately rare. Recently, LAL has been identified as a cardiovascular risk gene in genome-wide association studies, though the directionality of risk conferred remains controversial. It has also been proposed that the low expression and activity of LAL in arterial smooth muscle cells (SMCs) that occurs inherently in nature is a likely determinant of the propensity of SMCs to form the majority of foam cells in atherosclerotic plaque. LAL also likely plays a potential role in fatty liver disease. This review highlights the nature of LAL gene mutations in WD and CESD, the association of LAL with prediction of cardiovascular risk from genome-wide association studies, the importance of relative LAL deficiency in SMC foam cells, and the need to further interrogate the pathophysiological impact and cell type-specific role of enhancing LAL activity as a novel treatment strategy to reduce the development and induce the regression of ischemic cardiovascular disease and fatty liver.
Collapse
|
9
|
KÖSE E, ÇAĞATAY E, YARAŞ T, TEKE KISA P, GÜLER S, ARSLAN GÜLTEN Z, AKARSU M, OKTAY Y, AYAR KAYALI H, ARSLAN N. Could lysosomal acid lipase enzyme activity be used for clinical follow-up in cryptogenic cirrhosis? Turk J Med Sci 2022; 52:1075-1084. [PMID: 36326406 PMCID: PMC10387917 DOI: 10.55730/1300-0144.5410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 08/10/2022] [Accepted: 03/27/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cholesterol ester storage disease (CESD) is one of the rare causes that should be kept in mind in the etiology of cirrhosis. Recent studies detected that significantly reduced lysosomal acid lipase deficiency enzyme (LAL) in patients with cryptogenic cirrhosis (CC). Moreover, studies have evaluated that LAL activity is as effective as scoring systems in assessing the severity of cirrhosis. In this study, we aimed to investigate the CESD with LAL level and mutation analysis of LIPA gene in patients diagnosed with CC and to compare LAL activities between patients with CC and healthy volunteers. METHODS Laboratory parameters and cirrhosis stage (CHILD and MELD) were recorded for the patient group included in the study. In addition, blood samples were taken from each case included in the study for LAL activity determination and LIPA gene analysis. RESULTS A statistically significant decrease in LAL activity was found in patients diagnosed with CC compared to the healthy group. LIPA gene analysis did not detect CESD in any patient group. Correlation analysis showed a positive correlation between LAL activity and white blood cell and platelet counts in both healthy volunteers and CC patient groups. In the univariate and multivariate logistic regression analysis of the parameters associated with the MELD of ≥10 in patients with CC, significant relationship was found between the MELD of ≥10 and the LAL activity. DISCUSSION In our study, LAL activity was significantly lower in CC patients than in the normal population. LAL activity level appears to be a parameter that can be used to assess the severity of cirrhosis.
Collapse
Affiliation(s)
- Engin KÖSE
- Department of Pediatric Metabolism, Faculty of Medicine, Ankara University, Ankara,
Turkey
| | - Elçin ÇAĞATAY
- Department of Molecular Biology and Genetics, International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir,
Turkey
| | - Tutku YARAŞ
- Department of Basic and Translational Research, International Biomedicine and Genome Center, İzmir,
Turkey
| | - Pelin TEKE KISA
- Department of Pediatric Metabolism, Faculty of Medicine, Dokuz Eylül University, İzmir,
Turkey
| | - Seminay GÜLER
- Department of Gastroenterology, Faculty of Medicine, Dokuz Eylül University, İzmir,
Turkey
| | - Zümrüt ARSLAN GÜLTEN
- Department of Pediatric Metabolism, Faculty of Medicine, Dokuz Eylül University, İzmir,
Turkey
| | - Mesut AKARSU
- Department of Gastroenterology, Faculty of Medicine, Dokuz Eylül University, İzmir,
Turkey
| | - Yavuz OKTAY
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, İzmir,
Turkey
| | - Hülya AYAR KAYALI
- Department of Science Chemistry, Dokuz Eylül University, İzmir,
Turkey
| | - Nur ARSLAN
- Department of Pediatric Metabolism, Faculty of Medicine, Dokuz Eylül University, İzmir,
Turkey
| |
Collapse
|
10
|
Grabowski GA, Du H. Lysosomal acid lipase: Roles in rare deficiency diseases, myeloid cell biology, innate immunity, and common neutral lipid diseases. CHOLESTEROL 2022:639-673. [DOI: 10.1016/b978-0-323-85857-1.00022-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Lin SZ, Fan JG. Peripheral immune cells in NAFLD patients: A spyhole to disease progression. EBioMedicine 2022; 75:103768. [PMID: 34929490 PMCID: PMC8693289 DOI: 10.1016/j.ebiom.2021.103768] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/02/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a worldwide leading cause of chronic liver disease, but we still lack ideal non-invasive tools for diagnosis and evaluation of nonalcoholic steatohepatitis (NASH) and related liver fibrosis in NAFLD population. Systemic immune dysregulations such as metabolic inflammation are believed to play central role in the development of NAFLD, signifying the hope of utilizing quantitative and phenotypic changes in peripheral immune cells among NAFLD patients as a diagnostic tool of NASH and fibrosis. In this review, we summarize the known changes in peripheral immune cells from NAFLD/NASH patients and their potential relationship with NAFLD and NASH progression. Potential challenges and possible solutions for further clinical translation are also discussed.
