1
|
Sonam W, Liu Y, Ren L. Differentiation and Interconnection of the Bacterial Community Associated with Silene nigrescens Along the Soil-To-Plant Continuum in the Sub-Nival Belt of the Qiangyong Glacier. PLANTS (BASEL, SWITZERLAND) 2025; 14:1190. [PMID: 40284077 PMCID: PMC12030249 DOI: 10.3390/plants14081190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
Plant microbiomes provide significant fitness advantages to their plant hosts, especially in the sub-nival belt. Studies to date have primarily focused on belowground communities in this region. Here, we utilized high-throughput DNA sequencing to quantify bacterial communities in the rhizosphere soil as well as in the root and leaf endosphere compartments of Silene nigrescens to uncover the differentiation and interconnections of these bacterial communities along the soil-to-plant continuum. Our findings reveal that the bacterial communities exhibit notable variation across different plant compartment niches: the rhizosphere soil, root endosphere, and leaf endosphere. There was a progressive decline in diversity, network complexity, network modularity, and niche breadth from the rhizosphere soil to the root endosphere, and further to the leaf endosphere. Conversely, both the host plant selection effect and the stability of these communities showed an increasing trend. Total nitrogen and total potassium emerged as crucial factors accounting for the observed differences in diversity and composition, respectively. Additionally, 3.6% of the total amplicon sequence variants (ASVs) were shared across the rhizosphere soil, root endosphere, and leaf endosphere. Source-tracking analysis further revealed bacterial community migration among these compartments. The genera Pseudomonas, IMCC26256, Mycobacterium, Phyllobacterium, and Sphingomonas constituted the core of the bacterial microbiome. These taxa are shared across all three compartment niches and function as key connector species. Notably, Pseudomonas stands out as the predominant taxon among these bacteria, with nitrogen being the most significant factor influencing its relative abundance. These findings deepen our understanding of the assembly principles and ecological dynamics of the plant microbiome in the sub-nival belt, offering an integrated framework for its study.
Collapse
Affiliation(s)
- Wangchen Sonam
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Luming Ren
- Nanning Garden Expo Park Management Center, Nanning Institute of Tropical Botany, Nanning 530299, China;
| |
Collapse
|
2
|
Bruyant P, Doré J, Vallon L, Moënne‐Loccoz Y, Almario J. Needle in a Haystack: Culturing Plant-Beneficial Helotiales Lineages From Plant Roots. Environ Microbiol 2025; 27:e70082. [PMID: 40228525 PMCID: PMC11996241 DOI: 10.1111/1462-2920.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 04/16/2025]
Abstract
Root-associated Helotiales fungi are increasingly recognised as beneficial fungal partners promoting plant growth under nutrient-limited conditions, particularly, in non-mycorrhizal hosts lacking the ancestral arbuscular mycorrhizal symbiosis. However, the ecology of these fungi is still cryptic as relatively few lineages have been successfully cultivated from roots for further study. Here, we attempted the mass isolation of root endophytic fungi to evaluate the recovery of known plant-beneficial Helotiales lineages using a tailored culture-based approach. We sampled six wild non-mycorrhizal species from the Brassicaceae, Caryophyllaceae, and Cyperaceae, growing in nutrient-limited alpine soils. We isolated 602 root endophytes and compared this culturable diversity with the one observed via fungal ITS2 metabarcoding. Metabarcoding revealed that Helotiales taxa dominated the fungal communities, with 43% of these detected taxa also represented in our collection. Accordingly, most root endophytes in our collection (53%) were Helotiales. These isolates, some with P solubilisation potential, belonged primarily to three Helotialean clades and were phylogenetically related to plant growth-promoting or mycorrhizal-like strains. This analysis highlights that the roots of alpine non-mycorrhizal plants harbour diverse plant-beneficial root-endophytic Helotiales, and the isolates obtained are a promising resource to explore the plant-beneficial mechanisms and ecological traits of these fungi.
Collapse
Affiliation(s)
- Pauline Bruyant
- Laboratoire d'Ecologie Microbienne LEM, CNRS UMR5557, INRAE UMR1418Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro SupVilleurbanneFrance
| | - Jeanne Doré
- Laboratoire d'Ecologie Microbienne LEM, CNRS UMR5557, INRAE UMR1418Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro SupVilleurbanneFrance
| | - Laurent Vallon
- Laboratoire d'Ecologie Microbienne LEM, CNRS UMR5557, INRAE UMR1418Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro SupVilleurbanneFrance
| | - Yvan Moënne‐Loccoz
- Laboratoire d'Ecologie Microbienne LEM, CNRS UMR5557, INRAE UMR1418Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro SupVilleurbanneFrance
- Institut Universitaire de FranceParisFrance
| | - Juliana Almario
- Laboratoire d'Ecologie Microbienne LEM, CNRS UMR5557, INRAE UMR1418Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro SupVilleurbanneFrance
| |
Collapse
|
3
|
Li J, Li XC, Gan HY, Zhang Y, Guo ZX, Liu YX, Lin YQ, Guo LD. Plant diversity increases diversity and network complexity rather than alters community assembly processes of leaf-associated fungi in a subtropical forest. SCIENCE CHINA. LIFE SCIENCES 2025; 68:846-858. [PMID: 39432205 DOI: 10.1007/s11427-024-2630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/23/2024] [Indexed: 10/22/2024]
Abstract
Plant diversity significantly impacts ecosystem processes and functions, yet its influence on the community assembly of leaf fungi remains poorly understood. In this study, we investigated leaf epiphytic and endophytic fungal communities in a Chinese subtropical tree species richness experiment, ranging from 1 to 16 species, using amplicon sequencing to target the internal transcribed spacer 1 region of the rDNA. We found that the community assembly of epiphytic and endophytic fungi was predominantly governed by stochastic processes, with a higher contribution of dispersal limitation on epiphytic than on endophytic fungal communities but a higher contribution of selection on endophytic than on epiphytic fungal communities. The plant-epiphytic fungus interaction network was more complex (e.g., more highly connected and strongly nested but less specialized and modularized) than the plant-endophytic fungus interaction network. Additionally, tree species richness was positively correlated with the network complexity and diversity of epiphytic (α-, β- and γ-diversity) and endophytic (β- and γ-diversity) fungi, but was not associated with the contribution of the stochastic and deterministic processes on the community assembly of epiphytic and endophytic fungi. This study highlights that tree species diversity enhances the diversity and network complexity, rather than alters the ecological processes in community assembly of leaf-associated fungi.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xing-Chun Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Yun Gan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi-Xuan Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Xuan Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Qing Lin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Noguchi M, Toju H. Mycorrhizal and endophytic fungi structure forest below-ground symbiosis through contrasting but interdependent assembly processes. ENVIRONMENTAL MICROBIOME 2024; 19:84. [PMID: 39488693 PMCID: PMC11531145 DOI: 10.1186/s40793-024-00628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Interactions between plants and diverse root-associated fungi are essential drivers of forest ecosystem dynamics. The symbiosis is potentially dependent on multiple ecological factors/processes such as host/symbiont specificity, background soil microbiome, inter-root dispersal of symbionts, and fungus-fungus interactions within roots. Nonetheless, it has remained a major challenge to reveal the mechanisms by which those multiple factors/processes determine the assembly of root-associated fungal communities. Based on the framework of joint species distribution modeling, we examined 1,615 root-tips samples collected in a cool-temperate forest to reveal how root-associated fungal community structure was collectively formed through filtering by host plants, associations with background soil fungi, spatial autocorrelation, and symbiont-symbiont interactions. In addition, to detect fungi that drive the assembly of the entire root-associated fungal community, we inferred networks of direct fungus-fungus associations by a statistical modeling that could account for implicit environmental effects. RESULTS The fine-scale community structure of root-associated fungi were best explained by the statistical model including the four ecological factors/processes. Meanwhile, among partial models, those including background soil fungal community structure and within-root fungus-fungus interactions showed the highest performance. When fine-root distributions were examined, ectomycorrhizal fungi tended to show stronger associations with background soil community structure and spatially autocorrelated patterns than other fungal guilds. In contrast, the distributions of root-endophytic fungi were inferred to depend greatly on fungus-fungus interactions. An additional statistical analysis further suggested that some endophytic fungi, such as Phialocephala and Leptodontidium, were placed at the core positions within the web of direct associations with other root-associated fungi. CONCLUSION By applying emerging statistical frameworks to intensive datasets of root-associated fungal communities, we demonstrated background soil fungal community structure and fungus-fungus associations within roots, as well as filtering by host plants and spatial autocorrelation in ecological processes, could collectively drive the assembly of root-associated fungi. We also found that basic assembly rules could differ between mycorrhizal and endophytic fungi, both of which were major components of forest ecosystems. Consequently, knowledge of how multiple ecological factors/processes differentially drive the assembly of multiple fungal guilds is indispensable for comprehensively understanding the mechanisms by which terrestrial ecosystem dynamics are organized by plant-fungal symbiosis.
Collapse
Affiliation(s)
- Mikihito Noguchi
- Center for Ecological Research, Kyoto University, Otsu, 520-2133, Shiga, Japan.
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan.
| | - Hirokazu Toju
- Laboratory of Ecosystems and Coevolution, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
- Center for Living Systems Information Science (CeLiSIS), Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
5
|
Cheng T, Lin P, Zhou D, Wang H, Zheng K, Shen J, Shi S, Hu X, Ye X, Cao X. Distribution and diversity of cultured endophytic fungi in Gentiana straminea Maxim. at different altitudes on the northeastern Qinghai-Tibetan Plateau. Front Microbiol 2024; 15:1466613. [PMID: 39512942 PMCID: PMC11541051 DOI: 10.3389/fmicb.2024.1466613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/30/2024] [Indexed: 11/15/2024] Open
Abstract
Endophytic fungi are a crucial microbial resource that can influence plant growth and development through their interactions with host plants. Gentiana straminea Maxim. is an important traditional Tibetan herb used to treat a range of diseases in the Qinghai-Tibetan region. However, the diversity and community structure of endophytic fungi in the species remain poorly understood. In this study, a total of 944 strains of endophytic fungi were isolated from the roots, stems, and leaves of G. straminea from four different altitudes. A total of 87 OTUs were identified through sequence alignment, comprising 6 classes, 15 orders, 25 families, and 44 genera. The colonization rate and diversity of endophytic fungi were affected by tissue type and altitude. With the exception of Xining, the endophytic fungi colonization rate of tissues was roots>leaves>stems. Moreover, the α-diversity of endophytic fungi among different tissues was leaves>stems>roots. Notably, the phylogenetic diversity index in leaves was significantly higher than that in roots. In addition, the colonization rate and diversity of endophytic fungi in leaves and stems demonstrated a decline with the increasing altitude. The β-diversity analysis revealed significant differences in the endophytic fungi of G. straminea at varying altitudes. In roots, geographical factors, such as latitude and longitude, were the primary drivers of variation, whereas environmental factors, including temperature and precipitation, had a greater influence on endophytes in leaves and stems. In addition, the results of the endophytic fungi association preference, linear discriminant analysis effect size (LEfSe), and co-network analysis indicated that these differential endophytic fungi may play a significant role in the authenticity and stress resistance of G. straminea.
Collapse
Affiliation(s)
- Tingfeng Cheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Pengcheng Lin
- The College of Pharmacy, Qinghai Nationalities University, Xining, China
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, Xining, China
| | - Dangwei Zhou
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
- The College of Pharmacy, Qinghai Nationalities University, Xining, China
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, Xining, China
| | - Huan Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kun Zheng
- The College of Pharmacy, Qinghai Nationalities University, Xining, China
| | - Jianwei Shen
- Tibetan Medicine Center, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Shengbo Shi
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Xingqiang Hu
- The College of Pharmacy, Qinghai Nationalities University, Xining, China
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, Xining, China
| | - Xing Ye
- The College of Pharmacy, Qinghai Nationalities University, Xining, China
| | - Xueye Cao
- The College of Pharmacy, Qinghai Nationalities University, Xining, China
| |
Collapse
|
6
|
Baba T, Hirose D. Two novel Archaeorhizomyces species isolated from ericoid mycorrhizal roots and their association with ericaceous plants in vitro. Fungal Biol 2024; 128:1939-1953. [PMID: 39059849 DOI: 10.1016/j.funbio.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 07/28/2024]
Abstract
Archaeorhizomyces is a diverse and ubiquitous genus of the subphylum Taphrinomycotina, which contains soil-inhabiting/root-associated fungi. Although ecological importance and root-associating lifestyles of Archaeorhizomyces can be postulated, morphological aspects of fungal body and root colonization are largely unknown due to the scarcity of cultures. We obtained three unidentified Archaeorhizomyces isolates from ericoid mycorrhizal (ErM) roots of Rhododendron scabrum and Rhododendron × obtusum collected in Japan. To advance our understanding of lifestyle of the genus, we investigated their general morphology, phylogeny, and in vitro root-colonizing ability in ericoid mycorrhizal hosts, Vaccinium virgatum and Rhododendron kaempferi. Some morphological characteristics, such as slow glowing white-to-creamy-colored colonies and formation of yeast-like or chlamydospore-like cells, were shared between our strains and two described species, Archaeorhizomycesfinlayi and Archaeorhizomyces borealis, but they were phylogenetically distant. Our strains were clearly distinguished as two undescribed species based on morphology and phylogenetic relationship. As seen in typical ErM fungi, both species frequently formed hyphal coils within vital rhizodermal cells of ErM plants in vitro. The morphology of hyphal coils was also different between species. Consequently, two novel species, Archaeorhizomyces notokirishimae sp. nov. and Archaeorhizomyces ryukyuensis sp. nov., were described.
Collapse
Affiliation(s)
- Takashi Baba
- Division of Fruit Tree Production Research, Institute of Fruit Tree and Tea Science, NARO, 92-24 Shimokuriyagawa, Morioka, Iwate 020-0123, Japan
| | - Dai Hirose
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan.
| |
Collapse
|
7
|
Yoshimura H, Hayakawa T, Kikuchi DM, Zhumabai Uulu K, Qi H, Sugimoto T, Sharma K, Kinoshita K. Metabarcoding analysis provides insight into the link between prey and plant intake in a large alpine cat carnivore, the snow leopard. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240132. [PMID: 39076800 PMCID: PMC11285773 DOI: 10.1098/rsos.240132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 07/31/2024]
Abstract
Species of the family Felidae are thought to be obligate carnivores. However, detection of plants in their faeces raises questions about the role of plants in their diet. This is particularly true for the snow leopard (Panthera uncia). Our study aimed to comprehensively identify the prey and plants consumed by snow leopards. We applied DNA metabarcoding methods on 90 faecal samples of snow leopards collected in Kyrgyzstan, employing one vertebrate and four plant markers. We found that argali (Ovis ammon) was detected only from male snow leopards. Myricaraia sp. was the most consumed among 77 plant operational taxonomic units found in snow leopard samples. It frequently appeared in samples lacking any prey animal DNA, indicating that snow leopards might have consumed this plant especially when their digestive tracts were empty. We also observed differences in the patterns of plant consumption between male and female snow leopards. Our comprehensive overview of prey and plants detected in the faeces of snow leopards and other sympatric mammals will help in formulating hypotheses and guiding future research to understand the adaptive significance of plant-eating behaviour in felids. This knowledge supports the enhancement of their captive environments and the conservation planning of their natural habitats.
Collapse
Affiliation(s)
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Japan Monkey Center, Inuyama, Aichi, Japan
| | - Dale M. Kikuchi
- Department of Bioresource Development, Tokyo University of Agriculture, Kanagawa, Japan
| | | | - Huiyuan Qi
- Wildlife Research Center, Kyoto University, Kyoto, Japan
| | - Taro Sugimoto
- Institute of Natural and Environmental Sciences, University of Hyogo, Tamba, Hyogo, Japan
| | - Koustubh Sharma
- Snow Leopard Foundation in Kyrgyzstan, Bishkek, Kyrgyzstan
- Snow Leopard Trust, Seattle, WA, USA
| | - Kodzue Kinoshita
- Graduate School of Asian and African Area Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Verma V, Srivastava A, Garg SK, Singh VP, Arora PK. Incorporating omics-based tools into endophytic fungal research. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2023; 5:1-7. [PMID: 39416692 PMCID: PMC11446381 DOI: 10.1016/j.biotno.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 10/19/2024]
Abstract
Fungal endophytes are valuable sources of bioactive compounds with diverse applications. The exploration of these compounds not only contributes to our understanding of ecological interactions but also holds promise for the development of novel products with agricultural, medicinal, and industrial significance. Continued exploration of fungal endophyte diversity and understanding the ecological roles of bioactive compounds present opportunities for new discoveries and applications. Omics techniques, which include genomics, transcriptomics, proteomics, and metabolomics, contribute to the discovery of novel bioactive compounds produced by fungal endophytes with their potential applications. The omics techniques play a critical role in unraveling the complex interactions between fungal endophytes and their host plants, providing valuable insights into the molecular mechanisms and potential applications of these relationships. This review provides an overview of how omics techniques contribute to the study of fungal endophytes.
Collapse
Affiliation(s)
- Vinita Verma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Alok Srivastava
- Department of Plant Science, MJP Rohilkhand University, Bareilly, India
| | - Sanjay Kumar Garg
- Department of Plant Science, MJP Rohilkhand University, Bareilly, India
| | - Vijay Pal Singh
- Department of Plant Science, MJP Rohilkhand University, Bareilly, India
| | | |
Collapse
|
9
|
Baba T, Hirose D. A cryptic root isolate belonging to Geoglossales from potted Rhododendron: its molecular phylogeny and ability to colonize an ericoid mycorrhizal host in vitro. MYCORRHIZA 2023; 33:449-456. [PMID: 37882855 DOI: 10.1007/s00572-023-01130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Although the lifestyle of Geoglossales remains largely unknown, recent advancements have established a hypothesis regarding the ericoid mycorrhizal lifestyle of geoglossoid fungi. In this study, we focused on one isolate of Geoglossales sp. obtained from surface-sterilized roots of potted Rhododendron transiens. We aimed to reveal the phylogenetic position and in vitro colonizing ability of this species in the hair roots of ericoid mycorrhizal plants. Based on our multigene phylogenetic tree, this species is a sister of the genus Sarcoleotia which has not been reported from either other studies or field environment. Its ascocarps could not be obtained, and conspecific sequences were not found in the databases and repositories examined. The Geoglossales sp. colonized the vital rhizodermal cells of blueberries in vitro with hyphal coils. There were relatively large morphological variations of coils consistent with extraradical hyphae; however, overall, the colonization morphologically resembled those by Sarcoleotia globosa and representative ericoid mycorrhizal fungi. The taxonomy and ecological significance of the species remain to be resolved; nevertheless, our results suggest that the ericoid mycorrhizal lifestyle may be widespread within Geoglossales.
Collapse
Affiliation(s)
- Takashi Baba
- Division of Fruit Tree Production Research, Institute of Fruit Tree and Tea Science, NARO, 92-24 , Shimokuriyagawa, Morioka, Iwate, Japan
| | - Dai Hirose
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan.
| |
Collapse
|
10
|
Zhu C, Lin Y, Wang Z, Luo W, Zhang Y, Chu C. Community assembly and network structure of epiphytic and endophytic phyllosphere fungi in a subtropical mangrove ecosystem. Front Microbiol 2023; 14:1147285. [PMID: 37007520 PMCID: PMC10064055 DOI: 10.3389/fmicb.2023.1147285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Microorganisms can influence plant growth and health, ecosystem functioning, and stability. Community and network structures of mangrove phyllosphere fungi have rarely been studied although mangroves have very important ecological and economical values. Here, we used high throughput sequencing of the internal transcribed spacer 2 (ITS2) to assess epiphytic and endophytic phyllosphere fungal communities of six true mangrove species and five mangrove associates. Totally, we obtained 1,391 fungal operational taxonomic units (OTUs), including 596 specific epiphytic fungi, 600 specific endophytic fungi, and 195 shared fungi. The richness and community composition differed significantly for epiphytes and endophytes. Phylogeny of the host plant had a significant constraint on epiphytes but not endophytes. Network analyses showed that plant–epiphyte and plant–endophyte networks exhibited strong specialization and modularity but low connectance and anti-nestedness. Compared to plant–endophyte network, plant–epiphyte network showed stronger specialization, modularity, and robustness but lower connectance and anti-nestedness. These differences in community and network structures of epiphytes and endophytes may be caused by spatial niche partitioning, indicating their underlying ecological and environmental drivers are inconsistent. We highlight the important role of plant phylogeny in the assembly of epiphytic but not endophytic fungal communities in mangrove ecosystems.
Collapse
Affiliation(s)
- Chunchao Zhu
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- *Correspondence: Chunchao Zhu,
| | | | - Zihui Wang
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Wenqi Luo
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Yonghua Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Chengjin Chu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Vohník M, Réblová M. Fungi in hair roots of Vaccinium spp. (Ericaceae) growing on decomposing wood: colonization patterns, identity, and in vitro symbiotic potential. MYCORRHIZA 2023; 33:69-86. [PMID: 36700963 PMCID: PMC9938075 DOI: 10.1007/s00572-023-01101-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/05/2023] [Indexed: 05/04/2023]
Abstract
Most of our knowledge on the ericoid mycorrhizal (ErM) symbiosis comes from temperate heathlands characterized by acidic peaty soils and many experiments with a few ascomycetous fungi. However, ericaceous plants thrive in many other ecosystems and in temperate coniferous forests, their seedlings often prosper on decomposing wood. While wood is typically exploited by basidiomycetous ectomycorrhizal (EcM) and saprobic fungi, the role of ErM fungi (ErMF) is much less clear. We explored the cultivable mycobiota of surface sterilized hair roots of Vaccinium spp. growing on decomposing wood in two coniferous forests in Mid-Norway (Scandinavia) and Northern Bohemia (Central Europe). Obtained isolates were identified using molecular tools and their symbiotic potential was tested in vitro. While the detected community lacked the archetypal ErMF Hyaloscypha hepaticicola and the incidence of dark septate endophytes and EcM fungi was negligible, it comprised other frequent asexual ascomycetous ErMF, namely H. variabilis and Oidiodendron maius, together with several isolates displaying affinities to sexual saprobic H. daedaleae and H. fuckelii. Ascomycete-suppressing media revealed representatives of the saprobic basidiomycetous genera Coprinellus, Gymnopilus, Mycena (Agaricales), and Hypochnicium (Polyporales). In the resyntheses, the tested basidiomycetes occasionally penetrated the rhizodermal cells of their hosts but never formed ericoid mycorrhizae and in many cases overgrew and killed the inoculated seedlings. In contrast, a representative of the H. daedaleae/H. fuckelii-related isolates repeatedly formed what morphologically appears as the ErM symbiosis and supported host's growth. In conclusion, while basidiomycetous saprobic fungi have a potential to colonize healthy-looking ericaceous hair roots, the mode(-s) of their functioning remain obscure. For the first time, a lineage in Hyaloscypha s. str. (corresponding to the former Hymenoscyphus ericae aggregate) where sexual saprobes are intermingled with root symbionts has been revealed, shedding new light on the ecology and evolution of these prominent ascomycetous ErMF.