Collapse
Affiliation(s)
- Shuang-Zhe Lin
- Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| |
Collapse
|
12
|
Thoen RU, Longo L, Neto SC, Álvares-da-Silva MR. Low levels of Lysosomal Acid Lipase (LAL) activity increases necroinflammation in adult patients with biopsy-proven metabolic associated fatty liver disease. Clin Res Hepatol Gastroenterol 2021; 45:101638. [PMID: 33662773 DOI: 10.1016/j.clinre.2021.101638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/29/2020] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION AND OBJECTIVE Metabolic associated fatty liver disease (MAFLD), characterized by intra-hepatic fat accumulation, will soon be the leading cause of end-stage liver disease. Lysosomal Acid Lipase (LAL) is a key enzyme in lipid metabolism. We investigated its activity in patients with biopsy-proven MAFLD. METHODS Prospective cross-sectional study in patients with biopsy-proven MAFLD. Blood LAL-activity (pmol/punch/h) was measured with dried blood spot extracts using Lalistat 2. Demographic, clinical, and laboratory data were collected. RESULTS 101 adult patients were recruited. Among them, 11.9% had a diagnosis of MAFLD without steatohepatitis and 88.1% had MAFLD with steatohepatitis. The median of LAL-activity in patients with MAFLD was 76.8 pmol/punch/h. MAFLD patients with steatohepatitis showed an increase in gamma-glutamyl transferase (p = 0.042), insulin (p = 0.001), homeostatic model assessment for insulin resistance (HOMA-IR, p = 0.001) and advanced liver fibrosis (p < 0.001), compared to cases of MAFLD without steatohepatitis. There was no statistical difference in LAL-activity between the cases (p = 0.296). When considering LAL-activity above and below 77 pmol/punch/h as a cut-off value, patients with reduced LAL-activity had a significant increase in necroinflammatory activity according to the METAVIR score (p = 0.040), and NAFLD activity score (NAS, p = 0.031) compared to cases with higher LAL-activity. CONCLUSION Our findings suggest that reduced LAL-activity is associated with increased necroinflammatory activity and severity of the NAS. A better knowledge of the role of LAL may provide new insights into the pathogenesis and progression of MAFLD.
Collapse
Affiliation(s)
- Rutiane Ullmann Thoen
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Experimental Laboratory of Hepatology and Gastroenterology, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Larisse Longo
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Experimental Laboratory of Hepatology and Gastroenterology, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| | - Santiago Cassales Neto
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mário Reis Álvares-da-Silva
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Experimental Laboratory of Hepatology and Gastroenterology, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Division of Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
13
|
Li F, Zhao X, Li H, Liu Y, Zhang Y, Huang X, Cao J, Du F, Wu D, Yu H. Hepatic lysosomal acid lipase drives the autophagy-lysosomal response and alleviates cholesterol metabolic disorder in ApoE deficient mice. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159027. [PMID: 34416392 DOI: 10.1016/j.bbalip.2021.159027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/22/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023]
Abstract
Lysosomal acid lipase (LAL)-dependent lipolysis degrades cholesteryl ester (CE) and triglyceride in the lysosome. LAL deficiency in human and mice leads to hypercholesterolemia, hepatic CE deposition, and atherosclerosis. Despite its hepatocyte-specific deficiency leads to CE accumulation, the regulation of LAL in cholesterol metabolic disease remains elusive. For the in vitro study, the target gene Lipa was transfected with recombinant shRNA or lentiviral vector in Hepa1-6 cells. It was found that LAL silencing in cells affected lysosomal function by reducing LAL activity and proteolytic activity, and altered the expression of genes related to cholesterol metabolism and autophagy, leading to cholesterol accumulation; whereas LAL overexpression improved the above effects. To explore the impacts of hepatic LAL on cholesterol metabolic disease in vivo, apolipoprotein E deficient (ApoE-/-) mice were intravenously injected with lentivirus to achieve hepatic LAL overexpression and fed a Western diet for 16 weeks. The results showed that hepatic LAL overexpression significantly reduced plasma lipid levels, alleviated inflammation and oxidative status in plasma and liver, and attenuated hepatic steatosis and fibrosis in ApoE-/- mice. Mechanically, hepatic LAL promoted cholesterol transport and biliary excretion by increasing liver X receptor alpha (LXRα) and its downstream genes, and modulated the compliance of the autophagy-lysosomal pathway. Our data provide the original evidence of the validity of hepatic LAL in controlling cholesterol metabolism and liver homeostasis, suggesting that targeting hepatic LAL may provide a promising approach to rescue cholesterol metabolic disorders, such as hypercholesterolemia and liver disease.