Collapse
Affiliation(s)
- Martin Vohník
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Lesní 322, Průhonice, 252 43, Czechia.
| | - Martina Réblová
- Department of Taxonomy, Institute of Botany, Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czechia
| |
Collapse
|
12
|
Zhang X, Wang Y, Xu Y, Babalola BJ, Xiang S, Ma J, Su Y, Fan Y. Stochastic processes dominate community assembly of ectomycorrhizal fungi associated with Picea crassifolia in the Helan Mountains, China. Front Microbiol 2023; 13:1061819. [PMID: 36713171 PMCID: PMC9878330 DOI: 10.3389/fmicb.2022.1061819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Understanding the underlying mechanisms of microbial community assembly is a fundamental topic in microbial ecology. As an integral part of soil organisms, ectomycorrhizal (EM) fungi play vital roles in ecosystems. Picea crassifolia is an important pine species in the Helan Mountains in Inner Mongolia, China, with high ecological and economic values. However, studies of EM fungal diversity and mechanisms underlying community assembly on this pine species are limited. Methods In this study, we investigated EM fungal communities associated with P. crassifolia from 45 root samples across three sites in the Helan Mountains using Illumina Miseq sequencing of the fungal rDNA ITS2 region. Results A total of 166 EM fungal OTUs belonging to 24 lineages were identified, of which Sebacina and Tomentella-Thelephora were the most dominant lineages. Ordination analysis revealed that EM fungal communities were significantly different among the three sites. Site/fungus preference analysis showed that some abundant EM fungal OTUs preferred specific sites. Ecological process analysis implied that dispersal limitation and ecological drift in stochastic processes dominantly determined the community assembly of EM fungi. Discussion Our study indicates that P. crassifolia harbors a high EM fungal diversity and highlights the important role of the stochastic process in driving community assembly of mutualistic fungi associated with a single plant species in a semi-arid forest in northwest China.
Collapse
Affiliation(s)
- Xuan Zhang
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China
| | - Yonglong Wang
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China,*Correspondence: Yonglong Wang, ✉
| | - Ying Xu
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China
| | - Busayo Joshua Babalola
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Simin Xiang
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China
| | - Jianjun Ma
- College of Life Sciences, Langfang Normal University, Langfang, Hebei, China
| | - Yun Su
- Helan Mountains National Nature Reserve Administration of Inner Mongolia, Alxa League, China
| | - Yongjun Fan
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China,Yongjun Fan, ✉
| |
Collapse
|
13
|
Yang T, Tedersoo L, Soltis PS, Soltis DE, Sun M, Ma Y, Ni Y, Liu X, Fu X, Shi Y, Lin HY, Zhao YP, Fu C, Dai CC, Gilbert JA, Chu H. Plant and fungal species interactions differ between aboveground and belowground habitats in mountain forests of eastern China. SCIENCE CHINA LIFE SCIENCES 2022; 66:1134-1150. [PMID: 36462107 DOI: 10.1007/s11427-022-2174-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022]
Abstract
Plant and fungal species interactions drive many essential ecosystem properties and processes; however, how these interactions differ between aboveground and belowground habitats remains unclear at large spatial scales. Here, we surveyed 494 pairwise fungal communities in leaves and soils by Illumina sequencing, which were associated with 55 woody plant species across more than 2,000-km span of mountain forests in eastern China. The relative contributions of plant, climate, soil and space to the variation of fungal communities were assessed, and the plant-fungus network topologies were inferred. Plant phylogeny was the strongest predictor for fungal community composition in leaves, accounting for 19.1% of the variation. In soils, plant phylogeny, climatic factors and soil properties explained 9.2%, 9.0% and 8.7% of the variation in soil fungal community, respectively. The plant-fungus networks in leaves exhibited significantly higher specialization, modularity and robustness (resistance to node loss), but less complicated topology (e.g., significantly lower linkage density and mean number of links) than those in soils. In addition, host/fungus preference combinations and key species, such as hubs and connectors, in bipartite networks differed strikingly between aboveground and belowground samples. The findings provide novel insights into cross-kingdom (plant-fungus) species co-occurrence at large spatial scales. The data further suggest that community shifts of trees due to climate change or human activities will impair aboveground and belowground forest fungal diversity in different ways.
Collapse
Affiliation(s)
- Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, 50409, Estonia
- College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, 32611, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, 32611, USA
| | - Miao Sun
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuying Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yingying Ni
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Han-Yang Lin
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yun-Peng Zhao
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chengxin Fu
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210003, China
| | - Jack A Gilbert
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, 92093, USA
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Yang T, Tedersoo L, Liu X, Gao GF, Dong K, Adams JM, Chu H. Fungi stabilize multi-kingdom community in a high elevation timberline ecosystem. IMETA 2022; 1:e49. [PMID: 38867896 PMCID: PMC10989762 DOI: 10.1002/imt2.49] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/11/2022] [Accepted: 07/23/2022] [Indexed: 06/14/2024]
Abstract
Microbes dominate terrestrial ecosystems via their great species diversity and vital ecosystem functions, such as biogeochemical cycling and mycorrhizal symbiosis. Fungi and other organisms form diverse association networks. However, the roles of species belonging to different kingdoms in multi-kingdom community networks have remained largely elusive. In light of the integrative microbiome initiative, we inferred multiple-kingdom biotic associations from high elevation timberline soils using the SPIEC-EASI method. Biotic interactions among plants, nematodes, fungi, bacteria, and archaea were surveyed at the community and network levels. Compared to single-kingdom networks, multi-kingdom networks and their associations increased the within-kingdom and cross-kingdom edge numbers by 1012 and 10,772, respectively, as well as mean connectivity and negative edge proportion by 15.2 and 0.8%, respectively. Fungal involvement increased network stability (i.e., resistance to node loss) and connectivity, but reduced modularity, when compared with those in the single-kingdom networks of plants, nematodes, bacteria, and archaea. In the entire multi-kingdom network, fungal nodes were characterized by significantly higher degree and betweenness than bacteria. Fungi more often played the role of connector, linking different modules. Consistently, structural equation modeling and multiple regression on matrices corroborated the "bridge" role of fungi at the community level, linking plants and other soil biota. Overall, our findings suggest that fungi can stabilize the self-organization process of multi-kingdom networks. The findings facilitate the initiation and carrying out of multi-kingdom community studies in natural ecosystems to reveal the complex above- and belowground linkages.
Collapse
Affiliation(s)
- Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences Nanjing China
- University of Chinese Academy of Sciences Beijing China
| | - Leho Tedersoo
- Mycology and Microbiology Center University of Tartu Tartu Estonia
| | - Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences Nanjing China
- University of Chinese Academy of Sciences Beijing China
| | - Gui-Feng Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences Nanjing China
- University of Chinese Academy of Sciences Beijing China
| | - Ke Dong
- Life Science Major Kyonggi University Suwon South Korea
| | - Jonathan M Adams
- School of Geographic and Oceanographic Sciences Nanjing University Nanjing China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences Nanjing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
15
|
Wang Y, Xu Y, Maitra P, Babalola BJ, Zhao Y. Temporal variations in root-associated fungal communities of Potaninia mongolica, an endangered relict shrub species in the semi-arid desert of Northwest China. FRONTIERS IN PLANT SCIENCE 2022; 13:975369. [PMID: 36311128 PMCID: PMC9597089 DOI: 10.3389/fpls.2022.975369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The semi-arid region of the Western Ordos plateau in Inner Mongolia, China, is home to a critically endangered shrub species, Potaninia mongolica, which originates from ancient Mediterranean regions. Root-associated microbiomes play important roles in plant nutrition, productivity, and resistance to environmental stress particularly in the harsh desert environment; however, the succession of root-associated fungi during the growth stages of P. mongolica is still unclear. This study aimed to examine root-associated fungal communities of this relict plant species across three seasons (spring, summer and autumn) using root sampling and Illumina Miseq sequencing of internal transcribed spacer 2 (ITS 2) region to target fungi. The analysis detected 698 fungal OTUs in association with P. mongolica roots, and the fungal richness increased significantly from spring to summer and autumn. Eurotiales, Hypocreales, Chaetothyriales, Pleosporales, Helotiales, Agaricales and Xylariales were the dominant fungal orders. Fungal community composition was significantly different between the three seasons, and the fungal taxa at various levels showed biased distribution and preferences. Stochastic processes predominantly drove community assembly of fungi in spring while deterministic processes acted more in the later seasons. The findings revealed the temporal dynamics of root-associated fungal communities of P. mongolica, which may enhance our understanding of biodiversity and changes along with seasonal alteration in the desert, and predict the response of fungal community to future global changes.
Collapse
Affiliation(s)
- Yonglong Wang
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Ying Xu
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Pulak Maitra
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Busayo Joshua Babalola
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanling Zhao
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| |
Collapse
|
16
|
Yang H, Yang Z, Wang QC, Wang YL, Hu HW, He JZ, Zheng Y, Yang Y. Compartment and Plant Identity Shape Tree Mycobiome in a Subtropical Forest. Microbiol Spectr 2022; 10:e0134722. [PMID: 35863008 PMCID: PMC9430249 DOI: 10.1128/spectrum.01347-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/26/2022] [Indexed: 11/20/2022] Open
Abstract
Deciphering the relationships between microbes and their host plants is critical for a better understanding of microbial diversity maintenance and community stability. Here, we investigated fungal diversity and community assembly in the phyllosphere and rhizosphere of 13 tree species in a subtropical common-garden experiment. The results showed that fungal community structures significantly differed across compartments (leaf, root, and soil) and different tree species. Higher α-diversity was observed in the phyllosphere than in the roots and rhizospheric soil. Fungal community composition (β-diversity) was significantly affected by both compartment and species identity. The fungal community compositions were significantly correlated with soil pH in the roots and the soils as well as with soil nitrate and leaf total phosphorus in the leaves. We found that fungal community assemblies were mainly driven by deterministic processes, regardless of compartments. Moreover, host preference analyses indicated that stronger plant/fungus preferences occurred in leaves than in roots and soils. Our results highlight the differences in tree mycobiome between aboveground and belowground compartments and have important implications for the promotion of biodiversity conservation and management sustainability for the subtropical forest. IMPORTANCE Subtropical mountain forests are widely distributed in Southern China and are characterized by high biodiversity. The interactions between plants and fungi play pivotal roles in biodiversity maintenance and community stability. Nevertheless, knowledge of fungal diversity and of the community assembly patterns of woody plants is scarce. Here, we investigated fungal diversity and community assembly in the phyllosphere and rhizosphere of 13 tree species in a common-garden experiment. We found that both compartment and plant identity influenced fungal diversity, community, and guild compositions, while deterministic processes mainly governed the fungal community assembly, especially in the rhizospheric fungal communities. Our results demonstrate that tree leaves represent stronger host/fungi preferences than do roots and soils. Together, our findings enhance the understanding of the roles of compartment and plant identity in structuring fungal communities as well as promote fungal diversity maintenance in subtropical mountain forest ecosystems.