Collapse
Affiliation(s)
- Feifei Li
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China
| | - Xiaojie Zhao
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China
| | - Hao Li
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Yu Liu
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China
| | - Xiaopeng Huang
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China
| | - Jia Cao
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China
| | - Fen Du
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China
| | - Dongfang Wu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
| | - Hong Yu
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China.
| |
Collapse
|
14
|
Mandala A, Janssen RC, Palle S, Short KR, Friedman JE. Pediatric Non-Alcoholic Fatty Liver Disease: Nutritional Origins and Potential Molecular Mechanisms. Nutrients 2020; 12:E3166. [PMID: 33081177 PMCID: PMC7602751 DOI: 10.3390/nu12103166] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the number one chronic liver disease worldwide and is estimated to affect nearly 40% of obese youth and up to 10% of the general pediatric population without any obvious signs or symptoms. Although the early stages of NAFLD are reversible with diet and lifestyle modifications, detecting such stages is hindered by a lack of non-invasive methods of risk assessment and diagnosis. This absence of non-invasive means of diagnosis is directly related to the scarcity of long-term prospective studies of pediatric NAFLD in children and adolescents. In the majority of pediatric NAFLD cases, the mechanisms driving the origin and rapid progression of NAFLD remain unknown. The progression from NAFLD to non-alcoholic steatohepatitis (NASH) in youth is associated with unique histological features and possible immune processes and metabolic pathways that may reflect different mechanisms compared with adults. Recent data suggest that circulating microRNAs (miRNAs) are important new biomarkers underlying pathways of liver injury. Several factors may contribute to pediatric NAFLD development, including high-sugar diets, in utero exposures via epigenetic alterations, changes in the neonatal microbiome, and altered immune system development and mitochondrial function. This review focuses on the unique aspects of pediatric NAFLD and how nutritional exposures impact the immune system, mitochondria, and liver/gastrointestinal metabolic health. These factors highlight the need for answers to how NAFLD develops in children and for early stage-specific interventions.
Collapse
Affiliation(s)
- Ashok Mandala
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (K.R.S.)
| | - Rachel C. Janssen
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (K.R.S.)
| | - Sirish Palle
- Department of Pediatrics, Section of Gastroenterology, Hepatology & Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Kevin R. Short
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (K.R.S.)
- Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (K.R.S.)
- Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
15
|
Carotti S, Aquilano K, Valentini F, Ruggiero S, Alletto F, Morini S, Picardi A, Antonelli-Incalzi R, Lettieri-Barbato D, Vespasiani-Gentilucci U. An overview of deregulated lipid metabolism in nonalcoholic fatty liver disease with special focus on lysosomal acid lipase. Am J Physiol Gastrointest Liver Physiol 2020; 319:G469-G480. [PMID: 32812776 DOI: 10.1152/ajpgi.00049.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Obesity and type 2 diabetes are frequently complicated by excess fat accumulation in the liver, which is known as nonalcoholic fatty liver disease (NAFLD). In this context, liver steatosis develops as a result of the deregulation of pathways controlling de novo lipogenesis and fat catabolism. Recent evidences suggest the clinical relevance of a reduction in the activity of lysosomal acid lipase (LAL), which is a key enzyme for intracellular fat disposal, in patients with NAFLD. In this review, we provided a comprehensive overview of the critical steps in hepatic fat metabolism and alterations in these pathways in NAFLD, with a special focus on lipophagy and LAL activity. During NAFLD, hepatic fat metabolism is impaired at several levels, which is significantly contributed to by impaired lipophagy, in which reduced LAL activity may play an important role. For further research and intervention in NAFLD, targeting LAL activity may provide interesting perspectives.
Collapse
Affiliation(s)
- Simone Carotti
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Katia Aquilano
- Department of Biology, University of Rome, Tor Vergata, Rome, Italy
| | - Francesco Valentini
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Sergio Ruggiero
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Francesca Alletto
- Unit of Internal Medicine and Hepatology, University Campus Bio-Medico, Rome, Italy
| | - Sergio Morini
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Antonio Picardi
- Unit of Internal Medicine and Hepatology, University Campus Bio-Medico, Rome, Italy
| | | | - Daniele Lettieri-Barbato
- Department of Biology, University of Rome, Tor Vergata, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | | |
Collapse
|
16
|
Pinto GB, Mendes FML, Antunes AMDS. Technological Profile of Lipases in the Pharmaceutical Industry. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x16666190913181530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In recent decades, enzymes have been the target of considerable research, development,
and innovation. This paper presents an up-to-date overview of the technological application of lipases
in the pharmaceutical industry. Lipases have been used in a variety of ways in the pharmaceutical
industry, both for obtaining bioactive molecules to overcome limitations in the formulation of medicines
and in drug design. This is possible from alternative technologies, such as immobilization and
the use of non-aqueous solvents that allow the use of lipases in commercial-scale processes. In addition,
other technologies have provided the emergence of differentiated and more specific lipases in
order to meet the perspectives of industrial processes. The research indicates that the following years
should be promising for the application of lipase in the industrial biocatalysis and in drug design.