Collapse
Affiliation(s)
- Hao Yang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Zhijie Yang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
- Sanming Forest Ecosystem National Observation and Research Station, Sanming, Fujian, China
| | - Quan-Cheng Wang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Yong-Long Wang
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, Inner Mongolia, China
| | - Hang-Wei Hu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Ji-Zheng He
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
- Sanming Forest Ecosystem National Observation and Research Station, Sanming, Fujian, China
| | - Yong Zheng
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Yusheng Yang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
- Sanming Forest Ecosystem National Observation and Research Station, Sanming, Fujian, China
| |
Collapse
|
17
|
Perez-Lamarque B, Petrolli R, Strullu-Derrien C, Strasberg D, Morlon H, Selosse MA, Martos F. Structure and specialization of mycorrhizal networks in phylogenetically diverse tropical communities. ENVIRONMENTAL MICROBIOME 2022; 17:38. [PMID: 35859141 PMCID: PMC9297633 DOI: 10.1186/s40793-022-00434-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/27/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND The root mycobiome plays a fundamental role in plant nutrition and protection against biotic and abiotic stresses. In temperate forests or meadows dominated by angiosperms, the numerous fungi involved in root symbioses are often shared between neighboring plants, thus forming complex plant-fungus interaction networks of weak specialization. Whether this weak specialization also holds in rich tropical communities with more phylogenetically diverse sets of plant lineages remains unknown. We collected roots of 30 plant species in semi-natural tropical communities including angiosperms, ferns, and lycophytes, in three different habitat types on La Réunion island: a recent lava flow, a wet thicket, and an ericoid shrubland. We identified root-inhabiting fungi by sequencing both the 18S rRNA and the ITS2 variable regions. We assessed the diversity of mycorrhizal fungal taxa according to plant species and lineages, as well as the structure and specialization of the resulting plant-fungus networks. RESULTS The 18S and ITS2 datasets are highly complementary at revealing the root mycobiota. According to 18S, Glomeromycotina colonize all plant groups in all habitats forming the least specialized interactions, resulting in nested network structures, while Mucoromycotina (Endogonales) are more abundant in the wetland and show higher specialization and modularity compared to the former. According to ITS2, mycorrhizal fungi of Ericaceae and Orchidaceae, namely Helotiales, Sebacinales, and Cantharellales, also colonize the roots of most plant lineages, confirming that they are frequent endophytes. While Helotiales and Sebacinales present intermediate levels of specialization, Cantharellales are more specialized and more sporadic in their interactions with plants, resulting in highly modular networks. CONCLUSIONS This study of the root mycobiome in tropical environments reinforces the idea that mycorrhizal fungal taxa are locally shared between co-occurring plants, including phylogenetically distant plants (e.g. lycophytes and angiosperms), where they may form functional mycorrhizae or establish endophytic colonization. Yet, we demonstrate that, irrespectively of the environmental variations, the level of specialization significantly varies according to the fungal lineages, probably reflecting the different evolutionary origins of these plant-fungus symbioses. Frequent fungal sharing between plants questions the roles of the different fungi in community functioning and highlights the importance of considering networks of interactions rather than isolated hosts.
Collapse
Affiliation(s)
- Benoît Perez-Lamarque
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39, 57 rue Cuvier, 75 005, Paris, France.
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d'Ulm, 75 005, Paris, France.
| | - Rémi Petrolli
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39, 57 rue Cuvier, 75 005, Paris, France
| | - Christine Strullu-Derrien
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39, 57 rue Cuvier, 75 005, Paris, France
- Science Group, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Dominique Strasberg
- Peuplements Végétaux et Bioagresseurs en Milieu Tropical, UMR PVBMT, Université de La Réunion, 97 400, Saint-Denis, La Réunion, France
| | - Hélène Morlon
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d'Ulm, 75 005, Paris, France
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39, 57 rue Cuvier, 75 005, Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
- Institut Universitaire de France (IUF), Paris, France
| | - Florent Martos
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39, 57 rue Cuvier, 75 005, Paris, France
| |
Collapse
|
18
|
Zhu C, Wang Z, Deane DC, Luo W, Chen Y, Cao Y, Lin Y, Zhang M. The Effects of Species Abundance, Spatial Distribution, and Phylogeny on a Plant-Ectomycorrhizal Fungal Network. FRONTIERS IN PLANT SCIENCE 2022; 13:784778. [PMID: 35665141 PMCID: PMC9158544 DOI: 10.3389/fpls.2022.784778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Plant and root fungal interactions are among the most important belowground ecological interactions, however, the mechanisms underlying pairwise interactions and network patterns of rhizosphere fungi and host plants remain unknown. We tested whether neutral process or spatial constraints individually or jointly best explained quantitative plant-ectomycorrhizal fungal network assembly in a subtropical forest in southern China. Results showed that the observed plant-ectomycorrhizal fungal network had low connectivity, high interaction evenness, and an intermediate level of specialization, with nestedness and modularity both greater than random expectation. Incorporating information on the relative abundance and spatial overlap of plants and fungi well predicted network nestedness and connectance, but not necessarily explained other network metrics such as specificity. Spatial overlap better predicted pairwise species interactions of plants and ectomycorrhizal fungi than species abundance or a combination of species abundance and spatial overlap. There was a significant phylogenetic signal on species degree and interaction strength for ectomycorrhizal fungal but not for plant species. Our study suggests that neutral processes (species abundance matching) and niche/dispersal-related processes (implied by spatial overlap and phylogeny) jointly drive the shaping of a plant-ectomycorrhizal fungal network.
Collapse
Affiliation(s)
- Chunchao Zhu
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Zihui Wang
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - David C. Deane
- Centre for Future Landscapes and Department of Environment and Genetics, La Trobe University, Bundoora, VIC, Australia
| | - Wenqi Luo
- Department of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Yongfa Chen
- Department of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Yongjun Cao
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Yumiao Lin
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Minhua Zhang
- ECNU-Alberta Joint Lab for Biodiversity Study, Zhejiang Tiantong National Station for Forest Ecosystems, East China Normal University, Shanghai, China
| |
Collapse
|
19
|
Zhu C, Wang Z, Luo W, Feng J, Chen Y, He D, Ellwood MDF, Chu C, Li Y. Fungal phylogeny and plant functional traits structure plant–rhizosphere fungi networks in a subtropical forest. OIKOS 2022. [DOI: 10.1111/oik.08992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chuchao Zhu
- Dept of Bioengineering, Zhuhai Campus of Zunyi Medical Univ. Zhuhai China
- State Key Laboratory of Biocontrol, School of Ecology and School of Life Sciences, Sun Yat‐sen Univ. Guangzhou China
| | - Zihui Wang
- State Key Laboratory of Biocontrol, School of Ecology and School of Life Sciences, Sun Yat‐sen Univ. Guangzhou China
| | - Wenqi Luo
- State Key Laboratory of Biocontrol, School of Ecology and School of Life Sciences, Sun Yat‐sen Univ. Guangzhou China
| | - Jiayi Feng
- State Key Laboratory of Biocontrol, School of Ecology and School of Life Sciences, Sun Yat‐sen Univ. Guangzhou China
| | - Yongfa Chen
- State Key Laboratory of Biocontrol, School of Ecology and School of Life Sciences, Sun Yat‐sen Univ. Guangzhou China
| | - Dong He
- State Key Laboratory of Biocontrol, School of Ecology and School of Life Sciences, Sun Yat‐sen Univ. Guangzhou China
| | | | - Chengjin Chu
- State Key Laboratory of Biocontrol, School of Ecology and School of Life Sciences, Sun Yat‐sen Univ. Guangzhou China
| | - Yuanzhi Li
- State Key Laboratory of Biocontrol, School of Ecology and School of Life Sciences, Sun Yat‐sen Univ. Guangzhou China
| |
Collapse
|
20
|
Ericoid mycorrhizal colonization and associated fungal communities along a wetland gradient in the Acadian forest of Eastern Canada. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2021.101138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Fujii T, Ueno K, Shirako T, Nakamura M, Minami M. Identification of Lagopus muta japonica food plant resources in the Northern Japan Alps using DNA metabarcoding. PLoS One 2022; 17:e0252632. [PMID: 35271584 PMCID: PMC8912148 DOI: 10.1371/journal.pone.0252632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 01/11/2022] [Indexed: 01/04/2023] Open
Abstract
DNA metabarcoding was employed to identify plant-derived food resources for the Japanese rock ptarmigan (Lagopus muta japonica), which is registered as a natural living monument in Japan, in the Northern Japanese Alps in Toyama Prefecture, Japan, in July to October, 2015-2018. DNA metabarcoding using high-throughput sequencing (HTS) of rbcL and ITS2 sequences from alpine plants found in ptarmigan fecal samples collected in the study area. The obtained sequences were analyzed using a combination of a constructed local database and the National Center for Biotechnology Information (NCBI) database, revealed that a total of 53 plant taxa were food plant resources for ptarmigans. Of these plant taxa, 49 could be assigned to species (92.5%), three to genus (5.7%), and one to family (1.9%). Of the 23 plant families identified from the 105 fecal samples collected, the dominant families throughout all collection periods were Ericaceae (99.0% of 105 fecal samples), followed by Rosaceae (42.9%), Apiaceae (35.2%), and Poaceae (21.0%). In all of the fecal samples examined, the most frequently encountered plant species were Vaccinium ovalifolium var. ovalifolium (69.5%), followed by Empetrum nigrum var. japonicum (68.6%), Kalmia procumbens (42.9%), Tilingia ajanensis (34.3%) and V. uliginosum var. japonicum (34.3%). A rarefaction analysis for each collection period in the study revealed that the food plant resources found in the study area ranged from a minimum of 87.0% in July to a maximum of 97.5% in September, and that 96.4% of the food plant taxa were found throughout the study period. The findings showed that DNA metabarcoding using HTS to construct a local database of rbcL and ITS2 sequences in conjunction with rbcL and ITS2 sequences deposited at the NCBI, as well as rarefaction analysis, are well suited to identifying the dominant food plants in the diet of Japanese rock ptarmigans. In the windswept alpine dwarf shrub community found in the study area, dominant taxa in the Ericaceae family were the major food plant s for Japanese rock ptarmigans from July to October. This plant community therefore needs to be conserved in order to protect the food resources of Japanese rock ptarmigans in the region.
Collapse
Affiliation(s)
- Taichi Fujii
- Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Kaoru Ueno
- Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Tomoyasu Shirako
- Institute of Environmental Ecology, IDEA Consultants, Inc., Riemon, Yaizu, Shizuoka, Japan
| | - Masatoshi Nakamura
- Institute of Environmental Ecology, IDEA Consultants, Inc., Riemon, Yaizu, Shizuoka, Japan
| | - Motoyasu Minami
- Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| |
Collapse
|
22
|
Marian M, Licciardello G, Vicelli B, Pertot I, Perazzolli M. Ecology and potential functions of plant-associated microbial communities in cold environments. FEMS Microbiol Ecol 2022; 98:fiab161. [PMID: 34910139 PMCID: PMC8769928 DOI: 10.1093/femsec/fiab161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Complex microbial communities are associated with plants and can improve their resilience under harsh environmental conditions. In particular, plants and their associated communities have developed complex adaptation strategies against cold stress. Although changes in plant-associated microbial community structure have been analysed in different cold regions, scarce information is available on possible common taxonomic and functional features of microbial communities across cold environments. In this review, we discuss recent advances in taxonomic and functional characterization of plant-associated microbial communities in three main cold regions, such as alpine, Arctic and Antarctica environments. Culture-independent and culture-dependent approaches are analysed, in order to highlight the main factors affecting the taxonomic structure of plant-associated communities in cold environments. Moreover, biotechnological applications of plant-associated microorganisms from cold environments are proposed for agriculture, industry and medicine, according to biological functions and cold adaptation strategies of bacteria and fungi. Although further functional studies may improve our knowledge, the existing literature suggest that plants growing in cold environments harbor complex, host-specific and cold-adapted microbial communities, which may play key functional roles in plant growth and survival under cold conditions.
Collapse
Affiliation(s)
- Malek Marian
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Giorgio Licciardello
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Bianca Vicelli
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Ilaria Pertot
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Michele Perazzolli
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| |
Collapse
|
23
|
Dong Q, Guo X, Chen K, Ren S, Muneer MA, Zhang J, Li Y, Ji B. Phylogenetic Correlation and Symbiotic Network Explain the Interdependence Between Plants and Arbuscular Mycorrhizal Fungi in a Tibetan Alpine Meadow. FRONTIERS IN PLANT SCIENCE 2021; 12:804861. [PMID: 34975995 PMCID: PMC8718876 DOI: 10.3389/fpls.2021.804861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Plants and arbuscular mycorrhizal fungi (AMF) can form complex symbiotic networks based on functional trait selection, contributing to the maintenance of ecosystem biodiversity and stability. However, the selectivity of host plants on AMF and the characteristics of plant-AMF networks remain unclear in Tibetan alpine meadows. In this study, we studied the AMF communities in 69 root samples from 23 plant species in a Tibetan alpine meadow using Illumina-MiSeq sequencing of the 18S rRNA gene. The results showed a significant positive correlation between the phylogenetic distances of plant species and the taxonomic dissimilarity of their AMF community. The plant-AMF network was characterized by high connectance, high nestedness, anti-modularity, and anti-specialization, and the phylogenetic signal from plants was stronger than that from AMF. The high connected and nested plant-AMF network potentially promoted the interdependence and stability of the plant-AMF symbioses in Tibetan alpine meadows. This study emphasizes that plant phylogeny and plant-AMF networks play an important role in the coevolution of host plants and their mycorrhizal partners and enhance our understanding of the interactions between aboveground and belowground communities.
Collapse
Affiliation(s)
- Qiang Dong
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Xin Guo
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Keyu Chen
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Shijie Ren
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Muhammad Atif Muneer
- College of Resources and Environment, International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Zhang
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Yaoming Li
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Baoming Ji
- School of Grassland Science, Beijing Forestry University, Beijing, China
| |
Collapse
|
24
|
Slow-growing fungi belonging to the unnamed lineage in Chaetothyriomycetidae form hyphal coils in vital ericaceous rhizodermal cells in vitro. Fungal Biol 2021; 125:1026-1035. [PMID: 34776230 DOI: 10.1016/j.funbio.2021.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 11/19/2022]
Abstract
The diversity and functionality of ericoid mycorrhizal (ErM) fungi are still being understudied. Members of Chaetothyriomycetidae evolved a specific lifestyle of inhabiting extreme, poor, or toxic environments. Some taxa in this subclass, especially in Chaetothyriales, are also putative ErM taxa, but their mycorrhizal ability is mostly unknown because the members are generally hard to isolate from roots. This study herein focused on eight root isolates and provided their phylogeny and morphology of root colonization. Phylogenetic analysis based on rRNA sequences clarified that the isolated strains were not classified into Chaetothyriales, but in an unnamed lineage in Chaetothyriomycetidae. This lineage also contains rock isolates, bryosymbionts, and a resinicolous species as well as various environmental sequences obtained from soil/root samples. All strains grew extremely slow by mycelia on cornmeal or malt extract agar (2.9-8.5 mm/month) and formed hyphal coils in vital rhizodermal cells of sterile blueberry seedlings in vitro. This study illustrated the presence of a novel putative ErM lineage in Chaetothyriomycetidae.
Collapse
|
25
|
Sun X, Li JL, He C, Li XC, Guo LD. Specific network and phylosymbiosis pattern in endophyte community of coastal halophytes. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Dong C, Zhang Z, Shao Q, Yao T, Liang Z, Han Y. Mycobiota of Eucommia ulmoides bark: Diversity, rare biosphere and core taxa. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Li XC, Qian X, Gao C, Seitz S, Scholten T, Wang YL, Yao H, Gan HY, Guo LD. Plant identity strongly structures the root-associated fungal community in a diverse subtropical forest. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
28
|
Petrolli R, Augusto Vieira C, Jakalski M, Bocayuva MF, Vallé C, Cruz EDS, Selosse MA, Martos F, Kasuya MCM. A fine-scale spatial analysis of fungal communities on tropical tree bark unveils the epiphytic rhizosphere in orchids. THE NEW PHYTOLOGIST 2021; 231:2002-2014. [PMID: 33983644 DOI: 10.1111/nph.17459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/04/2021] [Indexed: 05/27/2023]
Abstract
Approximately 10% of vascular plants are epiphytes and, even though this has long been ignored in past research, are able to interact with a variety of fungi, including mycorrhizal taxa. However, the structure of fungal communities on bark, as well as their relationship with epiphytic plants, is largely unknown. To fill this gap, we conducted environmental metabarcoding of the ITS-2 region to understand the spatial structure of fungal communities of the bark of tropical trees, with a focus on epiphytic orchid mycorrhizal fungi, and tested the influence of root proximity. For all guilds, including orchid mycorrhizal fungi, fungal communities were more similar when spatially close on bark (i.e. they displayed positive spatial autocorrelation). They also showed distance decay of similarity with respect to epiphytic roots, meaning that their composition on bark increasingly differed, compared to roots, with distance from roots. We first showed that all of the investigated fungal guilds exhibited spatial structure at very small scales. This spatial structure was influenced by the roots of epiphytic plants, suggesting the existence of an epiphytic rhizosphere. Finally, we showed that orchid mycorrhizal fungi were aggregated around them, possibly as a result of reciprocal influence between the mycorrhizal partners.
Collapse
Affiliation(s)
- Rémi Petrolli
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, EPHE, Sorbonne Université, CP 39, 57 rue Cuvier, Paris, F-75005, France
| | - Conrado Augusto Vieira
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, EPHE, Sorbonne Université, CP 39, 57 rue Cuvier, Paris, F-75005, France
- Department of Microbiology, Viçosa Federal University (UFV), P. H. Rolfs Street CEP: 36570-900, Viçosa, Minas Gerais, Brazil
| | - Marcin Jakalski
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland
| | - Melissa F Bocayuva
- Department of Microbiology, Viçosa Federal University (UFV), P. H. Rolfs Street CEP: 36570-900, Viçosa, Minas Gerais, Brazil
| | - Clément Vallé
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, EPHE, Sorbonne Université, CP 39, 57 rue Cuvier, Paris, F-75005, France
| | - Everaldo Da Silva Cruz
- Department of Microbiology, Viçosa Federal University (UFV), P. H. Rolfs Street CEP: 36570-900, Viçosa, Minas Gerais, Brazil
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, EPHE, Sorbonne Université, CP 39, 57 rue Cuvier, Paris, F-75005, France
- Department of Microbiology, Viçosa Federal University (UFV), P. H. Rolfs Street CEP: 36570-900, Viçosa, Minas Gerais, Brazil
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland
| | - Florent Martos
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, EPHE, Sorbonne Université, CP 39, 57 rue Cuvier, Paris, F-75005, France
| | - Maria Catarina M Kasuya
- Department of Microbiology, Viçosa Federal University (UFV), P. H. Rolfs Street CEP: 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
29
|
Zuo Y, Li X, Yang J, Liu J, Zhao L, He X. Fungal Endophytic Community and Diversity Associated with Desert Shrubs Driven by Plant Identity and Organ Differentiation in Extremely Arid Desert Ecosystem. J Fungi (Basel) 2021; 7:jof7070578. [PMID: 34356957 PMCID: PMC8306007 DOI: 10.3390/jof7070578] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022] Open
Abstract
Despite desert ecosystem being crucial to our understanding of natural geography, species evolution and global climate change, there is limited information on the dynamics of their composition and the diversity of endophytic fungi communities driven by plant identity and organ differentiation. Here, an extensive investigation of endophytic fungal microbiome in root, stem, and leaf organs associated with five xerophyte shrubs in an extremely arid desert, Northwest China, were examined. The fungal community dominated by Dothideomycetes and Pleosporales. Shrub species strongly drive the niche-based processes of endophytic fungi across the root, stem and leaf compartments. The diversity and composition of endophytic fungi in stem showed higher variability among plant species than leaf and root. The fungal communities in root libraries were more diverse and exhibited a remarkable differentiation of community composition. We further demonstrated the significant host preferences and tissue specificity of desert endophytic fungi, and unique specific taxa were also observed. The co-occurrence network revealed the coexistence of fungal endophytes in arid desert, and the root fungal network harbored the highest interspecies connectivity. Members of Pleosporales were the most common keystone species in the root fungal network. This is the first report of mycobiota in both plant species and organ differentiation in an extremely arid desert ecosystem.
Collapse
Affiliation(s)
| | | | | | | | | | - Xueli He
- Correspondence: ; Tel.: +86-31-2507-9364
| |
Collapse
|
30
|
Li T, Wu S, Yang W, Selosse MA, Gao J. How Mycorrhizal Associations Influence Orchid Distribution and Population Dynamics. FRONTIERS IN PLANT SCIENCE 2021; 12:647114. [PMID: 34025695 PMCID: PMC8138319 DOI: 10.3389/fpls.2021.647114] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/13/2021] [Indexed: 05/04/2023]
Abstract
Orchid distribution and population dynamics are influenced by a variety of ecological factors and the formation of holobionts, which play key roles in colonization and ecological community construction. Seed germination, seedling establishment, reproduction, and survival of orchid species are strongly dependent on orchid mycorrhizal fungi (OMF), with mycorrhizal cheating increasingly observed in photosynthetic orchids. Therefore, changes in the composition and abundance of OMF can have profound effects on orchid distribution and fitness. Network analysis is an important tool for the study of interactions between plants, microbes, and the environment, because of the insights that it can provide into the interactions and coexistence patterns among species. Here, we provide a comprehensive overview, systematically describing the current research status of the effects of OMF on orchid distribution and dynamics, phylogenetic signals in orchid-OMF interactions, and OMF networks. We argue that orchid-OMF associations exhibit complementary and specific effects that are highly adapted to their environment. Such specificity of associations may affect the niche breadth of orchid species and act as a stabilizing force in plant-microbe coevolution. We postulate that network analysis is required to elucidate the functions of fungal partners beyond their effects on germination and growth. Such studies may lend insight into the microbial ecology of orchids and provide a scientific basis for the protection of orchids under natural conditions in an efficient and cost-effective manner.
Collapse
Affiliation(s)
- Taiqiang Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Shimao Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Wenke Yang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Marc-André Selosse
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
- Institut de Systématique, Évolution, Biodiversité, UMR 7205, CNRS, MNHN, UPMC, EPHE, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Jiangyun Gao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| |
Collapse
|
31
|
Biological potential of bioactive metabolites derived from fungal endophytes associated with medicinal plants. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01695-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Wang Y, Zhao Y, Xu Y, Ma J, Babalola BJ, Fan Y. Ectomycorrhizal fungal communities associated with Larix gemelinii Rupr. in the Great Khingan Mountains, China. PeerJ 2021; 9:e11230. [PMID: 33959418 PMCID: PMC8053382 DOI: 10.7717/peerj.11230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/16/2021] [Indexed: 11/20/2022] Open
Abstract
Larix gemelinii is an important tree species in the Great Khingan Mountains in Northeast China with a high economic and ecological value for its role in carbon sequestration and as a source of lumber and nuts. However, the ectomycorrhizal (EM) fungal diversity and community composition of this tree remain largely undefined. We examined EM fungal communities associated with L. gemelinii from three sites in the Great Khingan Mountains using Illumina Miseq to sequence the rDNA ITS2 region and evaluated the impact of spatial, soil, and climatic variables on the EM fungal community. A total of 122 EM fungal operational taxonomic units (OTUs) were identified from 21 pooled-root samples, and the dominant EM fungal lineages were /tricholoma, /tomentella-thelephora, /suillus-rhizopogon, and /piloderma. A high proportion of unique EM fungal OTUs were present; some abundant OTUs largely restricted to specific sites. EM fungal richness and community assembly were significantly correlated with spatial distance and climatic and soil variables, with mean annual temperature being the most important predictor for fungal richness and geographic distance as the largest determinant for community turnover. Our findings indicate that L. gemelinii has a rich and distinctive EM fungal community contributing to our understanding of the montane EM fungal community structure from the perspective of a single host plant that has not been previously reported.