Collapse
|
17
|
Rashu EB, Junker AE, Danielsen KV, Dahl E, Hamberg O, Borgwardt L, Christensen VB, Wewer Albrechtsen NJ, Gluud LL. Cholesteryl ester storage disease of clinical and genetic characterisation: A case report and review of literature. World J Clin Cases 2020; 8:1642-1650. [PMID: 32432142 PMCID: PMC7211528 DOI: 10.12998/wjcc.v8.i9.1642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/26/2020] [Accepted: 04/16/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cholesteryl ester storage disease (CESD) is a rare genetic disease. Its symptoms and severity are highly variable. CESD is a systemic disease that can lead to the accumulation of fat and inflammation in the liver, as well as gastrointestinal and cardiovascular disease. The majority of patients require liver transplantation due to decompensated cirrhosis. Enzyme replacement therapy has been approved based on a randomized trial. Our study aims to clinically and genetically evaluate two siblings with CESD who underwent liver transplantation, as well as their first-degree family members.
CASE SUMMARY The siblings were compound heterozygous for the missense variant in LIPA exon 8, c.894G>A, (p.Gln298Gln) and a single base pair deletion, c.482del (p.Asn161Ilefs*19). Analyses of single nucleotide polymorphisms showed variants with an increased risk of fatty liver disease and fibrosis for both patients. Clinically, both patients show signs of recurrence of CESD in the liver after transplantation and additional gastrointestinal and cardiovascular signs of CESD. Three family members who were LIPA heterozygous had a lysosomal acid lipase activity below the reference value. One of these carriers, a seven-year-old boy, was found to have severe dyslipidemia and was subsequently treated with statins.
CONCLUSION Our study underlines that CESD is a multi-organ disease, the progression of which may occur post-liver transplantation. Our findings underline the need for monitoring of complications and assessment of possible further treatment.
Collapse
Affiliation(s)
- Elias Badal Rashu
- Gastrounit, Copenhagen University Hospital Hvidovre, Hvidovre 2650, Denmark
| | | | | | - Emilie Dahl
- Department of Hepatology, Rigshospitalet, Copenhagen University, Copenhagen 2100, Denmark
| | - Ole Hamberg
- Department of Hepatology, Rigshospitalet, Copenhagen University, Copenhagen 2100, Denmark
| | - Line Borgwardt
- Centre of Genomic Medicine, Rigshospitalet, Copenhagen University, Copenhagen 2100, Denmark
| | - Vibeke Brix Christensen
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen University, Copenhagen 2100, Denmark
| | - Nicolai J Wewer Albrechtsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
- Department for Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen 2200, Denmark
| | - Lise L Gluud
- Gastrounit, Copenhagen University Hospital Hvidovre, Hvidovre 2650, Denmark
| |
Collapse
|
18
|
Du J, Ji Y, Qiao L, Liu Y, Lin J. Cellular endo-lysosomal dysfunction in the pathogenesis of non-alcoholic fatty liver disease. Liver Int 2020; 40:271-280. [PMID: 31765080 DOI: 10.1111/liv.14311] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD), an increasingly devastating human disorder, is characterized by intrahepatic fat accumulation. Although important progress has been made in understanding NAFLD, the fundamental mechanisms involved in the pathogenesis of NAFLD have not been fully explained. The endo-lysosomal trafficking network is central to lipid metabolism, protein degradation and signal transduction, which are involved in a variety of diseases. In recent years, many genes and pathways in the endo-lysosomal trafficking network and involved in lysosomal biogenesis have been associated with the development and progression of NAFLD. Mutations of these genes and impaired signalling lead to dysfunction in multiple steps of the endo-lysosomal network (endocytic trafficking, membrane fusion and lysosomal degradation), resulting in the accumulation of pathogenic proteins. In this review, we will focus on how alterations in these genes and pathways affect endo-lysosomal trafficking as well as the pathophysiology of NAFLD.
Collapse
Affiliation(s)
- Jiang Du
- College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China.,Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang, China
| | - Yu Ji
- College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Liang Qiao
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang, China
| | - Yanli Liu
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang, China
| | - Juntang Lin
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|