Collapse
Affiliation(s)
- Yonglong Wang
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, Inner Mongolia, China
| | - Yanling Zhao
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, Inner Mongolia, China
| | - Ying Xu
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, Inner Mongolia, China
| | - Jianjun Ma
- College of Life Science, Langfang Normal University, Langfang, Hebei, China
| | - Busayo Joshua Babalola
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, Beijing, China
| | - Yongjun Fan
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, Inner Mongolia, China
| |
Collapse
|
33
|
Wang YL, Zhang X, Xu Y, Babalola BJ, Xiang SM, Zhao YL, Fan YJ. Fungal Diversity and Community Assembly of Ectomycorrhizal Fungi Associated With Five Pine Species in Inner Mongolia, China. Front Microbiol 2021; 12:646821. [PMID: 33796093 PMCID: PMC8008119 DOI: 10.3389/fmicb.2021.646821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Ectomycorrhizal (EM) fungi play vital roles in ensuring host plants' health, plant diversity, and the functionality of the ecosystem. However, EM fungal diversity, community composition, and underlying assembly processes in Inner Mongolia, China, where forests are typically semiarid and cold-temperate zones, attract less attention. In this study, we investigated EM fungal communities from 63 root samples of five common pine plants in Inner Mongolia across 1,900 km using Illumina Miseq sequencing of the fungal internal transcribed spacer 2 region. We evaluated the impact of host plant phylogeny, soil, climatic, and spatial variables on EM fungal diversity and community turnover. Deterministic vs. stochastic processes for EM fungal community assembly were quantified using β-nearest taxon index scores. In total, we identified 288 EM fungal operational taxonomic units (OTUs) belonging to 31 lineages, of which the most abundant lineages were Tomentella-Thelephora, Wilcoxina, Tricholoma, and Suillus-Rhizopogon. Variations in EM fungal OTU richness and community composition were significantly predicted by host phylogeny, soil (total nitrogen, phosphorus, nitrogen-phosphorus ratio, and magnesium), climate, and spatial distance, with the host plant being the most important factor. β-nearest taxon index demonstrated that both deterministic and stochastic processes jointly determined the community assembly of EM fungi, with the predominance of stochastic processes. At the Saihanwula site selected for preference analysis, all plant species (100%) presented significant preferences for EM fungi, 54% of abundant EM fungal OTUs showed significant preferences for host plants, and 26% of pairs of plant species and abundant fungal OTUs exhibited remarkably strong preferences. Overall, we inferred that the high diversity and distinctive community composition of EM fungi associated with natural pine species in Inner Mongolia and the stochastic processes prevailed in determining the community assembly of EM fungi. Our study shed light on the diversity and community assembly of EM fungi associated with common pine species in semiarid and cold temperate forests in Inner Mongolia, China, for the first time and provided a better understanding of the ecological processes underlying the community assembly of mutualistic fungi.
Collapse
Affiliation(s)
- Yong-Long Wang
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Xuan Zhang
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Ying Xu
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Busayo Joshua Babalola
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Si-Min Xiang
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Yan-Ling Zhao
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Yong-Jun Fan
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| |
Collapse
|
34
|
Lin L, Chen Y, Xu G, Zhang Y, Zhang S, Ma K. Impacts of Urbanization Undermine Nestedness of the Plant-Arbuscular Mycorrhizal Fungal Network. Front Microbiol 2021; 12:626671. [PMID: 33767678 PMCID: PMC7985257 DOI: 10.3389/fmicb.2021.626671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
Cities are prone to ecological problems, yet the impacts of rapid global urbanization on the feedback between above- and belowground subsystems remain largely unknown. We sampled the roots of 8 common herbaceous plants within the Fifth Ring (urban areas) and in Jiufeng National Forest Park (rural areas) in Beijing (China) to assess the impacts of urbanization on the network of plant-arbuscular mycorrhizal (AM) fungal associations. Using Illumina MiSeq sequencing, 81 AM fungal OTUs were identified in 78 herb root samples. The Shannon, Simpson, and Pielou indices of root AM fungi in urban areas were significantly higher than those in rural areas. In this study, a significantly nested mycorrhizal association network was observed in rural areas (NODF = 64.68), whereas a non-nested pattern was observed in urban areas (NODF = 55.50). The competition index C-score (0.0769) of AM fungi in urban areas was slightly lower than that in rural areas (0.1431), and the species specialization (d’) of 8 host plants and fungal dissimilarity among 8 host plants in urban areas were significantly lower than those in rural areas. Convergent associations among hosts may be an important factor influencing this non-nested pattern of the plant-AM fungi network in urban areas. Generalists, rather than specialists, were enhanced during the establishment of mycorrhizal associations in urban areas. Our results suggest that reduced selectivity of host plants, and generalist promotion and specialist reduction of AM fungi during urbanization may contribute to the non-nested network of plant-AM fungal associations.
Collapse
Affiliation(s)
- Litao Lin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yun Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guorui Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla County, China
| | - Yuxin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shuang Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Keming Ma
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Amplicon Sequencing-Based Bipartite Network Analysis Confirms a High Degree of Specialization and Modularity for Fungi and Prokaryotes in Deadwood. mSphere 2021; 6:6/1/e00856-20. [PMID: 33441408 PMCID: PMC7845612 DOI: 10.1128/msphere.00856-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Deadwood is important for our forest ecosystems. It feeds and houses many organisms, e.g., fungi and prokaryotes, with many different species contributing to its decomposition and nutrient cycling. Fungi and prokaryotes are dominant colonizers of wood and mediate its decomposition. Much progress has been achieved to unravel these communities and link them to specific wood properties. However, comparative studies considering both groups of organisms and assessing their relationships to wood resources are largely missing. Bipartite interaction networks provide an opportunity to investigate this colonizer-resource relationship more in detail and aim to directly compare results between different biotic groups. The main questions were as follows. Are network structures reflecting the trophic relationship between fungal and prokaryotic colonizers and their resources? If so, do they reflect the critical role of these groups, especially that of fungi, during decomposition? We used amplicon sequencing data to analyze fungal and prokaryotic interaction networks from deadwood of 13 temperate tree species at an early to middle stage of decomposition. Several diversity- and specialization-related indices were determined and the observed network structures were related to intrinsic wood traits. We hypothesized nonrandom bipartite networks for both groups and a higher degree of specialization for fungi, as they are the key players in wood decomposition. The results reveal highly modular and specialized interaction networks for both groups of organisms, demonstrating that many fungi and prokaryotes are resource-specific colonizers. However, as the level of specialization of fungi significantly surpassed that of prokaryotes, our findings reflect the strong association between fungi and their host. Our novel approach shows that the application of bipartite interaction networks is a useful tool to explore, quantify, and compare the deadwood-colonizers relationship based on sequencing data. IMPORTANCE Deadwood is important for our forest ecosystems. It feeds and houses many organisms, e.g., fungi and prokaryotes, with many different species contributing to its decomposition and nutrient cycling. The aim of this study was to explore and quantify the relationship between these two main wood-inhabiting organism groups and their corresponding host trees. Two independent DNA-based amplicon sequencing data sets (fungi and prokaryotes) were analyzed via bipartite interaction networks. The links in the networks represent the interactions between the deadwood colonizers and their deadwood hosts. The networks allowed us to analyze whether many colonizing species interact mostly with a restricted number of deadwood tree species, so-called specialization. Our results demonstrate that many prokaryotes and fungi are resource-specific colonizers. The direct comparison between both groups revealed significantly higher specialization values for fungi, emphasizing their strong association to respective host trees, which reflects their dominant role in exploiting this resource.
Collapse
|
36
|
Van Geel M, Jacquemyn H, Peeters G, van Acker K, Honnay O, Ceulemans T. Diversity and community structure of ericoid mycorrhizal fungi in European bogs and heathlands across a gradient of nitrogen deposition. THE NEW PHYTOLOGIST 2020; 228:1640-1651. [PMID: 32643808 DOI: 10.1111/nph.16789] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/24/2020] [Indexed: 05/20/2023]
Abstract
Despite the ecological significance of ericoid mycorrhizal fungi, little is known about the abiotic and biotic factors driving their diversity and community composition. To determine the relative importance of abiotic and biotic filtering in structuring ericoid mycorrhizal fungal communities, we established 156 sampling plots in two highly contrasting environments but dominated by the same Ericaceae plant species: waterlogged bogs and dry heathlands. Plots were located across 25 bogs and 27 dry heathlands in seven European countries covering a gradient in nitrogen deposition and phosphorus availability. Putatively ericoid mycorrhizal fungal communities in the roots of 10 different Ericaceae species were characterized using high-throughput amplicon sequencing. Variation in ericoid mycorrhizal fungal communities was attributed to both habitat and soil variables on the one hand and host plant identity on the other. Communities differed significantly between bogs and heathlands and, in a given habitat, communities differed significantly among host plant species. Fungal richness was negatively related to nitrogen deposition in bogs and phosphorus availability in bogs and heathlands. Our results demonstrate that both abiotic and biotic filtering shapes ericoid mycorrhizal fungal communities and advocate an environmental policy minimizing excess nutrient input in these nutrient-poor ecosystems to avoid loss of ericoid mycorrhizal fungal taxa.
Collapse
Affiliation(s)
- Maarten Van Geel
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, Heverlee, 3001, Belgium
| | - Hans Jacquemyn
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, Heverlee, 3001, Belgium
| | - Gerrit Peeters
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, Heverlee, 3001, Belgium
| | - Kasper van Acker
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, Heverlee, 3001, Belgium
| | - Olivier Honnay
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, Heverlee, 3001, Belgium
| | - Tobias Ceulemans
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, Heverlee, 3001, Belgium
| |
Collapse
|
37
|
Yao H, Sun X, He C, Li XC, Guo LD. Host identity is more important in structuring bacterial epiphytes than endophytes in a tropical mangrove forest. FEMS Microbiol Ecol 2020; 96:5800982. [PMID: 32149339 DOI: 10.1093/femsec/fiaa038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 03/05/2020] [Indexed: 01/24/2023] Open
Abstract
Interactions between plants and microbes are involved in biodiversity maintenance, community stability and ecosystem functioning. However, differences in the community and network structures between phyllosphere epiphytic and endophytic bacteria have rarely been investigated. Here, we examined phyllosphere epiphytic and endophytic bacterial communities of six mangrove species using Illumina MiSeq sequencing of the 16S rRNA gene. The results revealed that the community structure of epiphytic and endophytic bacteria was different. Plant identity significantly affected the diversity and community structure of both epiphytic and endophytic bacteria, with a greater effect on the community structure of the former than the latter. Network analysis showed that both plant-epiphytic and plant-endophytic bacterial network structures were characterized by significantly highly specialized and modular but lowly connected and anti-nested properties. Furthermore, the epiphytic bacterial network was more highly specialized and modular but less connected and more strongly anti-nested than the endophytic bacterial network. This study reveals that the phyllosphere epiphytic and endophytic bacterial community structures differ and plant identity has a greater effect on the epiphytic than on the endophytic bacteria, which may provide a comprehensive insight into the role of plant identity in driving the phyllosphere epiphytic and endophytic microbial community structures in mangrove ecosystems.
Collapse
Affiliation(s)
- Hui Yao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xing-Chun Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Leopold DR, Fukami T. Greater local diversity under older species pools may arise from enhanced competitive equivalence. Ecol Lett 2020; 24:310-318. [PMID: 33216438 DOI: 10.1111/ele.13647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 01/04/2023]
Abstract
Ecological communities typically contain more species when located within geologically older regions. This pattern is traditionally attributed to the long-term accumulation of species in the regional species pool, with local species interactions playing a minor role. We provide evidence suggesting a more important role of local species interactions than generally assumed. We assembled 320 communities of root-associated fungi under 80 species pools, varying species pool richness and the mean age of the sites from which the fungi were collected across a 4-myr soil chronosequence. We found that local diversity increased more with increasing species pool richness when species were from older sites. We also found that older species pools had lower functional and phylogenetic diversity, indicating greater competitive equivalence among species. Our results suggest that older regions have higher local richness not simply because older pools are more speciose but also because species have evolved traits that allow them to locally co-occur.
Collapse
Affiliation(s)
- Devin R Leopold
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA, 94305, USA.,Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR, 97331, USA
| | - Tadashi Fukami
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA, 94305, USA
| |
Collapse
|
39
|
Host Genotype and Colonist Arrival Order Jointly Govern Plant Microbiome Composition and Function. Curr Biol 2020; 30:3260-3266.e5. [PMID: 32679100 DOI: 10.1016/j.cub.2020.06.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 01/08/2023]
Abstract
The composition of host-associated microbiomes can have important consequences for host health and fitness [1-3]. Yet we still lack understanding of many fundamental processes that determine microbiome composition [4, 5]. There is mounting evidence that historical contingency during microbiome assembly may overshadow more deterministic processes, such as the selective filters imposed by host traits [6-8]. More specifically, species arrival order has been frequently shown to affect microbiome composition [9-12], a phenomenon known as priority effects [13-15]. However, it is less clear whether priority effects during microbiome assembly are consequential for the host [16] or whether intraspecific variation in host traits can alter the trajectory of microbiome assembly under priority effects. In a greenhouse inoculation experiment using the black cottonwood (Populus trichocarpa) foliar microbiome, we manipulated host genotype and the colonization order of common foliar fungi. We quantified microbiome assembly outcomes using fungal marker gene sequencing and measured susceptibility of the colonized host to a leaf rust pathogen, Melampsora × columbiana. We found that the effect of species arrival order on microbiome composition, and subsequent disease susceptibility, depended on the host genotype. Additionally, we found that microbiome assembly history can affect host disease susceptibility independent of microbiome composition at the time of pathogen exposure, suggesting that the interactive effects of species arrival order and host genotype can decouple community composition and function. Overall, these results highlight the importance of a key process underlying stochasticity in microbiome assembly while also revealing which hosts are most likely to experience these effects.
Collapse
|
40
|
Větrovský T, Morais D, Kohout P, Lepinay C, Algora C, Awokunle Hollá S, Bahnmann BD, Bílohnědá K, Brabcová V, D'Alò F, Human ZR, Jomura M, Kolařík M, Kvasničková J, Lladó S, López-Mondéjar R, Martinović T, Mašínová T, Meszárošová L, Michalčíková L, Michalová T, Mundra S, Navrátilová D, Odriozola I, Piché-Choquette S, Štursová M, Švec K, Tláskal V, Urbanová M, Vlk L, Voříšková J, Žifčáková L, Baldrian P. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci Data 2020; 7:228. [PMID: 32661237 PMCID: PMC7359306 DOI: 10.1038/s41597-020-0567-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/05/2020] [Indexed: 02/08/2023] Open
Abstract
Fungi are key players in vital ecosystem services, spanning carbon cycling, decomposition, symbiotic associations with cultivated and wild plants and pathogenicity. The high importance of fungi in ecosystem processes contrasts with the incompleteness of our understanding of the patterns of fungal biogeography and the environmental factors that drive those patterns. To reduce this gap of knowledge, we collected and validated data published on the composition of soil fungal communities in terrestrial environments including soil and plant-associated habitats and made them publicly accessible through a user interface at https://globalfungi.com . The GlobalFungi database contains over 600 million observations of fungal sequences across > 17 000 samples with geographical locations and additional metadata contained in 178 original studies with millions of unique nucleotide sequences (sequence variants) of the fungal internal transcribed spacers (ITS) 1 and 2 representing fungal species and genera. The study represents the most comprehensive atlas of global fungal distribution, and it is framed in such a way that third-party data addition is possible.
Collapse
Affiliation(s)
- Tomáš Větrovský
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Daniel Morais
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Petr Kohout
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Clémentine Lepinay
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Camelia Algora
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Sandra Awokunle Hollá
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Barbara Doreen Bahnmann
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Květa Bílohnědá
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Vendula Brabcová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Federica D'Alò
- Laboratory of Systematic Botany and Mycology, University of Tuscia, Largo dell'Università snc, Viterbo, 01100, Italy
| | - Zander Rainier Human
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Mayuko Jomura
- Department of Forest Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Miroslav Kolařík
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Jana Kvasničková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Salvador Lladó
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Rubén López-Mondéjar
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Tijana Martinović
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Tereza Mašínová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Lenka Meszárošová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Lenka Michalčíková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Tereza Michalová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Sunil Mundra
- Department of Biology, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Section for Genetics and Evolutionary Biology, University of Oslo, Blindernveien 31, 0316, Oslo, Norway
| | - Diana Navrátilová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Iñaki Odriozola
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Sarah Piché-Choquette
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Martina Štursová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Karel Švec
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Vojtěch Tláskal
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Michaela Urbanová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Lukáš Vlk
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Jana Voříšková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Lucia Žifčáková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Petr Baldrian
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic.
| |
Collapse
|
41
|
Toju H, Abe MS, Ishii C, Hori Y, Fujita H, Fukuda S. Scoring Species for Synthetic Community Design: Network Analyses of Functional Core Microbiomes. Front Microbiol 2020; 11:1361. [PMID: 32676061 PMCID: PMC7333532 DOI: 10.3389/fmicb.2020.01361] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/27/2020] [Indexed: 11/16/2022] Open
Abstract
Constructing biological communities is a major challenge in both basic and applied sciences. Although model synthetic communities with a few species have been constructed, designing systems consisting of tens or hundreds of species remains one of the most difficult goals in ecology and microbiology. By utilizing high-throughput sequencing data of interspecific association networks, we here propose a framework for exploring “functional core” species that have great impacts on whole community processes and functions. The framework allows us to score each species within a large community based on three criteria: namely, topological positions, functional portfolios, and functional balance within a target network. The criteria are measures of each species’ roles in maximizing functional benefits at the community or ecosystem level. When species with potentially large contributions to ecosystem-level functions are screened, the framework also helps us design “functional core microbiomes” by focusing on properties of species groups (modules) within a network. When embedded into agroecosystems or human gut, such functional core microbiomes are expected to organize whole microbiome processes and functions. An application to a plant-associated microbiome dataset actually highlighted potential functional core microbes that were known to control rhizosphere microbiomes by suppressing pathogens. Meanwhile, an example of application in mouse gut microbiomes called attention to poorly investigated bacterial species, whose potential roles within gut microbiomes deserve future experimental studies. The framework for gaining “bird’s-eye” views of functional cores within networks is applicable not only to agricultural and medical data but also to datasets produced in food processing, brewing, waste water purification, and biofuel production.
Collapse
Affiliation(s)
- Hirokazu Toju
- Center for Ecological Research, Kyoto University, Kyoto, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Masato S Abe
- Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | - Chiharu Ishii
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Yoshie Hori
- Center for Ecological Research, Kyoto University, Kyoto, Japan
| | - Hiroaki Fujita
- Center for Ecological Research, Kyoto University, Kyoto, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan.,Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
42
|
Wang YL, Gao C, Chen L, Ji NN, Wu BW, Li XC, Lü PP, Zheng Y, Guo LD. Host plant phylogeny and geographic distance strongly structure Betulaceae-associated ectomycorrhizal fungal communities in Chinese secondary forest ecosystems. FEMS Microbiol Ecol 2020; 95:5393368. [PMID: 30889238 DOI: 10.1093/femsec/fiz037] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/17/2019] [Indexed: 11/14/2022] Open
Abstract
Environmental filtering and dispersal limitation are two of the primary drivers of community assembly in ecosystems, but their effects on ectomycorrhizal (EM) fungal communities associated with wide ranges of Betulaceae taxa at a large scale are poorly documented. In this study, we examined EM fungal communities associated with 23 species from four genera (Alnus, Betula, Carpinus and Corylus) of Betulaceae in Chinese secondary forest ecosystems, using Illumina MiSeq sequencing of the ITS2 region. Effects of host plant phylogeny, soil, climate and geographic distance on EM fungal community were explored. In total, we distinguished 1738 EM fungal operational taxonomic units (OTUs) at a 97% sequence similarity level. The EM fungal communities of Alnus had significantly lower OTU richness than those associated with the other three plant genera. The EM fungal OTU richness was significantly affected by geographic distance, host plant phylogeny, soil and climate. The EM fungal community composition was significantly influenced by host plant phylogeny (12.1% of variation explained in EM fungal community), geographic distance (7.7%), soil (4.6%) and climate (1.1%). This finding highlights that environmental filtering linked to host plant phylogeny and dispersal limitation strongly influence EM fungal communities associated with Betulaceae plants in Chinese secondary forest ecosystems.
Collapse
Affiliation(s)
- Yong-Long Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Niu-Niu Ji
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin-Wei Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Chun Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng-Peng Lü
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
43
|
Li JL, Sun X, Zheng Y, Lü PP, Wang YL, Guo LD. Diversity and community of culturable endophytic fungi from stems and roots of desert halophytes in northwest China. MycoKeys 2020; 62:75-95. [PMID: 32076383 PMCID: PMC7010840 DOI: 10.3897/mycokeys.62.38923] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/10/2019] [Indexed: 11/27/2022] Open
Abstract
Halophytes have high species diversity and play important roles in ecosystems. However, endophytic fungi of halophytes in desert ecosystems have been less investigated. In this study, we examined endophytic fungi associated with the stem and root of ten halophytic species colonizing the Gurbantonggut desert. A total of 36 endophytic fungal taxa were obtained, dominated by Alternaria eichhorniae, Monosporascus ibericus, and Pezizomycotina sp.1. The colonization rate and species richness of endophytic fungi varied in the ten plant species, with higher rates in roots than in stems. The endophytic fungal community composition was significantly affected by plant identity and tissue type. Some endophytic fungi showed significant host and tissue preferences. This finding suggests that host identity and tissue type structure endophytic fungal community in a desert ecosystem.
Collapse
Affiliation(s)
- Jia-Long Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, ChinaInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- National Joint Engineering Research Center of Separation and purification technology of Chinese Ethnic Veterinary Herbs, Tongren Polytechnic College, Tongren, 554300, ChinaUniversity of Chinese Academy of SciencesBeijingChina
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, ChinaTongren Polytechnic CollegeTongrenChina
| | - Xiang Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, ChinaInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, IsraelTel Aviv UniversityTel-AvivIsrael
| | - Yong Zheng
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, ChinaFujian Normal UniversityFuzhouChina
| | - Peng-Peng Lü
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, ChinaInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, ChinaTongren Polytechnic CollegeTongrenChina
| | - Yong-Long Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, ChinaInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, ChinaTongren Polytechnic CollegeTongrenChina
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, ChinaInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, ChinaTongren Polytechnic CollegeTongrenChina
| |
Collapse
|
44
|
Mainland and island populations of Mussaenda kwangtungensis differ in their phyllosphere fungal community composition and network structure. Sci Rep 2020; 10:952. [PMID: 31969602 PMCID: PMC6976661 DOI: 10.1038/s41598-020-57622-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 01/03/2020] [Indexed: 01/12/2023] Open
Abstract
We compared community composition and co-occurrence patterns of phyllosphere fungi between island and mainland populations within a single plant species (Mussaenda kwangtungensis) using high-throughput sequencing technology. We then used 11 microsatellite loci for host genotyping. The island populations differed significantly from their mainland counterparts in phyllosphere fungal community structure. Topological features of co-occurrence network showed geographic patterns wherein fungal assemblages were less complex, but more modular in island regions than mainland ones. Moreover, fungal interactions and community composition were strongly influenced by the genetic differentiation of host plants. This study may advance our understanding of assembly principles and ecological interactions of phyllosphere fungal communities, as well as improve our ability to optimize fungal utilization for the benefit of people.
Collapse
|
45
|
Wang YL, Gao C, Chen L, Ji NN, Wu BW, Lü PP, Li XC, Qian X, Maitra P, Babalola BJ, Zheng Y, Guo LD. Community Assembly of Endophytic Fungi in Ectomycorrhizae of Betulaceae Plants at a Regional Scale. Front Microbiol 2020; 10:3105. [PMID: 32038548 PMCID: PMC6986194 DOI: 10.3389/fmicb.2019.03105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/23/2019] [Indexed: 11/13/2022] Open
Abstract
The interaction between aboveground and belowground biotic communities drives community assembly of plants and soil microbiota. As an important component of belowground microorganisms, root-associated fungi play pivotal roles in biodiversity maintenance and community assembly of host plants. The Betulaceae plants form ectomycorrhizae with soil fungi and widely distribute in various ecosystems. However, the community assembly of endophytic fungi in ectomycorrhizae is less investigated at a large spatial scale. Here, we examined the endophytic fungal communities in ectomycorrhizae of 22 species in four genera belonging to Betulaceae in Chinese forest ecosystems, using Illumina Miseq sequencing of internal transcribed spacer 2 amplicons. The relative contribution of host phylogeny, climate and soil (environmental filtering) and geographic distance (dispersal limitation) on endophytic fungal community was disentangled. In total, 2,106 endophytic fungal operational taxonomic units (OTUs) were obtained at a 97% sequence similarity level, dominated by Leotiomycetes, Agaricomycetes, Eurotiomycetes, and Sordariomycetes. The endophytic fungal OTU richness was significantly related with host phylogeny, geographic distance, soil and climate. The endophytic fungal community composition was significantly affected by host phylogeny (19.5% of variation explained in fungal community), geographic distance (11.2%), soil (6.1%), and climate (1.4%). This finding suggests that environmental filtering by plant and abiotic variables coupled with dispersal limitation linked to geographic distance determines endophytic fungal community assembly in ectomycorrhizae of Betulaceae plants, with host phylogeny being a stronger determinant than other predictor variables at the regional scale.
Collapse
Affiliation(s)
- Yong-Long Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liang Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Niu-Niu Ji
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bin-Wei Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng-Peng Lü
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xing-Chun Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xin Qian
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Pulak Maitra
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Busayo Joshua Babalola
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Geographical Science, Fujian Normal University, Fuzhou, China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
46
|
Feng K, Zhang Y, He Z, Ning D, Deng Y. Interdomain ecological networks between plants and microbes. Mol Ecol Resour 2019; 19:1565-1577. [PMID: 31479575 DOI: 10.1111/1755-0998.13081] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022]
Abstract
While macroscopic interkingdom relationships have been intensively investigated in various ecosystems, the above-belowground ecology in natural ecosystems has been poorly understood, especially for the plant-microbe associations at a regional scale. In this study, we proposed a workflow to construct interdomain ecological networks (IDEN) between multiple plants and various microbes (bacteria and archaea in this study). Across 30 latitudinal forests in China, the regional IDEN showed particular topological features, including high connectance, nested structure, asymmetric specialization and modularity. Also, plant species exhibited strong preference to specific microbial groups, and the observed network was significantly different from randomly rewired networks. Network module analysis indicated that a majority of microbes associated with plants within modules rather than across modules, suggesting specialized associations between plants and microorganisms. Consistent plant-microbe associations were captured via IDENs constructed within individual forest locations, which reinforced the validity of IDEN analysis. In addition, the plant-forest link distribution showed the geographical distribution of plants had higher endemicity than that of microorganisms. With cautious experimental design and data processing, this study shows interdomain species associations between plants and microbes in natural forest ecosystems and provides new insights into our understanding of meta-communities across different domain species.
Collapse
Affiliation(s)
- Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuguang Zhang
- Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Key Laboratory of Forest Ecology and Environment of State Forestry Administration, Beijing, China
| | - Zhili He
- Environmental Microbiomics Research Center, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Daliang Ning
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
47
|
Yao H, Sun X, He C, Maitra P, Li XC, Guo LD. Phyllosphere epiphytic and endophytic fungal community and network structures differ in a tropical mangrove ecosystem. MICROBIOME 2019; 7:57. [PMID: 30967154 PMCID: PMC6456958 DOI: 10.1186/s40168-019-0671-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/22/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Revealing the relationship between plants and fungi is very important in understanding biodiversity maintenance, community stability, and ecosystem functioning. However, differences in the community and network structures of phyllosphere epiphytic and endophytic fungi are currently poorly documented. In this study, we examined epiphytic and endophytic fungal communities associated with the leaves of six mangrove species using Illumina MiSeq sequencing of internal transcribed spacer 2 (ITS2) sequences. RESULTS A total of 635 operational taxonomic units (OTUs) of endophytic and epiphytic fungi were obtained at a 97% sequence similarity level; they were dominated by Dothideomycetes and Tremellomycetes. Plant identity had a significant effect on the OTU richness of endophytic fungi, but not on epiphytic fungi. The community composition of epiphytic and endophytic fungi was significantly different, and plant identity had a greater effect on endophytic fungi than on epiphytic fungi. Network analysis showed that both epiphytic and endophytic network structures were characterized by significantly highly specialized and modular but lowly connected and anti-nested properties. Furthermore, the endophytic network had higher levels of specialization and modularity but lower connectance and stronger anti-nestedness than the epiphytic network. CONCLUSIONS This study reveals that the phyllosphere epiphytic and endophytic fungal communities differ, and plant identity has a greater effect on the endophytic fungi than on epiphytic fungi. These findings demonstrate the role of host plant identity in driving phyllosphere epiphytic and endophytic community structure.
Collapse
Affiliation(s)
- Hui Yao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Xiang Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 People’s Republic of China
| | - Chao He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 People’s Republic of China
| | - Pulak Maitra
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Xing-Chun Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 People’s Republic of China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| |
Collapse
|
48
|
Xing X, Jacquemyn H, Gai X, Gao Y, Liu Q, Zhao Z, Guo S. The impact of life form on the architecture of orchid mycorrhizal networks in tropical forest. OIKOS 2019. [DOI: 10.1111/oik.06363] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Xiaoke Xing
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Inst. of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College CN‐100193 Beijing PR China
| | - Hans Jacquemyn
- KU Leuven, Dept of Biology, Plant Conservation and Population Biology Leuven Belgium
| | - Xuege Gai
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Inst. of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College CN‐100193 Beijing PR China
| | - Yue Gao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Inst. of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College CN‐100193 Beijing PR China
| | - Qiang Liu
- Yunnan Forestry Technological College, Kunming Yunnan PR China
| | - Zeyu Zhao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Inst. of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College CN‐100193 Beijing PR China
| | - Shunxing Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Inst. of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College CN‐100193 Beijing PR China
| |
Collapse
|
49
|
Toju H, Tanaka Y. Consortia of anti-nematode fungi and bacteria in the rhizosphere of soybean plants attacked by root-knot nematodes. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181693. [PMID: 31032023 PMCID: PMC6458363 DOI: 10.1098/rsos.181693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/21/2019] [Indexed: 06/01/2023]
Abstract
Cyst and root-knot nematodes are major risk factors of agroecosystem management, often causing devastating impacts on crop production. The use of microbes that parasitize or prey on nematodes has been considered as a promising approach for suppressing phytopathogenic nematode populations. However, effects and persistence of those biological control agents often vary substantially depending on regions, soil characteristics and agricultural practices: more insights into microbial community processes are required to develop reproducible control of nematode populations. By performing high-throughput sequencing profiling of bacteria and fungi, we examined how root and soil microbiomes differ between benign and nematode-infected plant individuals in a soybean field in Japan. Results indicated that various taxonomic groups of bacteria and fungi occurred preferentially on the soybean individuals infected by root-knot nematodes or those uninfected by nematodes. Based on a network analysis of potential microbe-microbe associations, we further found that several fungal taxa potentially preying on nematodes (Dactylellina (Orbiliales), Rhizophydium (Rhizophydiales), Clonostachys (Hypocreales), Pochonia (Hypocreales) and Purpureocillium (Hypocreales)) co-occurred in the soybean rhizosphere at a small spatial scale. This study suggests how 'consortia' of anti-nematode microbes can derive from indigenous (resident) microbiomes, providing basic information for managing anti-nematode microbial communities in agroecosystems.
Collapse
Affiliation(s)
- Hirokazu Toju
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2133, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Yu Tanaka
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
50
|
Fabiańska I, Gerlach N, Almario J, Bucher M. Plant-mediated effects of soil phosphorus on the root-associated fungal microbiota in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2019; 221:2123-2137. [PMID: 30317641 PMCID: PMC6519159 DOI: 10.1111/nph.15538] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 09/19/2018] [Indexed: 05/22/2023]
Abstract
Plants respond to phosphorus (P) limitation through an array of morphological, physiological and metabolic changes which are part of the phosphate (Pi) starvation response (PSR). This response influences the establishment of the arbuscular mycorrhizal (AM) symbiosis in most land plants. It is, however, unknown to what extent available P and the PSR redefine plant interactions with the fungal microbiota in soil. Using amplicon sequencing of the fungal taxonomic marker ITS2, we examined the changes in root-associated fungal communities in the AM nonhost species Arabidopsis thaliana in response to soil amendment with P and to genetic perturbations in the plant PSR. We observed robust shifts in root-associated fungal communities of P-replete plants in comparison with their P-deprived counterparts, while bulk soil communities remained unaltered. Moreover, plants carrying mutations in the phosphate signaling network genes, phr1, phl1 and pho2, exhibited similarly altered root fungal communities characterized by the depletion of the chytridiomycete taxon Olpidium brassicae specifically under P-replete conditions. This study highlights the nutritional status and the underlying nutrient signaling network of an AM nonhost plant as previously unrecognized factors influencing the assembly of the plant fungal microbiota in response to P in nonsterile soil.
Collapse
Affiliation(s)
- Izabela Fabiańska
- Botanical InstituteCologne BiocenterUniversity of CologneCologne50931Germany
| | - Nina Gerlach
- Botanical InstituteCologne BiocenterUniversity of CologneCologne50931Germany
| | - Juliana Almario
- Botanical InstituteCologne BiocenterUniversity of CologneCologne50931Germany
- Cluster of Excellence on Plant Sciences (CEPLAS)University of CologneCologne50931Germany
- Present address:
Center for Plant Molecular BiologyUniversity of TübingenTübingen72074Germany
| | - Marcel Bucher
- Botanical InstituteCologne BiocenterUniversity of CologneCologne50931Germany
- Cluster of Excellence on Plant Sciences (CEPLAS)University of CologneCologne50931Germany
| |
Collapse
|